WO2024000153A1 - 电极组件及其制造方法、电池单体、电池及用电装置 - Google Patents

电极组件及其制造方法、电池单体、电池及用电装置 Download PDF

Info

Publication number
WO2024000153A1
WO2024000153A1 PCT/CN2022/101838 CN2022101838W WO2024000153A1 WO 2024000153 A1 WO2024000153 A1 WO 2024000153A1 CN 2022101838 W CN2022101838 W CN 2022101838W WO 2024000153 A1 WO2024000153 A1 WO 2024000153A1
Authority
WO
WIPO (PCT)
Prior art keywords
section
positive electrode
piece
electrode assembly
negative electrode
Prior art date
Application number
PCT/CN2022/101838
Other languages
English (en)
French (fr)
Inventor
张小溪
谢勇锋
阎晓洁
李彦朋
邹启凡
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202280048719.5A priority Critical patent/CN117652050A/zh
Priority to PCT/CN2022/101838 priority patent/WO2024000153A1/zh
Publication of WO2024000153A1 publication Critical patent/WO2024000153A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of battery technology, specifically, to an electrode assembly and its manufacturing method, a battery cell, a battery and an electrical device.
  • the inner ring of the existing coiled structure electrode assembly has a large bending arc at the corner, which often leads to the risk of lithium precipitation or breakage in the inner ring of the electrode assembly during use, thereby causing the battery cell to be damaged.
  • the performance is poor and there are great safety risks.
  • Embodiments of the present application provide an electrode assembly and a manufacturing method thereof, a battery cell, a battery and an electrical device, which can improve the performance and safety of the battery cell.
  • embodiments of the present application provide an electrode assembly, including a negative electrode piece and a positive electrode piece.
  • the negative electrode piece and the positive electrode piece are wound along a winding direction to form the electrode assembly.
  • the electrode assembly It has a straight area and a bent area connected to the straight area, the negative electrode piece is continuous in the winding direction, and the negative electrode piece includes a plurality of straight pieces arranged in a stack on the straight area. part; wherein, the positive electrode piece includes a first section and a second section spaced apart along the winding direction and arranged sequentially, the first section is located in the straight area and is stacked on two adjacent ones. Between the straight parts, the second section is stacked with the negative electrode sheet and continuously wound along the winding direction. In the opposite direction to the winding direction, the second section is laminated with the adjacent negative electrode sheet.
  • a first non-pole piece area is formed between the first sections, and at least part of the first non-pole piece area is located in the bending area.
  • the electrode assembly is a rolled structure in which the negative electrode piece and the positive electrode piece are wound with each other along the winding direction.
  • the negative electrode piece is continuously arranged along the winding direction
  • the positive electrode piece has a structure along the winding direction.
  • the first section and the second section are spaced apart and arranged in sequence. By arranging the first section as a whole in the straight area, the second section and the negative electrode piece are continuously wound in the winding direction, and the second section is connected with the adjacent section.
  • At least part of the first non-pole piece area formed between the first sections is disposed in the bending area of the electrode assembly, so that the inner ring of the electrode assembly forms a straight portion of the negative electrode piece and the first section of the positive electrode piece is stacked on each other
  • the structure of the electrode assembly allows the outer ring of the electrode assembly to form a structure in which the negative electrode piece and the second section of the positive electrode piece are wound around each other.
  • the electrode assembly adopting this structure can, on the one hand, alleviate the tension of the inner ring of the positive electrode piece in the bending area.
  • the phenomenon of greater bending resulting in greater tension can effectively reduce the risk of lithium precipitation or breakage in the part of the inner ring of the positive electrode plate located in the bending area during use, thereby puncturing the isolation film, thereby improving the electrode performance.
  • the performance and safety of the component are improved.
  • the structure in which the straight part and the first section of the positive electrode piece are stacked on each other can effectively ensure the energy density requirements of the electrode assembly, and can reduce the position accuracy requirements between the positive electrode piece and the negative electrode piece, thereby reducing the energy density of the electrode assembly.
  • Manufacturing difficulty can greatly optimize the production cycle of electrode components, which is beneficial to improving the production efficiency of electrode components and meeting production capacity needs.
  • the winding start end of the second section is located in the flat area.
  • the winding starting end of the second section and the negative electrode piece is arranged in the straight area, that is to say, the second section of the positive electrode piece and the negative electrode piece are from the electrode assembly.
  • the straight area begins to wind, which can effectively alleviate the bending phenomenon at the starting end of the second section of winding, thereby reducing the risk of lithium precipitation or breakage at the starting end of the second section of winding, which in turn helps improve the performance of the electrode assembly. Performance and safety of use.
  • the positive electrode piece includes a plurality of first sections; along the winding direction, a plurality of first sections are arranged at intervals, and there is a gap between two adjacent first sections.
  • a second non-pole piece region is formed, at least part of the second non-pole piece region is located in the bending region.
  • the positive electrode piece has a plurality of first sections spaced apart along the winding direction, and the second non-pole piece area formed between two adjacent first sections is arranged in the bending area, that is, That is, a plurality of first sections are spaced apart along the winding direction, and the entirety of the plurality of first sections and the second sections are spaced apart along the winding direction, so that the inner ring of the electrode assembly forms a gap between the plurality of first sections and the negative electrode piece.
  • the structure of multiple alternately stacked straight parts can effectively reduce the risk of lithium precipitation or breakage at multiple bending positions of the inner ring of the positive electrode plate in the bending area, which is conducive to further improving the performance and use of the electrode assembly. safety.
  • the electrode assembly further includes an isolation film; the isolation film is disposed between the negative electrode piece and the positive electrode piece to separate the negative electrode piece and the positive electrode piece.
  • the electrode assembly is also provided with an isolation film between the negative electrode piece and the positive electrode piece, so that the separation between the negative electrode piece and the positive electrode piece can be effectively realized to reduce the cost of the negative electrode piece and the positive electrode piece.
  • the phenomenon of short circuit occurs, which is helpful to reduce the safety hazards of the electrode assembly during use.
  • the first segment is bonded to the isolation film.
  • the first section is bonded to the isolation film through an adhesive layer, and the adhesive layer is located on opposite sides of the first section in the length direction; and/or the bonding The layers are located on opposite sides in the width direction of the first section.
  • this structure can effectively reduce the impact of the adhesive layer on the third section.
  • the influence caused by the coating area on one section can ensure the infiltration effect of the electrolyte on the coating area on the first section.
  • both the first section and the second section have positive electrode tabs, and along the stacking direction of the plurality of straight sections, the positive electrode tabs of the first section and the positive electrode tabs are The positive electrode tab portions of the second section are stacked.
  • two adjacent positive electrode tab portions are bonded or welded along the stacking direction of the plurality of straight portions.
  • two adjacent tab parts arranged in a stack are bonded or welded to each other, so that the pole tab part of the first section and the pole tab part of the second section form an integral structure.
  • the structure facilitates the connection of the pole lug part of the first section and the pole tab part of the second section with other components.
  • it helps to alleviate the phenomenon of movement or slippage of the first section of the positive electrode piece during use. , to improve the performance of the electrode assembly.
  • embodiments of the present application further provide a battery cell, including a casing and the above-mentioned electrode assembly; the electrode assembly is accommodated in the casing.
  • embodiments of the present application further provide a battery including a plurality of the above battery cells.
  • embodiments of the present application further provide an electrical device, including the above-mentioned battery.
  • embodiments of the present application further provide a method for manufacturing an electrode assembly, including: providing a negative electrode piece and a positive electrode piece; winding the negative electrode piece and the positive electrode piece along the winding direction to form the The electrode assembly has a straight area and a bent area connected to the straight area, the negative electrode piece is continuous in the winding direction, and the negative electrode piece includes a layer arranged on the A plurality of straight parts in the straight area; wherein, the positive electrode piece includes a first section and a second section spaced apart and sequentially arranged along the winding direction, and the first section is located in the straight area and stacked Arranged between two adjacent straight portions, the second section is stacked with the negative electrode sheet and continuously wound along the winding direction, and in the opposite direction of the winding direction, the A first non-pole piece area is formed between the second section and the adjacent first section, and at least part of the first non-pole piece area is located in the bending area.
  • the positive electrode sheet in the electrode assembly formed by winding the negative electrode sheet and the positive electrode sheet, includes a first section and a second section spaced apart along the winding direction and arranged in sequence, and the first section is integrally arranged on The flat area is laminated between two adjacent straight portions of the stacked arrangement of the negative electrode plates, and the first non-pole plate area formed between the second section and the adjacent first section is provided on the electrode assembly.
  • the inner ring of the electrode assembly forms a structure in which the straight part of the negative electrode piece and the first section of the positive electrode piece are stacked on each other, and the outer ring of the electrode assembly forms the third section of the negative electrode piece and the positive electrode piece.
  • the two-section structure is wound around each other.
  • the electrode assembly using this structure can alleviate the phenomenon that the inner ring of the positive electrode plate is bent to a large extent in the bending area and generates large tension, so that it can be used during the use of the electrode assembly. It effectively reduces the risk of lithium precipitation or breakage in the inner ring of the positive electrode plate located in the bending area and punctures the isolation film, thereby improving the performance and safety of the electrode assembly.
  • rolling the negative electrode piece and the positive electrode piece along the winding direction includes: providing two isolation films; winding the negative electrode piece and the two positive electrode pieces along the winding direction.
  • the isolation film in the process of winding the negative electrode piece and the two isolation films, the first section and the second section are sequentially placed between the two isolation films; wherein, The isolation film is disposed between the negative electrode piece and the positive electrode piece to separate the negative electrode piece and the positive electrode piece.
  • the negative electrode piece and the two isolation films are first rolled, and during the winding process, the first section of the positive electrode piece and The second section is placed between the two isolation films in sequence, thereby forming a structure in which the inner ring of the electrode assembly is the straight part of the negative electrode piece and the first section of the positive electrode piece are stacked on each other, and the outer ring of the electrode assembly is the negative electrode.
  • the manufacturing method of the electrode assembly further includes: providing an adhesive layer on the first section so that the first section is adhered to the isolation film.
  • an adhesive layer for bonding with the separators is provided on the first section, so that the first section When placed between two isolation films, the isolation films can be bonded to each other, which can effectively alleviate the movement or slippage of the first section during the winding process to improve the production quality of the electrode assembly.
  • both the first section and the second section have positive electrode tabs, and along the stacking direction of the plurality of straight sections, the positive electrode tabs of the first section and the positive electrode tabs are The positive electrode tabs of the second section are stacked; after winding the negative electrode piece and the positive electrode piece along the winding direction, the manufacturing method of the electrode assembly further includes: bonding or welding Two adjacent positive electrode tabs.
  • the plurality of tab portions stacked along the stacking direction of the plurality of straight portions are connected together by bonding or welding.
  • the electrode assembly manufactured by this manufacturing method makes the tab part of the first section and the tab part of the second section form an integral structure, so that on the one hand, it is convenient to combine the tab part of the first section and the tab part of the second section with other parts. The components are connected. On the other hand, it is helpful to alleviate the movement or slippage of the first section of the positive electrode piece during use, thereby improving the performance of the electrode assembly.
  • Figure 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • Figure 2 is an exploded view of the structure of a battery provided by some embodiments of the present application.
  • Figure 3 is an exploded view of the structure of a battery cell provided by some embodiments of the present application.
  • FIG. 4 is a schematic structural diagram of an electrode assembly provided by some embodiments of the present application.
  • Figure 5 is a schematic flow chart of a manufacturing method of an electrode assembly provided by some embodiments of the present application.
  • FIG. 6 is a schematic flowchart of step S200 of the manufacturing method of the electrode assembly provided by some embodiments of the present application.
  • Figure 7 is a schematic structural diagram of the manufacturing method of the electrode assembly provided by some embodiments of the present application in which the negative electrode piece and two isolation films are wound;
  • Figure 8 is a front view of the manufacturing method of the electrode assembly provided by some embodiments of the present application when winding the negative electrode piece and two separators;
  • Figure 9 is a schematic structural diagram of the method for manufacturing an electrode assembly provided by some embodiments of the present application when the first section is placed between two isolation films;
  • Figure 10 is a front view of the manufacturing method of the electrode assembly provided by some embodiments of the present application when the first section is placed between two isolation films;
  • Figure 11 is a schematic structural diagram of the method for manufacturing an electrode assembly provided by some embodiments of the present application when the second section is placed between two isolation films;
  • Figure 12 is a front view of the manufacturing method of the electrode assembly provided by some embodiments of the present application when the second section is placed between two isolation films;
  • Figure 13 is a schematic flow chart of step S200 of the manufacturing method of the electrode assembly provided by some embodiments of the present application in other embodiments;
  • FIG. 14 is a schematic flowchart of a method for manufacturing an electrode assembly according to some embodiments of the present application.
  • Icon 1000-vehicle; 100-battery; 10-box; 11-first box body; 12-second box body; 20-battery cell; 21-outer shell; 211-casing; 2111-opening; 212- End cap; 22-electrode assembly; 221-negative electrode piece; 2211-straight part; 2212-bent part; 2213-negative electrode lug; 222-isolation film; 223-positive electrode piece; 2231-first section; 2232-second section; 2232a-winding starting end; 2233-first non-pole piece area; 2234-second non-pole piece area; 2235-positive electrode lug; 224-straight area; 225-bent area; 23- Positive electrode terminal; 24-negative electrode terminal; 25-pressure relief mechanism; 200-controller; 300-motor; 400-winding needle; X-winding direction; Y-first direction.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can be a fixed connection
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • “Plural” appearing in this application means two or more (including two).
  • the battery cells may include lithium ion secondary batteries, lithium ion primary batteries, lithium-sulfur batteries, sodium lithium ion batteries, sodium ion batteries or magnesium ion batteries, etc., which are not limited in the embodiments of this application.
  • the battery cell may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited to this.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square battery cells and soft-pack battery cells, and the embodiments of the present application are not limited to this.
  • the battery mentioned in the embodiments of this application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack.
  • Batteries generally include a box for packaging one or more battery cells or multiple battery modules. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • the battery cell includes a casing, an electrode assembly and an electrolyte.
  • the casing is used to accommodate the electrode assembly and the electrolyte.
  • the electrode assembly consists of a positive electrode piece, a negative electrode piece and an isolation film. Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the part of the positive electrode current collector that is not coated with the positive electrode active material layer serves as a positive electrode tab to realize the operation through the positive electrode tab.
  • the electrical energy input or output of the positive pole piece is a positive electrode current collector and a positive electrode active material layer.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the part of the negative electrode current collector that is not coated with the negative electrode active material layer serves as a negative electrode tab to realize the realization of the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon. In order to ensure that large currents can pass through without melting, the number of positive electrode tabs is multiple and stacked together, and the number of negative electrode tabs is multiple and stacked together.
  • the electrode assembly may have a rolled structure or a laminated structure, and the embodiments of the present application are not limited thereto.
  • Batteries have outstanding advantages such as high energy density, low environmental pollution, high power density, long service life, wide adaptability, and small self-discharge coefficient. They are an important part of the development of new energy today.
  • the battery cell is composed of a positive electrode plate, a negative electrode plate and a separator, which are assembled into an electrode assembly (bare battery cell) by winding or laminating, and then put into the casing, and finally injected with electrolyte.
  • the electrode assembly of the rolled structure has the advantages of easy assembly, low manufacturing difficulty, and high production efficiency. Therefore, the electrode assembly of the rolled structure has been widely used.
  • higher requirements have been put forward for the performance and safety of battery cells. Therefore, the performance and safety of the electrode assembly determine the performance and safety of the battery cell.
  • the electrode assembly of this structure will cause the corners of the inner ring of the positive electrode piece to The bending arc is large, which causes the positive electrode piece to break easily and pierce the isolation film. It also causes lithium precipitation at the corners of the positive electrode piece during use, which in turn makes the performance of the electrode assembly worse. Poor, and there are great potential safety hazards in use.
  • the positive electrode piece and the negative electrode piece are cut into multiple positive electrode pieces of regular size. and multiple negative electrode piece monomers, and thermally compound the positive electrode piece monomer and the negative electrode piece monomer on both sides of the isolation film, so that the positive electrode piece monomer and the negative electrode piece monomer are misaligned along the extension direction of the isolation film Arrangement, and finally forming an electrode assembly with a rolled structure by rolling the separator film to solve the problem of easy lithium precipitation or breakage at the corners of the inner ring of the positive electrode piece.
  • the electrode assembly of this structure requires that the positive electrode piece and the negative electrode piece be thermally compounded on both sides of the isolation film respectively, so that the electrode assembly requires high manufacturing precision and precise control of the positive electrode piece. and the negative electrode piece monomer, which makes the manufacturing of the electrode assembly more difficult and is not conducive to improving the production efficiency of the electrode assembly.
  • the electrode assembly includes a negative electrode plate and a positive electrode.
  • the pole piece, the negative pole piece and the positive pole piece are wound along the winding direction to form an electrode assembly.
  • the electrode assembly has a straight area and a bent area connected to the straight area.
  • the negative electrode piece is continuous in the winding direction, and the negative pole piece is It includes a plurality of straight parts stacked in a flat area.
  • the positive electrode piece includes a first section and a second section that are spaced apart along the winding direction and arranged sequentially. The first section is located in the straight area and is stacked between two adjacent straight parts.
  • the second section is connected to the negative electrode piece. Stacked and continuously wound along the winding direction, in the opposite direction of the winding direction, a first non-pole piece area is formed between the second section and the adjacent first section, and at least part of the first non-pole piece area is located in the bending area.
  • the electrode assembly is a rolled structure in which the negative electrode piece and the positive electrode piece are wound with each other along the winding direction.
  • the negative electrode piece is continuously arranged along the winding direction, and the positive electrode piece has an edge along the winding direction.
  • the first section and the second section are spaced and arranged sequentially in the winding direction. By placing the first section as a whole in the straight area, the second section and the negative electrode piece are continuously wound in the winding direction, and the second section and the negative electrode piece are wound continuously. At least part of the first non-pole piece area formed between adjacent first sections is disposed in the bending area of the electrode assembly, so that the inner ring of the electrode assembly forms the straight part of the negative electrode piece and the first part of the positive electrode piece.
  • the electrode assembly has a structure in which the segments are stacked on each other, and the outer ring of the electrode assembly forms a structure in which the negative electrode piece and the second segment of the positive electrode piece are wound around each other.
  • the electrode assembly using this structure can alleviate the bending area of the inner ring of the positive electrode piece.
  • the phenomenon of greater bending degree and greater tension can be effectively reduced, which can effectively reduce the risk of lithium precipitation or breakage in the part of the inner ring of the positive electrode plate located in the bending area during use, thereby puncturing the isolation film, thereby improving The performance and safety of the electrode assembly.
  • the electrode assembly of this structure does not need to set the entire positive electrode piece into a structure in which multiple first sections are wound with the negative electrode piece.
  • the inner ring of the electrode assembly only needs to be arranged as the straight part of the negative electrode piece and the positive electrode piece.
  • the first sections of the pole pieces can be stacked on each other, which can effectively ensure the energy density requirements of the electrode assembly, and can reduce the positional accuracy requirements between the positive pole piece and the negative pole piece, thereby reducing the difficulty of manufacturing the electrode assembly, thereby reducing the manufacturing difficulty of the electrode assembly. It can greatly optimize the production rhythm of electrode assemblies, which is conducive to improving the production efficiency of electrode assemblies and meeting production capacity needs.
  • the electrode assembly disclosed in the embodiment of the present application can be used in, but is not limited to, electrical devices such as vehicles, ships, or aircrafts.
  • the power supply system of the electrical device can be composed of the battery cells and batteries disclosed in this application. In this way, the risk of lithium precipitation of the battery cells during use can be effectively reduced, thereby improving the safety of the battery cells.
  • Embodiments of the present application provide an electrical device that uses a battery as a power source.
  • the electrical device may be, but is not limited to, a mobile phone, a tablet, a laptop, an electric toy, an electric tool, a battery car, an electric vehicle, a ship, a spacecraft, etc.
  • electric toys can include fixed or mobile electric toys, such as game consoles, electric car toys, electric ship toys, electric airplane toys, etc.
  • spacecraft can include airplanes, rockets, space shuttles, spaceships, etc.
  • an electric device 1000 according to an embodiment of the present application is used as an example.
  • FIG. 1 is a schematic structural diagram of a vehicle 1000 provided by some embodiments of the present application.
  • the vehicle 1000 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • the battery 100 is disposed inside the vehicle 1000 , and the battery 100 may be disposed at the bottom, head, or tail of the vehicle 1000 .
  • the battery 100 may be used to power the vehicle 1000 , for example, the battery 100 may serve as an operating power source for the vehicle 1000 .
  • the vehicle 1000 may also include a controller 200 and a motor 300 .
  • the controller 200 is used to control the battery 100 to provide power to the motor 300 , for example, for starting, navigating and driving the vehicle 1000 .
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but also can be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000 .
  • FIG. 2 is an exploded view of the structure of the battery 100 provided by some embodiments of the present application.
  • the battery 100 includes a case 10 and battery cells 20 , and the battery cells 20 are used to be accommodated in the case 10 .
  • the box 10 is used to provide an assembly space for the battery cells 20, and the box 10 can adopt a variety of structures.
  • the box body 10 may include a first box body 11 and a second box body 12 .
  • the first box body 11 and the second box body 12 cover each other.
  • the first box body 11 and the second box body 12 share a common
  • An assembly space for accommodating the battery cells 20 is defined.
  • the second box body 12 can be a hollow structure with one end open, and the first box body 11 can be a plate-like structure.
  • the first box body 11 is covered with the open side of the second box body 12 so that the first box body 11 and the second box body 11 can be connected to each other.
  • the two box bodies 12 jointly define an assembly space; the first box body 11 and the second box body 12 can also be hollow structures with one side open, and the open side cover of the first box body 11 is closed with the second box body 12 Open side.
  • the box 10 formed by the first box body 11 and the second box body 12 can be in various shapes, such as a cylinder, a rectangular parallelepiped, etc.
  • the battery 100 there may be a plurality of battery cells 20, and the plurality of battery cells 20 may be connected in series, in parallel, or in mixed connection.
  • Mixed connection means that the plurality of battery cells 20 are connected in series and in parallel.
  • the plurality of battery cells 20 can be directly connected in series or in parallel or mixed together, and then the whole composed of the plurality of battery cells 20 can be accommodated in the box 10 ; of course, the battery 100 can also be a plurality of battery cells 20 First, the battery modules are connected in series, parallel, or mixed to form a battery module, and then multiple battery modules are connected in series, parallel, or mixed to form a whole, and are accommodated in the box 10 .
  • the battery 100 may also include other structures.
  • the battery 100 may further include a bus component for realizing electrical connections between multiple battery cells 20 .
  • Each battery cell 20 may be a secondary battery or a primary battery; it may also be a lithium-sulfur battery, a sodium-ion battery or a magnesium-ion battery, but is not limited thereto.
  • the battery cell 20 may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes. For example, in FIG. 2 , the battery cell 20 has a rectangular parallelepiped structure.
  • FIG. 3 is an exploded view of the structure of the battery cell 20 provided in some embodiments of the present application.
  • the battery cell 20 includes a casing 21 and an electrode assembly 22.
  • the casing 21 is used to accommodate the electrode assembly 22.
  • the housing 21 can also be used to contain electrolyte, such as electrolyte.
  • the housing 21 can be of various structural forms.
  • the shell 21 can also be made of various materials, such as copper, iron, aluminum, steel, aluminum alloy, etc.
  • the housing 21 may include a housing 211 and an end cover 212.
  • the housing 211 is a hollow structure with an opening 2111 on one side.
  • the end cover 212 covers the opening 2111 of the housing 211 and forms a sealed connection to form a A sealed space for housing the electrode assembly 22 and the electrolyte.
  • the electrode assembly 22 When assembling the battery cell 20 , the electrode assembly 22 can be first placed into the casing 211 , the electrolyte is filled into the casing 211 , and then the end cap 212 is closed with the opening 2111 of the casing 211 .
  • the housing 211 can be in various shapes, such as cylinder, cuboid, etc.
  • the shape of the housing 211 can be determined according to the specific shape of the electrode assembly 22 .
  • a cylindrical shell can be selected; if the electrode assembly 22 has a rectangular parallelepiped structure, a rectangular parallelepiped shell can be selected.
  • the end cap 212 can also have a variety of structures.
  • the end cap 212 has a plate-like structure, a hollow structure with an opening 2111 at one end, etc. For example, in FIG.
  • the electrode assembly 22 has a rectangular parallelepiped structure, correspondingly, the housing 211 has a rectangular parallelepiped structure, and the end cover 212 has a rectangular plate-like structure.
  • the end cover 212 covers the opening 2111 of the housing 211 .
  • the battery cell 20 may also include a positive electrode terminal 23 , a negative electrode terminal 24 and a pressure relief mechanism 25 .
  • the positive electrode terminal 23 , the negative electrode terminal 24 and the pressure relief mechanism 25 are all installed on the end cover 212 . Both the positive electrode terminal 23 and the negative electrode terminal 24 are used for electrical connection with the electrode assembly 22 .
  • the pressure relief mechanism 25 is used to release the pressure inside the battery cell 20 when the internal pressure or temperature of the battery cell 20 reaches a predetermined value.
  • the pressure relief mechanism 25 is located between the positive electrode terminal 23 and the negative electrode terminal 24 .
  • the pressure relief mechanism 25 may be a component such as an explosion-proof valve, explosion-proof disc, air valve, pressure relief valve or safety valve.
  • the housing 21 is not limited to the above structure, and the housing 21 can also be of other structures.
  • the housing 21 includes a housing 211 and two end caps 212.
  • the housing 211 is a hollow structure with openings 2111 on opposite sides.
  • an end cap 212 correspondingly covers an opening 2111 of the housing 211 and forms a sealed connection to form a sealed space for accommodating the electrode assembly 22 and the electrolyte.
  • the positive electrode terminal 23 and the negative electrode terminal 24 can be installed on the same end cover 212, or they can be installed on different end covers 212; the pressure relief mechanism 25 can be installed on one end cover 212, It is also possible that pressure relief mechanisms 25 are installed on both end caps 212 .
  • the electrode assembly 22 is a component that causes an electrochemical reaction in the battery cell 20 .
  • FIG. 4 is a schematic structural diagram of the electrode assembly 22 provided in some embodiments of the present application.
  • the electrode assembly 22 may include a negative electrode piece 221, an isolation film 222, and a positive electrode piece 223.
  • the electrode assembly 22 may be a rolled structure formed by winding the negative electrode piece 221, the isolation film 222 and the positive electrode piece 223, or may be formed by a stacked arrangement of the negative electrode piece 221, the isolation film 222 and the positive electrode piece 223. laminated structure. Exemplary.
  • the electrode assembly 22 has a roll-type structure formed by winding the negative electrode piece 221 , the isolation film 222 and the positive electrode piece 223 .
  • the present application provides an electrode assembly 22.
  • the electrode assembly 22 includes a negative electrode piece 221 and a positive electrode piece 223.
  • the negative electrode piece 221 and the positive electrode piece 223 are wound along the winding direction X to form the electrode assembly 22.
  • the electrode assembly 22 has a flat surface.
  • the straight area 224 and the bent area 225 connected to the straight area 224, the negative electrode tab 221 is continuous in the winding direction X, and the negative electrode tab 221 includes a plurality of straight portions 2211 stacked on the straight area 224.
  • the positive electrode piece 223 includes a first section 2231 and a second section 2232 that are spaced apart and arranged sequentially along the winding direction During the period, the second section 2232 is stacked with the negative electrode piece 221 and continuously wound along the winding direction X. Along the opposite direction of the winding direction Piece area 2233, at least part of the first non-pole piece area 2233 is located in the bending area 225.
  • the electrode assembly 22 may further include an isolation film 222 disposed between the negative electrode piece 221 and the positive electrode piece 223 .
  • the negative electrode piece 221 , the isolation film 222 and the positive electrode piece 223 are rolled around each other to form an electrode assembly 22 with a flat body structure, so that the electrode assembly 22 has a straight region 224 and is connected to the straight region.
  • the two bending areas 225 at both ends of 224 that is, the straight area 224 is the straight part of the electrode assembly 22
  • the bending area 225 is the bending part at both ends of the electrode assembly 22 .
  • the electrode assembly 22 may also have a cylindrical structure or a rectangular parallelepiped structure.
  • the negative electrode piece 221 is continuous in the winding direction
  • the portion is a straight portion 2211, and the plurality of straight portions 2211 of the negative electrode piece 221 located in the straight area 224 are stacked and arranged along the first direction Y.
  • the first direction Y is the straight portion 2211 of the negative electrode piece 221. thickness direction.
  • the negative electrode piece 221 also has a plurality of bent portions 2212 located in the bending area 225.
  • the straight portions 2211 and the bent portions 2212 are alternately arranged and connected, that is, along the winding direction Around the direction X, two adjacent straight portions 2211 are connected through a bent portion 2212. It should be noted that the winding direction
  • the first section 2231 and the second section 2232 are spaced apart along the winding direction X, that is, the positive electrode piece 223 is divided into the first section 2231 and the second section 2232 that are disconnected and spaced apart from each other in the winding direction X.
  • the first section 2231 can be one or multiple.
  • the plurality of first sections 2231 are arranged at intervals along the winding direction X and the plurality of first sections are 2231 as a whole and the second section 2232 are arranged at intervals along the winding direction X. That is to say, a plurality of first sections 2231 and second sections 2232 are arranged sequentially and at intervals along the winding direction X.
  • the positive electrode piece 223 includes two first sections 2231 , and the innermost ring of the electrode assembly 22 is the negative electrode piece 221 .
  • the first section 2231 is located in the straight area 224 and is stacked between two adjacent straight sections 2211, that is, the first section 2231 of the positive electrode piece 223 and the straight section 2211 of the negative electrode piece 221 are stacked on each other, and The first section 2231 of the positive electrode piece 223 is entirely located in the straight area 224. That is to say, in the winding direction X and the opposite direction of the winding direction X, both ends of the first section 2231 do not extend to the bending area. Within 225. It should be noted that in the winding direction X and the opposite direction of the winding direction Within 224.
  • the second section 2232 is stacked with the negative electrode piece 221 and continuously wound along the winding direction X, that is, the second section 2232 of the positive electrode piece 223 and the negative electrode piece 221 are continuously wound along the winding direction X, so that the second section 2232 surrounds the outside of the first section 2231.
  • At least part of 2233 is located in the bending area 225, that is, the first non-pole piece area 2233 can be located entirely in the bending area 225, or partially located in the bending area 225, that is, in the winding direction In the opposite direction to the direction
  • the first non-pole piece area 2233 is entirely located in the bending area 225, that is, in the winding direction X and the opposite direction of the winding direction X, the first non-pole piece area 2233 does not extend into the straight area 224.
  • the electrode assembly 22 has a wound structure in which the negative electrode piece 221 and the positive electrode piece 223 are wound with each other along the winding direction X.
  • the negative electrode piece 221 is continuously arranged along the winding direction
  • the first section 2231 and the second section 2232 are spaced apart and arranged sequentially in the direction
  • at least part of the first non-pole piece area 2233 formed between the second section 2232 and the adjacent first section 2231 is arranged in the bending area 225 of the electrode assembly 22, so that the inner ring of the electrode assembly 22 forms the negative electrode.
  • the straight portion 2211 of the sheet 221 and the first section 2231 of the positive electrode piece 223 are stacked on each other, and the outer ring of the electrode assembly 22 forms a structure in which the negative electrode piece 221 and the second section 2232 of the positive electrode piece 223 are wound around each other.
  • the electrode assembly 22 adopting this structure can alleviate the phenomenon that the inner ring of the positive electrode piece 223 is bent to a large extent in the bending area 225 and generates a large tension, thereby effectively reducing the inner ring of the positive electrode piece 223.
  • the part located in the bending area 225 has the risk of lithium precipitation or breakage during use and punctures the isolation film 222, so as to improve the performance and safety of the electrode assembly 22.
  • the inner ring of the electrode assembly 22 only needs to be arranged such that the straight portion 2211 of the negative electrode tab 221 and the first section 2231 of the positive electrode tab 223 are stacked on each other.
  • the structure of The production rhythm of the electrode assembly 22 is conducive to improving the production efficiency of the electrode assembly 22 and meeting the production capacity demand.
  • the winding starting end 2232a of the second section 2232 is located in the straight area 224.
  • the winding starting end 2232a of the second section 2232 is located in the straight area 224, that is, the starting point where the second section 2232 of the positive electrode piece 223 and the negative electrode piece 221 start to wind is located in the straight area 224, that is to say, In the opposite direction to the winding direction X, the winding starting end 2232a of the second section 2232 does not extend into the bending area 225. It should be noted that the winding start end 2232a of the second section 2232 is located at the connection position between the straight area 224 and the bending area 225, and the winding start end 2232a of the second section 2232 is also located in the straight area 224.
  • the winding starting end 2232a is arranged in the straight area 224. That is to say, the second section 2232 of the positive electrode piece 223 and the negative electrode piece 221 are slave electrode assemblies.
  • the straight area 224 of 22 starts to wind, which can effectively alleviate the bending phenomenon of the winding starting end 2232a of the second section 2232, so as to reduce the risk of lithium precipitation or breakage in the winding starting end 2232a of the second section 2232. This further helps to improve the performance and safety of the electrode assembly 22 .
  • the positive electrode piece 223 includes a plurality of first sections 2231 . Along the winding direction
  • the positive electrode piece 223 has a plurality of first sections 2231 spaced apart along the winding direction X, that is, the plurality of first sections 2231 are spaced apart along the winding direction They are also arranged at intervals along the winding direction X. That is to say, after the plurality of first segments 2231 are arranged in sequence and at intervals along the winding direction
  • the two first sections 2231 are spaced apart to form a blank area (i.e., the second non-pole piece area 2234) where the positive electrode piece 223 is not provided, and at least part of the second non-pole piece area 2234 is located in the bending area 225, That is, the second non-pole piece area 2234 may be entirely located in the bending area 225, or may be partially located in the bending area 225. That is to say, in the winding direction X and the opposite direction of the winding direction The pole piece area 2234 may or may not extend into the straight area 224 .
  • the positive electrode piece 223 includes two first sections 2231.
  • the two first sections 2231 are spaced apart from each other along the winding direction X and then spaced apart from the second section 2232, and each first section 2231 is stacked along the first direction Y between two different straight portions 2211 of the negative electrode piece 221, and the two first sections 2231 are parallel to each other.
  • the number of first segments 2231 may also be three, four, or five, etc.
  • the second non-pole piece region 2234 is located entirely within the bending region 225 , that is, in the winding direction X and the opposite direction of the winding direction X, the second non-pole piece region 2234 does not extend to a straight shape.
  • District 224 Within District 224.
  • the positive electrode piece 223 has a plurality of first sections 2231 spaced apart along the winding direction That is, a plurality of first sections 2231 are spaced apart along the winding direction X, and the plurality of first sections 2231 and the second sections 2232 are spaced apart along the winding direction
  • the structure in which the segments 2231 and multiple straight portions 2211 of the negative electrode piece 221 are alternately stacked can effectively reduce the risk of lithium deposition or breakage at the multiple bending positions of the inner ring of the positive electrode piece 223 located in the bending area 225. This is beneficial to further improving the performance and safety of the electrode assembly 22 .
  • the electrode assembly 22 further includes an isolation film 222 .
  • the isolation film 222 is disposed between the negative electrode piece 221 and the positive electrode piece 223 to separate the negative electrode piece 221 and the positive electrode piece 223 .
  • the isolation film 222 is made of an insulating material to insulate the negative electrode piece 221 and the positive electrode piece 223 .
  • the material of the isolation film 222 may be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene), or the like.
  • the electrode assembly 22 is also provided with an isolation film 222 between the negative electrode piece 221 and the positive electrode piece 223, so that the separation between the negative electrode piece 221 and the positive electrode piece 223 can be effectively realized to reduce the friction between the negative electrode piece 221 and the positive electrode piece 223.
  • the piece 223 is short-circuited, which is beneficial to reducing the safety risks of the electrode assembly 22 during use.
  • the first section 2231 is bonded to the isolation film 222.
  • the first section 2231 can be bonded to the isolation film 222 using adhesive or tape. That is to say, by disposing the adhesive or tape on the first section 2231, the first section 2231 is in contact with the negative electrode.
  • the pole piece 221 can be bonded to the isolation film 222 during winding.
  • the movement or slippage of the first section 2231 during use or manufacturing can be effectively reduced, thereby improving the production of the electrode assembly 22 Quality and performance.
  • the first section 2231 is bonded to the isolation film 222 through an adhesive layer, the adhesive layer is located on opposite sides of the first section 2231 in the length direction, and/or the adhesive layer is located on the first section 2231 Widthwise opposite sides.
  • the adhesive layer is located on opposite sides of the first section 2231 in the length direction, and/or the adhesive layer is located on opposite sides of the first section 2231 in the width direction, that is, the adhesive layer is provided on the first section 2231 On the long and/or short sides of the perimeter, that is, the adhesive layer is located on the outer edge of the first section 2231.
  • the adhesive layer can be provided on the four sides or two sides of the first section 2231. The two sides can be long sides or short sides, or can be provided on the four corners of the first section 2231.
  • the first section 2231 can be bonded to the isolation film 222 through the adhesive layer, there is no need to set the adhesive layer on the side of the first section 2231 facing the isolation film 222, that is, there is no need to set the adhesive layer on the first section. 2231 on the coating area, that is to say, there is no need to dispose the adhesive layer on the active material layer of the first section 2231 to reduce the impact of the adhesive layer on the active material layer of the first section 2231.
  • the material of the adhesive layer may be fluorocarbon resin, hinge resin or hot-melt resin.
  • this structure can effectively reduce the impact of the adhesive layer on the first section 2231
  • the impact caused by the coating area on the first section 2231 can ensure the infiltration effect of the electrolyte on the coating area of the first section 2231.
  • both the first section 2231 and the second section 2232 have positive electrode tabs 2235.
  • the positive electrode of the first section 2231 The lug 2235 and the positive electrode lug 2235 of the second section 2232 are stacked.
  • the area of the current collector in the first section 2231 and the current collector in the second section 2232 that is not coated with the active material layer is the positive electrode tab 2235.
  • the positive tab 2235 of the first section 2231 and the positive tab 2235 of the second section 2232 are stacked together to form the positive tab 223 of the positive electrode piece 223 to serve as the positive output electrode of the positive electrode piece 223 .
  • the positive electrode tab portion 2235 of the first section 2231 and the positive electrode tab portion 2235 of the second section 2232 are stacked along the stacking direction of the plurality of straight portions 2211, that is, the positive electrode tab portion 2235 of the first section 2231 and the second section 2232
  • the positive electrode tab portions 2235 are stacked along the first direction Y (that is, the thickness direction of the straight portion 2211).
  • the negative electrode tab 221 has a plurality of negative electrode tab portions 2213, and the negative electrode tab portion 2213 is disposed on the straight portion 2211 of the negative electrode tab 221.
  • the negative electrode tab portion 2213 is the current collector of the negative electrode tab 221.
  • the plurality of negative electrode tabs 2213 of the negative electrode sheet 221 are stacked along the first direction Y, and the plurality of negative electrode tabs 2213 are connected to each other, thereby forming the negative electrode tabs of the negative electrode sheet 221 , as the negative output electrode of the negative electrode piece 221 , thereby facilitating the connection between the negative electrode tab 2213 and the negative electrode terminal 24 .
  • the plurality of negative electrode tabs 2213 of the negative electrode piece 221 can be connected together using an adhesive process or a welding process.
  • the tab section of the first section 2231 and the tab section of the second section 2232 are conveniently placed.
  • the ears are connected to other components, which is helpful to reduce the manufacturing difficulty of the electrode assembly 22 to realize the input or output of electric energy to the first section 2231 of the positive electrode piece 223 and the second section 2232 of the positive electrode piece 223 .
  • two adjacent positive electrode tab portions 2235 are bonded or welded along the stacking direction of the plurality of straight portions 2211.
  • two adjacent positive electrode tabs 2235 are bonded or welded, that is, after the positive electrode tab 2235 of the first section 2231 and the positive electrode tab 2235 of the second section 2232 are stacked along the first direction Y, Two adjacent positive electrode tabs 2235 are connected as a whole through a bonding process or a welding process, so that the positive electrode tabs 2235 are connected to the positive electrode terminal 23 .
  • two adjacent positive electrode tabs 2235 can be bonded to each other using glue or tape.
  • two adjacent positive electrode tabs 2235 can be welded using a laser welding process or an ultrasonic welding process.
  • the pole tabs of the first section 2231 and the pole tabs of the second section 2232 form an integral structure.
  • this structure facilitates Connecting the tab portion of the first section 2231 and the tab section of the second section 2232 with other components can help alleviate the movement or slippage of the first section 2231 of the positive electrode piece 223 during use. , to improve the performance of the electrode assembly 22.
  • embodiments of the present application also provide a battery cell 20, including a casing 21 and an electrode assembly 22 of any of the above solutions.
  • the electrode assembly 22 is accommodated in the casing 21.
  • embodiments of the present application also provide a battery 100 that includes a plurality of battery cells 20 of any of the above solutions, and the plurality of battery cells 20 are connected in series, parallel, or mixed.
  • the battery 100 may also include a box 10 in which a plurality of battery cells 20 are accommodated.
  • embodiments of the present application also provide an electrical device, including the battery 100 of any of the above solutions, and the battery 100 is used to provide electrical energy for the electrical device.
  • the power-consuming device may be any of the aforementioned devices or systems using the battery 100 .
  • the present application provides an electrode assembly 22 .
  • the electrode assembly 22 includes a negative electrode piece 221 , an isolation film 222 and a positive electrode piece 223 .
  • the negative electrode piece 221 and the positive electrode piece 223 are wound along the winding direction X to form the electrode assembly 22 , and the isolation film 222 is disposed between the negative electrode piece 221 and the positive electrode piece 223 .
  • the electrode assembly 22 has a straight region 224 and two bent regions 225 connected to both ends of the straight region 224.
  • the negative electrode piece 221 is continuous in the winding direction A straight part 2211.
  • the positive electrode piece 223 includes a first section 2231 and a second section 2232 spaced apart and arranged sequentially along the winding direction X.
  • the first section 2231 is located in the straight area 224 and is stacked between two adjacent straight portions 2211.
  • the second section 2232 is stacked with the negative electrode piece 221 and continuously wound along the winding direction X.
  • the first non-pole piece area 2233 is located entirely in the bending area 225 .
  • the winding starting end 2232a of the second section 2232 is located in the straight area 224.
  • the positive electrode piece 223 includes a plurality of first sections 2231.
  • the plurality of first sections 2231 are arranged at intervals, and two adjacent ones A second non-pole piece area 2234 is formed between the first sections 2231, and the second non-pole piece area 2234 is entirely located in the bending area 225.
  • the embodiments of the present application also provide a method of manufacturing the electrode assembly 22.
  • Figure 5 is a schematic flow chart of the manufacturing method of the electrode assembly 22 provided by some embodiments of the present application.
  • the manufacturing method Methods include:
  • S100 Provides negative electrode piece 221 and positive electrode piece 223;
  • the electrode assembly 22 has a straight area 224 and a bent area 225 connected to the straight area 224.
  • the negative electrode piece 221 is continuous in the winding direction
  • the straight portion 2211 and the positive electrode piece 223 include a first section 2231 and a second section 2232 that are spaced apart and arranged sequentially along the winding direction Between the two sections 2211, the second section 2232 is stacked with the negative electrode piece 221 and continuously wound along the winding direction X.
  • a non-pole piece area 2233, at least part of the first non-pole piece area 2233 is located in the bending area 225.
  • the electrode assembly 22 manufactured by the above manufacturing method has two first sections 2231 , and the two first sections 2231 and the second sections 2232 are arranged sequentially and spaced apart along the winding direction X.
  • the first The entire segment 2231 is located within the straight area 224.
  • the first non-pole piece area 2233 formed between the adjacent first section 2231 and the second section 2232 is entirely located in the bending area 225, and the winding starting end 2232a of the second section 2232 is located in the straight area 224.
  • the positive electrode piece 223 includes a first section 2231 and a second section 2232 that are spaced apart and arranged in sequence along the winding direction
  • the negative electrode plates 221 are stacked between two adjacent straight portions 2211 , and the first non-pole plate region 2233 formed between the second section 2232 and the adjacent first section 2231 is provided on the electrode assembly 22 in the bending area 225, so that the inner ring of the electrode assembly 22 forms a structure in which the straight portion 2211 of the negative electrode piece 221 and the first section 2231 of the positive electrode piece 223 are stacked on each other, and the outer ring of the electrode assembly 22 forms a negative electrode.
  • the pole piece 221 and the second section 2232 of the positive pole piece 223 have a structure that is wound around each other.
  • the electrode assembly 22 adopting this structure can alleviate the larger bending degree of the inner ring of the positive pole piece 223 in the bending area 225 and cause a larger problem.
  • the phenomenon of large tension can effectively reduce the risk of lithium precipitation or breakage in the inner ring of the positive electrode piece 223 located in the bending area 225 and puncture the isolation film 222 during the use of the electrode assembly 22, so as to improve the electrode assembly. 22 performance and safety.
  • Step S200 Winding the negative electrode piece 221 and the positive electrode piece 223 along the winding direction X includes:
  • S220 Wind the negative electrode piece 221 and the two isolation films 222 along the winding direction
  • Figure 8 is a front view of the manufacturing method of the electrode assembly 22 provided by some embodiments of the present application when the negative electrode sheet 221 and the two isolation films 222 are wound);
  • FIG. 9 is a schematic structural diagram of the manufacturing method of the electrode assembly 22 provided by some embodiments of the present application when the first section 2231 is placed between two isolation films 222.
  • Figure 10 is a schematic diagram of the electrode assembly 22 provided by some embodiments of the present application.
  • the manufacturing method is a front view of placing the first section 2231 between two isolation films 222.
  • Figure 11 shows the manufacturing method of the electrode assembly 22 provided by some embodiments of the present application.
  • the second section 2232 is placed between two isolation films.
  • 12 is a front view of the manufacturing method of the electrode assembly 22 provided by some embodiments of the present application when the second section 2232 is placed between the two isolation films 222).
  • the isolation film 222 is disposed between the negative electrode piece 221 and the positive electrode piece 223 to separate the negative electrode piece 221 and the positive electrode piece 223 .
  • step S220 the two isolation films 222 are stacked on one side of the negative electrode piece 221 , and then the negative electrode piece 221 and the two isolation films 222 are wound by the winding needle 400 , so that the innermost ring of the electrode assembly 22 is the negative electrode piece 221 , that is, first wind the negative electrode piece 221 and the isolation film 222 to a certain length, so that the innermost ring of the electrode assembly 22 is the negative electrode piece 221 .
  • the specific structure of the rolling needle 400 can be found in related technologies and will not be described again here.
  • step S230 the first section 2231 is first inserted between the two isolation films 222, so that the first section 2231 is wound between the two isolation films 222 and the negative electrode piece 221. In the process, it can be stacked and arranged between the two straight portions 2211 of the negative electrode piece 221.
  • the two first sections 2231 are first placed between the two isolation films 222 in sequence, so that the two first sections 2231 are spaced apart along the winding direction X, and then The second section 2232 is then inserted between the two isolation films 222 so that the second section 2232 can be continuously wound with the negative electrode piece 221 .
  • the other first section 2231 is placed between the two isolation films 222 after an interval of 21mm-27mm. 222, so that the second non-pole piece area 2234 formed between the two first sections 2231 is entirely located in the bending area 225 of the electrode assembly 22.
  • the second section 2232 is placed after an interval of 21mm-27mm. between the two isolation films 222 , so that the first non-pole region 2233 formed between the first section 2231 and the second section 2232 is entirely located within the bending region 225 of the electrode assembly 22 .
  • the negative electrode piece 221 and the positive electrode piece 223 are first rolled, and during the winding process, the positive electrode piece 223 is wound.
  • the first section 2231 and the second section 2232 are sequentially placed between the two isolation films 222, so that the inner ring of the electrode assembly 22 is the straight part 2211 of the negative electrode piece 221 and the first section 2231 of the positive electrode piece 223.
  • the outer ring of the electrode assembly 22 is a structure in which the negative electrode piece 221 and the second section 2232 of the positive electrode piece 223 are wound with each other.
  • This manufacturing method can eliminate the need for the first section 2231 of the positive electrode piece 223.
  • the second section 2232 is thermally combined with the isolation film 222 before winding, thereby simplifying the manufacturing process of the electrode assembly 22 and optimizing the production cycle of the electrode assembly 22, thereby effectively improving the production efficiency of the electrode assembly 22. , to meet production capacity needs.
  • step S230 in the process of winding the negative electrode piece 221 and the two isolation films 222, before placing the first section 2231 and the second section 2232 between the two isolation films 222 in sequence, the manufacturing method of the electrode assembly 22 also includes:
  • S240 Set an adhesive layer on the first section 2231 so that the first section 2231 is adhered to the isolation film 222.
  • the adhesive layer is located on opposite sides of the first section 2231 in the length direction, and/or the adhesive layer is located on opposite sides of the first section 2231 in the width direction.
  • the adhesive layer may be provided on four or two sides around the first section 2231.
  • the two sides may be long sides or short sides, or it may be provided on the four corners of the first section 2231. position, so that when the first section 2231 is placed between the two isolation films 222, it can be bonded to the two isolation films 222.
  • the material of the adhesive layer may be fluorocarbon resin, hinge resin or hot-melt resin.
  • an adhesive layer is provided on the first section 2231 for mutual bonding with the isolation films 222. , so that when the first section 2231 is placed between the two isolation films 222, it can be bonded to each other with the isolation films 222, thereby effectively alleviating the possibility of the first section 2231 moving or slipping during the winding process. phenomenon to improve the production quality of the electrode assembly 22 .
  • FIG. 14 is a schematic flowchart of a manufacturing method of the electrode assembly 22 provided in some further embodiments of the present application.
  • Both the first section 2231 and the second section 2232 have positive electrode tabs 2235.
  • the positive electrode tabs 2235 of the first section 2231 and the positive electrode tabs 2235 of the second section 2232 are stacked. set up.
  • step S200 winding the negative electrode piece 221 and the positive electrode piece 223 along the winding direction X
  • the manufacturing method of the electrode assembly 22 further includes:
  • S300 Bond or weld two adjacent positive electrode tabs 2235.
  • two adjacent positive electrode tabs 2235 are bonded or welded, that is to say, after winding the first section 2231 and the second section 2232 of the negative electrode piece 221 and the positive electrode piece 223, first The positive electrode tab portion 2235 of one section 2231 and the positive electrode tab portion 2235 of the second section 2232 are stacked along the stacking direction of the plurality of straight portions 2211 (ie, the first direction Y), and then the multiple positive electrode tabs arranged in a stack are Two adjacent positive electrode tabs 2235 of the tabs 2235 are bonded or welded to each other, so that the plurality of positive tabs 2235 form a whole, thereby forming a positive tab of the positive tab.
  • glue or tape can be used to bond each other; if two adjacent positive electrode tabs 2235 are welded to each other, a laser welding process or ultrasonic wave can be used. Welding process and so on.
  • the electrode assembly 22 manufactured using this manufacturing method allows the tab portion of the first section 2231 and the tab section of the second section 2232 to form an integral structure, thereby facilitating the integration of the tab section of the first section 2231 and the second section 2232 on the one hand.
  • the tab portion of the segment 2232 is connected to other components.
  • the relevant structure of the electrode assembly 22 manufactured by the manufacturing method provided in the above embodiments can be referred to the electrode assembly 22 provided in the above embodiments, and will not be described again here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

本申请提供了一种电极组件及其制造方法、电池单体、电池及用电装置,属于电池技术领域。其中,电极组件包括负极极片和正极极片,负极极片和正极极片沿卷绕方向卷绕形成电极组件,电极组件具有平直区和弯折区,负极极片包括层叠布置于平直区的多个平直部。正极极片包括沿卷绕方向间隔且依次设置的第一段和第二段,第一段位于平直区并层叠布置于相邻的两个平直部之间,第二段与负极极片层叠并沿卷绕方向连续卷绕,沿卷绕方向的相反方向,第二段与相邻的第一段之间形成第一非极片区,第一非极片区的至少部分位于弯折区。这种结构能够缓解正极极片的内圈弯折程度较大而产生较大张力的现象,从而能够减少正极极片在使用过程中出现析锂或断裂的风险。

Description

电极组件及其制造方法、电池单体、电池及用电装置 技术领域
本申请涉及电池技术领域,具体而言,涉及一种电极组件及其制造方法、电池单体、电池及用电装置。
背景技术
近些年,新能源汽车有了飞跃式的发展,在电动汽车领域,动力电池作为电动汽车的动力源,起着不可替代的重要作用。随着新能源汽车的大力推广,对动力电池产品的需求也日益增长,其中,电池作为新能源汽车核心零部件不论在使用寿命或安全性方面等都有着较高的要求。电池的电池单体是由正极极片、负极极片和隔离膜通过卷绕或者叠片等方式组装成电极组件(裸电芯),之后装入外壳,再注入电解液后得到的。其中,卷绕式结构的电极组件具有便于装配,制造难度低,且生产效率高等优点,由此,卷绕式结构的电极组件得到了广泛应用。但是,现有的卷绕式结构的电极组件的内圈由于拐角处的弯折弧度较大,从而导致电极组件的内圈在使用过程中常常发生析锂或断裂等风险,进而造成电池单体的使用性能较差,且存在较大的安全隐患。
发明内容
本申请实施例提供一种电极组件及其制造方法、电池单体、电池及用电装置,能够有效电池单体的使用性能和使用安全性。
第一方面,本申请实施例提供一种电极组件,包括负极极片和正极极片,所述负极极片和所述正极极片沿卷绕方向卷绕形成所述电极组件,所述电极组件具有平直区和连接于所述平直区的弯折区,所述负极极片在所述卷绕方向上连续,所述负极极片包括层叠布置于所述平直区的多个平直部;其中,所述正极极片包括沿所述卷绕方向间隔且依次设置的第一段和第二段,所述第一段位于所述平直区并层叠布置于相邻的两个所述平直部之间,所述第二段与所述负极极片层叠并沿所述卷绕方向连续卷绕,沿所述卷绕方向的相反方向,所述第二段与相邻的所述第一段之间形成第一非极片区,所述第一非极片区的至少部分位于所述弯折区。
在上述技术方案中,电极组件为由负极极片和正极极片沿卷绕方向相互卷绕而成的卷绕式结构,负极极片沿卷绕方向连续设置,正极极片具有沿卷绕方向间隔且依次设置的第一段和第二段,通过将第一段整体设置于平直区内,第二段与负极极片沿卷绕方向连续卷绕,并将第二段与相邻的第一段之间形成的第一非极片区的至少部分设置于电极组件的弯折区内,从而使得电极组件的内圈形成负极极片的平直部与正极极片的第一段相互层叠的结构,且使得电极组件的外圈形成负极极片与正极极片的第二段相互卷绕的结构,采用这种结构的电极组件一方面能够缓解正极极片的内圈在弯折区的弯折程度较大而产生较大张力的现象,从而能够有效减少正极极片的内圈位于弯折区内的部分在使用过程中出现析锂或断裂而刺破隔离膜的风险,以提升电极组件的使用性能和使用安全性,另一方面无需将整个正极极片设置为多个第一段与负极极片进行卷绕的结构,只需将电极组件的内圈设置为负极极片的平直部与正极极片的第一段相互层叠的结构即可,从而能够有效保证电极组件的能量密度需求,且能够降低正极极片与负极极片之间的位置精度要求,以降低电极组件的制造难度,进而能够极大地优化电极组件的生产节拍,有利于提升电极组件的生产效率,满足产能需求。
在一些实施例中,所述第二段的卷绕起始端位于所述平直区。
在上述技术方案中,通过将第二段与负极极片相互卷绕的卷绕起始端设置在平直区内,也就是说,正极极片的第二段与负极极片为从电极组件的平直区开始卷绕,从而能够有效缓解第二段的卷绕起始端出现弯折的现象,以降低第二段的卷绕起始端存在析锂或断裂的风险,进而有利于提升电极组件的使用性能和使用安全性。
在一些实施例中,所述正极极片包括多个所述第一段;沿所述卷绕方向,多个所述第一段间隔设置,且相邻的两个所述第一段之间形成第二非极片区,所述第二非极片区的至少部分位于所述弯折区。
在上述技术方案中,正极极片具有沿卷绕方向间隔设置的多个第一段,且相邻的两个第一段之间形成的第二非极片区设置于弯折区内,也就是说,多个第一段沿卷绕方向间隔设置,且多个第一段整体与第二段沿卷绕方向间隔设置,从而使得电极组件的内圈形成多个第一段与负极极片的多个平直部交替层叠的结构,进而能够有效降低正极极片的内圈位于弯折区内的多个弯折位置存在析锂或断裂的风险,有利于进一步提升电极组件的使用性能和使用安全性。
在一些实施例中,所述电极组件还包括隔离膜;所述隔离膜设置于所述负极极片和所述正极极片之间,以分隔所述负极极片和所述正极极片。
在上述技术方案中,电极组件还设置有位于负极极片和正极极片之间的隔离膜,从而能够有效实现负极极片和正极极片之间的分隔,以降低负极极片和正极极片出现短接的现象,进而有利于降低电极组件在使用过程中的安全隐患。
在一些实施例中,所述第一段粘接于所述隔离膜。
在上述技术方案中,通过将正极极片的第一段与隔离膜相互粘接,从而能够有效减少第一段在使用或制造的过程中出现窜动或滑移的现象,以提升电极组件的生产质量和使用性能。
在一些实施例中,所述第一段通过粘接层粘接于所述隔离膜,所述粘接层位于所述第一段的长度方向上相对的两侧;和/或所述粘接层位于所述第一段的宽度方向上相对的两侧。
在上述技术方案中,通过将用于粘接第一段和隔离膜的粘接层设置于第一段的长度方向或宽度方向上的两侧,采用这种结构能够有效减少粘接层对第一段上的涂覆区造成的影响,从而能够保证电解液对第一段的涂覆区的浸润效果。
在一些实施例中,所述第一段和所述第二段均具有正极极耳部,沿多个所述平直部的层叠方向,所述第一段的所述正极极耳部和所述第二段的所述正极极耳部层叠设置。
在上述技术方案中,通过将第一段的极耳部和第二段的极耳部沿多个平直部的层叠方向相互层叠,从而便于将第一段的极耳部和第二段的极耳部与其他构件相连,有利于降低电极组件的制造难度,以实现正极极片的第一段和正极极片的第二段的电能输入或输出。
在一些实施例中,沿多个所述平直部的层叠方向,相邻的两个所述正极极耳部粘接或焊接。
在上述技术方案中,通过将层叠布置且相邻的两个极耳部相互粘接或焊接,以使第一段的极耳部和第二段的极耳部形成一个整体结构,采用这种结构一方面便于将第一段的极耳部和第二段的极耳部与其他构件相连,另一方面有利于缓解正极极片的第一段在使用过程中出现窜动或滑移的现象,以提升电极组件的使用性能。
第二方面,本申请实施例还提供一种电池单体,包括外壳和上述的电极组件;所述电极组件容纳于所述外壳内。
第三方面,本申请实施例还提供一种电池,包括多个上述的电池单体。
第四方面,本申请实施例还提供一种用电装置,包括上述的电池。
第五方面,本申请实施例还提供一种电极组件的制造方法,包括:提供负极极片和正极极片;沿卷绕方向卷绕所述负极极片和所述正极极片,以形成所述电极组件,所述电极组件具有平直区和连接于所述平直区的弯折区,所述负极极片在所述卷绕方向上连续,所述负极极片包括层叠布置于所述平直区的多个平直部;其中,所述正极极片包括沿所述卷绕方向间隔且依次设置的第一段和第二段,所述第一段位于所述平直区并层叠布置于相邻的两个所述平直部之间,所述第二段与所述负极极片层叠并沿所述卷绕方向连续卷绕,沿所述卷绕方向的相反方向,所述第二段与相邻的所述第一段之间形成第一非极片区,所述第一非极片区的至少部分位于所述弯折区。
在上述技术方案中,在负极极片和正极极片卷绕形成的电极组件中,正极极片包括有沿卷绕方向间隔且依次设置的第一段和第二段,第一段整体设置于平直区内并层叠设置于负极极片层叠布置的相邻的两个平直部之间,且第二段与相邻的第一段之间形成的第一非极片区设置于电极组件的弯折区内,从而使得电极组件的内圈形成负极极片的平直部与正极极片的第一段相互层叠的结构,且使得电极组件的外圈形成负极极片与正极极片的第二段相互卷绕的结构,采用这种结构的电极组件能够缓解正极极片的内圈在弯折区的弯折程度较大而产生较大张力的现象,从而在电极组件的使用过程中能够有效减少正极极片的内圈位于弯折区内的部分出现析锂或断裂而刺破隔离膜的风险,以提升电极组件的使用性能和使用安全性。
在一些实施例中,所述沿卷绕方向卷绕所述负极极片和所述正极极片包括:提供两个隔离膜;沿所述卷绕方向卷绕所述负极极片和两个所述隔离膜;在卷绕所述负极极片和两个所述隔离膜的过程中,将所述第一段和所述第二段依次放入至两个所述隔离膜之间;其中,所述隔离膜设置于所述负极极片和所述正极极片之间,以分隔所述负极极片和所述正极极片。
在上述技术方案中,在卷绕负极极片和正极极片的过程中,先将负极极片与两个隔离膜进行卷绕,并在卷绕的过程中将正极极片的第一段和第二段依次放入至两个隔离膜之间,从而形成电极组件的内圈为负极极片的平直部与正极极片的第一段相互层叠的结构,且电极组件的外圈为负极极片与正极极片的第二段相互卷绕的结构,采用这种制造方法能够取消将正极极片的第一段和第二段在卷绕之前先与隔离膜进行热复合的工序,从而能够简化电极组件的制造工序,有利于优化电极组件的生产节拍,进而能够有效提升电极组件的生产效率,满足产能需求。
在一些实施例中,在所述在卷绕所述负极极片和两个所述隔离膜的过程中,将所述第一段和所述第二段依次放入至两个所述隔离膜之间之前,所述电极组件的制造方法还包括:在所述第一段上设置粘接层,以使所述第一段粘接于所述隔离膜。
在上述技术方案中,在将正极极片的第一段放入至两个隔离膜之间之前,先在第一段上设置有用于与隔离膜相互粘接的粘接层,使得第一段在放入至两个隔离膜之间时能够与隔离膜相互粘接在一起,从而能够有效缓解第一段在卷绕的过程中出现窜动或滑移的现象,以提升电极组件的生产质量。
在一些实施例中,所述第一段和所述第二段均具有正极极耳部,沿多个所述平直部的层叠方向,所述第一段的所述正极极耳部和所述第二段的所述正极极耳部层叠设置;在所述沿卷绕方向卷绕所述负极极片和所述正极 极片之后,所述电极组件的制造方法还包括:粘接或焊接相邻的两个所述正极极耳部。
在上述技术方案中,在对负极极片和正极极片卷绕完成后通过粘接或焊接的方式将沿多个平直部的层叠方向层叠设置的多个极耳部连接在一起,采用这种制造方法制造的电极组件使得第一段的极耳部和第二段的极耳部形成一个整体结构,从而一方面便于将第一段的极耳部和第二段的极耳部与其他构件相连,另一方面有利于缓解正极极片的第一段在使用过程中出现窜动或滑移的现象,以提升电极组件的使用性能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的结构爆炸图;
图3为本申请一些实施例提供的电池单体的结构爆炸图;
图4为本申请一些实施例提供的电极组件的结构示意图;
图5为本申请一些实施例提供的电极组件的制造方法的流程示意图;
图6为本申请一些实施例提供的电极组件的制造方法的步骤S200的流程示意图;
图7为本申请一些实施例提供的电极组件的制造方法在卷绕负极极片和两个隔离膜的结构示意图;
图8为本申请一些实施例提供的电极组件的制造方法在卷绕负极极片和两个隔离膜的正视图;
图9为本申请一些实施例提供的电极组件的制造方法在将第一段放入至两个隔离膜之间的结构示意图;
图10为本申请一些实施例提供的电极组件的制造方法在将第一段放入至两个隔离膜之间的正视图;
图11为本申请一些实施例提供的电极组件的制造方法在将第二段放入至两个隔离膜之间的结构示意图;
图12为本申请一些实施例提供的电极组件的制造方法在将第二段放入至两个隔离膜之间的正视图;
图13为本申请一些实施例提供的电极组件的制造方法的步骤S200在其他实施例中的流程示意图;
图14为本申请又一些实施例提供的电极组件的制造方法的流程示意图。
图标:1000-车辆;100-电池;10-箱体;11-第一箱本体;12-第二箱本体;20-电池单体;21-外壳;211-壳体;2111-开口;212-端盖;22-电极组件;221-负极极片;2211-平直部;2212-弯折部;2213-负极极耳部;222-隔离膜;223-正极极片;2231-第一段;2232-第二段;2232a-卷绕起始端;2233-第一非极片区;2234-第二非极片区;2235-正极极耳部;224-平直区;225-弯折区;23-正极电极端子;24-负极电极端子;25-泄压机构;200-控制器;300-马达;400-卷针;X-卷绕方向;Y-第一方向。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体或多个电池模块的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括外壳、电极组件和电解液,外壳用于容纳电极组件和电解液。电极组件由正极极片、负极极片和隔离膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体的部分作为正极极耳,以通过正极极耳实现正极极片的电能输入或输出。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体的部分作为负极极耳,以通过负极极耳实现负极极片的电能输入或输出。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。
此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
电池具有能量密度高、环境污染小、功率密度大、使用寿命长、适应范围广、自放电系数小等突出的优点,是现今新能源发展的重要组成部分。电池的电池单体是由正极极片、负极极片和隔离膜通过卷绕或者叠片等方式组装成电极组件(裸电芯),之后装入外壳,最后注入电解液后得到的。其中,卷绕式结构的电极组件具有便于装配,制造难度低,且生产效率高等优点,由此,卷绕式结构的电极组件得到了广泛应用。但是,随着电池技术的不断发展,对电池单体的使用性能和使用安全性等也提出了更高的要求。因此,电极组件的使用性能和使用安全性决定了电池单体的性能和安全性。
发明人发现,在卷绕式结构的电极组件中,通常采用负极极片和正极极片相互层叠后连续卷绕而成,但是,这种结构的电极组件会造成正极极片内圈的拐角处的弯折弧度较大,从而导致正极极片极容易出现断裂而刺破隔离膜的现象,且导致正极极片的拐角处在使用过程中存在析锂的现象,进而使得电极组件的使用性能较差,且存在较大的使用安全隐患。
为了解决电极组件的使用性能较差,且存在较大的使用安全隐患的问题,在现有技术中,通过将正极极片和负极极片分别裁切成尺寸规整的多个正极极片单体和多个负极极片单体,并将正极极片单体和负极极片单体热复合于隔离膜的两侧,使得正极极片单体和负极极片单体沿隔离膜的延伸方向错位布置,最后通过卷绕隔离膜形成卷绕式结构的电极组件,以解决正极极片的内圈的拐角处容易析锂或断裂的问题。然而,这种结构的电极组件需要先将正极极片单体和负极极片单体分别热复合于隔离膜的两侧,使得电极组件需要较高的制造精度,需要精准控制正极极片单体和负极极片单体之间的间距,从而导致电极组件的制造难度较大,不利于提升电极组件的生产效率。
基于上述考虑,为了解决卷绕式结构的电极组件在使用过程中存在析锂风险且生产效率较低的问题,发明人经过深入研究,设计了一种电极组件,电极组件包括负极极片和正极极片,负极极片和正极极片沿卷绕方向卷绕形成电极组件,电极组件具有平直区和连接于平直区的弯折区,负极极片在卷绕方向上连续,负极极片包括层叠布置于平直区的多个平直部。正极极片包括沿卷绕方向间隔且依次设置的第一段和第二段,第一段位于平直区并层叠布置于相邻的两个平直部之间,第二段与负极极片层叠并沿卷绕方向连续卷绕,沿卷绕方向的相反方向,第二段与相邻的第一段之间形成第一非极片区,第一非极片区的至少部分位于弯折区。
在这种结构的电极组件中,电极组件为由负极极片和正极极片沿卷绕方向相互卷绕而成的卷绕式结构,负极极片沿卷绕方向连续设置,正极极片具有沿卷绕方向间隔且依次设置的第一段和第二段,通过将第一段整体设置于平直区内,第二段与负极极片沿卷绕方向连续卷绕,并将第二段与相邻的第一段之间形成的第一非极片区的至少部分设置于电极组件的弯折区内,从而使得电极组件的内圈形成负极极片的平直部与正极极片的第一段相互层叠的结构,且使得电极组件的外圈形成负极极片与正极极片的第二段相互卷绕的结构,采用这种结构的电极组件能够缓解正极极片的内圈在弯折区的弯折程度较大而产生较大张力的现象,进而能够有效减少正极极片的内圈位于弯折区内的部分在使用过程中出现析锂或断裂而刺破隔离膜的风险,以提升电极组件的使用性能和使用安全性。
此外,这种结构的电极组件无需将整个正极极片设置为多个第一段与负极极片进行卷绕的结构,只需将电极组件的内圈设置为负极极片的平直部与正极极片的第一段相互层叠的结构即可,从而能够有效保证电极组件的能量密度需求,且能够降低正极极片与负极极片之间的位置精度要求,以降低电极组件的制造难度,进而能够极大地优化电极组件的生产节拍,有利于提升电极组件的生产效率,满足产能需求。
本申请实施例公开的电极组件可以但不限用于车辆、船舶或飞行器等用电装置中。可以使用具备本申请公开的电池单体、电池等组成该用电装置的电源系统,这样,能够有效降低电池单体在使用过程中出现析锂的风险,以提升电池单体的使用安全性。
本申请实施例提供一种使用电池作为电源的用电装置,用电装置可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
以下实施例为了方便说明,以本申请一实施例的一种用电装置为车辆1000为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆1000的结构示意图。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参照图2,图2为本申请一些实施例提供的电池100的结构爆炸图。电池100包括箱体10和电池单体20,电池单体20用于容纳于箱体10内。其中,箱体10用于为电池单体20提供装配空间,箱体10可以采用多种结构。在一些实施例中,箱体10可以包括第一箱本体11和第二箱本体12,第一箱本体11与第二箱本体12相互盖合,第一箱本体11和第二箱本体12共同限定出用于容纳电池单体20的装配空间。第二箱本体12可以为一端开放的空心结构,第一箱本体11可以为板状结构,第一箱本体11盖合于第二箱本体12的开放侧,以使第一箱本体11与第二箱本体12共同限定出装配空间;第一箱本体11和第二箱本体12也可以是均为一侧开放的空心结构,第一箱本体11的开放侧盖合于第二箱本体12的开放侧。当然,第一箱本体11和第二箱本体12形成的箱体10可以是多种形状,比如,圆柱体、长方体等。
在电池100中,电池单体20可以是多个,多个电池单体20之间可串联或并联或混联,混联是指多个电池单体20中既有串联又有并联。多个电池单体20之间可直接串联或并联或混联在一起,再将多个电池单体20构成的整体容纳于箱体10内;当然,电池100也可以是多个电池单体20先串联或并联或混联组成电池模块形式,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体10内。电池100还可以包括其他结构,例如,该电池100还可以包括汇流部件,用于实现多个电池单体20之间的电连接。
其中,每个电池单体20可以为二次电池或一次电池;还可以是锂硫电池、钠离子电池或镁离子电池,但不局限于此。电池单体20可呈圆柱体、扁平体、长方体或其它形状等。示例性的,在图2中,电池单体20为长方体结构。
请参照图3,图3为本申请一些实施例提供的电池单体20的结构爆炸图。电池单体20包括外壳21和电极组件22,外壳21用于容纳电极组件22。
其中,外壳21还可用于容纳电解质,例如电解液。外壳21可以是多种结构形式。外壳21的材质也可以是多种,比如,铜、铁、铝、钢、铝合金等。
在一些实施例中,外壳21可以包括壳体211和端盖212,壳体211为一侧开口2111的空心结构,端盖212盖合于壳体211的开口2111处并形成密封连接,以形成用于容纳电极组件22和电解质的密封空间。
在组装电池单体20时,可先将电极组件22放入壳体211内,并向壳体211内填充电解质,再将端盖212盖合于壳体211的开口2111。
壳体211可以是多种形状,比如,圆柱体、长方体等。壳体211的形状可根据电极组件22的具体形状来确定。比如,若电极组件22为圆柱体结构,则可选用为圆柱体壳体;若电极组件22为长方体结构,则可选用长方体壳体。当然,端盖212也可以是多种结构,比如,端盖212为板状结构、一端开口2111的空心结构等。示例性的,在图3中,电极组件22为长方体结构,对应的,壳体211为长方体结构,端盖212为长方形板状结构,端盖212盖合于壳体211的开口2111处。
在一些实施例中,电池单体20还可以包括正极电极端子23、负极电极端子24和泄压机构25,正极电极端子23、负极电极端子24和泄压机构25均安装于端盖212上。正极电极端子23和负极电极端子24均用于与电极组件22电连接。泄压机构25用于在电池单体20的内部压力或温度达到预定值时泄放电池单体20内部的压力。
示例性的,如图3所示,泄压机构25位于正极电极端子23和负极电极端子24之间。泄压机构25可以是诸如防爆阀、防爆片、气阀、泄压阀或安全阀等部件。
可理解的,外壳21并不仅仅局限于上述结构,外壳21也可以是其他结构,比如,外壳21包括壳体211和两个端盖212,壳体211为相对的两侧开口2111的空心结构,一个端盖212对应盖合于壳体211的一个开口2111处并形成密封连接,以形成用于容纳电极组件22和电解质的密封空间。在这种结构中,正极电极端子23和负极电极端子24可安装在同一个端盖212上,也可以安装在不同的端盖212上;可以是一个端盖212上安装有泄压机构25,也可以是两个端盖212上均安装有泄压机构25。
在本申请实施例中,容纳于外壳21内的电极组件22可以是一个,也可以是多个。示例性的,在图3中,电极组件22为两个,两个电极组件22堆叠布置。
需要说明的是,电极组件22是电池单体20中发生电化学反应的部件。请参照图4,图4为本申请一些实施例提供的电极组件22的结构示意图。电极组件22可以包括负极极片221、隔离膜222和正极极片223。电极组件22可以是由负极极片221、隔离膜222和正极极片223通过卷绕形成的卷绕式结构,也可以是由负极极片221、隔离膜222和正极极片223通过层叠布置形成的层叠式结构。示例性的。在图4中,电极组件22为由负极极片221、隔离膜222和正极极片223通过卷绕形成的卷绕式结构。
根据本申请的一些实施例,请参见图3和图4所示。本申请提供了一种电极组件22,电极组件22包括负极极片221和正极极片223,负极极片221和正极极片223沿卷绕方向X卷绕形成电极组件22,电极组件22具有平直区224和连接于平直区224的弯折区225,负极极片221在卷绕方向X上连续,负极极片221包括层叠布置于平直区224的多个平直部2211。其中,正极极片223包括沿卷绕方向X间隔且依次设置的第一段2231和第二段2232,第一段2231位于平直区224并层叠布置于相邻的两个平直部2211之间,第二段2232与负极极片221层叠并沿卷绕方向X连续卷绕,沿卷绕方向X的相反方向,第二段2232与相邻的第一段2231之间形成第一非极片区2233,第一非极片区2233的至少部分位于弯折区225。
其中,电极组件22还可以包括隔离膜222,隔离膜222设置于负极极片221和正极极片223之间。示例性的,在图4中,负极极片221、隔离膜222和正极极片223相互卷绕形成扁平体结构的电极组件22,从而使得电极组件22具有平直区224和连接于平直区224的两端的两个弯折区225,即平直区224为电极组件22平直的部分,弯折区225为电极组件22的两端弯折的部分。当然,在其他实施例中,电极组件22也可以为圆柱体结构或长方体结构等。
负极极片221在卷绕方向X上连续,且负极极片221包括层叠布置于平直区224的多个平直部2211,即负极极片221在连续卷绕后位于平直区224内的部分为平直部2211,且位于平直区224内的负极极片221的多个平直部2211为沿第一方向Y层叠布置,第一方向Y即为负极极片221的平直部2211的厚度方向。对应的,负极极片221还具有位于弯折区225内的多个弯折部2212,在卷绕方向X上,平直部2211与弯折部2212交替布置且相连,也就是说,沿卷绕方向X,相邻的两个平直部2211通过一个弯折部2212相连。需要说明的是,卷绕方向X为单向,即卷绕方向X为负极极片221和正极极片223从内至外连续卷绕的方向。
第一段2231和第二段2232沿卷绕方向X间隔设置,即正极极片223在卷绕方向X上分为相互断开且间隔的第一段2231和第二段2232。需要说明的是,第一段2231可以是一个,也可以是多个,当第一段2231为多个时,则为多个第一段2231沿卷绕方向X间隔设置且多个第一段2231整体与第二段2232沿卷绕方向X间隔设置,也就是说,多个第一段2231与第二段2232沿卷绕方向X依次且间隔设置。示例性的,在图4中,正极极片223包括两个第一段2231,且电极组件22的最内圈为负极极片221。
第一段2231位于平直区224并层叠布置于相邻的两个平直部2211之间,即正极极片223的第一段2231与负极极片221的平直部2211相互层叠布置,且正极极片223的第一段2231整体位于平直区224内,也就是说,在卷绕方向X和卷绕方向X的相反方向上,第一段2231的两端均未延伸至弯折区225内。需要说明的是,在卷绕方向X和卷绕方向X的相反方向上,第一段2231的两端位于平直区224和弯折区225的连接位置也属于第一段2231位于平直区224内。
第二段2232与负极极片221层叠并沿卷绕方向X连续卷绕,即正极极片223的第二段2232与负极极片221沿卷绕方向X进行连续卷绕,从而使得第二段2232环绕于第一段2231的外侧。
沿卷绕方向X的相反方向,第二段2232与相邻的第一段2231之间形成第一非极片区2233,第一非极片区2233的至少部分位于弯折区225,即在卷绕方向X的反向上,由于第二段2232与其相邻的第一段2231间隔设置,从而形成未设置有正极极片223的空白区域(即第一非极片区2233),且第一非极片区2233的至少部分位于弯折区225,即第一非极片区2233可以是整体位于弯折区225内,也可以是部分位于弯折区225内,也就是说,在卷绕方向X和卷绕方向X的相反方向上,第一非极片区2233可以延伸至平直区224内,也可以不延伸至平直区224内。
示例性的,第一非极片区2233整体位于弯折区225内,即在卷绕方向X和卷绕方向X的相反方向上,第一非极片区2233未延伸至平直区224内。
电极组件22为由负极极片221和正极极片223沿卷绕方向X相互卷绕而成的卷绕式结构,负极极片221沿卷绕方向X连续设置,正极极片223具有沿卷绕方向X间隔且依次设置的第一段2231和第二段2232,通过将第一段2231整体设置于平直区224内,第二段2232与负极极片221沿卷绕方向X连续卷绕,并将第二段2232与相邻的第一段2231之间形成的第一非极片区2233的至少部分设置于电极组件22的弯折区225内,从而使得电极组件22的内圈形成负极极片221的平直部2211与正极极片223的第一段2231相互层叠的结构,且使得电极组件22的外圈形成负极极片221与正极极片223的第二段2232相互卷绕的结构,采用这种结构的电极组件22一方面能够缓解正极极片223的内圈在弯折区225的弯折程度较大而产生较大张力的现象,从而能够有效减少正极极片223的内圈位于弯折区225内的部分在使用过程中出现析锂或断裂而刺破隔离膜222的风险,以提升电极组件22的使用性能和使用安全性,另一方面无需将整个正极极片223设置为多个第一段2231与负极极片221进行卷绕的结构,只需将电极组件22的内圈设置为负极极片221的平直部2211与正极极片223的第一段2231相互层叠的结构即可,从而能够有效保证电极组件22的能量密度需求,且能够降低正极极片223与负极极片221之间的位置精度要求,以降低电极组件22的制造难度,进而能够极大地优化电极组件22的生产节拍,有利于提升电极组件22的生产效率,满足产能需求。
根据本申请的一些实施例,参见图4所示,第二段2232的卷绕起始端2232a位于平直区224。
其中,第二段2232的卷绕起始端2232a位于平直区224,即正极极片223的第二段2232与负极极片221开始卷绕的起始点位于平直区224内,也就是说,在卷绕方向X的相反方向上,第二段2232的卷绕起始端2232a未延伸至弯折区225内。需要说明的是,第二段2232的卷绕起始端2232a位于平直区224和弯折区225的连接位置也属于第二段2232的卷绕起始端2232a位于平直区224内。
通过将第二段2232与负极极片221相互卷绕的卷绕起始端2232a设置在平直区224内,也就是说,正极极片223的第二段2232与负极极片221为从电极组件22的平直区224开始卷绕,从而能够有效缓解第二段2232的卷绕起始端2232a出现弯折的现象,以降低第二段2232的卷绕起始端2232a存在析锂或断裂的风险,进而有利于提升电极组件22的使用性能和使用安全性。
根据本申请的一些实施例,请继续参见图4所示,正极极片223包括多个第一段2231。沿卷绕方向X,多个第一段2231间隔设置,且相邻的两个第一段2231之间形成第二非极片区2234,第二非极片区2234的至少部分位于弯折区225。
其中,正极极片223具有沿卷绕方向X间隔设置的多个第一段2231,即多个第一段2231沿卷绕方向X间隔设置,且多个第一段2231整体与第二段2232也为沿卷绕方向X间隔设置,也就是说,多个第一段2231沿卷绕方向X依次且间隔排布后,再与第二段2232沿卷绕方向X依次且间隔排布。
沿卷绕方向X,相邻的两个第一段2231之间形成第二非极片区2234,第二非极片区2234的至少部分位于弯折区225,即在卷绕方向X上,相邻的两个第一段2231之间间隔排布从而形成未设置有正极极片223的空白区域(即第二非极片区2234),且第二非极片区2234的至少部分位于弯折区225,即第二非极片区2234可以是整体位于弯折区225内,也可以是部分位于弯折区225内,也就是说,在卷绕方向X和卷绕方向X的相反方向上,第二非极片区2234可以延伸至平直区224内,也可以不延伸至平直区224内。
示例性的,在图4中,正极极片223包括两个第一段2231,两个第一段2231沿卷绕方向X间隔设置后再与第二段2232间隔设置,且每个第一段2231沿第一方向Y层叠设置于负极极片221不同的两个平直部2211之间,两个第一段2231相互平行。当然,在一些实施例中,第一段2231的数量也可以是三个、四个或五个等。
示例性的,在图4中,第二非极片区2234整体位于弯折区225内,即在卷绕方向X和卷绕方向X的相反方向上,第二非极片区2234未延伸至平直区224内。
正极极片223具有沿卷绕方向X间隔设置的多个第一段2231,且相邻的两个第一段2231之间形成的第二非极片区2234设置于弯折区225内,也就是说,多个第一段2231沿卷绕方向X间隔设置,且多个第一段2231整体与第二段2232沿卷绕方向X间隔设置,从而使得电极组件22的内圈形成多个第一段2231与负极极片221的多个平直部2211交替层叠的结构,进而能够有效降低正极极片223的内圈位于弯折区225内的多个弯折位置存在析锂或断裂的风险,有利于进一步提升电极组件22的使用性能和使用安全性。
根据本申请的一些实施例,参见图4所示,电极组件22还包括隔离膜222。隔离膜222设置于负极极片221和正极极片223之间,以分隔负极极片221和正极极片223。
其中,隔离膜222为绝缘材质,以对负极极片221和正极极片223起到绝缘隔离的作用。示例性的,隔离膜222的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。
电极组件22还设置有位于负极极片221和正极极片223之间的隔离膜222,从而能够有效实现负极极片221和正极极片223之间的分隔,以降低负极极片221和正极极片223出现短接的现象,进而有利于降低电极组件22在使用过程中的安全隐患。
根据本申请的一些实施例,第一段2231粘接于隔离膜222。
示例性的,第一段2231可以采用粘接剂或胶带等粘接于隔离膜222上,也就是说,通过在第一段2231上设置粘接剂或胶带,使得第一段2231在与负极极片221进行卷绕时能够粘接在隔离膜222上。
通过将正极极片223的第一段2231与隔离膜222相互粘接,从而能够有效减少第一段2231在使用或制造的过程中出现窜动或滑移的现象,以提升电极组件22的生产质量和使用性能。
在一些实施例中,第一段2231通过粘接层粘接于隔离膜222,粘接层位于第一段2231的长度方向上相对的两侧,和/或粘接层位于第一段2231的宽度方向上相对的两侧。
其中,粘接层位于第一段2231的长度方向上相对的两侧,和/或粘接层位于第一段2231的宽度方向上相对的两侧,即粘接层设置于第一段2231的四周的长边和/或短边上,也就是说,粘接层位于第一段2231的外边缘上。当然,粘接层可以是设置于第一段2231的四周的四个边或者两个边上,两个边可以是长边或短边,也可以设置于第一段2231的四个拐角处,以实现第一段2231能够通过粘接层粘接于隔离膜222,从而无需将粘接层设置于第一段2231面向隔离膜222的一侧上,即无需将粘接层设置在第一段2231的涂覆区上,也就是说,无需将粘接层设置在第一段2231的活性物质层上,以减少粘接层对第一段2231的活性物质层的影响。
示例性的,粘接层的材质可以为氟碳树脂、铰链性树脂或热熔型树脂等。
通过将用于粘接第一段2231和隔离膜222的粘接层设置于第一段2231的长度方向或宽度方向上的两侧,采用这种结构能够有效减少粘接层对第一段2231上的涂覆区造成的影响,从而能够保证电解液对第一段2231的涂覆区的浸润效果。
根据本申请的一些实施例,请参见图4所示,第一段2231和第二段2232均具有正极极耳部2235,沿多个平直部2211的层叠方向,第一段2231的正极极耳部2235和第二段2232的正极极耳部2235层叠设置。
其中,第一段2231的集流体和第二段2232的集流体未涂覆活性物质层的区域即为正极极耳部2235。通过将第一段2231的正极极耳部2235和第二段2232的正极极耳部2235层叠在一起后形成正极极片223的正极极耳,以作为正极极片223的正输出极。
第一段2231的正极极耳部2235和第二段2232的正极极耳部2235沿多个平直部2211的层叠方向层叠设置,即第一段2231的正极极耳部2235和第二段2232的正极极耳部2235沿第一方向Y(即平直部2211的厚度方向)层叠设置。
需要说明的是,负极极片221具有多个负极极耳部2213,且负极极耳部2213设置于负极极片221的平直部2211上,负极极耳部2213为负极极片221的集流体未涂覆活性物质层的区域,负极极片221的多个负极极耳部2213沿第一方向Y层叠设置,且多个负极极耳部2213相互连接,从而形成负极极片221的负极极耳,以作为负极极片221的负输出极,进而便于负极极耳部2213与负极电极端子24相连。示例性的,负极极片221的多个负极极耳部2213可以采用粘接工艺或焊接工艺连接在一起。
通过将第一段2231的极耳部和第二段2232的极耳部沿多个平直部2211的层叠方向相互层叠,从而便于将第一段2231的极耳部和第二段2232的极耳部与其他构件相连,有利于降低电极组件22的制造难度,以实现正极极片223的第一段2231和正极极片223的第二段2232的电能输入或输出。
在一些实施例中,沿多个平直部2211的层叠方向,相邻的两个正极极耳部2235粘接或焊接。
其中,相邻的两个正极极耳部2235粘接或焊接,即在第一段2231的正极极耳部2235和第二段2232的正极极耳部2235沿第一方向Y层叠设置后,将相邻的两个正极极耳部2235通过粘接工艺或焊接工艺连接成一个整体,以便于正极极耳部2235与正极电极端子23相连。
示例性的,相邻的两个正极极耳部2235可以采用胶水或胶带等相互粘接。
示例性的,相邻的两个正极极耳部2235可以采用激光焊接工艺或超声波焊接工艺等进行焊接。
通过将层叠布置且相邻的两个极耳部相互粘接或焊接,以使第一段2231的极耳部和第二段2232的极耳部形成一个整体结构,采用这种结构一方面便于将第一段2231的极耳部和第二段2232的极耳部与其他构件相连,另一方面有利于缓解正极极片223的第一段2231在使用过程中出现窜动或滑移的现象,以提升电极组件22的使用性能。
根据本申请的一些实施例,本申请实施例还提供了一种电池单体20,包括外壳21和以上任一方案的电极组件22,电极组件22容纳于外壳21内。
根据本申请的一些实施例,本申请实施例还提供了一种电池100,包括多个以上任一方案的电池单体20,多个电池单体20相互串联或并联或混联。
其中,电池100还可以包括箱体10,多个电池单体20容纳于箱体10内。
根据本申请的一些实施例,本申请实施例还提供了一种用电装置,包括以上任一方案的电池100,并且电池100用于为用电装置提供电能。
用电装置可以是前述任一应用电池100的设备或系统。
根据本申请的一些实施例,参见图3和图4所示,本申请提供了一种电极组件22,电极组件22包括负极极片221、隔离膜222和正极极片223。负极极片221和正极极片223沿卷绕方向X卷绕形成电极组件22,隔离膜222设置于负极极片221和正极极片223之间。电极组件22具有平直区224和连接于平直区224两端的两个弯折区225,负极极片221在卷绕方向X上连续,负极极片221包括层叠布置于平直区224的多个平直部2211。正极极片223包括沿卷绕方向X间隔且依次设置的第一段2231和第二段2232,第一段2231位于平直区224并层叠布置于相邻的两个平直部2211之间,第二段2232与负极极片221层叠并沿卷绕方向X连续卷绕,沿卷绕方向X的相反方向,第二段2232与相邻的第一段2231之间形成第一非极片区2233,第一非极片区2233整体位于弯折区225。其中,第二段2232的卷绕起始端2232a位于平直区224,正极极片223包括多个第一段2231,沿卷绕方向X,多个第一段2231间隔设置,且相邻的两个第一段2231之间形成第二非极片区2234,第二非极片区2234整体位于弯折区225。
根据本申请的一些实施例,本申请实施例还提供了一种电极组件22的制造方法,参照图5,图5为本申请一些实施例提供的电极组件22的制造方法的流程示意图,该制造方法包括:
S100:提供负极极片221和正极极片223;
S200:沿卷绕方向X卷绕负极极片221和正极极片223,以形成电极组件22。
其中,电极组件22具有平直区224和连接于平直区224的弯折区225,负极极片221在卷绕方向X上连续,负极极片221包括层叠布置于平直区224的多个平直部2211,正极极片223包括沿卷绕方向X间隔且依次设置的第一段2231和第二段2232,第一段2231位于平直区224并层叠布置于相邻的两个平直部2211之间,第二段2232与负极极片221层叠并沿卷绕方向X连续卷绕,沿卷绕方向X的相反方向,第二段2232与相邻的第一段2231之间形成第一非极片区2233,第一非极片区2233的至少部分位于弯折区225。
示例性的,参见图4所示,通过上述制造方法制造的电极组件22具有两个第一段2231,两个第一段2231和第二段2232沿卷绕方向X依次且间隔设置,第一段2231整体位于平直区224内。沿卷绕方向X,两个第一段2231之间形成第二非极片区2234,且第二非极片区2234整体位于弯折区225内,两个第一段2231中与第二段2232相邻的第一段2231与第二段2232之间形成的第一非极片区2233整体位于弯折区225内,且第二段2232的卷绕起始端2232a位于平直区224内。
通过上述制造方法制造的电极组件22中,正极极片223包括有沿卷绕方向X间隔且依次设置的第一段2231和第二段2232,第一段2231整体设置于平直区224内并层叠设置于负极极片221层叠布置的相邻的两个平直部2211之间,且第二段2232与相邻的第一段2231之间形成的第一非极片区2233设置于电极组件22的弯折区225内,从而使得电极组件22的内圈形成负极极片221的平直部2211与正极极片223的第一段2231相互层叠的结构,且使得电极组件22的外圈形成负极极片221与正极极片223的第二段2232相互卷绕的结构,采用这种结构的电极组件22能够缓解正极极片223的内圈在弯折区225的弯折程度较大而产生较大张力的现象,从而在电极组件22的使用过程中能够有效减少正极极片223的内圈位于弯折区225内的部分出现析锂或断裂而刺破隔离膜222的风险,以提升电极组件22的使用性能和使用安全性。
根据本申请的一些实施例,参照图6,图6为本申请一些实施例提供的电极组件22的制造方法的步骤S200的流程示意图。步骤S200:沿卷绕方向X卷绕负极极片221和正极极片223包括:
S210:提供两个隔离膜222;
S220:沿卷绕方向X卷绕负极极片221和两个隔离膜222(如图7和图8所示,图7为本申请一些实施例提供的电极组件22的制造方法在卷绕负极极片221和两个隔离膜222的结构示意图,图8为本申请一些实施例提供的电极组件22的制造方法在卷绕负极极片221和两个隔离膜222的正视图);
S230:在卷绕负极极片221和两个隔离膜222的过程中,将第一段2231和第二段2232依次放入至两个隔离膜222之间(如图9-图12所示,图9为本申请一些实施例提供的电极组件22的制造方法在将第一段2231放入至两个隔离膜222之间的结构示意图,图10为本申请一些实施例提供的电极组件22的制造方法在将第一段2231放入至两个隔离膜222之间的正视图,图11为本申请一些实施例提供的电极组件22的制造方法在将第二段2232放入至两个隔离膜222之间的结构示意图,图12为本申请一些实施例提供的电极组件22的制造方法在将第二段2232放入至两个隔离膜222之间的正视图)。
其中,隔离膜222设置于负极极片221和正极极片223之间,以分隔负极极片221和正极极片223。
参见图7和图8所示,在步骤S220中,将两个隔离膜222层叠设置于负极极片221的一侧,然后通过卷针400对负极极片221和两个隔离膜222进行卷绕,以使电极组件22的最内圈为负极极片221,也就是说,先对负极极片221和隔离膜222卷绕一定的长度,使得电极组件22的最内圈为负极极片221。卷针400的具体结构可参见相关技术,在此不再赘述。
参见图9-图12所示,在步骤S230中,先将第一段2231插入至两个隔离膜222之间,从而使得第一段 2231在两个隔离膜222与负极极片221进行卷绕的过程中能够层叠布置于负极极片221的两个平直部2211之间。
示例性的,第一段2231为两个,由此,先将两个第一段2231依次放置于两个隔离膜222之间,使得两个第一段2231沿卷绕方向X间隔设置,之后再将第二段2232插入至两个隔离膜222之间,使得第二段2232能够与负极极片221进行连续卷绕。
可选地,在两个第一段2231中的一个第一段2231放入至两个隔离膜222之间后,间隔21mm-27mm后再将另一个第一段2231放入至两个隔离膜222之间,使得两个第一段2231之间形成的第二非极片区2234整体位于电极组件22的弯折区225内,同样的,之后再间隔21mm-27mm后将第二段2232放入至两个隔离膜222之间,以使第一段2231与第二段2232之间形成的第一非极片区2233整体位于电极组件22的弯折区225内。
在上述制造方法中,在卷绕负极极片221和正极极片223的过程中,先将负极极片221与两个隔离膜222进行卷绕,并在卷绕的过程中将正极极片223的第一段2231和第二段2232依次放入至两个隔离膜222之间,从而形成电极组件22的内圈为负极极片221的平直部2211与正极极片223的第一段2231相互层叠的结构,且电极组件22的外圈为负极极片221与正极极片223的第二段2232相互卷绕的结构,采用这种制造方法能够取消将正极极片223的第一段2231和第二段2232在卷绕之前先与隔离膜222进行热复合的工序,从而能够简化电极组件22的制造工序,有利于优化电极组件22的生产节拍,进而能够有效提升电极组件22的生产效率,满足产能需求。
根据本申请的一些实施例,参照图13,图13为本申请一些实施例提供的电极组件22的制造方法的步骤S200在其他实施例中的流程示意图。在步骤S230:在卷绕负极极片221和两个隔离膜222的过程中,将第一段2231和第二段2232依次放入至两个隔离膜222之间之前,电极组件22的制造方法还包括:
S240:在第一段2231上设置粘接层,以使第一段2231粘接于隔离膜222。
其中,粘接层位于第一段2231的长度方向上相对的两侧,和/或粘接层位于第一段2231的宽度方向上相对的两侧。示例性的,粘接层可以是设置于第一段2231的四周的四个边或者两个边上,两个边可以是长边或短边,也可以设置于第一段2231的四个拐角处,以使第一段2231放入至两个隔离膜222之间时能够与两个隔离膜222进行粘接。
示例性的,粘接层的材质可以是氟碳树脂、铰链性树脂或热熔型树脂等。
在上述制造方法中,在将正极极片223的第一段2231放入至两个隔离膜222之间之前,先在第一段2231上设置有用于与隔离膜222相互粘接的粘接层,使得第一段2231在放入至两个隔离膜222之间时能够与隔离膜222相互粘接在一起,从而能够有效缓解第一段2231在卷绕的过程中出现窜动或滑移的现象,以提升电极组件22的生产质量。
根据本申请的一些实施例,参照图4,并请进一步参照图14,图14为本申请又一些实施例提供的电极组件22的制造方法的流程示意图。第一段2231和第二段2232均具有正极极耳部2235,沿多个平直部2211的层叠方向,第一段2231的正极极耳部2235和第二段2232的正极极耳部2235层叠设置。在步骤S200:沿卷绕方向X卷绕负极极片221和正极极片223之后,电极组件22的制造方法还包括:
S300:粘接或焊接相邻的两个正极极耳部2235。
其中,粘接或焊接相邻的两个正极极耳部2235,也就是说,在将负极极片221与正极极片223的第一段2231和第二段2232卷绕完成后,先将第一段2231的正极极耳部2235和第二段2232的正极极耳部2235沿多个平直部2211的层叠方向(即第一方向Y)进行层叠设置,再将层叠布置的多个正极极耳部2235中相邻的两个正极极耳部2235相互粘接或焊接,以使多个正极极耳部2235形成一个整体,从而形成正极极耳的正极极耳。
示例性的,若相邻的两个正极极耳部2235相互粘接,可以采用胶水或胶带等相互粘接;若相邻的两个正极极耳部2235相互焊接,可以采用激光焊接工艺或超声波焊接工艺等进行焊接。
在上述制造方法中,在对负极极片221和正极极片223卷绕完成后通过粘接或焊接的方式将沿多个平直部2211的层叠方向层叠设置的多个极耳部连接在一起,采用这种制造方法制造的电极组件22使得第一段2231的极耳部和第二段2232的极耳部形成一个整体结构,从而一方面便于将第一段2231的极耳部和第二段2232的极耳部与其他构件相连,另一方面有利于缓解正极极片223的第一段2231在使用过程中出现窜动或滑移的现象,以提升电极组件22的使用性能。
需要说明的是,通过上述各实施例提供的制造方法制造的电极组件22的相关结构,可参见前述各实施例提供的电极组件22,在此不再赘述。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互结合。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (15)

  1. 一种电极组件,包括负极极片和正极极片,所述负极极片和所述正极极片沿卷绕方向卷绕形成所述电极组件,所述电极组件具有平直区和连接于所述平直区的弯折区,所述负极极片在所述卷绕方向上连续,所述负极极片包括层叠布置于所述平直区的多个平直部;
    其中,所述正极极片包括沿所述卷绕方向间隔且依次设置的第一段和第二段,所述第一段位于所述平直区并层叠布置于相邻的两个所述平直部之间,所述第二段与所述负极极片层叠并沿所述卷绕方向连续卷绕,沿所述卷绕方向的相反方向,所述第二段与相邻的所述第一段之间形成第一非极片区,所述第一非极片区的至少部分位于所述弯折区。
  2. 根据权利要求1所述的电极组件,其中,所述第二段的卷绕起始端位于所述平直区。
  3. 根据权利要求1或2所述的电极组件,其中,所述正极极片包括:
    多个所述第一段,沿所述卷绕方向,多个所述第一段间隔设置,且相邻的两个所述第一段之间形成第二非极片区,所述第二非极片区的至少部分位于所述弯折区。
  4. 根据权利要求1-3任一项所述的电极组件,其中,所述电极组件还包括:
    隔离膜,设置于所述负极极片和所述正极极片之间,以分隔所述负极极片和所述正极极片。
  5. 根据权利要求4所述的电极组件,其中,所述第一段粘接于所述隔离膜。
  6. 根据权利要求5所述的电极组件,其中,所述第一段通过粘接层粘接于所述隔离膜,所述粘接层位于所述第一段的长度方向上相对的两侧;和/或
    所述粘接层位于所述第一段的宽度方向上相对的两侧。
  7. 根据权利要求1-6任一项所述的电极组件,其中,所述第一段和所述第二段均具有正极极耳部,沿多个所述平直部的层叠方向,所述第一段的所述正极极耳部和所述第二段的所述正极极耳部层叠设置。
  8. 根据权利要求7所述的电极组件,其中,沿多个所述平直部的层叠方向,相邻的两个所述正极极耳部粘接或焊接。
  9. 一种电池单体,包括:
    外壳;以及
    根据权利要求1-8任一项所述的电极组件,所述电极组件容纳于所述外壳内。
  10. 一种电池,包括多个根据权利要求9所述的电池单体。
  11. 一种用电装置,包括根据权利要求10所述的电池。
  12. 一种电极组件的制造方法,包括:
    提供负极极片和正极极片;
    沿卷绕方向卷绕所述负极极片和所述正极极片,以形成所述电极组件,所述电极组件具有平直区和连接于所述平直区的弯折区,所述负极极片在所述卷绕方向上连续,所述负极极片包括层叠布置于所述平直区的多个平直部;
    其中,所述正极极片包括沿所述卷绕方向间隔且依次设置的第一段和第二段,所述第一段位于所述平直区并层叠布置于相邻的两个所述平直部之间,所述第二段与所述负极极片层叠并沿所述卷绕方向连续卷绕,沿所述卷绕方向的相反方向,所述第二段与相邻的所述第一段之间形成第一非极片区,所述第一非极片区的至少部分位于所述弯折区。
  13. 根据权利要求12所述的电极组件的制造方法,其中,所述沿卷绕方向卷绕所述负极极片和所述正极极片包括:
    提供两个隔离膜;
    沿所述卷绕方向卷绕所述负极极片和两个所述隔离膜;
    在卷绕所述负极极片和两个所述隔离膜的过程中,将所述第一段和所述第二段依次放入至两个所述隔离膜之间;
    其中,所述隔离膜设置于所述负极极片和所述正极极片之间,以分隔所述负极极片和所述正极极片。
  14. 根据权利要求13所述的电极组件的制造方法,其中,在所述在卷绕所述负极极片和两个所述隔离膜的过程中,将所述第一段和所述第二段依次放入至两个所述隔离膜之间之前,所述电极组件的制造方法还包括:
    在所述第一段上设置粘接层,以使所述第一段粘接于所述隔离膜。
  15. 根据权利要求13或14所述的电极组件的制造方法,其中,所述第一段和所述第二段均具有正极极耳部,沿多个所述平直部的层叠方向,所述第一段的所述正极极耳部和所述第二段的所述正极极耳部层叠设置;
    在所述沿卷绕方向卷绕所述负极极片和所述正极极片之后,所述电极组件的制造方法还包括:
    粘接或焊接相邻的两个所述正极极耳部。
PCT/CN2022/101838 2022-06-28 2022-06-28 电极组件及其制造方法、电池单体、电池及用电装置 WO2024000153A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280048719.5A CN117652050A (zh) 2022-06-28 2022-06-28 电极组件及其制造方法、电池单体、电池及用电装置
PCT/CN2022/101838 WO2024000153A1 (zh) 2022-06-28 2022-06-28 电极组件及其制造方法、电池单体、电池及用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/101838 WO2024000153A1 (zh) 2022-06-28 2022-06-28 电极组件及其制造方法、电池单体、电池及用电装置

Publications (1)

Publication Number Publication Date
WO2024000153A1 true WO2024000153A1 (zh) 2024-01-04

Family

ID=89383664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101838 WO2024000153A1 (zh) 2022-06-28 2022-06-28 电极组件及其制造方法、电池单体、电池及用电装置

Country Status (2)

Country Link
CN (1) CN117652050A (zh)
WO (1) WO2024000153A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000067907A (ja) * 1998-08-21 2000-03-03 Mitsubishi Electric Corp 電極構造体およびそれを用いた電池
CN208753460U (zh) * 2018-09-08 2019-04-16 江西安驰新能源科技有限公司 一种复合结构电芯
CN114122321A (zh) * 2021-11-25 2022-03-01 珠海冠宇电池股份有限公司 一种电池
CN114551963A (zh) * 2022-01-12 2022-05-27 上海兰钧新能源科技有限公司 一种卷芯及电池
CN217740566U (zh) * 2022-04-29 2022-11-04 宁德时代新能源科技股份有限公司 电极组件和电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000067907A (ja) * 1998-08-21 2000-03-03 Mitsubishi Electric Corp 電極構造体およびそれを用いた電池
CN208753460U (zh) * 2018-09-08 2019-04-16 江西安驰新能源科技有限公司 一种复合结构电芯
CN114122321A (zh) * 2021-11-25 2022-03-01 珠海冠宇电池股份有限公司 一种电池
CN114551963A (zh) * 2022-01-12 2022-05-27 上海兰钧新能源科技有限公司 一种卷芯及电池
CN217740566U (zh) * 2022-04-29 2022-11-04 宁德时代新能源科技股份有限公司 电极组件和电池

Also Published As

Publication number Publication date
CN117652050A (zh) 2024-03-05

Similar Documents

Publication Publication Date Title
WO2023137950A1 (zh) 卷绕式电极组件、电池单体、电池及用电设备
WO2022213400A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2022105010A1 (zh) 电池单体、电池及用电装置
US20230395952A1 (en) Battery cell, battery and electrical device
US20230238540A1 (en) Electrode assembly, battery cell, battery, and method and device for manufacturing electrode assembly
WO2022199152A1 (zh) 电极组件、电池单体、电池以及用电设备
WO2023216829A1 (zh) 电池单体、电池及用电装置
WO2023168954A1 (zh) 电芯、电芯的制造方法、电池单体、电池及用电设备
US20230045904A1 (en) Battery cell, manufacturing method and manufacturing system of same, battery, and electric device
US11955658B2 (en) Battery cell and manufacturing method and manufacturing system thereof, battery and power consumption apparatus
WO2023029795A1 (zh) 电极组件、电池单体、电池及用电设备
WO2024000153A1 (zh) 电极组件及其制造方法、电池单体、电池及用电装置
WO2023133748A1 (zh) 电池模块、电池、用电设备、制备电池的方法和设备
WO2023092277A1 (zh) 电极组件及其制造方法、电池单体、电池和用电装置
WO2023087285A1 (zh) 电池单体、电池、用电设备及电池单体的制造方法和设备
WO2023028864A1 (zh) 泄压装置、电池单体、电池及用电设备
WO2023004822A1 (zh) 电池单体、电池、用电设备、电池单体的制造方法及设备
CN112670597A (zh) 一种电极组件、电化学装置及电子设备
WO2024055257A1 (zh) 电池单体、电池及用电装置
WO2024031254A1 (zh) 电极组件、电池单体、电池及用电装置
WO2023133904A1 (zh) 电池单体及其制造方法和制造设备、电池及用电装置
WO2024092638A1 (zh) 电极组件及其制造方法、电池单体、电池及用电装置
WO2023245673A1 (zh) 电池单体、电池及用电装置
WO2024065205A1 (zh) 电池单体、电池及用电装置
WO2024082448A1 (zh) 电极组件、电池单体、电池及用电装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280048719.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948275

Country of ref document: EP

Kind code of ref document: A1