WO2023173416A1 - 泄压机构、电池单体、电池及用电设备 - Google Patents

泄压机构、电池单体、电池及用电设备 Download PDF

Info

Publication number
WO2023173416A1
WO2023173416A1 PCT/CN2022/081754 CN2022081754W WO2023173416A1 WO 2023173416 A1 WO2023173416 A1 WO 2023173416A1 CN 2022081754 W CN2022081754 W CN 2022081754W WO 2023173416 A1 WO2023173416 A1 WO 2023173416A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure relief
groove
relief groove
pressure
battery cell
Prior art date
Application number
PCT/CN2022/081754
Other languages
English (en)
French (fr)
Inventor
陈小波
白静峰
顾明光
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/081754 priority Critical patent/WO2023173416A1/zh
Priority to CN202280032499.7A priority patent/CN117242624A/zh
Publication of WO2023173416A1 publication Critical patent/WO2023173416A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • H01M50/143Fireproof; Explosion-proof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • H01M50/358External gas exhaust passages located on the battery cover or case

Definitions

  • This application relates to the field of battery technology, specifically, to a pressure relief mechanism, battery cells, batteries and electrical equipment.
  • batteries are used more and more widely, such as in mobile phones, laptops, battery cars, electric cars, electric airplanes, electric ships, electric toy cars, electric toy ships, electric toy airplanes and electric tools, etc. superior.
  • Embodiments of the present application provide a pressure relief mechanism, battery cells, batteries and electrical equipment, which can effectively increase the service life of battery cells.
  • inventions of the present application provide a pressure relief mechanism for a battery cell.
  • the pressure relief mechanism includes a pressure relief body and a pressure relief structure; the pressure relief body has a pressure relief portion; and the pressure relief structure includes a The pressure relief body and the first pressure relief groove, the second pressure relief groove and the third pressure relief groove are located in different directions, the first pressure relief groove, the second pressure relief groove and the third pressure relief groove
  • the pressure relief part is jointly defined, and the pressure relief part is configured to open the first pressure relief groove, the second pressure relief groove and the pressure relief groove when the pressure or temperature inside the battery cell reaches a threshold value.
  • the third pressure relief groove is a boundary opening to relieve the pressure inside the battery cell; wherein the second pressure relief groove is located between the first pressure relief groove and the third pressure relief groove, and It does not intersect with the first pressure relief groove and the third pressure relief groove.
  • the second pressure relief groove intersects neither the first pressure relief groove nor the third pressure relief groove, which avoids stress concentration in the intersection area of each pressure relief groove and improves the anti-destruction ability of the pressure relief mechanism. , reduce the risk that the pressure relief mechanism will start to release pressure before the pressure inside the battery cell reaches the detonation pressure, and increase the service life of the battery cell.
  • the first pressure relief groove, the second pressure relief groove and the third pressure relief groove jointly define two pressure relief parts, and the two pressure relief parts are respectively located at on both sides of the second pressure relief groove.
  • the two pressure relief parts can be quickly opened in a split manner, which not only ensures a sufficient pressure relief area, but also improves the opening efficiency of the pressure relief parts, thereby achieving rapid pressure relief.
  • the two pressure relief parts are symmetrically distributed on both sides of the second pressure relief groove. In this way, the size and shape of the two pressure relief parts are the same, which is conducive to the simultaneous opening of the two pressure relief parts, and it is not easy for one pressure relief part to open first, and the other pressure relief part to open later, or even not open at all.
  • the distance between the first pressure relief groove and the third pressure relief groove gradually increases along the direction from the second pressure relief groove to both ends of the first pressure relief groove.
  • the pressure relief body will split along the first pressure relief groove and the third pressure relief groove, so that the pressure relief part flips outward.
  • the pressure relief since the distance between the first pressure relief groove and the third pressure relief groove gradually increases from the position of the second pressure relief groove to both ends of the first pressure relief groove, during the opening process of the pressure relief part, the pressure relief The opening area of the pressure relief part gradually increases, which on the one hand increases the opening area of the pressure relief part, and on the other hand makes the pressure relief part open more smoothly.
  • the first pressure relief groove, the second pressure relief groove and the third pressure relief groove jointly define a pressure relief part, and the first pressure relief groove, the third pressure relief groove
  • the second pressure relief groove and the third pressure relief groove are respectively located at three adjacent edges of the pressure relief portion in different directions.
  • the first pressure relief groove, the second pressure relief groove and the third pressure relief groove only define one pressure relief part, the structure is simpler, and the molding cost of the pressure relief structure is reduced.
  • the second pressure relief groove has a first end facing the first pressure relief groove, and a gap between the first end and the first pressure relief groove is no larger than the first pressure relief groove.
  • the gap between the first end and the first pressure relief groove is set within a reasonable range to ensure that after the pressure relief body cracks along the second pressure relief groove, the crack can more easily extend to the first pressure relief groove, thereby So that the pressure relief body can then smoothly split along the first pressure relief groove; similarly, set the gap between the second end and the third pressure relief groove within a reasonable range to ensure that the pressure relief body can split along the second pressure relief groove.
  • the crack can more easily spread to the third pressure relief groove, so that the pressure relief body can then smoothly crack along the third pressure relief groove, so that the pressure relief part reaches the detonation pressure inside the battery cell. It can then be opened more easily.
  • the first pressure relief groove is parallel to the third pressure relief groove and perpendicular to the second pressure relief groove.
  • the shape of the pressure relief portion jointly defined by the first pressure relief groove, the second pressure relief groove and the third pressure relief groove is made more regular.
  • the pressure relief body can move along the first pressure relief groove and the third pressure relief groove. Synchronous cracking makes the pressure relief part open more regularly, making it easier to fully open the pressure relief part.
  • the first pressure relief groove includes a plurality of first groove parts, and the plurality of first groove parts are sequentially arranged along the depth direction of the first pressure relief groove. In the depth direction, the widths of the plurality of first groove portions gradually decrease.
  • the first pressure relief groove adopts a multi-stage groove structure, which can reduce the molding force on the pressure relief body when forming each stage of the groove, reduce the risk of cracks in the pressure relief body during the forming of the first pressure relief groove, and improve pressure relief. Long-term reliability of the organization.
  • the second pressure relief groove includes a plurality of second groove portions, and the plurality of second groove portions are sequentially arranged along the depth direction of the second pressure relief groove. In the depth direction, the widths of the plurality of second groove portions gradually decrease.
  • the second pressure relief groove adopts a multi-stage groove structure, which can reduce the molding force on the pressure relief body when forming each stage of the groove, reduce the risk of cracks in the pressure relief body during the forming of the second pressure relief groove, and improve pressure relief. Long-term reliability of the organization.
  • the third pressure relief groove includes a plurality of third groove portions, and the plurality of third groove portions are sequentially arranged along the depth direction of the third pressure relief groove. In the depth direction, the widths of the plurality of third groove portions gradually decrease.
  • the third pressure relief groove adopts a multi-stage groove structure, which can reduce the molding force on the pressure relief body when forming each stage of the groove, reduce the risk of cracks in the pressure relief body during the molding of the third pressure relief groove, and improve pressure relief. Long-term reliability of the organization.
  • an accommodation space for accommodating an electrode assembly is formed inside the pressure relief body, the pressure relief body has a plurality of walls that jointly define the accommodation space, and at least one of the walls is provided with the relief space. pressure structure.
  • the pressure relief mechanism is a shell that can accommodate the electrode assembly, and the pressure relief mechanism integrates the accommodation function and the pressure relief function.
  • embodiments of the present application provide a battery cell, including the pressure relief mechanism provided in any embodiment of the first aspect.
  • an embodiment of the present application provides a battery, including a box and the battery cell provided in any embodiment of the second aspect; the box is used to accommodate the battery cell.
  • embodiments of the present application provide an electrical device, including the battery provided in any embodiment of the third aspect.
  • embodiments of the present application provide a method for manufacturing a pressure relief mechanism.
  • the manufacturing method includes: providing a pressure relief body; processing a pressure relief structure on the pressure relief body; wherein the pressure relief structure includes a The first pressure relief groove, the second pressure relief groove and the third pressure relief groove are located on the pressure relief body and located in different directions.
  • the first pressure relief groove, the second pressure relief groove and the third pressure relief groove are The pressure grooves jointly define a pressure relief portion, and the pressure relief portion is configured to open the first pressure relief groove, the second pressure relief groove, and the third pressure relief groove when the pressure or temperature inside the battery cell reaches a threshold value.
  • the pressure relief groove is a boundary opening to relieve the pressure inside the battery cell; the second pressure relief groove is located between the first pressure relief groove and the third pressure relief groove and is connected with the third pressure relief groove.
  • a pressure relief groove and the third pressure relief groove do not intersect.
  • embodiments of the present application further provide manufacturing equipment for a pressure relief mechanism.
  • the manufacturing equipment includes a providing device and a processing device; the providing device is used to provide a pressure relief body; and the processing device is used to fabricate a pressure relief body on the pressure relief body.
  • Processing a pressure relief structure wherein, the pressure relief structure includes a first pressure relief groove, a second pressure relief groove, and a third pressure relief groove that are provided on the pressure relief body and located in different directions, and the first pressure relief groove
  • the second pressure relief groove and the third pressure relief groove jointly define a pressure relief part, and the pressure relief part is configured to use the first pressure relief when the pressure or temperature inside the battery cell reaches a threshold value.
  • the groove, the second pressure relief groove and the third pressure relief groove are open at the boundary to relieve the pressure inside the battery cell; the second pressure relief groove is located between the first pressure relief groove and the between the third pressure relief grooves and does not intersect with the first pressure relief grooves and the third pressure relief grooves.
  • Figure 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • Figure 2 is an exploded view of a battery provided by some embodiments of the present application.
  • Figure 3 is an exploded view of a battery cell provided by some embodiments of the present application.
  • Figure 4 is a partial enlarged view of the pressure relief mechanism provided by some embodiments of the present application.
  • Figure 5 is a partial enlarged view of a pressure relief mechanism provided by other embodiments of the present application.
  • Figure 6 is a partial enlarged view of the pressure relief mechanism provided by some further embodiments of the present application.
  • Figure 7 is an A-A cross-sectional view of the pressure relief mechanism shown in Figure 4.
  • Figure 8 is a B-B cross-sectional view of the pressure relief mechanism shown in Figure 4.
  • Figure 9 is a C-C cross-sectional view of the pressure relief mechanism shown in Figure 4.
  • Figure 10 is a schematic structural diagram of a pressure relief mechanism provided by some embodiments of the present application.
  • Figure 11 is a flow chart of a manufacturing method of a pressure relief mechanism provided by some embodiments of the present application.
  • Figure 12 is a schematic block diagram of the manufacturing equipment of the pressure relief mechanism provided by some embodiments of the present application.
  • Icon 10-box; 11-first part; 12-second part; 20-battery cell; 21-casing; 22-electrode assembly; 221-positive pole tab; 222-negative pole tab; 23-end cover ; 231-positive electrode terminal; 232-negative electrode terminal; 24-current collecting member; 25-pressure relief mechanism; 251-pressure relief body; 2511-pressure relief part; 252-pressure relief structure; 2521-first pressure relief groove ; 2521c-first groove; 2522-second pressure relief groove; 2522a-first end; 2522b-second end; 2522c-second groove; 2523-third pressure relief groove; 2523c-third groove; 100-battery; 200-controller; 300-motor; 1000-vehicle; 2000-manufacturing equipment; 2100-providing device; 2200-processing device; Z-depth direction.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can be a fixed connection
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • “Plural” appearing in this application means two or more (including two).
  • the battery cells may include lithium ion secondary batteries, lithium ion primary batteries, lithium-sulfur batteries, sodium lithium ion batteries, sodium ion batteries or magnesium ion batteries, etc., which are not limited in the embodiments of this application.
  • the battery cell may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited to this.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square battery cells and soft-pack battery cells, and the embodiments of the present application are not limited to this.
  • the battery mentioned in the embodiments of this application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack.
  • Batteries generally include a box for packaging one or more battery cells. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte.
  • the electrode assembly consists of a positive electrode plate, a negative electrode plate and a separator. Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the positive electrode current collector that is not coated with the positive electrode active material layer protrudes from the positive electrode collector that is coated with the positive electrode active material layer. Fluid, the positive electrode current collector without the positive electrode active material layer is used as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the negative electrode current collector that is not coated with the negative electrode active material layer protrudes from the negative electrode collector that is coated with the negative electrode active material layer.
  • Fluid, the negative electrode current collector that is not coated with the negative electrode active material layer serves as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
  • the number of positive electrode tabs is multiple and stacked together, and the number of negative electrode tabs is multiple and stacked together.
  • the material of the isolation film can be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene), etc.
  • the electrode assembly may have a rolled structure or a laminated structure, and the embodiments of the present application are not limited thereto.
  • the pressure relief mechanism on the battery cell has an important impact on the safety of the battery. For example, when short circuit, overcharge, etc. occur, thermal runaway may occur inside the battery cell, resulting in a sudden increase in pressure or temperature. In this case, the internal pressure and temperature can be released through the pressure relief mechanism to prevent the battery cells from exploding and catching fire.
  • a plurality of pressure relief grooves located in different directions are generally provided on the pressure relief body, and a pressure relief portion is defined by the plurality of pressure relief grooves.
  • Two adjacent pressure relief grooves Intersect, the pressure relief part is opened when the pressure or temperature inside the battery cell reaches a threshold value to relieve the pressure inside the battery cell.
  • the internal pressure of a battery cell will change with the change of ambient temperature. When the temperature rises, the pressure inside the battery cell increases. When the temperature drops, the pressure inside the battery cell decreases. Since two adjacent pressure relief grooves in the pressure relief mechanism intersect, stress concentration is likely to occur in the intersection area.
  • the area where the two pressure relief grooves intersect is most susceptible to fatigue. phenomenon, causing the pressure relief mechanism to have insufficient resistance to damage in the area where the two pressure relief grooves intersect, and is most likely to crack. It is easy for the pressure relief mechanism to start to relieve pressure before the pressure inside the battery cell reaches the detonation pressure, affecting the battery. The service life of the monomer.
  • a pressure relief mechanism which includes a pressure relief body and a pressure relief structure.
  • the pressure relief body has a pressure relief part.
  • the pressure relief structure includes a first pressure relief groove, a second pressure relief groove, and a third pressure relief groove that are arranged on the pressure relief body and are located in different directions.
  • the first pressure relief groove, the second pressure relief groove, and the third pressure relief groove are common.
  • a pressure relief portion is defined, and the pressure relief portion is configured to open with the first pressure relief groove, the second pressure relief groove, and the third pressure relief groove as boundaries when the pressure or temperature inside the battery cell reaches a threshold value to discharge the battery. pressure inside the monomer.
  • the second pressure relief groove is located between the first pressure relief groove and the third pressure relief groove, and does not intersect with the first pressure relief groove and the third pressure relief groove.
  • the second pressure relief groove intersects neither the first pressure relief groove nor the third pressure relief groove, which avoids stress concentration in the intersection areas of each pressure relief groove and improves the efficiency of the pressure relief mechanism.
  • the anti-destruction ability reduces the risk that the pressure relief mechanism will start to release pressure before the pressure inside the battery cell reaches the detonation pressure, and improves the service life of the battery cell.
  • the pressure relief mechanism described in the embodiments of this application is applicable to battery cells, batteries, and electrical equipment using batteries.
  • Power-consuming devices can be vehicles, mobile phones, portable devices, laptops, ships, spacecraft, electric toys and power tools, etc.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles, etc.
  • spacecraft include aircraft, rockets, space shuttles, spaceships, etc.
  • electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric ship toys and electric airplane toys, etc.
  • electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • Electric drills Electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • the following embodiments take the electrical equipment as a vehicle as an example.
  • Figure 1 is a schematic structural diagram of a vehicle 1000 provided by some embodiments of the present application.
  • a battery 100 is provided inside the vehicle 1000.
  • the battery 100 can be provided at the bottom, head or tail of the vehicle 1000.
  • the battery 100 may be used to power the vehicle 1000 , for example, the battery 100 may serve as an operating power source for the vehicle 1000 .
  • the vehicle 1000 may also include a controller 200 and a motor 300 .
  • the controller 200 is used to control the battery 100 to provide power to the motor 300 , for example, for starting, navigating and driving the vehicle 1000 .
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but can also be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000 .
  • FIG. 2 is an exploded view of a battery 100 provided by some embodiments of the present application.
  • the battery 100 includes a box 10 and a battery cell 20 .
  • the box 10 is used to accommodate the battery cell 20 .
  • the box 10 is a component that accommodates the battery cells 20.
  • the box 10 provides a receiving cavity for the battery cells 20.
  • the box 10 can adopt a variety of structures.
  • the box 10 may include a first part 11 and a second part 12 , and the first part 11 and the second part 12 cover each other to define an accommodation cavity for accommodating the battery cells 20 .
  • the first part 11 and the second part 12 can be in various shapes, such as cuboid, cylinder, etc.
  • the first part 11 can be a hollow structure open on one side, and the second part 12 can also be a hollow structure open on one side.
  • the open side of the second part 12 is covered with the open side of the first part 11 to form a box with a receiving cavity.
  • Body 10 is a component that accommodates the battery cells 20.
  • the box 10 provides a receiving cavity for the battery cells 20.
  • the box 10 can adopt a variety of structures.
  • the box 10 may include a first part 11 and a second part 12 , and the first
  • the first part 11 may be a hollow structure with one side open
  • the second part 12 may be a plate-like structure
  • the second part 12 covers the open side of the first part 11 to form a box 10 with a receiving cavity.
  • the first part 11 and the second part 12 can be sealed by sealing elements, which can be sealing rings, sealants, etc.
  • the battery 100 there may be one battery cell 20 or a plurality of battery cells 20. If there are multiple battery cells 20 , the multiple battery cells 20 can be connected in series, in parallel, or in mixed connection. Mixed connection means that the multiple battery cells 20 are both connected in series and in parallel. Multiple battery cells 20 may be first connected in series, parallel, or mixed to form a battery module, and then multiple battery modules may be connected in series, parallel, or mixed to form a whole, and be accommodated in the box 10 . It is also possible that all the battery cells 20 are directly connected in series or in parallel or mixed together, and then the entire battery cell 20 is accommodated in the box 10 .
  • the battery 100 may further include a bus component, through which the multiple battery cells 20 may be electrically connected to achieve series, parallel, or mixed connection of the multiple battery cells 20 .
  • the bus component can be a metal conductor, such as copper, iron, aluminum, stainless steel, aluminum alloy, etc.
  • FIG. 3 is an exploded view of a battery cell 20 provided by some embodiments of the present application.
  • the battery cell 20 includes a case 21 , an electrode assembly 22 and an end cap 23 .
  • the housing 21 is a component used to accommodate the electrode assembly 22.
  • the housing 21 may be a hollow structure with an opening formed at one end.
  • the housing 21 may be a hollow structure with openings formed at two opposite ends.
  • the housing 21 can be in various shapes, such as cylinder, rectangular parallelepiped, etc.
  • the housing 21 can be made of various materials, such as copper, iron, aluminum, steel, aluminum alloy, etc.
  • the housing 21 has a rectangular parallelepiped structure, and there are a plurality of electrode assemblies 22 , and the plurality of electrode assemblies 22 are arranged in a stack.
  • the electrode assembly 22 is a component in the battery cell 20 where electrochemical reactions occur.
  • the electrode assembly 22 may include a positive electrode piece, a negative electrode piece, and a separator.
  • the electrode assembly 22 may be a rolled structure formed by winding the positive electrode sheet, the isolation film and the negative electrode sheet, or may be a laminate structure formed by a stacked arrangement of the positive electrode sheet, the isolation film and the negative electrode sheet.
  • the electrode assembly 22 has a positive electrode tab 221 and a negative electrode tab 222.
  • the positive electrode tab 221 can be a portion of the positive electrode piece that is not coated with a positive electrode active material layer
  • the negative electrode tab 222 can be a portion of the negative electrode piece that is not coated with a negative electrode active material layer. part.
  • the end cap 23 is a component that covers the opening of the case 21 to isolate the internal environment of the battery cell 20 from the external environment.
  • the end cap 23 covers the opening of the housing 21 , and the end cap 23 and the housing 21 jointly define a sealed space for accommodating the electrode assembly 22 , the electrolyte, and other components.
  • the shape of the end cover 23 can be adapted to the shape of the casing 21.
  • the casing 21 has a rectangular parallelepiped structure
  • the end cover 23 has a rectangular plate structure matching the casing 21.
  • the casing 21 has a cylindrical shape.
  • the end cover 23 is a circular plate-shaped structure that matches the housing 21 .
  • the end cap 23 can also be made of various materials, such as copper, iron, aluminum, steel, aluminum alloy, etc.
  • the housing 21 is a hollow structure with an opening formed at one end, a corresponding end cap 23 is provided. If the housing 21 is a hollow structure with openings formed at both ends, two end caps 23 are provided correspondingly, and the two end caps 23 cover the two openings of the housing 21 respectively.
  • Electrode terminals may be provided on the end cap 23 , and the electrode terminals are used to electrically connect with the tabs to output the electric energy of the battery cells 20 .
  • the electrode terminal can be divided into a positive electrode terminal 231 and a negative electrode terminal 232.
  • the positive electrode terminal 231 is used for electrical connection with the positive electrode tab 221, and the negative electrode terminal 232 is used for electrical connection with the negative electrode tab 222.
  • the positive electrode terminal 231 and the negative electrode terminal 232 may be provided on the same end cap 23 or on different end caps 23 .
  • the case 21 is a hollow structure with openings formed at both ends. There are two end caps 23 in the battery unit 20. The two end caps 23 cover the two openings of the case 21 correspondingly.
  • the negative electrode terminal 232 is disposed on One end cap 23 and the positive electrode terminal 231 are provided on the other end cap 23 .
  • the case 21 is a hollow structure with an opening formed at one end.
  • There is one end cover 23 in the battery cell 20 and the negative electrode terminal 232 and the positive electrode terminal 231 can be arranged on the same end cover 23 . superior.
  • the positive electrode terminal 231 and the positive electrode tab 221 may be connected directly or indirectly, and the negative electrode terminal 232 and the negative electrode tab 222 may be connected directly or indirectly.
  • the positive electrode terminal 231 is indirectly connected to the positive electrode tab 221 through one current collecting member 24
  • the negative electrode terminal 232 is indirectly connected to the negative electrode tab 222 through another current collecting member 24 .
  • a pressure relief mechanism 25 (not shown in FIG. 3) can be provided in the battery cell 20.
  • the pressure relief mechanism 25 releases the pressure. Release the pressure inside the battery cell 20.
  • Figure 4 is a partially enlarged view of the pressure relief mechanism 25 provided by some embodiments of the present application.
  • the embodiment of the present application provides a pressure relief mechanism 25 for the battery cell 20.
  • the pressure relief mechanism 25 includes a pressure relief mechanism.
  • the pressure relief body 251 has a pressure relief part 2511.
  • the pressure relief structure 252 includes a first pressure relief groove 2521, a second pressure relief groove 2522, and a third pressure relief groove 2523 that are provided on the pressure relief body 251 and located at different directions.
  • the first pressure relief groove 2521 and the second pressure relief groove 2522 Together with the third pressure relief groove 2523, a pressure relief portion 2511 is defined.
  • the pressure relief portion 2511 is configured to open the first pressure relief groove 2521, the second pressure relief groove 2522 and the third pressure relief groove 2523 when the pressure or temperature inside the battery cell 20 reaches a threshold.
  • the third pressure relief groove 2523 is a boundary opening to release the pressure inside the battery cell 20 .
  • the second pressure relief groove 2522 is located between the first pressure relief groove 2521 and the third pressure relief groove 2523, and does not intersect with the first pressure relief groove 2521 and the third pressure relief groove 2523.
  • the pressure relief body 251 can be an independent component installed on the housing 21 or the end cover 23.
  • the pressure relief body 251 is a plate-shaped structure installed on the end cover 23.
  • the pressure relief body 251 can be a plate-shaped structure installed on the end cover 23.
  • the body 251 can be an explosion-proof disc installed on the end cover 23; it can also be the housing 21 or the end cover 23 itself as the pressure relief body 251.
  • the first pressure relief groove 2521, the second pressure relief groove 2522 and the third pressure relief groove 2523 can be formed in various ways, such as engraving, stamping, milling, etc., which are not particularly limited in the embodiment of the present application.
  • the first pressure relief groove 2521, the second pressure relief groove 2522 and the third pressure relief groove 2523 are three pressure relief grooves located in different directions.
  • the first pressure relief groove 2521, the second pressure relief groove 2522 and the third pressure relief groove 2523 can be a linear groove extending along a straight trajectory, or it can be a non-linear groove, such as an arc-shaped groove.
  • first pressure relief groove 2521, the second pressure relief groove 2522 and the third pressure relief groove 2523 are linear grooves, the first pressure relief groove 2521 and the third pressure relief groove 2523 can be arranged in parallel or non-parallel;
  • the first pressure relief groove 2521 and the second pressure relief groove 2522 may be arranged vertically or non-vertically; the third pressure relief groove 2523 and the second pressure relief groove 2522 may be arranged vertically or non-vertically.
  • the pressure relief portion 2511 is an area of the pressure relief body 251 jointly defined by the first pressure relief groove 2521, the second pressure relief groove 2522, and the third pressure relief groove 2523. However, this does not mean that the first pressure relief groove 2521 and the third pressure relief groove 2521.
  • the three pressure relief grooves 2523 are all connected to the second pressure relief groove 2522. It can be understood that the first pressure relief groove 2521, the second pressure relief groove 2522 and the third pressure relief groove 2523 are respectively located adjacent to the pressure relief part 2511. three edge positions. There may be one pressure relief portion 2511 defined by the first pressure relief groove 2521, the second pressure relief groove 2522, and the third pressure relief groove 2523, or there may be two.
  • the pressure relief part 2511 When the internal pressure or temperature of the battery cell 20 reaches a threshold value, the pressure relief part 2511 is opened with the first pressure relief groove 2521 , the second pressure relief groove 2522 and the third pressure relief groove 2523 as boundaries.
  • the pressure relief body 251 may first crack along the second pressure relief groove 2522, and after the cracks caused by the cracking of the second pressure relief groove 2522 spread to the first pressure relief groove 2521 and the third pressure relief groove 2523, the pressure relief body 251 may be cracked first. 251 then splits along the first pressure relief groove 2521 and the third pressure relief groove 2523, finally causing the pressure relief part 2511 to open.
  • the pressure relief body 251 After the pressure relief part 2511 is opened, the pressure relief body 251 will form an opening at a position corresponding to the pressure relief part 2511, and the emissions (gas, electrolyte, etc.) inside the battery cell 20 can be discharged through the opening, thereby The purpose of releasing the pressure inside the battery cell 20 is achieved.
  • the pressure relief part 2511 During the opening process of the pressure relief part 2511, the pressure relief part 2511 will be flipped outward along the flow direction of the discharge inside the battery cell 20 and opened.
  • the second pressure relief groove 2522 does not intersect with the first pressure relief groove 2521, that is, the second pressure relief groove 2522 and the first pressure relief groove 2521 are not connected together.
  • the second pressure relief groove 2522 is close to the first pressure relief groove 2521. There is a gap between one end and the first pressure relief groove 2521.
  • the second pressure relief groove 2522 and the third pressure relief groove 2523 do not intersect, that is, the second pressure relief groove 2522 and the third pressure relief groove 2523 are not connected together.
  • the second pressure relief groove 2522 is close to the third pressure relief groove 2523. There is a gap between one end and the third pressure relief groove 2523.
  • the second pressure relief groove 2522 neither intersects the first pressure relief groove 2521 nor the third pressure relief groove 2523, which avoids stress concentration in the intersection area of each pressure relief groove and improves pressure relief.
  • the anti-destruction capability of the mechanism 25 reduces the risk that the pressure relief mechanism 25 will start to release pressure before the pressure inside the battery cell 20 reaches the detonation pressure, thereby increasing the service life of the battery cell 20 .
  • the first pressure relief groove 2521 , the second pressure relief groove 2522 and the third pressure relief groove 2523 jointly define two pressure relief parts 2511 , and the two pressure relief parts 2511 are respectively located at both sides of the second pressure relief groove 2522.
  • the two pressure relief portions 2511 are respectively located on both sides of the second pressure relief groove 2522. It can be understood that the two pressure relief portions 2511 are bounded by the second pressure relief groove 2522. The sizes of the two pressure relief parts 2511 may be equal or unequal.
  • the first pressure relief groove 2521 and the third pressure relief groove 2523 can be arranged at equal intervals. For example, the first pressure relief groove 2521 is parallel to the third pressure relief groove 2523; of course, the first pressure relief groove 2521 and the third pressure relief groove 2523 Variable spacing is also possible.
  • the first pressure relief groove 2521, the second pressure relief groove 2522 and the third pressure relief groove 2523 are all linear grooves.
  • the first pressure relief groove 2521 is parallel to the third pressure relief groove 2523.
  • the first pressure relief groove 2521, the second pressure relief groove 2522 and the third pressure relief groove 2523 are generally in an "H" shape.
  • the two pressure relief parts 2511 can be quickly opened in a split manner, which not only ensures a sufficient pressure relief area, but also improves the opening efficiency of the pressure relief parts 2511, thereby achieving rapid pressure relief.
  • the two pressure relief portions 2511 are symmetrically distributed on both sides of the second pressure relief groove 2522.
  • the second pressure relief groove 2522 can be regarded as the symmetry axis of the two pressure relief parts 2511, and the two pressure relief parts 2511 are symmetrical with respect to the second pressure relief groove 2522. As shown in Figure 4, assuming that the first pressure relief groove 2521, the second pressure relief groove 2522 and the third pressure relief groove 2523 are all linear grooves, the first pressure relief groove 2521 can be parallel to the third pressure relief groove. 2523, the first pressure relief groove 2521 is perpendicular to the second pressure relief groove 2522, and the second pressure relief groove 2522 is arranged at the midpoint of the first pressure relief groove 2521 and the third pressure relief groove 2523 to achieve pressure relief.
  • the portions 2511 are symmetrically distributed on both sides of the second pressure relief groove 2522.
  • the two pressure relief parts 2511 are symmetrically distributed on both sides of the second pressure relief groove 2522.
  • the two pressure relief parts 2511 have the same size and shape, which is conducive to the simultaneous opening of the two pressure relief parts 2511 and is less likely to occur.
  • One pressure relief part 2511 opens first, and the other pressure relief part 2511 opens later, or even does not open at all.
  • Figure 5 is a partial enlarged view of the pressure relief mechanism 25 provided in other embodiments of the present application. Along the direction from the second pressure relief groove 2522 to both ends of the first pressure relief groove 2521, The distance between the first pressure relief groove 2521 and the third pressure relief groove 2523 gradually increases.
  • the first pressure relief groove 2521 and the third pressure relief groove 2523 are both zigzag grooves extending along a "V" shaped trajectory.
  • the first pressure relief groove 2521 and the third pressure relief groove 2523 are symmetrically arranged so that they are located at the
  • the pressure relief portions 2511 on both sides of the two pressure relief grooves 2522 have an isosceles trapezoidal structure.
  • the pressure relief body 251 will split along the first pressure relief groove 2521 and the third pressure relief groove 2523, so that the pressure relief portion 2511 Open by flipping outward, since the distance between the first pressure relief groove 2521 and the third pressure relief groove 2523 gradually increases from the position of the second pressure relief groove 2522 to both ends of the first pressure relief groove 2521, During the opening process of the pressure relief part 2511, the opening area of the pressure relief part 2511 gradually increases, which not only increases the opening area of the pressure relief part 2511, but also makes the pressure relief part 2511 open more smoothly.
  • FIG. 6 is a partial enlarged view of the pressure relief mechanism 25 provided in some embodiments of the present application.
  • the first pressure relief groove 2521 , the second pressure relief groove 2522 and the third pressure relief groove 2523 jointly define a pressure relief part 2511.
  • the first pressure relief groove 2521, the second pressure relief groove 2522 and the third pressure relief groove 2523 are respectively located at three adjacent edges of the pressure relief part 2511 in different directions.
  • first pressure relief groove 2521, the second pressure relief groove 2522 and the third pressure relief groove 2523 are all linear grooves, and the first pressure relief groove 2521, the second pressure relief groove 2522 and the third pressure relief groove 2523 are three It has a roughly " ⁇ "-shaped structure.
  • the first pressure relief groove 2521, the second pressure relief groove 2522, and the third pressure relief groove 2523 only define one pressure relief portion 2511, which has a simpler structure and reduces the molding cost of the pressure relief structure 252.
  • the second pressure relief groove 2522 has a first end 2522a facing the first pressure relief groove 2521, and a gap L1 between the first end 2522a and the first pressure relief groove 2521. No more than one-third of the distance D between the first pressure relief groove 2521 and the third pressure relief groove 2523; and/or the second pressure relief groove 2522 has a second end 2522b facing the third pressure relief groove 2523, The gap L2 between the second end 2522b and the third pressure relief groove 2523 is no greater than one-third of the distance D between the first pressure relief groove 2521 and the third pressure relief groove 2523.
  • the distance D between the first pressure relief groove 2521 and the third pressure relief groove 2523 is the position where both the first pressure relief groove 2521 and the third pressure relief groove 2523 correspond to the second pressure relief groove 2522 the distance between.
  • the distance D between the first pressure relief groove 2521 and the third pressure relief groove 2523 is the distance between the corresponding positions of the first pressure relief groove 2521 and the third pressure relief groove 2523 and the second pressure relief groove 2522, That is, the minimum distance between the first pressure relief groove 2521 and the third pressure relief groove 2523.
  • the gap L1 between the first end 2522a and the first pressure relief groove 2521 and the distance D between the first pressure relief groove 2521 and the third pressure relief groove 2523 can be measured in the same direction.
  • the gap L2 between the second end 2522b and the third pressure relief groove 2523 and the distance D between the first pressure relief groove 2521 and the third pressure relief groove 2523 can be measured in the same direction.
  • the gap L1 between the first end 2522a and the first pressure relief groove 2521 is set within a reasonable range to ensure that after the pressure relief body 251 cracks along the second pressure relief groove 2522, the crack can be more easily extend to the first pressure relief groove 2521, so that the pressure relief body 251 can then be smoothly split along the first pressure relief groove 2521; similarly, the gap between the second end 2522b and the third pressure relief groove 2523 L2 is set within a reasonable range to ensure that after the pressure relief body 251 cracks along the second pressure relief groove 2522, the crack can more easily spread to the third pressure relief groove 2523, so that the pressure relief body 251 can then smoothly move along the second pressure relief groove 2522.
  • the third pressure relief groove 2523 is split, so that the pressure relief portion 2511 can be opened more easily after the internal pressure of the battery cell 20 reaches the detonation pressure.
  • the first pressure relief groove 2521 is parallel to the third pressure relief groove 2523 , and the first pressure relief groove 2521 is perpendicular to the second pressure relief groove 2522 .
  • first pressure relief groove 2521, the second pressure relief groove 2522, and the third pressure relief groove 2523 are all linear grooves.
  • the shape of the pressure relief portion 2511 jointly defined by the first pressure relief groove 2521, the second pressure relief groove 2522 and the third pressure relief groove 2523 is more regular.
  • the pressure relief body 251 can move along the first pressure relief groove 2521, the second pressure relief groove 2522 and the third pressure relief groove 2523.
  • the first pressure relief groove 2521 and the third pressure relief groove 2523 are split simultaneously, so that the pressure relief part 2511 opens more regularly, and it is easier to fully open the pressure relief part 2511.
  • FIG. 7 is an A-A cross-sectional view of the pressure relief mechanism 25 shown in FIG. 4.
  • the first pressure relief groove 2521 includes a plurality of first groove portions 2521c.
  • the plurality of first groove portions 2521c are along the
  • the first pressure relief grooves 2521 are arranged in order in the depth direction Z. Along the depth direction Z of the first pressure relief groove 2521, the widths of the plurality of first groove portions 2521c gradually decrease.
  • Each first groove portion 2521c in the first pressure relief groove 2521 extends in the same direction. If the first pressure relief groove 2521 extends along a linear trajectory, each first groove portion 2521c also extends along a linear trajectory.
  • the depth of each first pressure relief groove 2521 may be equal or unequal. For example, along the depth direction Z of the first pressure relief groove 2521, the depth of each first groove portion 2521c gradually decreases.
  • the number of first groove portions 2521c in the first pressure relief groove 2521 may be two, three, four or more.
  • the pressure relief groove 2521c can be formed first.
  • a first first groove portion 2521c is punched out on the surface of the body 251, then a second first groove portion 2521c is punched out on the bottom surface of the first first groove portion 2521c, and finally, a second first groove portion 2521c is punched out on the bottom surface of the first first groove portion 2521c.
  • a third first groove portion 2521c is punched out on the bottom surface of 2521c. It can be understood that the width of the first first groove portion 2521c is greater than the width of the second first groove portion 2521c, and the width of the second first groove portion 2521c is greater than the width of the third first groove portion 2521c.
  • the first pressure relief groove 2521 adopts a multi-stage groove structure, which can reduce the molding force experienced by the pressure relief body 251 when forming each stage of the groove, and reduce the pressure of the pressure relief body 251 when forming the first pressure relief groove 2521. The risk of cracks occurring during the process is eliminated and the long-term reliability of the pressure relief mechanism 25 is improved.
  • FIG 8 is a B-B cross-sectional view of the pressure relief mechanism 25 shown in Figure 4.
  • the second pressure relief groove 2522 includes a plurality of second groove portions 2522c.
  • the plurality of second groove portions 2522c are along the
  • the second pressure relief grooves 2522 are arranged in sequence in the depth direction Z. Along the depth direction Z of the second pressure relief groove 2522, the widths of the plurality of second groove portions 2522c gradually decrease.
  • Each second groove portion 2522c in the second pressure relief groove 2522 extends in the same direction. If the second pressure relief groove 2522 extends along a linear trajectory, each second groove portion 2522c also extends along a linear trajectory.
  • the depth of each second pressure relief groove 2522 may be equal or unequal. For example, along the depth direction Z of the second pressure relief groove 2522, the depth of each second groove portion 2522c gradually decreases.
  • the number of second groove portions 2522c in the second pressure relief groove 2522 may be two, three, four or more.
  • the pressure relief groove 2522 can be formed first.
  • a first second groove portion 2522c is punched out on the surface of the body 251, then a second second groove portion 2522c is punched out on the bottom surface of the first second groove portion 2522c, and finally, a second second groove portion 2522c is punched out on the bottom surface of the first second groove portion 2522c.
  • a third second groove portion 2522c is punched out on the bottom surface of 2522c. It can be understood that the width of the first second groove portion 2522c is greater than the width of the second second groove portion 2522c, and the width of the second second groove portion 2522c is greater than the width of the third second groove portion 2522c.
  • the second pressure relief groove 2522 adopts a multi-stage groove structure, which can reduce the molding force experienced by the pressure relief body 251 when forming each stage of the groove, and reduce the pressure of the pressure relief body 251 when forming the second pressure relief groove 2522. The risk of cracks occurring during the process is eliminated and the long-term reliability of the pressure relief mechanism 25 is improved.
  • the third pressure relief groove 2523 includes a plurality of third groove portions 2523c.
  • the plurality of third groove portions 2523c are along the
  • the third pressure relief grooves 2523 are arranged in sequence in the depth direction Z. Along the depth direction Z of the third pressure relief groove 2523, the widths of the plurality of third groove portions 2523c gradually decrease.
  • Each third groove portion 2523c in the third pressure relief groove 2523 extends in the same direction. If the third pressure relief groove 2523 extends along a linear trajectory, each third groove portion 2523c also extends along a linear trajectory.
  • the depth of each third pressure relief groove 2523 may be equal or unequal. For example, along the depth direction Z of the third pressure relief groove 2523, the depth of each third groove portion 2523c gradually decreases.
  • the number of third groove portions 2523c in the third pressure relief groove 2523 may be two, three, four or more.
  • the pressure relief groove 2523 can be formed first.
  • a first third groove portion 2523c is punched out on the surface of the body 251
  • a second third groove portion 2523c is punched out on the bottom surface of the first third groove portion 2523c
  • a second third groove portion 2523c is punched out on the bottom surface of the first third groove portion 2523c.
  • a third third groove portion 2523c is punched out on the bottom surface of 2523c. It can be understood that the width of the first third groove portion 2523c is greater than the width of the second third groove portion 2523c, and the width of the second third groove portion 2523c is greater than the width of the third third groove portion 2523c.
  • the third pressure relief groove 2523 adopts a multi-stage groove structure, which can reduce the molding force on the pressure relief body 251 when forming each stage of the groove, and reduce the pressure of the pressure relief body 251 when forming the third pressure relief groove 2523. The risk of cracks occurring during the process is eliminated and the long-term reliability of the pressure relief mechanism 25 is improved.
  • FIG. 10 is a schematic structural diagram of the pressure relief mechanism 25 provided in some embodiments of the present application.
  • An accommodation space for accommodating the electrode assembly 22 is formed inside the pressure relief body 251 .
  • the pressure relief body 251 can serve as the housing 21 of the battery cell 20 . It can be understood that the pressure relief structure 252 may be provided on only one wall, or the pressure relief structure 252 may be provided on multiple walls. The pressure relief structure 252 can be provided on the outer surface of the wall or on the inner surface of the wall.
  • the pressure relief body 251 can be in various shapes, such as rectangular parallelepiped and cylinder. Taking the pressure relief body 251 as a rectangular parallelepiped as an example, the pressure relief body 251 may have five walls. A bottom wall and four side walls together form an accommodation space with one end open. A pressure relief device may be provided on the bottom wall and/or side walls. Structure252. Taking the pressure relief body 251 as a cylinder as an example, the pressure relief body 251 may have two walls, a bottom wall and a circumferential wall. The circumferential wall is enclosed at the edge of the bottom wall, and the circumferential wall and the bottom wall together form an end. A pressure relief structure 252 may be provided on the bottom wall and/or side wall of the open accommodation space.
  • the pressure relief body 251 has a rectangular parallelepiped structure, and the pressure relief structure 252 is provided on the outer surface of the bottom wall.
  • the pressure relief mechanism 25 is a housing capable of accommodating the electrode assembly 22 , and the pressure relief mechanism 25 integrates the accommodation function and the pressure relief function.
  • the embodiment of the present application provides a battery cell 20 including the pressure relief mechanism 25 provided in any of the above embodiments.
  • the embodiment of the present application provides a battery 100, which includes a box 10 and the battery cell 20 provided in any of the above embodiments.
  • the box 10 is used to accommodate the battery cell 20.
  • An embodiment of the present application provides an electrical device, including the battery 100 provided in any of the above embodiments.
  • the powered device may be any of the above-mentioned devices using the battery 100 .
  • an embodiment of the present application also provides a housing for accommodating the electrode assembly 22 , and a pressure relief structure 252 is provided on the housing.
  • the pressure relief structure 252 includes a first pressure relief groove 2521, a second pressure relief groove 2522, and a third pressure relief groove 2523 that are disposed on the outer surface of the shell and located at different directions.
  • the first pressure relief groove 2521 and the second pressure relief groove 2522 Together with the third pressure relief groove 2523, two pressure relief parts 2511 are defined.
  • the two pressure relief parts 2511 are respectively located on both sides of the second pressure relief groove 2522.
  • the pressure relief parts 2511 are configured to reduce the pressure inside the battery cell 20.
  • the first pressure relief groove 2521, the second pressure relief groove 2522 and the third pressure relief groove 2523 are opened as boundaries to release the pressure inside the battery cell 20.
  • the second pressure relief groove 2522 is located between the first pressure relief groove 2521 and the third pressure relief groove 2523, and does not intersect with the first pressure relief groove 2521 and the third pressure relief groove 2523.
  • the second pressure relief groove 2522 neither intersects the first pressure relief groove 2521 nor the third pressure relief groove 2523, which avoids stress concentration in the intersection area of each pressure relief groove and improves the resistance of the shell.
  • the destructive ability reduces the risk of the shell starting to release pressure before the pressure inside the battery cell 20 reaches the detonation pressure, and increases the service life of the battery cell 20 .
  • Figure 11 is a flow chart of a manufacturing method of the pressure relief mechanism 25 provided by some embodiments of the present application.
  • the embodiment of the present application provides a method of manufacturing the pressure relief mechanism 25.
  • the manufacturing method includes:
  • S100 Provides pressure relief body 251;
  • S200 Process the pressure relief structure 252 on the pressure relief body 251.
  • the pressure relief structure 252 includes a first pressure relief groove 2521, a second pressure relief groove 2522 and a third pressure relief groove 2523 which are provided on the pressure relief body 251 and are located in different directions.
  • the groove 2522 and the third pressure relief groove 2523 jointly define a pressure relief part 2511.
  • the pressure relief part 2511 is configured to open the first pressure relief groove 2521 and the second pressure relief groove when the pressure or temperature inside the battery cell 20 reaches a threshold value.
  • 2522 and the third pressure relief groove 2523 are boundary openings to release the pressure inside the battery cell 20 .
  • the second pressure relief groove 2522 is located between the first pressure relief groove 2521 and the third pressure relief groove 2523, and does not intersect with the first pressure relief groove 2521 and the third pressure relief groove 2523.
  • Figure 12 is a schematic block diagram of a manufacturing equipment 2000 for a pressure relief mechanism 25 provided by some embodiments of the present application.
  • Embodiments of the present application also provide a manufacturing equipment 2000 for a pressure relief mechanism 25.
  • the manufacturing equipment 2000 includes: Device 2100 and processing device 2200.
  • the providing device 2100 is used to provide the pressure relief body 251 .
  • the processing device 2200 is used to process the pressure relief structure 252 on the pressure relief body 251 .
  • the pressure relief structure 252 includes a first pressure relief groove 2521, a second pressure relief groove 2522 and a third pressure relief groove 2523 which are provided on the pressure relief body 251 and are located in different directions.
  • the groove 2522 and the third pressure relief groove 2523 jointly define a pressure relief part 2511.
  • the pressure relief part 2511 is configured to open the first pressure relief groove 2521 and the second pressure relief groove when the pressure or temperature inside the battery cell 20 reaches a threshold value.
  • 2522 and the third pressure relief groove 2523 are boundary openings to release the pressure inside the battery cell 20 .
  • the second pressure relief groove 2522 is located between the first pressure relief groove 2521 and the third pressure relief groove 2523, and does not intersect with the first pressure relief groove 2521 and the third pressure relief groove 2523.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本申请实施例提供了一种泄压机构、电池单体、电池及用电设备,属于电池技术领域。泄压机构包括泄压本体和泄压结构。泄压结构包括设置于泄压本体并位于不同方位的第一泄压槽、第二泄压槽和第三泄压槽,第一泄压槽、第二泄压槽和第三泄压槽共同界定出泄压部,泄压部被配置为在电池单体内部的压力或温度达到阈值时以第一泄压槽、第二泄压槽和第三泄压槽为边界打开。第二泄压槽位于第一泄压槽和第三泄压槽之间,且与第一泄压槽和第三泄压槽不相交。这种结构有效避免了各泄压槽在相交区域产生应力集中,提高泄压机构的抗破坏能力,降低泄压机构在电池单体内部的压力未达到起爆压力就开始泄压的风险,提高电池单体的使用寿命。

Description

泄压机构、电池单体、电池及用电设备 技术领域
本申请涉及电池技术领域,具体而言,涉及一种泄压机构、电池单体、电池及用电设备。
背景技术
随着新能源技术的发展,电池的应用越来越广泛,例如应用在手机、笔记本电脑、电瓶车、电动汽车、电动飞机、电动轮船、电动玩具汽车、电动玩具轮船、电动玩具飞机和电动工具等上。
在电池技术中,既需要考虑电池单体安全性,也需要考虑电池单体的使用寿命,因此,如何提高电池单体的使用寿命是电池技术中亟需解决的问题。
发明内容
本申请实施例提供一种泄压机构、电池单体、电池及用电设备,能够有效提高电池单体的使用寿命。
第一方面,本申请实施例提供一种泄压机构,用于电池单体,所述泄压机构包括泄压本体和泄压结构;泄压本体具有泄压部;泄压结构包括设置于所述泄压本体并位于不同方位的第一泄压槽、第二泄压槽和第三泄压槽,所述第一泄压槽、所述第二泄压槽和所述第三泄压槽共同界定出所述泄压部,所述泄压部被配置为在所述电池单体内部的压力或温度达到阈值时以所述第一泄压槽、所述第二泄压槽和所述第三泄压槽为边界打开,以泄放所述电池单体内部的压力;其中,所述第二泄压槽位于所述第一泄压槽和所述第三泄压槽之间,且与所述第一泄压槽和所述第三泄压槽不相交。
上述技术方案中,第二泄压槽既不与第一泄压槽相交,也不与第三泄压槽相交,避免各泄压槽在相交区域产生应力集中,提高泄压机构的抗破坏能力,降低泄压机构在电池单体内部的压力未达到起爆压力就开始泄压的风险,提高电池单体的使用寿命。
在一些实施例中,所述第一泄压槽、所述第二泄压槽和所述第三泄压槽共同界定出两个所述泄压部,两个所述泄压部分别位于所述第二泄压槽的两侧。在泄压过程中,两个泄压部能够以对开的方式快速打开,在保证具有足够的泄压面积的同时,提高了泄压部的打开效率,从而实现快速泄压。
在一些实施例中,两个所述泄压部对称分布于所述第二泄压槽的两侧。这样,两个泄压部的大小、形状相同,有利于两个泄压部同时打开,不易出现一个泄压部先打开,另一个泄压部后打开,甚至不打开的情况。
在一些实施例中,沿所述第二泄压槽到所述第一泄压槽的两端的方向,所述第一泄压槽与所述第三泄压槽之间的距离逐渐增大。在泄压时,在泄压本体沿着第二泄压槽裂开后,泄压本体将沿着第一泄压槽和第三泄压槽裂开,使得泄压部以向外翻转的方式打开,由于第一泄压槽与第三泄压槽之间的距离从第二泄压槽的位置到第一泄压槽两端是逐渐增大的,泄压部在打开过程中,泄压部的打开面积逐渐增大,一方面增大了泄压部的打开面积,另一方面使得泄压部打开更加顺畅。
在一些实施例中,所述第一泄压槽、所述第二泄压槽和所述第三泄压槽共同界定出一个所述泄压部,所述第一泄压槽、所述第二泄压槽和所述第三泄压槽分别位于所述泄压部不同方位且相邻的三个边缘。第一泄压槽、第二泄压槽和第三泄压槽只界定出一个泄压部,结构更为简单,降低了泄压结构的成型成本。
在一些实施例中,所述第二泄压槽具有面向所述第一泄压槽的第一端,所述第一端与所述第一泄压槽之间的间隙不大于所述第一泄压槽与所述第三泄压槽之间的距离的三分之一;和/或,所述第二泄压槽具有面向所述第三泄压槽的第二端,所述第二端与所述第三泄压槽之间的间隙不大于所述第一泄压槽与所述第三泄压槽之间的距离的三分之一。将第一端与第一泄压槽之间的间隙设 置在合理的范围内,保证泄压本体沿着第二泄压槽裂开后,裂纹能够更容易地绵延至第一泄压槽,从而使泄压本体随后能够顺利地沿着第一泄压槽裂开;同样,将第二端与第三泄压槽之间的间隙设置在合理范围内,保证泄压本体沿着第二泄压槽裂开后,裂纹能够更容易地蔓延至第三泄压槽,从而使泄压本体随后能够顺利地沿着第三泄压槽裂开,使得泄压部在电池单体内部压力达到起爆压力后能够更为容易地打开。
在一些实施例中,所述第一泄压槽平行于所述第三泄压槽,且垂直于所述第二泄压槽。使得第一泄压槽、第二泄压槽和第三泄压槽共同界定的泄压部形状更为规则,泄压时,泄压本体能够沿着第一泄压槽和第三泄压槽同步裂开,使得泄压部更为规则地打开,更容易实现泄压部完全打开。
在一些实施例中,所述第一泄压槽包括多个第一槽部,多个第一槽部沿所述第一泄压槽的深度方向依次设置,沿所述第一泄压槽的深度方向,多个所述第一槽部的宽度逐渐减小。第一泄压槽采用多级槽结构,可以降低在成型每级槽时泄压本体所受到的成型力,降低泄压本体在成型第一泄压槽的过程中产生裂纹的风险,提高泄压机构的长期可靠性。
在一些实施例中,所述第二泄压槽包括多个第二槽部,多个第二槽部沿所述第二泄压槽的深度方向依次设置,沿所述第二泄压槽的深度方向,多个所述第二槽部的宽度逐渐减小。第二泄压槽采用多级槽结构,可以降低在成型每级槽时泄压本体所受到的成型力,降低泄压本体在成型第二泄压槽的过程中产生裂纹的风险,提高泄压机构的长期可靠性。
在一些实施例中,所述第三泄压槽包括多个第三槽部,多个第三槽部沿所述第三泄压槽的深度方向依次设置,沿所述第三泄压槽的深度方向,多个所述第三槽部的宽度逐渐减小。第三泄压槽采用多级槽结构,可以降低在成型每级槽时泄压本体所受到的成型力,降低泄压本体在成型第三泄压槽的过程中产生裂纹的风险,提高泄压机构的长期可靠性。
在一些实施例中,所述泄压本体内部形成有用于容纳电极组件的容纳空间,所述泄压本体具有共同界定出所述容纳空间的多个壁,至少一个所述壁设置有所述泄压结构。这样,泄压机构为能够容纳电极组件的壳体,泄压机构集容纳功能和泄压功能为一体。
第二方面,本申请实施例提供一种电池单体,包括第一方面任意一个实施例提供的泄压机构。
第三方面,本申请实施例提供一种电池,包括箱体和第二方面任意一个实施例提供的电池单体;箱体用于容纳所述电池单体。
第四方面,本申请实施例提供一种用电设备,包括第三方面任意一个实施例提供的电池。
第五方面,本申请实施例提供一种泄压机构的制造方法,所述制造方法包括:提供泄压本体;在所述泄压本体上加工泄压结构;其中,所述泄压结构包括设置于所述泄压本体并位于不同方位的第一泄压槽、第二泄压槽和第三泄压槽,所述第一泄压槽、所述第二泄压槽和所述第三泄压槽共同界定出泄压部,所述泄压部被配置为在电池单体内部的压力或温度达到阈值时以所述第一泄压槽、所述第二泄压槽和所述第三泄压槽为边界打开,以泄放所述电池单体内部的压力;所述第二泄压槽位于所述第一泄压槽和所述第三泄压槽之间,且与所述第一泄压槽和所述第三泄压槽不相交。
第六方面,本申请实施例还提供一种泄压机构的制造设备,所述制造设备包括提供装置和加工装置;提供装置用于提供泄压本体;加工装置用于在所述泄压本体上加工泄压结构;其中,所述泄压结构包括设置于所述泄压本体并位于不同方位的第一泄压槽、第二泄压槽和第三泄压槽,所述第一泄压槽、所述第二泄压槽和所述第三泄压槽共同界定出泄压部,所述泄压部被配置为在电池单体内部的压力或温度达到阈值时以所述第一泄压槽、所述第二泄压槽和所述第三泄压槽为边界打开,以泄放所述电池单体内部的压力;所述第二泄压槽位于所述第一泄压槽和所述第三泄压槽之间,且与所述第一泄压槽和所述第三泄压槽不相交。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单 地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的爆炸图;
图3为本申请一些实施例提供的电池单体的爆炸图;
图4为本申请一些实施例提供的泄压机构的局部放大图;
图5为本申请另一些实施例提供的泄压机构的局部放大图;
图6为本申请又一些实施例提供的泄压机构的局部放大图;
图7为图4所示的泄压机构的A-A剖视图;
图8为图4所示的泄压机构的B-B剖视图;
图9为图4所示的泄压机构的C-C剖视图;
图10为本申请再一些实施例提供的泄压机构的结构示意图;
图11为本申请一些实施例提供的泄压机构的制造方法的流程图;
图12为本申请一些实施例提供的泄压机构的制造设备的示意性框图。
图标:10-箱体;11-第一部分;12-第二部分;20-电池单体;21-壳体;22-电极组件;221-正极极耳;222-负极极耳;23-端盖;231-正极电极端子;232-负极电极端子;24-集流构件;25-泄压机构;251-泄压本体;2511-泄压部;252-泄压结构;2521-第一泄压槽;2521c-第一槽部;2522-第二泄压槽;2522a-第一端;2522b-第二端;2522c-第二槽部;2523-第三泄压槽;2523c-第三槽部;100-电池;200-控制器;300-马达;1000-车辆;2000-制造设备;2100-提供装置;2200-加工装置;Z-深度方向。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件由正极极片、负极极片和隔离膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的安全性。
电池单体上的泄压机构对电池的安全性有着重要影响。例如,当发生短路、过充等现象时,可能会导致电池单体内部发生热失控从而压力或温度骤升。这种情况下通过泄压机构可以将内部压力及温度向外释放,以防止电池单体爆炸、起火。
发明人注意到,对于一般的泄压机构而言,电池单体在使用一段时间后,容易出现泄压机构在电池单体的内部压力未达到起爆压力就开始泄压,从而导致电池单体失效,电池单体的使用寿命较短。
发明人发现,对于一般的泄压机构而言,一般在泄压本体上设置位于不同方位的多个泄压槽,通过多个泄压槽界定出泄压部,相邻的两个泄压槽相交,泄压部在电池单体内部的压力或温度达到阈值时打开,以泄放电池单体内部的压力。电池单体在实际工作环境中,其内部压力会随着环境温度的变化而改变,当温度升高时,电池单体内部的压力升高,当温度下降时,电池单体内部的压力降低。由于泄压机构中相邻的两个泄压槽相交,相交区域容易产生应力集中,电池单体内部的压力随着温度的变化长期交替改变后,两个泄压槽相交的区域最容易出现疲劳现象,导致泄压机构在两个泄压槽相交的区域抗破坏能力不足,最容易裂开,容易出现泄压机构在电池单体内部的压力未达到起爆压力就开始泄压的情况,影响电池单体的使用寿命。
鉴于此,本申请实施例提供一种泄压机构,其包括泄压本体和泄压结构。泄压本体具有泄压部。泄压结构包括设置于泄压本体并位于不同方位的第一泄压槽、第二泄压槽和第三泄压槽,第一泄压槽、第二泄压槽和第三泄压槽共同界定出泄压部,泄压部被配置为在电池单体内部的压力或温度达到阈值时以第一泄压槽、第二泄压槽和第三泄压槽为边界打开,以泄放电池单体内部的压力。第二泄压槽位于第一泄压槽和第三泄压槽之间,且与第一泄压槽和第三泄压槽不相交。
在这样的泄压机构中,第二泄压槽既不与第一泄压槽相交,也不与第三泄压槽相交,避免各泄压槽在相交区域产生应力集中,提高泄压机构的抗破坏能力,降低泄压机构在电池单体内部的压力未达到起爆压力就开始泄压的风险,提高电池单体的使用寿命。
本申请实施例描述的泄压机构适用于电池单体、电池以及使用电池的用电设备。
用电设备可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电设备不做特殊限制。
以下实施例为了方便说明,以用电设备为车辆为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆1000的结构示意图,车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。
车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参照图2,图2为本申请一些实施例提供的电池100的爆炸图,电池100包括箱体10和电池单体20,箱体10用于容纳电池单体20。
其中,箱体10是容纳电池单体20的部件,箱体10为电池单体20提供容纳腔,箱体10可以采用多种结构。在一些实施例中,箱体10可以包括第一部分11和第二部分12,第一部分11与第二部分12相互盖合,以限定出用于容纳电池单体20的容纳腔。第一部分11和第二部分12可以是多种形状,比如,长方体、圆柱体等。第一部分11可以是一侧开放的空心结构,第二部分12也可以是一侧开放的空心结构,第二部分12的开放侧盖合于第一部分11的开放侧,则形成具有容纳腔的箱体10。也可以是第一部分11为一侧开放的空心结构,第二部分12为板状结构,第二部分12盖合于第一部分11的开放侧,则形成具有容纳腔的箱体10。第一部分11与第二部分12可以通过密封元件来实现密封,密封元件可以是密封圈、密封胶等。
在电池100中,电池单体20可以是一个、也可以是多个。若电池单体20为多个,多个电池单体20之间可串联或并联或混联,混联是指多个电池单体20中既有串联又有并联。可以是多个电池单体20先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体10内。也可以是所有电池单体20之间直接串联或并联或混联在一起,再将所有电池单体20构成的整体容纳于箱体10内。
在一些实施例中,电池100还可以包括汇流部件,多个电池单体20之间可通过汇流部件实现电连接,以实现多个电池单体20的串联或并联或混联。汇流部件可以是金属导体,比如,铜、铁、铝、不锈钢、铝合金等。
请参照图3,图3为本申请一些实施例提供的电池单体20的爆炸图,电池单体20包括壳体21、电极组件22和端盖23。
壳体21是用于容纳电极组件22的部件,壳体21可以是一端形成开口的空心结构,壳体21可以是相对的两端形成开口的空心结构。壳体21可以是多种形状,比如,圆柱体、长方体等。壳体21的材质可以是多种,比如,铜、铁、铝、钢、铝合金等。
壳体21内的电极组件22可以是一个,也可以是多个。例如,如图3所示,壳体21为长方体结构,电极组件22为多个,多个电极组件22层叠布置。
电极组件22是电池单体20中发生电化学反应的部件。电极组件22可以包括正极极片、负极极片和隔离膜。电极组件22可以是由正极极片、隔离膜和负极极片通过卷绕形成的卷绕式结构,也可以是由正极极片、隔离膜和负极极片通过层叠布置形成的叠片式结构。电极组件22具有 正极极耳221和负极极耳222,正极极耳221可以是正极极片上未涂覆正极活性物质层的部分,负极极耳222可以是负极极片上未涂覆负极活性物质层的部分。
端盖23是盖合于壳体21的开口以将电池单体20的内部环境与外部环境隔绝的部件。端盖23盖合于壳体21的开口,端盖23与壳体21共同限定出用于容纳电极组件22、电解液以及其他部件的密封空间。端盖23的形状可以与壳体21的形状相适配,比如,壳体21为长方体结构,端盖23为与壳体21相适配的矩形板状结构,再如,壳体21为圆柱体结构,端盖23为与壳体21相适配的圆形板状结构。端盖23的材质也可以是多种,比如,铜、铁、铝、钢、铝合金等。
电池单体20中,端盖23可以是一个,也可以是两个。若壳体21是一端形成开口的空心结构,则端盖23对应设置一个。若壳体21是两端形成开口的空心结构,则端盖23对应设置两个,两个端盖23分别盖合于壳体21的两个开口。
端盖23上可以设置电极端子,电极端子用于与极耳电连接,以输出电池单体20的电能。电极端子可以分为正极电极端子231和负极电极端子232,正极电极端子231用于与正极极耳221电连接,负极电极端子232用于与负极极耳222电连接。正极电极端子231和负极电极端子232可以设置于同一端盖23上,也可以设置于不同端盖23上。比如,壳体21为两端形成开口的空心结构,电池单体20中的端盖23为两个,两个端盖23对应盖合于壳体21的两个开口,负极电极端子232设置于一个端盖23,正极电极端子231设置于另一个端盖23上。再如,如图3所示,壳体21为一端形成开口的空心结构,电池单体20中的端盖23为一个,负极电极端子232和正极电极端子231则可以设置在同一个端盖23上。
正极电极端子231与正极极耳221可以直接连接,也可以间接连接,负极电极端子232与负极极耳222可以直接连接,也可以间接连接。示例性的,正极电极端子231通过一个集流构件24与正极极耳221间接连接,负极电极端子232通过另一个集流构件24与负极极耳222间接连接。
为保证电池单体20的安全性,可以在电池单体20中设置泄压机构25(图3未示出),在电池单体20内部的压力或温度达到阈值时,通过泄压机构25泄放电池单体20内部的压力。以下结合附图对泄压机构25的具体结构进行详细阐述。
请参照图4,图4为本申请一些实施例提供的泄压机构25的局部放大图,本申请实施例提供一种泄压机构25,用于电池单体20,泄压机构25包括泄压本体251和泄压结构252。泄压本体251具有泄压部2511。泄压结构252包括设置于泄压本体251并位于不同方位的第一泄压槽2521、第二泄压槽2522和第三泄压槽2523,第一泄压槽2521、第二泄压槽2522和第三泄压槽2523共同界定出泄压部2511,泄压部2511被配置为在电池单体20内部的压力或温度达到阈值时以第一泄压槽2521、第二泄压槽2522和第三泄压槽2523为边界打开,以泄放电池单体20内部的压力。其中,第二泄压槽2522位于第一泄压槽2521和第三泄压槽2523之间,且与第一泄压槽2521和第三泄压槽2523不相交。
在电池单体20中,泄压本体251可以是安装于壳体21或端盖23上的独立部件,比如,泄压本体251为安装于端盖23上的板状结构,具体地,泄压本体251可以是安装于端盖23上的防爆片;也可以是壳体21或端盖23本身作为泄压本体251。
第一泄压槽2521,第二泄压槽2522和第三泄压槽2523可以通过多种方式成型,比如,雕刻成型、冲压成型、铣削加工成型等,本申请实施例对此不作特殊限制。第一泄压槽2521、第二泄压槽2522和第三泄压槽2523是位于不同方位的三个泄压槽,第一泄压槽2521、第二泄压槽2522和第三泄压槽2523可以是沿直线轨迹延伸的直线形槽,也可以是非直线形槽,比如,弧形槽。若第一泄压槽2521、第二泄压槽2522和第三泄压槽2523为直线形槽,第一泄压槽2521与第三泄压槽2523可以平行设置,也可以非平行设置;第一泄压槽2521与第二泄压槽2522可以垂直设置,也可以非垂直设置;第三泄压槽2523与第二泄压槽2522可以垂直设置,也可以非垂直设置。
泄压部2511为泄压本体251由第一泄压槽2521、第二泄压槽2522和第三泄压槽2523共同界定出来的区域,但这并不意味着第一泄压槽2521和第三泄压槽2523均与第二泄压槽2522相 连在一起,可以理解为,第一泄压槽2521、第二泄压槽2522和第三泄压槽2523分别位于泄压部2511的相邻的三个边缘位置。由第一泄压槽2521、第二泄压槽2522和第三泄压槽2523三者共同界定出的泄压部2511可以是一个,也可以是两个。
在电池单体20的内部的压力或温度达到阈值时,泄压部2511将以第一泄压槽2521、第二泄压槽2522和第三泄压槽2523为边界打开。可以是泄压本体251先沿着第二泄压槽2522裂开,待第二泄压槽2522裂开产生的裂纹蔓延至第一泄压槽2521和第三泄压槽2523后,泄压本体251再沿着第一泄压槽2521和第三泄压槽2523裂开,最终使得泄压部2511打开。泄压部2511打开后,泄压本体251在与泄压部2511相对应的位置将形成开口部,电池单体20内部的排放物(气体、电解液等)则可以通过该开口部排出,从而达到泄放电池单体20内部的压力的目的。泄压部2511在打开过程中,泄压部2511将沿着电池单体20内部的排放物的流动方向向外翻转打开。
第二泄压槽2522与第一泄压槽2521不相交,即第二泄压槽2522与第一泄压槽2521并未连接在一起,第二泄压槽2522靠近第一泄压槽2521的一端与第一泄压槽2521之间存在间隙。第二泄压槽2522与第三泄压槽2523不相交,即第二泄压槽2522与第三泄压槽2523并未连接在一起,第二泄压槽2522靠近第三泄压槽2523的一端与第三泄压槽2523之间存在间隙。
在本申请实施例中,第二泄压槽2522既不与第一泄压槽2521相交,也不与第三泄压槽2523相交,避免各泄压槽在相交区域产生应力集中,提高泄压机构25的抗破坏能力,降低泄压机构25在电池单体20内部的压力未达到起爆压力就开始泄压的风险,提高电池单体20的使用寿命。
在一些实施例中,请继续参照图4,第一泄压槽2521、第二泄压槽2522和第三泄压槽2523共同界定出两个泄压部2511,两个泄压部2511分别位于第二泄压槽2522的两侧。
两个泄压部2511分别位于第二泄压槽2522的两侧,可以理解为,两个泄压部2511以第二泄压槽2522为边界。两个泄压部2511的大小可以相等,也可以不等。第一泄压槽2521与第三泄压槽2523可以等间距设置,比如,第一泄压槽2521平行于第三泄压槽2523;当然,第一泄压槽2521与第三泄压槽2523也可以变间距设置。示例性的,在图4中,第一泄压槽2521、第二泄压槽2522和第三泄压槽2523均为直线槽,第一泄压槽2521平行于第三泄压槽2523,第一泄压槽2521、第二泄压槽2522和第三泄压槽2523三者大致呈“H”形结构。
在泄压过程中,两个泄压部2511能够以对开的方式快速打开,在保证具有足够的泄压面积的同时,提高了泄压部2511的打开效率,从而实现快速泄压。
在一些实施例中,两个泄压部2511对称分布于第二泄压槽2522的两侧。
第二泄压槽2522可以视为两个泄压部2511的对称轴,两个泄压部2511关于第二泄压槽2522对称。如图4所示,以第一泄压槽2521、第二泄压槽2522和第三泄压槽2523均为直线形槽为例,可以是第一泄压槽2521平行于第三泄压槽2523,第一泄压槽2521垂直于第二泄压槽2522,并且,将第二泄压槽2522设置在第一泄压槽2521和第三泄压槽2523的中点位置,来实现泄压部2511对称分布于第二泄压槽2522的两侧。
在本实施例中,两个泄压部2511对称分布于第二泄压槽2522的两侧,两个泄压部2511的大小、形状相同,有利于两个泄压部2511同时打开,不易出现一个泄压部2511先打开,另一个泄压部2511后打开,甚至不打开的情况。
在一些实施例中,请参照图5,图5为本申请另一些实施例提供的泄压机构25的局部放大图,沿第二泄压槽2522到第一泄压槽2521的两端的方向,第一泄压槽2521与第三泄压槽2523之间的距离逐渐增大。
示例性的,第一泄压槽2521和第三泄压槽2523均为沿“V”形轨迹延伸的折线形槽,第一泄压槽2521与第三泄压槽2523对称设置,使得位于第二泄压槽2522的两侧的泄压部2511呈等腰梯形结构。
在泄压时,在泄压本体251沿着第二泄压槽2522裂开后,泄压本体251将沿着第一泄压槽2521和第三泄压槽2523裂开,使得泄压部2511以向外翻转的方式打开,由于第一泄压槽2521 与第三泄压槽2523之间的距离从第二泄压槽2522的位置到第一泄压槽2521两端是逐渐增大的,泄压部2511在打开过程中,泄压部2511的打开面积逐渐增大,一方面增大了泄压部2511的打开面积,另一方面使得泄压部2511打开更加顺畅。
在一些实施例中,请参照图6,图6为本申请又一些实施例提供的泄压机构25的局部放大图,第一泄压槽2521、第二泄压槽2522和第三泄压槽2523共同界定出一个泄压部2511,第一泄压槽2521、第二泄压槽2522和第三泄压槽2523分别位于泄压部2511不同方位且相邻的三个边缘。
示例性的,第一泄压槽2521、第二泄压槽2522和第三泄压槽2523均为直线槽,第一泄压槽2521、第二泄压槽2522和第三泄压槽2523三者大致呈“匚”形结构。
在本实施例中,第一泄压槽2521、第二泄压槽2522和第三泄压槽2523只界定出一个泄压部2511,结构更为简单,降低了泄压结构252的成型成本。
在一些实施例中,请参照图4-图6,第二泄压槽2522具有面向第一泄压槽2521的第一端2522a,第一端2522a与第一泄压槽2521之间的间隙L1不大于第一泄压槽2521与第三泄压槽2523之间的距离D的三分之一;和/或,第二泄压槽2522具有面向第三泄压槽2523的第二端2522b,第二端2522b与第三泄压槽2523之间的间隙L2不大于第一泄压槽2521与第三泄压槽2523之间的距离D的三分之一。
需要说明的是,第一泄压槽2521与第三泄压槽2523之间的距离D是第一泄压槽2521和第三泄压槽2523两者与第二泄压槽2522相对应的位置之间的距离。如图5所示,在第一泄压槽2521与第二泄压槽2522之间的距离从第二泄压槽2522的位置到第一泄压槽2521两端逐渐增大的实施例中,第一泄压槽2521与第三泄压槽2523之间的距离D为第一泄压槽2521和第三泄压槽2523两者与第二泄压槽2522相对应的位置之间的距离,也就是第一泄压槽2521与第三泄压槽2523之间的最小距离。
在实际测量时,可以在同一方向对第一端2522a与第一泄压槽2521之间的间隙L1以及第一泄压槽2521与第三泄压槽2523之间的距离D进行测量,同样,可以在同一方向对第二端2522b与第三泄压槽2523之间的间隙L2以及第一泄压槽2521与第三泄压槽2523之间的距离D进行测量。
在本实施例中,将第一端2522a与第一泄压槽2521之间的间隙L1设置在合理的范围内,保证泄压本体251沿着第二泄压槽2522裂开后,裂纹能够更容易地绵延至第一泄压槽2521,从而使泄压本体251随后能够顺利地沿着第一泄压槽2521裂开;同样,将第二端2522b与第三泄压槽2523之间的间隙L2设置在合理范围内,保证泄压本体251沿着第二泄压槽2522裂开后,裂纹能够更容易地蔓延至第三泄压槽2523,从而使泄压本体251随后能够顺利地沿着第三泄压槽2523裂开,使得泄压部2511在电池单体20内部压力达到起爆压力后能够更为容易地打开。
在一些实施例中,请参照图4和图6,第一泄压槽2521平行于第三泄压槽2523,且第一泄压槽2521垂直于第二泄压槽2522。
示例性的,第一泄压槽2521、第二泄压槽2522和第三泄压槽2523均为直线形槽。
在本实施例中,第一泄压槽2521、第二泄压槽2522和第三泄压槽2523共同界定的泄压部2511形状更为规则,泄压时,泄压本体251能够沿着第一泄压槽2521和第三泄压槽2523同步裂开,使得泄压部2511更为规则地打开,更容易实现泄压部2511完全打开。
在一些实施例中,请参照图7,图7为图4所示的泄压机构25的A-A剖视图,第一泄压槽2521包括多个第一槽部2521c,多个第一槽部2521c沿第一泄压槽2521的深度方向Z依次设置,沿第一泄压槽2521的深度方向Z,多个第一槽部2521c的宽度逐渐减小。
第一泄压槽2521中的各个第一槽部2521c的延伸方向相同,若第一泄压槽2521沿直线轨迹延伸,则各个第一槽部2521c也均沿直线轨迹延伸。各个第一泄压槽2521的深度可以相等,也可以不等,比如,沿第一泄压槽2521的深度方向Z,各个第一槽部2521c的深度逐渐减小。
第一泄压槽2521中的第一槽部2521c的个数可以是两个、三个、四个或者更多。示例性的,在图7中,第一泄压槽2521中的第一槽部2521c为三个,以第一泄压槽2521采用冲压的方式成型为例,在成型时,可以先在泄压本体251的表面冲压出第一个第一槽部2521c,然后,在第一个第一槽部2521c的底面上冲压出第二个第一槽部2521c,最后,在第二个第一槽部2521c的底面上冲压出第三个第一槽部2521c。可理解的,第一个第一槽部2521c的宽度大于第二个第一槽部2521c的宽度,第二个第一槽部2521c的宽度大于第三个第一槽部2521c的。
在本实施例中,第一泄压槽2521采用多级槽结构,可以降低在成型每级槽时泄压本体251所受到的成型力,降低泄压本体251在成型第一泄压槽2521的过程中产生裂纹的风险,提高泄压机构25的长期可靠性。
在一些实施例中,请参照图8,图8为图4所示的泄压机构25的B-B剖视图,第二泄压槽2522包括多个第二槽部2522c,多个第二槽部2522c沿第二泄压槽2522的深度方向Z依次设置,沿第二泄压槽2522的深度方向Z,多个第二槽部2522c的宽度逐渐减小。
第二泄压槽2522中的各个第二槽部2522c的延伸方向相同,若第二泄压槽2522沿直线轨迹延伸,则各个第二槽部2522c也均沿直线轨迹延伸。各个第二泄压槽2522的深度可以相等,也可以不等,比如,沿第二泄压槽2522的深度方向Z,各个第二槽部2522c的深度逐渐减小。
第二泄压槽2522中的第二槽部2522c的个数可以是两个、三个、四个或者更多。示例性的,在图8中,第二泄压槽2522中的第二槽部2522c为三个,以第二泄压槽2522采用冲压的方式成型为例,在成型时,可以先在泄压本体251的表面冲压出第一个第二槽部2522c,然后,在第一个第二槽部2522c的底面上冲压出第二个第二槽部2522c,最后,在第二个第二槽部2522c的底面上冲压出第三个第二槽部2522c。可理解的,第一个第二槽部2522c的宽度大于第二个第二槽部2522c的宽度,第二个第二槽部2522c的宽度大于第三个第二槽部2522c的。
在本实施例中,第二泄压槽2522采用多级槽结构,可以降低在成型每级槽时泄压本体251所受到的成型力,降低泄压本体251在成型第二泄压槽2522的过程中产生裂纹的风险,提高泄压机构25的长期可靠性。
在一些实施例中,请参照图9,图9为图4所示的泄压机构25的C-C剖视图,第三泄压槽2523包括多个第三槽部2523c,多个第三槽部2523c沿第三泄压槽2523的深度方向Z依次设置,沿第三泄压槽2523的深度方向Z,多个第三槽部2523c的宽度逐渐减小。
第三泄压槽2523中的各个第三槽部2523c的延伸方向相同,若第三泄压槽2523沿直线轨迹延伸,则各个第三槽部2523c也均沿直线轨迹延伸。各个第三泄压槽2523的深度可以相等,也可以不等,比如,沿第三泄压槽2523的深度方向Z,各个第三槽部2523c的深度逐渐减小。
第三泄压槽2523中的第三槽部2523c的个数可以是两个、三个、四个或者更多。示例性的,在图8中,第三泄压槽2523中的第三槽部2523c为三个,以第三泄压槽2523采用冲压的方式成型为例,在成型时,可以先在泄压本体251的表面冲压出第一个第三槽部2523c,然后,在第一个第三槽部2523c的底面上冲压出第二个第三槽部2523c,最后,在第二个第三槽部2523c的底面上冲压出第三个第三槽部2523c。可理解的,第一个第三槽部2523c的宽度大于第二个第三槽部2523c的宽度,第二个第三槽部2523c的宽度大于第三个第三槽部2523c的。
在本实施例中,第三泄压槽2523采用多级槽结构,可以降低在成型每级槽时泄压本体251所受到的成型力,降低泄压本体251在成型第三泄压槽2523的过程中产生裂纹的风险,提高泄压机构25的长期可靠性。
在一些实施例中,请参照图10,图10为本申请再一些实施例提供的泄压机构25的结构示意图,泄压本体251内部形成有用于容纳电极组件22的容纳空间,泄压本体251具有共同界定出容纳空间的多个壁,至少一个壁设置有泄压结构252。
泄压本体251可以作为电池单体20的壳体21。可理解的,可以是只有一个壁上设置有泄压结构252,也可以是多个壁上均设有泄压结构252。泄压结构252可以设置在壁的外表面,也可以设置在壁的内表面。
泄压本体251可以是多种形状,比如,长方体、圆柱体。以泄压本体251为长方体为例,泄压本体251可以有五个壁,一个底壁和四个侧壁共同围合形成一端开口的容纳空间,底壁和/或侧壁上可以设置泄压结构252。以泄压本体251为圆柱体为例,泄压本体251可以有两个壁,一个底壁和一个圆周壁,圆周壁围合设于底壁的边缘,圆周壁与底壁共同围合形成一端开口的容纳空间,底壁和/或侧壁上可以设置泄压结构252。
示例性的,在图10中,泄压本体251为长方体结构,泄压结构252设置于底壁的外表面。
在本实施例中,泄压机构25为能够容纳电极组件22的壳体,泄压机构25集容纳功能和泄压功能为一体。
本申请实施例提供一种电池单体20,包括上述任意一个实施例提供的泄压机构25。
本申请实施例提供一种电池100,包括箱体10和上述任意一个实施例提供的电池单体20,箱体10用于容纳电池单体20。
本申请实施例提供一种用电设备,包括上述任意一个实施例提供的电池100。
用电设备可以是上述任一应用电池100的设备。
请参照图10,本申请实施例还提供一种外壳,用于容纳电极组件22,外壳上设有泄压结构252。泄压结构252包括设置于外壳的外表面并位于不同方位的第一泄压槽2521、第二泄压槽2522和第三泄压槽2523,第一泄压槽2521、第二泄压槽2522和第三泄压槽2523共同界定出两个泄压部2511,两个泄压部2511分别位于第二泄压槽2522的两侧,泄压部2511被配置为在电池单体20内部的压力或温度达到阈值时以第一泄压槽2521、第二泄压槽2522和第三泄压槽2523为边界打开,以泄放电池单体20内部的压力。其中,第二泄压槽2522位于第一泄压槽2521和第三泄压槽2523之间,且与第一泄压槽2521和第三泄压槽2523不相交。
在这样的外壳中,第二泄压槽2522既不与第一泄压槽2521相交,也不与第三泄压槽2523相交,避免各泄压槽在相交区域产生应力集中,提高外壳的抗破坏能力,降低外壳在电池单体20内部的压力未达到起爆压力就开始泄压的风险,提高电池单体20的使用寿命。
请参照图11,图11为本申请一些实施例提供的泄压机构25的制造方法的流程图,本申请实施例提供一种泄压机构25的制造方法,制造方法包括:
S100:提供泄压本体251;
S200:在泄压本体251上加工泄压结构252。
其中,泄压结构252包括设置于泄压本体251并位于不同方位的第一泄压槽2521、第二泄压槽2522和第三泄压槽2523,第一泄压槽2521、第二泄压槽2522和第三泄压槽2523共同界定出泄压部2511,泄压部2511被配置为在电池单体20内部的压力或温度达到阈值时以第一泄压槽2521、第二泄压槽2522和第三泄压槽2523为边界打开,以泄放电池单体20内部的压力。第二泄压槽2522位于第一泄压槽2521和第三泄压槽2523之间,且与第一泄压槽2521和第三泄压槽2523不相交。
需要说明的是,通过上述实施例提供的制造方法制造的泄压机构25的相关结构,可参见前述各实施例提供的泄压机构25,在此不再赘述。
请参照图12,图12为本申请一些实施例提供的泄压机构25的制造设备2000的示意性框图,本申请实施例还提供一种泄压机构25的制造设备2000,制造设备2000包括提供装置2100和加工装置2200。提供装置2100用于提供泄压本体251。加工装置2200用于在泄压本体251上加工泄压结构252。
其中,泄压结构252包括设置于泄压本体251并位于不同方位的第一泄压槽2521、第二泄压槽2522和第三泄压槽2523,第一泄压槽2521、第二泄压槽2522和第三泄压槽2523共同界定出泄压部2511,泄压部2511被配置为在电池单体20内部的压力或温度达到阈值时以第一泄压槽 2521、第二泄压槽2522和第三泄压槽2523为边界打开,以泄放电池单体20内部的压力。第二泄压槽2522位于第一泄压槽2521和第三泄压槽2523之间,且与第一泄压槽2521和第三泄压槽2523不相交。
需要说明的是,通过上述实施例提供的制造设备2000制造的泄压机构25的相关结构,可参见前述各实施例提供的泄压机构25,在此不再赘述。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
以上实施例仅用以说明本申请的技术方案,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (16)

  1. 一种泄压机构,用于电池单体,所述泄压机构包括:
    泄压本体,具有泄压部;
    泄压结构,包括设置于所述泄压本体并位于不同方位的第一泄压槽、第二泄压槽和第三泄压槽,所述第一泄压槽、所述第二泄压槽和所述第三泄压槽共同界定出所述泄压部,所述泄压部被配置为在所述电池单体内部的压力或温度达到阈值时以所述第一泄压槽、所述第二泄压槽和所述第三泄压槽为边界打开,以泄放所述电池单体内部的压力;
    其中,所述第二泄压槽位于所述第一泄压槽和所述第三泄压槽之间,且与所述第一泄压槽和所述第三泄压槽不相交。
  2. 根据权利要求1所述的泄压机构,其中,所述第一泄压槽、所述第二泄压槽和所述第三泄压槽共同界定出两个所述泄压部,两个所述泄压部分别位于所述第二泄压槽的两侧。
  3. 根据权利要求2所述的泄压机构,其中,两个所述泄压部对称分布于所述第二泄压槽的两侧。
  4. 根据权利要求2或3所述的泄压机构,其中,沿所述第二泄压槽到所述第一泄压槽的两端的方向,所述第一泄压槽与所述第三泄压槽之间的距离逐渐增大。
  5. 根据权利要求1所述的泄压机构,其中,所述第一泄压槽、所述第二泄压槽和所述第三泄压槽共同界定出一个所述泄压部,所述第一泄压槽、所述第二泄压槽和所述第三泄压槽分别位于所述泄压部不同方位且相邻的三个边缘。
  6. 根据权利要求1-5任一项所述的泄压机构,其中,所述第二泄压槽具有面向所述第一泄压槽的第一端,所述第一端与所述第一泄压槽之间的间隙不大于所述第一泄压槽与所述第三泄压槽之间的距离的三分之一;和/或
    所述第二泄压槽具有面向所述第三泄压槽的第二端,所述第二端与所述第三泄压槽之间的间隙不大于所述第一泄压槽与所述第三泄压槽之间的距离的三分之一。
  7. 根据权利要求1、2、3、5或6所述的泄压机构,其中,所述第一泄压槽平行于所述第三泄压槽,且垂直于所述第二泄压槽。
  8. 根据权利要求1-7任一项所述的泄压机构,其中,所述第一泄压槽包括多个第一槽部,多个第一槽部沿所述第一泄压槽的深度方向依次设置,沿所述第一泄压槽的深度方向,多个所述第一槽部的宽度逐渐减小。
  9. 根据权利要求1-8任一项所述的泄压机构,其中,所述第二泄压槽包括多个第二槽部,多个第二槽部沿所述第二泄压槽的深度方向依次设置,沿所述第二泄压槽的深度方向,多个所述第二槽部的宽度逐渐减小。
  10. 根据权利要求1-9任一项所述的泄压机构,其中,所述第三泄压槽包括多个第三槽部,多个第三槽部沿所述第三泄压槽的深度方向依次设置,沿所述第三泄压槽的深度方向,多个所述第三槽部的宽度逐渐减小。
  11. 根据权利要求1-10任一项所述的泄压机构,其中,所述泄压本体内部形成有用于容纳电极组件的容纳空间,所述泄压本体具有共同界定出所述容纳空间的多个壁,至少一个所述壁设置有所述泄压结构。
  12. 一种电池单体,包括如权利要求1-11任一项所述的泄压机构。
  13. 一种电池,包括:
    如权利要求12所述的电池单体;以及
    箱体,用于容纳所述电池单体。
  14. 一种用电设备,包括如权利要求13所述的电池。
  15. 一种泄压机构的制造方法,所述制造方法包括:
    提供泄压本体;
    在所述泄压本体上加工泄压结构;
    其中,所述泄压结构包括设置于所述泄压本体并位于不同方位的第一泄压槽、第二泄压槽和第三泄压槽,所述第一泄压槽、所述第二泄压槽和所述第三泄压槽共同界定出泄压部,所述泄压部被配置为在电池单体内部的压力或温度达到阈值时以所述第一泄压槽、所述第二泄压槽和所述第三泄压槽为边界打开,以泄放所述电池单体内部的压力;所述第二泄压槽位于所述第一泄压槽和所述第三泄压槽之间,且与所述第一泄压槽和所述第三泄压槽不相交。
  16. 一种泄压机构的制造设备,所述制造设备包括:
    提供装置,用于提供泄压本体;
    加工装置,用于在所述泄压本体上加工泄压结构;
    其中,所述泄压结构包括设置于所述泄压本体并位于不同方位的第一泄压槽、第二泄压槽和第三泄压槽,所述第一泄压槽、所述第二泄压槽和所述第三泄压槽共同界定出泄压部,所述泄压部被配置为在电池单体内部的压力或温度达到阈值时以所述第一泄压槽、所述第二泄压槽和所述第三泄压槽为边界打开,以泄放所述电池单体内部的压力;所述第二泄压槽位于所述第一泄压槽和所述第三泄压槽之间,且与所述第一泄压槽和所述第三泄压槽不相交。
PCT/CN2022/081754 2022-03-18 2022-03-18 泄压机构、电池单体、电池及用电设备 WO2023173416A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/081754 WO2023173416A1 (zh) 2022-03-18 2022-03-18 泄压机构、电池单体、电池及用电设备
CN202280032499.7A CN117242624A (zh) 2022-03-18 2022-03-18 泄压机构、电池单体、电池及用电设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/081754 WO2023173416A1 (zh) 2022-03-18 2022-03-18 泄压机构、电池单体、电池及用电设备

Publications (1)

Publication Number Publication Date
WO2023173416A1 true WO2023173416A1 (zh) 2023-09-21

Family

ID=88021998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081754 WO2023173416A1 (zh) 2022-03-18 2022-03-18 泄压机构、电池单体、电池及用电设备

Country Status (2)

Country Link
CN (1) CN117242624A (zh)
WO (1) WO2023173416A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204093A (ja) * 1998-01-12 1999-07-30 Mitsubishi Cable Ind Ltd ラプチャー板およびその製造方法
CN1386307A (zh) * 2000-02-18 2002-12-18 松下电器产业株式会社 方形电池的安全机构和其制造方法
CN2824298Y (zh) * 2005-08-02 2006-10-04 周基平 一种电池防爆盖板及具有此盖板的锂离子电池
US20080171260A1 (en) * 2007-01-15 2008-07-17 Samsung Sdi Co., Ltd. Cap assembly and secondary battery having the same
US20110117424A1 (en) * 2009-11-17 2011-05-19 Samsung Sdi Co., Ltd. Case for secondary battery and secondary battery having the same
JP5059033B2 (ja) * 2009-01-16 2012-10-24 東芝照明プレシジョン株式会社 封口体とその製造方法、電池容器ボディ、及び密閉型電池
CN111430638A (zh) * 2020-05-07 2020-07-17 深圳市科达利实业股份有限公司 一种动力电池壳体及动力电池
CN211578858U (zh) * 2020-04-02 2020-09-25 深圳市科达利实业股份有限公司 一种电池防爆阀、电池盖板及动力电池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204093A (ja) * 1998-01-12 1999-07-30 Mitsubishi Cable Ind Ltd ラプチャー板およびその製造方法
CN1386307A (zh) * 2000-02-18 2002-12-18 松下电器产业株式会社 方形电池的安全机构和其制造方法
CN2824298Y (zh) * 2005-08-02 2006-10-04 周基平 一种电池防爆盖板及具有此盖板的锂离子电池
US20080171260A1 (en) * 2007-01-15 2008-07-17 Samsung Sdi Co., Ltd. Cap assembly and secondary battery having the same
JP5059033B2 (ja) * 2009-01-16 2012-10-24 東芝照明プレシジョン株式会社 封口体とその製造方法、電池容器ボディ、及び密閉型電池
US20110117424A1 (en) * 2009-11-17 2011-05-19 Samsung Sdi Co., Ltd. Case for secondary battery and secondary battery having the same
CN211578858U (zh) * 2020-04-02 2020-09-25 深圳市科达利实业股份有限公司 一种电池防爆阀、电池盖板及动力电池
CN111430638A (zh) * 2020-05-07 2020-07-17 深圳市科达利实业股份有限公司 一种动力电池壳体及动力电池

Also Published As

Publication number Publication date
CN117242624A (zh) 2023-12-15

Similar Documents

Publication Publication Date Title
CN215989104U (zh) 泄压装置、电池单体、电池及用电设备
WO2023004723A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023174266A1 (zh) 壳体、电池单体、电池及用电设备
CN217507493U (zh) 端盖、电池单体、电池及用电设备
WO2022165689A1 (zh) 电极组件及其制造方法和制造系统、电池单体以及电池
WO2023185327A1 (zh) 端盖、电池单体、电池及用电设备
US20230327275A1 (en) Pressure relief apparatus, battery cell, battery, and electrical device
WO2024045692A1 (zh) 电池模组、电池以及用电装置
US20230223642A1 (en) Pressure relief apparatus, battery cell, battery, and electrical device
US20230155262A1 (en) Housing, battery cell, battery and electric apparatus
WO2023236220A1 (zh) 电池单体、电池及用电设备
CN217158424U (zh) 外壳、电池单体、电池及用电设备
WO2023173416A1 (zh) 泄压机构、电池单体、电池及用电设备
WO2023220887A1 (zh) 端盖、电池单体、电池及用电设备
WO2023184110A1 (zh) 外壳、电池单体、电池及用电设备
WO2023220882A1 (zh) 端盖、电池单体、电池及用电设备
WO2023220886A1 (zh) 端盖、电池单体、电池及用电设备
WO2023231014A1 (zh) 泄压装置、外壳、电池单体、电池及用电设备
WO2023028865A1 (zh) 泄压装置、电池单体、电池及用电设备
WO2023220889A1 (zh) 外壳、电池单体、电池及用电设备
WO2024044883A1 (zh) 电极组件、电池单体、电池及用电装置
EP4376194A1 (en) Shell, cell, battery, and electrical device
WO2023225911A1 (zh) 电池单体、电池以及用电装置
WO2023216254A1 (zh) 电极组件、电池单体、电池及用电设备
WO2023220885A1 (zh) 端盖、电池单体、电池及用电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931447

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280032499.7

Country of ref document: CN