WO2022165689A1 - 电极组件及其制造方法和制造系统、电池单体以及电池 - Google Patents

电极组件及其制造方法和制造系统、电池单体以及电池 Download PDF

Info

Publication number
WO2022165689A1
WO2022165689A1 PCT/CN2021/075165 CN2021075165W WO2022165689A1 WO 2022165689 A1 WO2022165689 A1 WO 2022165689A1 CN 2021075165 W CN2021075165 W CN 2021075165W WO 2022165689 A1 WO2022165689 A1 WO 2022165689A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
positive electrode
active material
electrode
edge portion
Prior art date
Application number
PCT/CN2021/075165
Other languages
English (en)
French (fr)
Inventor
许虎
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2021/075165 priority Critical patent/WO2022165689A1/zh
Priority to CN202180035409.5A priority patent/CN115606020B/zh
Priority to EP21923587.6A priority patent/EP4106057A4/en
Publication of WO2022165689A1 publication Critical patent/WO2022165689A1/zh
Priority to US17/822,097 priority patent/US20220416232A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of battery technology, and more particularly, to an electrode assembly, a manufacturing method and a manufacturing system thereof, a battery cell, and a battery.
  • a rechargeable battery which can be called a secondary battery, refers to a battery that can continue to be used by activating the active material by charging after the battery is discharged.
  • Rechargeable batteries are widely used in electronic devices such as cell phones, laptops, battery cars, electric cars, electric planes, electric boats, electric toy cars, electric toy boats, electric toy planes, and power tools, among others.
  • the present application provides an electrode assembly and a manufacturing method and manufacturing system thereof, a battery cell and a battery, which can enhance the safety of the battery.
  • an embodiment of the present application provides an electrode assembly, including a positive electrode piece and a negative electrode piece that are superimposed, and the positive electrode active material layer of the positive electrode piece and the negative electrode active material layer of the negative electrode piece are arranged to face each other.
  • the negative electrode active material layer includes a negative electrode main body part and a negative electrode edge part connected to the negative electrode main body part, the negative electrode edge part is located at the end of the negative electrode active material layer along a first direction, and the first direction is perpendicular to the superposition direction of the positive electrode pole piece and the negative electrode pole piece , the thickness of the edge portion of the negative electrode is smaller than the thickness of the main portion of the negative electrode.
  • the edge portion of the negative electrode overlaps with the positive electrode active material layer, and the negative electrode active material layer is configured such that the capacity per unit area of the edge portion of the negative electrode is greater than or equal to the capacity per unit area of the main body portion of the negative electrode; and/or the positive electrode
  • the active material layer includes a positive electrode body portion and a positive electrode edge portion connected to the positive electrode body portion, the positive electrode edge portion is located at the end of the positive electrode active material layer along the first direction, and the thickness of the positive electrode edge portion is smaller than the thickness of the positive electrode body portion in the stacking direction.
  • At least part of the edge portion of the positive electrode overlaps with the edge portion of the negative electrode, and the positive electrode active material layer is arranged such that the capacity per unit area of the edge portion of the positive electrode is smaller than the capacity per unit area of the main body portion of the positive electrode.
  • the capacity per unit area of the main body of the negative electrode meets the setting requirements, that is, the capacity per unit area of the main body of the negative electrode reaches the first preset value, so that the main body of the negative electrode is less prone to lithium precipitation.
  • the negative electrode active material layer is configured such that the capacity per unit area of the negative electrode edge portion is greater than or equal to that of the negative electrode main body portion, then the unit area capacity of the negative electrode edge portion is greater than or equal to the first preset value, which increases the negative electrode margin relative to the In this way, even if the thickness of the edge part of the negative electrode is smaller than that of the main part of the negative electrode, it can receive lithium ions released from the positive electrode active material layer, so that the edge part of the negative electrode is less prone to lithium deposition.
  • the capacity per unit area of the main body of the positive electrode meets the setting requirements, that is, the capacity per unit area of the main body of the positive electrode reaches the second preset value, at this time, the portion of the main body of the negative electrode that overlaps with the main body of the positive electrode is less prone to lithium precipitation.
  • the positive electrode active material layer is configured such that the capacity per unit area of the edge portion of the positive electrode is smaller than that of the main body portion of the positive electrode, the capacity per unit area of the edge portion of the positive electrode is smaller than the second preset value, which is equivalent to reducing the capacity per unit area of the edge portion of the positive electrode In this way, even if the thickness of the edge portion of the negative electrode is smaller than that of the main body portion of the negative electrode, the edge portion of the negative electrode can receive lithium ions extracted from the portion of the edge portion of the positive electrode that overlaps with the edge portion of the negative electrode, so that the edge portion of the negative electrode is less prone to lithium precipitation.
  • the weight ratio of the active material of the negative electrode edge portion to the negative electrode edge portion is greater than the weight ratio of the active material of the negative electrode body portion to the negative electrode body portion.
  • the gram capacity of the active material in the edge portion of the negative electrode is greater than the gram capacity of the active material in the main portion of the negative electrode.
  • the capacity per unit area of the edge portion of the negative electrode can be increased so that the capacity per unit area of the edge portion of the negative electrode is greater than or equal to the capacity per unit area of the main body portion of the negative electrode.
  • the edge portion of the negative electrode includes a first negative electrode coating layer and a second negative electrode coating layer that are stacked in a stacking direction.
  • the weight ratio of the active material of the second negative electrode coating to the second negative electrode coating is greater than the weight ratio of the active material of the first negative electrode coating to the first negative electrode coating.
  • the gram capacity of the active material of the second negative electrode coating is greater than the gram capacity of the active material of the first negative electrode coating.
  • the particle size of the active material in the edge portion of the negative electrode is smaller than the particle size of the active material in the main portion of the negative electrode. In the process of charging and discharging, lithium ions are more easily diffused in the edge of the negative electrode, distributed more uniformly in the edge of the negative electrode, and are not easily localized at the edge of the negative electrode, thereby reducing the risk of lithium precipitation.
  • the negative electrode sheet includes a negative electrode current collector, the negative electrode current collector includes a negative electrode coating area and a negative electrode tab, the negative electrode active material layer is at least partially coated on the negative electrode coating area, and the negative electrode tab is connected to the negative electrode coating area. the end in the first direction. The edge portion of the negative electrode is located on the side of the main body portion of the negative electrode that is close to the negative electrode tab along the first direction.
  • the thickness of the edge portion of the negative electrode gradually decreases along a direction away from the negative electrode body portion and parallel to the first direction. In this way, the stress can be dispersed in the process of rolling the negative electrode pole piece, the stress concentration can be reduced, and the risk of fracture of the negative electrode current collector can be reduced.
  • the ratio of the size of the edge portion of the negative electrode to the size of the negative electrode active material layer is 0.01-0.2.
  • the weight ratio of the active material of the positive edge portion to the positive edge portion is less than the weight ratio of the active material of the positive electrode body portion to the positive electrode body portion.
  • the gram capacity of the active material of the edge portion of the positive electrode is less than the gram capacity of the active material of the body portion of the positive electrode.
  • the capacity per unit area of the edge portion of the positive electrode can be reduced so that the capacity per unit area of the edge portion of the positive electrode is smaller than that of the body portion of the positive electrode.
  • the edge portion of the positive electrode includes a first positive electrode coating layer and a second positive electrode coating layer that are stacked in a stacking direction.
  • the weight ratio of the active material of the second cathode coating to the second cathode coating is smaller than the weight ratio of the active material of the first cathode coating to the first cathode coating.
  • the gram capacity of the active material of the second positive electrode coating is less than the gram capacity of the active material of the first positive electrode coating.
  • the particle size of the active material in the edge portion of the positive electrode is larger than the particle size of the active material in the main body portion of the positive electrode.
  • the diffusion rate of lithium ions in the edge of the positive electrode is low, and the rate of lithium ion extraction from the edge of the positive electrode is also reduced, which can reduce the accumulation of lithium ions in the edge of the negative electrode overlapping the edge of the positive electrode.
  • the risk of lithium deposition in the negative electrode active material layer is not easy.
  • the positive electrode sheet includes a positive electrode current collector, the positive electrode current collector includes a positive electrode coating area and a positive electrode tab, the positive electrode active material layer is at least partially coated on the positive electrode coating area, and the positive electrode tab is connected to the positive electrode coating area. the end in the first direction. The edge portion of the positive electrode is located on the side of the main body portion of the positive electrode that is close to the tab of the positive electrode along the first direction.
  • the thickness of the edge portion of the positive electrode gradually decreases along a direction away from the positive electrode body portion and parallel to the first direction. In this way, the stress can be dispersed in the process of rolling the positive electrode sheet, the stress concentration can be reduced, and the risk of fracture of the positive electrode current collector can be reduced.
  • the ratio of the size of the edge portion of the positive electrode to the size of the positive electrode active material layer is 0.01-0.2.
  • an embodiment of the present application provides a battery cell, including a casing and the electrode assembly provided by any embodiment of the first aspect, and the electrode assembly is accommodated in the casing.
  • an embodiment of the present application provides a battery, including: a box body and the battery cell provided in any embodiment of the second aspect, wherein the battery cell is accommodated in the box body.
  • an embodiment of the present application provides an electrical device, which includes the battery provided by any embodiment of the third aspect, and the battery is used to provide electrical energy.
  • an embodiment of the present application provides a method for manufacturing an electrode assembly, including: providing a positive pole piece; providing a negative pole piece; superimposing the positive pole piece and the negative pole piece, so that the positive electrode active material of the positive pole piece
  • the layer is arranged facing the negative active material layer of the negative pole piece.
  • the negative electrode active material layer includes a negative electrode main body and a negative edge portion connected to the negative electrode main body.
  • the negative electrode edge portion is located at the end of the negative electrode active material layer along a first direction, and the first direction is perpendicular to the positive electrode and the negative electrode. In the stacking direction, the thickness of the edge portion of the negative electrode is smaller than the thickness of the main body portion of the negative electrode.
  • the edge portion of the negative electrode overlaps with the positive electrode active material layer, and the negative electrode active material layer is configured such that the capacity per unit area of the edge portion of the negative electrode is greater than or equal to the capacity per unit area of the main body portion of the negative electrode; and/or the positive electrode
  • the active material layer includes a positive electrode body portion and a positive electrode edge portion connected to the positive electrode body portion, the positive electrode edge portion is located at the end of the positive electrode active material layer along the first direction, and the thickness of the positive electrode edge portion is smaller than the thickness of the positive electrode body portion in the stacking direction.
  • At least part of the edge portion of the positive electrode overlaps with the edge portion of the negative electrode, and the positive electrode active material layer is arranged such that the capacity per unit area of the edge portion of the positive electrode is smaller than the capacity per unit area of the main body portion of the positive electrode.
  • an embodiment of the present application provides a manufacturing system for an electrode assembly, including: a first providing device for providing a positive pole piece; a second providing device for providing a negative pole piece; and an assembling device for assembling
  • the positive pole piece and the negative pole piece are superposed and arranged, so that the positive active material layer of the positive pole piece and the negative active material layer of the negative pole piece are arranged to face each other.
  • the negative electrode active material layer includes a negative electrode main body and a negative edge portion connected to the negative electrode main body. The negative electrode edge portion is located at the end of the negative electrode active material layer along a first direction, and the first direction is perpendicular to the positive electrode and the negative electrode.
  • the thickness of the edge portion of the negative electrode is smaller than the thickness of the main body portion of the negative electrode.
  • at least part of the edge portion of the negative electrode overlaps with the positive electrode active material layer, and the negative electrode active material layer is configured such that the capacity per unit area of the edge portion of the negative electrode is greater than or equal to the capacity per unit area of the main body portion of the negative electrode; and/or the positive electrode
  • the active material layer includes a positive electrode body portion and a positive electrode edge portion connected to the positive electrode body portion, the positive electrode edge portion is located at the end of the positive electrode active material layer along the first direction, and the thickness of the positive electrode edge portion is smaller than the thickness of the positive electrode body portion in the stacking direction.
  • At least part of the edge portion of the positive electrode overlaps with the edge portion of the negative electrode, and the positive electrode active material layer is arranged such that the capacity per unit area of the edge portion of the positive electrode is smaller than the capacity per unit area of the main body portion of the positive electrode.
  • FIG. 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • FIG. 2 is an exploded schematic diagram of a battery provided by some embodiments of the present application.
  • FIG. 3 is a schematic structural diagram of the battery module shown in FIG. 2;
  • FIG. 4 is an exploded schematic diagram of the battery cell shown in FIG. 3;
  • FIG. 5 is a schematic structural diagram of an electrode assembly according to an embodiment of the application.
  • FIG. 6 is a schematic partial cross-sectional view of the electrode assembly shown in FIG. 5 taken along line A-A;
  • FIG. 7 is a schematic structural diagram of an electrode assembly according to another embodiment of the present application.
  • FIG. 8 is a partial cross-sectional schematic diagram of an electrode assembly provided by an embodiment of the present application.
  • FIG. 9 is a partial cross-sectional schematic diagram of an electrode assembly provided by another embodiment of the present application.
  • FIG. 10 is a partial cross-sectional schematic diagram of an electrode assembly provided by yet another embodiment of the present application.
  • FIG. 11 is a partial cross-sectional schematic diagram of an electrode assembly provided by another embodiment of the present application.
  • FIG. 12 is a partial cross-sectional schematic diagram of an electrode assembly provided by still another embodiment of the present application.
  • FIG. 13 is a schematic partial cross-sectional view of an electrode assembly provided by another embodiment of the present application.
  • FIG. 14 is a flowchart of a method for manufacturing an electrode assembly provided by some embodiments of the present application.
  • FIG. 15 is a schematic block diagram of a manufacturing system of an electrode assembly provided by some embodiments of the present application.
  • the terms “installed”, “connected”, “connected” and “attached” should be understood in a broad sense, for example, it may be a fixed connection, It can also be a detachable connection, or an integral connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be internal communication between two components.
  • installed should be understood in a broad sense, for example, it may be a fixed connection, It can also be a detachable connection, or an integral connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be internal communication between two components.
  • plural refers to two or more (including two).
  • the battery cells may include lithium-ion secondary battery cells, lithium-ion primary battery cells, lithium-sulfur battery cells, sodium-lithium-ion battery cells, sodium-ion battery cells, or magnesium-ion battery cells, etc., This embodiment of the present application does not limit this.
  • the battery cell may be in the form of a cylinder, a flat body, a rectangular parallelepiped, or other shapes, which are not limited in the embodiments of the present application.
  • the battery cells are generally divided into three types according to the packaging method: cylindrical battery cells, square battery cells, and soft-pack battery cells, which are not limited in the embodiments of the present application.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the batteries mentioned in this application may include battery modules or battery packs, and the like.
  • Batteries typically include a case for enclosing one or more battery cells. The box can prevent liquids or other foreign objects from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly is composed of a positive pole piece, a negative pole piece and a separator.
  • the battery cell mainly relies on the movement of metal ions between the positive pole piece and the negative pole piece to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, the positive electrode active material layer is coated on the surface of the positive electrode current collector, and the positive electrode current collector without the positive electrode active material layer protrudes from the positive electrode collector coated with the positive electrode active material layer.
  • the fluid, the positive electrode current collector without the positive electrode active material layer was used as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium, or lithium manganate.
  • the negative electrode pole piece includes a negative electrode current collector and a negative electrode active material layer, the negative electrode active material layer is coated on the surface of the negative electrode current collector, and the negative electrode current collector without the negative electrode active material layer is protruded from the negative electrode collector that has been coated with the negative electrode active material layer. Fluid, the negative electrode current collector without the negative electrode active material layer is used as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
  • the number of positive tabs is multiple and stacked together, and the number of negative tabs is multiple and stacked together.
  • the material of the isolation film may be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene) or the like.
  • the electrode assembly may be a wound structure or a laminated structure, and the embodiment of the present application is not limited thereto.
  • the negative electrode active material, binder, conductive agent and solvent are mixed to make negative electrode active slurry, and then the negative electrode active slurry is coated on the negative electrode current collector.
  • the negative electrode active material layer is formed after the material is subjected to processes such as rolling and curing. However, due to the fluidity and surface tension of the negative electrode active slurry, after the negative electrode active material layer is formed, a thin layer region with a smaller thickness will be formed at the end of the negative electrode active material layer.
  • the electrons e on the positive electrode run to the negative electrode through the external circuit, and the lithium ions Li+ are extracted from the active material particles in the positive electrode active material layer and enter the electrode liquid, passing through the tiny particles on the separator.
  • the pores are moved to the negative electrode, combined with the electrons that have already run away, and enter the active material particles in the negative electrode active material layer.
  • the thickness of the thin layer region is small, so it may not be able to fully accept lithium ions due to insufficient capacity, causing the risk of lithium ion precipitation on the surface of the thin layer region and the formation of lithium dendrites. If lithium dendrites are formed, the lithium dendrites may pierce the separator and cause short circuits within the battery cells, resulting in thermal runaway.
  • an embodiment of the present application provides an electrode assembly, including a positive electrode piece and a negative electrode piece that are superimposed, wherein the positive electrode active material layer of the positive electrode piece and the negative electrode active material layer of the negative electrode piece are arranged to face each other, and the negative electrode active material layer includes The negative electrode body part and the negative electrode edge part connected to the negative electrode body part, the negative electrode edge part is located at the end of the negative electrode active material layer along the first direction, the first direction is perpendicular to the superposition direction of the positive electrode pole piece and the negative electrode pole piece, and the negative electrode edge part is located at the end of the negative electrode active material layer along the first direction.
  • the thickness is smaller than the thickness of the negative electrode main body portion.
  • the edge portion of the negative electrode overlaps with the positive electrode active material layer, and the negative electrode active material layer is configured such that the capacity per unit area of the edge portion of the negative electrode is greater than or equal to the capacity per unit area of the main body portion of the negative electrode; and/or the positive electrode
  • the active material layer includes a positive electrode body portion and a positive electrode edge portion connected to the positive electrode body portion, the positive electrode edge portion is located at the end of the positive electrode active material layer along the first direction, and the thickness of the positive electrode edge portion is smaller than the thickness of the positive electrode body portion in the stacking direction.
  • At least part of the edge portion of the positive electrode overlaps with the edge portion of the negative electrode, and the positive electrode active material layer is arranged such that the capacity per unit area of the edge portion of the positive electrode is smaller than the capacity per unit area of the main body portion of the positive electrode.
  • the electrode assembly of this structure can reduce the risk of lithium precipitation and enhance the safety of the battery.
  • Electrical equipment can be vehicles, mobile phones, portable devices, notebook computers, ships, spacecraft, electric toys and power tools, and so on.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles, etc.
  • spacecraft include airplanes, rockets, space shuttles, spacecraft, etc.
  • electric toys include fixed Electric toys that are portable or mobile, such as game consoles, electric car toys, electric ship toys and electric airplane toys, etc.
  • electric tools include metal cutting power tools, grinding power tools, assembling power tools and railway power tools, such as, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, electric impact drills, concrete vibrators and electric planers, etc.
  • the embodiments of the present application do not impose special restrictions on the above-mentioned electrical equipment.
  • the electric device is a vehicle as an example for description.
  • FIG. 1 is a schematic structural diagram of a vehicle 1 according to some embodiments of the present application.
  • a battery 2 is disposed inside the vehicle 1 , and the battery 2 can be disposed at the bottom, head or tail of the vehicle 1 .
  • the battery 2 can be used for power supply of the vehicle 1 , for example, the battery 2 can be used as an operating power source of the vehicle 1 .
  • the vehicle 1 may also include a controller 3 and a motor 4, and the controller 3 is used to control the battery 2 to supply power to the motor 4, for example, for starting, navigating, and driving the vehicle 1 for work power requirements.
  • the battery 2 can not only be used as the operating power source of the vehicle 1 , but can also be used as the driving power source of the vehicle 1 to provide driving power for the vehicle 1 instead of or partially instead of fuel or natural gas.
  • FIG. 2 is an exploded schematic diagram of a battery 2 provided by some embodiments of the present application.
  • the battery 2 includes a case 5 and battery cells (not shown in FIG. 2 ), and the battery cells are accommodated in the case 5 .
  • the box body 5 is used for accommodating the battery cells, and the box body 5 can have various structures.
  • the box body 5 may include a first box body part 51 and a second box body part 52, the first box body part 51 and the second box body part 52 are covered with each other, and the first box body part 51 and the second box body part 52 cover each other.
  • the two box parts 52 together define an accommodating space 53 for accommodating battery cells.
  • the second box portion 52 may be a hollow structure with one end open, the first box portion 51 is a plate-like structure, and the first box portion 51 is covered with the opening side of the second box portion 52 to form an accommodating space 53
  • the first box part 51 and the second box part 52 can also be hollow structures with one side open, and the opening side of the first box part 51 is covered with the opening side of the second box part 52 , so as to form the box body 5 with the accommodating space 53 .
  • the first case portion 51 and the second case portion 52 may have various shapes, such as a cylinder, a rectangular parallelepiped, and the like.
  • a sealing member such as a sealant, a sealing ring, etc., may also be provided between the first case part 51 and the second case part 52 .
  • the first case portion 51 may also be referred to as an upper case cover, and the second case portion 52 may also be referred to as a lower case body.
  • the battery 2 there may be one battery cell or a plurality of battery cells. If there are multiple battery cells, the multiple battery cells can be connected in series or in parallel or in a mixed connection.
  • a mixed connection means that there are both series and parallel connections in the multiple battery cells. Multiple battery cells can be directly connected in series or in parallel or mixed together, and then the whole composed of multiple battery cells can be accommodated in the box 5; of course, multiple battery cells can also be connected in series or in parallel or
  • the battery modules 6 are formed in a mixed connection, and a plurality of battery modules 6 are connected in series or in parallel or in a mixed connection to form a whole, and are accommodated in the box 5 .
  • FIG. 3 is a schematic structural diagram of the battery module 6 shown in FIG. 2 .
  • a plurality of battery modules 6 are connected in series or in parallel or mixed to form a whole, and are accommodated in the box.
  • the plurality of battery cells 7 in the battery module 6 can be electrically connected through a bus component, so as to realize parallel connection, series connection or mixed connection of the plurality of battery cells 7 in the battery module 6 .
  • FIG. 4 is an exploded schematic diagram of the battery cell 7 shown in FIG. 3 .
  • the battery cell 7 provided in the embodiment of the present application includes an electrode assembly 10 and a casing 20, and the electrode assembly 10 is accommodated in the casing 20.
  • the housing 20 may also be used to contain an electrolyte, such as an electrolyte.
  • the housing 20 can be in a variety of configurations.
  • the housing 20 may include a housing 21 and an end cover 22, the housing 21 is a hollow structure with an opening on one side, and the end cover 22 covers the opening of the housing 21 and forms a sealing connection to form a A sealed space for accommodating the electrode assembly 10 and the electrolyte.
  • the electrode assembly 10 When assembling the battery cells 7 , the electrode assembly 10 can be put into the casing 21 first, and then the end cap 22 is closed on the opening of the casing 21 , and then the electrolyte is injected into the casing through the electrolyte injection port on the end cap 22 . within 21.
  • the housing 21 can be in various shapes, such as a cylinder, a rectangular parallelepiped, and the like.
  • the shape of the case 21 may be determined according to the specific shape of the electrode assembly 10 .
  • the end cap 22 can also have various structures, for example, the end cap 22 is a plate-like structure, a hollow structure with one end open, and the like.
  • the casing 21 is a rectangular parallelepiped structure
  • the end cover 22 is a plate-like structure
  • the end cover 22 covers the opening at the top of the casing 21 .
  • the battery cell 7 may further include a positive electrode terminal 30 , a negative electrode terminal 40 and a pressure relief mechanism 50 , and the positive electrode terminal 30 , the negative electrode terminal 40 and the pressure relief mechanism 50 are all mounted on the end cap 22 . Both the positive electrode terminal 30 and the negative electrode terminal 40 are used for electrical connection with the electrode assembly 10 to output electric energy generated by the electrode assembly 10 .
  • the pressure relief mechanism 50 is used to release the pressure inside the battery cell 7 when the internal pressure or temperature of the battery cell 7 reaches a predetermined value.
  • the pressure relief mechanism 50 is located between the positive electrode terminal 30 and the negative electrode terminal 40, and the pressure relief mechanism 50 may be a component such as an explosion-proof valve, a rupture disk, a gas valve, a pressure relief valve or a safety valve.
  • the housing 20 may also have other structures.
  • the housing 20 includes a housing 21 and two end caps 22 .
  • the housing 21 is a hollow structure with openings on opposite sides, and one end cap 22 corresponds to a cap. It is closed at an opening of the case 21 and forms a sealed connection to form a sealed space for accommodating the electrode assembly 10 and the electrolyte.
  • the positive electrode terminal 30 and the negative electrode terminal 40 can be installed on the same end cover 22, or can be installed on different end covers 22; it can be that a pressure relief mechanism 50 is installed on one end cover 22, The pressure relief mechanism 50 may also be installed on both end caps 22 .
  • the number of electrode assemblies 10 accommodated in the casing 20 may be one or a plurality of them. Exemplarily, in FIG. 4 , there are two electrode assemblies 10 .
  • FIG. 5 is a schematic structural diagram of an electrode assembly according to an embodiment of the present application
  • FIG. 6 is a partial cross-sectional schematic diagram of the electrode assembly shown in FIG. 5 taken along the line A-A.
  • the electrode assembly 10 includes a positive electrode pole piece 11 and a negative electrode pole piece 12 arranged in a superimposed manner.
  • the positive electrode sheet 11 includes a positive electrode current collector 112 and a positive electrode active material layer 111 coated on both surfaces of the positive electrode current collector 112
  • the negative electrode electrode sheet 12 includes a negative electrode current collector 122 and is coated on the negative electrode current collector 122 The negative electrode active material layers 121 on both surfaces.
  • the electrode assembly 10 also includes a separator 13 separating the positive electrode 11 and the negative electrode 12.
  • the separator 13 has a large number of penetrating micropores, which can ensure the free passage of electrolyte ions and have good permeability to lithium ions.
  • the material of the isolation film 13 can be PP or PE or the like.
  • the positive pole piece 11 and the negative pole piece 12 are wound around a winding axis to form a winding structure.
  • the positive pole piece 11 and the negative pole piece 12 are superimposed along the direction perpendicular to the winding axis, that is, the superposition direction X of the positive pole piece 11 and the negative pole piece 12 is perpendicular to the winding axis.
  • the positive pole piece 11 and the negative pole piece 12 are wound in multiple turns along the winding direction Z, which is the direction in which the positive pole piece 11 and the negative pole piece 12 are circumferentially wound from the inside to the outside.
  • the winding direction Z is a counterclockwise direction.
  • the electrode assembly 10 having a wound structure includes a flat region B and a bending region C located at both ends of the flat region B.
  • the flat area B refers to the area with a parallel structure in the winding structure, that is, the negative pole piece 12, the positive pole piece 11 and the separator 13 in the flat area B are substantially parallel to each other, that is, the electrode assembly 10 is in the flat area.
  • the surfaces of each layer of the negative pole piece 12 , the positive pole piece 11 and the separator 13 in the area B are all flat surfaces.
  • the bending area C refers to the area with a bending structure in the winding structure, that is, the negative pole piece 12, the positive pole piece 11 and the separator 13 in the bending area C are all bent, that is, the electrode assembly 10 is bent.
  • the surfaces of each layer of the negative pole piece 12 , the positive pole piece 11 and the separator 13 in the folding area C are all curved surfaces.
  • the negative electrode active material layer 121 includes a negative electrode body portion 1211 and a negative electrode edge portion 1212 connected to the negative electrode body portion 1211 , the negative electrode edge portion 1212 is located at the end of the negative electrode active material layer 121 along the first direction Y, the first The direction Y is perpendicular to the superposition direction X of the positive electrode pole piece 11 and the negative electrode pole piece 12 , and the thickness of the negative electrode edge portion 1212 is smaller than the thickness of the negative electrode main body portion 1211 .
  • the negative electrode edge portion 1212 is a thin layer region formed at the end portion of the negative electrode active material layer 121 along the first direction Y.
  • the positive electrode active material, the binder, the conductive agent and the solvent are mixed to make the positive electrode active slurry, and then the positive electrode active slurry is coated on the positive electrode current collector 112, and the positive electrode
  • the positive electrode active material layer 111 is formed after the active slurry undergoes processes such as rolling and curing. However, due to the fluidity and surface tension of the positive electrode active slurry, after the positive electrode active material layer 111 is formed, a thin layer region with a smaller thickness will be formed at the end of the positive electrode active material layer 111 .
  • the positive electrode active material layer 111 includes a positive electrode body portion 1111 and a positive electrode edge portion 1112 connected to the positive electrode body portion 1111 , the positive electrode edge portion 1112 is located at the end of the positive electrode active material layer 111 along the first direction Y, and the positive electrode edge portion 1112 The thickness of the portion 1112 is smaller than the thickness of the positive electrode main body portion 1111 .
  • the positive electrode edge portion 1112 is a thin layer region formed at an end portion of the positive electrode active material layer 111 along the first direction Y.
  • the positive electrode current collector 112 includes a positive electrode coating area 1121 and a positive electrode tab 1122 , the positive electrode active material layer 111 is at least partially coated on the positive electrode coating area 1121 , and the positive electrode tab 1122 is connected to the positive electrode coating area 1121 .
  • the negative electrode current collector 122 includes a negative electrode coating area 1221 and a negative electrode tab 1222, the negative electrode active material layer 121 is at least partially coated on the negative electrode coating area 1221, and the negative electrode tab 1222 is connected to the end of the negative electrode coating area 1221 and protrudes out of
  • the negative electrode coating region 1221 and the negative electrode tab 1222 are at least partially uncoated with the negative electrode active material layer 121 and are used for electrical connection to the negative electrode terminal 40 (please refer to FIG. 4 ).
  • the positive electrode tab 1122 is connected to the end of the positive electrode coating area 1121 along the first direction Y
  • the negative electrode tab 1222 is connected to the end of the negative electrode coating area 1221 along the first direction Y.
  • the first direction Y is parallel to the winding axis of the electrode assembly 10 .
  • the positive electrode tab 1122 and the negative electrode tab 1222 are located on the same side of the electrode assembly 10 along the first direction Y; in other embodiments, the positive electrode tab 1122 and the negative electrode tab 1222 may also be located on the electrode assembly, respectively 10 Both sides along the first direction Y.
  • FIG. 7 is a schematic structural diagram of an electrode assembly 10 according to another embodiment of the present application.
  • the electrode assembly 10 includes a plurality of positive electrode pieces 11 and a plurality of negative electrode pieces 12 .
  • the negative pole pieces 12 and the plurality of positive pole pieces 11 are alternately stacked along the stacking direction X.
  • the superposition direction X is parallel to the thickness direction of the positive pole piece 11 and the thickness direction of the negative pole piece 12 .
  • Both the positive pole piece 11 and the negative pole piece 12 are generally flat plates.
  • the edge portion 1212 of the negative electrode needs to receive lithium ions from the portion of the positive electrode active material layer 111 that overlaps the edge portion 1212 of the negative electrode. Due to insufficient capacity, lithium ions cannot be fully received, and there is a risk of precipitation of lithium ions on the surface of the edge portion 1212 of the negative electrode.
  • the inventor has further improved the mechanism of the electrode assembly 10 .
  • Electrodes 8 to 13 are partial cross-sectional schematic views of electrode assemblies 10 according to different embodiments of the present application, respectively.
  • the electrode assembly 10 includes a positive electrode pole piece 11 and a negative electrode pole piece 12 arranged in a superimposed manner, the positive electrode active material layer 111 of the positive electrode pole piece 11 and the negative electrode active material layer of the negative electrode pole piece 12 .
  • the negative electrode active material layer 121 includes a negative electrode main body portion 1211 and a negative electrode edge portion 1212 connected to the negative electrode main body portion 1211, and the negative electrode edge portion 1212 is located at the end of the negative electrode active material layer 121 along the first direction Y, the first direction Y is perpendicular to the stacking direction X of the positive pole piece 11 and the negative pole piece 12 , and the thickness of the negative electrode edge portion 1212 is smaller than the thickness of the negative electrode main body portion 1211 .
  • the positive electrode active material layer 111 includes a positive electrode body portion 1111 and a positive electrode edge portion 1112 connected to the positive electrode body portion 1111, the positive electrode edge portion 1112 is located at the end of the positive electrode active material layer 111 along the first direction Y, and the positive electrode edge portion The thickness of the positive electrode body portion 1112 is smaller than the thickness of the positive electrode main body portion 1111.
  • the positive electrode active material layer 111 is configured such that the capacity per unit area of the positive electrode edge portion 1112 is smaller than that of the positive electrode edge portion 1112. Capacity per unit area of the main body portion 1111 .
  • the negative main body 1211 When the capacity per unit area of the negative electrode main body 1211 meets the setting requirements, that is, the capacity per unit area of the negative main body 1211 reaches the first preset value, the negative main body 1211 is less prone to lithium precipitation.
  • the negative electrode active material layer 121 is configured such that the capacity per unit area of the negative electrode edge portion 1212 is greater than or equal to that of the negative electrode body portion 1211, the unit area capacity of the negative electrode edge portion 1212 is greater than or equal to the first preset value, so that even if The thickness of the negative electrode edge portion 1212 is smaller than that of the negative electrode main body portion 1211 , and can also receive lithium ions released from the positive electrode active material layer 111 , so that the negative electrode edge portion 1212 is less prone to lithium precipitation.
  • the capacity per unit area of the positive electrode body portion 1111 meets the setting requirements, that is, the capacity per unit area of the positive electrode body portion 1111 reaches the second preset value, at this time, the portion of the negative electrode body portion 1211 that overlaps the positive electrode body portion 1111 is less prone to lithium precipitation .
  • the positive electrode active material layer 111 is configured such that the capacity per unit area of the positive electrode edge portion 1112 is smaller than that of the positive electrode body portion 1111 , the unit area capacity of the positive electrode edge portion 1112 is smaller than the second preset value, which is equivalent to reducing the positive electrode edge portion.
  • the negative electrode edge portion 1212 can receive the lithium ions released from the portion of the positive electrode edge portion 1112 overlapping the negative electrode edge portion 1212, so that the negative electrode The edge portion 1212 is less prone to lithium precipitation.
  • both sides of the negative electrode current collector 122 are provided with negative electrode active material layers 121 .
  • the unit area capacity of 121 refers to the unit area capacity of the negative electrode active material layer 121 on one side of the negative electrode pole piece 12 .
  • the positive electrode active material layers 111 are provided on both sides of the positive electrode current collector 112 , and the positive electrode active material layers 111 described in this application all refer to the positive electrode active material layer 111 on one side, and the unit area of the positive electrode active material layer 111
  • the capacity refers to the capacity per unit area of the positive electrode active material layer 111 on one side of the positive electrode sheet 11 .
  • the capacity per unit area of the negative electrode body portion 1211 is the ratio of the active material capacity of the negative electrode body portion 1211 to the total area of the negative electrode body portion 1211
  • the capacity per unit area of the negative electrode edge portion 1212 is the negative electrode edge portion 1212 The ratio of the active material capacity to the total area of the negative electrode edge portion 1212.
  • the active material capacity of the negative electrode body portion 1211 is Q1
  • the area of the negative electrode body portion 1211 is S1 (ie, the area of a portion of the negative electrode current collector 122 covered by the negative electrode body portion 1211).
  • the CB (Cell Balance) value is the ratio of the capacity per unit area of the negative electrode active material layer 121 to the capacity per unit area of the positive electrode active material layer 111 .
  • the CB value is greater than the set value, the negative electrode active material layer 121 can receive lithium ions extracted from the positive electrode active material layer 111 , so that the negative electrode active material layer 121 is less likely to precipitate lithium.
  • the CB value of the negative electrode body portion 1211 is equal to the ratio of the capacity per unit area QS1 of the negative electrode body portion 1211 to the capacity per unit area of the portion of the positive electrode active material layer 111 overlapping the negative electrode body portion 1211
  • the CB value of the negative electrode edge portion 1212 is equal to the negative electrode edge portion
  • the CB value of the negative electrode body portion 1211 meets the requirements, if the CB value of the negative electrode edge portion 1212 is greater than or equal to the CB value of the negative electrode body portion 1211, this can make the negative electrode edge portion 1212 less prone to lithium precipitation.
  • the capacity QS2 per unit area of the negative edge portion 1212 is greater than or equal to the capacity QS1 per unit area of the negative electrode body portion 1211, so that the CB value of the negative electrode edge portion 1212 is greater than or equal to the CB value of the negative electrode body portion 1211. 1212 is not easy to precipitate lithium.
  • the capacity per unit area of the positive electrode body portion 1111 is the ratio of the active material capacity of the positive electrode body portion 1111 to the area of the positive electrode body portion 1111
  • the unit area capacity of the positive electrode edge portion 1112 is the ratio of the active material capacity of the positive electrode edge portion 1112 to the The ratio of the area of the edge portion 1112 of the positive electrode.
  • FIG. 8 is a schematic partial cross-sectional view of an electrode assembly 10 provided by an embodiment of the present application.
  • the positive electrode active material layer 111 of 11 and the negative electrode active material layer 121 of the negative electrode pole piece 12 are arranged facing each other.
  • the negative electrode active material layer 121 includes a negative electrode main body portion 1211 and a negative electrode edge portion 1212 connected to the negative electrode main body portion 1211. At the end of the negative electrode active material layer 121 along the first direction Y, the thickness of the negative electrode edge portion 1212 is smaller than the thickness of the negative electrode main body portion 1211 .
  • the negative electrode edge portion 1212 overlaps with the positive electrode active material layer 111 , and the negative electrode active material layer 121 is configured such that the capacity per unit area of the negative electrode edge portion 1212 is greater than or equal to that of the negative electrode main body portion 1211 .
  • the positive electrode active material layer 111 includes a positive electrode body portion 1111 and a positive electrode edge portion 1112 connected to the positive electrode body portion 1111 , the positive electrode edge portion 1112 is located at the end of the positive electrode active material layer 111 along the first direction Y, and the positive electrode edge portion 1112 The thickness of the portion 1112 is smaller than the thickness of the positive electrode main body portion 1111 .
  • the positive electrode active material layer 111 can be coated with a single active slurry, so as to simplify the manufacturing process of the positive electrode sheet 11 .
  • a blank area uncoated with the negative electrode active slurry is reserved on the negative electrode current collector 122 .
  • the negative active slurry will flow toward the blank area due to the fluidity and surface tension of the negative active slurry. Therefore, after the negative electrode active material layer 121 is cured and formed, the formed negative electrode edge portion 1212 with a reduced thickness is located at one end of the negative electrode active material layer 121 close to the blank area.
  • the blank area is used to cut out the negative electrode tab 1222 in a subsequent process.
  • the negative electrode edge portion 1212 is located on the side of the negative electrode main body portion 1211 along the first direction Y close to the negative electrode tab 1222 .
  • the end of the negative edge portion 1212 away from the negative main body portion 1211 will press the negative current collector 122 under the action of the rolling pressure to form a stress concentration.
  • the thickness of the edge portion 1212 of the negative electrode is gradually reduced along the direction away from the main body portion 1211 of the negative electrode and parallel to the first direction Y, which can disperse the stress during the rolling process, reduce stress concentration, and reduce the negative electrode Risk of breakage of current collector 122.
  • the thickness of the negative electrode edge portion 1212 is 1-50 micrometers less than the thickness of the negative electrode body portion 1211 .
  • the size of the negative edge portion 1212 is 1-25 microns; alternatively, in the first direction Y, the size of the negative edge portion 1212 is 1-15 microns.
  • a blank area uncoated with the positive active slurry is reserved on the positive electrode current collector 112 .
  • the positive active slurry will flow toward the blank area. Therefore, after the positive electrode active material layer 111 is cured and formed, the formed positive electrode edge portion 1112 with a reduced thickness is located at one end of the positive electrode active material layer 111 close to the blank area.
  • the blank area is used to cut out the positive electrode tab 1122 in a subsequent process. After the positive electrode piece 11 is formed, the positive edge portion 1112 is located on the side of the positive electrode body portion 1111 that is close to the positive electrode tab 1122 along the first direction Y.
  • the end of the positive electrode edge portion 1112 away from the positive electrode main body portion 1111 will press the positive electrode current collector 112 under the action of the roller pressure to form a stress concentration.
  • the thickness of the edge portion 1112 of the positive electrode is gradually reduced along the direction away from the main body portion 1111 of the positive electrode and parallel to the first direction Y, which can disperse the stress during the rolling process, reduce stress concentration, and reduce the Risk of breakage of current collector 112.
  • the thickness of the positive edge portion 1112 is 1-50 microns less than the thickness of the positive body portion 1111.
  • the size of the positive edge portion 1112 is 1-25 microns; alternatively, in the first direction Y, the size of the positive edge portion 1112 is 1-15 microns.
  • the positive tab 1122 and the negative tab 1222 are located on the same side of the electrode assembly 10 along the first direction Y.
  • the positive electrode edge portion 1112 and the negative electrode edge portion 1212 overlap in the superposition direction X.
  • the positive electrode sheet 11 further includes an insulating layer 113 connected to the positive electrode edge portion 1112 , a part of the insulating layer 113 is coated on the positive electrode coating region 1121 , and another part of the insulating layer 113 is coated on the positive electrode tab 1122 near the root of the positive electrode coating region 1121.
  • the insulating layer 113 can reduce burrs in the process of cutting the positive electrode tab 1122 , and can also improve the insulation performance of the positive electrode tab 1122 , and reduce the risk of conduction between the root of the positive electrode tab 1122 and the negative electrode tab 12 .
  • the capacity per unit area of the negative electrode edge portion 1212 may be greater than or equal to the capacity per unit area of the negative electrode main body portion 1211 in various ways.
  • the weight ratio of the active material of the negative electrode edge portion 1212 to the negative electrode edge portion 1212 is greater than the weight ratio of the active material of the negative electrode body portion 1211 to the negative electrode body portion 1211, so that the capacity per unit area of the negative electrode edge portion 1212 is greater than or It is equal to the capacity per unit area of the negative electrode main body portion 1211 .
  • Both the negative electrode edge portion 1212 and the negative electrode main body portion 1211 include active materials, binders and conductive agents. By increasing the active material in the negative electrode edge portion 1212, the weight ratio of the active material in the negative electrode edge portion 1212 is increased, and the negative electrode edge portion is increased. The unit area capacity of the portion 1212 is adjusted so that the unit area capacity of the negative electrode edge portion 1212 is greater than or equal to the unit area capacity of the negative electrode main body portion 1211 .
  • the weight ratio of active material in the negative edge portion 1212 to the negative edge portion 1212 is 0.5%-20% greater than the weight ratio of the active material in the negative electrode body portion 1211 to the negative electrode body portion 1211 , optionally, 1.5% greater %-12%.
  • the active material in the negative edge portion 1212 is the same as the active material in the negative main body portion 1211 .
  • Both the active material in the negative electrode edge portion 1212 and the active material in the negative electrode main body portion 1211 may be a compound of graphite or silicon, or the like.
  • the gram capacity of the active material of the negative electrode edge portion 1212 is greater than the gram capacity of the active material of the negative electrode body portion 1211 .
  • the capacity per unit area of the negative electrode edge portion 1212 can be increased so that the capacity per unit area of the negative electrode edge portion 1212 is greater than or equal to that of the negative electrode body portion 1211 .
  • the gram capacity refers to the ratio of the capacitance released by the active material to the mass of the active material.
  • the active material in the edge portion 1212 of the negative electrode is different from the active material in the main portion 1211 of the negative electrode.
  • the active material in the edge portion 1212 of the negative electrode is a compound of silicon, and the active material in the main portion 1211 of the negative electrode is graphite.
  • the gram capacity of the active material in the negative electrode edge portion 1212 is 0.5%-20% greater than the gram capacity of the active material in the negative electrode body portion 1211.
  • the gram capacity of the active material in the negative electrode edge portion 1212 is 1.5%-12% greater than the gram capacity of the active material in the negative electrode body portion 1211 .
  • the weight ratio of the active material in the negative electrode edge portion 1212 to the negative electrode edge portion 1212 is equal to the weight ratio of the active material in the negative electrode body portion 1211 to the negative electrode body portion 1211 .
  • FIG. 9 is a schematic partial cross-sectional view of an electrode assembly 10 according to another embodiment of the present application.
  • the negative electrode edge portion 1212 includes a first negative electrode coating layer 1212 a and a second negative electrode coating layer 1212 b that are stacked along the stacking direction X.
  • the second negative electrode coating 1212b is connected between the first negative electrode coating 1212a and the negative electrode current collector 122 .
  • Both the first negative electrode coating 1212a and the second negative electrode coating 1212b are active coatings containing active materials.
  • the active material in the first negative electrode coating 1212a is the same as the active material in the negative electrode body portion 1211; the weight ratio of the active material in the first negative electrode coating 1212a to the first negative electrode coating 1212a is equal to the negative electrode body The weight ratio of the active material in the part 1211 to the negative electrode main body part 1211 .
  • the first negative electrode coating 1212a and the negative electrode main body 1211 have the same composition, that is, the first negative electrode coating 1212a and the negative main body 1211 can be formed from the same negative active slurry, which can simplify the manufacturing process of the negative electrode piece 12 .
  • the weight ratio of the active material of the second negative electrode coating 1212b to the second negative electrode coating 1212b is greater than the weight ratio of the active material of the first negative electrode coating 1212a to the first negative electrode coating 1212a.
  • the weight ratio of the active material in the second negative electrode coating 1212b is increased, thereby increasing the capacity per unit area of the edge portion 1212 of the negative electrode, so that the capacity per unit area of the edge portion 1212 of the negative electrode is greater than or equal to the capacity per unit area of the negative electrode main body portion 1211 .
  • the active material in the second negative electrode coating 1212b is the same as the active material in the first negative electrode coating 1212a.
  • Both the active material in the second negative electrode coating layer 1212b and the active material in the first negative electrode coating layer 1212a may be a compound of graphite or silicon, or the like.
  • the gram capacity of the active material of the second negative electrode coating 1212b is greater than the gram capacity of the active material of the first negative electrode coating 1212a.
  • the capacity per unit area of the negative electrode edge portion 1212 is increased so that the unit area capacity of the negative electrode edge portion 1212 is greater than or equal to that of the negative electrode body portion 1211.
  • the risk of lithium precipitation in the negative electrode edge portion 1212 can also be reduced by improving the dynamic performance of the negative electrode edge portion 1212 .
  • the smaller the particle size of the active material the easier it is for lithium ions to diffuse and the less likely they are to aggregate locally.
  • the particle size of the active material in the negative electrode edge portion 1212 is smaller than the particle size of the active material in the negative electrode body portion 1211 .
  • lithium ions are more easily diffused in the edge portion 1212 of the negative electrode, and are more uniformly distributed in the edge portion 1212 of the negative electrode, and are not easily localized in the edge portion 1212 of the negative electrode, thereby reducing the risk of lithium precipitation.
  • FIG. 10 is a partial cross-sectional schematic diagram of the electrode assembly 10 provided by yet another embodiment of the present application.
  • the positive electrode tabs 1122 and the negative electrode tabs 1222 are located on both sides of the electrode assembly 10 along the first direction Y, respectively.
  • the negative electrode edge portion 1212 and the positive electrode main body portion 1111 overlap in the stacking direction X, and the positive electrode edge portion 1112 and the negative electrode body portion 1211 overlap in the stacking direction X.
  • the capacity per unit area of the negative electrode main body part 1211 and the capacity per unit area of the positive electrode main body part 1111 meet the setting requirements, since the capacity per unit area of the negative electrode edge part 1212 is greater than or equal to the capacity per unit area of the negative electrode main body part 1211, even if the negative electrode edge part 1212
  • the thickness of the anode is smaller than that of the negative electrode main body portion 1211, and can also receive lithium ions protruded from the positive electrode active material layer 111, so that the negative electrode edge portion 1212 is less prone to lithium precipitation.
  • FIG. 11 is a partial cross-sectional schematic diagram of an electrode assembly 10 provided by another embodiment of the present application.
  • the negative electrode active material layer 121 includes a negative electrode main body portion 1211 and a negative electrode edge portion 1212 connected to the negative electrode main body portion 1211 .
  • the portion 1212 is located at the end of the negative electrode active material layer 121 along the first direction Y, and the thickness of the negative electrode edge portion 1212 is smaller than the thickness of the negative electrode main body portion 1211 .
  • the positive electrode active material layer 111 includes a positive electrode body portion 1111 and a positive electrode edge portion 1112 connected to the positive electrode body portion 1111 .
  • the positive electrode edge portion 1112 is located at the end of the positive electrode active material layer 111 along the first direction Y, and the thickness of the positive electrode edge portion 1112 is smaller than that of the positive electrode.
  • the thickness of the main body portion 1111 In the superposition direction X, at least part of the positive electrode edge portion 1112 overlaps with the negative electrode edge portion 1212 , and the positive electrode active material layer 111 is configured such that the capacity per unit area of the positive electrode edge portion 1112 is smaller than that of the positive electrode main body portion 1111 .
  • the negative electrode active material layer 121 can be coated with a single active slurry to simplify the manufacturing process of the negative electrode electrode piece 12 .
  • the capacity per unit area of the edge portion 1112 of the positive electrode may be smaller than the capacity per unit area of the positive electrode main body portion 1111 in various ways. In some embodiments, under the same thickness, the capacity per unit area of the positive edge portion 1112 is also smaller than the capacity per unit area of the positive electrode body portion 1111 .
  • the weight ratio of the active material of the positive edge portion 1112 to the positive edge portion 1112 is smaller than the weight ratio of the active material of the positive electrode body portion 1111 to the positive electrode body portion 1111, so that the capacity per unit area of the positive electrode edge portion 1112 is smaller than that of the positive electrode Capacity per unit area of the main body portion 1111 .
  • the positive electrode edge portion 1112 and the positive electrode main body portion 1111 both include active materials, binders and conductive agents. By reducing the active material in the positive electrode edge portion 1112, the weight ratio of the active material in the positive electrode edge portion 1112 is reduced, and the positive electrode edge portion 1112 is reduced. The capacity per unit area of the portion 1112 is adjusted so that the capacity per unit area of the positive edge portion 1112 is smaller than the capacity per unit area of the positive electrode main body portion 1111 .
  • the weight ratio of the active material in the positive electrode edge portion 1112 to the positive electrode edge portion 1112 is 0.5%-20% smaller than the weight ratio of the active material in the positive electrode main body portion 1111 to the positive electrode main body portion 1111, for example Specifically, the weight ratio of the active material in the positive edge portion 1112 to the positive edge portion 1112 is 1.5%-12% smaller than the weight ratio of the active material in the positive electrode body portion 1111 to the positive electrode body portion 1111 .
  • the active material in the edge portion 1112 of the positive electrode is the same as the active material in the main body portion 1111 of the positive electrode.
  • the active material in the edge portion 1112 of the positive electrode and the active material in the main body portion 1111 of the positive electrode may be lithium iron phosphate, lithium manganate, ternary lithium, lithium cobaltate, or the like.
  • the gram capacity of the active material of the positive edge portion 1112 is less than the gram capacity of the active material of the positive electrode body portion 1111 .
  • the capacity per unit area of the positive edge portion 1112 can be reduced so that the capacity per unit area of the positive edge portion 1112 is smaller than that of the positive electrode body portion 1111 .
  • the active material in the edge portion 1112 of the positive electrode is different from the active material in the main body portion 1111 of the positive electrode.
  • the active material in the edge portion 1112 of the positive electrode is lithium iron phosphate
  • the active material in the main body portion 1111 of the positive electrode is ternary lithium.
  • the gram capacity of the active material in the positive electrode edge portion 1112 is 0.5%-20% smaller than the gram capacity of the active material in the positive electrode body portion 1111.
  • the gram capacity of the active material in the positive edge portion 1112 is 1.5%-12% less than the gram capacity of the active material in the positive electrode body portion 1111 .
  • the weight ratio of the active material in the positive electrode edge portion 1112 to the positive electrode edge portion 1112 is equal to the weight ratio of the active material in the positive electrode body portion 1111 to the positive electrode body portion 1111 .
  • FIG. 12 is a schematic partial cross-sectional view of an electrode assembly 10 according to still another embodiment of the present application.
  • the edge portion 1112 of the positive electrode includes a first positive electrode coating layer 1112 a and a second positive electrode coating layer 1112 b that are stacked along the stacking direction X.
  • the second cathode coating 1112b is connected between the first cathode coating 1112a and the cathode current collector 112 .
  • the active material in the first positive electrode coating 1112a and the active material in the positive electrode body portion 1111 are the same; the weight ratio of the active material in the first positive electrode coating 1112a to the first positive electrode coating 1112a is equal to the positive electrode body The weight ratio of the active material in the part 1111 to the positive electrode main body part 1111 .
  • the first positive electrode coating layer 1112a and the positive electrode main body part 1111 have the same composition, that is, the first positive electrode coating layer 1112a and the positive electrode main body part 1111 can be formed from the same positive electrode active slurry, which can simplify the manufacturing process of the positive electrode electrode piece 11 .
  • the second positive electrode coating 1112b can be a pure conductive coating, for example, the second positive electrode coating 1112b is a pure conductive coating composed of a binder and a conductive agent; the second positive electrode coating 1112b can also be an active layer containing lithium ions Coating, for example, the second cathode coating 1112b is an active coating containing lithium ions composed of a lithium-rich material, a binder and a conductive agent; the second cathode coating 1112b can also be an inactive coating containing lithium ions
  • the second positive electrode coating layer 1112b is an inactive coating layer containing lithium ions composed of a binder, a conductive agent and a lithium powder coated with lithium carbonate.
  • the weight ratio of the active material of the second positive electrode coating 1112b to the second positive electrode coating 1112b is less than the weight ratio of the active material of the first positive electrode coating 1112a to the first positive electrode coating 1112a.
  • the weight ratio of the active material in the second positive electrode coating layer 1112b is reduced, thereby reducing the unit area capacity of the positive electrode edge portion 1112, so that the unit area capacity of the positive electrode edge portion 1112 is less than The capacity per unit area of the positive electrode main body portion 1111 .
  • the second positive electrode coating 1112b does not contain active material, that is, the weight ratio of the active material of the second positive electrode coating 1112b to the second positive electrode coating 1112b is 0.
  • the gram capacity of the active material of the second positive electrode coating 1112b is less than the gram capacity of the active material of the first positive electrode coating 1112a.
  • the unit area capacity of the positive electrode edge portion 1112 is reduced so that the unit area capacity of the positive electrode edge portion 1112 is smaller than that of the positive electrode body portion 1111.
  • the risk of lithium precipitation in the negative electrode active material layer 121 can also be reduced by adjusting the kinetic performance of the positive electrode edge portion 1112 .
  • the particle size of the active material of the positive edge portion 1112 is larger than the particle size of the active material of the positive electrode body portion 1111 . In this way, in the process of charging and discharging, the diffusion rate of lithium ions in the edge portion 1112 of the positive electrode is low, and the rate of lithium ions coming out from the edge portion 1112 of the positive electrode is also reduced, which can reduce the rate of lithium ions in the edge portion 1212 of the negative electrode and the edge of the positive electrode. There is a risk of agglomeration of the overlapping portions of the portions 1112, making the negative electrode active material layer 121 less likely to precipitate lithium.
  • FIG. 13 is a schematic partial cross-sectional view of an electrode assembly 10 according to another embodiment of the present application.
  • the negative electrode active material layer 121 includes a negative electrode main body portion 1211 and a negative electrode edge portion 1212 connected to the negative electrode main body portion 1211 .
  • the negative electrode edge portion 1212 is located at the end of the negative electrode active material layer 121 along the first direction Y, and the thickness of the negative electrode edge portion 1212 is smaller than the thickness of the negative electrode main body portion 1211 .
  • the positive electrode active material layer 111 includes a positive electrode body portion 1111 and a positive electrode edge portion 1112 connected to the positive electrode body portion 1111 .
  • the positive electrode edge portion 1112 is located at the end of the positive electrode active material layer 111 along the first direction Y, and the thickness of the positive electrode edge portion 1112 is smaller than that of the positive electrode.
  • the thickness of the main body portion 1111 is such that at least part of the positive electrode edge portion 1112 overlaps with the negative electrode edge portion 1212 in the stacking direction X, and the positive electrode active material layer 111 is arranged such that the capacity per unit area of the positive electrode edge portion 1112 is smaller than that of the positive electrode body portion 1111 area capacity.
  • the weight ratio of the active material of the negative electrode edge portion 1212 may be increased, the gram capacity of the active material of the negative electrode edge portion 1212 may be increased, or the The capacity per unit area is greater than or equal to the capacity per unit area of the negative electrode main body portion 1211 .
  • the capacity per unit area of the positive edge portion 1112 can be made smaller than The capacity per unit area of the positive electrode main body portion 1111 .
  • the unit area capacity of the negative electrode edge portion 1212 is greater than or equal to the unit area capacity of the negative electrode main body portion 1211, the unit area capacity of the positive electrode edge portion 1112 The area capacity is smaller than the capacity per unit area of the positive electrode main body portion 1111, so even if the thickness of the negative electrode edge portion 1212 is smaller than that of the negative electrode main body portion 1211, it can receive lithium ions released from the positive electrode active material layer 111, so that the negative electrode edge portion 1212 is less prone to lithium deposition.
  • test steps for capacity per unit area and CB value are as follows:
  • Step 1) Average discharge capacity test of the single-sided active material layer of the positive electrode. Take the positive electrode pieces of the above examples, and use a punching die to obtain a small round piece containing a positive electrode single-sided active material layer.
  • the lithium metal sheet is used as the counter electrode
  • the Celgard film is used as the separator 13
  • EC+DMC+DEC volume ratio of 1:1:1 ethylene carbonate, dimethyl carbonate, and dicarbonate
  • LiPF6 (1mol/L).
  • ethyl ester solution was the electrolyte, and 6 identical CR2430 button cells were assembled in an argon-protected glove box.
  • the positive electrode active material is lithium iron phosphate (LFP)
  • the upper limit cut-off voltage x1V 3.75V
  • the lower limit cut-off voltage y1V 2V
  • the positive electrode active material is lithium nickel cobalt manganese oxide (NCM)
  • the upper limit cut-off voltage x1V 4.25V
  • the lower limit cut-off voltage y1V 2.8V.
  • the average discharge capacity of the positive electrode single-sided active material layer is the unit area capacity of the positive electrode single-sided active material layer, taking the area of the small disc containing the positive electrode single-sided active material layer as the unit area.
  • Step 2) Average charge capacity test of the single-sided active material layer of the negative electrode. Take the negative electrode pole piece of each of the above embodiments, and use a punching die to obtain a small round piece that has the same area as the positive electrode small disc in the above step 1) and contains a negative electrode single-sided active material layer. Using lithium metal sheet as the counter electrode, Celgard film as the separator, EC+DMC+DEC dissolved with LiPF6 (1mol/L) (ethylene carbonate, dimethyl carbonate, diethyl carbonate with a volume ratio of 1:1:1) The solution of ester) was the electrolyte, and six CR2430 button cells were assembled in an argon-protected glove box.
  • the average value of the charging capacity of the six button batteries is the average charging capacity of the single-sided active material layer of the negative electrode.
  • the negative electrode active material is graphite
  • the upper limit cut-off voltage x2V 2V
  • the lower limit cut-off voltage y2V 5mV.
  • the negative electrode active material is silicon
  • the upper limit cut-off voltage x2V 2V
  • the lower limit cut-off voltage y2V 5mV.
  • the average discharge capacity of the negative electrode single-sided active material layer is the unit area capacity of the negative electrode single-sided active material layer.
  • FIG. 14 is a flowchart of a method for manufacturing an electrode assembly provided by some embodiments of the present application. As shown in FIG. 14 , in some embodiments, a method of manufacturing an electrode assembly includes:
  • the negative electrode active material layer includes a negative electrode main body and a negative edge portion connected to the negative electrode main body.
  • the negative electrode edge portion is located at the end of the negative electrode active material layer along a first direction, and the first direction is perpendicular to the positive electrode and the negative electrode. In the stacking direction, the thickness of the edge portion of the negative electrode is smaller than the thickness of the main body portion of the negative electrode.
  • the edge portion of the negative electrode overlaps with the positive electrode active material layer, and the negative electrode active material layer is configured such that the capacity per unit area of the edge portion of the negative electrode is greater than or equal to the capacity per unit area of the main body portion of the negative electrode; and/or the positive electrode
  • the active material layer includes a positive electrode body portion and a positive electrode edge portion connected to the positive electrode body portion, the positive electrode edge portion is located at the end of the positive electrode active material layer along the first direction, and the thickness of the positive electrode edge portion is smaller than the thickness of the positive electrode body portion in the stacking direction.
  • At least part of the edge portion of the positive electrode overlaps with the edge portion of the negative electrode, and the positive electrode active material layer is arranged such that the capacity per unit area of the edge portion of the positive electrode is smaller than the capacity per unit area of the main body portion of the positive electrode.
  • step S100 and step S200 is not sequential, and may be executed simultaneously.
  • FIG. 15 is a schematic block diagram of a manufacturing system of an electrode assembly provided by some embodiments of the present application.
  • the manufacturing system of the electrode assembly includes: a first providing device 91 for providing a positive electrode plate; a second providing device 92 , is used to provide the negative pole piece; the assembling device 93 is used to superimpose the positive pole piece and the negative pole piece, so that the positive active material layer of the positive pole piece and the negative active material layer of the negative pole piece are arranged facing each other.
  • the negative electrode active material layer includes a negative electrode main body and a negative edge portion connected to the negative electrode main body.
  • the negative electrode edge portion is located at the end of the negative electrode active material layer along a first direction, and the first direction is perpendicular to the positive electrode and the negative electrode. In the stacking direction, the thickness of the edge portion of the negative electrode is smaller than the thickness of the main body portion of the negative electrode.
  • the edge portion of the negative electrode overlaps with the positive electrode active material layer, and the negative electrode active material layer is configured such that the capacity per unit area of the edge portion of the negative electrode is greater than or equal to the capacity per unit area of the main body portion of the negative electrode; and/or the positive electrode
  • the active material layer includes a positive electrode body portion and a positive electrode edge portion connected to the positive electrode body portion, the positive electrode edge portion is located at the end of the positive electrode active material layer along the first direction, and the thickness of the positive electrode edge portion is smaller than the thickness of the positive electrode body portion in the stacking direction.
  • At least part of the edge portion of the positive electrode overlaps with the edge portion of the negative electrode, and the positive electrode active material layer is arranged such that the capacity per unit area of the edge portion of the positive electrode is smaller than the capacity per unit area of the main body portion of the positive electrode.
  • the manufacturing system further includes a third providing means (not shown) for providing a separator for isolating the positive pole piece and the negative pole piece.
  • the assembly device is used to superimpose the positive pole piece, the separator and the negative pole piece.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本申请实施例提供一种电极组件及其制造方法和制造系统、电池单体以及电池。电极组件包括叠加设置的正极极片和负极极片,正极极片的正极活性物质层与负极极片的负极活性物质层面对设置。负极活性物质层包括负极主体部和负极边缘部,负极边缘部的厚度小于负极主体部的厚度。负极边缘部的至少部分与正极活性物质层重叠,负极边缘部的单位面积容量大于或等于负极主体部的单位面积容量;和/或,正极活性物质层包括正极主体部和正极边缘部,正极边缘部的厚度小于正极主体部的厚度,正极边缘部的至少部分与负极边缘部重叠,正极边缘部的单位面积容量小于正极主体部的单位面积容量。这种结构的电极组件可以降低极片析锂的风险。

Description

电极组件及其制造方法和制造系统、电池单体以及电池 技术领域
本申请涉及电池技术领域,并且更具体地,涉及一种电极组件及其制造方法和制造系统、电池单体以及电池。
背景技术
可再充电电池,可以称为二次电池,是指在电池放电后可通过充电的方式使活性物质激活而继续使用的电池。可再充电电池广泛用于电子设备,例如手机、笔记本电脑、电瓶车、电动汽车、电动飞机、电动轮船、电动玩具汽车、电动玩具轮船、电动玩具飞机和电动工具等等。
在电池技术的发展中,除了提高电池的性能外,安全问题也是一个不可忽视的问题。如果电池的安全问题不能保证,那该电池就无法使用。因此,如何增强电池的安全性,是电池技术中一个亟待解决的技术问题。
发明内容
本申请提供了一种电极组件及其制造方法和制造系统、电池单体以及电池,能够增强电池的安全性。
第一方面,本申请实施例提供了一种电极组件,包括叠加设置的正极极片和负极极片,正极极片的正极活性物质层与负极极片的负极活性物质层面对设置。负极活性物质层包括负极主体部和连接于负极主体部的负极边缘部,负极边缘部位于负极活性物质层沿第一方向的端部,第一方向垂直于正极极片和负极极片的叠加方向,负极边缘部的厚度小于负极主体部的厚度。在叠加方向上,负极边缘部的至少部分与正极活性物质层重叠,且负极活性物质层被配置为:负极边缘部的单位面积容量大于或等于负极主体部的单位面积容量;和/或,正极活性物质层包括正极主体部和连接于正极主体部的正极边缘部,正极边缘部位于正极活性物质层沿第一方向的端部,正极边缘部的厚度小于正极主体部的厚度,在叠加方向上,正极边缘部的至少部分与负极边缘部重叠,正极活性物质层被配置为:正极边缘部的单位面积容量小于正极主体部的单位面积容量。
上述方案中,在负极主体部的单位面积容量满足设置要求时,即负极主体部的单位面积容量达到第一预设值,使得负极主体部不易出现析锂。若负极活性物质层被配置为负极边缘部的单位面积容量大于或等于负极主体部的单位面积容量,那么负极边缘部的单位面积容量大于或等于第一预设值,相对于增大了负极边缘部的单位面积 容量,这样,即使负极边缘部的厚度小于负极主体部,也能够接受从正极活性物质层脱出的锂离子,使得负极边缘部不易出现析锂。
在正极主体部的单位面积容量满足设置要求时,即正极主体部的单位面积容量达到第二预设值,此时,负极主体部的与正极主体部重叠的部分不易出现析锂。若正极活性物质层被配置为正极边缘部的单位面积容量小于正极主体部的单位面积容量,那么正极边缘部的单位面积容量小于第二预设值,相当于减小了正极边缘部的单位面积容量,这样,即使负极边缘部的厚度小于负极主体部,负极边缘部也能够接受正极边缘部的与负极边缘部重叠的部分所脱出的锂离子,使得负极边缘部不易出现析锂。
在一些实施例中,负极边缘部的活性材料与负极边缘部的重量比大于负极主体部的活性材料与负极主体部的重量比。通过增加负极边缘部中的活性材料,提高负极边缘部中的活性材料的重量比,增大负极边缘部的单位面积容量,以使负极边缘部的单位面积容量大于或等于负极主体部的单位面积容量。
在一些实施例中,负极边缘部的活性材料的克容量大于负极主体部的活性材料的克容量。通过增大负极边缘部中的活性材料的克容量,可增大负极边缘部的单位面积容量,以使负极边缘部的单位面积容量大于或等于负极主体部的单位面积容量。
在一些实施例中,负极边缘部包括沿叠加方向层叠设置的第一负极涂层和第二负极涂层。第二负极涂层的活性材料与第二负极涂层的重量比大于第一负极涂层的活性材料与第一负极涂层的重量比。通过增加第二负极涂层中的活性材料,提高第二负极涂层的活性材料的重量比,进而增大负极边缘部的单位面积容量,以使负极边缘部的单位面积容量大于或等于负极主体部的单位面积容量。在另一些实施例中,第二负极涂层的活性材料的克容量大于第一负极涂层的活性材料的克容量。通过增加第二负极涂层中的活性材料的克容量,增大负极边缘部的单位面积容量,以使负极边缘部的单位面积容量大于或等于负极主体部的单位面积容量。
在一些实施例中,负极边缘部的活性材料的粒径小于负极主体部的活性材料的粒径。在充放电的过程中,锂离子在负极边缘部中更容易扩散,在负极边缘部中分布的更为均匀,不易在负极边缘部的局部聚集,从而降低析锂的风险。
在一些实施例中,负极极片包括负极集流体,负极集流体包括负极涂覆区和负极极耳,负极活性物质层至少部分涂覆于负极涂覆区,负极极耳连接于负极涂覆区沿第一方向的端部。负极边缘部位于负极主体部沿第一方向靠近负极极耳的一侧。
在一些实施例中,沿背离负极主体部且平行于第一方向的方向,负极边缘部的厚度逐渐减小。这样可以在辊压负极极片的过程中分散应力,减小应力集中,降低负极集流体断裂的风险。
在一些实施例中,在第一方向上,负极边缘部的尺寸与负极活性物质层的尺寸之比为0.01-0.2。
在一些实施例中,正极边缘部的活性材料与正极边缘部的重量比小于正极主体部的活性材料与正极主体部的重量比。通过减少正极边缘部中的活性材料,降低正极边缘部中的活性材料的重量比,减小正极边缘部的单位面积容量,以使正极边缘部的单位面积容量小于正极主体部的单位面积容量。
在一些实施例中,正极边缘部的活性材料的克容量小于正极主体部的活性材料的克容量。通过减少正极边缘部中的活性材料的克容量,可减小正极边缘部的单位面积容量,以使正极边缘部的单位面积容量小于正极主体部的单位面积容量。
在一些实施例中,正极边缘部包括沿叠加方向层叠设置的第一正极涂层和第二正极涂层。第二正极涂层的活性材料与第二正极涂层的重量比小于第一正极涂层的活性材料与第一正极涂层的重量比。通过减少第二正极涂层中的活性材料,减小第二正极涂层的活性材料的重量比,进而降低正极边缘部的单位面积容量,以使正极边缘部的单位面积容量小于正极主体部的单位面积容量。在另一些实施例中,第二正极涂层的活性材料的克容量小于第一正极涂层的活性材料的克容量。。通过减小第二正极涂层中的活性材料的克容量,降低正极边缘部的单位面积容量,以使正极边缘部的单位面积容量小于正极主体部的单位面积容量
在一些实施例中,正极边缘部的活性材料的粒径大于正极主体部的活性材料的粒径。在充放电的过程中,锂离子在正极边缘部中扩散速率低,锂离子从正极边缘部的脱出的速率也会降低,这样能够降低锂离子在负极边缘部的与正极边缘部重叠的部分聚集的风险,使负极活性物质层不容易析锂。
在一些实施例中,正极极片包括正极集流体,正极集流体包括正极涂覆区和正极极耳,正极活性物质层至少部分涂覆于正极涂覆区,正极极耳连接于正极涂覆区沿第一方向的端部。正极边缘部位于正极主体部沿第一方向靠近正极极耳的一侧。
在一些实施例中,沿背离正极主体部且平行于第一方向的方向,正极边缘部的厚度逐渐减小。这样可以在辊压正极极片的过程中分散应力,减小应力集中,降低正极集流体断裂的风险。
在一些实施例中,在第一方向上,正极边缘部的尺寸与正极活性物质层的尺寸之比为0.01-0.2。
第二方面,本申请实施例提供了一种电池单体,包括外壳和上述第一方面任一实施例提供的电极组件,电极组件容纳于外壳中。
第三方面,本申请实施例提供了一种电池,包括:箱体和上述第二方面任一实施例提供的电池单体,电池单体收容于箱体内。
第四方面,本申请实施例提供了一种用电设备,其包括上述第三方面任一实施例提供的电池,电池用于提供电能。
第五方面,本申请实施例提供了一种电极组件的制造方法,包括:提供正极极片;提供负极极片;将正极极片和负极极片叠加设置,以使正极极片的正极活性物质层与负极极片的负极活性物质层面对设置。其中,负极活性物质层包括负极主体部和连接于负极主体部的负极边缘部,负极边缘部位于负极活性物质层沿第一方向的端部,第一方向垂直于正极极片和负极极片的叠加方向,负极边缘部的厚度小于负极主体部的厚度。在叠加方向上,负极边缘部的至少部分与正极活性物质层重叠,且负极活性物质层被配置为:负极边缘部的单位面积容量大于或等于负极主体部的单位面积容量;和/或,正极活性物质层包括正极主体部和连接于正极主体部的正极边缘部,正极边缘部位于正极活性物质层沿第一方向的端部,正极边缘部的厚度小于正极主体部的厚度, 在叠加方向上,正极边缘部的至少部分与负极边缘部重叠,正极活性物质层被配置为:正极边缘部的单位面积容量小于正极主体部的单位面积容量。
第六方面,本申请实施例提供了一种电极组件的制造系统,包括:第一提供装置,用于提供正极极片;第二提供装置,用于提供负极极片;组装装置,用于将正极极片和负极极片叠加设置,以使正极极片的正极活性物质层与负极极片的负极活性物质层面对设置。其中,负极活性物质层包括负极主体部和连接于负极主体部的负极边缘部,负极边缘部位于负极活性物质层沿第一方向的端部,第一方向垂直于正极极片和负极极片的叠加方向,负极边缘部的厚度小于负极主体部的厚度。在叠加方向上,负极边缘部的至少部分与正极活性物质层重叠,且负极活性物质层被配置为:负极边缘部的单位面积容量大于或等于负极主体部的单位面积容量;和/或,正极活性物质层包括正极主体部和连接于正极主体部的正极边缘部,正极边缘部位于正极活性物质层沿第一方向的端部,正极边缘部的厚度小于正极主体部的厚度,在叠加方向上,正极边缘部的至少部分与负极边缘部重叠,正极活性物质层被配置为:正极边缘部的单位面积容量小于正极主体部的单位面积容量。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的爆炸示意图;
图3为图2所示的电池模块的结构示意图;
图4为图3所示的电池单体的爆炸示意图;
图5为本申请一个实施例的电极组件的结构示意图;
图6为图5所示的电极组件沿线A-A作出的局部剖视示意图;
图7为本申请另一个实施例的电极组件的结构示意图;
图8为本申请一个实施例提供的电极组件的局部剖视示意图;
图9为本申请另一个实施例提供的电极组件的局部剖视示意图;
图10为本申请又一个实施例提供的电极组件的局部剖视示意图;
图11为本申请另一个实施例提供的电极组件的局部剖视示意图;
图12为本申请再一个实施例提供的电极组件的局部剖视示意图;
图13为本申请另一个实施例提供的电极组件的局部剖视示意图;
图14为本申请一些实施例提供的电极组件的制造方法的流程图;
图15为本申请一些实施例提供的电极组件的制造系统的示意性框图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池单体可以包括锂离子二次电池单体、锂离子一次电池单体、锂硫电池单体、钠锂离子电池单体、钠离子电池单体或镁离子电池单体等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件由正极极片、负极极片和隔离膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
在制造负极极片的过程中,先将负极活性材料、粘接剂、导电剂和溶剂等混合制成负极活性浆料,然后再将负极活性浆料涂覆在负极集流体上,负极活性浆料经过辊压、固化等工序后形成负极活性物质层。而由于负极活性浆料的流动性和表面张力,在形成负极活性物质层后,负极活性物质层的端部会形成厚度较小的薄层区域。
外接电源对电池单体充电时,正极上的电子e通过外部电路跑到负极上,锂离子Li+从正极活性物质层中的活性材料颗粒中脱出并进入电极液中,穿过隔离膜上的微小孔隙并移动到负极,与早就跑过来的电子结合在一起,进入负极活性物质层中的活性材料颗粒中。薄层区域的厚度小,所以可能会因为容量不足而无法完全接受锂离子,引发锂离子在薄层区域的表面析出并形成锂枝晶的风险。如果形成锂枝晶,那么锂枝晶可能会刺穿隔离膜,造成电池单体内短路,引发热失控。
鉴于此,本申请实施例提供一种电极组件,包括叠加设置的正极极片和负极极片,正极极片的正极活性物质层与负极极片的负极活性物质层面对设置,负极活性物质层包括负极主体部和连接于负极主体部的负极边缘部,负极边缘部位于负极活性物质层沿第一方向的端部,第一方向垂直于正极极片和负极极片的叠加方向,负极边缘部的厚度小于负极主体部的厚度。在叠加方向上,负极边缘部的至少部分与正极活性物质层重叠,且负极活性物质层被配置为:负极边缘部的单位面积容量大于或等于负极主体部的单位面积容量;和/或,正极活性物质层包括正极主体部和连接于正极主体部的正极边缘部,正极边缘部位于正极活性物质层沿第一方向的端部,正极边缘部的厚度小于正极主体部的厚度,在叠加方向上,正极边缘部的至少部分与负极边缘部重叠,正极活性物质层被配置为:正极边缘部的单位面积容量小于正极主体部的单位面积容量。这种结构的电极组件能够降低析锂风险,增强电池的安全性。
本申请实施例描述的技术方案适用于电池以及使用电池的用电设备。
用电设备可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机 和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电设备不做特殊限制。
以下实施例为了方便说明,以用电设备为车辆为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆1的结构示意图,车辆1的内部设置有电池2,电池2可以设置在车辆1的底部或头部或尾部。电池2可以用于车辆1的供电,例如,电池2可以作为车辆1的操作电源。
车辆1还可以包括控制器3和马达4,控制器3用来控制电池2为马达4供电,例如,用于车辆1的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池2不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,代替或部分地代替燃油或天然气为车辆1提供驱动动力。
请参照图2,图2为本申请一些实施例提供的电池2的爆炸示意图,电池2包括箱体5和电池单体(图2未示出),电池单体容纳于箱体5内。
箱体5用于容纳电池单体,箱体5可以是多种结构。在一些实施例中,箱体5可以包括第一箱体部51和第二箱体部52,第一箱体部51与第二箱体部52相互盖合,第一箱体部51和第二箱体部52共同限定出用于容纳电池单体的容纳空间53。第二箱体部52可以是一端开口的空心结构,第一箱体部51为板状结构,第一箱体部51盖合于第二箱体部52的开口侧,以形成具有容纳空间53的箱体5;第一箱体部51和第二箱体部52也均可以是一侧开口的空心结构,第一箱体部51的开口侧盖合于第二箱体部52的开口侧,以形成具有容纳空间53的箱体5。当然,第一箱体部51和第二箱体部52可以是多种形状,比如,圆柱体、长方体等。
为提高第一箱体部51与第二箱体部52连接后的密封性,第一箱体部51与第二箱体部52之间也可以设置密封件,比如,密封胶、密封圈等。
假设第一箱体部51盖合于第二箱体部52的顶部,第一箱体部51亦可称之为上箱盖,第二箱体部52亦可称之为下箱体。
在电池2中,电池单体可以是一个,也可以是多个。若电池单体为多个,多个电池单体之间可串联或并联或混联,混联是指多个电池单体中既有串联又有并联。多个电池单体之间可直接串联或并联或混联在一起,再将多个电池单体构成的整体容纳于箱体5内;当然,也可以是多个电池单体先串联或并联或混联组成电池模块6,多个电池模块6再串联或并联或混联形成一个整体,并容纳于箱体5内。
在一些实施例中,请参照图3,图3为图2所示的电池模块6的结构示意图。电池单体为多个,多个电池单体先串联或并联或混联组成电池模块6。多个电池模块6再串联或并联或混联形成一个整体,并容纳于箱体内。
电池模块6中的多个电池单体7之间可通过汇流部件实现电连接,以实现电池模块6中的多个电池单体7的并联或串联或混联。
请参照图4,图4为图3所示的电池单体7的爆炸示意图。本申请实施例提供 的电池单体7包括电极组件10和外壳20,电极组件10容纳于外壳20内。
在一些实施例中,外壳20还可用于容纳电解质,例如电解液。外壳20可以是多种结构形式。
在一些实施例中,外壳20可以包括壳体21和端盖22,壳体21为一侧开口的空心结构,端盖22盖合于壳体21的开口处并形成密封连接,以形成用于容纳电极组件10和电解质的密封空间。
在组装电池单体7时,可先将电极组件10放入壳体21内,再将端盖22盖合于壳体21的开口,然后经由端盖22上的电解质注入口将电解质注入壳体21内。
壳体21可以是多种形状,比如,圆柱体、长方体等。壳体21的形状可根据电极组件10的具体形状来确定。比如,若电极组件10为圆柱体结构,则可选用为圆柱体壳体;若电极组件10为长方体结构,则可选用长方体壳体。当然,端盖22也可以是多种结构,比如,端盖22为板状结构、一端开口的空心结构等。示例性的,在图4中,壳体21为长方体结构,端盖22为板状结构,端盖22盖合于壳体21顶部的开口处。
在一些实施例中,电池单体7还可以包括正极电极端子30、负极电极端子40和泄压机构50,正极电极端子30、负极电极端子40和泄压机构50均安装于端盖22上。正极电极端子30和负极电极端子40均用于与电极组件10电连接,以输出电极组件10所产生的电能。泄压机构50用于在电池单体7的内部压力或温度达到预定值时泄放电池单体7内部的压力。
示例性的,泄压机构50位于正极电极端子30和负极电极端子40之间,泄压机构50可以是诸如防爆阀、防爆片、气阀、泄压阀或安全阀等部件。
当然,在一些实施例中,外壳20也可以是其他结构,比如,外壳20包括壳体21和两个端盖22,壳体21为相对的两侧开口的空心结构,一个端盖22对应盖合于壳体21的一个开口处并形成密封连接,以形成用于容纳电极组件10和电解质的密封空间。在这种结构中,正极电极端子30和负极电极端子40可安装在同一个端盖22上,也可以安装在不同的端盖22上;可以是一个端盖22上安装有泄压机构50,也可以是两个端盖22上均安装有泄压机构50。
需要说明的是,在电池单体7中,容纳于外壳20内的电极组件10可以是一个,也可以是多个。示例性的,在图4中,电极组件10为两个。
接下来结合附图对电极组件10的具体结构进行详细阐述。
图5为本申请一个实施例的一种电极组件的结构示意图,图6为图5所示的电极组件沿线A-A作出的局部剖视示意图。
请参照图5和图6,电极组件10包括叠加设置的正极极片11和负极极片12,正极极片11的正极活性物质层111与负极极片12的负极活性物质层121面对设置。
在一些实施例中,正极极片11包括正极集流体112和涂覆于正极集流体112两个表面的正极活性物质层111,负极极片12包括负极集流体122和涂覆于负极集流体122两个表面的负极活性物质层121。
电极组件10还包括将正极极片11和负极极片12隔开的隔离膜13,隔离膜13具有大量贯通的微孔,能够保证电解质离子自由通过,对锂离子有很好的穿透性。隔 离膜13的材质可以为PP或PE等。
在一些实施例中,正极极片11和负极极片12绕卷绕轴线卷绕形成卷绕结构。在卷绕结构中,正极极片11和负极极片12沿垂直于卷绕轴线的方向叠加设置,即正极极片11和负极极片12的叠加方向X垂直于卷绕轴线。正极极片11和负极极片12沿着卷绕方向Z卷绕为多圈,卷绕方向Z为正极极片11和负极极片12从内向外周向卷绕的方向。在图5中,卷绕方向Z为逆时针方向。
具有卷绕结构的电极组件10包括平直区B和位于该平直区B两端的弯折区C。平直区B是指该卷绕结构中具有平行结构的区域,即在该平直区B内的负极极片12、正极极片11和隔离膜13相互基本平行,即电极组件10在平直区B的每层负极极片12、正极极片11和隔离膜13的表面均为平面。弯折区C是指该卷绕结构中具有弯折结构的区域,即在该弯折区C内的负极极片12、正极极片11和隔离膜13均弯折,即电极组件10在弯折区C的每层负极极片12、正极极片11和隔离膜13的表面均为曲面。
在一些实施例中,负极活性物质层121包括负极主体部1211和连接于负极主体部1211的负极边缘部1212,负极边缘部1212位于负极活性物质层121沿第一方向Y的端部,第一方向Y垂直于正极极片11和负极极片12的叠加方向X,负极边缘部1212的厚度小于负极主体部1211的厚度。负极边缘部1212为形成于负极活性物质层121沿第一方向Y的端部的薄层区域。
在制造正极极片11的过程中,先将正极活性材料、粘接剂、导电剂和溶剂等混合制成正极活性浆料,然后再将正极活性浆料涂覆在正极集流体112上,正极活性浆料经过辊压、固化等工序后形成正极活性物质层111。而由于正极活性浆料的流动性和表面张力,在形成正极活性物质层111后,正极活性物质层111的端部会形成厚度较小的薄层区域。在一些实施例中,正极活性物质层111包括正极主体部1111和连接于正极主体部1111的正极边缘部1112,正极边缘部1112位于正极活性物质层111沿第一方向Y的端部,正极边缘部1112的厚度小于正极主体部1111的厚度。正极边缘部1112为形成于正极活性物质层111沿第一方向Y的端部的薄层区域。
在一些实施例中,正极集流体112包括正极涂覆区1121和正极极耳1122,正极活性物质层111至少部分涂覆于正极涂覆区1121,正极极耳1122连接于正极涂覆区1121的端部并凸出于正极涂覆区1121,正极极耳1122至少部分未涂覆正极活性物质层111且用于电连接到正极电极端子30(请参照图4)。负极集流体122包括负极涂覆区1221和负极极耳1222,负极活性物质层121至少部分涂覆于负极涂覆区1221,负极极耳1222连接于负极涂覆区1221的端部并凸出于负极涂覆区1221,负极极耳1222至少部分未涂覆负极活性物质层121且用于电连接到负极电极端子40(请参照图4)。
在一些实施例中,正极极耳1122连接于正极涂覆区1121沿第一方向Y的端部,负极极耳1222连接于负极涂覆区1221沿第一方向Y的端部。其中,第一方向Y平行于电极组件10的卷绕轴线。
在一些实施例中,正极极耳1122和负极极耳1222位于电极组件10沿第一方向Y的同一侧;在另一些实施例中,正极极耳1122和负极极耳1222也可以分别位于电极组件10沿第一方向Y的两侧。
请参照图7,图7为本申请另一个实施例的一种电极组件10的结构示意图,在一些实施例中,电极组件10包括多个正极极片11和多个负极极片12,多个负极极片12和多个正极极片11沿叠加方向X交替叠加。叠加方向X平行于正极极片11的厚度方向和负极极片12的厚度方向。正极极片11和负极极片12均大体为平板状。
发明人经过研究发现,在充电的过程中,负极边缘部1212需要接受正极活性物质层111的与负极边缘部1212重叠的部分所脱出锂离子,而由于负极边缘部1212的厚度较小,所以可能会因为容量不足而无法完全接受锂离子,引发锂离子在负极边缘部1212的表面析出的风险。
鉴于此,发明人对电极组件10的机构作出进一步改进。
图8至图13分别为本申请不同实施例提供的电极组件10的局部剖视示意图。
参照图8至图13,在一些实施例中,电极组件10包括叠加设置的正极极片11和负极极片12,正极极片11的正极活性物质层111与负极极片12的负极活性物质层121面对设置,负极活性物质层121包括负极主体部1211和连接于负极主体部1211的负极边缘部1212,负极边缘部1212位于负极活性物质层121沿第一方向Y的端部,第一方向Y垂直于正极极片11和负极极片12的叠加方向X,负极边缘部1212的厚度小于负极主体部1211的厚度。在叠加方向X上,负极边缘部1212的至少部分与正极活性物质层111重叠,且负极活性物质层121被配置为:负极边缘部1212的单位面积容量大于或等于负极主体部1211的单位面积容量;和/或,正极活性物质层111包括正极主体部1111和连接于正极主体部1111的正极边缘部1112,正极边缘部1112位于正极活性物质层111沿第一方向Y的端部,正极边缘部1112的厚度小于正极主体部1111的厚度,在叠加方向X上,正极边缘部1112的至少部分与负极边缘部1212重叠,正极活性物质层111被配置为:正极边缘部1112的单位面积容量小于正极主体部1111的单位面积容量。
在负极主体部1211的单位面积容量满足设置要求时,即负极主体部1211的单位面积容量达到第一预设值,使得负极主体部1211不易出现析锂。若负极活性物质层121被配置为负极边缘部1212的单位面积容量大于或等于负极主体部1211的单位面积容量,那么负极边缘部1212的单位面积容量大于或等于第一预设值,这样,即使负极边缘部1212的厚度小于负极主体部1211,也能够接受从正极活性物质层111脱出的锂离子,使得负极边缘部1212不易出现析锂。
在正极主体部1111的单位面积容量满足设置要求时,即正极主体部1111的单位面积容量达到第二预设值,此时,负极主体部1211的与正极主体部1111重叠的部分不易出现析锂。若正极活性物质层111被配置为正极边缘部1112的单位面积容量小于正极主体部1111的单位面积容量,那么正极边缘部1112的单位面积容量小于第二预设值,相当于减小了正极边缘部1112的单位面积容量,这样,即使负极边缘部1212的厚度小于负极主体部1211,负极边缘部1212也能够接受正极边缘部1112的与负极边缘部1212重叠的部分所脱出的锂离子,使得负极边缘部1212不易出现析锂。
在本申请实施例中,负极集流体122的两侧均设有负极活性物质层121,本申请所描述的负极活性物质层121均指的是单侧的负极活性物质层121,负极活性物质层 121的单位面积容量指的是负极极片12的单侧的负极活性物质层121的单位面积容量。同样地,正极集流体112的两侧均设有正极活性物质层111,本申请所描述的正极活性物质层111均指的是单侧的正极活性物质层111,正极活性物质层111的单位面积容量指的是正极极片11的单侧的正极活性物质层111的单位面积容量。
在本申请实施例中,负极主体部1211的单位面积容量即为负极主体部1211的活性物质容量与负极主体部1211的总面积的比值,负极边缘部1212的单位面积容量即为负极边缘部1212的活性物质容量与负极边缘部1212的总面积的比值。
具体地,负极主体部1211的活性物质容量为Q1,负极主体部1211的面积为S1(即负极集流体122的被负极主体部1211覆盖的一部分的面积)。此时,负极主体部1211的单位面积容量QS1=Q1/S1。
负极边缘部1212的活性物质容量为Q2,负极边缘部1212的面积为S2(即负极集流体122的被负极边缘部1212覆盖的一部分的面积)。此时,负极边缘部1212的单位面积容量QS2=Q2/S2。
CB(Cell Balance)值为负极活性物质层121的单位面积容量与正极活性物质层111的单位面积容量的比值。当CB值大于设定值时,负极活性物质层121能够接受从正极活性物质层111脱出的锂离子,使负极活性物质层121不易析锂。
负极主体部1211的CB值等于负极主体部1211的单位面积容量QS1与正极活性物质层111的与负极主体部1211重叠的部分的单位面积容量的比值,负极边缘部1212的CB值等于负极边缘部1212的单位面积容量QS2与正极活性物质层111的与负极边缘部1212重叠的部分的单位面积容量的比值。在负极主体部1211的CB值满足要求时,如果负极边缘部1212的CB值大于或等于负极主体部1211的CB值,这样能够使负极边缘部1212不易析锂。
因此,负极边缘部1212的单位面积容量QS2大于或等于负极主体部1211的单位面积容量QS1,以使负极边缘部1212的CB值大于或等于负极主体部1211的CB值,这样能够使负极边缘部1212不易析锂。
同样地,正极主体部1111的单位面积容量即为正极主体部1111的活性物质容量与正极主体部1111的面积的比值,正极边缘部1112的单位面积容量即为正极边缘部1112的活性物质容量与正极边缘部1112的面积的比值。
具体地,正极主体部1111的活性物质容量为Q3,正极主体部1111的面积为S3(即正极集流体112的被正极主体部1111覆盖的一部分的面积)。此时,正极主体部1111的单位面积容量QS3=Q3/S3。
正极边缘部1112的活性物质容量为Q4,正极边缘部1112的面积为S4(即正极集流体112的被正极边缘部1112覆盖的一部分的面积)。此时,正极边缘部1112的单位面积容量QS4=Q4/S4。
请参照图8,图8为本申请一个实施例提供的电极组件10的局部剖视示意图,在一些实施例中,电极组件10包括叠加设置的正极极片11和负极极片12,正极极片11的正极活性物质层111与负极极片12的负极活性物质层121面对设置,负极活性物质层121包括负极主体部1211和连接于负极主体部1211的负极边缘部1212,负极边 缘部1212位于负极活性物质层121沿第一方向Y的端部,负极边缘部1212的厚度小于负极主体部1211的厚度。在叠加方向X上,负极边缘部1212的至少部分与正极活性物质层111重叠,且负极活性物质层121被配置为:负极边缘部1212的单位面积容量大于或等于负极主体部1211的单位面积容量。
在一些实施例中,正极活性物质层111包括正极主体部1111和连接于正极主体部1111的正极边缘部1112,正极边缘部1112位于正极活性物质层111沿第一方向Y的端部,正极边缘部1112的厚度小于正极主体部1111的厚度。
正极活性物质层111可由单一活性浆料涂布而成,以简化正极极片11的制造工艺。
在负极极片12的辊压过程中,负极集流体122上预留出未涂覆负极活性浆料的空白区域。在辊压时,由于负极活性浆料的流动性和表面张力,负极活性浆料会朝向空白区域流动。因此,当负极活性物质层121固化成型后,形成的厚度减小的负极边缘部1212位于负极活性物质层121的靠近空白区域的一端。该空白区域用于在之后的工序中裁切出负极极耳1222。在负极极片12成型后,负极边缘部1212位于负极主体部1211沿第一方向Y靠近负极极耳1222的一侧。
在辊压的负极极片12的过程中,负极边缘部1212的背离负极主体部1211的端部会在辊压力的作用下挤压负极集流体122,形成应力集中。在一些实施例中,沿背离负极主体部1211且平行于第一方向Y的方向,负极边缘部1212的厚度逐渐减小,这样可以在辊压的过程中分散应力,减小应力集中,降低负极集流体122断裂的风险。
在一些实施例中,负极边缘部1212的厚度比负极主体部1211的厚度小1-50微米。
在第一方向Y上,负极边缘部1212的尺寸越小,对工艺制程的需求越高,负极边缘部1212越容易在负极集流体122上形成应力集中;反之,负极边缘部1212的尺寸越大,负极活性物质层121在电池单体内的体积利用率越低。发明人综合考虑,在第一方向Y上,负极边缘部1212的尺寸与负极活性物质层121的尺寸之比为0.01-0.2。在一些示例中,在第一方向Y上,负极边缘部1212的尺寸为1-25微米;可选地,在第一方向Y上,负极边缘部1212的尺寸为1-15微米。
在正极极片11的辊压过程中,正极集流体112上预留出未涂覆正极活性浆料的空白区域。在辊压时,由于正极活性浆料的流动性和表面张力,正极活性浆料会朝向空白区域流动。因此,当正极活性物质层111固化成型后,形成的厚度减小的正极边缘部1112位于正极活性物质层111的靠近空白区域的一端。该空白区域用于在之后的工序中裁切出正极极耳1122。在正极极片11成型后,正极边缘部1112位于正极主体部1111沿第一方向Y靠近正极极耳1122的一侧。
在辊压的正极极片11的过程中,正极边缘部1112的背离正极主体部1111的端部会在辊压力的作用下挤压正极集流体112,形成应力集中。在一些实施例中,沿背离正极主体部1111且平行于第一方向Y的方向,正极边缘部1112的厚度逐渐减小,这样可以在辊压的过程中分散应力,减小应力集中,降低正极集流体112断裂的风险。
在一些实施例中,正极边缘部1112的厚度比正极主体部1111的厚度小1-50微 米。
在第一方向Y上,正极边缘部1112的尺寸越小,对工艺制程的需求越高,正极边缘部1112越容易在正极集流体112上形成应力集中;反之,正极边缘部1112的尺寸越大,正极活性物质层111在电池单体内的体积利用率越低。发明人综合考虑,在第一方向Y上,正极边缘部1112的尺寸与正极活性物质层111的尺寸之比为0.01-0.2。在一些示例中,在第一方向Y上,正极边缘部1112的尺寸为1-25微米;可选地,在第一方向Y上,正极边缘部1112的尺寸为1-15微米。
在一些实施例中,正极极耳1122和负极极耳1222位于电极组件10沿第一方向Y的同一侧。正极边缘部1112和负极边缘部1212在叠加方向X上重叠。
在一些实施例中,正极极片11还包括与正极边缘部1112相连的绝缘层113,绝缘层113的一部分涂覆于正极涂覆区1121,绝缘层113的另一部分涂覆于正极极耳1122的靠近正极涂覆区1121的根部。绝缘层113可以在裁切正极极耳1122的过程中减小毛刺,同时还能提高正极极耳1122的绝缘性能,降低在正极极耳1122的根部与负极极片12导通的风险。
在本申请实施例中,可通过多种方式来实现负极边缘部1212的单位面积容量大于或等于负极主体部1211的单位面积容量。
在一些实施例中,负极边缘部1212的活性材料与负极边缘部1212的重量比大于负极主体部1211的活性材料与负极主体部1211的重量比,以使负极边缘部1212的单位面积容量大于或等于负极主体部1211的单位面积容量。负极边缘部1212和负极主体部1211中均包括活性材料、粘接剂和导电剂,通过增加负极边缘部1212中的活性材料,提高负极边缘部1212中的活性材料的重量比,增大负极边缘部1212的单位面积容量,以使负极边缘部1212的单位面积容量大于或等于负极主体部1211的单位面积容量。
在一些示例中,负极边缘部1212中的活性材料与负极边缘部1212的重量比比负极主体部1211中的活性材料与负极主体部1211的重量比大0.5%-20%,可选地,大1.5%-12%。
可选地,负极边缘部1212中的活性材料与负极主体部1211中的活性材料相同。负极边缘部1212中的活性材料和负极主体部1211中的活性材料均可以是石墨或硅的化合物等。
在另一些实施例中,负极边缘部1212的活性材料的克容量大于负极主体部1211的活性材料的克容量。通过增大负极边缘部1212中的活性材料的克容量,可增大负极边缘部1212的单位面积容量,以使负极边缘部1212的单位面积容量大于或等于负极主体部1211的单位面积容量。
克容量是指活性材料所释放出的电容量与活性材料的质量之比。
在本实施例中,负极边缘部1212中的活性材料与负极主体部1211中的活性材料不同,比如,负极边缘部1212的活性材料为硅的化合物,负极主体部1211的活性材料为石墨。
可选地,负极边缘部1212中的活性材料的克容量比负极主体部1211中的活性 材料的克容量大0.5%-20%。示例性的,负极边缘部1212中的活性材料的克容量比负极主体部1211中的活性材料的克容量大1.5%-12%。
可选地,负极边缘部1212中的活性材料与负极边缘部1212的重量比等于负极主体部1211中的活性材料与负极主体部1211的重量比。
请参照图9,图9为本申请另一个实施例提供的电极组件10的局部剖视示意图,负极边缘部1212包括沿叠加方向X层叠设置的第一负极涂层1212a和第二负极涂层1212b。可选地,第二负极涂层1212b连接于第一负极涂层1212a和负极集流体122之间。第一负极涂层1212a和第二负极涂层1212b均为包含活性材料的活性涂层。
在一些实施例中,第一负极涂层1212a中的活性材料和负极主体部1211中的活性材料相同;第一负极涂层1212a中的活性材料与第一负极涂层1212a的重量比等于负极主体部1211中的活性材料与负极主体部1211的重量比。可选地,第一负极涂层1212a和负极主体部1211的成分相同,即第一负极涂层1212a和负极主体部1211可由相同的负极活性浆料形成,这样可以简化负极极片12的制造工艺。
在一些实施例中,第二负极涂层1212b的活性材料与第二负极涂层1212b的重量比大于第一负极涂层1212a的活性材料与第一负极涂层1212a的重量比。通过增加第二负极涂层1212b中的活性材料,提高第二负极涂层1212b的活性材料的重量比,进而增大负极边缘部1212的单位面积容量,以使负极边缘部1212的单位面积容量大于或等于负极主体部1211的单位面积容量。
可选地,第二负极涂层1212b中的活性材料与第一负极涂层1212a中的活性材料相同。第二负极涂层1212b中的活性材料和第一负极涂层1212a中的活性材料均可以是石墨或硅的化合物等。
在另一些实施例中,第二负极涂层1212b的活性材料的克容量大于第一负极涂层1212a的活性材料的克容量。通过增加第二负极涂层1212b中的活性材料的克容量,增大负极边缘部1212的单位面积容量,以使负极边缘部1212的单位面积容量大于或等于负极主体部1211的单位面积容量。
在本申请中,除了增大负极边缘部1212的单位面积容量的方式外,还可以通过改善负极边缘部1212的动力学性能的方式来降低负极边缘部1212析锂的风险。例如,活性材料的粒径越小,锂离子越容易扩散,也就越不易在局部聚集。在一些实施例中,负极边缘部1212中的活性材料的粒径小于负极主体部1211中的活性材料的粒径。这样,在充放电的过程中,锂离子在负极边缘部1212中更容易扩散,在负极边缘部1212中分布的更为均匀,不易在负极边缘部1212的局部聚集,从而降低析锂的风险。
请参照图10,图10为本申请又一个实施例提供的电极组件10的局部剖视示意图,正极极耳1122和负极极耳1222分别位于电极组件10沿第一方向Y的两侧。负极边缘部1212和正极主体部1111在叠加方向X上重叠,正极边缘部1112和负极主体部1211在叠加方向X上重叠。
在负极主体部1211的单位面积容量和正极主体部1111的单位面积容量满足设置要求时,由于负极边缘部1212的单位面积容量大于或等于负极主体部1211的单位面 积容量,所以即使负极边缘部1212的厚度小于负极主体部1211,也能够接受从正极活性物质层111脱出的锂离子,使得负极边缘部1212不易出现析锂。
请参照图11,图11为本申请另一个实施例提供的电极组件10的局部剖视示意图,负极活性物质层121包括负极主体部1211和连接于负极主体部1211的负极边缘部1212,负极边缘部1212位于负极活性物质层121沿第一方向Y的端部,负极边缘部1212的厚度小于负极主体部1211的厚度。
正极活性物质层111包括正极主体部1111和连接于正极主体部1111的正极边缘部1112,正极边缘部1112位于正极活性物质层111沿第一方向Y的端部,正极边缘部1112的厚度小于正极主体部1111的厚度。在叠加方向X上,正极边缘部1112的至少部分与负极边缘部1212重叠,正极活性物质层111被配置为:正极边缘部1112的单位面积容量小于正极主体部1111的单位面积容量。
在正极活性物质层111设置具有不同单位面积容量的正极主体部1111和正极边缘部1112的情况下,负极活性物质层121可由单一活性浆料涂布而成,以简化负极极片12的制造工艺。
在本申请实施例中,可通过多种方式来实现正极边缘部1112的单位面积容量小于正极主体部1111的单位面积容量。在一些实施例中,在相同的厚度下,正极边缘部1112的单位面积容量也小于正极主体部1111的单位面积容量。
在一些实施例中,正极边缘部1112的活性材料与正极边缘部1112的重量比小于正极主体部1111的活性材料与正极主体部1111的重量比,以使正极边缘部1112的单位面积容量小于正极主体部1111的单位面积容量。正极边缘部1112和正极主体部1111中均包括活性材料、粘接剂和导电剂,通过减少正极边缘部1112中的活性材料,降低正极边缘部1112中的活性材料的重量比,减小正极边缘部1112的单位面积容量,以使正极边缘部1112的单位面积容量小于正极主体部1111的单位面积容量。
在本实施例中,可选地,正极边缘部1112中的活性材料与正极边缘部1112的重量比比正极主体部1111中的活性材料与正极主体部1111的重量比小0.5%-20%,示例性地,正极边缘部1112中的活性材料与正极边缘部1112的重量比比正极主体部1111中的活性材料与正极主体部1111的重量比小1.5%-12%。
在本实施例中,可选地,正极边缘部1112中的活性材料与正极主体部1111中的活性材料相同。正极边缘部1112中的活性材料与正极主体部1111中的活性材料可以是磷酸铁锂、锰酸锂、三元锂、钴酸锂等。
在另一些实施例中,正极边缘部1112的活性材料的克容量小于正极主体部1111的活性材料的克容量。通过减少正极边缘部1112中的活性材料的克容量,可减小正极边缘部1112的单位面积容量,以使正极边缘部1112的单位面积容量小于正极主体部1111的单位面积容量。
在本实施例中,正极边缘部1112中的活性材料与正极主体部1111中的活性材料不同,比如,正极边缘部1112的活性材料为磷酸铁锂,正极主体部1111中的活性材料为三元锂。
在本实施例中,可选地,正极边缘部1112中的活性材料的克容量比正极主体 部1111中的活性材料的克容量小0.5%-20%。示例性的,正极边缘部1112中的活性材料的克容量比正极主体部1111中的活性材料的克容量小1.5%-12%。
在本实施例中,可选地,正极边缘部1112中的活性材料与正极边缘部1112的重量比等于正极主体部1111中的活性材料与正极主体部1111的重量比。
请参照图12,图12为本申请再一个实施例提供的电极组件10的局部剖视示意图,正极边缘部1112包括沿叠加方向X层叠设置的第一正极涂层1112a和第二正极涂层1112b。可选地,第二正极涂层1112b连接于第一正极涂层1112a和正极集流体112之间。
在一些实施例中,第一正极涂层1112a中的活性材料和正极主体部1111中的活性材料相同;第一正极涂层1112a中的活性材料与第一正极涂层1112a的重量比等于正极主体部1111中的活性材料与正极主体部1111的重量比。可选地,第一正极涂层1112a和正极主体部1111的成分相同,即第一正极涂层1112a和正极主体部1111可由相同的正极活性浆料形成,这样可以简化正极极片11的制造工艺。
第二正极涂层1112b可以是纯导电涂层,比如,第二正极涂层1112b为由粘接剂和导电剂组成的纯导电涂层;第二正极涂层1112b也可以是含有锂离子的活性涂层,比如,第二正极涂层1112b为由富锂材料、粘接剂和导电剂组成的含有锂离子的活性涂层;第二正极涂层1112b也可以是含锂离子的非活性涂层,比如,第二正极涂层1112b为由粘接剂、导电剂和被碳酸锂包覆的锂粉组成的含锂离子的非活性涂层。
在一些实施例中,第二正极涂层1112b的活性材料与第二正极涂层1112b的重量比小于第一正极涂层1112a的活性材料与第一正极涂层1112a的重量比。通过减少第二正极涂层1112b中的活性材料,减小第二正极涂层1112b的活性材料的重量比,进而降低正极边缘部1112的单位面积容量,以使正极边缘部1112的单位面积容量小于正极主体部1111的单位面积容量。可选地,第二正极涂层1112b中不包含活性材料,即第二正极涂层1112b的活性材料与第二正极涂层1112b的重量比为0。
在另一些实施例中,第二正极涂层1112b的活性材料的克容量小于第一正极涂层1112a的活性材料的克容量。通过减小第二正极涂层1112b中的活性材料的克容量,降低正极边缘部1112的单位面积容量,以使正极边缘部1112的单位面积容量小于正极主体部1111的单位面积容量。
在本申请中,除了减小正极边缘部1112的单位面积容量的方式外,还可以通过调节正极边缘部1112的动力学性能的方式来降低负极活性物质层121析锂的风险。在一些实施例中,正极边缘部1112的活性材料的粒径大于正极主体部1111的活性材料的粒径。这样,在充放电的过程中,锂离子在正极边缘部1112中扩散速率低,锂离子从正极边缘部1112的脱出的速率也会降低,这样能够降低锂离子在负极边缘部1212的与正极边缘部1112重叠的部分聚集的风险,使负极活性物质层121不容易析锂。
请参照图13,图13为本申请另一个实施例提供的电极组件10的局部剖视示意图,负极活性物质层121包括负极主体部1211和连接于负极主体部1211的负极边缘部1212,负极边缘部1212位于负极活性物质层121沿第一方向Y的端部,负极边缘部1212的厚度小于负极主体部1211的厚度。在叠加方向X上,负极边缘部1212的至少 部分与正极活性物质层111重叠,且负极活性物质层121被配置为:负极边缘部1212的单位面积容量大于或等于负极主体部1211的单位面积容量。正极活性物质层111包括正极主体部1111和连接于正极主体部1111的正极边缘部1112,正极边缘部1112位于正极活性物质层111沿第一方向Y的端部,正极边缘部1112的厚度小于正极主体部1111的厚度,在叠加方向X上,正极边缘部1112的至少部分与负极边缘部1212重叠,正极活性物质层111被配置为:正极边缘部1112的单位面积容量小于正极主体部1111的单位面积容量。
在本申请实施例中,可以通过增大负极边缘部1212的活性材料的重量比的方式,或增大负极边缘部1212的活性材料的克容量的方式,或其它方式,使负极边缘部1212的单位面积容量大于或等于负极主体部1211的单位面积容量。同样地,可以通过减小正极边缘部1112的活性材料的重量比的方式,或减小正极边缘部1112的活性材料的克容量的方式,或其它方式,使正极边缘部1112的单位面积容量小于正极主体部1111的单位面积容量。
在负极主体部1211的单位面积容量和正极主体部1111的单位面积容量满足设置要求时,由于负极边缘部1212的单位面积容量大于或等于负极主体部1211的单位面积容量,正极边缘部1112的单位面积容量小于正极主体部1111的单位面积容量,所以即使负极边缘部1212的厚度小于负极主体部1211,也能够接受从正极活性物质层111脱出的锂离子,使得负极边缘部1212不易出现析锂。
其中,关于单位面积容量和CB值测试步骤如下:
步骤1):正极单面活性物质层的平均放电容量测试。取上述各实施例的正极极片,利用冲片模具获得含正极单面活性物质层的小圆片。以金属锂片为对电极,Celgard膜为隔离膜13,溶解有LiPF6(1mol/L)的EC+DMC+DEC(体积比为1:1:1的碳酸乙烯酯、碳酸二甲酯、碳酸二乙酯)的溶液为电解液,在氩气保护的手套箱中组装6个相同的CR2430型扣式电池。①电池组装完后静置12h,②在0.1C的充电电流下进行恒流充电,直到电压到达上限截止电压x1V,然后保持电压x1V进行恒压充电,直到电流为50uA,③静置5min,④最后在0.1C的放电电流下进行恒流放电,直到电压到达下限截止电压y1V,⑤静置5min,重复2-5步骤,记录第2次循环的放电容量。6个扣式电池放电容量的平均值即为正极单面活性物质层的平均放电容量。例如,当正极活性材料为磷酸铁锂(LFP)时,上限截止电压x1V=3.75V,下限截止电压y1V=2V。当正极活性材料为锂镍钴锰氧化物(NCM)时,上限截止电压x1V=4.25V,下限截止电压y1V=2.8V。以含正极单面活性物质层的小圆片的面积为单位面积,上述正极单面活性物质层的平均放电容量为正极单面活性物质层的单位面积容量。
步骤2):负极单面活性物质层的平均充电容量测试。取上述各实施例的负极极片,利用冲片模具获得与上述步骤1)中正极小圆片面积相同且包含负极单面活性物质层的小圆片。以金属锂片为对电极,Celgard膜为隔离膜,溶解有LiPF6(1mol/L)的EC+DMC+DEC(体积比为1:1:1的碳酸乙烯酯、碳酸二甲酯、碳酸二乙酯)的溶液为电解液,在氩气保护的手套箱中组装6个CR2430型扣式电池。①电池组装完后静置12h,②在0.05C的放电电流下进行恒流放电,直到电压到达下限截止电压y2mV,③然后再 用50uA的放电电流进行恒流放电,直到电压达到下限截止电压y2mV,④静置5min,⑤接着用10uA的放电电流进行恒流放电,直到达到下限截止电压y2mV,⑥静置5分钟,⑦最后在0.1C的充电电流下进行恒流充电,直到最终电压达到上限截至电压x2V,⑧静置5分钟,重复2-8步骤,记录第2次循环的充电容量。6个扣式电池充电容量的平均值即为负极单面活性物质层的平均充电容量。例如,当负极活性材料为石墨时,上限截止电压x2V=2V,下限截止电压y2V=5mV。当负极极活性材料为硅时,上限截止电压x2V=2V,下限截止电压y2V=5mV。以含负极单面活性物质层的小圆片的面积为单位面积,负极单面活性物质层的平均放电容量为负极单面活性物质层的单位面积容量。
步骤3):根据CB值=上述负极单面活性物质层的平均充电容量(mAh)/上述正极单面活性物质层的平均放电容量(mAh),计算得出CB值。
图14为本申请一些实施例提供的电极组件的制造方法的流程图。如图14所示,在一些实施例中,电极组件的制造方法包括:
S100:提供正极极片;
S200:提供负极极片;
S300:将正极极片和负极极片叠加设置,以使正极极片的正极活性物质层与负极极片的负极活性物质层面对设置。
其中,负极活性物质层包括负极主体部和连接于负极主体部的负极边缘部,负极边缘部位于负极活性物质层沿第一方向的端部,第一方向垂直于正极极片和负极极片的叠加方向,负极边缘部的厚度小于负极主体部的厚度。在叠加方向上,负极边缘部的至少部分与正极活性物质层重叠,且负极活性物质层被配置为:负极边缘部的单位面积容量大于或等于负极主体部的单位面积容量;和/或,正极活性物质层包括正极主体部和连接于正极主体部的正极边缘部,正极边缘部位于正极活性物质层沿第一方向的端部,正极边缘部的厚度小于正极主体部的厚度,在叠加方向上,正极边缘部的至少部分与负极边缘部重叠,正极活性物质层被配置为:正极边缘部的单位面积容量小于正极主体部的单位面积容量。
需要说明的是,通过上述电极组件的制造方法制造出的电极组件的相关结构,可参见上述各实施例提供的电极组件。
在基于上述的电极组件的制造方法组装电极组件时,不必按照上述步骤依次进行,也就是说,可以按照实施例中提及的顺序执行步骤,也可以不同于实施例中提及的顺序执行步骤,或者若干步骤同时执行。例如,步骤S100和步骤S200的执行不分先后,也可以同时进行。
请参照图15,图15为本申请一些实施例提供的电极组件的制造系统的示意性框图,电极组件的制造系统包括:第一提供装置91,用于提供正极极片;第二提供装置92,用于提供负极极片;组装装置93,用于将正极极片和负极极片叠加设置,以使正极极片的正极活性物质层与负极极片的负极活性物质层面对设置。
其中,负极活性物质层包括负极主体部和连接于负极主体部的负极边缘部,负极边缘部位于负极活性物质层沿第一方向的端部,第一方向垂直于正极极片和负极极片的叠加方向,负极边缘部的厚度小于负极主体部的厚度。在叠加方向上,负极边缘 部的至少部分与正极活性物质层重叠,且负极活性物质层被配置为:负极边缘部的单位面积容量大于或等于负极主体部的单位面积容量;和/或,正极活性物质层包括正极主体部和连接于正极主体部的正极边缘部,正极边缘部位于正极活性物质层沿第一方向的端部,正极边缘部的厚度小于正极主体部的厚度,在叠加方向上,正极边缘部的至少部分与负极边缘部重叠,正极活性物质层被配置为:正极边缘部的单位面积容量小于正极主体部的单位面积容量。
在一些实施例中,制造系统还包括第三提供装置(未示出),第三提供装置用于提供将正极极片和负极极片隔离的隔离膜。组装装置用于将正极极片、隔离膜和负极极片叠加设置。
通过上述制造系统制造出的电极组件的相关结构,可参见上述各实施例提供的电极组件。
在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (20)

  1. 一种电极组件,包括叠加设置的正极极片和负极极片,所述正极极片的正极活性物质层与所述负极极片的负极活性物质层面对设置,所述负极活性物质层包括负极主体部和连接于所述负极主体部的负极边缘部,所述负极边缘部位于所述负极活性物质层沿第一方向的端部,所述第一方向垂直于所述正极极片和所述负极极片的叠加方向,所述负极边缘部的厚度小于所述负极主体部的厚度;
    在所述叠加方向上,所述负极边缘部的至少部分与所述正极活性物质层重叠,且所述负极活性物质层被配置为:所述负极边缘部的单位面积容量大于或等于所述负极主体部的单位面积容量;和/或,所述正极活性物质层包括正极主体部和连接于所述正极主体部的正极边缘部,所述正极边缘部位于所述正极活性物质层沿所述第一方向的端部,所述正极边缘部的厚度小于所述正极主体部的厚度,在所述叠加方向上,所述正极边缘部的至少部分与所述负极边缘部重叠,所述正极活性物质层被配置为:所述正极边缘部的单位面积容量小于所述正极主体部的单位面积容量。
  2. 根据权利要求1所述的电极组件,其中,
    所述负极边缘部的活性材料与所述负极边缘部的重量比大于所述负极主体部的活性材料与所述负极主体部的重量比。
  3. 根据权利要求1所述的电极组件,其中,所述负极边缘部的活性材料的克容量大于所述负极主体部的活性材料的克容量。
  4. 根据权利要求1所述的电极组件,其中,
    所述负极边缘部包括沿所述叠加方向层叠设置的第一负极涂层和第二负极涂层;
    所述第二负极涂层的活性材料与所述第二负极涂层的重量比大于所述第一负极涂层的活性材料与所述第一负极涂层的重量比;或者,所述第二负极涂层的活性材料的克容量大于所述第一负极涂层的活性材料的克容量。
  5. 根据权利要求1-4中任一项所述的电极组件,其中,所述负极边缘部的活性材料的粒径小于所述负极主体部的活性材料的粒径。
  6. 根据权利要求1-5中任一项所述的电极组件,其中,
    所述负极极片包括负极集流体,所述负极集流体包括负极涂覆区和负极极耳,所述负极活性物质层至少部分涂覆于所述负极涂覆区,所述负极极耳连接于所述负极涂覆区沿所述第一方向的端部;
    所述负极边缘部位于所述负极主体部沿所述第一方向靠近所述负极极耳的一侧。
  7. 根据权利要求1-6中任一项所述的电极组件,其中,沿背离所述负极主体部且平行于所述第一方向的方向,所述负极边缘部的厚度逐渐减小。
  8. 根据权利要求1-7中任一项所述的电极组件,其中,在所述第一方向上,所述负极边缘部的尺寸与所述负极活性物质层的尺寸之比为0.01-0.2。
  9. 根据权利要求1-8中任一项所述的电极组件,其中,
    所述正极边缘部的活性材料与所述正极边缘部的重量比小于所述正极主体部的活性材料与所述正极主体部的重量比。
  10. 根据权利要求1-8中任一项所述的电极组件,其中,所述正极边缘部的活性材料的克容量小于所述正极主体部的活性材料的克容量。
  11. 根据权利要求1-8中任一项所述的电极组件,其中,
    所述正极边缘部包括沿所述叠加方向层叠设置的第一正极涂层和第二正极涂层;
    所述第二正极涂层的活性材料与所述第二正极涂层的重量比小于所述第一正极涂层的活性材料与所述第一正极涂层的重量比;或者,所述第二正极涂层的活性材料的克容量小于所述第一正极涂层的活性材料的克容量。
  12. 根据权利要求1-11中任一项所述的电极组件,其中,所述正极边缘部的活性材料的粒径大于所述正极主体部的活性材料的粒径。
  13. 根据权利要求1-12中任一项所述的电极组件,其中,
    所述正极极片包括正极集流体,所述正极集流体包括正极涂覆区和正极极耳,所述正极活性物质层至少部分涂覆于所述正极涂覆区,所述正极极耳连接于所述正极涂覆区沿所述第一方向的端部;
    所述正极边缘部位于所述正极主体部沿所述第一方向靠近所述正极极耳的一侧。
  14. 根据权利要求1-13中任一项所述的电极组件,其中,沿背离所述正极主体部且平行于所述第一方向的方向,所述正极边缘部的厚度逐渐减小。
  15. 根据权利要求1-14中任一项所述的电极组件,其中,在所述第一方向上,所述正极边缘部的尺寸与所述正极活性物质层的尺寸之比为0.01-0.2。
  16. 一种电池单体,包括:
    外壳;
    至少一个如权利要求1-15中任一项所述的电极组件,容纳于所述外壳中。
  17. 一种电池,包括:
    箱体;
    至少一个如权利要求18所述的电池单体,所述电池单体收容于所述箱体内。
  18. 一种用电设备,包括如权利要求17所述的电池,所述电池用于提供电能。
  19. 一种电极组件的制造方法,包括:
    提供正极极片;
    提供负极极片;
    将所述正极极片和所述负极极片叠加设置,以使所述正极极片的正极活性物质层与所述负极极片的负极活性物质层面对设置;
    其中,所述负极活性物质层包括负极主体部和连接于所述负极主体部的负极边缘部,所述负极边缘部位于所述负极活性物质层沿第一方向的端部,所述第一方向垂直于所述正极极片和所述负极极片的叠加方向,所述负极边缘部的厚度小于所述负极主体部的厚度;
    在所述叠加方向上,所述负极边缘部的至少部分与所述正极活性物质层重叠,且所述负极活性物质层被配置为:所述负极边缘部的单位面积容量大于或等于所述负极主体部的单位面积容量;和/或,所述正极活性物质层包括正极主体部和连接于所述正极主体部的正极边缘部,所述正极边缘部位于所述正极活性物质层沿所述第一方向的 端部,所述正极边缘部的厚度小于所述正极主体部的厚度,在所述叠加方向上,所述正极边缘部的至少部分与所述负极边缘部重叠,所述正极活性物质层被配置为:所述正极边缘部的单位面积容量小于所述正极主体部的单位面积容量。
  20. 一种电极组件的制造系统,包括:
    第一提供装置,用于提供正极极片;
    第二提供装置,用于提供负极极片;
    组装装置,用于将所述正极极片和所述负极极片叠加设置,以使所述正极极片的正极活性物质层与所述负极极片的负极活性物质层面对设置;
    其中,所述负极活性物质层包括负极主体部和连接于所述负极主体部的负极边缘部,所述负极边缘部位于所述负极活性物质层沿第一方向的端部,所述第一方向垂直于所述正极极片和所述负极极片的叠加方向,所述负极边缘部的厚度小于所述负极主体部的厚度;
    在所述叠加方向上,所述负极边缘部的至少部分与所述正极活性物质层重叠,且所述负极活性物质层被配置为:所述负极边缘部的单位面积容量大于或等于所述负极主体部的单位面积容量;和/或,所述正极活性物质层包括正极主体部和连接于所述正极主体部的正极边缘部,所述正极边缘部位于所述正极活性物质层沿所述第一方向的端部,所述正极边缘部的厚度小于所述正极主体部的厚度,在所述叠加方向上,所述正极边缘部的至少部分与所述负极边缘部重叠,所述正极活性物质层被配置为:所述正极边缘部的单位面积容量小于所述正极主体部的单位面积容量。
PCT/CN2021/075165 2021-02-04 2021-02-04 电极组件及其制造方法和制造系统、电池单体以及电池 WO2022165689A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2021/075165 WO2022165689A1 (zh) 2021-02-04 2021-02-04 电极组件及其制造方法和制造系统、电池单体以及电池
CN202180035409.5A CN115606020B (zh) 2021-02-04 2021-02-04 电极组件及其制造方法和制造系统、电池单体以及电池
EP21923587.6A EP4106057A4 (en) 2021-02-04 2021-02-04 ELECTRODE ARRANGEMENT AND PRODUCTION METHOD AND PRODUCTION SYSTEM THEREOF, BATTERY CELL AND BATTERY
US17/822,097 US20220416232A1 (en) 2021-02-04 2022-08-24 Electrode assembly, method and system for manufacturing same, battery cell, and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/075165 WO2022165689A1 (zh) 2021-02-04 2021-02-04 电极组件及其制造方法和制造系统、电池单体以及电池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/822,097 Continuation US20220416232A1 (en) 2021-02-04 2022-08-24 Electrode assembly, method and system for manufacturing same, battery cell, and battery

Publications (1)

Publication Number Publication Date
WO2022165689A1 true WO2022165689A1 (zh) 2022-08-11

Family

ID=82740703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075165 WO2022165689A1 (zh) 2021-02-04 2021-02-04 电极组件及其制造方法和制造系统、电池单体以及电池

Country Status (4)

Country Link
US (1) US20220416232A1 (zh)
EP (1) EP4106057A4 (zh)
CN (1) CN115606020B (zh)
WO (1) WO2022165689A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115275092A (zh) * 2022-09-22 2022-11-01 江苏时代新能源科技有限公司 电极组件、电池单体、电池及用电设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116454415A (zh) * 2023-06-20 2023-07-18 深圳海辰储能控制技术有限公司 电极组件、电池和用电设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010205429A (ja) * 2009-02-27 2010-09-16 Hitachi Vehicle Energy Ltd 非水電解液二次電池および非水電解液二次電池用電極
CN205194796U (zh) * 2015-11-30 2016-04-27 惠州比亚迪电池有限公司 一种锂离子电池
CN108258193A (zh) * 2017-12-28 2018-07-06 湖南三迅新能源科技有限公司 一种负极片及其制备方法、锂离子电池
CN109088091A (zh) * 2017-06-14 2018-12-25 汽车能源供应公司 锂离子二次电池元件及锂离子二次电池
CN110010902A (zh) * 2019-03-29 2019-07-12 宁德新能源科技有限公司 电极极片和包含所述电极极片的电化学装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005013408A1 (ja) * 2003-07-31 2005-02-10 Nec Lamilion Energy, Ltd. リチウムイオン二次電池
JP5417241B2 (ja) * 2010-04-01 2014-02-12 日立ビークルエナジー株式会社 角形リチウムイオン二次電池および角形リチウムイオン二次電池の製造方法
JP2014207058A (ja) * 2013-04-10 2014-10-30 トヨタ自動車株式会社 二次電池
JP6318918B2 (ja) * 2014-06-30 2018-05-09 株式会社豊田自動織機 蓄電装置及び蓄電装置の製造方法
WO2016121734A1 (ja) * 2015-01-30 2016-08-04 Necエナジーデバイス株式会社 二次電池
CN105914339A (zh) * 2016-06-20 2016-08-31 吉安市优特利科技有限公司 锂离子二次电池
CN205752377U (zh) * 2016-06-20 2016-11-30 吉安市优特利科技有限公司 锂离子二次电池
JP6886636B2 (ja) * 2017-03-31 2021-06-16 株式会社Gsユアサ 蓄電素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010205429A (ja) * 2009-02-27 2010-09-16 Hitachi Vehicle Energy Ltd 非水電解液二次電池および非水電解液二次電池用電極
CN205194796U (zh) * 2015-11-30 2016-04-27 惠州比亚迪电池有限公司 一种锂离子电池
CN109088091A (zh) * 2017-06-14 2018-12-25 汽车能源供应公司 锂离子二次电池元件及锂离子二次电池
CN108258193A (zh) * 2017-12-28 2018-07-06 湖南三迅新能源科技有限公司 一种负极片及其制备方法、锂离子电池
CN110010902A (zh) * 2019-03-29 2019-07-12 宁德新能源科技有限公司 电极极片和包含所述电极极片的电化学装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4106057A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115275092A (zh) * 2022-09-22 2022-11-01 江苏时代新能源科技有限公司 电极组件、电池单体、电池及用电设备
WO2024060618A1 (zh) * 2022-09-22 2024-03-28 江苏时代新能源科技有限公司 电极组件、电池单体、电池及用电设备

Also Published As

Publication number Publication date
EP4106057A4 (en) 2024-01-17
CN115606020A (zh) 2023-01-13
CN115606020B (zh) 2023-12-12
EP4106057A1 (en) 2022-12-21
US20220416232A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
WO2022165688A1 (zh) 电极组件及其制造方法和制造系统、电池单体以及电池
WO2022213400A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
US20220246992A1 (en) Electrode assembly, battery cell, battery, and manufacturing device and method for electrode assembly
US20240055646A1 (en) Wound electrode assembly, battery cell, battery, and electrical device
US20220416232A1 (en) Electrode assembly, method and system for manufacturing same, battery cell, and battery
US20230238540A1 (en) Electrode assembly, battery cell, battery, and method and device for manufacturing electrode assembly
US20220320596A1 (en) Electrode assembly, manufacturing method and manufacturing system of same, battery cell, and battery
WO2023273390A1 (zh) 集流构件、电池单体、电池以及用电装置
US20220311056A1 (en) Electrode assembly, battery cell, battery, manufacturing method and device for electrode assembly
US20230327275A1 (en) Pressure relief apparatus, battery cell, battery, and electrical device
CN218414634U (zh) 极片、电极组件、电池单体、电池及用电设备
WO2023168954A1 (zh) 电芯、电芯的制造方法、电池单体、电池及用电设备
US11955658B2 (en) Battery cell and manufacturing method and manufacturing system thereof, battery and power consumption apparatus
WO2023028815A1 (zh) 卷绕式电极组件、电池单体、电池及用电设备
CN215299297U (zh) 电极组件、电池单体、电池以及用电装置
WO2022222092A1 (zh) 电极组件及其制造方法和制造系统、电池单体以及电池
EP4068414A1 (en) Electrode assembly, battery cell, battery, and manufacturing device and method for electrode assembly
WO2024077557A1 (zh) 电池单体、电池及用电设备
WO2024000366A1 (zh) 电池单体、电池和用电装置
WO2022213305A1 (zh) 电极组件、电池单体、电池及电极组件的制造方法和设备
WO2023173416A1 (zh) 泄压机构、电池单体、电池及用电设备
WO2024103201A1 (zh) 端盖组件、电池单体、电池和用电装置
WO2023216255A1 (zh) 电极组件、电池单体、电池及用电设备
WO2024082448A1 (zh) 电极组件、电池单体、电池及用电装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021923587

Country of ref document: EP

Effective date: 20220913

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21923587

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE