WO2024060618A1 - 电极组件、电池单体、电池及用电设备 - Google Patents

电极组件、电池单体、电池及用电设备 Download PDF

Info

Publication number
WO2024060618A1
WO2024060618A1 PCT/CN2023/090770 CN2023090770W WO2024060618A1 WO 2024060618 A1 WO2024060618 A1 WO 2024060618A1 CN 2023090770 W CN2023090770 W CN 2023090770W WO 2024060618 A1 WO2024060618 A1 WO 2024060618A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
anode
active material
cathode
material layer
Prior art date
Application number
PCT/CN2023/090770
Other languages
English (en)
French (fr)
Inventor
许虎
金海族
牛少军
赵丰刚
曾毓群
Original Assignee
江苏时代新能源科技有限公司
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏时代新能源科技有限公司, 宁德时代新能源科技股份有限公司 filed Critical 江苏时代新能源科技有限公司
Publication of WO2024060618A1 publication Critical patent/WO2024060618A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/15Lids or covers characterised by their shape for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/586Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of power batteries, and more specifically, to an electrode assembly, a battery cell, a battery and electrical equipment.
  • the pole piece is obtained by coating the active material on the current collector.
  • the electrode monomer where the pole piece is rolled or laminated it is often found that the pole piece has cracking problems of varying degrees. The cracking of the pole piece can easily lead to a sharp decline in battery performance, or even appear. safety incident.
  • this application discloses an electrode assembly, a battery cell, a battery and an electrical device.
  • An electrode assembly includes an anode electrode sheet and a cathode electrode sheet, wherein the anode electrode sheet includes an anode current collector, at least one side of the anode current collector is coated with an anode active material layer, the cathode electrode sheet and the anode electrode sheet are stacked, and the cathode electrode sheet includes a cathode current collector, at least one side of the cathode current collector is coated with a cathode active material layer and an additional layer, the additional layer is a non-cathode active material layer, and the edge of the additional layer is connected to the edge of the cathode active material layer; wherein, on a plane perpendicular to the stacking direction of the anode electrode sheet and the cathode electrode sheet, the projection of the anode active material layer covers the projection of the cathode active material layer, and partially covers the projection of the additional layer.
  • the above-mentioned electrode assembly by arranging an additional layer connected to the edge of the cathode active material layer on the cathode current collector, and making the projection of the additional layer exceed the projection of the anode active material layer on the plane perpendicular to the stacking direction of the anode electrode sheet and the cathode electrode sheet, can prevent the cathode electrode sheet from having a sharp portion or a step portion to generate shear stress on the anode active material layer of the anode electrode sheet, and alleviate or reduce the situation where the electrode sheet is scratched and cracked.
  • the anode current collector has a first edge and a second edge that are oppositely arranged along a first direction, and an anode tab is provided at the first edge; in the first direction, the cathode active material layer is close to the anode tab.
  • the side close to the anode tab exerts shear stress on the anode active material layer of the anode plate, thus reducing the cracking problem at this part.
  • the cathode active material layer includes a second flat coating area and a second thinning area arranged adjacently, and the second thinning area is located in a first direction away from the second flat coating area away from the anode tab. side, the coating thickness of the second thinned area is smaller than the coating thickness of the second flat coating area.
  • the cathode active material layer includes a second flat coating area and a second thinned area arranged adjacently. The second thinned area reduces the thickness of the cathode active material layer, thereby reducing the thickness of the cathode active material layer at the corresponding edge.
  • the position forms the height of the step surface, or the cathode active material layer is eliminated to form a step surface at the corresponding edge position, thereby reducing the shear stress on the anode active material layer of the anode pole piece, and easing or reducing the anode active material layer on the edge of the anode pole piece. falling off situation.
  • the anode active material layer includes a first flat coating area and a first thinning area arranged adjacently, and the first thinning area is located in a first direction of the first flat coating area close to the anode tab. side, the coating thickness of the first thinned area is smaller than the coating thickness of the first flat coating area.
  • the anode active material layer includes a first flat coating area and a first thinning area arranged adjacently, which effectively alleviates or reduces the shear stress on the anode active material layer at the edge of the anode plate.
  • the width of the first thinning zone ranges from 1 mm to 30 mm
  • the width of the second thinning zone ranges from 1 mm to 30 mm. In this way, the widths of the first thinned area and the second thinned area are within the optimal range, which can reduce shear stress while ensuring that the capacity of the battery cell meets the requirements.
  • the cathode active material layer further includes a third thinned area.
  • the third thinned area is located on a side of the second flat coating area away from the second thinned area along the first direction.
  • the third thinned area is The coating thickness is less than the coating thickness of the second flat coating area.
  • the additional layer includes a fourth thinned area, the fourth thinned area is smoothly transitioned to the third thinned area, and the coating thickness of the fourth thinned area is smaller than the coating thickness of the third thinned area. .
  • the thickness of the fourth thinned area of the additional layer is smaller than the coating thickness of the third thinned area, which can further weaken or alleviate the problem of the thick step portion existing at the connection between the fourth thinned area and the third thinned area.
  • the shear stress generated by the anode active material layer of the anode plate is smooth transitioned to the third thinned area, and the coating thickness of the fourth thinned area is smaller than the coating thickness of the third thinned area.
  • the projection of one end of the fourth thinned area away from the third thinned area is not covered by the projection of the first thinned area. In this way, the end of the fourth thinned area of the additional layer that is away from the third thinned area will not generate shear stress on the first thinned area.
  • a fifth thinned area is formed on at least one of both ends of the cathode active material layer and/or both ends of the additional layer, the first direction, the second direction, And the stacking directions of the anode pole pieces and the cathode pole pieces are perpendicular to each other. In this way, cracking of the anode pole piece and the cathode pole piece can be further alleviated.
  • the additional layer is a ceramic layer, a resistive layer, or an insulating layer that is less hard than the anode active material layer. In this way, by making the hardness of the additional layer smaller than the hardness of the anode active material layer, the risk of the cathode plate generating shear stress on the anode active material layer of the anode plate can be reduced.
  • the electrode assembly further includes an insulating member, and the insulating member is disposed between the cathode electrode piece and the anode electrode piece. In this way, the adjacent anode pole pieces and the cathode pole pieces are isolated by the insulating member to prevent the two adjacent pole pieces with opposite polarities from contacting and causing a short circuit.
  • a battery cell includes a casing, an electrode assembly and the above-mentioned end cover assembly.
  • the casing has an opening, the end cover assembly covers the opening, and the electrode assembly is accommodated in the casing.
  • the above-mentioned battery cells reduce the risk of cracking of the pole pieces of the electrode assembly while ensuring that the capacity of the battery cells meets usage requirements.
  • a battery includes a box body and the above-mentioned battery cell, and the battery cell is arranged in the box body.
  • the battery cells mentioned above have high safety and large capacity.
  • An electrical device includes the above-mentioned battery cell, which is used to provide electric energy, or includes the above-mentioned battery, which is used to provide electric energy.
  • the above-mentioned electrical equipment has a long battery life.
  • Figure 1 is a schematic diagram of a vehicle in an embodiment provided by the present application.
  • FIG. 2 is a schematic diagram of a battery in an embodiment provided by the present application.
  • FIG. 3 is a schematic diagram of a battery cell in an embodiment provided by the present application.
  • FIG. 4 is a schematic diagram of an electrode assembly in an embodiment provided by the present application.
  • FIG. 5 is a schematic diagram of an electrode assembly in another embodiment provided by the present application.
  • orientation or positional relationship is only for the convenience of describing the present application and simplifying the description, and does not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as a limitation of the present application. .
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • connection In this application, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interactive relationship between two elements, unless otherwise specified limitations. For those of ordinary skill in the art, the specific meanings of the above terms in this application can be understood according to specific circumstances.
  • a first feature being “on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediary. touch.
  • the terms “above”, “above” and “above” the first feature is above the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
  • Power battery is a rechargeable battery that is the power source of new energy vehicles and is widely used in the field of new energy vehicles.
  • the pole piece is obtained by coating the active material on the current collector.
  • the electrode monomer where the pole piece is rolled or laminated it is often found that the pole piece has cracking problems of varying degrees. The cracking of the pole piece can easily lead to a sharp decline in battery performance, or even appear. safety incident.
  • an electrode assembly, battery cell, battery and electrical equipment were designed.
  • an additional layer connected to the edge of the cathode active material layer is provided on the cathode current collector, and the projection of the additional layer is on a plane perpendicular to the stacking direction of the anode electrode sheet and the cathode electrode sheet.
  • the projection beyond the anode active material layer can prevent the cathode plate from having sharp parts or steps that would cause shearing stress on the anode active material layer of the anode plate, thereby mitigating or reducing the occurrence of the pole piece being scratched and cracked.
  • Embodiments of the present application provide an electrical device that uses a battery as a power source.
  • the electrical device may be, but is not limited to, a mobile phone, a tablet, a laptop, an electric toy, an electric tool, a battery car, an electric vehicle, a ship, a spacecraft, etc.
  • electric toys can include fixed or mobile electric toys, such as game consoles, electric car toys, electric ship toys, electric airplane toys, etc.
  • spacecraft can include airplanes, rockets, space shuttles, spaceships, etc.
  • an electrical device in an embodiment of the present application is a vehicle 10 as an example.
  • FIG. 1 is a schematic diagram of the structure of a vehicle 10 provided in some embodiments of the present application.
  • the vehicle 10 can be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • a battery 20 is arranged inside the vehicle 10, and the battery 20 can be arranged at the bottom, head or tail of the vehicle 10.
  • the battery 20 can be used to power the vehicle 10, for example, the battery 20 can be used as an operating power source for the vehicle 10.
  • the vehicle 10 may also include a controller 11 and a motor 12, and the controller 11 is used to control the battery 20 to power the motor 12, for example, for the starting, navigation and driving power requirements of the vehicle 10.
  • the battery 20 can not only be used as the operating power source of the vehicle 10, but also as the driving power source of the vehicle 10, replacing or partially replacing fuel or natural gas to provide driving force for the vehicle 10.
  • FIG. 2 is an exploded view of the battery 20 provided in some embodiments of the present application.
  • the battery 20 includes a case 21 and a battery cell 22.
  • the battery cell 22 is accommodated in the case 21.
  • the box 21 is used to provide a storage space for the battery cells 22, and the box 21 can adopt a variety of structures.
  • the box 21 may include a first part 21a and a second part 21b, the first part 21a and the second part 21b cover each other, the first part 21a and the second part 21b jointly define a space for accommodating the battery cell 22 of accommodation space.
  • the second part 21b may be a hollow structure with one end open, and the first part 21a may be a plate-like structure.
  • the first part 21a covers the open side of the second part 21b, so that the first part 21a and the second part 21b jointly define a receiving space.
  • the first part 21a and the second part 21b can also be hollow structures with one side open, and the open side of the first part 21a is covered with the open side of the second part 21b.
  • the box 21 formed by the first part 21a and the second part 21b can be in various shapes, such as a cylinder, a rectangular parallelepiped, etc.
  • the battery 20 there may be a plurality of battery cells 22 , and the plurality of battery cells 22 may be connected in series, in parallel, or in mixed connection.
  • Mixed connection means that the plurality of battery cells 22 are connected in series and in parallel.
  • the plurality of battery cells 22 can be directly connected in series or in parallel or mixed together, and then the whole composed of the plurality of battery cells 22 can be accommodated in the box 21 ; of course, the battery 20 can also be a plurality of battery cells 22 First, the battery modules are connected in series, parallel, or mixed to form a battery module, and then multiple battery modules are connected in series, parallel, or mixed to form a whole, and are accommodated in the box 21 .
  • each battery cell 22 can be a secondary battery or a primary battery; it can also be a lithium-sulfur battery, a sodium-ion battery or a magnesium-ion battery, but it is not limited to this.
  • the battery cell 22 can be cylindrical, flat, rectangular or other shapes.
  • the battery cell 22 may include a lithium-ion secondary battery, a lithium-ion primary battery, a lithium-sulfur battery, a sodium-lithium-ion battery, a sodium-ion battery or a magnesium-ion battery, etc., and the embodiments of the present application are not limited to this.
  • the battery cell 22 can be cylindrical, flat, rectangular or other shapes, etc., and the embodiments of the present application are not limited to this.
  • the battery cell 22 includes a case 23 , an electrode assembly 24 and an end cap assembly 25 .
  • the housing 23 is a hollow rectangular parallelepiped or a cube.
  • One plane of the housing 23 has an opening 23 a. This plane is configured without a wall so that the inside and outside of the housing 23 are connected.
  • the end cap assembly 25 covers the opening 23a and is connected to the housing 23 to form a closed cavity for placing the electrode assembly 24.
  • the closed cavity is filled with electrolyte, such as electrolyte.
  • the electrode assembly 24 includes an anode electrode piece 100 and a cathode electrode piece 200 .
  • the cathode electrode piece 200 and the anode electrode piece 100 are stacked.
  • the anode electrode piece 100 includes an anode current collector 110 .
  • An anode active material layer 120 is coated on at least one side of the current collector 110;
  • the cathode plate 200 includes a cathode current collector 210, and a cathode active material layer 220 and an additional layer 230 are coated on at least one side of the cathode current collector 210.
  • the layer 230 is the non-cathode active material layer 220, and the edge of the additional layer 230 is connected to the edge of the cathode active material layer 220.
  • the projection of the anode active material layer 120 covers the projection of the cathode active material layer 220 , and partially covers the projection of the additional layer 230 .
  • the stacking direction of the anode pole piece 100 and the cathode pole piece 200 is the Z direction shown in FIG. 4 , that is, the thickness direction of the anode pole piece 100 and the cathode pole piece 200 .
  • the anode electrode sheet 100 and the cathode electrode sheet 200 may be rolled or stacked to form the electrode assembly 24.
  • the anode current collector 110 is a component or part that carries the anode active material layer 120 and collects and outputs the current generated by the anode active material.
  • the anode active material includes at least one of lithium nickel cobalt manganate, lithium iron phosphate, lithium nickelate, lithium nickel manganate and lithium manganese iron nickelate or a carbon material (graphite, hard carbon, soft carbon, carbon nanotube, graphite ene), wherein the graphite includes at least one of artificial graphite and natural graphite mesophase carbon microspheres.
  • the cathode current collector 210 is a component or part that carries the cathode active material layer 220 and collects and outputs the current generated by the cathode active material.
  • the cathode active material includes at least one of lithium titanate, silicon negative electrode, silicon carbon negative electrode, lithium metal negative electrode material, tin-based negative electrode material, and tin oxide negative electrode material.
  • the above-mentioned electrode assembly 24, by arranging an additional layer 230 connected to the edge of the cathode active material layer 220 on the cathode current collector 210, and making the projection of the additional layer 230 exceed the projection of the anode active material layer 120 on a plane perpendicular to the stacking direction of the anode electrode sheet 100 and the cathode electrode sheet 200, can prevent the cathode electrode sheet 200 from having sharp parts or step parts to generate shear stress on the anode active material layer 120 of the anode electrode sheet 100, thereby alleviating or reducing the situation where the electrode sheet is scratched and cracked.
  • the anode current collector 110 has a first edge 110a and a second edge 110b arranged oppositely along a first direction, and an anode tab 112 is provided at the first edge 110a; at the first direction, an additional layer 230 is connected to the side of the cathode active material layer 220 close to the anode tab 112 .
  • the first direction is the X direction shown in FIG. 4 .
  • anode tab 112 and the anode current collector 110 are integrally formed. In other embodiments, the anode tab 112 and the anode current collector 110 may also have a separate structure, that is, at the first edge 110 a of the anode current collector 110 An anode tab 112 is additionally provided at the position.
  • the side of the cathode active material layer 220 close to the anode tab 112 is connected to the additional layer 230 , which can alleviate the impact of the side of the cathode active material layer 220 close to the anode tab 112 on the anode active material layer 120 of the anode plate 100 .
  • the shear stress is reduced, thereby reducing the cracking problem in this part.
  • the anode active material layer 120 includes a first flat coating area 121 and a first thinned area 122 arranged adjacent to each other, the first thinned area 122 is located on a side of the first flat coating area 121 close to the anode ear 112 in a first direction, and the coating thickness of the first thinned area 122 is less than the coating thickness of the first flat coating area 121.
  • the thickness of the anode active material layer 120 in the first thinning area 122 gradually decreases.
  • the thickness of the anode active material layer 120 of 121 is uniform.
  • the anode active material layer 120 includes adjacently arranged first flat coating areas 121 and first thinned areas 122 , which effectively alleviates or reduces the shear stress on the anode active material layer 120 at the edge of the anode plate 100 .
  • the cathode active material layer 220 includes a second flat coating area 221 and a second thinning area 222 that are adjacently arranged.
  • the second thinning area 222 is located at the first direction in the first direction.
  • the second flat coating area 221 is on the side away from the anode tab 112 , and the coating thickness of the second thinned area 222 is smaller than the coating thickness of the second flat coating area 221 .
  • the thickness of the anode active material layer 120 in the second thinning area 222 gradually decreases, and the thickness of the anode active material layer 120 in the second flat coating area 221 is consistent.
  • a cathode tab 212 is provided on the edge of the cathode current collector 210, and the cathode tab 212 and the anode tab 112 are located on opposite sides in the first direction.
  • the cathode tab 212 and the anode tab 112 may be located on the same side in the first direction.
  • the cathode active material layer 220 includes adjacently arranged second flat coating areas 221 and second thinned areas 222.
  • the second thinned areas 222 reduce the thickness of the cathode active material layer 220, thereby reducing the size of the cathode.
  • the height of the active material layer 220 forming a step surface at the corresponding edge position, or eliminating the step surface formed by the cathode active material layer 220 at the corresponding edge position, thereby reducing the shear stress on the anode active material layer 120 of the anode pole piece 100 and mitigating the Or reduce the occurrence of the anode active material layer 120 falling off at the edge of the anode plate 100 .
  • the width of the first thinning area 122 ranges from 1 mm to 30 mm
  • the width of the second thinning area 222 ranges from 1 mm to 30 mm.
  • the width direction is the X direction shown in FIG. 4
  • the width of the first thinned area 122 and the width of the second thinned area 222 are also the dimensions along the X direction shown in FIG. 4 .
  • the widths of the first thinned area 122 and the second thinned area 222 are in an optimal range, which can reduce the shear stress while ensuring that the capacity of the battery cell 22 meets the requirements.
  • the cathode active material layer 220 further includes a third thinned area 223 , the third thinned area 223 is located along the first direction away from the second flat coating area 221 and away from the second thinned area. On one side of 222 , the coating thickness of the third thinned area 223 is smaller than the coating thickness of the second flat coating area 221 .
  • the thickness of the cathode active material layer 220 in the third thinning area 223 gradually decreases.
  • the third thinning area 223 and the first thinning area 122 are located on the same side in the first direction. During the winding or lamination process of the anode pole piece 100 and the cathode pole piece 200, the third thinning area of the cathode pole piece 200 is There will be compressive stress in the thin area 223 and the third thinned area 223 of the anode pole piece 100 .
  • the cathode pole piece 200 from having sharp portions or step portions that would cause shear stress to the anode active material layer 120 of the anode pole piece 100 .
  • the shear stress generated by the step portion formed at the edge of the cathode active material layer 220 of the cathode pole piece 200 on the anode active material layer 120 of the anode pole piece 100 can be reduced, thereby alleviating the problem of cracking of the pole piece.
  • the additional layer 230 includes a fourth thinned area 231 , the fourth thinned area 231 is smoothly transitionally connected to the third thinned area 223 , and the coating of the fourth thinned area 231 The thickness is less than the coating thickness of the third thinned area 223 .
  • the thickness of the additional layer 230 in the fourth thinned area 231 gradually decreases, and the thickness of the cathode active material layer 220 in the third thinned area 223 also gradually decreases.
  • the slope of the third thinned area 223 is equal to the slope of the fourth thinned area 231 to make a smooth transition connection between the two. That is, the minimum thickness of the third thinned area 223 is equal to the maximum thickness of the fourth thinned area 231 .
  • the thickness of the fourth thinned area 231 of the additional layer 230 is smaller than the coating thickness of the third thinned area 223, which can further weaken or alleviate the thick step existing at the connection between the fourth thinned area 231 and the third thinned area 223. Part of the shear stress generated on the anode active material layer 120 of the anode plate 100.
  • FIG. 5 On a plane perpendicular to the stacking direction of the anode plate 100 and the cathode plate 200 , the projection of one end of the fourth thinned area 231 away from the third thinned area 223 is not Covered by the projection of the first thinned area 122.
  • the width of the third thinned area 223 ranges from 1 mm to 30 mm
  • the width of the fourth thinned area 231 ranges from 1 mm to 30 mm. In this way, the shear stress on the cathode plate 200 can be effectively reduced while ensuring that the capacity of the battery cell 22 meets the requirements.
  • one end of the fourth thinned area 231 of the additional layer 230 away from the third thinned area 223 will not generate shear stress on the first thinned area 122 .
  • both ends of the cathode active material layer 220 And/or a fifth thinned area is formed on at least one of the two ends of the additional layer 230, and the first direction, the second direction, and the stacking direction of the anode pole piece 100 and the cathode pole piece 200 are perpendicular to each other.
  • the second direction is the Y direction shown in FIG. 5 , that is, the length direction of the anode pole piece 100 and the cathode pole piece 200 .
  • the cathode active material layer 220 is provided with a fifth thinned area along the second direction, the thickness of the cathode active material layer 220 in the fifth thinned area gradually decreases in the second direction;
  • the additional layer 230 is provided along the second direction In the fifth thinning zone, the thickness of the additional layer 230 in the fifth thinning zone gradually decreases in the second direction.
  • a third electrode may be provided on the cathode active material layer 220 and/or the additional layer 230 along a second direction that is different from the first direction. Five thinning zones to further reduce the risk of pole piece cracking.
  • the additional layer 230 is a ceramic layer, a resistive layer or an insulating layer with a hardness less than that of the anode active material layer 120 .
  • the additional layer 230 may also be other materials that are different from the first active material and have high resistance value and low gram capacity.
  • the risk of the cathode plate 200 generating shear stress on the anode active material layer 120 of the anode plate 100 can be reduced.
  • the electrode assembly 24 further includes an insulating member 300 disposed between the cathode electrode piece 200 and the anode electrode piece 100 .
  • the insulating member 300 is a diaphragm.
  • the diaphragm has insulating properties and is used to isolate adjacent anode pole pieces 100 and cathode pole pieces 200 to prevent two adjacent pole pieces with opposite polarities from contacting and causing short circuit.
  • the material of the separator can be one of organic polymer insulation materials, inorganic insulation materials, and composite materials.
  • the composite material consists of organic polymer insulation material and inorganic insulation material.
  • the adjacent anode pole piece 100 and the cathode pole piece 200 are isolated by the insulating member 300 to prevent the two adjacent pole pieces with opposite polarities from contacting and causing a short circuit.
  • the battery cell 22 in one embodiment includes a case 23, an end cover assembly 25 and the above-mentioned electrode assembly 24.
  • the case 23 has an opening 23a, the end cover assembly 25 covers the opening 23a, and the electrode assembly 24 housed in the housing 23.
  • the housing 23 is a component used to cooperate with the end cap assembly 25 to form an internal environment of the battery cell 22 , wherein the formed internal environment can be used to accommodate the electrode assembly 24 , electrolyte and other components. part.
  • the housing 23 and the end cover assembly 25 may be independent components, and an opening 23a may be provided on the housing 23.
  • the end cover assembly 25 covers the opening 23a at the opening 23a to form the internal environment of the battery cell 22.
  • the housing 23 and the end cover assembly 25 can also be integrated. Specifically, the housing 23 and the end cover assembly 25 can form a common connection surface before other components are put into the housing. When the housing 23 needs to be packaged, When inside, the housing 23 and the end cover assembly 25 are then closed.
  • the housing 23 can be of various shapes and sizes, such as rectangular parallelepiped, cylinder, hexagonal prism, etc. Specifically, the shape of the housing 23 can be It is determined according to the specific shape and size of the electrode assembly 24 .
  • the housing 23 can be made of a variety of materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which are not particularly limited in the embodiment of the present application.
  • the above-described battery cell 22 reduces the risk of cracking of the pole pieces of the electrode assembly 24 while ensuring that the capacity of the battery cell 22 meets usage requirements.
  • the battery 20 includes a box 21 and the above-mentioned battery cells 22 .
  • the battery cells 22 are arranged in the box 21 .
  • the battery cells 22 are highly safe and have large capacity.
  • the electrical equipment includes the above-mentioned battery cell 22, which is used to provide electric energy, or the above-mentioned battery 20, which is used to provide electric energy.
  • the battery 20 has a long endurance.
  • the electrode assembly 24 includes an anode pole piece 100, a cathode pole piece 200 and an insulator 300.
  • the cathode pole piece 200 and the anode pole piece 100 are stacked.
  • the insulating member 300 is disposed between the cathode pole piece 200 and the anode pole piece 100 .
  • the anode plate 100 includes an anode current collector 110, and at least one side of the anode current collector 110 is coated with an anode active material layer 120;
  • the cathode plate 200 includes a cathode current collector 210, and at least one side of the cathode current collector 210 is coated with an anode active material layer 120.
  • the cathode active material layer 220 and the additional layer 230 , the additional layer 230 is a ceramic layer, a resistive layer or an insulating layer with a hardness smaller than that of the anode active material layer 120 .
  • the edge of the additional layer 230 is connected to the edge of the cathode active material layer 220 .
  • the projection of the anode active material layer 120 covers the projection of the cathode active material layer 220 and partially covers the projection of the additional layer 230 .
  • the anode active material layer 120 includes a first flat coating area 121 and a first thinning area 122 arranged adjacently.
  • the first thinning area 122 is located in the first direction of the first flat coating area 121 close to the anode tab 112 On one side, the coating thickness of the first thinned area 122 is smaller than the coating thickness of the first flat coating area 121 .
  • the cathode active material layer 220 includes a second flat coating area 221 and a second thinning area 222 arranged adjacently.
  • the second thinning area 222 is located on the side of the second flat coating area 221 away from the anode tab 112 in the first direction.
  • the cathode active material layer 220 also includes a third thinned area 223.
  • the third thinned area 223 is located on the side of the second flat coating area 221 away from the second thinned area 222 along the first direction.
  • the coating of the third thinned area 223 is The coating thickness is smaller than the coating thickness of the second flat coating area 221 .
  • the additional layer 230 includes a fourth thinned area 231 , which is smoothly transitionally connected to the third thinned area 223 .
  • the coating thickness of the fourth thinned area 231 is smaller than the coating thickness of the third thinned area 223 .
  • a fifth thinned area is formed on at least one of both ends of the cathode active material layer 220 and/or both ends of the additional layer 230 .
  • the battery cell 22 includes a housing 23, an end cover assembly 25 and the above-mentioned electrode assembly 24.
  • the housing 23 has an opening 23a, and the end cover assembly 25 covers Closed to the opening 23a, the electrode assembly 24 is accommodated in the housing 23.
  • the battery 20 includes a box 21 and the above-mentioned
  • the battery cell 22 is arranged in the box 21 .
  • the electrical equipment includes the above-mentioned battery unit 22, which is used to provide electric energy, or includes the above-mentioned battery 20, and the battery 20 Used to provide electrical energy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本实用新型涉及一种电极组件(24)、电池单体(22)、电池(20)及用电设备,一种电极组件(24)包括阳极极片(100)及阴极极片(200),阳极集流体(110)的至少一个侧面上涂覆有阳极活性物质层(120),阴极集流体(210)的至少一个侧面上涂覆有阴极活性物质层(220)及附加层(230);其中,在垂直于阳极极片(100)与阴极极片(200)的层叠方向的平面上,阳极活性物质层(120)的投影覆盖阴极活性物质层(220)的投影,且部分覆盖附加层(230)的投影。一种电池(20)包括上述电池单体(22)。一种用电设备包括上述电池单体(22)或上述电池(20)。上述的电极组件(24)、电池单体(22)、电池(20)及用电设备,能够缓解或减少极片开裂。

Description

电极组件、电池单体、电池及用电设备
交叉引用
本申请引用于2022年9月22日递交的名称为“电极组件、电池单体、电池及用电设备”的第202211154768.5号中国专利申请,其通过引用被全部并入本申请。
技术领域
本申请涉及动力电池技术领域,更具体的说,涉及一种电极组件、电池单体、电池及用电设备。
背景技术
在电池的制造过程中,一般需要将阳极极片、阴极极片及隔膜进行卷绕或叠片,再进行后续的热压等工艺。通过在集流体上涂覆活性物质得到极片,在极片卷绕或叠片的电极单体中,经常发现极片存在不同程度的开裂问题,极片开裂容易导致电池性能急剧下降,甚至出现安全事故。
发明内容
有鉴于此,本申请公开一种电极组件、电池单体、电池及用电设备。
一种电极组件包括阳极极片及阴极极片,阳极极片包括阳极集流体,阳极集流体的至少一个侧面上涂覆有阳极活性物质层,阴极极片与阳极极片层叠设置,阴极极片包括阴极集流体,阴极集流体的至少一个侧面上涂覆有阴极活性物质层及附加层,附加层为非阴极活性物质层,附加层的边缘与阴极活性物质层的边缘连接;其中,在垂直于阳极极片与阴极极片的层叠方向的平面上,阳极活性物质层的投影覆盖阴极活性物质层的投影,且部分覆盖附加层的投影。上述的电极组件,通过在阴极集流体上设置与阴极活性物质层边缘连接的附加层,且使附加层的投影在在垂直于阳极极片与阴极极片的层叠方向的平面上超出于阳极活性物质层的投影,能够防止阴极极片存在尖锐部或台阶部而对阳极极片的阳极活性物质层产生剪应力,缓解或减少出现极片被划破开裂的情况。
在其中一些实施例中,阳极集流体具有沿第一方向相对设置的第一边缘和第二边缘,第一边缘处设置有阳极极耳;在第一方向上,阴极活性物质层靠近阳极极耳的一侧连接有附加层。如此,阴极活性物质层靠近阳极极耳的一侧连接有附加层,能够缓解阴极活性物质层 靠近阳极极耳的一侧对阳极极片的阳极活性物质层产生的剪应力,进而减少该部位的开裂问题。
在其中一些实施例中,阴极活性物质层包括相邻布置的第二平涂区及第二削薄区,第二削薄区在第一方向上位于第二平涂区远离阳极极耳的一侧,第二削薄区的涂覆厚度小于第二平涂区的涂覆厚度。如此,阴极活性物质层包括相邻布置的第二平涂区及第二削薄区,第二削薄区减小了阴极活性物质层的厚度,进而可以减小阴极活性物质层在对应的边缘位置形成台阶面的高度,或取消阴极活性物质层在对应的边缘位置形成台阶面,进而减小对阳极极片的阳极活性物质层的剪应力,缓解或减少阳极极片边缘的阳极活性物质层脱落的情况。
在其中一些实施例中,阳极活性物质层包括相邻布置的第一平涂区及第一削薄区,第一削薄区在第一方向上位于第一平涂区靠近阳极极耳的一侧,第一削薄区的涂覆厚度小于第一平涂区的涂覆厚度。如此,阳极活性物质层包括相邻布置的第一平涂区及第一削薄区,有效缓解或减少阳极极片边缘的阳极活性物质层受到的剪应力。
在其中一些实施例中,在第一方向上,第一削薄区的宽度范围为1mm~30mm,第二削薄区的宽度范围为1mm~30mm。如此,使第一削薄区及第二削薄区的宽度处于最优范围,能起到减小剪应力作用,同时保证电池单体的容量满足要求。
在其中一些实施例中,阴极活性物质层还包括第三削薄区,第三削薄区沿第一方向位于第二平涂区背离第二削薄区的一侧,第三削薄区的涂覆厚度小于第二平涂区的涂覆厚度。如此,能够减少阴极极片的阴极活性物质层在边缘位置形成的台阶部对阳极极片的阳极活性物质层产生的剪应力,以缓解极片开裂的问题。
在其中一些实施例中,附加层包括第四削薄区,第四削薄区与第三削薄区平滑过渡连接,第四削薄区的涂覆厚度小于第三削薄区的涂覆厚度。如此,附加层的第四削薄区的厚度小于第三削薄区的涂覆厚度,能够进一步弱化或缓解第四削薄区与第三削薄区的连接处存在较厚的台阶部而对阳极极片的阳极活性物质层产生的剪应力。
在其中一些实施例中,在垂直于阳极极片与阴极极片的层叠方向的平面上,第四削薄区背离第三削薄区的一端的投影不被第一削薄区的投影覆盖。如此,能够使附加层的第四削薄区背离第三削薄区的一端不会对第一削薄区产生剪应力。
在其中一些实施例中,在第二方向上,阴极活性物质层的两端和/或附加层的两端中的至少一者上形成有第五削薄区,第一方向、第二方向、以及阳极极片与阴极极片的层叠方向两两垂直。如此,能够进一步地缓解阳极极片及阴极极片的开裂。
在其中一些实施例中,附加层为硬度小于阳极活性物质层的陶瓷层、电阻层或绝缘层。如此,通过使附加层的硬度小于阳极活性物质层的硬度,能降低阴极极片对阳极极片的阳极活性物质层产生剪应力的风险。
在其中一些实施例中,电极组件还包括绝缘件,绝缘件设于阴极极片及阳极极片之间。 如此,通过绝缘件隔离相邻的阳极极片及阴极极片,防止相邻的极性相反的两个极片接触并引起短路。
一种电池单体包括壳体、电极组件及上述端盖组件,壳体具有开口,端盖组件盖合于开口,电极组件容纳于壳体内。上述的电池单体,减小电极组件的极片开裂的风险,同时保证电池单体容量满足使用需求。
一种电池包括箱体及上述的电池单体,电池单体设置于箱体内。上述的电池,电池单体安全性高且容量大。
一种用电设备包括上述的电池单体,电池单体用于提供电能,或者包括上述的电池,电池用于提供电能。上述的用电设备,电池的续航能力强。
附图说明
图1为本申请提供的一实施例中车辆的示意图;
图2为本申请提供的一实施例中电池的示意图;
图3为本申请提供的一实施例中电池单体的示意图;
图4为本申请提供的一实施例中电极组件的示意图;
图5为本申请提供的另一实施例中电极组件的示意图。
附图标记:
10、车辆;11、控制器;12、马达;20、电池;21、箱体;21a、第一部分;21b、第二部分;22、电池单体;23、壳体;23a、开口;24、电极组件;25、端盖组件;100、阳极极片;110、阳极集流体;110a、第一边缘;110b、第二边缘;111、第一主体部;112、阳极极耳;120、阳极活性物质层;121、第一平涂区;122、第一削薄区;200、阴极极片;210、阴极集流体;211、第二主体部;212、阴极极耳;220、阴极活性物质层;221、第二平涂区;222、第二削薄区;223、第三削薄区;230、附加层;231、第四削薄区;300、绝缘件;X、宽度方向;Y、长度方向;Z、厚度方向。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示 的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
随着新能源汽车的普及和推广,新能源汽车的充放电性能、续航能力等日益引起人们的关注和重视。动力电池为一种可充电的电池是新能源汽车的动力来源,在新能源汽车领域中被广泛应用。
在电池的制造过程中,一般需要将阳极极片、阴极极片及隔膜进行卷绕或叠片,再进行后续的热压等工艺。通过在集流体上涂覆活性物质得到极片,在极片卷绕或叠片的电极单体中,经常发现极片存在不同程度的开裂问题,极片开裂容易导致电池性能急剧下降,甚至出现安全事故。
基于上述考虑,经深入研究,设计了一种电极组件、电池单体、电池及用电设备。在电池单体的电极组件中,通过在阴极集流体上设置与阴极活性物质层边缘连接的附加层,且使附加层的投影在在垂直于阳极极片与阴极极片的层叠方向的平面上超出于阳极活性物质层的投影,能够防止阴极极片存在尖锐部或台阶部而对阳极极片的阳极活性物质层产生剪应力,缓解或减少出现极片被划破开裂的情况。
本申请实施例提供一种使用电池作为电源的用电设备,用电设备可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
以下实施例为了方便说明,以本申请一实施例的一种用电设备为车辆10为例进行说明。
请参考图1,图1为本申请一些实施例提供的车辆10的结构示意图。车辆10可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆10的内部设置有电池20,电池20可以设置在车辆10的底部或头部或尾部。电池20可以用于车辆10的供电,例如,电池20可以作为车辆10的操作电源。车辆10还可以包括控制器11和马达12,控制器11用来控制电池20为马达12供电,例如,用于车辆10的启动、导航和行驶时的工作用电需求。在本申请另一些实施例中,电池20不仅可以作为车辆10的操作电源,还可以作为车辆10的驱动电源,代替或部分地代替燃油或天然气为车辆10提供驱动力。
请参考图2,图2为本申请一些实施例提供的电池20的爆炸图。电池20包括箱体21和电池单体22,电池单体22容纳于箱体21内。其中,箱体21用于为电池单体22提供容纳空间,箱体21可以采用多种结构。在一些实施例中,箱体21可以包括第一部分21a和第二部分21b,第一部分21a和第二部分21b相互盖合,第一部分21a和第二部分21b共同限定出用于容纳电池单体22的容纳空间。第二部分21b可以为一端开口的空心结构,第一部分21a可以为板状结构,第一部分21a盖合于第二部分21b的开口侧,以使第一部分21a和第二部分21b共同限定出容纳空间;第一部分21a和第二部分21b也可以是均为一侧开口的空心结构,第一部分21a的开口侧盖合于第二部分21b的开口侧。当然,第一部分21a和第二部分21b形成的箱体21可以是多种形状,比如,圆柱体、长方体等。
在电池20中,电池单体22可以是多个,多个电池单体22之间可串联或并联或混联,混联是指多个电池单体22中既有串联又有并联。多个电池单体22之间可直接串联或并联或混联在一起,再将多个电池单体22构成的整体容纳于箱体21内;当然,电池20也可以是多个电池单体22先串联或并联或混联组成电池模块形式,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体21内。
其中,每个电池单体22可以为二次电池或一次电池;还可以是锂硫电池、钠离子电池或镁离子电池,但不局限于此。电池单体22可呈圆柱体、扁平体、长方体或其它形状等。本申请的一些实施例中,电池单体22可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体22可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。
下面针对任意一个电池单体22进行详细描述,如图3所示,电池单体22包括壳体23、电极组件24和端盖组件25。壳体23为中空长方体或正方体,壳体23的其中一个平面具有开口23a,该平面被配置为不具有壁体而使得壳体23内外相通。端盖组件25覆盖该开口23a并与壳体23连接,以形成用于放置电极组件24的封闭腔体,该封闭腔体内填充电解质,例如电解液。
请参考图3及图4,一实施例中的电极组件24包括阳极极片100及阴极极片200,阴极极片200与阳极极片100层叠设置,阳极极片100包括阳极集流体110,阳极集流体110的至少一个侧面上涂覆有阳极活性物质层120;阴极极片200包括阴极集流体210,阴极集流体210的至少一个侧面上涂覆有阴极活性物质层220及附加层230,附加层230为非阴极活性物质层220,附加层230的边缘与阴极活性物质层220的边缘连接。
其中,在垂直于阳极极片100与阴极极片200的层叠方向的平面上,阳极活性物质层120的投影覆盖阴极活性物质层220的投影,且部分覆盖附加层230的投影。
此处,阳极极片100与阴极极片200的层叠方向为图4所示Z方向,也即阳极极片100及阴极极片200的厚度方向。
本申请的一些实施例中,阳极极片100、阴极极片200可以通过卷绕或堆叠方式形成电极组件24。
本申请的一些实施例中,阳极集流体110为承载阳极活性物质层120且将阳极活性物质产生的电流汇集并输出的构件或零件。阳极活性物质包括镍钴锰酸锂、磷酸铁锂、镍酸锂、镍锰酸锂和镍酸锰铁锂中的至少一种或碳材料(石墨、硬碳、软碳、碳纳米管、石墨烯),其中石墨又有人造石墨、天然石墨中间相碳微球中的至少一种。
本申请的一些实施例中,阴极集流体210为承载阴极活性物质层220且将阴极活性物质产生的电流汇集并输出的构件或零件。阴极活性物质包括钛酸锂、硅负极、硅碳负极、锂金属负极材料、锡基负极材料、锡氧化物负极材料中的至少一种。
上述的电极组件24,通过在阴极集流体210上设置与阴极活性物质层220边缘连接的附加层230,且使附加层230的投影在在垂直于阳极极片100与阴极极片200的层叠方向的平面上超出于阳极活性物质层120的投影,能够防止阴极极片200存在尖锐部或台阶部而对阳极极片100的阳极活性物质层120产生剪应力,缓解或减少出现极片被划破开裂的情况。
根据本申请的一些实施例,请参考图4,阳极集流体110具有沿第一方向相对设置的第一边缘110a和第二边缘110b,第一边缘110a处设置有阳极极耳112;在第一方向上,阴极活性物质层220靠近阳极极耳112的一侧连接有附加层230。
此处,第一方向为图4所示X方向。
在本实施例中,阳极极耳112与阳极集流体110为一体成型结构。在其他实施例中,阳极极耳112与阳极集流体110也可以为分体式结构,也即在阳极集流体110的第一边缘110a 处上另设阳极极耳112。
通过上述设置,阴极活性物质层220靠近阳极极耳112的一侧连接有附加层230,能够缓解阴极活性物质层220靠近阳极极耳112的一侧对阳极极片100的阳极活性物质层120产生的剪应力,进而减少该部位的开裂问题。
根据本申请的一些实施例,请参考图4,阳极活性物质层120包括相邻布置的第一平涂区121及第一削薄区122,第一削薄区122在第一方向上位于第一平涂区121靠近阳极极耳112的一侧,第一削薄区122的涂覆厚度小于第一平涂区121的涂覆厚度。
本申请的一些实施例中,由第一平涂区121指向第一削薄区122的第一方向上,第一削薄区122的阳极活性物质层120的厚度逐渐递减,第一平涂区121的阳极活性物质层120的厚度一致。
通过上述设置,阳极活性物质层120包括相邻布置的第一平涂区121及第一削薄区122,有效缓解或减少阳极极片100边缘的阳极活性物质层120受到的剪应力。
根据本申请的一些实施例,请参考图4,阴极活性物质层220包括相邻布置的第二平涂区221及第二削薄区222,第二削薄区222在第一方向上位于第二平涂区221远离阳极极耳112的一侧,第二削薄区222的涂覆厚度小于第二平涂区221的涂覆厚度。
本申请的一些实施例中,由第二平涂区221指向第二削薄区222的第一方向上,第二削薄区222的阳极活性物质层120的厚度逐渐递减,第二平涂区221的阳极活性物质层120的厚度一致。
本申请的一些实施例中,阴极集流体210的边缘设有阴极极耳212,阴极极耳212与阳极极耳112在第一方向上位于相对侧。或者,阴极极耳212与阳极极耳112在第一方向上还可以位于同一侧。
通过上述设置,阴极活性物质层220包括相邻布置的第二平涂区221及第二削薄区222,第二削薄区222减小了阴极活性物质层220的厚度,进而可以减小阴极活性物质层220在对应的边缘位置形成台阶面的高度,或取消阴极活性物质层220在对应的边缘位置形成台阶面,进而减小对阳极极片100的阳极活性物质层120的剪应力,缓解或减少阳极极片100边缘的阳极活性物质层120脱落的情况。
根据本申请的一些实施例,请参考图4,在第一方向上,第一削薄区122的宽度范围为1mm~30mm,第二削薄区222的宽度范围为1mm~30mm。
此处,宽度方向为图4所示的X方向,第一削薄区122的宽度、第二削薄区222的宽度也即沿图4所示X方向上的尺寸。
可以理解的是,当第一削薄区122的宽度及第二削薄区222的宽度过大时,会减小活性物质含量,从而影响电池单体22的容量;当第一削薄区122的宽度及第二削薄区222的宽度过小时,无法起到减小剪应力的作用。
通过上述设置,使第一削薄区122及第二削薄区222的宽度处于最优范围,能起到减小剪应力作用,同时保证电池单体22的容量满足要求。
根据本申请的一些实施例,请参考图5,阴极活性物质层220还包括第三削薄区223,第三削薄区223沿第一方向位于第二平涂区221背离第二削薄区222的一侧,第三削薄区223的涂覆厚度小于第二平涂区221的涂覆厚度。
本申请的一些实施例中,由第二平涂区221指向第三削薄区223的第一方向上,第三削薄区223的阴极活性物质层220的厚度逐渐递减。
此处,第三削薄区223与第一削薄区122在第一方向上位于同一侧,阳极极片100及阴极极片200卷绕或叠片过程中,阴极极片200的第三削薄区223与阳极极片100的第三削薄区223会存在压应力。
通过上述设置,能够防止阴极极片200存在尖锐部或台阶部而对阳极极片100的阳极活性物质层120产生剪应力。能够减少阴极极片200的阴极活性物质层220在边缘位置形成的台阶部对阳极极片100的阳极活性物质层120产生的剪应力,以缓解极片开裂的问题。
根据本申请的一些实施例,请参考图5,附加层230包括第四削薄区231,第四削薄区231与第三削薄区223平滑过渡连接,第四削薄区231的涂覆厚度小于第三削薄区223的涂覆厚度。
本申请的一些实施例中,在第一方向上,第四削薄区231的附加层230的厚度逐渐递减,第三削薄区223的阴极活性物质层220的厚度也呈逐渐递减状,第三削薄区223的坡度等于第四削薄区231的坡度以使二者之间平滑过渡连接。也即,第三削薄区223的最小厚度等于第四削薄区231的最大厚度。
通过上述设置,能够进一步防止第四削薄区231与第三削薄区223的连接处存在尖锐部或台阶部而对阳极极片100产生剪应力。附加层230的第四削薄区231的厚度小于第三削薄区223的涂覆厚度,能够进一步弱化或缓解第四削薄区231与第三削薄区的223连接处存在较厚的台阶部而对阳极极片100的阳极活性物质层120产生的剪应力。
根据本申请的一些实施例,请参考图5,在垂直于阳极极片100与阴极极片200的层叠方向的平面上,第四削薄区231背离第三削薄区223的一端的投影不被第一削薄区122的投影覆盖。
可选地,第三削薄区223的宽度范围为1mm~30mm,第四削薄区231的宽度范围为1mm~30mm。如此,能有效减小对阴极极片200剪应力的同时保证电池单体22的容量满足要求。
通过上述设置,能够使附加层230的第四削薄区231背离第三削薄区223的一端不会对第一削薄区122产生剪应力。
根据本申请的一些实施例,请参考图5,在第二方向上,阴极活性物质层220的两端 和/或附加层230的两端中的至少一者上形成有第五削薄区,第一方向、第二方向、以及阳极极片100与阴极极片200的层叠方向两两垂直。
此处,第二方向为图5所示Y方向,也即阳极极片100及阴极极片200的长度方向。当阴极活性物质层220沿第二方向上设置第五削薄区时,第五削薄区的阴极活性物质层220的厚度在第二方向上逐渐递减;当附加层230沿第二方向上设置第五削薄区时,第五削薄区的附加层230的厚度在第二方向上逐渐递减。
优选地,当阳极极片100及阴极极片200的长度小于等于600mm时,可以在阴极活性物质层220和/或附加层230沿与所述第一方向相异的第二方向上设有第五削薄区,以进一步地减小极片开裂风险。
通过上述设置,能够进一步地缓解阳极极片100及阴极极片200的开裂。
根据本申请的一些实施例,请参考图5,附加层230为硬度小于阳极活性物质层120的陶瓷层、电阻层或绝缘层。
本申请的一些实施例中,附加层230还可以为不同于第一活性物质的具有高电阻值、低克容量的其他物质。
通过上述设置,通过使附加层230的硬度小于阳极活性物质层120的硬度,能降低阴极极片200对阳极极片100的阳极活性物质层120产生剪应力的风险。
根据本申请的一些实施例,请参考图5,电极组件24还包括绝缘件300,绝缘件300设于阴极极片200及阳极极片100之间。
本申请的一些实施例中,绝缘件300为隔膜,隔膜具有绝缘性,用于隔离相邻的阳极极片100及阴极极片200,防止相邻的极性相反的两个极片接触并引起短路。隔膜的材质可以为有机聚合物绝缘材料、无机绝缘材料、复合材料中的一种。优选地,复合材料由有机聚合物绝缘材料和无机绝缘材料组成。
通过上述设置,通过绝缘件300隔离相邻的阳极极片100及阴极极片200,防止相邻的极性相反的两个极片接触并引起短路。
请参考图3,一实施例中的电池单体22包括壳体23、端盖组件25及上述的电极组件24,壳体23具有开口23a,端盖组件25盖合于开口23a,电极组件24容纳于壳体23内。
本申请的一些实施例中,壳体23为是用于配合端盖组件25以形成电池单体22的内部环境的组件,其中,形成的内部环境可以用于容纳电极组件24、电解液以及其他部件。壳体23和端盖组件25可以是独立的部件,可以于壳体23上设置开口23a,通过在开口23a处使端盖组件25盖合开口23a以形成电池单体22的内部环境。不限地,也可以使壳体23和端盖组件25一体化,具体地,壳体23和端盖组件25可以在其他部件入壳前先形成一个共同的连接面,当需要封装壳体23的内部时,再使壳体23和端盖组件25盖合。壳体23可以是多种形状和多种尺寸的,例如长方体形、圆柱体形、六棱柱形等。具体地,壳体23的形状可以 根据电极组件24的具体形状和尺寸大小来确定。壳体23的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。
上述的电池单体22,减小电极组件24的极片开裂的风险,同时保证电池单体22容量满足使用需求。
请参考图2,一实施例中的电池20包括箱体21及上述的电池单体22,电池单体22设置于箱体21内。上述的电池20,电池单体22安全性高且容量大。
请参考图1及图2,一实施例中的用电设备包括上述的电池单体22,电池单体22用于提供电能,或者包括上述的电池20,电池20用于提供电能。上述的用电设备,电池20的续航能力强。
根据本申请的一些实施例,请参考图4及图5,一实施例中的电极组件24包括阳极极片100、阴极极片200及绝缘件300,阴极极片200与阳极极片100层叠设置,绝缘件300设于阴极极片200及阳极极片100之间。阳极极片100包括阳极集流体110,阳极集流体110的至少一个侧面上涂覆有阳极活性物质层120;阴极极片200包括阴极集流体210,阴极集流体210的至少一个侧面上涂覆有阴极活性物质层220及附加层230,附加层230为硬度小于阳极活性物质层120的陶瓷层、电阻层或绝缘层,附加层230的边缘与阴极活性物质层220的边缘连接。在垂直于阳极极片100与阴极极片200的层叠方向的平面上,阳极活性物质层120的投影覆盖阴极活性物质层220的投影,且部分覆盖附加层230的投影。
其中,阳极活性物质层120包括相邻布置的第一平涂区121及第一削薄区122,第一削薄区122在第一方向上位于第一平涂区121靠近阳极极耳112的一侧,第一削薄区122的涂覆厚度小于第一平涂区121的涂覆厚度。阴极活性物质层220包括相邻布置的第二平涂区221及第二削薄区222,第二削薄区222在第一方向上位于第二平涂区221远离阳极极耳112的一侧,第二削薄区222的涂覆厚度小于第二平涂区221的涂覆厚度。阴极活性物质层220还包括第三削薄区223,第三削薄区223沿第一方向位于第二平涂区221背离第二削薄区222的一侧,第三削薄区223的涂覆厚度小于第二平涂区221的涂覆厚度。附加层230包括第四削薄区231,第四削薄区231与第三削薄区223平滑过渡连接,第四削薄区231的涂覆厚度小于第三削薄区223的涂覆厚度。在垂直于阳极极片100与阴极极片200的层叠方向的平面上,第四削薄区231背离第三削薄区223的一端的投影不被第一削薄区122的投影覆盖。在第二方向上,阴极活性物质层220的两端和/或附加层230的两端中的至少一者上形成有第五削薄区。
根据本申请的一些实施例,请参考图3,一实施例中的电池单体22包括壳体23、端盖组件25及上述的电极组件24,壳体23具有开口23a,端盖组件25盖合于开口23a,电极组件24容纳于壳体23内。
根据本申请的一些实施例,请参考图2,一实施例中的电池20包括箱体21及上述的 电池单体22,电池单体22设置于箱体21内。
根据本申请的一些实施例,请参考图1及图2,一实施例中的用电设备包括上述的电池单体22,电池单体22用于提供电能,或者包括上述的电池20,电池20用于提供电能。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (14)

  1. 一种电极组件(24),包括:
    阳极极片(100),包括阳极集流体(110),所述阳极集流体(110)的至少一个侧面上涂覆有阳极活性物质层(120);
    阴极极片(200),与所述阳极极片(100)层叠设置,所述阴极极片(200)包括阴极集流体(210),所述阴极集流体(210)的至少一个侧面上涂覆有阴极活性物质层(220)及附加层(230),所述附加层(230)为非阴极活性物质层,所述附加层(230)的边缘与所述阴极活性物质层(220)的边缘连接;
    其中,在垂直于所述阳极极片(100)与所述阴极极片(200)的层叠方向的平面上,所述阳极活性物质层(120)的投影覆盖所述阴极活性物质层(220)的投影,且部分覆盖所述附加层(230)的投影。
  2. 根据权利要求1所述的电极组件(24),其中,所述阳极集流体(110)具有沿第一方向相对设置的第一边缘(110a)和第二边缘(110b),所述第一边缘(110a)处设置有阳极极耳(112);在所述第一方向上,所述阴极活性物质层(220)靠近所述阳极极耳(112)的一侧连接有所述附加层(230)。
  3. 根据权利要求2所述的电极组件(24),其中,所述阴极活性物质层(220)包括相邻布置的第二平涂区(221)及第二削薄区(222),所述第二削薄区(222)在所述第一方向上位于所述第二平涂区(221)远离所述阳极极耳(112)的一侧,所述第二削薄区(222)的涂覆厚度小于所述第二平涂区(221)的涂覆厚度。
  4. 根据权利要求3所述的电极组件(24),其中,所述阳极活性物质层(120)包括相邻布置的第一平涂区(121)及第一削薄区(122),所述第一削薄区(122)在所述第一方向上位于所述第一平涂区(121)靠近所述阳极极耳(112)的一侧,所述第一削薄区(122)的涂覆厚度小于所述第一平涂区(121)的涂覆厚度。
  5. 根据权利要求4所述的电极组件(24),其中,在所述第一方向上,所述第一削薄区(122)的宽度范围为1mm~30mm,所述第二削薄区(222)的宽度范围为1mm~30mm。
  6. 根据权利要求4-5任一项所述的电极组件(24),其中,所述阴极活性物质层(220)还包括第三削薄区(223),所述第三削薄区(223)沿所述第一方向位于所述第二平涂区(221)背离所述第二削薄区(222)的一侧,所述第三削薄区(223)的涂覆厚度小于所述第二平涂区(221)的涂覆厚度。
  7. 根据权利要求6所述的电极组件(24),其中,所述附加层(230)包括第四削薄区(231),所述第四削薄区(231)与所述第三削薄区(223)平滑过渡连接,所述第四削薄区(231)的 涂覆厚度小于所述第三削薄区(223)的涂覆厚度。
  8. 根据权利要求7所述的电极组件(24),其中,在垂直于所述阳极极片(100)与所述阴极极片(200)的层叠方向的平面上,所述第四削薄区(231)背离所述第三削薄区(223)的一端的投影不被所述第一削薄区(122)的投影覆盖。
  9. 根据权利要求2-8任一项所述的电极组件(24),其中,在第二方向上,所述阴极活性物质层(220)的两端和/或所述附加层(230)的两端中的至少一者上形成有第五削薄区,所述第一方向、所述第二方向、以及所述阳极极片(100)与所述阴极极片(200)的层叠方向两两垂直。
  10. 根据权利要求1-9任一项所述的电极组件(24),其中,所述附加层(230)为硬度小于所述阳极活性物质层(120)的陶瓷层、电阻层或绝缘层。
  11. 根据权利要求1-10任一项所述的电极组件(24),其中,所述电极组件(24)还包括绝缘件(300),所述绝缘件(300)设于所述阴极极片(200)及所述阳极极片(100)之间。
  12. 一种电池单体(22),包括:
    壳体(23),具有开口(23a);
    端盖组件(25),盖合于所述开口(23a);
    如权利要求1-11任一项所述的电极组件(24),容纳于所述壳体(23)内。
  13. 一种电池(20),包括箱体(21)及权利要求12所述的电池单体(22),电池单体(22)设置于箱体(21)内。
  14. 一种用电设备,包括如权利要求12所述的电池单体(22),所述电池单体(22)用于提供电能,或者包括如权利要求13所述的电池(20),所述的电池(20)用于提供电能。
PCT/CN2023/090770 2022-09-22 2023-04-26 电极组件、电池单体、电池及用电设备 WO2024060618A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211154768.5A CN115275092B (zh) 2022-09-22 2022-09-22 电极组件、电池单体、电池及用电设备
CN202211154768.5 2022-09-22

Publications (1)

Publication Number Publication Date
WO2024060618A1 true WO2024060618A1 (zh) 2024-03-28

Family

ID=83757008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/090770 WO2024060618A1 (zh) 2022-09-22 2023-04-26 电极组件、电池单体、电池及用电设备

Country Status (2)

Country Link
CN (1) CN115275092B (zh)
WO (1) WO2024060618A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115275092B (zh) * 2022-09-22 2023-07-07 江苏时代新能源科技有限公司 电极组件、电池单体、电池及用电设备
CN116454415A (zh) * 2023-06-20 2023-07-18 深圳海辰储能控制技术有限公司 电极组件、电池和用电设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206250284U (zh) * 2016-12-02 2017-06-13 东莞新能源科技有限公司 一种阳极极片及其电芯
CN113659105A (zh) * 2021-08-17 2021-11-16 宁德新能源科技有限公司 电化学装置和电子装置
CN216354300U (zh) * 2021-11-30 2022-04-19 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池及用电装置
CN114421098A (zh) * 2021-12-02 2022-04-29 万向一二三股份公司 一种改善极耳陶瓷涂层正极片撕裂的电芯叠片结构
WO2022165689A1 (zh) * 2021-02-04 2022-08-11 宁德时代新能源科技股份有限公司 电极组件及其制造方法和制造系统、电池单体以及电池
CN115275092A (zh) * 2022-09-22 2022-11-01 江苏时代新能源科技有限公司 电极组件、电池单体、电池及用电设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206250284U (zh) * 2016-12-02 2017-06-13 东莞新能源科技有限公司 一种阳极极片及其电芯
WO2022165689A1 (zh) * 2021-02-04 2022-08-11 宁德时代新能源科技股份有限公司 电极组件及其制造方法和制造系统、电池单体以及电池
CN113659105A (zh) * 2021-08-17 2021-11-16 宁德新能源科技有限公司 电化学装置和电子装置
CN216354300U (zh) * 2021-11-30 2022-04-19 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池及用电装置
CN114421098A (zh) * 2021-12-02 2022-04-29 万向一二三股份公司 一种改善极耳陶瓷涂层正极片撕裂的电芯叠片结构
CN115275092A (zh) * 2022-09-22 2022-11-01 江苏时代新能源科技有限公司 电极组件、电池单体、电池及用电设备

Also Published As

Publication number Publication date
CN115275092B (zh) 2023-07-07
CN115275092A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
WO2024060618A1 (zh) 电极组件、电池单体、电池及用电设备
WO2023174266A1 (zh) 壳体、电池单体、电池及用电设备
WO2023004823A1 (zh) 卷绕式电极组件、电池单体、电池及用电设备
US20220311056A1 (en) Electrode assembly, battery cell, battery, manufacturing method and device for electrode assembly
CN218274645U (zh) 电极组件、电池单体、电池及用电设备
WO2023173429A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
CN212277261U (zh) 电极组件、电池、电池模块、电池组、使用电池的装置和电极组件的制造装置
CN115832186A (zh) 电芯组件、电池单体、电池以及用电装置
JP2023503746A (ja) 電極アセンブリ、ならびにその関連する電池、デバイス、製造方法、および製造装置
WO2024031256A1 (zh) 电极组件、电池单体、电池及用电设备
CN220121974U (zh) 电池单体、电池及用电装置
WO2024026829A1 (zh) 电池单体、电池以及用电装置
WO2024087015A1 (zh) 一种电池单体、电池和用电装置
WO2023221606A1 (zh) 集流体、极片、电极组件、电池单体、电池及用电装置
WO2023151413A1 (zh) 用电设备、电池、电池单体及其制造方法
CN220382159U (zh) 电极组件、电池单体、电池及用电装置
CN220934334U (zh) 电池、用电设备和储能设备
WO2024060093A1 (zh) 电池单体、电池及用电装置
WO2024082088A1 (zh) 电极组件、电池单体、电池及用电装置
CN220272634U (zh) 电池和用电装置
WO2023245673A1 (zh) 电池单体、电池及用电装置
CN220774656U (zh) 连接构件、电池单体、电池、用电装置和连接件
WO2024055308A1 (zh) 电池单体、电池及用电设备
WO2024040503A1 (zh) 电极组件、制备方法、电池单体、电池及用电装置
WO2024077629A1 (zh) 一种电池单体、电池和用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23866915

Country of ref document: EP

Kind code of ref document: A1