WO2023151413A1 - 用电设备、电池、电池单体及其制造方法 - Google Patents

用电设备、电池、电池单体及其制造方法 Download PDF

Info

Publication number
WO2023151413A1
WO2023151413A1 PCT/CN2022/143452 CN2022143452W WO2023151413A1 WO 2023151413 A1 WO2023151413 A1 WO 2023151413A1 CN 2022143452 W CN2022143452 W CN 2022143452W WO 2023151413 A1 WO2023151413 A1 WO 2023151413A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
cell
cells
battery cell
current collector
Prior art date
Application number
PCT/CN2022/143452
Other languages
English (en)
French (fr)
Inventor
喻春鹏
李全国
刘倩
叶永煌
肖得隽
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2023151413A1 publication Critical patent/WO2023151413A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of power batteries, and more specifically, to an electric device, a battery, a battery cell and a manufacturing method thereof.
  • the power battery is a rechargeable battery, which is the power source of electric equipment such as new energy vehicles, and is widely used in the field of new energy vehicles.
  • the present application discloses an electric device, a battery, a battery unit and a manufacturing method thereof.
  • a battery cell includes a casing, an electrode terminal, a plurality of electric cells and a current collector.
  • the electrode terminal is arranged on the top of the casing, and a plurality of electric cells are accommodated in the casing.
  • Each electric cell includes a main body and a pole connected to the main body.
  • the ear, the current collector includes a tab connection part and a terminal connection part, the tab connection part is used to connect the pole ear, and the terminal connection part is used to connect the electrode terminal; wherein, at least two electric cores have different heights, and the current collector is arranged on In the accommodation space formed by the main body of the cell with the smallest height and the top of the case.
  • the battery cell there is a height difference between at least two cells, and by placing the current collector in the accommodation space formed by the body of the cell with the smallest height and the top of the casing, the battery cell can be fully utilized.
  • the space in the height direction improves space utilization and energy density.
  • the battery cells are arranged side by side along the width direction of the casing, the two outermost battery cells are the first battery cell group, and the battery cells located between the two outermost battery cells are the second battery cell group.
  • Cell pack With this arrangement, the battery cells are arranged side by side along the same direction, which reduces the occupied space and is beneficial to improve the space utilization rate of the casing.
  • the heights of the cells in the first cell group are equal, the heights of the cells in the second cell group are equal, and the height of the second cell group is not equal to that of the first cell group. the height of.
  • the absolute value of the height difference between the second cell group and the first cell group is at most 20 mm.
  • the height of the second battery pack is smaller than that of the first battery pack, and the current collector is disposed in the accommodation space formed by the second battery pack and the top of the housing.
  • the current collector is located in the accommodating space formed by the second battery pack and the top of the casing, and the space in the height direction of the battery cells can be fully utilized to improve space utilization and energy density.
  • the tabs include positive tabs and negative tabs arranged at intervals along the length direction of the casing, the positive tab of the cell is bent and connected to a tab connection portion of a current collector, and the negative tab of the cell is Bending and connecting with the lug connection part of another current collecting piece, the two current collecting pieces are arranged at intervals along the length direction of the shell.
  • the height of the second cell group is greater than the height of the first cell group
  • the current collector is arranged in the accommodation space formed by the first cell group and the top of the casing, and the accommodation space It is divided into a first accommodating space and a second accommodating space by the first battery pack.
  • the current collector is located in the accommodating space formed by the first battery pack and the top of the casing, and the space in the height direction of the battery cells can be fully utilized to improve space utilization and energy density.
  • the current collector includes a first current collector, a second current collector, a third current collector, and a fourth current collector
  • the tabs include positive electrodes arranged at intervals along the length direction of the casing. Ears and negative tabs, the positive tabs of some cells are bent and connected to the tab connection part of the first current collector, the positive tabs of the remaining cells are bent and connected to the tab connection part of the second current collector, The negative tabs of some cells are bent and connected to the tab connection part of the third current collector, and the negative tabs of the remaining cells are bent and connected to the tab connection part of the fourth current collector;
  • the first current collecting piece and the third current collecting piece are located in the first accommodating space, and the second current collecting piece and the fourth current collecting piece are located in the second accommodating space.
  • the widths of the cells in the first cell group are equal, the widths of the cells in the second cell group are equal, and the widths of the cells in the second cell group are not equal to those of the first cell group.
  • the width of each cell in the core pack is fully utilized, and the space utilization rate and energy density are further improved.
  • each cell has the same width.
  • the battery cell further includes an insulator.
  • the insulator is arranged on the top of the casing on the side facing the battery core.
  • the insulator includes an insulating body and a supporting part.
  • the supporting part protrudes from one side of the insulating body facing the battery core.
  • the supporting part abuts against the main body of the electric core, so that the side of the insulating body facing the electric core is separated from the electric core.
  • the insulating member plays an insulating role, and at the same time, the side of the insulating member facing the electric core can form a space for accommodating the tabs, thereby improving space utilization.
  • the support portion is stepped and includes a plurality of steps, and the steps corresponding to the cells with different heights protrude from the side of the insulating body facing the cells with different sizes, so that the steps are all in contact with each other. to the body of the corresponding cell.
  • all the stepped portions can abut against the main body of the corresponding electric core, and the stepped portions play a better supporting role.
  • the housing includes a housing body and an end cover, the housing body is provided with a cavity with an opening, the end cover is set at the opening of the cavity, and the end cover is the top of the housing, and the battery cell is accommodated in the cavity Inside, the electrode terminal is set on the end cover.
  • the shell body and the end cover can be disassembled, which facilitates the quick disassembly and assembly of each battery cell.
  • a battery includes the above-mentioned battery cell.
  • the above-mentioned battery can improve space utilization and energy density.
  • An electric device includes the above-mentioned battery.
  • the above electric equipment can improve the battery life of the electric equipment.
  • a manufacturing method of the above-mentioned battery cell comprising: providing a casing, the top of the casing is provided with electrode terminals; providing a plurality of battery cells, at least two of which have different heights, and each battery cell includes a main body and a battery connected to the main body Tabs; provide current collectors, including tab connection parts and terminal connection parts; connect the tab connection parts to the tabs; connect the terminal connection parts to the electrode terminals; place multiple cells in the casing to make the current collectors It is located in the accommodating space formed by the main body of the battery core with the smallest height and the top of the casing.
  • the current collector can be fully utilized by setting the current collector in the accommodation space formed by the main body of the battery cell with the smallest height and the top of the casing.
  • the space of the monomer in the height direction improves space utilization and energy density.
  • Fig. 1 is the schematic diagram of electrical equipment in an embodiment
  • Fig. 2 is a combined schematic diagram of battery cells in an embodiment
  • FIG. 3 is an exploded view of the battery cell shown in FIG. 2;
  • Fig. 4 is a cross-sectional view of the A-A plane of the first embodiment of the battery cell shown in Fig. 2;
  • Fig. 5 is a cross-sectional view of A-A plane of the second embodiment of the battery cell shown in Fig. 2;
  • Fig. 6 is a cross-sectional view of A-A plane of the third embodiment of the battery cell shown in Fig. 2;
  • Fig. 7 is a B-B cross-sectional view of the battery cell shown in Fig. 2;
  • FIG. 8 is a schematic diagram of a manufacturing method of a battery cell.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • a first feature being "on” or “under” a second feature may mean that the first and second features are in direct contact, or that the first and second features are indirect through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • the power battery is a rechargeable battery that is the power source of new energy vehicles and is widely used in the field of new energy vehicles.
  • a battery or battery cell usually includes a casing, electrode terminals, cells and current collectors.
  • the electrode terminals are located on the top of the casing, and the cells are accommodated in the casing.
  • Each cell includes a main body and tabs connected to the main body.
  • the current collector includes a tab connection part and a terminal connection part, the tab connection part is used for connecting the tab, and the terminal connection part is used for connecting the electrode terminal.
  • the inventors have found that the current collectors and the connection between the current collectors and the tabs and/or electrode terminals require a certain space between the main body of the cell and the top of the casing. The more space is wasted.
  • the inventor has designed a battery cell with high space utilization and high energy density.
  • the current collector is arranged above the main body of some of the battery cells, and the height of the remaining battery cells is raised, so that the heights of at least two battery cells are different, and the current collector is set It is placed in the accommodation space formed by the main body of the battery cell with a small height and the top of the casing, so as to avoid the low space utilization rate inside the casing due to the same size of multiple cells, and reduce the loss of energy density.
  • a battery in this application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack, and the like.
  • Batteries generally include a case for enclosing one or more battery cells. The box can prevent liquid or other foreign objects from affecting the charging or discharging of the battery cells.
  • the battery may include multiple battery cells, wherein the multiple battery cells may be connected in series, in parallel or in parallel, and the hybrid connection refers to a mixture of series and parallel connections.
  • a plurality of battery cells can be connected in series, parallel or mixed to form a battery module, and then a plurality of battery modules can be connected in series, parallel or mixed to form a battery. That is to say, multiple battery cells can directly form a battery, or form a battery module first, and then form a battery from the battery module.
  • the battery is further arranged in the electric device to provide electric energy for the electric device.
  • the battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries, or magnesium-ion batteries, which are not limited in the embodiments of the present application.
  • the battery cell can be in the form of a cylinder, a flat body, a cuboid or other shapes, which is not limited in this embodiment of the present application.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square battery cells and pouch battery cells, which are not limited in this embodiment of the present application.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly is composed of a positive pole piece, a negative pole piece and a separator.
  • a battery cell works primarily by moving metal ions between the positive and negative pole pieces.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, the positive electrode active material layer is coated on the surface of the positive electrode current collector, and the positive electrode collector without the positive electrode active material layer protrudes from the positive electrode collector coated with the positive electrode active material layer. Fluid, the positive electrode current collector not coated with the positive electrode active material layer is used as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer, the negative electrode active material layer is coated on the surface of the negative electrode current collector, and the negative electrode collector without the negative electrode active material layer protrudes from the negative electrode collector coated with the negative electrode active material layer. Fluid, the negative electrode current collector not coated with the negative electrode active material layer is used as the negative electrode tab.
  • the material of the negative electrode current collector may be copper, and the negative electrode active material may be carbon or silicon.
  • the number of positive pole tabs is multiple and stacked together, and the number of negative pole tabs is multiple and stacked together.
  • the material of the isolation film may be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene).
  • the electrode assembly may be a wound structure or a laminated structure, which is not limited in the embodiment of the present application.
  • the electric device can be, but not limited to, vehicles, mobile phones, portable devices, notebook computers, ships, spacecraft, electric toys, electric tools, and the like.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles;
  • spacecraft include airplanes, rockets, space shuttles and spacecraft, etc.;
  • electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric boat toys and electric airplane toys, etc.; electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, electric planers, and more.
  • a vehicle 10 is taken as an example of an electric device in an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a vehicle 10 provided by some embodiments of the present application.
  • the vehicle 10 can be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • the interior of the vehicle 10 is provided with a battery 20 , and the battery 20 may be provided at the bottom, head or tail of the vehicle 10 .
  • the battery 20 can be used for power supply of the vehicle 10 , for example, the battery 20 can be used as an operating power source of the vehicle 10 .
  • the vehicle 10 may further include a controller 11 and a motor 12 , the controller 11 is used to control the battery 20 to supply power to the motor 12 , for example, for starting, navigating and driving the vehicle 10 .
  • the battery 20 can not only be used as an operating power source for the vehicle 10 , but can also be used as a driving power source for the vehicle 10 , replacing or partially replacing fuel oil or natural gas to provide driving force for the vehicle 10 .
  • a battery cell in an embodiment includes a casing 100, an electrode terminal 200, a plurality of battery cells 300 and a current collector 400, the electrode terminal 200 is arranged on the top of the casing 100, and a plurality of battery cells 300 housed in the housing 100.
  • Each cell 300 includes a main body 310 and a tab 320 connected to the main body 310.
  • the current collector 400 includes a tab connection part 410 and a terminal connection part 420.
  • the tab connection part 410 is used to connect the tab 320, and the terminal connection part 420 For connecting the electrode terminal 200;
  • At least two battery cells 300 have different heights, and the current collector 400 is disposed in the accommodating space 101 formed by the main body 310 of the battery cell 300 with the smallest height and the top of the case 100 .
  • the height refers to the dimension in the Z direction shown in FIG. 2
  • the width refers to the dimension in the X direction shown in FIG. 2
  • the length refers to the dimension in the Y direction shown in FIG. 2 .
  • the tabs 320 include positive tabs 321 and negative tabs 322 arranged at intervals along the length of the housing 100 , and each cell 300 has a positive tab 321 and a negative tab 322 .
  • the electrode terminal 200 includes a positive terminal 210 and a negative terminal 220 arranged at intervals along the length direction of the housing 100.
  • the positive terminal 210 is connected to the positive tab 321 through a current collector 400, and the negative terminal 220 and the negative tab 322 are connected through another current collector. 400 connections.
  • the tab 320 is formed by extending from the top of the main body 310 , that is, the tab 320 and the main body 310 are integrally formed. In other embodiments, the tab 320 may also be connected to the top of the main body 310 by welding.
  • the tab connection portion 410 is U-shaped, and the terminal connection portion 420 is circular.
  • the terminal connection portion 420 and the tab connection portion 410 may be on the same plane or different planes.
  • the lug connection portion 410 may also be in a circular, rectangular or other shape, and the terminal connection portion 420 may also be in a rectangular or other shape.
  • the tab connection portion 410 is fixedly connected to the terminal connection portion 420 .
  • the terminal connection part 420 and the tab connection part 4100 may also be connected through a fuse part or a transition part.
  • the battery cells 300 are arranged side by side along the width direction of the housing 100 , the two outermost battery cells 300 are the first battery cell group 301 , and the battery cells between the two outermost battery cells 300 are 300 is a second battery pack 302 .
  • the battery cells 300 are arranged side by side along the same direction, which reduces the occupied space and is beneficial to improve the space utilization rate of the casing 100 .
  • each battery cell 300 is arranged side by side along the width direction of the case 100 (ie, the X direction shown in FIG. 3 ). In other implementation manners, the battery cells 300 can also be arranged side by side along the length direction of the casing 100 (ie, the Y direction shown in FIG. 3 ).
  • the heights of the cells 300 in the first cell group 301 are equal, the heights of the cells 300 in the second cell group 302 are equal, and the heights of the second cell group 302 are different. It is equal to the height of the first battery pack 301 .
  • the same processing equipment and auxiliary fixtures can be used repeatedly during the processing of the battery cells 300 of the same size.
  • the space utilization of the battery cells can be improved by disposing the current collector 400 in the accommodation space 101 formed by the battery cell 300 group with the smallest height and the top of the casing 100 efficiency and energy density, and at the same time facilitate the production and processing of each battery cell 300 in the same battery cell 300 group, which is conducive to saving processing costs.
  • the accommodating space 101 for accommodating the current collector 400 When the absolute value of the height difference between the two groups of battery cells 300 is too large, although the accommodating space 101 for accommodating the current collector 400 can be enlarged, the overall volume of the battery cell will be too large and occupy a large space; If the absolute value of the height difference of the assembled cells 300 is too small, although the overall volume of the battery cell can be reduced, the accommodating space 101 for accommodating the current collector 400 will be too small to accommodate the current collector 400 .
  • the absolute value of the height difference between the second cell group 302 and the first cell group 301 is at most 20 mm. Through this setting, the accommodating space 101 can effectively accommodate the current collector 400 and the overall volume of the battery cell will not be too large.
  • the absolute value of the height difference between the second cell group 302 and the first cell group 301 is 10 mm. In some other embodiments, the absolute value of the height difference between the second cell group 302 and the first cell group 301 is 5 mm.
  • the absolute value of the height difference between the second battery pack 302 and the first battery pack 301 can also be designed as other values according to actual needs.
  • the absolute value of the height difference refers to the absolute value of the height of the second battery pack 302 minus the height of the first battery pack 301 .
  • the height of the second cell group 302 is smaller than the height of the first cell group 301 , and the current collector 400 is arranged in the accommodation formed by the second cell group 302 and the top of the housing 100 Inside space 101.
  • each battery cell 300 in the second battery cell group 302 is the normal height H
  • the height of each battery cell 300 in the first battery cell group 301 is the height H1 after the normal height H is increased.
  • the difference between H1 and H is at most 20 mm.
  • the current collector 400 is located in the accommodating space 101 formed by the second cell pack 302 and the top of the case 100 , and the space in the height direction of the battery cells can be fully utilized to improve space utilization and energy density.
  • the positive tab 321 of the cell 300 is bent and connected to the tab connection portion 410 of a current collector 400
  • the negative tab 322 of the cell 300 is bent and connected to the other tab.
  • the lug connection portions 410 of the current collectors 400 are connected, and the two current collectors 400 are arranged at intervals along the length direction of the casing 100 . Through this arrangement, the tabs 320 of each battery cell 300 can be smoothly connected to the current collector 400 .
  • a plurality of battery cells 300 include a first battery cell 300a, a second battery cell 300b, a third battery cell 300c, and a fourth battery cell 300d, and the first battery cell 300a, the second battery cell
  • the cell 300b, the third cell 300c and the fourth cell 300d are arranged side by side in sequence along the width direction of the casing 100, and the first cell 300a and the fourth cell 300d located on the outermost side are the first cell group 301, located in the first
  • the second battery cell 300 b and the third battery cell 300 c between the battery cell 300 a and the fourth battery cell 300 d are the second battery cell group 302 .
  • the heights of the first cell 300a and the fourth cell 300d are equal, the heights of the second cell 300b and the third cell 300c are equal, and the heights of the second cell 300b and the third cell 300c are smaller than the heights of the first cell 300a, The height of the fourth cell 300d.
  • the positive tabs 321 of the first cell 300a, the second cell 300b, the third cell 300c and the fourth cell 300d are bent and connected to the tab connection portion 410 of a current collector 400
  • the first cell 300a, the second cell 300b, the third cell 300c, and the fourth cell 300d are bent and connected to the tab connection part 410 of another current collector 400
  • the two current collectors 400 are arranged on the second Inside the accommodating space 101 formed by the second cell 300b, the third cell 300c and the top of the case 100 .
  • the terminal connection portion 420 of one current collector 400 is connected to the positive terminal 210
  • the terminal connection portion 420 of the other current collector 400 is connected to the negative terminal 220 .
  • the tabs are collected two by two and arranged symmetrically, respectively connected to the two tab connection parts 410 of the current collector 400, so that compared with four tabs gathered together, the stacked thickness of the tabs is smaller , reduce the risk of false welding and space occupation.
  • the height of the second cell group 302 is greater than the height of the first cell group 301 , and the current collector 400 is arranged on the top of the first cell group 301 and the casing 100
  • the accommodating space 101 is formed, and the accommodating space 101 is divided into a first accommodating space 102 and a second accommodating space 103 by the first cell pack 301 .
  • each battery cell 300 in the first battery cell group 301 is the normal height H
  • the height of each battery cell 300 in the second battery cell group 302 is the height H2 after the normal height H is increased.
  • the difference between H2 and H is at most 20mm.
  • the current collector 400 is located in the accommodating space 101 formed by the first cell pack 301 and the top of the casing 100 , and the space in the height direction of the battery cells can be fully utilized to improve space utilization and energy density.
  • the battery cells 300 are arranged side by side along the width direction of the casing 100, the two outermost battery cells 300 are the first battery cell group 301, and one battery cell 300 of the two outermost battery cells 300 is A first accommodating space 102 is formed with the top of the housing 100 , and a second accommodating space 103 is formed with the other battery cell 300 of the two outermost battery cells 300 and the top of the housing 100 .
  • the current collector 400 includes a first current collector, a second current collector, a third current collector, and a fourth current collector, and part of the electric core 300
  • the positive tab 321 is bent and connected to the tab connection portion 410 of the first current collector, and the positive tab 321 of the remaining cells 300 is bent and connected to the tab connection portion 410 of the second current collector.
  • the negative tab 322 of the first current collector is bent and connected to the tab connection portion 410 of the third current collector, and the negative tab 322 of the remaining cell 300 is bent and connected to the tab connection portion 410 of the fourth current collector; the first current collector
  • the current collecting piece and the third current collecting piece are located in the first accommodating space 102
  • the second current collecting piece and the fourth current collecting piece are located in the second accommodating space 103 .
  • a plurality of battery cells 300 include a first battery cell 300a, a second battery cell 300b, a third battery cell 300c, and a fourth battery cell 300d, the first battery cell 300a, the second battery cell
  • the cell 300b, the third cell 300c and the fourth cell 300d are arranged side by side in sequence along the width direction of the casing 100, and the first cell 300a and the fourth cell 300d located on the outermost side are the first cell group 301, located in the first
  • the second battery cell 300 b and the third battery cell 300 c between the battery cell 300 a and the fourth battery cell 300 d are the second battery cell group 302 .
  • the heights of the first cell 300a and the fourth cell 300d are equal, the heights of the second cell 300b and the third cell 300c are equal, and the heights of the second cell 300b and the third cell 300c are greater than the heights of the first cell 300a, The height of the fourth cell 300d.
  • the positive tabs 321 of the first cell 300a and the second cell 300b are bent and connected to the tab connection portion 410 of the first current collector, and the positive tabs 321 of the third cell 300c and the fourth cell 300d are bent Bend and connect with the lug connection part 410 of the second current collector; the negative tab 322 of the first cell 300a and the second cell 300b is bent and connected with the tab connection part 410 of the third current collector, the second The negative tabs 322 of the third cell 300c and the fourth cell 300d are bent and connected to the tab connection portion 410 of the fourth current collector.
  • the first current collecting piece and the third current collecting piece are located in the first accommodating space 102
  • the second current collecting piece and the fourth current collecting piece are located in the second accommodating space 103 .
  • the terminal connection portion 420 of the first current collector is connected to one positive terminal 210
  • the terminal connection portion 420 of the second current collector is connected to the other positive terminal 210
  • the third current collector is connected to the other positive terminal 210.
  • the terminal connection part 420 of the current collector is connected to a negative terminal 220, and the terminal connection part 420 of the fourth current collector is connected to the other negative terminal 220, so as to realize the electrical connection between the tab 320 and the electrode terminal 200; or, by setting a positive electrode Terminal 210 and a negative pole terminal 220, make the terminal connection part 420 of the first current collecting part and the terminal connecting part 420 of the second current collecting part connect a current collecting common part, a current collecting common part connects a positive pole terminal 210, the third
  • the terminal connection part 420 of the current collector is connected to the terminal connection part 420 of the fourth current collector through another current collector common part, and another current collector common part is connected to a negative terminal 220 to realize the connection between the tab 320 and the electrode terminal 200. electrical connection.
  • each battery cell 300 has an influence on the capacity and volume of the battery cell, and the setting of the width of each battery cell 300 should also be considered when designing the battery cell.
  • the widths of the cells 300 are equal.
  • the widths of the cells 300 are equal, and the heights of at least two cells 300 are unequal.
  • the widths of the cells 300 in the first cell group 301 are equal, the widths of the cells 300 in the second cell group 302 are equal, and the widths of the cells 300 in the second cell group 302 are equal.
  • the width of each cell 300 is not equal to the width of each cell 300 in the first cell group 301 .
  • the widths of the cells 300 in the two groups of cells 300 are not equal, and the heights of the groups of cells 300 are not equal.
  • the width of each cell 300 in the second cell group 302 is greater than the width of each cell 300 in the first cell group 301 .
  • the width of each cell 300 in the second cell group 302 is 1.1-2 times the width of each cell 300 in the first cell group 301 .
  • a plurality of battery cells 300 include a first battery cell 300a, a second battery cell 300b, a third battery cell 300c and a fourth battery cell 300d, the first battery cell 300a, the second battery cell 300b, the third battery cell 300c and The fourth battery cells 300d are arranged side by side in sequence along the width direction of the casing 100, the first battery cell 300a and the fourth battery cell 300d located on the outermost side are the first battery cell group 301, and the first battery cell 300a and the fourth battery cell 300d are located The second battery cell 300b and the third battery cell 300c between them are the second battery cell group 302 .
  • the width of the first cell 300a is equal to that of the fourth cell 300d
  • the width of the second cell 300b is equal to that of the third cell 300c
  • the width of the second cell 300b and the third cell 300c is larger than that of the first cell 300a, the width of the fourth cell 300d
  • the height of the first cell 300a is equal to that of the fourth cell 300d
  • the height of the second cell 300b is equal to that of the third cell 300c
  • the height of the second cell 300b is equal to that of the third cell
  • the height of 300c is greater than or smaller than the heights of the first cell 300a and the fourth cell 300d.
  • the width of each cell 300 in the second cell group 302 is smaller than the width of each cell 300 in the first cell group 301 .
  • the width of each cell 300 in the second cell group 302 is 0.3-0.9 times the width of each cell 300 in the first cell group 301 .
  • a plurality of battery cells 300 include a first battery cell 300a, a second battery cell 300b, a third battery cell 300c and a fourth battery cell 300d, the first battery cell 300a, the second battery cell 300b, the third battery cell 300c and The fourth battery cells 300d are arranged side by side in sequence along the width direction of the casing 100, the first battery cell 300a and the fourth battery cell 300d located on the outermost side are the first battery cell group 301, and the first battery cell 300a and the fourth battery cell 300d are located The second battery cell 300b and the third battery cell 300c between them are the second battery cell group 302 .
  • the width of the first cell 300a is equal to that of the fourth cell 300d
  • the width of the second cell 300b is equal to that of the third cell 300c
  • the width of the second cell 300b and the third cell 300c is smaller than that of the first cell 300a, the width of the fourth cell 300d
  • the height of the first cell 300a is equal to that of the fourth cell 300d
  • the height of the second cell 300b is equal to that of the third cell 300c
  • the height of the second cell 300b is equal to that of the third cell
  • the height of 300c is greater than or smaller than the heights of the first cell 300a and the fourth cell 300d.
  • the battery cell further includes an insulator 500 , and the insulator 500 is disposed on the top side of the casing 100 facing the battery cell 300 .
  • the insulator 500 includes an insulating body 510 and a supporting portion 520 , the supporting portion 520 protrudes from the side of the insulating body 510 facing the cell 300 , and the supporting portion 520 abuts against the side of the cell 300
  • the main body 310 is such that the side of the insulating body 510 facing the battery core 300 is separated from the battery core 300 .
  • the insulating member 500 plays an insulating role, and at the same time, the side of the insulating member 500 facing the battery core 300 can form a space for accommodating the tab 320 , thereby improving space utilization.
  • the insulating part 500 is a plastic part, and the insulating body 510 and the supporting part 520 are integrally formed by injection molding, which has good integrity and is easy to process.
  • the insulating body 510 and the supporting part 520 may also be a split structure.
  • the supporting parts 520 are arranged at intervals along the side of the insulating body 510 facing the battery cell 300 .
  • the number of the supporting portion 520 may be one, and the supporting portion 520 protrudes along the edge of the insulating body 510 facing the battery core 300 .
  • the support portion 520 is stepped and includes a plurality of steps, and the steps corresponding to the cells 300 with different heights protrude from the side of the insulating body 510 facing the cells 300 .
  • the sizes are different, so that the stepped portions are all in contact with the main body 310 of the corresponding battery cell 300 .
  • the side of the stepped portion facing the main body 310 of the battery cell 300 is flat, so as to be in better contact with the main body 310 of the battery cell 300 .
  • the side of the stepped portion facing the main body 310 of the battery cell 300 may also be arc-shaped or have other shapes.
  • the housing 100 includes a housing body 110 and an end cover 120, the housing body 110 is provided with a cavity 111 with an opening, the end cover 120 covers the opening of the cavity 111, and the end cover 120 is On the top of the casing 100 , the battery cell 300 is accommodated in the cavity 111 , and the electrode terminal 200 is disposed on the end cover 120 .
  • case body 110 and the end cover 120 can be disassembled, which facilitates quick disassembly and assembly of each battery cell 300 .
  • the shell body 110 and the end cover 120 are fixedly connected by welding, which has high mechanical strength and is not easy to loosen.
  • the shell body 110 and the end cover 120 can also be detachably connected by clamping or buckling, or the shell body 110 and the end cover 120 are integrally formed.
  • the housing body 110 is in the shape of a cuboid
  • the end cover 120 is in the shape of a rectangle.
  • the shell body 110 and the end cover 120 may also have other shapes.
  • a battery 20 in an embodiment includes the above-mentioned battery cells. With this arrangement, the energy density of the battery 20 can be increased.
  • an electric device in an embodiment includes the above-mentioned battery 20 , and the battery 20 is used to provide electric energy. Through this setting, the battery life of the electric device can be improved.
  • a method for manufacturing a battery cell in an embodiment includes the following steps:
  • the top of the shell 100 is provided with an electrode terminal 200;
  • each electric core 300 includes a main body 310 and a tab 320 connected to the main body 310;
  • a current collector 400 including a lug connection part 410 and a terminal connection part 420;
  • a plurality of battery cells 300 are accommodated in the casing 100 , so that the current collector 400 is located in the accommodating space 101 formed by the main body 310 of the battery cell 300 with the smallest height and the top of the casing 100 .
  • the tab connection part 410 and the tab 320 are connected by welding, the terminal connection part 420 and the electrode terminal 200 are connected by welding, and the welding needs to be removed after welding. scum.
  • a plurality of battery cells 300 are accommodated in the casing body 110 of the casing 100 , and then the end cap 120 is welded on the top of the casing body 110 .
  • the present application provides a battery cell, including a casing 100 , an electrode terminal 200 , a plurality of battery cells 300 and a current collector 400 , and the electrode terminal 200 is arranged on the top of the casing 100 , a plurality of battery cells 300 are accommodated in the casing 100 .
  • Each cell 300 includes a main body 310 and a tab 320 connected to the main body 310.
  • the current collector 400 includes a tab connection part 410 and a terminal connection part 420.
  • the tab connection part 410 is used to connect the tab 320, and the terminal connection part 420 Used to connect the electrode terminal 200; wherein, a plurality of battery cells 300 include a first battery cell 300a, a second battery cell 300b, a third battery cell 300c and a fourth battery cell 300d, the first battery cell 300a, the second battery cell 300b, the third cell 300c and the fourth cell 300d are arranged side by side in sequence along the width direction of the casing 100, the width and height of the first cell 300a and the fourth cell 300d are equal, the second cell 300b and the third cell The width and height of 300c are equal, and the heights of the first cell 300a and the fourth cell 300d are greater or smaller than the heights of the second cell 300b and the third cell 300c.
  • the present application provides a battery 20 including the above-mentioned battery cells.
  • the present application provides a device powered by a battery 20 , including the above-mentioned battery 20 .
  • the present application provides a method for manufacturing a battery cell, including the following steps: providing a casing 100, and an electrode terminal 200 is provided on the top of the casing 100; Core 300, at least two electric cores 300 have different heights, each electric core 300 includes a main body 310 and a tab 320 connected to the main body 310; a current collector 400 is provided, including a tab connection part 410 and a terminal connection part 420; The lug connection part 410 is welded to the tab 320; the terminal connection part 420 is welded to the electrode terminal 200; a plurality of cells 300 are placed in the casing 100, so that the current collector 400 is located at the main body 310 of the cell 300 with the smallest height In the accommodating space 101 formed with the top of the housing 100 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本申请涉及一种用电设备、电池、电池单体及其制造方法,一种电池单体包括外壳(100)、电极端子(200)、多个电芯(300)及集流件(400),电极端子(200)设于所述外壳(100)的顶部,多个电芯(300)容置于所述外壳(100)内,至少两个电芯(300)的高度不同,集流件(400)设于高度最小的电芯(300)的主体(310)与外壳(100)的顶部形成的容置空间内。一种电池包括上述的电池单体。一种用电设备包括上述的电池。一种上述的电池单体的制造方法包括:使集流件(400)位于高度最小的电芯(300)的主体(310)与外壳(100)的顶部形成的容置空间内。上述的用电设备、电池、电池单体及其制造方法,提高了空间利用率及能量密度。

Description

用电设备、电池、电池单体及其制造方法
交叉引用
本申请引用于2022年2月10日递交的名称为“用电设备、电池、电池单体及其制造方法”的第202210124365.X号中国专利申请,其通过引用被全部并入本申请。
技术领域
本申请涉及动力电池技术领域,更具体的说,涉及一种用电设备、电池、电池单体及其制造方法。
背景技术
动力电池为一种可充电的电池,是新能源汽车等用电设备的动力来源,在新能源汽车领域中被广泛应用。
随着新能源汽车的普及和推广,新能源汽车的充放电性能、续航能力等日益引起人们的关注和重视,当电池内部的空间利用率较低时,会损失较多的能量密度,影响其使用性能。
发明内容
有鉴于此,本申请公开一种用电设备、电池、电池单体及其制造方法。
一种电池单体包括外壳、电极端子、多个电芯及集流件,电极端子设于外壳的顶部,多个电芯容置于外壳内,每一电芯包括主体及连接于主体的极耳,集流件包括极耳连接部和端子连接部,极耳连接部用于连接极耳,端子连接部用于连接电极端子;其中,至少两个电芯的高度不同,集流件设于高度最小的电芯的主体与外壳的顶部形成的容置空间内。上述的电池单体,至少两个电芯之间会存在高度差,通过将集流件设于高度最小的电芯的主体与外壳的顶部形成的容置空间内,能够充分利用电池单体在高度方向上的空间,提高空间利用率及能量密度。
在其中一实施例中,各电芯沿外壳的宽度方向并排设置,位于最外侧的两个电芯为第一电芯组,位于最外侧的两个电芯之间的各电芯为第二电芯组。通过该设置,各电芯沿同一方向并排设置,减小占用空间,且有利于提高外壳的空间利用率。
在其中一实施例中,第一电芯组中的各电芯的高度相等,第二电芯组中的各电芯的高度相等,且第二电芯组的高度不等于第一电芯组的高度。通过该设置,两组电芯组存在高度 差,通过将集流件设于高度最小的电芯组与外壳的顶部形成的容置空间内,能够提高电池单体的空间利用率及能量密度,同时便于同一电芯组中的各电芯生产加工,有利于节约加工成本。
在其中一实施例中,第二电芯组与第一电芯组的高度差的绝对值至多为20mm。通过该设置,能够使容置空间有效容纳集流件且电池单体整体体积不会过大。
在其中一实施例中,第二电芯组的高度小于第一电芯组的高度,集流件设于第二电芯组与外壳的顶部形成的容置空间内。通过该设置,集流件位于第二电芯组与外壳的顶部形成的容置空间内,能够充分利用电池单体在高度方向上的空间,提高空间利用率及能量密度。
在其中一实施例中,极耳包括沿外壳的长度方向间隔排布的正极耳及负极耳,电芯的正极耳折弯并与一集流件的极耳连接部连接,电芯的负极耳折弯并与另一集流件的极耳连接部连接,两个集流件沿外壳的长度方向间隔设置。通过该设置,能够使各电芯的极耳与集流件顺畅地连接。
在其中一实施例中,第二电芯组的高度大于第一电芯组的高度,集流件设于第一电芯组与外壳的顶部形成的容置空间内,且所述容置空间被第一电芯组划分为第一容置空间和第二容置空间。通过该设置,集流件位于第一电芯组与外壳的顶部形成的容置空间内,能够充分利用电池单体在高度方向上的空间,提高空间利用率及能量密度。
在其中一实施例中,集流件包括第一集流件、第二集流件、第三集流件和第四集流件,极耳包括沿所述外壳的长度方向间隔排布的正极耳及负极耳,部分电芯的正极耳折弯并与第一集流件的极耳连接部连接,剩余的电芯的正极耳折弯并与第二集流件的极耳连接部连接,部分电芯的负极耳折弯并与第三集流件的极耳连接部连接,剩余电芯的负极耳折弯并与第四集流件的极耳连接部连接;
第一集流件和第三集流件位于第一容置空间内,第二集流件和第四集流件位于第二容置空间内。通过该设置,能够使各电芯的极耳与集流件顺畅地连接。
在其中一实施例中,第一电芯组中的电芯的宽度相等,第二电芯组中的电芯的宽度相等,且第二电芯组中各电芯的宽度不等于第一电芯组中各电芯的宽度。通过该设置,充分利用电池单体在高度方向及宽度方向上的空间,进一步提高空间利用率及能量密度。
在其中一实施例中,各电芯的宽度均相等。通过该设置,在提高空间利用率及能量密度的基础上,便于各电芯的生产加工,有利于节约生产成本。
在其中一实施例中,电池单体还包括绝缘件,绝缘件设于外壳的顶部朝向电芯的一侧,绝缘件包括绝缘本体及支撑部,支撑部凸设于绝缘本体朝向电芯的一侧,支撑部抵接于电芯的主体,以使绝缘本体朝向电芯的一侧与电芯分离。通过该设置,绝缘件起到绝缘作用,同时绝缘件朝向电芯的一侧能形成容纳极耳的空间,提高空间利用率。
在其中一实施例中,支撑部呈阶梯状且包括多个台阶部,高度不同的电芯对应的台阶 部凸出于绝缘本体朝向电芯的一侧的尺寸不同,以使台阶部均抵接于对应的电芯的主体。通过该设置,能够使台阶部均抵接于对应的电芯的主体,台阶部起到较好的支撑作用。
在其中一实施例中,外壳包括壳本体及端盖,壳本体内设具有开口的容腔,端盖盖设于容腔开口处,且端盖为外壳的顶部,电芯容置于容腔内,电极端子设于端盖。通过该设置,壳本体及端盖能够拆卸,便于各电芯的快速拆装。通过该设置,
一种电池包括上述的电池单体。上述的电池,能够提高空间利用率及能量密度。
一种用电设备包括上述的电池。上述的用电设备,能够提高用电设备的续航能力。
一种上述的电池单体的制造方法,包括:提供外壳,外壳的顶部设有电极端子;提供多个电芯,至少两个电芯的高度不同,每一电芯包括主体及连接于主体的极耳;提供集流件,包括极耳连接部和端子连接部;将极耳连接部连接极耳;将端子连接部连接电极端子;将多个电芯容置于外壳内,使集流件位于高度最小的电芯的主体与所述外壳的顶部形成的容置空间内。上述的电池单体的制造方法,至少两个电芯之间会存在高度差,通过将集流件设于高度最小的电芯的主体与外壳的顶部形成的容置空间内,能够充分利用电池单体在高度方向上的空间,提高空间利用率及能量密度。
附图说明
图1为一实施例中用电设备的示意图;
图2为一实施例中电池单体的组合示意图;
图3为图2所示电池单体的爆炸图;
图4为图2所示电池单体的第一实施例的A-A面剖视图;
图5为图2所示电池单体的第二实施例的A-A面剖视图;
图6为图2所示电池单体的第三实施例的A-A面剖视图;
图7为图2所示电池单体的B-B面剖视图;
图8为电池单体的制造方法的示意图。
附图标记:
10、车辆;11、控制器;12、马达;20、电池;100、外壳;101、容置空间;102、第一容置空间;103、第二容置空间;110、壳本体;111、容腔;120、端盖;200、电极端子;210、正极端子;220、负极端子;300、电芯;300a、第一电芯;300b、第二电芯;300c、第三电芯;300d、第四电芯;301、第一电芯组;302、第二电芯组;310、主体;320、极耳;321、正极耳;322、负极耳;400、集流件;410、极耳连接部;420、端子连接部;500、绝缘件;510、绝缘本体;520、支撑部。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
随着新能源汽车的普及和推广,新能源汽车的充放电性能、续航能力等日益引起人们的关注和重视。动力电池为一种可充电的电池是新能源汽车的动力来源,在新能源汽车领域中被广泛应用。
电池或电池单体通常包括外壳、电极端子、电芯和集流件,电极端子设于外壳的顶部,电芯被容置于外壳内,每一电芯均包括主体及连接于主体的极耳,集流件包括极耳连接部和 端子连接部,极耳连接部用于连接极耳,端子连接部用于连接电极端子。
但是发明人发现,集流件以及集流件和极耳和/或电极端子的连接需要电芯主体和外壳顶部之间具有一定的空间,当电芯个数越多,为容纳集流件而浪费的空间就越大。
基于上述考虑,经深入研究,发明人设计了一种空间利用率高,且能量密度高的电池单体。当电池单体外壳中容纳有多个电芯时,将集流件设置在部分电芯的主体上方,升高其余电芯的高度,使得至少两个电芯的高度不同,且集流件设于高度较小的电芯的主体与外壳的顶部形成的容置空间内,从而避免因为多个电芯尺寸一致,导致外壳内部的空间利用率低,减少能量密度的损失。
需说明的是,本申请中的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
为了满足不同的电力需求,电池可以包括多个电池单体,其中,多个电池单体之间可以串联或并联或混联,混联是指串联和并联的混合。可选地,多个电池单体可以先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联组成电池。也就是说,多个电池单体可以直接组成电池,也可以先组成电池模块,电池模块再组成电池。电池再进一步设置于用电设备中,为用电设备提供电能。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
电池单体包括电极组件和电解液,电极组件由正极极片、负极极片和隔离膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
本申请中提供一种用电池作为电源的用电设备,用电设备可以为但不限于车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。
以下实施例为了方便说明,以本申请一实施例的一种用电设备为车辆10为例进行说明。
请参考图1,图1为本申请一些实施例提供的车辆10的结构示意图。车辆10可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆10的内部设置有电池20,电池20可以设置在车辆10的底部或头部或尾部。电池20可以用于车辆10的供电,例如,电池20可以作为车辆10的操作电源。车辆10还可以包括控制器11和马达12,控制器11用来控制电池20为马达12供电,例如,用于车辆10的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池20不仅可以作为车辆10的操作电源,还可以作为车辆10的驱动电源,代替或部分地代替燃油或天然气为车辆10提供驱动力。
请参考图2及图3,一实施例中的电池单体包括外壳100、电极端子200、多个电芯300及集流件400,电极端子200设于外壳100的顶部,多个电芯300容置于外壳100内。每一电芯300包括主体310及连接于主体310的极耳320,集流件400包括极耳连接部410和端子连接部420,极耳连接部410用于连接极耳320,端子连接部420用于连接电极端子200;
其中,至少两个电芯300的高度不同,集流件400设于高度最小的电芯300的主体310与外壳100的顶部形成的容置空间101内。
通过上述设置,至少两个电芯300之间会存在高度差,通过将集流件400设于高度最小的电芯300的主体310与外壳100的顶部形成的容置空间101内,能够充分利用电池单体在高度方向上的空间,提高空间利用率及能量密度。
此处需说明的是,高度是指图2所示Z方向上的尺寸,宽度是指图2所示X方向上的尺寸,长度是指图2所示Y方向上的尺寸。
在具体实施方式中,如图3所示,极耳320包括沿外壳100的长度方向间隔排布的正极耳321及负极耳322,每一电芯300均具有正极耳321及负极耳322。电极端子200包括沿外壳100的长度方向间隔排布的正极端子210及负极端子220,正极端子210与正极耳321通过一集流件400连接,负极端子220与负极耳322通过另一集流件400连接。
在本实施方式中,如图3所示,极耳320由主体310的顶部延伸而成,也即极耳320 与主体310为一体成型结构。在其他实施方式中,极耳320还可以通过焊接方式连接于主体310的顶部。
在本实施方式中,如图3所示,极耳连接部410呈U形,端子连接部420呈圆形,端子连接部420与极耳连接部410可以处于同一平面或不同平面。在其他实施方式中,极耳连接部410还可以呈圆形、矩形或其他形状,端子连接部420还可以呈矩形或其他形状。
在本实施方式中,如图3所示,极耳连接部410与端子连接部420固定连接。在其他实施方式中,端子连接部420与极耳连接部4100还可以通过熔断部或过渡部连接。
请参考图3,各电芯300沿外壳100的宽度方向并排设置,位于最外侧的两个电芯300为第一电芯组301,位于最外侧的两个电芯300之间的各电芯300为第二电芯组302。
通过该设置,各电芯300沿同一方向并排设置,减小占用空间,且有利于提高外壳100的空间利用率。
在本实施方式中,各电芯300沿外壳100的宽度方向(即图3所示X方向)并排设置。在其他实施方式中,各电芯300还可以沿外壳100的长度方向(即图3所示Y方向)并排设置。
请参考图3及图4,第一电芯组301中的各电芯300的高度相等,第二电芯组302中的各电芯300的高度相等,且第二电芯组302的高度不等于第一电芯组301的高度。
可以理解的是,相同尺寸的电芯300在加工时可以重复使用同一加工设备及辅助夹具。通过上述设置,两组电芯300组存在高度差,通过将集流件400设于高度最小的电芯300组与外壳100的顶部形成的容置空间101内,能够提高电池单体的空间利用率及能量密度,同时便于同一电芯300组中的各电芯300生产加工,有利于节约加工成本。
当两组电芯300组的高度差的绝对值过大时,虽然能够使容纳集流件400的容置空间101变大,但会导致电池单体整体体积过大,占用空间大;当两组电芯300组的高度差的绝对值过小时,虽然能够减小电池单体整体体积,但会导致容纳集流件400的容置空间101过小,而无法容置集流件400。
基于上述考虑,在图4示出的实施方式中,第二电芯组302与第一电芯组301的高度差的绝对值至多为20mm。通过该设置,能够使容置空间101有效容纳集流件400且电池单体整体体积不会过大。
例如,在一些实施例中,第二电芯组302与第一电芯组301的高度差的绝对值为10mm。在另一些实施例中,第二电芯组302与第一电芯组301的高度差的绝对值为5mm。
在其他实施例中,第二电芯组302与第一电芯组301的高度差的绝对值还可以为根据实际需求设计为其他数值。
此处需说明的是,高度差的绝对值是指第二电芯组302的高度减去第一电芯组301的高度的绝对值。
如图4示出的一实施例中,第二电芯组302的高度小于第一电芯组301的高度,集流件400设于第二电芯组302与外壳100的顶部形成的容置空间101内。
此处需说明的是,第二电芯组302中各电芯300的高度为正常高度H,第一电芯组301中的各电芯300的高度为正常高度H加高后的高度H1,H1与H的差值至多为20mm。
通过上述设置,集流件400位于第二电芯组302与外壳100的顶部形成的容置空间101内,能够充分利用电池单体在高度方向上的空间,提高空间利用率及能量密度。
具体地,如图4及图3所示,电芯300的正极耳321折弯并与一集流件400的极耳连接部410连接,电芯300的负极耳322折弯并与另一集流件400的极耳连接部410连接,两个集流件400沿外壳100的长度方向间隔设置。通过该设置,能够使各电芯300的极耳320与集流件400顺畅地连接。
例如,如图4及图3所示,多个电芯300包括第一电芯300a、第二电芯300b、第三电芯300c及第四电芯300d,第一电芯300a、第二电芯300b、第三电芯300c及第四电芯300d沿外壳100的宽度方向依次并排设置,位于最外侧的第一电芯300a及第四电芯300d为第一电芯组301,位于第一电芯300a及第四电芯300d之间的第二电芯300b及第三电芯300c为第二电芯组302。第一电芯300a与第四电芯300d的高度相等,第二电芯300b与第三电芯300c的高度相等,第二电芯300b、第三电芯300c的高度小于第一电芯300a、第四电芯300d的高度。
其中,第一电芯300a、第二电芯300b、第三电芯300c及第四电芯300d的正极耳321折弯并与一集流件400的极耳连接部410连接,第一电芯300a、第二电芯300b、第三电芯300c及第四电芯300d的负极耳322折弯并与另一集流件400的极耳连接部410连接,两个集流件400设于第二电芯300b、第三电芯300c与外壳100的顶部形成的容置空间101内。
通过设置一个正极端子210及一个负极端子220,一集流件400的端子连接部420与正极端子210连接,另一集流件400的端子连接部420与负极端子220连接。
需说明的是,如图4及图3所示,第一电芯300a和第二电芯300b的正极耳弯折汇集在一起,第三电芯300c和第四电芯300d的正极耳弯折汇集在一起,两个汇集的正极耳对称设置;第一电芯300a和第二电芯300b的负极耳弯折汇集在一起,第三电芯300c和第四电芯300d的负极耳弯折汇集在一起,两个汇集的负极耳对称设置。
通过上述设置,极耳两个两个地汇集然后对称设置,分别与集流件400的两个极耳连接部410连接,这样相较于四个汇集在一起,其极耳叠加的厚度更小,减小虚焊的风险和空间的占用。
如图5及图7示出的另一实施例中,第二电芯组302的高度大于第一电芯组301的高度,集流件400设于第一电芯组301与外壳100的顶部形成的容置空间101内,且容置空间101被第一电芯组301划分为第一容置空间102和第二容置空间103。
此处需说明的是,第一电芯组301中各电芯300的高度为正常高度H,第二电芯组302中的各电芯300的高度为正常高度H加高后的高度H2,H2与H的差值至多为20mm。
通过上述设置,集流件400位于第一电芯组301与外壳100的顶部形成的容置空间101内,能够充分利用电池单体在高度方向上的空间,提高空间利用率及能量密度。
可以理解的是,各电芯300沿外壳100的宽度方向并排设置,位于最外侧的两个电芯300为第一电芯组301,位于最外侧的两个电芯300中的一个电芯300与与外壳100的顶部形成第一容置空间102,位于最外侧的两个电芯300中的另一个电芯300与与外壳100的顶部形成第二容置空间103。
具体在该实施例中,如图5及图3所示,集流件400包括第一集流件、第二集流件、第三集流件和第四集流件,部分电芯300的正极耳321折弯并与第一集流件的极耳连接部410连接,剩余的电芯300的正极耳321折弯并与第二集流件的极耳连接部410连接,部分电芯300的负极耳322折弯并与第三集流件的极耳连接部410连接,剩余电芯300的负极耳322折弯并与第四集流件的极耳连接部410连接;第一集流件和第三集流件位于第一容置空间102内,第二集流件和第四集流件位于第二容置空间103内。通过该设置,能够使各电芯300的极耳320与集流件400顺畅地连接。
例如,如图5及图3所示,多个电芯300包括第一电芯300a、第二电芯300b、第三电芯300c及第四电芯300d,第一电芯300a、第二电芯300b、第三电芯300c及第四电芯300d沿外壳100的宽度方向依次并排设置,位于最外侧的第一电芯300a及第四电芯300d为第一电芯组301,位于第一电芯300a及第四电芯300d之间的第二电芯300b及第三电芯300c为第二电芯组302。第一电芯300a与第四电芯300d的高度相等,第二电芯300b与第三电芯300c的高度相等,第二电芯300b、第三电芯300c的高度大于第一电芯300a、第四电芯300d的高度。
其中,第一电芯300a、第二电芯300b的正极耳321折弯并与第一集流件的极耳连接部410连接,第三电芯300c及第四电芯300d的正极耳321折弯并与与第二集流件的极耳连接部410连接;第一电芯300a、第二电芯300b的负极耳322折弯并与第三集流件的极耳连接部410连接,第三电芯300c及第四电芯300d的负极耳322折弯并与第四集流件的极耳连接部410连接。第一集流件和第三集流件位于第一容置空间102内,第二集流件和第四集流件位于第二容置空间103内。
通过设置两个正极端子210及两个负极端子220,使第一集流件的端子连接部420连接一正极端子210,第二集流件的端子连接部420连接另一正极端子210,第三集流件的端子连接部420连接一负极端子220,第四集流件的端子连接部420连接另一负极端子220,以实现极耳320与电极端子200的电连接;或者,通过设置一个正极端子210及一个负极端子220,使第一集流件的端子连接部420与第二集流件的端子连接部420连接一集流公共件,一集流 公共件连接一正极端子210,第三集流件的端子连接部420与第四集流件的端子连接部420通过另一集流公共件连接,另一集流公共件连接一负极端子220,以实现极耳320与电极端子200的电连接。
发明人注意到,各电芯300的宽度对电池单体的容量及体积有影响,在进行电池单体的设计时,也应考虑各电芯300的宽度设置。
如图4及图5示出的一实施例中,各电芯300的宽度均相等。
该实施例中,如图4及图5所示,各电芯300的宽度均相等,至少两个电芯300的高度不相等。通过该设置,在提高空间利用率及能量密度的基础上,便于各电芯300的生产加工,有利于节约生产成本。
如图6示出的另一实施例中,第一电芯组301中的电芯300的宽度相等,第二电芯组302中的电芯300的宽度相等,且第二电芯组302中各电芯300的宽度不等于第一电芯组301中各电芯300的宽度。
该实施例中,如图6所示,两个电芯300组中各电芯300的宽度不相等,两个电芯300组的高度不相等。通过该设置,充分利用电池单体在高度方向及宽度方向上的空间,进一步提高空间利用率及能量密度。
具体在一实施方式中,参考图6,第二电芯组302中各电芯300的宽度大于第一电芯组301中各电芯300的宽度。优选地,第二电芯组302中各电芯300的宽度为第一电芯组301中各电芯300的宽度的1.1倍-2倍。
例如,多个电芯300包括第一电芯300a、第二电芯300b、第三电芯300c及第四电芯300d,第一电芯300a、第二电芯300b、第三电芯300c及第四电芯300d沿外壳100的宽度方向依次并排设置,位于最外侧的第一电芯300a及第四电芯300d为第一电芯组301,位于第一电芯300a及第四电芯300d之间的第二电芯300b及第三电芯300c为第二电芯组302。
其中,第一电芯300a与第四电芯300d的宽度相等,第二电芯300b与第三电芯300c的宽度相等,第二电芯300b与第三电芯300c的宽度大于第一电芯300a、第四电芯300d的宽度;第一电芯300a与第四电芯300d的高度相等,第二电芯300b与第三电芯300c的高度相等,第二电芯300b与第三电芯300c的高度大于或小于第一电芯300a、第四电芯300d的高度。
具体在另一实施方式中,参考图6,第二电芯组302中各电芯300的宽度小于第一电芯组301中各电芯300的宽度。优选地,第二电芯组302中各电芯300的宽度为第一电芯组301中各电芯300的宽度的0.3倍-0.9倍。
例如,多个电芯300包括第一电芯300a、第二电芯300b、第三电芯300c及第四电芯300d,第一电芯300a、第二电芯300b、第三电芯300c及第四电芯300d沿外壳100的宽度方向依次并排设置,位于最外侧的第一电芯300a及第四电芯300d为第一电芯组301,位于第一电芯300a及第四电芯300d之间的第二电芯300b及第三电芯300c为第二电芯组302。
其中,第一电芯300a与第四电芯300d的宽度相等,第二电芯300b与第三电芯300c的宽度相等,第二电芯300b与第三电芯300c的宽度小于第一电芯300a、第四电芯300d的宽度;第一电芯300a与第四电芯300d的高度相等,第二电芯300b与第三电芯300c的高度相等,第二电芯300b与第三电芯300c的高度大于或小于第一电芯300a、第四电芯300d的高度。
如图3示出的实施例中,电池单体还包括绝缘件500,绝缘件500设于外壳100的顶部朝向电芯300的一侧。
该实施例中,如图3所示,绝缘件500包括绝缘本体510及支撑部520,支撑部520凸设于绝缘本体510朝向电芯300的一侧,支撑部520抵接于电芯300的主体310,以使绝缘本体510朝向电芯300的一侧与电芯300分离。通过该设置,绝缘件500起到绝缘作用,同时绝缘件500朝向电芯300的一侧能形成容纳极耳320的空间,提高空间利用率。
在本实施方式中,绝缘件500为塑胶件,通过注塑方式使绝缘本体510及支撑部520为一体成型结构,整体性好且便于加工。在其他实施方式中,绝缘本体510及支撑部520还可以为分体式结构。
在本实施方式中,支撑部520的数量为多个,且多个支撑部520沿绝缘本体510朝向电芯300的一侧间隔设置。在其他实施方式中,支撑部520的数量还可以为一,支撑部520沿绝缘本体510朝向电芯300的一侧的边缘凸出设置。
具体在该实施例中,如图3所示,支撑部520呈阶梯状且包括多个台阶部,高度不同的电芯300对应的台阶部凸出于绝缘本体510朝向电芯300的一侧的尺寸不同,以使台阶部均抵接于对应的电芯300的主体310。
通过该设置,能够使台阶部均抵接于对应的电芯300的主体310,台阶部起到较好的支撑作用。
在本实施方式中,台阶部朝向电芯300的主体310的一侧呈平面状,以便于与电芯300的主体310更好地抵接。在其他实施方式中,台阶部朝向电芯300的主体310的一侧还可以弧面状或其他形状。
如图3所示的实施例中,外壳100包括壳本体110及端盖120,壳本体110内设具有开口的容腔111,端盖120盖设于容腔111开口处,且端盖120为外壳100的顶部,电芯300容置于容腔111内,电极端子200设于端盖120。
通过该设置,壳本体110及端盖120能够拆卸,便于各电芯300的快速拆装。
在本实施方式中,壳本体110及端盖120通过焊接方式固定连接,机械强度高且不易松脱。在其他实施方式中,壳本体110及端盖120还可以为通过卡接或扣接方式实现可拆卸连接,或者壳本体110及端盖120为一体成型结构。
在本实施方式中,壳本体110呈长方体状,端盖120呈矩形。在其他实施方式中,壳本体110及端盖120还可以呈其他形状。
请参考图2,一实施例中的电池20包括上述的电池单体。通过该设置,能够提高电池20的能量密度。
请参考图1,一实施例中的用电设备包括上述的电池20,电池20用于提供电能。通过该设置,能够提高用电设备的续航能力。
请参考图8,一实施例中的电池单体的制造方法,包括如下步骤:
提供外壳100,外壳100的顶部设有电极端子200;
提供多个电芯300,至少两个电芯300的高度不同,每一电芯300包括主体310及连接于主体310的极耳320;
提供集流件400,包括极耳连接部410和端子连接部420;
将极耳连接部410连接极耳320;
将端子连接部420连接电极端子200;
将多个电芯300容置于外壳100内,使集流件400位于高度最小的电芯300的主体310与所述外壳100的顶部形成的容置空间101内。
通过上述步骤,至少两个电芯300之间会存在高度差,通过将集流件400设于高度最小的电芯300的主体310与外壳100的顶部形成的容置空间101内,能够充分利用电池单体在高度方向上的空间,提高空间利用率及能量密度。
如图8示出的实施例中,电池单体的制造方法中,极耳连接部410及极耳320通过焊接方式连接,端子连接部420及电极端子200通过焊接方式连接,焊接后需要去除焊渣。
如图8示出的实施例中,电池单体的制造方法中,将多个电芯300容置于外壳100的壳本体110内,再将端盖120焊接于壳本体110的顶部。
根据本申请的一些实施例,参见图1,本申请提供了一种电池单体,包括外壳100、电极端子200、多个电芯300及集流件400,电极端子200设于外壳100的顶部,多个电芯300容置于外壳100内。每一电芯300包括主体310及连接于主体310的极耳320,集流件400包括极耳连接部410和端子连接部420,极耳连接部410用于连接极耳320,端子连接部420用于连接电极端子200;其中,多个电芯300包括包括第一电芯300a、第二电芯300b、第三电芯300c及第四电芯300d,第一电芯300a、第二电芯300b、第三电芯300c及第四电芯300d沿外壳100的宽度方向依次并排设置,第一电芯300a与第四电芯300d的宽度及高度相等,第二电芯300b与第三电芯300c的宽度及高度相等,第一电芯300a、第四电芯300d的高度大于或小于第二电芯300b、第三电芯300c的高度。
根据本申请的一些实施例,参见图2,本申请提供了一种电池20,包括上述的电池单体。
根据本申请的一些实施例,参见图1,本申请提供了一种电池20用电设备,包括上述的电池20。
根据本申请的一些实施例,参见图2及图3,本申请提供了一种电池单体的制造方法,包括如下步骤:提供外壳100,外壳100的顶部设有电极端子200;提供多个电芯300,至少两个电芯300的高度不同,每一电芯300包括主体310及连接于主体310的极耳320;提供集流件400,包括极耳连接部410和端子连接部420;将极耳连接部410焊接于极耳320;将端子连接部420焊接于电极端子200;将多个电芯300容置于外壳100内,使集流件400位于高度最小的电芯300的主体310与所述外壳100的顶部形成的容置空间101内。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (16)

  1. 一种电池单体,其特征在于,包括:
    外壳(100);
    电极端子(200),设于所述外壳(100)的顶部;
    多个电芯(300),容置于所述外壳(100)内,每一所述电芯(300)包括主体(310)及连接于所述主体(310)的极耳(320);
    集流件(400),包括极耳连接部(410)和端子连接部(420),所述极耳连接部(410)用于连接所述极耳(320),所述端子连接部(420)用于连接所述电极端子(200);
    其中,至少两个所述电芯(300)的高度不同,所述集流件(400)设于高度最小的所述电芯(300)的主体(310)与所述外壳(100)的顶部形成的容置空间内。
  2. 根据权利要求1所述的电池单体,其特征在于,各所述电芯(300)沿所述外壳(100)的宽度方向并排设置,位于最外侧的两个所述电芯(300)为第一电芯组(301),位于最外侧的两个所述电芯(300)之间的各所述电芯(300)为第二电芯组(302)。
  3. 根据权利要求2所述的电池单体,其特征在于,所述第一电芯组(301)中的各所述电芯(300)的高度相等,所述第二电芯组(302)中的各所述电芯(300)的高度相等,且所述第二电芯组(302)的高度不等于所述第一电芯组(301)的高度。
  4. 根据权利要求3所述的电池单体,其特征在于,所述第二电芯组(302)与所述第一电芯组(301)的高度差的绝对值至多为20mm。
  5. 根据权利要求3所述的电池单体,其特征在于,所述第二电芯组(302)的高度小于所述第一电芯组(301)的高度,所述集流件(400)设于所述第二电芯组(302)与所述外壳(100)的顶部形成的容置空间内。
  6. 根据权利要求5所述的电池单体,其特征在于,所述极耳(320)包括沿所述外壳(100)的长度方向间隔排布的正极耳(321)及负极耳(322),所述电芯(300)的正极耳(321)折弯并与一所述集流件(400)的所述极耳连接部(410)连接,所述电芯(300)的负极耳(322)折弯并与另一所述集流件(400)的所述极耳连接部(410)连接,两个所述集流件(400)沿所述外壳(100)的长度方向间隔设置。
  7. 根据权利要求3-6任一项所述的电池单体,其特征在于,所述第二电芯组(302)的高度大于所述第一电芯组(301)的高度,所述集流件(400)设于所述第一电芯组(301)与所述外壳(100)的顶部形成的容置空间(101)内,且所述容置空间被第一电芯组(301)划分为第一容置空间(102)和第二容置空间(103)。
  8. 根据权利要求7所述的电池单体,其特征在于,所述集流件(400)包括第一集流件、 第二集流件、第三集流件和第四集流件,所述极耳(320)包括沿所述外壳(100)的长度方向间隔排布的正极耳(321)及负极耳(322),部分所述电芯(300)的正极耳(321)折弯并与所述第一集流件的所述极耳连接部(410)连接,剩余的所述电芯(300)的正极耳(321)折弯并与所述第二集流件的所述极耳连接部(410)连接,部分所述电芯(300)的负极耳(322)折弯并与所述第三集流件的所述极耳连接部(410)连接,剩余的所述电芯(300)的负极耳(322)折弯并与所述第四集流件的所述极耳连接部(410)连接;
    所述第一集流件和所述第三集流件位于所述第一容置空间(102)内,所述第二集流件和所述第四集流件位于所述第二容置空间(103)内。
  9. 根据权利要求2-8任一项所述的电池单体,其特征在于,所述第一电芯组(301)中的所述电芯(300)的宽度相等,所述第二电芯组(302)中的所述电芯(300)的宽度相等,且所述第二电芯组(302)中所述电芯(300)的宽度不等于所述第一电芯组(301)中所述电芯(300)的宽度。
  10. 根据权利要求1-9任一项所述的电池单体,其特征在于,各所述电芯(300)的宽度均相等。
  11. 根据权利要求1-9任一项所述的电池单体,其特征在于,所述电池单体还包括绝缘件(500),所述绝缘件(500)设于所述外壳(100)的顶部朝向所述电芯(300)的一侧,所述绝缘件(500)包括绝缘本体(510)及支撑部(520),所述支撑部(520)凸设于所述绝缘本体(510)朝向所述电芯(300)的一侧,所述支撑部(520)抵接于所述电芯(300)的主体(310),以使所述绝缘本体(510)朝向所述电芯(300)的一侧与所述电芯(300)分离。
  12. 根据权利要求11所述的电池单体,其特征在于,所述支撑部(520)呈阶梯状且包括多个台阶部,高度不同的所述电芯(300)对应的所述台阶部凸出于所述绝缘本体(510)朝向所述电芯(300)的一侧的尺寸不同,以使所述台阶部均抵接于对应的所述电芯(300)的主体(310)。
  13. 根据权利要求1-12任一项所述的电池单体,其特征在于,所述外壳(100)包括壳本体(110)及端盖(120),所述壳本体(110)内设具有开口的容腔(111),所述端盖(120)盖设于所述容腔(111)开口处,且所述端盖(120)为所述外壳(100)的顶部,所述电芯(300)容置于容腔(111)内,所述电极端子(200)设于所述端盖(120)。
  14. 一种电池,其特征在于,包括如权利要求1-13任一项所述的电池单体。
  15. 一种用电设备,其特征在于,包括如权利要求14所述的电池。
  16. 一种如权利要求1-13任一项所述的电池单体的制造方法,其特征在于,包括:
    提供外壳(100),所述外壳(100)的顶部设有电极端子(200);
    提供多个电芯(300),至少两个所述电芯(300)的高度不同,每一所述电芯(300)包括主体(310)及连接于所述主体(310)的极耳(320);
    提供集流件(400),包括极耳连接部(410)和端子连接部(420);
    将所述极耳连接部(410)连接所述极耳(320);
    将所述端子连接部(420)连接所述电极端子(200);
    将所述多个电芯(300)容置于所述外壳(100)内,使所述集流件(400)位于高度最小的所述电芯(300)的主体(310)与所述外壳(100)的顶部形成的容置空间内。
PCT/CN2022/143452 2022-02-10 2022-12-29 用电设备、电池、电池单体及其制造方法 WO2023151413A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210124365.XA CN115832443B (zh) 2022-02-10 2022-02-10 用电设备、电池、电池单体及其制造方法
CN202210124365.X 2022-02-10

Publications (1)

Publication Number Publication Date
WO2023151413A1 true WO2023151413A1 (zh) 2023-08-17

Family

ID=85522381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/143452 WO2023151413A1 (zh) 2022-02-10 2022-12-29 用电设备、电池、电池单体及其制造方法

Country Status (2)

Country Link
CN (1) CN115832443B (zh)
WO (1) WO2023151413A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103988356A (zh) * 2012-11-22 2014-08-13 Lg化学株式会社 包含具有相同宽度和不同长度的电极单元的电极组件以及包含所述电极组件的电池单元和装置
CN104303332A (zh) * 2012-04-05 2015-01-21 株式会社Lg化学 具有阶梯状结构的电池单体
CN206947429U (zh) * 2017-06-28 2018-01-30 博科能源系统(深圳)有限公司 一种电芯连接结构、电池、电器
CN111106300A (zh) * 2019-01-30 2020-05-05 宁德时代新能源科技股份有限公司 电池单元电池模组
CN215070145U (zh) * 2021-07-12 2021-12-07 东莞新能德科技有限公司 电池模组及用电设备

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB624786A (en) * 1946-04-03 1949-06-16 Burgess Battery Co Improvements in or relating to multiple cell electric battery and method of making the same
KR20130119700A (ko) * 2012-04-24 2013-11-01 주식회사 엘지화학 전극 탭과 전극 리드의 결합 방법과 이를 이용한 파우치형 이차전지
KR101870314B1 (ko) * 2015-04-16 2018-06-22 주식회사 엘지화학 전극 탭들과 전극 리드의 탭-리드 결합부가 공간부에 위치하는 전극조립체
CN204834724U (zh) * 2015-08-18 2015-12-02 东莞新能源科技有限公司 二次电池
CN206059489U (zh) * 2016-09-18 2017-03-29 微宏动力系统(湖州)有限公司 电池模块
CN106803608A (zh) * 2016-09-29 2017-06-06 蔚来汽车有限公司 电池模组和新能源汽车
CN209232839U (zh) * 2018-12-13 2019-08-09 桑顿新能源科技有限公司 一种无模组结构的软包动力电池系统结构
CN209860006U (zh) * 2019-04-25 2019-12-27 江门市大长江集团有限公司 一种电池盒及摩托车
CN210200841U (zh) * 2019-09-30 2020-03-27 蜂巢能源科技有限公司 带有可组合电池模组的动力电池包及其动力汽车底盘组件
CN210668435U (zh) * 2019-11-29 2020-06-02 北京小米移动软件有限公司 电池及电子设备
CN111106298B (zh) * 2019-12-09 2023-05-02 孚能科技(赣州)股份有限公司 电芯模组、电芯总成及电芯模组的连接方法
CN111370601A (zh) * 2020-04-14 2020-07-03 广东国光电子有限公司 锂离子电池
CN212648408U (zh) * 2020-06-17 2021-03-02 安徽江淮华霆电池系统有限公司 一种三自由度hev模组
CN111916667B (zh) * 2020-07-27 2021-07-16 珠海冠宇电池股份有限公司 一种负极片及包括该负极片的锂离子电池
CN212967942U (zh) * 2020-09-18 2021-04-13 北京车和家信息技术有限公司 电池模组
CN213401353U (zh) * 2020-10-12 2021-06-08 江苏塔菲尔新能源科技股份有限公司 一种电池结构
CN213636148U (zh) * 2020-10-29 2021-07-06 深圳市柯讯科技有限公司 一种方形电池模组
CN213752785U (zh) * 2020-12-15 2021-07-20 恒大新能源技术(深圳)有限公司 一种富液态软包电芯
CN215496834U (zh) * 2021-07-27 2022-01-11 深圳市壹加智慧科技有限公司 一种三轮车电池包组件
CN215732029U (zh) * 2021-08-17 2022-02-01 上海派能能源科技股份有限公司 一种含假电池模块的电池模组及包括其的软包电池
CN113921995B (zh) * 2021-10-13 2023-06-13 孚能科技(赣州)股份有限公司 汇流排结构、串并联模块、电池包、电池系统及方法
CN215771249U (zh) * 2022-01-04 2022-02-08 蔚来汽车科技(安徽)有限公司 锂离子电池及包含该锂离子电池的车辆

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104303332A (zh) * 2012-04-05 2015-01-21 株式会社Lg化学 具有阶梯状结构的电池单体
CN103988356A (zh) * 2012-11-22 2014-08-13 Lg化学株式会社 包含具有相同宽度和不同长度的电极单元的电极组件以及包含所述电极组件的电池单元和装置
CN206947429U (zh) * 2017-06-28 2018-01-30 博科能源系统(深圳)有限公司 一种电芯连接结构、电池、电器
CN111106300A (zh) * 2019-01-30 2020-05-05 宁德时代新能源科技股份有限公司 电池单元电池模组
CN215070145U (zh) * 2021-07-12 2021-12-07 东莞新能德科技有限公司 电池模组及用电设备

Also Published As

Publication number Publication date
CN115832443A (zh) 2023-03-21
CN115832443B (zh) 2023-12-12

Similar Documents

Publication Publication Date Title
WO2023050969A1 (zh) 一种电池单体、电池及用电装置
WO2023174266A1 (zh) 壳体、电池单体、电池及用电设备
CN219067168U (zh) 电池单体、电池和用电设备
WO2023004823A1 (zh) 卷绕式电极组件、电池单体、电池及用电设备
CN216213945U (zh) 电池单体、电池和用电装置
WO2022127403A1 (zh) 电极组件、电池单体、电池以及用电装置
WO2024045692A1 (zh) 电池模组、电池以及用电装置
WO2023197905A1 (zh) 端盖组件、电池单体、电池和用电设备
US20230148174A1 (en) Battery, electrical device, and method and device for manufacturing battery
WO2023082155A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023173429A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
WO2023151413A1 (zh) 用电设备、电池、电池单体及其制造方法
CN116830376A (zh) 电极组件及制造方法和装置、电池单体、电池、用电装置
CN114696012A (zh) 电池单体及其制造方法、电池以及用电装置
CN220934160U (zh) 卷针、电极组件、电池单体、电池和用电设备
WO2023225903A1 (zh) 电池单体、电池以及用电装置
WO2023201726A1 (zh) 电池单体、电池以及用电装置
WO2023092459A1 (zh) 电极组件、电池单体、电池以及用电装置
WO2023225911A1 (zh) 电池单体、电池以及用电装置
CN117199736B (zh) 电池单体、电池以及用电装置
WO2024007115A1 (zh) 电池单体、电池以及用电装置
WO2023092502A1 (zh) 电池单体、电池、用电设备及电池单体的制备方法和设备
WO2024007130A1 (zh) 电池单体、电池以及用电装置
CN220934334U (zh) 电池、用电设备和储能设备
WO2024087015A1 (zh) 一种电池单体、电池和用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925762

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022925762

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022925762

Country of ref document: EP

Effective date: 20240318