WO2024040534A1 - 电池单体的壳体、电池单体、电池和用电设备 - Google Patents

电池单体的壳体、电池单体、电池和用电设备 Download PDF

Info

Publication number
WO2024040534A1
WO2024040534A1 PCT/CN2022/114911 CN2022114911W WO2024040534A1 WO 2024040534 A1 WO2024040534 A1 WO 2024040534A1 CN 2022114911 W CN2022114911 W CN 2022114911W WO 2024040534 A1 WO2024040534 A1 WO 2024040534A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure relief
area
side wall
housing
battery
Prior art date
Application number
PCT/CN2022/114911
Other languages
English (en)
French (fr)
Inventor
苏华圣
岳嵩
李全坤
邢承友
王鹏
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/114911 priority Critical patent/WO2024040534A1/zh
Publication of WO2024040534A1 publication Critical patent/WO2024040534A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular to a battery cell casing, a battery cell, a battery and electrical equipment.
  • Embodiments of the present application provide a battery cell casing, battery cells, batteries and electrical equipment, which can improve battery safety.
  • a battery cell casing including: the casing is a hollow structure with an open end, the side walls of the casing enclose the open end, and the side walls are provided with at least one pressure relief area , the pressure relief area surrounds the entire circumference along the circumferential direction of the side wall.
  • the side walls of the casing are likely to be squeezed by adjacent battery cells or battery boxes or other components.
  • the pressure relief area is located in a local area of the circumference of the side wall of the shell, or the pressure relief area is distributed perpendicular to the circumference of the side wall, the area with the pressure relief area is weaker than the area without the pressure relief area. , it is easier to deform, then the circumferential deformation of the side wall will be uneven, which will lead to uneven deformation of the battery cells. For example, uneven deformation of cylindrical battery cells will lead to poor roundness of the battery cells, which may affect the welding of the casing and reduce the strength and safety of the battery cells. Therefore, the pressure relief area of the embodiment of the present application surrounds the entire circumference of the side wall, which can make the circumferential deformation of the battery cell shell more uniform, thereby improving the strength and safety of the battery cell.
  • the pressure relief area is set in a local area of the side wall of the case, or the pressure relief area is distributed perpendicularly to the circumference of the side wall, then when assembling multiple battery cells, they need to be installed in a specific direction to avoid obstruction. Pressure relief zone. In this way, it not only increases the difficulty of installation, but also may cause the pressure relief area to be blocked due to installation errors, thereby affecting the release of internal pressure in the pressure relief area, thus reducing the safety of the battery cells.
  • the pressure relief area of the present application surrounds the entire circumference of the side wall of the casing. Therefore, when assembling the battery cells, the requirements for the installation position of the battery cells are reduced, and the installation flexibility of the battery cells is improved, making it easier to install the battery cells. Avoid blocking the pressure relief area, thereby timely releasing the internal pressure of thermally runaway battery cells and improving battery safety.
  • the pressure relief area has a wall thickness that is smaller than other areas of the sidewall.
  • the strength of this pressure relief area is relatively weak, which is not only easy to process, but also allows the shell to be destroyed in this pressure relief area to release the internal pressure when the battery cell undergoes thermal runaway and its internal temperature or pressure reaches a preset value. or temperature.
  • the surface of the pressure relief area facing the interior of the housing is flush with the surface of the other area facing the interior of the housing. If they are not flush, due to the small wall thickness of the pressure relief area, the pressure relief area will be sunken relative to other areas. Since the casing contains electrolyte, the electrolyte is corrosive to a certain extent. If the electrolyte accumulates in the pressure relief area, it is very likely to cause damage. This may cause the electrolyte to corrode and damage this pressure relief area, causing the pressure relief area to fail.
  • the wall thickness T1 of the pressure relief area satisfies: T1 ⁇ 0.2T, where T is the wall thickness of other areas.
  • the wall thickness of the pressure relief area is set to be smaller than the wall thickness of other areas, so that the pressure relief area is destroyed when the internal pressure or temperature of the battery cell reaches a threshold value, thereby releasing the internal pressure and cooling down in time.
  • the wall thickness of the pressure relief area does not need to be too thin, so as to avoid insufficient strength of the casing and affecting the structural strength of the battery cell.
  • the height H1 of the pressure relief area ranges from [0.1 mm, 5 mm], and the height direction of the pressure relief area is perpendicular to the open end.
  • the height of the pressure relief zone should not be too small to avoid increasing the difficulty of processing, and to avoid the pressure relief zone being too small and difficult to be destroyed, thereby preventing the pressure relief zone from being unable to release pressure in time. On the contrary, the height of the pressure relief zone should not be too large to avoid insufficient overall strength of the shell and avoid damage to the shell due to external forces.
  • different areas of the pressure relief zone are of equal height.
  • the heights of the pressure relief areas are set to be equal, which not only facilitates processing without the need to additionally set different sizes, but also makes the stress of the side wall around the pressure relief area uniform and ensures the roundness of the side wall.
  • the pressure relief zone includes at least one weak zone, the wall thickness of the weak zone is less than the wall thickness of a region of the pressure relief zone other than the weak zone. This can not only prevent the wall thickness of the entire area of the pressure relief zone from being set too thin, resulting in insufficient strength of the casing, but also allow the pressure relief zone to be able to weaken in the smaller wall thickness when the internal pressure or temperature of the battery cell reaches a threshold. The area is destroyed and the internal pressure is released in time.
  • the pressure relief area includes a plurality of weak areas evenly distributed along the circumferential direction of the side wall to avoid uneven circumferential stress and uneven strength of the side wall caused by uneven distribution of weak areas. and uneven deformation, thereby reducing the structural strength of the battery cells.
  • the side wall includes a fixing area that partially overlaps the pressure relief area.
  • the fixing area is used for fixing the battery cells.
  • the fixing area does not completely cover the plurality of cells.
  • the weak zone, the first section passes through the pressure relief zone and is parallel to the open end.
  • the fixed area By setting the fixed area to not completely cover all the weak areas in the pressure relief area, that is, there are at least some weak areas in the pressure relief area that are not blocked by the fixed area, so that the weak areas can be destroyed in time when the battery cell is thermally out of control, and the battery is discharged.
  • the pressure inside the cell and timely cooling improve the safety of the battery.
  • the shell is a cylinder, and on the first section, the central angle of the arc in the area other than the fixed area is greater than any two adjacent weak points in the pressure relief area. The angle of the central angle of the arc between the zones.
  • the fixed area will not block or cover all the weak areas in the pressure relief area.
  • it facilitates flexible installation of the battery cell and does not require specific installation.
  • the position or direction can prevent the weak area from being blocked, so that the weak area can be destroyed in time when the battery cell is thermally out of control, releasing the pressure inside the battery cell and cooling down in time, improving the safety of the battery.
  • the length L1 of the weak zone along the circumferential direction of the side wall satisfies; 0.1mm ⁇ L1 ⁇ 0.2L, where L is the circumference of the side wall.
  • L is the circumference of the side wall.
  • the length of the weak zone is set too small, it will increase the difficulty of processing and increase the difficulty of the pressure relief zone being destroyed in the weak zone; conversely, if the length of the weak zone is set too long, it will reduce The strength of the side walls of the casing affects the strength and safety of the battery cells.
  • a plurality of the pressure relief areas are provided on the side wall.
  • a battery cell undergoes thermal runaway, it usually first generates high temperature or high pressure locally. If there is only one pressure relief area on the side wall, the pressure relief area may be far away from the high temperature and high pressure area, thus causing the pressure relief area to cannot be destroyed in time. Therefore, multiple pressure relief areas can be provided on the side wall, especially in the height direction The nearest pressure relief zone can be destroyed in time, thereby releasing the internal pressure in time and cooling down in time, improving the safety of the battery.
  • a plurality of the pressure relief areas are symmetrically distributed relative to a second section of the side wall, and the second section passes through a center point of the side wall and is parallel to the open end.
  • the overall strength of the battery cells can be made more uniform; on the other hand, when high temperature or high pressure occurs in different areas, there will be a corresponding closest pressure relief zone, which can be destroyed in time. Then the internal pressure can be released in time and the temperature can be cooled down in time to improve the safety of the battery.
  • the housing is a cylinder.
  • the housing has two open ends, and the two open ends are two opposite bottom surfaces of the housing to facilitate quick installation of the internal electrode assembly.
  • a battery cell including: the casing described in the first aspect; and a cover used to cover the open end.
  • a battery including: a plurality of battery cells, and the battery cells include the case described in the first aspect.
  • an electrical device including: a plurality of battery cells, the battery cells including the casing described in the first aspect, and the battery cells being used to provide electrical energy to the electrical device.
  • the electrical equipment is a vehicle, ship or spacecraft.
  • Figure 1 is a schematic structural diagram of a vehicle disclosed in an embodiment of the present application.
  • Figure 2 is a partial structural schematic diagram of a battery disclosed in an embodiment of the present application.
  • Figure 3 is a schematic exploded structural diagram of a battery cell disclosed in an embodiment of the present application.
  • Figure 4 is a schematic diagram of the side wall of a battery cell casing disclosed in an embodiment of the present application.
  • Figure 5 is a schematic diagram of a first cross-section of a side wall disclosed in an embodiment of the present application.
  • Figure 6 is a partial cross-sectional schematic diagram of a battery disclosed in an embodiment of the present application.
  • Figure 7 is a partial cross-sectional schematic diagram of a battery cell and a fixing component disclosed in an embodiment of the present application.
  • the battery cells may include lithium ion secondary batteries, lithium ion primary batteries, lithium-sulfur batteries, sodium lithium ion batteries, sodium ion batteries or magnesium ion batteries, etc., which are not limited in the embodiments of this application.
  • the battery cell may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited to this.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square battery cells and soft-pack battery cells, and the embodiments of the present application are not limited to this.
  • the battery mentioned in the embodiments of this application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack.
  • Batteries generally include a box for packaging one or more battery cells. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte.
  • the electrode assembly consists of a positive electrode plate, a negative electrode plate and a separator. Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the positive electrode current collector that is not coated with the positive electrode active material layer protrudes from the positive electrode collector that is coated with the positive electrode active material layer. Fluid, the positive electrode current collector without the positive electrode active material layer is used as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the negative electrode current collector that is not coated with the negative electrode active material layer protrudes from the negative electrode collector that is coated with the negative electrode active material layer.
  • Fluid, the negative electrode current collector that is not coated with the negative electrode active material layer serves as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
  • the number of positive electrode tabs is multiple and stacked together, and the number of negative electrode tabs is multiple and stacked together.
  • the material of the isolation film can be polypropylene (PP) or polyethylene (polyethylene, PE).
  • the electrode assembly may have a rolled structure or a laminated structure, and the embodiments of the present application are not limited thereto.
  • a pressure relief mechanism is generally installed on the battery cell.
  • the pressure relief mechanism refers to an element or component that is activated to relieve the internal pressure or temperature when the internal pressure or temperature of the battery cell reaches a predetermined threshold.
  • the predetermined threshold can be adjusted according to different design requirements.
  • the predetermined threshold may depend on one or more materials of the positive electrode plate, the negative electrode plate, the electrolyte and the separator in the battery cell.
  • the pressure relief mechanism may use elements or components such as pressure-sensitive or temperature-sensitive, that is, when the internal pressure or temperature of the battery cell reaches a predetermined threshold, the pressure relief mechanism is activated, thereby forming a pressure relief mechanism for the internal pressure or temperature to be released. aisle.
  • the "actuation" mentioned in this application means that the pressure relief mechanism operates, so that the internal pressure and temperature of the battery cell can be released.
  • the actions caused by the pressure relief mechanism may include, but are not limited to: at least a portion of the pressure relief mechanism breaks, is torn, or melts, etc.
  • the emissions from battery cells mentioned in this application include but are not limited to: electrolyte, dissolved or split positive and negative electrode sheets, fragments of separators, high-temperature and high-pressure gases generated by reactions, flames, etc.
  • the pressure relief mechanism on the battery cell has an important impact on the safety of the battery. For example, when a battery cell is short-circuited or overcharged, it may cause thermal runaway inside the battery cell, resulting in a sudden increase in pressure or temperature. In this case, the internal pressure and temperature can be released outward through the activation of the pressure relief mechanism to prevent the battery cells from exploding and catching fire.
  • the setting of the pressure relief mechanism may also affect the processing efficiency of the battery.
  • the current pressure relief mechanism is generally provided at the end of the casing of the battery cell. If multiple battery cells are stacked together, or other components are stacked with the battery cell, the pressure relief mechanism located at the end of the battery cell will The mechanism will be blocked by other battery cells or components, resulting in delayed pressure relief and safety accidents.
  • the impact of the position of the pressure relief mechanism on the battery cell should also be considered. The impact of installation and fixation is to avoid reducing the battery processing production efficiency.
  • inventions of the present application provide a battery cell casing, battery cells, batteries and electrical equipment, which can solve the above problems.
  • the shell of the embodiment of the present application is a hollow structure with an open end.
  • the side wall of the shell surrounds the open end.
  • the side wall is provided with at least one pressure relief area.
  • the pressure relief area surrounds the entire circumference of the side wall. week.
  • the side walls of the battery cell casing are likely to be squeezed by adjacent battery cells or battery boxes or other components.
  • the pressure relief area is located in a local area of the circumferential direction of the side wall of the shell, since the area with the pressure relief area is weaker than the area without the pressure relief area and is more prone to deformation, the circumferential deformation of the side wall will be Uneven, which in turn leads to uneven deformation of the battery cells. Therefore, the pressure relief area in the embodiment of the present application surrounds the entire circumference of the side wall, which can make the circumferential deformation of the battery cell housing more uniform.
  • the pressure relief area is set in a local area of the side wall of the case, when assembling multiple battery cells, they need to be installed in a specific direction to avoid blocking the pressure relief area, which not only increases the difficulty of installation, but also may cause Blocking the pressure relief area affects the release of internal pressure in the pressure relief area, thereby reducing the safety of the battery.
  • the pressure relief area in this application surrounds the entire circumference of the side wall of the case. Therefore, when assembling the battery cells, the requirements for the installation position of the battery cells are reduced, the installation flexibility of the battery cells is improved, and it is easy to avoid Blocking the pressure relief area can promptly release the internal pressure of thermally runaway battery cells and improve battery safety.
  • Power-consuming devices can be vehicles, mobile phones, portable devices, laptops, ships, spacecraft, electric toys and power tools, etc.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles, etc.
  • spacecraft include aircraft, rockets, space shuttles, spaceships, etc.
  • electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric ship toys and electric airplane toys, etc.
  • electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • Electric drills Electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • the following embodiments take the electrical equipment as a vehicle as an example.
  • FIG. 1 it is a schematic structural diagram of a vehicle 1 according to an embodiment of the present application.
  • the vehicle 1 can be a fuel vehicle, a gas vehicle or a new energy vehicle.
  • the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or a new energy vehicle. Extended range vehicles, etc.
  • a motor 40 , a controller 30 and a battery 10 may be disposed inside the vehicle 1 .
  • the controller 30 is used to control the battery 10 to provide power to the motor 40 .
  • the battery 10 may be disposed at the bottom, front or rear of the vehicle 1 .
  • the battery 10 can be used to supply power to the vehicle 1 .
  • the battery 10 can be used as an operating power source of the vehicle 1 and used in the circuit system of the vehicle 1 , for example, to meet the power requirements for starting, navigation, and operation of the vehicle 1 .
  • the battery 10 can not only be used as an operating power source of the vehicle 1 , but also can be used as a driving power source of the vehicle 1 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1 .
  • the battery may include multiple battery cells, wherein the multiple battery cells may be connected in series, in parallel, or in mixed connection.
  • Hybrid connection refers to a mixture of series and parallel connection.
  • Batteries may also be called battery packs.
  • multiple battery cells can be first connected in series, parallel, or mixed to form a battery module, and then multiple battery modules can be connected in series, parallel, or mixed to form a battery. That is to say, multiple battery cells can directly form a battery, or they can form a battery module first, and then the battery module forms a battery.
  • the embodiments of the present application are not limited to this.
  • FIG. 2 shows a partial structural diagram of the battery 10 according to the embodiment of the present application.
  • the battery 10 in the embodiment of the present application may include multiple battery cells 20 to meet different power requirements.
  • the shape of the battery cell 20 in the embodiment of the present application can be set according to actual applications.
  • the battery cell 20 may be a rectangular parallelepiped, a cylinder, or other shapes.
  • the embodiment of the present application mainly takes the cylindrical battery cell 20 as an example, but the embodiment of the present application is not limited thereto.
  • the battery 10 can also include a fixing component 11, and the fixing component 11 can be used for A plurality of battery cells 20 are fixed.
  • the shape of the fixing component 11 can be set according to the actual application.
  • the shape of the fixing component 11 can be set according to factors such as the number and location of multiple battery cells 20 that need to be installed.
  • FIG. 2 takes the approximately rectangular parallelepiped fixing component 11 as an example.
  • Multiple battery cells 20 can be respectively fixed on the outer surface of the fixing component 11; in addition, the interior of the fixing component 11 can also be provided with a hollow structure. It is used to accommodate other components, but the embodiment of the present application is not limited thereto.
  • the battery 10 in the embodiment of the present application may also include a box, and the box may be used to accommodate multiple battery cells 20 .
  • the interior of the box in the embodiment of the present application is a hollow structure, and a plurality of battery cells 20 are accommodated in the box.
  • the box body may include two parts, here respectively referred to as a first box body part and a second box body part, and the first box body part and the second box body part are buckled together.
  • the shape of the first box part and the second box part may be determined according to the shape of the components housed inside, for example, may be determined according to the combined shape of the plurality of battery cells 20 housed inside. At least one of the two box parts has an opening.
  • first box part and the second box part may be a hollow rectangular parallelepiped with an opening, and the other may be plate-shaped to cover the opening.
  • the second box part is a hollow rectangular parallelepiped and has an opening
  • the first box part is plate-shaped, then the first box part is covered at the opening of the second box part to form a closed cavity.
  • the chamber is a box that can be used to accommodate multiple battery cells 20 .
  • a plurality of battery cells 20 are connected in parallel, in series, or in mixed combination and then placed in a box formed by fastening the first box part and the second box part.
  • first box part and the second box part may both be hollow rectangular parallelepipeds and each have one surface as an opening surface, the opening of the first box part and the opening of the second box part are arranged oppositely, and the The first box part and the second box part are coupled with each other to form a box with a closed cavity, and the cavity can be used to accommodate a plurality of battery cells 20 .
  • the battery 10 may also include a bus component, which may be used to realize electrical connections between multiple battery cells 20 , such as parallel connection, series connection, or mixed connection.
  • the bus component can realize electrical connection between the battery cells 20 by connecting the electrode terminals 231 of the battery cells 20 .
  • the bus part may be fixed to the electrode terminal 231 of the battery cell 20 by welding.
  • FIG. 3 shows an exploded structural diagram of at least part of the structure of the battery cell 20 according to the embodiment of the present application.
  • the battery cell 20 shown in FIG. 3 can be any one of the battery cells 10 shown in FIG. 2 20.
  • the battery cell 20 in the embodiment of the present application may include a case 21 and a cover 23 .
  • the housing 21 is a hollow structure with an open end 211
  • the cover 23 is used to cover the open end 211 .
  • the housing 21 of the embodiment of the present application may be a hollow structure including at least one open end 211 , wherein the hollow structure may be used to accommodate the electrode assembly 24 of the battery cell 20 , and the cover plate 23 is used to cover the opening of the housing 21 End 211.
  • the housing 21 is a hollow structure with one open end 211, then one cover plate 23 can be provided to cover one open end 211 of the housing 21; if the housing 21 has two open ends, 211 hollow structure, for example, as shown in Figure 3, the housing 21 has two opposite open ends 211, then the cover plate 23 can be provided with two, and the two cover plates 23 cover the two sides of the housing 21 respectively. an open end 211.
  • the housing 21 can be made of various materials, such as copper, iron, aluminum, steel, aluminum alloy, etc.
  • the housing 21 can be in various shapes, such as cylinder, rectangular parallelepiped, etc.
  • the housing 21 is a cylinder; exemplarily, the housing 21 has two open ends 211, and the two open ends 211 are two opposite sides of the housing 21. On the bottom surface, this structure with openings at both ends facilitates the assembly of the internal electrode assembly 24.
  • the electrode assembly 24 can enter the housing 21 through any open end 211, which can improve the processing efficiency of the battery cell 20.
  • the cover plate 23 in the embodiment of the present application is a component that covers the open end 211 of the housing 21 to isolate the internal environment of the battery cell 20 from the external environment.
  • the cover plate 23 can also be made of a variety of materials, such as copper, iron, aluminum, steel, aluminum alloy, etc.
  • the cover plate 23 and the housing 21 can be made of the same material or different.
  • the shape of the cover 23 can be adapted to the shape of the housing 21 .
  • the cover plate 23 can be a plate-shaped structure that matches the casing 21 , or it can also be a hollow rectangular parallelepiped structure with an opening 213 at one end, so that the cover plate 23 and the casing 21 are closed.
  • a rectangular parallelepiped battery cell 20 is formed.
  • the cover 23 when the housing 21 is a cylinder, can also be a circular plate; or the cover 23 can also be a groove structure with a circular bottom wall, so that the cover 23 After being covered with the casing 21, a cylindrical battery cell 20 is formed, and the embodiment of the present application is not limited thereto.
  • the battery cell 20 in the embodiment of the present application may also include an electrode assembly 24, and one or more electrode assemblies 24 may be provided.
  • the embodiment of the present application is not limited thereto.
  • the electrode assembly 24 is a component in the battery cell 20 where electrochemical reactions occur.
  • the electrode assembly 24 may be a cylinder, a rectangular parallelepiped, or the like, and the shape of the electrode assembly 24 may be the same as or different from the external shape of the battery cell 20 .
  • the outer shell of the battery cell 20 can also have a cylindrical structure; or if the electrode assembly 24 has a rectangular parallelepiped structure, the outer shell of the battery cell 20 can also have a rectangular parallelepiped structure to improve the efficiency of the electrode assembly. 24The space occupancy rate within the battery cell.
  • the electrode assembly 24 of the embodiment of the present application may include tabs 241 and a main body.
  • the tabs of the electrode assembly 24 may include positive tabs and negative tabs.
  • the positive tabs may be formed from the positive electrode piece.
  • the parts coated with the positive active material layer are laminated to form the negative electrode tabs.
  • the negative electrode tabs can be formed by stacking the parts of the negative electrode sheet that are not coated with the negative active material layer.
  • the main part can be formed from the parts of the positive electrode sheet coated with the positive active material layer and the negative electrode.
  • the portions of the sheet coated with the negative electrode active material layer are laminated or rolled.
  • the two tabs of the electrode assembly 24 may be located on the same end surface of the electrode assembly 24 or on different end surfaces.
  • the two tabs of the electrode assembly 24 are located on two respectively. Take the oppositely set end faces as an example. And correspondingly, the plurality of electrode terminals 231 of the battery cell 20 can be respectively provided on two opposite end surfaces, for example, can be provided on two opposite cover plates 23 respectively, so that each tab 241 can be connected with The corresponding one or more electrode terminals 231 are electrically connected. For example, as shown in FIG. 3 , each tab 241 can be electrically connected to the corresponding two electrode terminals 231 , but the embodiment of the present application is not limited thereto.
  • the housing 21 of the embodiment of the present application will be introduced in detail below with reference to the accompanying drawings.
  • the housing 21 is a hollow structure with an open end 211 .
  • the side wall 212 of the housing 21 surrounds the open end 211 .
  • the side wall 212 is provided with at least one pressure relief area 22 .
  • the pressing zone 22 surrounds the entire circumference of the side wall 212 .
  • the open end 211 in the embodiment of the present application refers to the end surface where the opening of the housing 21 is located.
  • the side wall 212 of the housing 21 in the embodiment of the present application can enclose the opening end 211 , that is, the side wall 212 of the housing 21 refers to the wall of the housing 21 adjacent to the opening end 211 .
  • the side wall 212 of the housing 21 is the side surface of the cylinder, and the open end 211 of the housing 21 refers to the bottom surface of the housing with an opening.
  • the side wall 212 of the embodiment of the present application is provided with one or more pressure relief areas 22.
  • the pressure relief areas 22 can be used to be destroyed when the internal pressure or temperature of the battery cell 20 reaches a predetermined threshold to release the battery cell. 20 internal pressure or temperature.
  • the pressure relief area 22 may be provided with a pressure relief mechanism, so that when the internal pressure or temperature of the battery cell 20 reaches a predetermined threshold, the pressure relief mechanism of the pressure relief area 22 is activated and the pressure relief area 22 is destroyed. Then, the internal pressure or temperature of the battery cell 20 is released.
  • the embodiment of the present application takes any one of the pressure relief areas 22 provided on the side wall 212 as an example.
  • the pressure relief area 22 surrounds the entire circumference along the circumferential direction of the side wall 212 , where the “entire circumference” means that the pressure relief area 22 extends along the circumferential direction of the side wall 212 .
  • the number of times the side wall 212 surrounds the side wall 212 in the circumferential direction is an integer.
  • the pressure relief area 22 surrounds the side wall 212 one, two or three times along the circumferential direction of the side wall 212 .
  • the pressure relief area 22 is provided along the circumferential direction of the side wall 212 and surrounds the side wall 212 as an example, but the embodiment of the present application is not limited thereto.
  • the height direction For example, as shown in FIG. 3 , for a cylindrical battery cell 20 , the height direction
  • the side wall 212 of the housing 21 of the battery cell 20 is likely to be squeezed by the adjacent battery cell 20 or the box of the battery 10 or other components. If the pressure relief area 22 is located in a circumferential local area of the side wall 212 of the housing 21 , or the pressure relief area 22 is perpendicular to the circumferential distribution of the side wall 212 , since the area where the pressure relief area 22 is provided is compared to the area where the pressure relief area 22 is not provided, The area 22 has weaker strength and is more prone to deformation, so the circumferential deformation of the side wall 212 will be uneven, which will lead to uneven deformation of the battery cell 20 .
  • the pressure relief area 22 of the embodiment of the present application surrounds the entire circumference of the side wall 212, which can make the circumferential deformation of the casing 21 of the battery cell 20 more uniform, thereby improving the strength and safety of the battery cell 20. .
  • the pressure relief area 22 is provided in a local area of the side wall 212 of the housing 21 , or the pressure relief area 22 is distributed perpendicularly to the circumferential direction of the side wall 212 , then when assembling multiple battery cells 20 , it is necessary to follow specific instructions. Install in such a direction as to avoid blocking the pressure relief area 22. In this way, it not only increases the difficulty of installation, but also may cause the pressure relief area 22 to be blocked due to installation errors, thereby affecting the pressure relief area 22 to release internal pressure, thus reducing the safety of the battery cells 20 and the battery 10 .
  • the pressure relief area 22 of the present application surrounds the entire circumference of the side wall 212 of the housing 21 .
  • the requirements for the installation position of the battery cell 20 are reduced, and the safety of the battery cell 20 is improved.
  • the installation flexibility makes it easy to avoid blocking the pressure relief area 22, thereby timely releasing the internal pressure of the thermally runaway battery cell 20 and improving the safety of the battery 10.
  • the pressure relief area 22 in the embodiment of the present application can be arranged in various ways.
  • pressure-sensitive or temperature-sensitive materials or components or components may be used at the pressure relief area 22 , that is, when the internal pressure or temperature of the battery cell 20 reaches a predetermined threshold, the pressure relief area 22 may sense the temperature in time or The pressure is destroyed, thereby forming a channel for the internal pressure or temperature of the battery cell 20 to be released.
  • the pressure relief area 22 may also be provided in other ways.
  • the wall thickness of the pressure relief area 22 is smaller than the wall thickness of other areas 2121 of the side wall 212 .
  • the pressure relief area 22 may be a score on the battery cell 20 , so that the wall thickness of the housing 21 of the battery cell 20 at the pressure relief area 22 is smaller than the thickness of other areas 2121 of the side wall 212 , that is, The pressure relief area 22 is the smallest wall thickness of the side wall 212 , so that the strength of the pressure relief area 22 is relatively weak.
  • the embodiment of the present application mainly uses the example of setting the pressure relief area 22 in a notched manner for explanation.
  • other areas 2121 in the embodiment of the present application may include: areas on the side wall 212 other than the pressure relief area 22 .
  • the other area 2121 may mainly refer to the area on the side wall 212 that is located around the pressure relief area 22 .
  • the other areas 2121 can be side walls. The area of 212 except the pressure relief area 22.
  • FIG. 4 shows a schematic diagram of the side wall 212 of the housing 21 of the battery cell 20 according to the embodiment of the present application.
  • a plurality of pressure relief areas 22 are provided on the side wall 212 .
  • the pressure relief area 22 may be far away from the high temperature and high pressure area, and then the pressure relief area 22 may be far away from the high temperature and high pressure area.
  • the pressure relief area 22 cannot be destroyed in time. Therefore, multiple pressure relief areas 22 can be provided on the side wall 212, especially in the height direction , the corresponding nearest pressure relief area 22 can be destroyed in time, thereby timely releasing the internal pressure and cooling down in time, thereby improving the safety of the battery 10 .
  • the plurality of pressure relief areas 22 are symmetrically distributed relative to the second section 2124 of the side wall 212 , and the second section 2124 passes through the center point of the side wall 212 and is parallel to the opening end 211 .
  • the second section 2124 is perpendicular to the height direction 22 are evenly distributed in the height direction X.
  • FIG. 4 takes the side wall 212 as being provided with two pressure relief areas 22 as an example.
  • the distance H2 between each pressure relief area 22 and the nearest open end 211 can be determined according to the actual application. set up.
  • H2 may be set according to the total height H of the side wall 212, for example, H2 may be set to approximately 0.25*H.
  • the height H1 of the pressure relief area 22 ranges from [0.1mm, 5mm], and the height direction X of the pressure relief area 22 is perpendicular to the opening end 211 .
  • the height direction of the pressure relief area 22 is the height direction X of the battery cell 20
  • the height H1 of the pressure relief area 22 can be set according to actual applications.
  • the height H1 of the pressure relief area 22 should not be too small to avoid increasing processing difficulty, or to avoid the pressure relief area 22 being too small and difficult to be destroyed, thereby preventing the pressure relief area 22 from being unable to release pressure in time.
  • the height H1 of the pressure relief area 22 should not be too large to prevent the overall strength of the housing 21 from being insufficient, thereby preventing the housing 21 from being damaged due to external force.
  • the height H1 of the pressure relief area 22 can generally be set to 0.1mm, 0.5mm, 1mm, 1.5mm, 2mm, 2.5mm, 3mm, 3.5mm, 4mm, 4.5mm and 5mm.
  • the heights of different areas of the pressure relief area 22 in the embodiment of the present application are equal. Specifically, along the circumferential direction of the side wall 212, the heights of the pressure relief areas 22 are set to be equal, which not only facilitates processing without the need to additionally set different sizes, but also allows the stress of the side wall 212 to be uniform around the pressure relief area 22, ensuring that Roundness of sidewall 212. For example, when the pressure relief area 22 is processed by stamping, it can be ensured that the material is extruded evenly during the stamping process and the roundness of the housing 21 meets the usage requirements.
  • FIG. 5 shows a schematic cross-sectional view of the side wall 212 of the housing 21 according to the embodiment of the present application, where the cross section may be the first cross section 2123 of the side wall 212 , and the first cross section 2123 passes through the pressure relief area 22 and is parallel to the opening.
  • the first section 2123 of the end 211 may be a section along the AA′ direction as shown in FIG. 4 .
  • the wall thickness of the pressure relief area 22 in the embodiment of the present application is smaller than the wall thickness of other areas 2121 of the side wall 212 , wherein the wall thickness of the pressure relief area 22 can be set according to actual applications.
  • the wall thickness T1 of the pressure relief area 22 satisfies: 0.2T ⁇ T1 ⁇ T, where T is the wall thickness of other areas 2121 of the side wall 212 .
  • the wall thickness T1 of the pressure relief area 22 is set smaller than the wall thickness T of other areas 2121 so that the pressure relief area 22 is destroyed when the internal pressure or temperature of the battery cell 20 reaches a threshold value, so as to timely release the internal pressure. pressure and timely cooling.
  • the wall thickness T1 of the pressure relief area 22 does not need to be too thin, so as to avoid insufficient strength of the casing 21 and affecting the structural strength of the battery cell 20 .
  • the wall thickness T1 of the pressure relief area 22 can generally be set to 0.21T, 0.4T, 0.6T or 0.8T.
  • the surface of the pressure relief area 22 facing the inside of the housing 21 is flush with the surfaces of other areas 2121 facing the inside of the housing 21 .
  • the wall thickness of the pressure relief area 22 is smaller than the wall thickness of other areas 2121 which can be realized in various forms.
  • a thinning process may be performed on the inner surface of the side wall 212 facing the interior of the battery cell 20 , so that on the inner surface of the side wall 212 , the pressure relief area 22 is recessed compared to other areas 2121 , that is, The groove on the side wall 212 that opens toward the interior of the battery cell 20 serves as the pressure relief area 22 .
  • the casing 21 contains electrolyte, the electrolyte has certain corrosiveness. If the electrolyte accumulates in the groove serving as the pressure relief area 22, it is likely to cause the electrolyte to corrode and damage the pressure relief area 22, thereby causing pressure relief. Area 22 is invalid. Therefore, the inner surface of the side wall 212 is usually not thinned, that is, the surface of the pressure relief area 22 facing the inside of the housing 21 is flush with the surfaces of other areas 212 facing the inside of the housing 21; correspondingly, it can be The surface of the side wall 212 facing the exterior of the battery cell 20 is thinned to form a pressure relief area 22 .
  • the pressure relief area 22 includes at least one weak area 221 , and the wall thickness of the weak area 221 is smaller than the wall thickness of the area of the pressure relief area 22 except for the weak area 221 .
  • a weak zone 221 can be provided in at least part of the pressure relief zone 22 to further reduce the wall thickness of a part of the pressure relief zone 22 . In this way, it is possible to avoid setting the wall thickness of the entire area of the pressure relief zone 22 . Being too thin leads to insufficient strength of the casing 21, and when the internal pressure or temperature of the battery cell 20 reaches a threshold, the pressure relief area 22 can be destroyed at the weak area 221 with a smaller wall thickness, allowing timely release. internal pressure.
  • the pressure relief area 22 includes a plurality of weak areas 221 evenly distributed along the circumferential direction of the side wall 212 to avoid uneven circumferential stress on the side wall 212 caused by uneven distribution of the weak areas 221. , uneven strength, and uneven deformation, thereby affecting the structural strength of the battery cell 20 .
  • the pressure relief area 22 includes a plurality of uniformly distributed weak areas 221, including: the distance between every two adjacent weak areas 212 in the multiple weak areas 221 is equal, and the The lengths of the plurality of weak areas 221 are equal, but the distance between each two adjacent weak areas 212 and the length of each weak area 221 may be equal or different.
  • each weak area 221 corresponds to an arc
  • every two adjacent weak areas The distance between 221 may refer to the length of the arc between the two adjacent weak areas 221; and in the embodiment of this application, the length of each weak area 221 may refer to: the length of the arc where the weak area 221 is located.
  • the number of weak areas 221 provided in the pressure relief area 22 in the embodiment of the present application can be set according to actual applications.
  • the pressure relief area 22 may not be destroyed in time, thereby affecting the pressure relief efficiency; if the length of each weak area 221 is large, it may As a result, the strength of different areas of the pressure relief area 22 is greatly different, which further causes uneven stress and uneven deformation of the side wall 212 .
  • the number of weak areas 221 in the pressure relief area 22 is not easy to be too large or too small.
  • the pressure relief area 22 is provided with three weak areas 221; or four weak areas 221 may also be provided.
  • the length L1 of the weak area 221 along the circumferential direction of the side wall 212 satisfies; 0.1 mm ⁇ L1 ⁇ 0.2 L, where L is the circumference of the side wall 212 .
  • L is the circumference of the side wall 212 .
  • the length L1 of the weak zone 221 is set too small, it will increase the difficulty of processing and increase the difficulty of the pressure relief zone 22 being destroyed in the weak zone 221; conversely, if the length L1 of the weak zone 221 If L1 is set too large, the strength of the side wall 212 of the housing 21 will be reduced, thereby affecting the strength and safety of the battery cell 20 .
  • the length L1 of the weak area 221 in the embodiment of the present application can also be set according to the assembly position of the battery cell 20 .
  • the position of the pressure relief area 22 and the weak area 221 of the pressure relief area 22 should be reasonably set according to the blocked area of the battery cell 20 . position to prevent the weak area 221 of the pressure relief area 22 from being blocked and unable to be destroyed in time.
  • FIG. 6 shows a partial cross-sectional schematic view of the battery 10 according to the embodiment of the present application.
  • FIG. 6 can be a partial cross-sectional schematic view of the battery 20 shown in FIG. 2 .
  • the cross-section is perpendicular to the height direction Z of the battery cell 20 .
  • the cross section may be a cross section passing through the pressure relief area 22 .
  • each battery cell 20 can be fixed on the fixing component 11 , and the fixing component 22 will block part of each battery cell 20 .
  • the fixing component 11 will block part of the pressure relief area 22 of each battery cell 20 .
  • Figure 7 shows a partial cross-sectional schematic view of the battery cell 20 and the fixing component 11 according to the embodiment of the present application.
  • the battery cell 20 in Figure 7 can be any one of the plurality of battery cells 20 shown in Figure 6
  • the battery cell 20 , and FIG. 7 also shows a part of the firmware component 11 to indicate that the battery cell 20 and the fixing component 11 are partially fixed to each other.
  • the side wall 212 includes a fixing area 2122 that partially overlaps the pressure relief area 22.
  • the fixing area 2122 is used for fixing the battery cells, that is, the area where the fixing component 11 contacts the side wall of the battery cell 20 is the fixing area.
  • Area 2122, the fixed area 2122 at least partially overlaps the pressure relief area 22.
  • the fixed area 2122 at least partially overlaps the pressure relief area 22, for the multiple weak areas 221 provided on the pressure relief area 22, there may be situations where the weak areas 221 overlap with the fixed area 2122, then the fixed area 2122 It may affect the timely destruction of the weak area 221, thereby affecting the safety of the battery cell 20.
  • the fixing area 2122 does not completely cover the plurality of weak areas 221 on the first section 2123 of the side wall 212 , where the first section 2123 passes through the pressure relief area 22 and is parallel to the open end 211 .
  • the fixed area 2122 by setting the fixed area 2122 to not completely cover all the weak areas 221 on the pressure relief area 22, that is, at least some of the weak areas 221 on the pressure relief area 22 are not blocked and covered by the fixed area 2122, so that the weak areas 221 are in the battery cell. 20 can be destroyed in time when thermal runaway occurs, releasing the internal pressure of the battery cell 20 and cooling down in time, thereby improving the safety of the battery 10 .
  • the central angle of the arc in the area other than the fixed area 2122 is greater than any angle of the pressure relief area 22
  • n is the number of weak zones 221 in the pressure relief zone 22, and, pressure relief
  • the central angle of the arc where the fixed area 2122 is located is ⁇
  • the angle of the central angle of the arc where the area other than the fixed area 2122 is located is equal to 360°- ⁇ , therefore, the fixed area 2122 satisfies: 360°- ⁇ > ⁇ , so that no matter how the battery cell 20 is rotated along its axis for installation, the fixed area 2122 will not block the pressure relief area 22
  • All the weak areas 221 on the surface facilitate flexible installation of the battery cells 20 without setting a specific installation position or direction, so that the fixed area 2122 does not completely cover multiple weak areas 221.
  • the weak areas 221 can be prevented from being blocked. Shield, so that the weak area 221 can be destroyed in time when the battery cell 20 is thermally out of control, releasing the internal pressure of the battery cell 20 and cooling down in time, thereby improving the safety of the battery 10 .
  • the side wall 212 of the housing 21 of the battery cell 20 is likely to be squeezed by the adjacent battery cell 20 or the box of the battery 10 or other components. If the pressure relief area 22 is located in a circumferential local area of the side wall 212 of the housing 21 , or the pressure relief area 22 is distributed perpendicularly to the circumferential direction of the side wall 212 , since the area where the pressure relief area 22 is provided is smaller than the area where the pressure relief area 22 is not provided. The area 22 is weak in strength and is more prone to deformation, so the circumferential deformation of the side wall 212 will be uneven, which will lead to uneven deformation of the battery cell 20 .
  • the pressure relief area 22 in the embodiment of the present application surrounds the entire circumference of the side wall 212, which can make the circumferential deformation of the casing 21 of the battery cell 20 more uniform, thereby improving the strength and safety of the battery cell 20. .
  • the pressure relief area 22 is provided in a local area of the side wall 212 of the housing 21 , or the pressure relief area 22 is distributed perpendicularly to the circumferential direction of the side wall 212 , then when assembling multiple battery cells 20 , it is necessary to follow specific instructions. Install in such a direction as to avoid blocking the pressure relief area 22. In this way, it not only increases the difficulty of installation, but also may cause the pressure relief area 22 to be blocked due to installation errors, thereby affecting the pressure relief area 22 to release internal pressure, thus reducing the safety of the battery cells 20 and the battery 10 .
  • the pressure relief area 22 of the present application surrounds the entire circumference of the side wall 212 of the housing 21 .
  • the requirements for the installation position of the battery cell 20 are reduced, and the safety of the battery cell 20 is improved.
  • the installation flexibility makes it easy to avoid blocking the pressure relief area 22, thereby timely releasing the internal pressure of the thermally runaway battery cell 20 and improving the safety of the battery 10.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本申请实施例提供一种电池单体的壳体、电池单体、电池和用电设备。该电池单体的壳体包括:该壳体为具有开口端的中空结构,该壳体的侧壁围合形成该开口端,该侧壁设置有至少一个泄压区,该泄压区沿该侧壁的周向环绕整周。本申请实施例提供的电池单体的壳体、电池单体、电池和用电设备,能够提高电池的安全性。

Description

电池单体的壳体、电池单体、电池和用电设备 技术领域
本申请涉及电池技术领域,特别是涉及一种电池单体的壳体、电池单体、电池和用电设备。
背景技术
节能减排是汽车产业可持续发展的关键。在这种情况下,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。而对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
在电池技术的发展中,除了提高电池的性能外,安全问题也是一个不可忽视的问题。如果电池的安全问题不能保证,那该电池就无法使用。因此,如何增强电池的安全性,是电池技术中一个亟待解决的技术问题。
发明内容
本申请实施例提供了一种电池单体的壳体、电池单体、电池和用电设备,能够提高电池的安全性。
第一方面,提供了一种电池单体的壳体,包括:该壳体为具有开口端的中空结构,该壳体的侧壁围合形成该开口端,该侧壁设置有至少一个泄压区,该泄压区沿该侧壁的周向环绕整周。
因此,本申请实施例的电池单体的壳体,在电池的使用过程中,壳体的侧壁很可能会受到相邻电池单体或者电池的箱体或者其他部件的挤压。若泄压区位于壳体的侧壁的周向的局部区域,或者泄压区垂直于侧壁的周向分布,由于设置泄压区的区域相比于未设置泄压区的区域强度较弱,更容易发生变形,那么侧壁的周向的变形会不均匀,进而导致电池单体发生不均匀的变形。例如,圆柱形电池单体的不均匀变形会导致电池单体的圆度不良,进而可能对壳体的焊接产生影响,降低了电池单体的强度和安全性。因此,本申请实施例的泄压区沿侧壁的周向环绕整周,能够使得电池单体的壳体的周向变形较为均匀,进而提高电池单体的强度和安全性。
另外,若将泄压区设置在壳体的侧壁的局部区域,或者泄压区垂直于侧壁的周向分布,则在组装多个电池单体时,需按照特定方向安装,以避免遮挡泄压区。这样,既增加了安装难度,又可能因为安装误差导致遮挡泄压区,进而影响泄压区释放内部压力,进而降低了电池单体的电池的安全性。而本申请的泄压区沿壳体的侧壁的周向环绕整周,因此在组装电池单体时,降低了电池单体的安装位置的要求,提高了电池单体的安装灵活度,易于避免遮挡泄压区,进而能够及时泄放热失控的电池单体的内 部压力,提高电池的安全性。
在一些实施例中,该泄压区的壁厚小于该侧壁的其他区域的壁厚。该泄压区处强度相对薄弱,既便于加工,又可以在电池单体发生热失控时,其内部温度或者压力达到预设值,壳体在该泄压区处被破坏,以泄放内部压力或温度。
在一些实施例中,该泄压区的朝向该壳体的内部的表面,与该其他区域的朝向该壳体的内部的表面齐平。若不齐平,由于泄压区壁厚小,则泄压区相对于其他区域凹陷,由于壳体内包括电解液,该电解液具有一定腐蚀性,若电解液在该泄压区内堆积,很可能导致电解液腐蚀并破坏该泄压区,进而导致泄压区失效。
在一些实施例中,该泄压区的壁厚T1满足:T1≥0.2T,其中,T为该其他区域的壁厚。设置泄压区的壁厚小于其他区域的壁厚,以使得该泄压区在电池单体的内部的压力或者温度达到阈值时被破坏,以及时泄放内部压力以及及时降温。相反的,该泄压区的壁厚也可以不可以太薄,以免壳体的强度不足,影响电池单体的结构强度。
在一些实施例中,该泄压区的高度H1的取值范围为[0.1mm,5mm],该泄压区的高度方向垂直于该开口端。
该泄压区的高度不宜过小,以避免增加加工难度,也可以避免泄压区过小导致难以被破坏,也就可以避免泄压区不能及时泄放压力。相反的,泄压区的高度也不宜过大,以避免壳体的整体强度不足,也就避免壳体由于外力作用被破坏。
在一些实施例中,该泄压区的不同区域的高度相等。沿该侧壁的周向上,设置该泄压区的高度相等,既便于加工,无需额外设置不同尺寸,又可以使得侧壁在该泄压区的周围应力均匀,保证侧壁的圆度。
在一些实施例中,该泄压区包括至少一个薄弱区,该薄弱区的壁厚小于该泄压区的除该薄弱区以外的区域的壁厚。既可以避免泄压区的全部区域的壁厚设置过薄导致壳体的强度不足,又可以在电池单体的内部的压力或者温度达到阈值时,使得泄压区能够在壁厚更小的薄弱区处被破坏,以及时泄放内部压力。
在一些实施例中,该泄压区包括沿该侧壁的周向均匀分布的多个该薄弱区,以避免薄弱区分布不均匀导致的侧壁的周向受力不均匀,强度不均匀,以及变形不均匀,进而降低了电池单体的结构强度。
在一些实施例中,该侧壁包括与该泄压区部分重叠的固定区,该固定区用于该电池单体的固定,在该侧壁的第一截面上,该固定区不完全覆盖多个该薄弱区,该第一截面经过该泄压区且平行于该开口端。
通过设置固定区不完全覆盖泄压区上的全部薄弱区,即泄压区上至少存在部分薄弱区不被固定区遮挡,使得薄弱区在电池单体热失控时能够及时被破坏,泄放电池单体内部的压力以及及时降温,提高电池的安全性。
在一些实施例中,该壳体为圆柱体,在该第一截面上,除该固定区以外的区域所在的圆弧的圆心角的角度,大于该泄压区的任意相邻两个该薄弱区之间的圆弧的圆心角的角度。
这样,无论如何沿电池单体的轴线旋转该电池单体进行安装,固定区都不会遮挡和覆盖泄压区上的全部薄弱区,一方面便于电池单体灵活安装,不需要设置特定的 安装位置或者方向,另一方面可以避免薄弱区被遮挡,以使得薄弱区在电池单体热失控时能够及时被破坏,泄放电池单体内部的压力以及及时降温,提高电池的安全性。
在一些实施例中,该薄弱区沿该侧壁的周向的长度L1满足;0.1mm≤L1≤0.2L,其中,L为该侧壁的周长。沿侧壁的轴线,若该薄弱区的长度设置过小,则会增加加工难度,并且会增加泄压区在薄弱区被破坏的难度;相反地,若薄弱区的长度设置过大,会降低壳体的侧壁的强度,进而影响电池单体的强度和安全性。
在一些实施例中,该侧壁上设置有多个该泄压区。电池单体发生热失控时,通常首先会在局部产生高温或者高压,若侧壁上仅设置有一个泄压区,则可能存在泄压区距离高温高压区域较远的情况,进而使得泄压区不能及时被破坏。因此,可以在侧壁上设置有多个泄压区,尤其是在高度方向X上,侧壁的尺寸较大时,设置多个泄压区可以保证不同区域产生高温或者高压时,对应的距离最近的泄压区能够被及时破坏,进而及时泄放内部压力以及及时降温,提高电池的安全性。
在一些实施例中,多个该泄压区相对于该侧壁的第二截面对称分布,该第二截面经过该侧壁的中心点且平行于该开口端。
这样,一方面可以使得电池单体的整体强度较为均匀,另一方面也可以使得不同区域产生高温或者高压时,存在与之对应的距离最近的泄压区,该泄压区能够被及时破坏,进而及时泄放内部压力以及及时降温,提高电池的安全性。
在一些实施例中,该壳体为圆柱体。
在一些实施例中,该壳体具有两个该开口端,两个该开口端为该壳体的相对的两个底面,以便于内部电极组件快速安装。
第二方面,提供了一种电池单体,包括:第一方面所述的壳体;盖板,用于盖合该开口端。
第三方面,提供了一种电池,包括:多个电池单体,该电池单体包括第一方面所述的壳体。
第四方面,提供了一种用电设备,包括:多个电池单体,该电池单体包括第一方面所述的壳体,该电池单体用于为该用电设备提供电能。
在一些实施例中,所述用电设备为车辆、船舶或航天器。
附图说明
图1是本申请一实施例公开的一种车辆的结构示意图;
图2是本申请一实施例公开的一种电池的局部结构示意图;
图3是本申请一实施例公开的一种电池单体的分解结构示意图;
图4是本申请一实施例公开的一种电池单体的壳体的侧壁的示意图;
图5是本申请一实施例公开的一种侧壁的第一截面的示意图;
图6是本申请一实施例公开的一种电池的局部截面示意图;
图7是本申请一实施例公开的一种电池单体与固定部件的局部截面示意图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异 物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件由正极极片、负极极片和隔离膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为聚丙烯(polypropylene,PP)或聚乙烯(polyethylene,PE)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数以及电池的安全性。对于电池来说,主要的安全危险来自于充电和放电过程,为了提高电池的安全性能,对电池单体一般会设置泄压机构。泄压机构是指电池单体的内部压力或温度达到预定阈值时致动以泄放内部压力或温度的元件或部件。该预定阈值可以根据设计需求不同而进行调整。所述预定阈值可取决于电池单体中的正极极片、负极极片、电解液和隔离膜中一种或几种的材料。泄压机构可以采用诸如对压力敏感或温度敏感的元件或部件,即,当电池单体的内部压力或温度达到预定阈值时,泄压机构致动,从而形成可供内部压力或温度泄放的通道。
本申请中所提到的“致动”是指泄压机构产生动作,从而使得电池单体的内部压力及温度得以被泄放。泄压机构产生的动作可以包括但不限于:泄压机构中的至少一部分破裂、被撕裂或者熔化,等等。泄压机构在致动后,电池单体内部的高温高压物质作为排放物会从泄压机构向外排出。以此方式能够在可控压力或温度的情况下使电池单体发生泄压,从而避免潜在的更严重的事故发生。
本申请中所提到的来自电池单体的排放物包括但不限于:电解液、被溶解或分裂的正负极极片、隔离膜的碎片、反应产生的高温高压气体、火焰,等等。
电池单体上的泄压机构对电池的安全性有着重要影响。例如,当电池单体发生短路、过充等现象时,可能会导致电池单体内部发生热失控从而压力或温度骤升。这种情况下通过泄压机构致动可以将内部压力及温度向外释放,以防止电池单体爆炸、起火。
因此,如何合理设计泄压机构的结构和位置,对电池的安全性至关重要,尤其是针对形状不同的电池单体,泄压机构的设置还可能影响电池的加工效率。例如,目前的泄压机构一般设置在电池单体的外壳的端部,若多个电池单体堆叠在一起,或者其他部件与电池单体堆叠,那么位于电池单体的端部上的泄压机构会被其他电池单体或者部件所遮挡,导致泄压不及时,发生安全事故。再例如,对于圆柱型电池单体,为了提高电池的空间利用率和能量密度,在考虑如何合理设置泄压机构位置以及时泄压的同时,还应该考虑泄压机构设置位置对电池单体的安装和固定的影响,以免降低电池的加工生产效率。
因此,本申请实施例提供了一种电池单体的壳体、电池单体、电池和用电设备,能够解决上述问题。本申请实施例的壳体为具有开口端的中空结构,该壳体的侧壁围合形成开口端,该侧壁设置有至少一个泄压区,该泄压区沿该侧壁的周向环绕整周。在电池的使用过程中,电池单体的壳体侧壁很可能会受到相邻电池单体或者电池箱体或者其他部件的挤压。若泄压区位于壳体侧壁的周向的局部区域,由于设置泄压区的区域相比于未设置泄压区的区域强度较弱,更容易发生变形,那么侧壁周向的变形会不均匀,进而导致电池单体发生不均匀的变形。因此,本申请实施例的泄压区沿侧壁的周向环绕整周,能够使得电池单体的壳体的周向变形较为均匀。
另外,若将泄压区设置在壳体的侧壁的局部区域,则在组装多个电池单体时,需按照特定方向安装,以避免遮挡泄压区,既增加了安装难度,又可能因为遮挡泄压区而影响泄压区释放内部压力,进而降低了电池的安全性。而本申请的泄压区沿壳体侧壁的周向环绕整周,因此在组装电池单体时,降低了电池单体的安装位置的要求,提高了电池单体的安装灵活度,易于避免遮挡泄压区,进而能够及时泄放热失控的电池单体的内部压力,提高电池的安全性。
本申请实施例描述的技术方案均适用于各种使用电池的用电设备。
用电设备可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可 以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电设备不做特殊限制。
以下实施例为了方便说明,以用电设备为车辆为例进行说明。
例如,如图1所示,为本申请一个实施例的一种车辆1的结构示意图,车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部可以设置马达40,控制器30以及电池10,控制器30用来控制电池10为马达40的供电。例如,在车辆1的底部或车头或车尾可以设置电池10。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源,用于车辆1的电路系统,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
为了满足不同的使用电力需求,电池可以包括多个电池单体,其中,多个电池单体之间可以串联或并联或混联,混联是指串联和并联的混合。电池也可以称为电池包。可选地,多个电池单体可以先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联组成电池。也就是说,多个电池单体可以直接组成电池,也可以先组成电池模块,电池模块再组成电池,本申请实施例并不限于此。
例如。图2示出了本申请实施例的电池10的部分结构示意图。如图2所示,本申请实施例的电池10可以包括多个电池单体20,以满足不同的使用电力需求。本申请实施例的电池单体20的形状可以根据实际应用进行设置。例如,电池单体20可以为长方体或者圆柱体或者其他形状。为了便于说明,本申请实施例主要以圆柱形的电池单体20为例进行说明,但本申请实施例并不限于此。
在本申请实施例中,如图2所示,由于圆柱形的电池单体20的形状特点,为了提高电池10的安装效率,该电池10还可以包括固定部件11,该固定部件11可以用于固定多个电池单体20。具体地,固定部件11的形状可以根据实际应用进行设置,例如,可以根据需要安装的多个电池单体20的数量和位置等因素,设置固定部件11的形状。 例如,图2中以近似长方体的固定部件11为例,则多个电池单体20可以分别固定在该固定部件11的外表面;另外,该固定部件11的内部还可以设置为中空结构,以用于容纳其他部件,但本申请实施例并不限于此。
应理解,本申请实施例的电池10还可以包括箱体,该箱体可以用于容纳多个电池单体20。本申请实施例的箱体内部为中空结构,多个电池单体20容纳于箱体内。箱体可以包括两部分,这里分别称为第一箱体部和第二箱体部,第一箱体部和第二箱体部扣合在一起。第一箱体部和第二箱体部的形状可以根据内部容纳的部件的形状而定,例如,可以根据内部容纳的多个电池单体20组合的形状而定,第一箱体部和第二箱体部中至少一个具有一个开口。例如,第一箱体部和第二箱体部中可以仅有一个为具有开口的中空长方体,而另一个为板状,以盖合开口。例如,这里以第二箱体部为中空长方体且具有一个开口,而第一箱体部为板状为例,那么第一箱体部盖合在第二箱体部的开口处以形成具有封闭腔室的箱体,该腔室可以用于容纳多个电池单体20。多个电池单体20相互并联或串联或混联组合后置于第一箱体部和第二箱体部扣合后形成的箱体内。
再例如,该第一箱体部和第二箱体部也可以均为中空长方体且各自有一个面为开口面,第一箱体部的开口和第二箱体部的开口相对设置,并且第一箱体部和第二箱体部相互扣合形成具有封闭腔室的箱体,该腔室可以用于容纳多个电池单体20。
可选地,该电池10还可以包括汇流部件,汇流部件可以用于实现多个电池单体20之间的电连接,例如并联或串联或混联。具体地,汇流部件可通过连接电池单体20的电极端子231实现电池单体20之间的电连接。进一步地,汇流部件可通过焊接固定于电池单体20的电极端子231。
图3示出了本申请实施例的电池单体20的至少部分结构的分解结构示意图,例如,该图3所示的电池单体20可以为图2所示的电池10中任意一个电池单体20。如图3所示,本申请实施例的电池单体20可以包括壳体21和盖板23。具体地,该壳体21为具有开口端211的中空结构,盖板23用于盖合该开口端211。
本申请实施例的壳体21可以为包括至少一个开口端211的中空结构,其中,该中空结构可以用于容纳电池单体20的电极组件24,盖板23用于盖合壳体21的开口端211。具体地,若壳体21为具有一个开口端211的空心结构,则对于盖板23则可以设置为一个,以盖合壳体21的一个开口端211;若壳体21为具有两个开口端211的中空 结构,例如,如图3所示,壳体21具有相对设置的两个开口端211,则盖板23可以设置为两个,两个盖板23分别盖合于壳体21的两个开口端211。
壳体21的材质可以是多种,比如,铜、铁、铝、钢、铝合金等。壳体21可以是多种形状,比如,圆柱体、长方体等。示例性的,在本申请实施例的各附图中,壳体21为圆柱体;示例性的,壳体21具有两个开口端211,两个开口端211为壳体21的相对的两个底面,这种两端开口的结构,便于内部电极组件24的组装,该电极组件24可以通过任意一个开口端211进入壳体21,能够提高电池单体20的加工效率。
本申请实施例的盖板23是盖合于壳体21的开口端211,以将电池单体20的内部环境与外部环境隔绝的部件。盖板23的材质也可以是多种,比如,铜、铁、铝、钢、铝合金等,盖板23的材质与壳体21的材质可以相同,也可以不同。
应理解,盖板23的形状可以与壳体21的形状相适配。例如,壳体21为长方体结构时,盖板23可以为与壳体21相适配的板状结构,或者也可以为一端开口213的中空长方体结构,以使得盖板23与壳体21盖合后形成长方体的电池单体20。再例如,如图3所示,壳体21为圆柱时,盖板23也可以为圆形的板状;或者盖板23也可以为底壁为圆形的凹槽结构,以使得盖板23与壳体21盖合后形成圆柱形的电池单体20,本申请实施例并不限于此。
本申请实施例的电池单体20还可以包括电极组件24,该电极组件24可设置一个或者多个,本申请实施例并不限于此。电极组件24是电池单体20中发生电化学反应的部件。电极组件24可以是圆柱体、长方体等,并且电极组件24的形状可以与电池单体20的外部形状相同或者不同。例如,若电极组件24为圆柱体结构,电池单体20的外壳也可以为圆柱体结构;或者,若电极组件24为长方体结构,电池单体20的外壳也可以为长方体结构,以提高电极组件24在电池单体内的空间占用率。
如图3所示,本申请实施例的电极组件24可以包括极耳241和主体部,其中,电极组件24的极耳可以包括正极极耳和负极极耳,正极极耳可以由正极极片上未涂覆正极活性物质层的部分层叠形成,负极极耳可以由负极极片上未涂覆负极活性物质层的部分层叠形成,主体部可以由正极极片上涂覆有正极活性物质层的部分和负极极片上涂覆有负极活性物质层的部分层叠形成或者卷绕形成。并且,电极组件24的两个极耳可以位于该电极组件24的同一个端面或者不同的端面,例如,如图3所示,本申请实施例以电极组件24的两个极耳分别位于两个相对设置的端面为例。并且,与之对应 的,电池单体20的多个电极端子231可以分别设置在相对的两个端面,例如,可以分别设置于相对的两个盖板23,以使每个极耳241可以与对应的一个或者多个电极端子231电连接。例如,如图3所示,每个极耳241可以与对应的两个电极端子231电连接,但本申请实施例并不限于此。
下面将结合附图,对本申请实施例的壳体21进行详细介绍。如图3所示,该壳体21为具有开口端211的中空结构,该壳体21的侧壁212围合形成该开口端211,该侧壁212设置有至少一个泄压区22,该泄压区22沿该侧壁212的周向环绕整周。
应理解,本申请实施例的开口端211指该壳体21的开口所在端面。对应的,本申请实施例的壳体21的侧壁212能够围合形成该开口端211,即壳体21的侧壁212指该壳体21的与开口端211相邻的壁。例如,对于圆柱形的电池单体20,该壳体21的侧壁212为圆柱的侧面,该壳体21的开口端211指该壳体的具有开口的底面。
本申请实施例的侧壁212设置有一个或者多个泄压区22,该泄压区22可以用于在电池单体20的内部压力或温度达到预定阈值时被破坏,以泄放电池单体20的内部压力或温度。例如,该泄压区22可以设置有泄压机构,以使在电池单体20的内部压力或温度达到预定阈值时,泄压区22的泄压机构致动,该泄压区22被破坏,进而泄放电池单体20的内部压力或温度。
为了便于说明,本申请实施例以侧壁212上设置的全部泄压区22中任意一个泄压区22为例进行说明。具体地,如图3所示,对于任意一个泄压区22,该泄压区22沿着该侧壁212的周向环绕整周,其中,该“整周”是指泄压区22沿着侧壁212的周向环绕该侧壁212周数为整数,例如,泄压区22沿着侧壁212的周向环绕侧壁212一周、两周或者三周。为了便于说明,本申请实施例下文中以泄压区22沿着侧壁212的周向环绕侧壁212一周设置为例,但本申请实施例并不限于此。
另外,为了便于说明,将电池单体20的高度方向X定义为垂直于壳体21的开口端211的方向,那么,侧壁212的周向垂直于该电池单体20的高度方向X。例如,如图3所示,对于圆柱形电池单体20,该高度方向X为圆柱形壳体21的中轴线所在方向,侧壁212的周向垂直于壳体21的中轴线。
在本申请实施例中,在电池10的使用过程中,电池单体20的壳体21的侧壁212很可能会受到相邻电池单体20或者电池10的箱体或者其他部件的挤压。若泄压区22位于壳体21的侧壁212的周向的局部区域,或者泄压区22垂直于侧壁212的周向 分布,由于设置泄压区22的区域相比于未设置泄压区22的区域强度较弱,更容易发生变形,那么侧壁212的周向的变形会不均匀,进而导致电池单体20发生不均匀的变形。例如,圆柱形电池单体20的不均匀变形会导致电池单体20的圆度不良,进而可能对壳体21的焊接产生影响,降低了电池单体20的强度和安全性。因此,本申请实施例的泄压区22沿侧壁212的周向环绕整周,能够使得电池单体20的壳体21的周向变形较为均匀,进而提高电池单体20的强度和安全性。
另外,若将泄压区22设置在壳体21的侧壁212的局部区域,或者泄压区22垂直于侧壁212的周向分布,则在组装多个电池单体20时,需按照特定方向安装,以避免遮挡泄压区22。这样,既增加了安装难度,又可能因为安装误差导致遮挡泄压区22,进而影响泄压区22释放内部压力,进而降低了电池单体20的电池10的安全性。而本申请的泄压区22沿壳体21的侧壁212的周向环绕整周,因此在组装电池单体20时,降低了电池单体20的安装位置的要求,提高了电池单体20的安装灵活度,易于避免遮挡泄压区22,进而能够及时泄放热失控的电池单体20的内部压力,提高电池10的安全性。
应理解,本申请实施例的泄压区22可以通过多种方式设置。例如,可以在泄压区22处采用诸如对压力敏感或温度敏感的材料或者元件或部件,即,当电池单体20的内部压力或温度达到预定阈值时,泄压区22可以及时感应温度或者压力而被破坏,从而形成可供电池单体20内部压力或温度泄放的通道。
再例如,也可以采用其他方式设置泄压区22。具体地,泄压区22的壁厚小于侧壁212的其他区域2121的壁厚。具体地,该泄压区22可以为电池单体20上的刻痕,使得电池单体20的壳体21在该泄压区22处的壁厚小于侧壁212的其他区域2121的厚度,即泄压区22为侧壁212的壁厚最小处,以使该泄压区22处强度相对薄弱。这样,既便于加工,又可以在电池单体20发生热失控时,其内部温度或者压力达到预设值,壳体21在该泄压区22处被破坏,以泄放内部压力或温度。本申请实施例主要以刻痕的方式设置泄压区22为例进行说明。
应理解,本申请实施例的其他区域2121可以包括:侧壁212上除泄压区22以外的区域,例如,该其他区域2121可以主要指侧壁212上的位于泄压区22的周围的区域。例如,如图3所示,若该侧壁212上未设置有其他部件,并且除该泄压区22以外,侧壁212的全部其他区域的壁厚相等,则该其他区域2121可以为侧壁212的除泄压区 22以外的区域。
图4示出了本申请实施例的电池单体20的壳体21的侧壁212的示意图。如图4所示,侧壁212上设置有多个泄压区22。电池单体20发生热失控时,通常首先会在局部产生高温或者高压,若侧壁212上仅设置有一个泄压区22,则可能存在泄压区22距离高温高压区域较远的情况,进而使得泄压区22不能及时被破坏。因此,可以在侧壁212上设置有多个泄压区22,尤其是在高度方向X上,侧壁212的尺寸较大时,设置多个泄压区22可以保证不同区域产生高温或者高压时,对应的距离最近的泄压区22能够被及时破坏,进而及时泄放内部压力以及及时降温,提高电池10的安全性。
如图4所示,多个泄压区22相对于侧壁212的第二截面2124对称分布,第二截面2124经过侧壁212的中心点且平行于开口端211。具体地,该第二截面2124垂直于高度方向X,并且该第二截面2124经过该侧壁212的中心点,以使得侧壁212设置有多个泄压区22时,该多个泄压区22在高度方向X上均匀分布。这样,一方面可以使得电池单体20的整体强度较为均匀,另一方面也可以使得不同区域产生高温或者高压时,存在与之对应的距离最近的泄压区22,该泄压区22能够被及时破坏,进而及时泄放内部压力以及及时降温,提高电池10的安全性。
例如,图4以侧壁212设置两个泄压区22为例。进一步的,对于侧壁212上设置的多个泄压区22,沿电池单体20的高度方向X,每个泄压区22与距离最近的开口端211之间的距离H2可以根据实际应用进行设置。例如,可以根据侧壁212的总高度H设置该H2,例如,可以设置H2约为0.25*H。
在本申请实施例中,对于任意一个泄压区22,该泄压区22的高度H1的取值范围为[0.1mm,5mm],泄压区22的高度方向X垂直于开口端211。具体地,泄压区22的高度方向即为电池单体20的高度方向X,该泄压区22的高度H1可以根据实际应用进行设置。例如,该泄压区22的高度H1不宜过小,以避免增加加工难度,也可以避免泄压区22过小导致难以被破坏,也就可以避免泄压区22不能及时泄放压力。相反的,泄压区22的高度H1也不宜过大,以避免壳体21的整体强度不足,也就避免壳体21由于外力作用被破坏。例如,该泄压区22的高度H1通常可以设置为0.1mm、0.5mm、1mm、1.5mm、2mm、2.5mm、3mm、3.5mm、4mm、4.5mm和5mm。
如图4所示,本申请实施例的泄压区22的不同区域的高度相等。具体地,沿该侧壁212的周向上,设置该泄压区22的高度相等,既便于加工,无需额外设置不同尺 寸,又可以使得侧壁212在该泄压区22的周围应力均匀,保证侧壁212的圆度。例如,通过冲压的方式加工该泄压区22时,可以保证在冲压过程中挤料均匀,壳体21的圆度满足使用要求。
图5示出了本申请实施例的壳体21的侧壁212的截面示意图,其中,该截面可以为侧壁212的第一截面2123,该第一截面2123经过泄压区22且平行于开口端211,例如,该第一截面2123可以为沿如图4所示的A-A’方向的截面。如图4和图5所示,本申请实施例的泄压区22的壁厚小于侧壁212的其他区域2121的壁厚,其中,该泄压区22的壁厚可以根据实际应用进行设置。
例如,如图4和图5所示,泄压区22的壁厚T1满足:0.2T≤T1<T,其中,T为侧壁212的其他区域2121的壁厚。具体地,设置泄压区22的壁厚T1小于其他区域2121的壁厚T,以使得该泄压区22在电池单体20的内部的压力或者温度达到阈值时被破坏,以及时泄放内部压力以及及时降温。相反的,该泄压区22的壁厚T1也可以不可以太薄,以免壳体21的强度不足,影响电池单体20的结构强度。例如,该泄压区22的壁厚T1通常可以设置为0.21T、0.4T、0.6T或者0.8T。
在本申请实施例中,如图4和图5所示,泄压区22的朝向壳体21的内部的表面,与其他区域2121的朝向壳体21的内部的表面齐平。具体地,泄压区22的壁厚小于其他区域2121的壁厚可以通过多种形式实现。例如,可以在侧壁212的朝向电池单体20的内部的内表面上进行减薄处理,这样,在该侧壁212的内表面上,该泄压区22相比于其他区域2121凹陷,即侧壁212上开口朝向电池单体20的内部的凹槽作为泄压区22。由于壳体21内包括电解液,该电解液具有一定腐蚀性,若电解液在作为泄压区22的凹槽内堆积,很可能导致电解液腐蚀并破坏该泄压区22,进而导致泄压区22失效。因此,通常不在侧壁212的内表面进行减薄处理,即泄压区22的朝向壳体21的内部的表面与其他区域212的朝向壳体21的内部的表面齐平;对应的,可以在侧壁212的朝向电池单体20的外部的表面进行减薄处理,以形成泄压区22。
在本申请实施例中,如图4和图5所示,泄压区22包括至少一个薄弱区221,薄弱区221的壁厚小于泄压区22的除薄弱区221以外的区域的壁厚。具体地,可以在泄压区22内的至少部分区域设置薄弱区221,以进一步减小泄压区22的部分区域的壁厚,这样,既可以避免泄压区22的全部区域的壁厚设置过薄导致壳体21的强度不足,又可以在电池单体20的内部的压力或者温度达到阈值时,使得泄压区22能够在壁厚更 小的薄弱区221处被破坏,以及时泄放内部压力。
如图4和图5所示,泄压区22包括沿侧壁212的周向均匀分布的多个薄弱区221,以避免薄弱区221分布不均匀导致的侧壁212的周向受力不均匀,强度不均匀,以及变形不均匀,进而影响电池单体20的结构强度。具体地,沿侧壁212的周向,泄压区22包括均匀分布的多个薄弱区221,包括:该多个薄弱区221中每相邻两个薄弱区212之间的距离相等,且该多个薄弱区221的长度相等,但每相邻两个薄弱区212之间的距离和每个薄弱区221的长度可以相等或者不等。
应理解,对于圆柱形电池单体20,在第一截面2123上,沿侧壁212的周向,每个薄弱区221对应为一段圆弧,则本申请实施例中每相邻两个薄弱区221之间的距离可以指该相邻两个薄弱区221之间的圆弧的长度;而本申请实施例中每个薄弱区221的长度可以指:该薄弱区221所在圆弧的长度。
应理解,本申请实施例中泄压区22内设置的薄弱区221的数量可以根据实际应用进行设置。薄弱区221的数量设置过少时,若每个薄弱区221的长度较小,则可能导致泄压区22不能被及时破坏,进而影响泄压效率;若每个薄弱区221长度较大,则可能导致泄压区22的不同区域强度差异较大,进而导致侧壁212受力不均匀以及产生不均匀的变形。相反的,若薄弱区221的数量设置过多,则可能导致侧壁212的强度不足,影响电池单体20的安全性。因此,泄压区22的薄弱区221的数量不易设置过多或者多少,例如,如图5所示,泄压区22设置有三个薄弱区221;或者也可以设置有四个薄弱区221。
在本申请实施例中,如图5所述,薄弱区221沿侧壁212的周向的长度L1满足;0.1mm≤L1≤0.2L,其中,L为侧壁212的周长。沿侧壁212的轴线,若该薄弱区221的长度L1设置过小,则会增加加工难度,并且会增加泄压区22在薄弱区221被破坏的难度;相反地,若薄弱区221的长度L1设置过大,会降低壳体21的侧壁212的强度,进而影响电池单体20的强度和安全性。
应理解,本申请实施例的薄弱区221的长度L1还可以根据该电池单体20的组装位置进行设置。例如,若该电池单体20在安装时,会被其他部件遮挡,则应该根据该电池单体20的被遮挡的区域,合理设置泄压区22的位置以及泄压区22的薄弱区221的位置,以避免泄压区22的薄弱区221被遮挡而无法及时被破坏。
图6示出了本申请实施例的电池10的局部截面示意图,例如,图6可以为图2 所示的电池20的局部截面示意图,该截面垂直于电池单体20的高度方向Z,再例如,该截面可以为经过泄压区22的截面。如图6所示,结合图2可知,每个电池单体20可以固定在固定部件11上,则固定部件22会遮挡每个电池单体20的部分区域。并且,对于环绕侧壁212设置的泄压区22,固定部件11会遮挡每个电池单体20的泄压区22的部分区域。
图7示出了本申请实施例的电池单体20与固定部件11的局部截面示意图,例如,图7中的电池单体20可以为图6所示的多个电池单体20中的任意一个电池单体20,并且,该图7还示出了固件部件11的局部,以表示该电池单体20与固定部件11的局部相互固定。
如图7所示,侧壁212包括与泄压区22部分重叠的固定区2122,固定区2122用于电池单体的固定,即固定部件11与电池单体20的侧壁接触的区域为固定区2122,该固定区2122与泄压区22至少部分重叠。
由于该固定区2122与泄压区22至少部分重叠,因此,对于泄压区22上设置的多个薄弱区221而言,可能存在薄弱区221与固定区2122重叠的情况,那么该固定区2122可能会影响薄弱区221及时被破坏,进而影响电池单体20的安全性。
因此,在本申请实施例中,在侧壁212的第一截面2123上,固定区2122不完全覆盖多个薄弱区221,其中,第一截面2123经过泄压区22且平行于开口端211。这样,通过设置固定区2122不完全覆盖泄压区22上的全部薄弱区221,即泄压区22上至少存在部分薄弱区221不被固定区2122遮挡和覆盖,使得薄弱区221在电池单体20热失控时能够及时被破坏,泄放电池单体20内部的压力以及及时降温,提高电池10的安全性。
在本申请实施例中,若壳体21为圆柱体,在侧壁212的第一截面2123上,除固定区2122以外的区域所在的圆弧的圆心角的角度,大于泄压区22的任意相邻两个薄弱区221之间的圆弧的圆心角的角度。具体地,如图7所示,在侧壁212的第一截面2123上,泄压区22的任意一个薄弱区221所在圆弧的圆心角为α,泄压区22中任意相邻两个薄弱区221之间的圆弧的圆心角为β,则α和β满足:n*(α+β)=360°,其中,n为泄压区22中薄弱区221的个数,并且,泄压区22设置有多个薄弱区221时,这里以在侧壁212的周向上,多个薄弱区221在泄压区22中均匀分布为例。
如图7所示,在侧壁212的第一截面2123上,固定区2122的区域所在的圆弧 的圆心角为θ,则除固定区2122以外的区域所在的圆弧的圆心角的角度等于360°-θ,因此,固定区2122满足:360°-θ>β,以使得无论如何沿电池单体20的轴线旋转该电池单体20进行安装,固定区2122都不会遮挡泄压区22上的全部薄弱区221,一方面便于电池单体20灵活安装,不需要设置特定的安装位置或者方向,以实现固定区2122不完全覆盖多个薄弱区221,另一方面可以避免薄弱区221被遮挡,以使得薄弱区221在电池单体20热失控时能够及时被破坏,泄放电池单体20内部的压力以及及时降温,提高电池10的安全性。
在本申请实施例中,在电池10的使用过程中,电池单体20的壳体21的侧壁212很可能会受到相邻电池单体20或者电池10的箱体或者其他部件的挤压。若泄压区22位于壳体21的侧壁212的周向的局部区域,或者泄压区22垂直于侧壁212的周向分布,由于设置泄压区22的区域相比于未设置泄压区22的区域强度较弱,更容易发生变形,那么侧壁212的周向的变形会不均匀,进而导致电池单体20发生不均匀的变形。例如,圆柱形电池单体20的不均匀变形会导致电池单体20的圆度不良,进而可能对壳体21的焊接产生影响,降低了电池单体20的强度和安全性。因此,本申请实施例的泄压区22沿侧壁212的周向环绕整周,能够使得电池单体20的壳体21的周向变形较为均匀,进而提高电池单体20的强度和安全性。
另外,若将泄压区22设置在壳体21的侧壁212的局部区域,或者泄压区22垂直于侧壁212的周向分布,则在组装多个电池单体20时,需按照特定方向安装,以避免遮挡泄压区22。这样,既增加了安装难度,又可能因为安装误差导致遮挡泄压区22,进而影响泄压区22释放内部压力,进而降低了电池单体20的电池10的安全性。而本申请的泄压区22沿壳体21的侧壁212的周向环绕整周,因此在组装电池单体20时,降低了电池单体20的安装位置的要求,提高了电池单体20的安装灵活度,易于避免遮挡泄压区22,进而能够及时泄放热失控的电池单体20的内部压力,提高电池10的安全性。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (18)

  1. 一种电池单体(20)的壳体(21),其特征在于,所述壳体(21)为具有开口端(211)的中空结构,所述壳体(21)的侧壁(212)围合形成所述开口端(211),所述侧壁(212)设置有至少一个泄压区(22),所述泄压区(22)沿所述侧壁(212)的周向环绕整周。
  2. 根据权利要求1所述的壳体(21),其特征在于,所述泄压区(22)的壁厚小于所述侧壁(212)的其他区域(2121)的壁厚。
  3. 根据权利要求2所述的壳体(21),其特征在于,所述泄压区(22)的朝向所述壳体(21)的内部的表面,与所述其他区域(2121)的朝向所述壳体(21)的内部的表面齐平。
  4. 根据权利要求2或3所述的壳体(21),其特征在于,所述泄压区(22)的壁厚T1满足:T1≥0.2T,其中,T为所述其他区域(2121)的壁厚。
  5. 根据权利要求1至4中任一项所述的壳体(21),其特征在于,所述泄压区(22)的高度H1的取值范围为[0.1mm,5mm],所述泄压区(22)的高度方向垂直于所述开口端(211)。
  6. 根据权利要求5所述的壳体(21),其特征在于,所述泄压区(22)的不同区域的高度相等。
  7. 根据权利要求1至6中任一项所述的壳体(21),其特征在于,所述泄压区(22)包括至少一个薄弱区(221),所述薄弱区(221)的壁厚小于所述泄压区(22)的除所述薄弱区(221)以外的区域的壁厚。
  8. 根据权利要求7所述的壳体(21),其特征在于,所述泄压区(22)包括沿所述侧壁(212)的周向均匀分布的多个所述薄弱区(221)。
  9. 根据权利要求8所述的壳体(21),其特征在于,所述侧壁(212)包括与所述泄压区(22)部分重叠的固定区(2122),所述固定区(2122)用于所述电池单体的固定,
    在所述侧壁(212)的第一截面(2123)上,所述固定区(2122)不完全覆盖多个所述薄弱区(221),所述第一截面(2123)经过所述泄压区(22)且平行于所述开口端(211)。
  10. 根据权利要求9所述的壳体(21),其特征在于,所述壳体(21)为圆柱体,在所述第一截面(2123)上,除所述固定区(2122)以外的区域所在的圆弧的圆心角的角度,大于所述泄压区(22)的任意相邻两个所述薄弱区(221)之间的圆弧的圆心角的角度。
  11. 根据权利要求7至10中任一项所述的壳体(21),其特征在于,所述薄弱区(221)沿所述侧壁(212)的周向的长度L1满足;0.1mm≤L1≤0.2L,其中,L为所述侧壁(212)的周长。
  12. 根据权利要求1至11中任一项所述的壳体(21),其特征在于,所述侧壁 (212)上设置有多个所述泄压区(22)。
  13. 根据权利要求12所述的壳体(21),其特征在于,多个所述泄压区(22)相对于所述侧壁(212)的第二截面(2124)对称分布,所述第二截面(2124)经过所述侧壁(212)的中心点且平行于所述开口端(211)。
  14. 根据权利要求1至13中任一项所述的壳体(21),其特征在于,所述壳体(21)为圆柱体。
  15. 根据权利要求14所述的壳体(21),其特征在于,所述壳体(21)具有两个所述开口端(211),两个所述开口端(211)为所述壳体(21)的相对的两个底面。
  16. 一种电池单体(20),其特征在于,包括:
    如权利要求1至15中任一项所述的壳体(21);
    盖板(23),用于盖合所述开口端(211)。
  17. 一种电池,其特征在于,包括:
    多个电池单体(20),所述电池单体(20)包括如权利要求1至15中任一项所述的壳体(21)。
  18. 一种用电设备,其特征在于,包括:
    多个电池单体(20),所述电池单体(20)包括如权利要求1至15中任一项所述的壳体(21),所述电池单体(20)用于为所述用电设备提供电能。
PCT/CN2022/114911 2022-08-25 2022-08-25 电池单体的壳体、电池单体、电池和用电设备 WO2024040534A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/114911 WO2024040534A1 (zh) 2022-08-25 2022-08-25 电池单体的壳体、电池单体、电池和用电设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/114911 WO2024040534A1 (zh) 2022-08-25 2022-08-25 电池单体的壳体、电池单体、电池和用电设备

Publications (1)

Publication Number Publication Date
WO2024040534A1 true WO2024040534A1 (zh) 2024-02-29

Family

ID=90012141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114911 WO2024040534A1 (zh) 2022-08-25 2022-08-25 电池单体的壳体、电池单体、电池和用电设备

Country Status (1)

Country Link
WO (1) WO2024040534A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201490257U (zh) * 2009-07-31 2010-05-26 薛华 一种电池的防爆结构
CN209561521U (zh) * 2018-12-14 2019-10-29 深圳市科达利实业股份有限公司 一种电池防爆片结构、电池盖板及电池
CN212434721U (zh) * 2020-06-22 2021-01-29 欣旺达电动汽车电池有限公司 锂离子电池外壳及锂离子电池
JP2021136194A (ja) * 2020-02-28 2021-09-13 愛三工業株式会社 密閉型蓄電装置の防爆弁
CN215989100U (zh) * 2021-08-31 2022-03-08 宁德时代新能源科技股份有限公司 壳体、电池单体、电池、用电设备及壳体的制造设备
CN216720071U (zh) * 2022-01-12 2022-06-10 宁德时代新能源科技股份有限公司 电池和用电设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201490257U (zh) * 2009-07-31 2010-05-26 薛华 一种电池的防爆结构
CN209561521U (zh) * 2018-12-14 2019-10-29 深圳市科达利实业股份有限公司 一种电池防爆片结构、电池盖板及电池
JP2021136194A (ja) * 2020-02-28 2021-09-13 愛三工業株式会社 密閉型蓄電装置の防爆弁
CN212434721U (zh) * 2020-06-22 2021-01-29 欣旺达电动汽车电池有限公司 锂离子电池外壳及锂离子电池
CN215989100U (zh) * 2021-08-31 2022-03-08 宁德时代新能源科技股份有限公司 壳体、电池单体、电池、用电设备及壳体的制造设备
CN216720071U (zh) * 2022-01-12 2022-06-10 宁德时代新能源科技股份有限公司 电池和用电设备

Similar Documents

Publication Publication Date Title
EP3965213B1 (en) Battery and related apparatus thereof, preparation method and preparation device
WO2023098258A1 (zh) 电池单体、电池以及用电装置
EP4195367B1 (en) Battery and related apparatus, production method and production device therefor
WO2023134479A1 (zh) 电池和用电设备
WO2022198622A1 (zh) 电池单体、电池、用电装置、制造方法及制造设备
WO2022246840A1 (zh) 端盖组件、电池单体、电池及用电设备
US20230223642A1 (en) Pressure relief apparatus, battery cell, battery, and electrical device
US20230155262A1 (en) Housing, battery cell, battery and electric apparatus
CN218414923U (zh) 电池单体的壳体、电池单体、电池和用电设备
WO2024092442A1 (zh) 电池和用电设备
WO2023173429A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
WO2024040534A1 (zh) 电池单体的壳体、电池单体、电池和用电设备
EP4096007A1 (en) Battery, electric apparatus, and method and apparatus for preparing battery
JP2023547756A (ja) 電池セル及びその製造方法と製造システム、電池及び電力使用装置
WO2023050080A1 (zh) 电池单体、电池、用电设备、制造电池单体的方法和设备
WO2023173428A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
WO2023245430A1 (zh) 电池单体、电池及用电设备
WO2023231014A1 (zh) 泄压装置、外壳、电池单体、电池及用电设备
WO2024059963A1 (zh) 电池单体、电池及用电装置
WO2023133755A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2023133784A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2024000367A1 (zh) 电池单体、电池和用电装置
US20230155233A1 (en) Battery cell, manufacturing method and manufacturing system thereof, battery, and powered device
WO2024059968A1 (zh) 电池单体、电池及用电装置
WO2023097469A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956080

Country of ref document: EP

Kind code of ref document: A1