WO2024040530A1 - 电池单体、电池及用电设备 - Google Patents

电池单体、电池及用电设备 Download PDF

Info

Publication number
WO2024040530A1
WO2024040530A1 PCT/CN2022/114890 CN2022114890W WO2024040530A1 WO 2024040530 A1 WO2024040530 A1 WO 2024040530A1 CN 2022114890 W CN2022114890 W CN 2022114890W WO 2024040530 A1 WO2024040530 A1 WO 2024040530A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure relief
battery cell
relief area
score
pressure
Prior art date
Application number
PCT/CN2022/114890
Other languages
English (en)
French (fr)
Inventor
柯海波
李全坤
王鹏
黄守君
毛国安
曹俊琪
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/114890 priority Critical patent/WO2024040530A1/zh
Priority to PCT/CN2023/075069 priority patent/WO2024040879A1/zh
Priority to CN202320168530.1U priority patent/CN219575857U/zh
Publication of WO2024040530A1 publication Critical patent/WO2024040530A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/78Shapes other than plane or cylindrical, e.g. helical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of batteries, specifically, to a battery cell, a battery and electrical equipment.
  • Batteries are widely used in the field of new energy, such as electric vehicles and new energy vehicles. New energy vehicles and electric vehicles have become a new development trend in the automobile industry. The development of battery technology must consider multiple design factors at the same time, such as battery life, energy density, discharge capacity, charge and discharge rate and other performance parameters. In addition, battery safety also needs to be considered. However, current batteries are less safe.
  • the purpose of the embodiments of the present application is to provide a battery cell, a battery and an electrical device, which is intended to improve the problem of poor battery safety in related technologies.
  • inventions of the present application provide a battery cell.
  • the battery cell includes an electrode assembly, a casing and an insulator.
  • the casing is used to accommodate the electrode assembly.
  • the casing has a structure along a first A wall portion opposite to the electrode assembly in one direction; the wall portion is provided with a first pressure relief area; along the first direction, the insulating member is at least partially disposed between the electrode assembly and the wall portion. space, the electrode assembly and the wall are insulated; wherein, a second pressure relief area is provided at a position of the insulating member corresponding to the first pressure relief area, and the first pressure relief area and the The second pressure relief area is used to open when the battery cell is pressure relieved.
  • an insulating member is provided between the electrode assembly of the battery cell and the wall where the first pressure relief area is provided, and the insulating member has a second pressure relief area corresponding to the position of the first pressure relief area.
  • the second pressure relief area separates the electrode assembly from the first pressure relief area. Even if the battery cell is vibrated, the electrolyte in the case will not easily wash away the first pressure relief area and affect the first pressure relief area. detonation pressure.
  • the second pressure relief area is opened, thereby allowing gas to pass through the insulator to release pressure from the first pressure release area, which has higher safety.
  • the insulating member is provided with notches, and the notches are provided along the edge of the second pressure relief area.
  • a weak position is formed by arranging notches on the insulating member, so that the second pressure relief area can be opened from the weak position when the battery cell is depressurized. Since the nicks are provided along the edge of the second pressure relief area, when the battery cell is depressurized, the second pressure relief area will be opened along the edge to provide a larger opening for gas to pass through.
  • the notch is arranged around the outside of the projection of the first pressure relief area on the insulating member along the first direction.
  • the second pressure relief area The range is larger than the range of the first pressure relief area.
  • the projection of the second pressure relief area on the wall covers the first pressure relief area.
  • a first pressure relief groove is provided on the wall, and the first pressure relief groove is provided along the edge of the first pressure relief area, and the notch Surroundingly arranged outside the projection of the first pressure relief groove on the insulating member along the first direction.
  • a first pressure relief groove is provided on the wall to form a weak position, which facilitates the first pressure relief area to be opened from the weak position when the battery cell is depressurized. Since the first pressure relief groove is provided along the edge of the first pressure relief area, when the battery cell is depressurized, the first pressure relief area will be opened along the edge to provide a larger opening for gas to pass through.
  • the battery cell includes a pressure relief piece, a pressure relief hole is opened on the wall, and the pressure relief piece covers the pressure relief hole, and the pressure relief hole is
  • the component is provided with a second pressure relief groove, the second pressure relief groove is provided along the edge of the first pressure relief area, and the notch is provided around the second pressure relief groove along the first direction. on the outside of the projection on the insulator.
  • a weak position is formed by arranging a second pressure relief groove on the pressure relief component, so that the first pressure relief area can be opened from the weak position when the battery cell is depressurized. Since the second pressure relief groove is provided along the edge of the first pressure relief area, when the battery cell is depressurized, the first pressure relief area will be opened along the edge to provide a larger opening for gas to pass through.
  • the score is arranged around the outside of the projection of the pressure relief hole on the insulating member along the first direction.
  • the electrolyte will pass through the insulating member. After marking, it will not flow directly to the pressure relief part, but first collide with the wall and change the flow direction, reduce the impact force and then flow to the pressure relief part, making the pressure relief part less susceptible to erosion by the electrolyte.
  • the open area of the second pressure relief area is larger than the area of the pressure relief hole, which facilitates smooth pressure relief.
  • the score includes a plurality of score segments, and the plurality of score segments are arranged at intervals along the circumference of the second pressure relief area.
  • the second pressure relief area can be opened from the position where the multiple score segments are located, so that the gas can pass through the insulating member and escape from the first pressure relief area. Area to relieve pressure. Since a plurality of score segments are provided at intervals along the circumferential direction of the second pressure relief area instead of forming the entire circumference of the second pressure relief area, the strength of the second pressure relief area is higher, even if the battery cells Even if the body is subject to greater vibration, the second pressure relief area will not open accidentally.
  • the score section penetrates two opposite surfaces of the insulating member.
  • the second pressure relief area is easier to open when the battery cell is pressure relieved.
  • the score section penetrates both surfaces of the insulator along the first direction, since the score is arranged around the outside of the first pressure relief area, the electrolyte passing through the insulator will not directly wash away the first pressure relief area. area, but only after passing through the insulator and changing direction, it may flow to the first pressure relief area. In this way, the impact force of the electrolyte is not strong and will not easily affect the detonation pressure of the first pressure relief area.
  • the width of the score section is D1, which satisfies: D1 ⁇ 2mm.
  • the width of the score section is less than 2mm, which actually limits the width of the remaining part between the two adjacent score sections.
  • the second pressure relief area is easier to open. If D1>2mm, the width of the remaining part between the two adjacent notched sections is also greater than 2mm. In this way, the width of this part is large, and the second pressure relief area cannot be opened in time when the battery cell is depressurized. The battery cells cannot release pressure in time.
  • the distance between two adjacent score segments is D2, which satisfies: D2 ⁇ 10 mm.
  • the distance between two adjacent scored sections is also the length of the remaining part between the two adjacent scored sections.
  • the smaller the length of this part the greater the risk of battery cell leakage.
  • the second pressure relief area is easier to open when the pressure is high. If D2>10mm, the length of the remaining part between the two adjacent notched sections is also greater than 10mm. In this way, the length of this part is large, and the second pressure relief area cannot be opened in time when the battery cell is depressurized. The battery cells cannot release pressure in time.
  • the distance between the notch and the first pressure relief area is D3, which satisfies: D3 ⁇ 3mm.
  • the area relationship between the second pressure relief area and the first pressure relief area is actually limited.
  • the area of the second pressure relief area is larger than the area of the first pressure relief area, but the area of the second pressure relief area cannot be too large, otherwise when the second pressure relief area is opened, the second pressure relief area will be separated from the insulating member and separated. The part that comes out may fall towards the first pressure relief area, thereby blocking the first pressure relief area and affecting the pressure relief in the first pressure relief area.
  • the score is a closed structure extending along a closed track.
  • the score is an entire circumferential score provided along the edge of the second pressure relief area, so that the second pressure relief area can be easily opened when the battery cell is depressurized.
  • the notch includes a plurality of groove segments and a plurality of hole segments.
  • the groove segments alternate with the hole segments.
  • the insulating member has an opposite first surface and a second surface, the groove segment is recessed from the first surface toward the second surface, and the hole segment penetrates the first surface. a surface and said second surface.
  • the depth of the groove section and the hole section are different.
  • the hole section penetrates the first surface and the second surface, and the depth of the score is relatively large.
  • the groove section is recessed from the first surface toward the second surface, and the depth of the groove is shallow.
  • the insulating member has a first surface facing the wall, and the notch is provided on the first surface.
  • the electrolyte is less likely to accumulate in the notch, which is beneficial to ensuring a sufficient amount of electrolyte in the battery cell.
  • the insulating member has a flat plate structure.
  • the insulating member is configured as a flat plate structure. On the one hand, it occupies less space in the battery cell. On the other hand, the flat plate structure can provide better support to the electrode assembly and is less likely to damage the electrode assembly.
  • an embodiment of the present application provides a battery.
  • the battery includes a box and the above-mentioned battery cell, and the battery cell is accommodated in the box.
  • inventions of the present application provide an electrical device.
  • the electrical device includes the above-mentioned battery, and the battery is used to provide electrical energy to the electrical device.
  • Figure 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • Figure 2 is an exploded view of a battery provided by some embodiments of the present application.
  • Figure 3 is an exploded view of a battery cell provided by some embodiments of the present application.
  • Figure 4 is a schematic front view of an insulator provided by some embodiments of the present application.
  • Figure 5 is a cross-sectional view at position B-B in Figure 4.
  • Figure 6 is a schematic front view of an insulator provided by other embodiments of the present application.
  • Figure 7 is a cross-sectional view at position C-C in Figure 6;
  • Figure 8 is a schematic front view of an insulator provided by some embodiments of the present application.
  • Figure 9 is a cross-sectional view at position D-D in Figure 8.
  • Figure 10 is a schematic front view of an insulator provided in some embodiments of the present application.
  • Figure 11 is a cross-sectional view at position E-E in Figure 10 .
  • Icon 10-box; 11-first part; 12-second part; 20-battery cell; 21-electrode assembly; 22-casing; 221-end cover; 222-shell main body; 2221-wall; 2222 -First pressure relief area; 23-insulation piece; 231-second pressure relief area; 232-score; 2321-score section; 2322-groove section; 2323-hole section; 233-first surface; 234-th Two surfaces; 235-groove; 100-battery; 200-controller; 300-motor; 1000-vehicle.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can be a fixed connection
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • “Plural” appearing in this application means two or more (including two).
  • battery cells may include lithium ion secondary battery cells, lithium ion primary battery cells, lithium sulfur battery cells, sodium lithium ion battery cells, sodium ion battery cells or magnesium ion battery cells, etc.
  • the embodiments of the present application are not limited to this.
  • the battery cell may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited to this.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square battery cells and soft-pack battery cells, and the embodiments of the present application are not limited to this.
  • the battery mentioned in the embodiments of this application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack.
  • Batteries generally include a box for packaging one or more battery cells. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte.
  • the electrode assembly consists of a positive electrode sheet, a negative electrode sheet and a separator. Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the positive electrode current collector that is not coated with the positive electrode active material layer protrudes from the positive electrode current collector that is coated with the positive electrode active material layer.
  • the cathode current collector without coating the cathode active material layer serves as the cathode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the negative electrode current collector that is not coated with the negative electrode active material layer protrudes from the negative electrode current collector that is coated with the negative electrode active material layer.
  • the negative electrode current collector that is not coated with the negative electrode active material layer is used as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
  • the number of positive electrode lugs is multiple and stacked together, and the number of negative electrode lugs is multiple and stacked together.
  • the material of the isolation film can be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene), etc.
  • the electrode assembly may have a rolled structure or a laminated structure, and the embodiments of the present application are not limited thereto.
  • a pressure relief mechanism can be installed on the battery cells.
  • the pressure relief mechanism opens to release the pressure inside the battery cell to reduce the risk of battery cell explosion and fire.
  • the inventor further studied and found that there is an insulator between the pressure relief mechanism and the electrode assembly.
  • This insulator separates the pressure relief mechanism from the electrode assembly.
  • the insulator separates the electrode assembly from the pressure relief mechanism.
  • the mechanism is separated, resulting in poor exhaust and preventing the pressure relief mechanism from releasing pressure normally. If an opening is directly provided on the insulator at a position corresponding to the pressure relief mechanism to allow exhaust, then under vibration conditions, the electrolyte in the battery cell will easily pass through the opening and wash away the pressure relief mechanism, thereby affecting the function of the pressure relief mechanism.
  • the detonation pressure causes the pressure relief mechanism to be unable to achieve its normal pressure relief function.
  • a battery cell which includes an electrode assembly, a casing, and an insulator.
  • the housing is used to accommodate the electrode assembly, and the housing has a wall portion opposite to the electrode assembly along the first direction.
  • the wall is provided with a first pressure relief area.
  • the insulating member is at least partially disposed between the electrode assembly and the wall portion to insulate and isolate the electrode assembly and the wall portion.
  • a second pressure relief area is provided at a position of the insulating member corresponding to the first pressure relief area, and the first pressure relief area and the second pressure relief area are used to open when the battery cell is depressurized.
  • An insulator is provided between the electrode assembly of the battery cell and the wall where the first pressure relief area is provided, and the insulator has a second pressure release area corresponding to the position of the first pressure release area.
  • the second pressure relief area separates the electrode assembly from the first pressure relief area. Even if the battery cell is vibrated, the electrolyte in the case will not easily wash away the first pressure relief area and affect the first pressure relief area. detonation pressure.
  • the second pressure relief area is opened, thereby allowing gas to pass through the insulator to release pressure from the first pressure release area, which has higher safety.
  • Power-consuming devices can be vehicles, mobile phones, portable devices, laptops, ships, spacecraft, electric toys and power tools, etc.
  • Spacecraft include airplanes, rockets, space shuttles, spaceships, etc.
  • electric toys include fixed or mobile electric toys, such as game consoles, electric car toys, electric ship toys, electric airplane toys, etc.
  • electric tools include metal Cutting power tools, grinding power tools, assembly power tools and railway power tools, such as electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators and planers, etc.
  • the embodiments of this application impose no special restrictions on the above electrical equipment.
  • the electric equipment is the vehicle 1000 as an example.
  • FIG. 1 is a schematic structural diagram of a vehicle 1000 provided by some embodiments of the present application.
  • the vehicle 1000 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • the battery 100 is disposed inside the vehicle 1000 , and the battery 100 may be disposed at the bottom, head, or tail of the vehicle 1000 .
  • the battery 100 may be used to power the vehicle 1000 , for example, the battery 100 may serve as an operating power source for the vehicle 1000 .
  • the vehicle 1000 may also include a controller 200 and a motor 300 .
  • the controller 200 is used to control the battery 100 to provide power to the motor 300 , for example, for starting, navigating and driving the vehicle 1000 .
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but also can be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000 .
  • FIG. 2 is an exploded view of the battery 100 provided by some embodiments of the present application.
  • the battery 100 includes a case 10 and battery cells 20 , and the battery cells 20 are accommodated in the case 10 .
  • the box 10 is used to provide an accommodation space for the battery cells 20, and the box 10 can adopt a variety of structures.
  • the box 10 may include a first part 11 and a second part 12 , the first part 11 and the second part 12 cover each other, and the first part 11 and the second part 12 jointly define a space for accommodating the battery cells 20 of accommodation space.
  • the second part 12 may be a hollow structure with one end open, and the first part 11 may be a plate-like structure.
  • the first part 11 covers the open side of the second part 12 so that the first part 11 and the second part 12 jointly define a receiving space.
  • the first part 11 and the second part 12 may also be hollow structures with one side open, and the open side of the first part 11 is covered with the open side of the second part 12.
  • the box 10 formed by the first part 11 and the second part 12 can be in various shapes, such as cylinder, rectangular parallelepiped, etc.
  • the battery 100 there may be a plurality of battery cells 20, and the plurality of battery cells 20 may be connected in series, in parallel, or in mixed connection.
  • Mixed connection means that the plurality of battery cells 20 are connected in series and in parallel.
  • the plurality of battery cells 20 can be directly connected in series or in parallel or mixed together, and then the whole composed of the plurality of battery cells 20 can be accommodated in the box 10 ; of course, the battery 100 can also be a plurality of battery cells 20 First, the battery modules are connected in series, parallel, or mixed to form a battery module, and then multiple battery modules are connected in series, parallel, or mixed to form a whole, and are accommodated in the box 10 .
  • the battery 100 may also include other structures.
  • the battery 100 may further include a bus component for realizing electrical connections between multiple battery cells 20 .
  • Each battery cell 20 may be a secondary battery cell or a primary battery cell; it may also be a lithium-sulfur battery cell, a sodium-ion battery cell or a magnesium-ion battery cell, but is not limited thereto.
  • the battery cell 20 may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes.
  • FIG. 3 is an exploded view of the battery cell 20 provided in some embodiments of the present application.
  • the battery cell 20 refers to the smallest unit that constitutes the battery 100 .
  • the battery cell 20 includes an electrode assembly 21 , a case 22 and other functional components.
  • the casing 22 includes an end cover 221 and a casing main body 222.
  • the end cover 221 is connected to the casing main body 222.
  • the end cap 221 refers to a component that covers the opening of the case body 222 to isolate the internal environment of the battery cell 20 from the external environment.
  • the shape of the end cap 221 may be adapted to the shape of the shell body 222 to fit the shell body 222 .
  • the end cap 221 can be made of a material with a certain hardness and strength (such as aluminum alloy). In this way, the end cap 221 is less likely to deform when subjected to extrusion and collision, so that the battery cell 20 can have higher durability. Structural strength and safety performance can also be improved.
  • the end cap 221 may be provided with functional components such as electrode terminals.
  • the electrode terminals may be used to electrically connect with the electrode assembly 21 for outputting or inputting electrical energy of the battery cell 20 .
  • the end cap 221 can also be made of various materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which are not particularly limited in the embodiment of the present application.
  • the case body 222 is a component used to cooperate with the end cover 221 to form an internal environment of the battery cell 20 , wherein the formed internal environment can be used to accommodate the electrode assembly 21 , electrolyte, and other components.
  • the case main body 222 and the end cover 221 may be independent components, and an opening may be provided on the case main body 222.
  • the end cover 221 covers the opening at the opening to form the internal environment of the battery cell 20.
  • the end cover 221 and the shell main body 222 can also be integrated. Specifically, the end cover 221 and the shell main body 222 can form a common connection surface before other components are put into the shell.
  • the shell body 222 may be of various shapes and sizes, such as rectangular parallelepiped, cylinder, hexagonal prism, etc. Specifically, the shape of the shell body 222 can be determined according to the specific shape and size of the electrode assembly 21 .
  • the shell body 222 may be made of various materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which are not particularly limited in the embodiment of the present application.
  • the electrode assembly 21 is a component in the battery cell 20 where electrochemical reactions occur.
  • One or more electrode assemblies 21 may be contained within the housing 22 .
  • the electrode assembly 21 is mainly formed by winding or stacking positive electrode sheets and negative electrode sheets, and an isolation film is usually provided between the positive electrode sheets and the negative electrode sheets.
  • the portions of the positive electrode sheet and the negative electrode sheet that contain active material constitute the main body of the electrode assembly 21 , and the portions of the positive electrode sheet and the negative electrode sheet that do not contain active material each constitute tabs.
  • the positive electrode tab and the negative electrode tab can be located together at one end of the main body or respectively located at both ends of the main body.
  • Figure 4 is a schematic front view of the insulating member 23 provided in some embodiments of the present application.
  • Figure 5 is a cross-sectional view at position B-B in Figure 4 .
  • the embodiment of the present application provides a battery cell 20 .
  • the battery cell 20 includes an electrode assembly 21 , a case 22 and an insulator 23 .
  • the housing 22 is used to accommodate the electrode assembly 21 .
  • the housing 22 has a wall portion 2221 arranged opposite to the electrode assembly 21 along the first direction, and the wall portion 2221 is provided with a first pressure relief area 2222.
  • the insulating member 23 is at least partially disposed between the electrode assembly 21 and the wall portion 2221 to insulate and isolate the electrode assembly 21 and the wall portion 2221 .
  • the insulating member 23 is provided with a second pressure relief area 231 at a position corresponding to the first pressure relief area 2222.
  • the first pressure relief area 2222 and the second pressure relief area 231 are used to open when the battery cell 20 is depressurized
  • the dotted line in FIG. 4 represents the projection range of the first pressure relief area 2222 on the insulating member 23 along the first direction.
  • the first pressure relief area 2222 can be opened when the internal pressure of the battery cell 20 reaches the detonation pressure to release the internal pressure of the battery cell 20 to reduce the risk of explosion or fire of the battery cell 20 .
  • the wall part 2221 is provided with the first pressure relief area 2222 includes that the first pressure relief area 2222 is directly provided on the wall part 2221, and also includes that the first pressure relief area 2222 is indirectly provided on the wall part 2221.
  • the wall portion 2221 is provided with an intermediate component, and the first pressure relief area 2222 is located on the intermediate component. That is, the so-called first pressure relief area 2222 is indirectly provided on the wall portion 2221.
  • the first direction is the direction in which the wall portion 2221 provided with the first pressure relief area 2222 on the housing 22 points toward the electrode assembly 21 along an axis perpendicular to itself.
  • the first direction may be direction A as shown in the figure.
  • the housing 22 has multiple walls, such as bottom walls, side walls, top walls, etc.
  • the wall portion 2221 refers to the wall on which the first pressure relief area 2222 is provided.
  • the wall portion 2221 refers to the bottom wall of the housing 22 .
  • the wall portion 2221 refers to the top wall of the housing 22 .
  • the wall portion 2221 refers to the side wall of the housing 22 .
  • the first pressure relief area 2222 is provided on the end cover 221 , and the wall portion 2221 may also refer to the end cover 221 .
  • the insulating member 23 is a component made of insulating material and has insulating properties. Insulating materials include but are not limited to plastic or rubber.
  • the insulator 23 is used to insulate the electrode assembly 21 and the wall portion 2221 from each other to prevent the electrode assembly 21 from being electrically connected to the wall portion 2221 and causing a short circuit in the battery cell 20 .
  • the insulating member 23 may be entirely located between the electrode assembly 21 and the wall portion 2221 , or may be partially located between the electrode assembly 21 and the wall portion 2221 .
  • the second pressure relief area 231 can separate the electrode assembly 21 from the first pressure relief area 2222 when the battery cell 20 is in normal use, thereby preventing the electrolyte from flushing the first pressure relief area 2222.
  • the second pressure relief area 231 can also be opened when the battery cell 20 releases pressure, so that the gas in the battery cell 20 can be discharged from the first pressure relief area 2222 through the insulator 23 to release the pressure.
  • An insulating member 23 is provided between the electrode assembly 21 of the battery cell 20 and the wall 2221 where the first pressure relief area 2222 is provided.
  • the insulating member 23 has a second pressure relief area corresponding to the position of the first pressure relief area 2222. 231.
  • the second pressure relief area 231 separates the electrode assembly 21 from the first pressure relief area 2222. Even if the battery cell 20 is vibrated, the electrolyte in the case 22 will not easily wash away the first pressure relief area. 2222 and affect the detonation pressure of the first pressure relief area 2222.
  • the second pressure release area 231 is opened, thereby allowing gas to release pressure from the first pressure release area 2222 through the insulator 23 , which has higher safety.
  • the insulating member 23 is provided with a score 232 , and the score 232 is provided along the edge of the second pressure relief area 231 .
  • the score 232 can be provided on the surface of the insulating member 23 facing the wall portion 2221 , or can be provided on the surface of the insulating member 23 facing away from the wall portion 2221 .
  • the insulating member 23 has an opposite first surface 233 and a second surface 234 in the first direction.
  • the first surface 233 faces the wall 2221, and the second surface 234 is away from the wall 2221.
  • the mark 232 may be provided on the first surface 233 of the insulating member 23 or may be provided on the second surface 234 of the insulating member 23 .
  • the score 232 may be a groove recessed from the surface of the insulating member 23 along the first direction, and the second pressure relief area 231 is a portion defined by the inner side of the groove. Optionally, part of the score 232 may penetrate the first surface 233 and the second surface 234 of the insulating member 23 . Taking the inner surface of the notch 232 as a rectangular shape as an example, the second pressure relief area 231 is a rectangular portion of the insulating member 23 defined by the inner surface of the notch 232 .
  • the score 232 may also be a linear groove extending along the bending track.
  • the bending track is a U-shaped track
  • the second pressure relief area 231 is a U-shaped portion of the insulating member 23 defined by the bending track.
  • the bending track is a rectangular track
  • the second pressure relief area 231 is a rectangular portion of the insulating member 23 defined by the bending track. If the score 232 is a linear groove extending along the bending trajectory, when the internal pressure of the battery cell 20 reaches the detonation pressure, the second pressure relief area 231 can be opened with the score 232 as a boundary to release the internal pressure of the battery cell 20 pressure.
  • the second pressure relief area 231 can be opened from the weak position when the battery cell 20 is depressurized. Since the score 232 is provided along the edge of the second pressure relief area 231, when the battery cell 20 is pressure released, the second pressure relief area 231 will be opened along the edge to provide a larger opening for gas to pass through.
  • the score 232 is disposed around the outside of the projection of the first pressure relief region 2222 on the insulating member 23 along the first direction.
  • the score 232 is arranged around the outside of the projection of the first pressure relief area 2222 on the insulating member 23 along the first direction” can also be understood to mean that the score 232 is arranged around the outside of the first pressure relief area 2222 . In other words, along the first direction, the first pressure relief area 2222 is located within the range defined by the projection of the score 232 on the wall 2221 .
  • the score 232 is provided along the edge of the second pressure relief area 231 and is provided around the outside of the projection of the first pressure relief area 2222 on the insulating member 23 along the first direction, the range of the second pressure relief area 231 is larger than the range of the first pressure relief area 2222.
  • the projection of the second pressure relief area 231 on the wall portion 2221 covers the first pressure relief area 2222. In this way, when the battery cell 20 releases pressure, the area of the opening formed by opening the second pressure relief area 231 is larger than the area of the first pressure release area 2222, so as to facilitate smooth pressure release.
  • the projection of the score 232 on the wall 2221 is located within the first pressure relief area 2222.
  • the area of the opening formed by opening the second pressure relief area 231 is smaller than or equal to the area of the first pressure relief area 2222 .
  • a first pressure relief groove is formed on the wall 2221 , and the first pressure relief groove is provided along the edge of the first pressure relief area 2222 .
  • the notches 232 are arranged around the outside of the projection of the first pressure relief groove on the insulating member 23 along the first direction.
  • the first pressure relief groove may be provided on the surface of the wall part 2221 facing the insulating member 23 , or may be provided on the surface of the wall part 2221 facing away from the insulating member 23 .
  • the wall part 2221 has a third surface and a fourth surface opposite to each other in the first direction, the third surface faces the insulating member 23, the fourth surface faces away from the insulating member 23, and the first pressure relief groove It may be provided on the third surface of the wall part 2221, or it may be provided on the fourth surface of the wall part 2221.
  • the first pressure relief groove may be a groove body that is recessed along the first direction from the surface of the wall portion 2221, and the first pressure relief area 2222 is a portion defined by the inner surface of the groove body. Taking the inner surface of the first pressure relief groove as a rectangular shape as an example, the first pressure relief area 2222 is a rectangular portion of the wall 2221 defined by the inner surface of the first pressure relief groove.
  • the first pressure relief groove may also be a linear groove extending along a bending trajectory.
  • the bending trajectory is a U-shaped trajectory
  • the first pressure relief area 2222 is a U-shaped portion of the wall 2221 defined by the bending trajectory.
  • the bending track is a rectangular track
  • the first pressure relief area 2222 is a rectangular portion of the wall 2221 defined by the bending track. If the first pressure relief groove is a linear groove extending along a bending trajectory, when the internal pressure of the battery cell 20 reaches the detonation pressure, the first pressure relief area 2222 can be opened with the first pressure relief groove as a boundary to discharge the battery. The pressure inside the unit 20.
  • the score 232 is arranged around the outside of the projection of the first pressure relief groove on the insulating member 23 along the first direction” can also be understood to mean that the score 232 is arranged around the outside of the first pressure relief groove. In other words, along the first direction, the first pressure relief groove is located within the range defined by the projection of the score 232 on the wall 2221 .
  • the first pressure relief groove By arranging the first pressure relief groove on the wall portion 2221, a weak position is formed, so that the first pressure relief area 2222 can be opened from the weak position when the battery cell 20 is depressurized. Since the first pressure relief groove is provided along the edge of the first pressure relief area 2222, when the battery cell 20 is pressure released, the first pressure relief area 2222 will be opened along the edge to provide a larger opening for gas to pass through. .
  • the battery cell 20 includes a pressure relief component, the wall portion 2221 is provided with a pressure relief hole, and the pressure relief component covers the pressure relief hole.
  • the pressure relief component is provided with a second pressure relief groove, and the second pressure relief groove is provided along the edge of the first pressure relief area 2222.
  • the notches 232 are arranged around the outside of the projection of the second pressure relief groove on the insulating member 23 along the first direction.
  • the second pressure relief groove may be disposed on the surface of the pressure relief component facing the insulating component 23 , or may be disposed on the surface of the pressure relief component facing away from the insulating component 23 .
  • the pressure relief piece has opposite fifth and sixth surfaces in the first direction, the fifth surface faces the insulating member 23, the sixth surface faces away from the insulating member 23, and the second pressure relief groove It may be provided on the fifth surface of the pressure relief component, or it may be provided on the sixth surface of the pressure relief component.
  • the second pressure relief groove may be a groove body that is recessed along the first direction from the surface of the pressure relief component, and the first pressure relief area 2222 is a portion defined by the inner side of the groove body. Taking the inner surface of the second pressure relief groove as a rectangular shape as an example, the first pressure relief area 2222 is a rectangular portion of the pressure relief component defined by the inner surface of the second pressure relief groove.
  • the second pressure relief groove may also be a linear groove extending along the bending trajectory.
  • the bending trajectory is a U-shaped trajectory
  • the first pressure relief area 2222 is a U-shaped portion of the pressure relief component defined by the bending trajectory.
  • the bending trajectory is a rectangular trajectory
  • the first pressure relief area 2222 is a rectangular portion of the pressure relief component defined by the bending trajectory. If the second pressure relief groove is a linear groove extending along a bending trajectory, when the internal pressure of the battery cell 20 reaches the detonation pressure, the first pressure relief area 2222 can be opened with the second pressure relief groove as a boundary to discharge the battery. The pressure inside the unit 20.
  • the notch 232 is arranged around the outside of the projection of the second pressure relief groove on the insulating member 23 along the first direction” can also be understood to mean that the notch 232 is arranged around the outside of the second pressure relief groove. In other words, along the first direction, the second pressure relief groove is located within the range defined by the projection of the score 232 on the wall 2221 .
  • the second pressure relief groove By arranging the second pressure relief groove on the pressure relief component, a weak position is formed, so that the first pressure relief area 2222 can be opened from the weak position when the battery cell 20 is depressurized. Since the second pressure relief groove is provided along the edge of the first pressure relief area 2222, when the battery cell 20 is pressure released, the first pressure relief area 2222 will be opened along the edge to provide a larger opening for gas to pass through. .
  • the score 232 is disposed around the outside of the projection of the pressure relief hole on the insulating member 23 along the first direction.
  • the score 232 is arranged around the outside of the projection of the pressure relief hole on the insulating member 23 along the first direction” can also be understood to mean that the score 232 is arranged around the outside of the pressure relief hole. In other words, along the first direction, the pressure relief hole is located within the range defined by the projection of the score 232 on the wall 2221 .
  • the score 232 By arranging the score 232 around the outside of the projection of the pressure relief hole on the insulator 23 along the first direction, if the score 232 penetrates the insulator 23 , the electrolyte will pass through the score when the battery cell 20 is in normal use. 232, it will not directly flow to the pressure relief part, but first collide with the wall 2221 and change the flow direction, reduce the impact force, and then flow to the pressure relief part, making the pressure relief part less susceptible to erosion by the electrolyte. In addition, when the battery cell 20 releases pressure, the open area of the second pressure relief area 231 is larger than the area of the pressure relief hole, which facilitates smooth pressure relief.
  • the score 232 includes a plurality of score segments 2321 , and the plurality of score segments 2321 are arranged at intervals along the circumference of the second pressure relief region 231 .
  • Score segment 2321 is part of score 232. Multiple score segments 2321 together form score 232. "The plurality of scored segments 2321 are arranged at intervals along the circumferential direction of the second pressure relief area 231" can also be said to mean that the plurality of score segments 2321 are arranged at intervals along the circumferential direction of the first pressure relief area 2222.
  • the second pressure release area 231 can be opened from the position where the multiple score segments 2321 are located, so that gas can pass through the insulator 23 and escape from the first pressure release area. 2222Release pressure. Since a plurality of score segments 2321 are provided at intervals along the circumferential direction of the second pressure relief region 231 instead of forming the entire circumferential score 232 along the circumference of the second pressure relief region 231 , the strength of the second pressure relief region 231 is relatively high. High, even if the battery cell 20 is subjected to large vibration, the second pressure relief area 231 will not open accidentally.
  • the score section 2321 penetrates two opposite surfaces of the insulating member 23 .
  • the two opposite surfaces of the insulating member 23 are the first surface 233 and the second surface 234 respectively.
  • the score section 2321 penetrates the first surface 233 and the second surface 234 .
  • the score section 2321 is a through hole opened in the insulating member 23 .
  • the second pressure relief area 231 is easier to open when the battery cell 20 is pressure relieved.
  • the score section 2321 penetrates both surfaces of the insulator 23 along the first direction, since the score 232 is arranged around the outside of the first pressure relief area 2222, the electrolyte passing through the insulator 23 will not directly wash away. It flows to the first pressure relief area 2222 only after passing through the insulator 23 and changing direction. In this way, the impact force of the electrolyte is not strong and will not easily affect the detonation pressure of the first pressure relief area 2222. .
  • the width of the score section 2321 is D1, which satisfies: D1 ⁇ 2mm.
  • the score section 2321 extends along the circumferential direction of the second pressure relief area 231, and the extension direction of the score section 2321 is also its length direction.
  • D1 represents the width of the score segment 2321.
  • the widths of the multiple score segments 2321 may be the same or different, but are all less than or equal to 2 mm. In this embodiment, the plurality of score segments 2321 have the same width.
  • the width of the score section 2321 is less than 2 mm, which actually limits the width of the remaining part between the two adjacent score sections 2321. The smaller the width of this part, the second pressure will be released when the battery cell 20 is depressurized.
  • the pressure area 231 is easier to open. If D1>2mm, the width of the remaining part between the two adjacent notched sections 2321 is also greater than 2mm. In this way, the width of this part is large, and the second pressure relief area 231 cannot be used when the battery cell 20 is pressure relieved. If opened in time, the battery cell 20 cannot release the pressure in time.
  • the distance between two adjacent score segments 2321 is D2, which satisfies: D2 ⁇ 10mm.
  • the plurality of score segments 2321 may be arranged at equal intervals or at unequal intervals, but the distance between two adjacent score segments 2321 is less than or equal to 10 mm.
  • a plurality of score segments 2321 are arranged at equal intervals along the circumferential direction of the second pressure relief area 231 .
  • the distance between the two adjacent score segments 2321 refers to the first score segment 2321.
  • the distance between two adjacent score segments 2321 is also the length of the remaining portion between the two adjacent score segments 2321. The smaller the length of this portion, the smaller the length of the remaining portion when the battery cell 20 is decompressed.
  • the second pressure relief area 231 is easier to open. If D2>10mm, the length of the remaining part between the two adjacent notched sections 2321 is also greater than 10mm. In this way, the length of this part is relatively large, and the second pressure relief area 231 cannot be used when the battery cell 20 is pressure relieved. If opened in time, the battery cell 20 cannot release the pressure in time.
  • the distance between the score 232 and the first pressure relief area 2222 is D3, which satisfies: D3 ⁇ 3mm.
  • the area relationship between the second pressure relief area 231 and the first pressure relief area 2222 is actually limited.
  • the area of the second pressure relief area 231 is larger than the area of the first pressure relief area 2222, but the area of the second pressure relief area 231 cannot be too large, otherwise when the second pressure relief area 231 is opened, the second pressure relief area 231 and The insulating member 23 is separated, and the separated part may fall toward the first pressure relief area 2222, thereby blocking the first pressure relief area 2222 and affecting the pressure relief of the first pressure relief area 2222.
  • Figure 6 is a schematic front view of the insulating member 23 provided in other embodiments of the present application.
  • Figure 7 is a cross-sectional view at position C-C in Figure 6 .
  • the insulating member 23 is provided with a groove 235 , and the area defined by the groove bottom wall and the groove side wall of the groove 235 is the second pressure relief area 231 .
  • the bottom wall of the groove 235 separates the electrode assembly 21 from the first pressure relief area 2222. Even if the battery cell 20 is vibrated, the electrolyte in the case 22 will not easily wash away the first pressure relief area. area 2222 to affect the detonation pressure of the first pressure relief area 2222.
  • the bottom wall of the groove 235 is opened, thereby allowing the gas to pass through the insulating member 23 to depressurize from the first pressure relief area 2222, which has higher safety.
  • Figure 8 is a schematic front view of the insulating member 23 provided in some embodiments of the present application.
  • Figure 9 is a cross-sectional view at position D-D in Figure 8.
  • the score 232 is a closed structure extending along a closed trajectory.
  • a closed trajectory is a trajectory that is connected at both ends, such as a rectangular trajectory, an elliptical trajectory, etc.
  • the shape of the score 232 is the same as that of the closed track.
  • the score 232 is an entire circumferential score 232 provided along the edge of the second pressure relief area 231. In this way, the second pressure relief area 231 can be easily opened when the battery cell 20 is depressurized.
  • Figure 10 is a schematic front view of the insulating member 23 provided in some embodiments of the present application.
  • Figure 11 is a cross-sectional view at position E-E in Figure 10 .
  • score 232 includes a plurality of groove segments 2322 and a plurality of hole segments 2323.
  • groove segments 2322 and hole segments 2323 are alternately arranged.
  • the insulating member 23 has opposite first surfaces 233 and second surfaces 234 .
  • the groove section 2322 is recessed from the first surface 233 toward the second surface 234 , and the hole section 2323 penetrates the first surface 233 and the second surface 234 .
  • the groove section 2322 is a groove structure that penetrates the first surface 233 of the insulating member 23 but does not penetrate the second surface 234 of the insulating member 23 .
  • the hole section 2323 is a hole-shaped structure penetrating the first surface 233 and the second surface 234 of the insulating member 23 .
  • the groove section 2322 and the hole section 2323 have different depths.
  • the hole section 2323 penetrates the first surface 233 and the second surface 234 and has a large depth.
  • the groove section 2322 is recessed from the first surface 233 toward the second surface 234 with a shallower depth.
  • the insulating member 23 has a first surface 233 facing the wall portion 2221, and the score 232 is disposed on the first surface 233.
  • the first surface 233 is the surface of the insulating member 23 facing the wall portion 2221 along the first direction, that is, the surface of the insulating member 23 facing away from the electrode assembly 21 along the first direction.
  • the score 232 is provided on the first surface 233 and is recessed toward the second surface 234 .
  • the electrolyte is less likely to accumulate in the notch 232 , which is beneficial to ensuring a sufficient amount of electrolyte in the battery cell 20 .
  • the insulating member 23 is a flat plate structure.
  • the insulating member 23 is configured as a flat plate structure. On the one hand, it occupies less space in the battery cell 20 . On the other hand, the flat plate structure can provide better support to the electrode assembly 21 and is less likely to damage the electrode assembly 21 .
  • the embodiment of the present application provides a battery 100.
  • the battery 100 includes a box 10 and the above-mentioned battery cells 20.
  • the battery cells 20 are accommodated in the box 10.
  • An embodiment of the present application provides an electrical device.
  • the electrical device includes the above-mentioned battery 100.
  • the battery 100 is used to provide electrical energy to the electrical device.
  • the embodiment of the present application provides a battery cell 20 .
  • the battery cell 20 includes an electrode assembly 21 , a case 22 and an insulator 23 .
  • the housing 22 is used to accommodate the electrode assembly 21 .
  • the housing 22 has a wall portion 2221 arranged opposite to the electrode assembly 21 along the first direction, and the wall portion 2221 is provided with a first pressure relief area 2222.
  • the insulating member 23 is at least partially disposed between the electrode assembly 21 and the wall portion 2221 to insulate and isolate the electrode assembly 21 and the wall portion 2221 .
  • the insulating member 23 is provided with a second pressure relief area 231 at a position corresponding to the first pressure relief area 2222.
  • the first pressure relief area 2222 and the second pressure relief area 231 are used to open when the battery cell 20 is depressurized.
  • the insulating member 23 is provided with a notch 232 , and the notch 232 is arranged around the outside of the first pressure relief area 2222 .
  • the score 232 includes a plurality of score segments 2321 arranged at intervals along the circumference of the second pressure relief area 231 . Along the first direction, the score section 2321 penetrates two opposite surfaces of the insulating member 23 .
  • An insulating member 23 is provided between the electrode assembly 21 of the battery cell 20 and the wall 2221 where the first pressure relief area 2222 is provided.
  • the insulating member 23 has a second pressure relief area corresponding to the position of the first pressure relief area 2222. 231.
  • the second pressure relief area 231 separates the electrode assembly 21 from the first pressure relief area 2222. Even if the battery cell 20 is vibrated, the electrolyte in the case 22 will not easily wash away the first pressure relief area. 2222 and affect the detonation pressure of the first pressure relief area 2222.
  • the second pressure release area 231 is opened, thereby allowing gas to release pressure from the first pressure release area 2222 through the insulator 23 , which has higher safety.
  • the second pressure relief area 231 can be opened from the weak position when the battery cell 20 is depressurized. Since the score 232 is provided along the edge of the second pressure relief area 231 and surrounds the outside of the first pressure relief area 2222, the range of the second pressure relief area 231 is larger than the range of the first pressure relief area 2222. In other words, along the first direction, the projection of the second pressure relief area 231 on the wall portion 2221 covers the first pressure relief area 2222. In this way, when the battery cell 20 releases pressure, the area of the opening formed by opening the second pressure relief area 231 is larger than the area of the first pressure release area 2222, so as to facilitate smooth pressure release.
  • the second pressure release area 231 can be opened from the position where the multiple score segments 2321 are located, so that gas can pass through the insulator 23 and escape from the first pressure release area. 2222Release pressure. Since a plurality of score segments 2321 are provided at intervals along the circumferential direction of the second pressure relief region 231 instead of forming the entire circumferential score 232 along the circumference of the second pressure relief region 231 , the strength of the second pressure relief region 231 is relatively high. High, even if the battery cell 20 is subjected to large vibration, the second pressure relief area 231 will not open accidentally.
  • the second pressure relief area 231 is easier to open when the battery cell 20 is pressure relieved.
  • the score section 2321 penetrates both surfaces of the insulator 23 along the first direction, since the score 232 is arranged around the outside of the first pressure relief area 2222, the electrolyte passing through the insulator 23 will not directly wash away. It flows to the first pressure relief area 2222 only after passing through the insulator 23 and changing direction. In this way, the impact force of the electrolyte is not strong and will not easily affect the detonation pressure of the first pressure relief area 2222. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

本申请提供了一种电池单体、电池及用电设备,涉及电池领域。电池单体包括电极组件、壳体和绝缘件。壳体用于容纳电极组件,壳体具有沿第一方向与电极组件相对设置的壁部,壁部设置有第一泄压区域。沿第一方向,绝缘件至少部分设置于电极组件与壁部之间,以绝缘隔离电极组件和壁部。其中,绝缘件与第一泄压区域相对应的位置设置有第二泄压区域,第一泄压区域和第二泄压区域用于在电池单体泄压时打开。在电池单体正常使用时,第二泄压区域分隔电极组件与第一泄压区域,壳体内的电解液不易冲刷第一泄压区域而影响第一泄压区域的起爆压力。电池单体泄压时,第二泄压区域打开,从而允许气体经过绝缘件从第一泄压区域泄放压力,安全性较高。

Description

电池单体、电池及用电设备 技术领域
本申请涉及电池领域,具体而言,涉及一种电池单体、电池及用电设备。
背景技术
电池在新能源领域应用甚广,例如电动汽车、新能源汽车等,新能源汽车、电动汽车已经成为汽车产业的发展新趋势。电池技术的发展要同时考虑多方面的设计因素,例如,电池寿命、能量密度、放电容量、充放电倍率等性能参数。另外,还需要考虑电池的安全性。然而,目前的电池的安全性较差。
发明内容
本申请实施例的目的在于提供一种电池单体、电池及用电设备,其旨在改善相关技术中电池的安全性较差的问题。
第一方面,本申请实施例提供了一种电池单体,所述电池单体包括电极组件、壳体及绝缘件,所述壳体用于容纳所述电极组件,所述壳体具有沿第一方向与所述电极组件相对设置的壁部;所述壁部设置有第一泄压区域;沿所述第一方向,所述绝缘件至少部分设置于所述电极组件与所述壁部之间,以绝缘隔离所述电极组件和所述壁部;其中,所述绝缘件与所述第一泄压区域相对应的位置设置有第二泄压区域,所述第一泄压区域和所述第二泄压区域用于在所述电池单体泄压时打开。
在上述技术方案中,该电池单体的电极组件与设置第一泄压区域的壁部之间设置有绝缘件,绝缘件上具有与第一泄压区域位置相对应的第二泄压区域。在电池单体正常使用时,第二泄压区域分隔电极组件与第一泄压区域,即使电池单体受到振动,壳体内的电解液也不易冲刷第一泄压区域而影响第一泄压区域的起爆压力。在电池单体泄压时,第二泄压区域打开,从而允许气体经过绝缘件从第一泄压区域泄放压力,具有较高的安全性。
作为本申请实施例的一种可选技术方案,所述绝缘件设置有刻痕,所述刻痕沿着所述第二泄压区域的边缘设置。
在上述技术方案中,通过在绝缘件上设置刻痕,形成薄弱位置,便于电池单体泄压时第二泄压区域从薄弱位置打开。由于刻痕沿着第二泄压区域的边缘设置,因此在电池单体泄压时,第二泄压区域会沿着边缘打开,以提供较大的供气体通过的开口。
作为本申请实施例的一种可选技术方案,所述刻痕环绕设置于所述第一泄压区域沿所述第一方向在所述绝缘件上的投影的外侧。
在上述技术方案中,由于刻痕是沿着第二泄压区域边缘设置的且环绕设置于 第一泄压区域沿第一方向在绝缘件上的投影的外侧,因此,第二泄压区域的范围大于第一泄压区域的范围。换句话说,沿第一方向,第二泄压区域在壁部上的投影覆盖第一泄压区域。这样,在电池单体泄压时,第二泄压区域打开形成的开口的面积大于第一泄压区域的面积,以便于顺畅泄压。
作为本申请实施例的一种可选技术方案,所述壁部上开设有第一泄压槽,所述第一泄压槽沿着所述第一泄压区域的边缘设置,所述刻痕环绕设置于所述第一泄压槽沿所述第一方向在所述绝缘件上的投影的外侧。
在上述技术方案中,通过在壁部上设置第一泄压槽,形成薄弱位置,便于电池单体泄压时第一泄压区域从薄弱位置打开。由于第一泄压槽沿着第一泄压区域的边缘设置,因此在电池单体泄压时,第一泄压区域会沿着边缘打开,以提供较大的供气体通过的开口。
作为本申请实施例的一种可选技术方案,所述电池单体包括泄压件,所述壁部上开设有泄压孔,所述泄压件覆盖所述泄压孔,所述泄压件上设有第二泄压槽,所述第二泄压槽沿着所述第一泄压区域的边缘设置,所述刻痕环绕设置于所述第二泄压槽沿所述第一方向在所述绝缘件上的投影的外侧。
在上述技术方案中,通过在泄压件上设置第二泄压槽,形成薄弱位置,便于电池单体泄压时第一泄压区域从薄弱位置打开。由于第二泄压槽沿着第一泄压区域的边缘设置,因此在电池单体泄压时,第一泄压区域会沿着边缘打开,以提供较大的供气体通过的开口。
作为本申请实施例的一种可选技术方案,所述刻痕环绕设置于所述泄压孔沿所述第一方向在所述绝缘件上的投影的外侧。
在上述技术方案中,通过将刻痕环绕设置于泄压孔沿第一方向在绝缘件上的投影的外侧,若刻痕贯穿了绝缘件,则在电池单体正常使用时,电解液经过刻痕后不会直接流向泄压件,而是先与壁部撞击并改变流动方向,减小冲击力后再流向泄压件,使得泄压件不易受到电解液的冲刷。另外,在电池单体泄压时,第二泄压区域打开的面积大于泄压孔的面积,便于顺畅泄压。
作为本申请实施例的一种可选技术方案,所述刻痕包括多个刻痕段,所述多个刻痕段沿着所述第二泄压区域的周向间隔布置。
在上述技术方案中,通过设置多个刻痕段,在电池单体泄压时,第二泄压区域可以从多个刻痕段所在的位置打开,以便于气体经过绝缘件从第一泄压区域泄放压力。由于沿着第二泄压区域的周向间隔设置多个刻痕段,而不是沿着第二泄压区域的周向形成整周刻痕,第二泄压区域的强度较高,即使电池单体受到较大的振动,第二泄压区域也不会误打开。
作为本申请实施例的一种可选技术方案,沿所述第一方向,所述刻痕段贯穿所述绝缘件相对的两表面。
在上述技术方案中,通过使刻痕段贯穿绝缘件沿第一方向的两表面,使得电池单体在泄压时第二泄压区域更容易打开。另外,虽然刻痕段贯穿了绝缘件沿第一方向的两表面,但由于刻痕环绕设置于第一泄压区域的外侧,因此,经过绝缘件的电解 液不会直接冲刷到第一泄压区域,而是经过绝缘件并改变方向后才可能会流向第一泄压区域,这样,电解液的冲击力不强,不易影响第一泄压区域的起爆压力。
作为本申请实施例的一种可选技术方案,所述刻痕段的宽度为D1,满足:D1≤2mm。
在上述技术方案中,刻痕段的宽度小于2mm,实际上也限定了相邻的两个刻痕段之间剩余的部分的宽度,该部分的宽度越小,则在电池单体泄压时第二泄压区域越容易打开。若D1>2mm,则相邻的两个刻痕段之间剩余的部分的宽度也大于2mm,这样,该部分的宽度较大,在电池单体泄压时第二泄压区域不能及时打开,电池单体无法及时泄压。
作为本申请实施例的一种可选技术方案,沿所述第二泄压区域的周向,相邻的两个所述刻痕段之间的距离为D2,满足:D2≤10mm。
在上述技术方案中,相邻的两个刻痕段之间的距离也即是相邻的两个刻痕段之间剩余的部分的长度,该部分的长度越小,则在电池单体泄压时第二泄压区域越容易打开。若D2>10mm,则相邻的两个刻痕段之间剩余的部分的长度也大于10mm,这样,该部分的长度较大,在电池单体泄压时第二泄压区域不能及时打开,电池单体无法及时泄压。
作为本申请实施例的一种可选技术方案,在垂直于所述第一方向的方向上,所述刻痕与所述第一泄压区域的间距为D3,满足:D3≤3mm。
在上述技术方案中,通过限制刻痕与第一泄压区域在垂直于第一方向的方向上的间距,实际上也就限制了第二泄压区域与第一泄压区域之间的面积关系。第二泄压区域的面积比第一泄压区域的面积大,但是第二泄压区域的面积不能过大,否则在第二泄压区域打开时,第二泄压区域与绝缘件分离,分离出来的部分可能会落向第一泄压区域,从而封堵第一泄压区域,影响第一泄压区域泄压。
作为本申请实施例的一种可选技术方案,所述刻痕为沿着封闭轨迹延伸的封闭结构。
在上述技术方案中,刻痕是沿着第二泄压区域的边缘设置的整周刻痕,这样,在电池单体泄压时第二泄压区域容易打开。
作为本申请实施例的一种可选技术方案,所述刻痕包括多个槽段和多个孔段,沿所述第二泄压区域的周向,所述槽段与所述孔段交替设置;沿所述第一方向,所述绝缘件具有相对的第一表面和第二表面,所述槽段从所述第一表面朝向所述第二表面凹陷,所述孔段贯穿所述第一表面和所述第二表面。
在上述技术方案中,槽段和孔段的刻痕深度不同。孔段贯穿第一表面和第二表面,刻痕深度较大。槽段从第一表面朝向第二表面凹陷,刻痕深度较浅。通过将多个槽段和多个孔段沿着第二泄压区域的周向间隔设置,使得电池单体泄压时第二泄压区域容易打开。
作为本申请实施例的一种可选技术方案,沿所述第一方向,所述绝缘件具有面向所述壁部的第一表面,所述刻痕设置于所述第一表面。
在上述技术方案中,通过将刻痕设置在绝缘件的朝向壁部的表面,使得刻痕 内不易聚集电解液,有利于保证电池单体内电解液足量。
作为本申请实施例的一种可选技术方案,所述绝缘件为平板结构。
在上述技术方案中,将绝缘件设置为平板结构,一方面,对电池单体内的体积占用较小。另一方面,平板结构能够对电极组件具有较好的支撑效果,并不易损坏电极组件。
第二方面,本申请实施例提供了一种电池,所述电池包括箱体和上述的电池单体,所述电池单体容纳于所述箱体内。
第三方面,本申请实施例提供了一种用电设备,所述用电设备包括上述的电池,所述电池用于给所述用电设备提供电能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的爆炸图;
图3为本申请一些实施例提供的电池单体的爆炸图;
图4为本申请一些实施例提供的绝缘件的正视示意图;
图5为图4中B-B位置的剖视图;
图6为本申请另一些实施例提供的绝缘件的正视示意图;
图7为图6中C-C位置的剖视图;
图8为本申请又一些实施例提供的绝缘件的正视示意图;
图9为图8中D-D位置的剖视图;
图10为本申请再一些实施例提供的绝缘件的正视示意图;
图11为图10中E-E位置的剖视图。
图标:10-箱体;11-第一部分;12-第二部分;20-电池单体;21-电极组件;22-壳体;221-端盖;222-壳主体;2221-壁部;2222-第一泄压区域;23-绝缘件;231-第二泄压区域;232-刻痕;2321-刻痕段;2322-槽段;2323-孔段;233-第一表面;234-第二表面;235-凹槽;100-电池;200-控制器;300-马达;1000-车辆。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池单体可以包括锂离子二次电池单体、锂离子一次电池单体、锂硫电池单体、钠锂离子电池单体、钠离子电池单体或镁离子电池单体等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件由正极片、负极片和隔离膜组成。电池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体 和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极耳的数量为多个且层叠在一起,负极耳的数量为多个且层叠在一起。隔离膜的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
电池技术的发展要同时考虑多方面的设计因素,例如,电池寿命、能量密度、放电容量、充放电倍率等性能参数。另外,还需要考虑电池的安全性。然而,目前的电池的安全性较差。
对于电池单体来说,为保证电池单体的安全性,可以在电池单体上设置泄压机构。在电池单体内部压力达到起爆压力时,泄压机构打开,以泄放电池单体内部的压力,以降低电池单体爆炸、起火的风险。
发明人注意到,泄压机构常常不能实现正常的泄压功能。
发明人进一步研究发现,泄压机构与电极组件之间具有绝缘件,该绝缘件将泄压机构与电极组件分隔,在电池单体内部压力达到起爆压力时,由于绝缘件将电极组件与泄压机构分隔,导致排气不畅,使得泄压机构无法正常泄压。若直接在绝缘件上与泄压机构相对应的位置设置开口,以允许排气,则在振动工况下,电池单体内的电解液容易通过开口并冲刷泄压机构,从而影响泄压机构的起爆压力,导致泄压机构无法实现正常的泄压功能。
鉴于此,本申请实施例提供一种电池单体,电池单体包括电极组件、壳体及绝缘件。壳体用于容纳电极组件,壳体具有沿第一方向与电极组件相对设置的壁部。壁部设置有第一泄压区域。沿第一方向,绝缘件至少部分设置于电极组件与壁部之间,以绝缘隔离电极组件和壁部。其中,绝缘件与第一泄压区域相对应的位置设置有第二泄压区域,第一泄压区域和第二泄压区域用于在电池单体泄压时打开。
该电池单体的电极组件与设置第一泄压区域的壁部之间设置有绝缘件,绝缘件上具有与第一泄压区域位置相对应的第二泄压区域。在电池单体正常使用时,第二泄压区域分隔电极组件与第一泄压区域,即使电池单体受到振动,壳体内的电解液也不易冲刷第一泄压区域而影响第一泄压区域的起爆压力。在电池单体泄压时,第二泄压区域打开,从而允许气体经过绝缘件从第一泄压区域泄放压力,具有较高的安全性。
本申请实施例描述的技术方案适用于电池以及使用电池的用电设备。
用电设备可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电设备不做特殊限制。
以下实施例为了方便说明,以用电设备为车辆1000为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆1000的结构示意图。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参照图2,图2为本申请一些实施例提供的电池100的爆炸图。电池100包括箱体10和电池单体20,电池单体20容纳于箱体10内。其中,箱体10用于为电池单体20提供容纳空间,箱体10可以采用多种结构。在一些实施例中,箱体10可以包括第一部分11和第二部分12,第一部分11与第二部分12相互盖合,第一部分11和第二部分12共同限定出用于容纳电池单体20的容纳空间。第二部分12可以为一端开口的空心结构,第一部分11可以为板状结构,第一部分11盖合于第二部分12的开口侧,以使第一部分11与第二部分12共同限定出容纳空间;第一部分11和第二部分12也可以是均为一侧开口的空心结构,第一部分11的开口侧盖合于第二部分12的开口侧。当然,第一部分11和第二部分12形成的箱体10可以是多种形状,比如,圆柱体、长方体等。
在电池100中,电池单体20可以是多个,多个电池单体20之间可串联或并联或混联,混联是指多个电池单体20中既有串联又有并联。多个电池单体20之间可直接串联或并联或混联在一起,再将多个电池单体20构成的整体容纳于箱体10内;当然,电池100也可以是多个电池单体20先串联或并联或混联组成电池模块形式,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体10内。电池100还可以包括其他结构,例如,该电池100还可以包括汇流部件,用于实现多个电池单体20之间的电连接。
其中,每个电池单体20可以为二次电池单体或一次电池单体;还可以是锂硫电池单体、钠离子电池单体或镁离子电池单体,但不局限于此。电池单体20可呈圆柱体、扁平体、长方体或其它形状等。
请参照图3,图3为本申请一些实施例提供的电池单体20的爆炸图。电池单体20是指组成电池100的最小单元。如图3,电池单体20包括有电极组件21、壳体22以及其他的功能性部件。壳体22包括端盖221和壳主体222,端盖221连接于壳主体222。
端盖221是指盖合于壳主体222的开口处以将电池单体20的内部环境隔绝于外部环境的部件。不限地,端盖221的形状可以与壳主体222的形状相适应以配合壳主体222。可选地,端盖221可以由具有一定硬度和强度的材质(如铝合金)制成, 这样,端盖221在受挤压碰撞时就不易发生形变,使电池单体20能够具备更高的结构强度,安全性能也可以有所提高。端盖221上可以设置有如电极端子等的功能性部件。电极端子可以用于与电极组件21电连接,以用于输出或输入电池单体20的电能。端盖221的材质也可以是多种的,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。
壳主体222是用于配合端盖221以形成电池单体20的内部环境的组件,其中,形成的内部环境可以用于容纳电极组件21、电解液以及其他部件。壳主体222和端盖221可以是独立的部件,可以于壳主体222上设置开口,通过在开口处使端盖221盖合开口以形成电池单体20的内部环境。不限地,也可以使端盖221和壳主体222一体化,具体地,端盖221和壳主体222可以在其他部件入壳前先形成一个共同的连接面,当需要封装壳主体222的内部时,再使端盖221盖合壳主体222。壳主体222可以是多种形状和多种尺寸的,例如长方体形、圆柱体形、六棱柱形等。具体地,壳主体222的形状可以根据电极组件21的具体形状和尺寸大小来确定。壳主体222的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。
电极组件21是电池单体20中发生电化学反应的部件。壳体22内可以包含一个或更多个电极组件21。电极组件21主要由正极片和负极片卷绕或层叠放置形成,并且通常在正极片与负极片之间设有隔离膜。正极片和负极片具有活性物质的部分构成电极组件21的主体部,正极片和负极片不具有活性物质的部分各自构成极耳。正极极耳和负极极耳可以共同位于主体部的一端或是分别位于主体部的两端。在电池100的充放电过程中,正极活性物质和负极活性物质与电解液发生反应,极耳连接电极端子以形成电流回路。
请参照图3、图4和图5,图4为本申请一些实施例提供的绝缘件23的正视示意图。图5为图4中B-B位置的剖视图。本申请实施例提供了一种电池单体20,电池单体20包括电极组件21、壳体22及绝缘件23。壳体22用于容纳电极组件21。壳体22具有沿第一方向与电极组件21相对设置的壁部2221,壁部2221设置有第一泄压区域2222。沿第一方向,绝缘件23至少部分设置于电极组件21与壁部2221之间,以绝缘隔离电极组件21和壁部2221。其中,绝缘件23与第一泄压区域2222相对应的位置设置有第二泄压区域231,第一泄压区域2222和第二泄压区域231用于在电池单体20泄压时打开。
需要说明的是,图4中的虚线所表示的是第一泄压区域2222沿第一方向在绝缘件23上的投影范围。
第一泄压区域2222能够在电池单体20内部压力达到起爆压力时打开,以泄放电池单体20内部的压力,以降低电池单体20爆炸、起火的风险。
“壁部2221设置有第一泄压区域2222”包括第一泄压区域2222直接设置在壁部2221上,也包括第一泄压区域2222间接设置在壁部2221上。例如,壁部2221上设置有某中间部件,第一泄压区域2222位于某中间部件上,即是所谓的第一泄压区域2222间接设置在壁部2221上。
第一方向是壳体22上设置有第一泄压区域2222的壁部2221沿垂直于其自身的轴线指向电极组件21的方向。请参照图4,第一方向可以是如图中所示的A方向。
壳体22上具有多个壁,例如底壁、侧壁、顶壁等。壁部2221是指设置有第一泄压区域2222的壁。例如,第一泄压区域2222设置于底壁,则壁部2221是指壳体22的底壁。又如,第一泄压区域2222设置于顶壁,则壁部2221是指壳体22的顶壁。又如,第一泄压区域2222设置于侧壁,则壁部2221是指壳体22的侧壁。又如,第一泄压区域2222设置于端盖221,壁部2221也可以是指端盖221。
绝缘件23是由绝缘材质制成的、具有绝缘性质的部件。绝缘材质包括但不限于塑胶或橡胶等。绝缘件23用于将电极组件21和壁部2221相互绝缘,避免电极组件21与壁部2221电连接而导致电池单体20短路。绝缘件23可以是全部位于电极组件21与壁部2221之间,也可以是部分位于电极组件21与壁部2221之间。
第二泄压区域231在电池单体20正常使用时能够将电极组件21与第一泄压区域2222分隔,从而阻止电解液冲刷第一泄压区域2222。第二泄压区域231还能够在电池单体20泄压时打开,以便于电池单体20内的气体经过绝缘件23从第一泄压区域2222排出,从而泄放压力。
该电池单体20的电极组件21与设置第一泄压区域2222的壁部2221之间设置有绝缘件23,绝缘件23上具有与第一泄压区域2222位置相对应的第二泄压区域231。在电池单体20正常使用时,第二泄压区域231分隔电极组件21与第一泄压区域2222,即使电池单体20受到振动,壳体22内的电解液也不易冲刷第一泄压区域2222而影响第一泄压区域2222的起爆压力。在电池单体20泄压时,第二泄压区域231打开,从而允许气体经过绝缘件23从第一泄压区域2222泄放压力,具有较高的安全性。
请参照图4和图5,在一些实施例中,绝缘件23设置有刻痕232,刻痕232沿着第二泄压区域231的边缘设置。
刻痕232可以设置于绝缘件23面向于壁部2221的表面,也可以设置于绝缘件23背离壁部2221的表面。以绝缘件23为长方形平板结构为例,绝缘件23在第一方向具有相对的第一表面233和第二表面234,第一表面233面向壁部2221,第二表面234背离壁部2221,刻痕232可以是设置于绝缘件23的第一表面233,也可以是设置于绝缘件23的第二表面234。
刻痕232可以是从绝缘件23的表面沿第一方向凹陷的槽体,第二泄压区域231则为槽体的内侧面界定出来的部分。可选地,刻痕232的局部可以贯穿绝缘件23的第一表面233和第二表面234。以刻痕232的内侧面为长方形为例,第二泄压区域231为绝缘件23由刻痕232的内侧面界定出来的长方形部分。刻痕232也可以是沿弯折轨迹延伸的线形槽,比如,弯折轨迹为U形轨迹,第二泄压区域231则为绝缘件23由弯折轨迹界定出来的U形部分。再如,弯折轨迹为长方形轨迹,第二泄压区域231则为绝缘件23由弯折轨迹界定出来的长方形部分。若刻痕232为沿弯折轨迹延伸的线形槽,在电池单体20内部压力达到起爆压力时,第二泄压区域231可以是以刻痕232 为边界打开,以泄放电池单体20内部的压力。
通过在绝缘件23上设置刻痕232,形成薄弱位置,便于电池单体20泄压时第二泄压区域231从薄弱位置打开。由于刻痕232沿着第二泄压区域231的边缘设置,因此在电池单体20泄压时,第二泄压区域231会沿着边缘打开,以提供较大的供气体通过的开口。
在一些实施例中,刻痕232环绕设置于第一泄压区域2222沿第一方向在绝缘件23上的投影的外侧。
“刻痕232环绕设置于第一泄压区域2222沿第一方向在绝缘件23上的投影的外侧”也可以理解为刻痕232围设于第一泄压区域2222的外侧。或者说,沿第一方向,第一泄压区域2222位于刻痕232在壁部2221上的投影限定出的范围内。
由于刻痕232是沿着第二泄压区域231边缘设置的且环绕设置于第一泄压区域2222沿第一方向在绝缘件23上的投影的外侧,因此,第二泄压区域231的范围大于第一泄压区域2222的范围。换句话说,沿第一方向,第二泄压区域231在壁部2221上的投影覆盖第一泄压区域2222。这样,在电池单体20泄压时,第二泄压区域231打开形成的开口的面积大于第一泄压区域2222的面积,以便于顺畅泄压。
在另一些实施例中,沿第一方向,刻痕232在壁部2221上的投影位于第一泄压区域2222内。此时,第二泄压区域231打开形成的开口的面积小于或等于第一泄压区域2222的面积。
在一些实施例中,壁部2221上开设有第一泄压槽,第一泄压槽沿着第一泄压区域2222的边缘设置。刻痕232环绕设置于第一泄压槽沿第一方向在绝缘件23上的投影的外侧。
第一泄压槽可以设置于壁部2221面向于绝缘件23的表面,也可以设置于壁部2221背离绝缘件23的表面。以壁部2221为长方形平板结构为例,壁部2221在第一方向具有相对的第三表面和第四表面,第三表面面向绝缘件23,第四表面背离绝缘件23,第一泄压槽可以是设置于壁部2221的第三表面,也可以是设置于壁部2221的第四表面。
第一泄压槽可以是从壁部2221的表面沿第一方向凹陷的槽体,第一泄压区域2222则为槽体的内侧面界定出来的部分。以第一泄压槽的内侧面为长方形为例,第一泄压区域2222为壁部2221由第一泄压槽的内侧面界定出来的长方形部分。第一泄压槽也可以是沿弯折轨迹延伸的线形槽,比如,弯折轨迹为U形轨迹,第一泄压区域2222则为壁部2221由弯折轨迹界定出来的U形部分。再如,弯折轨迹为长方形轨迹,第一泄压区域2222则为壁部2221由弯折轨迹界定出来的长方形部分。若第一泄压槽为沿弯折轨迹延伸的线形槽,在电池单体20内部压力达到起爆压力时,第一泄压区域2222可以是以第一泄压槽为边界打开,以泄放电池单体20内部的压力。
“刻痕232环绕设置于第一泄压槽沿第一方向在绝缘件23上的投影的外侧”也可以理解为刻痕232围设于第一泄压槽的外侧。或者说,沿第一方向,第一泄压槽位于刻痕232在壁部2221上的投影限定出的范围内。
通过在壁部2221上设置第一泄压槽,形成薄弱位置,便于电池单体20泄压 时第一泄压区域2222从薄弱位置打开。由于第一泄压槽沿着第一泄压区域2222的边缘设置,因此在电池单体20泄压时,第一泄压区域2222会沿着边缘打开,以提供较大的供气体通过的开口。
在另一些实施例中,电池单体20包括泄压件,壁部2221上开设有泄压孔,泄压件覆盖泄压孔。泄压件上设有第二泄压槽,第二泄压槽沿着第一泄压区域2222的边缘设置。刻痕232环绕设置于第二泄压槽沿第一方向在绝缘件23上的投影的外侧。
第二泄压槽可以设置于泄压件面向于绝缘件23的表面,也可以设置于泄压件背离绝缘件23的表面。以泄压件为长方形平板结构为例,泄压件在第一方向具有相对的第五表面和第六表面,第五表面面向绝缘件23,第六表面背离绝缘件23,第二泄压槽可以是设置于泄压件的第五表面,也可以是设置于泄压件的第六表面。
第二泄压槽可以是从泄压件的表面沿第一方向凹陷的槽体,第一泄压区域2222则为槽体的内侧面界定出来的部分。以第二泄压槽的内侧面为长方形为例,第一泄压区域2222为泄压件由第二泄压槽的内侧面界定出来的长方形部分。第二泄压槽也可以是沿弯折轨迹延伸的线形槽,比如,弯折轨迹为U形轨迹,第一泄压区域2222则为泄压件由弯折轨迹界定出来的U形部分。再如,弯折轨迹为长方形轨迹,第一泄压区域2222则为泄压件由弯折轨迹界定出来的长方形部分。若第二泄压槽为沿弯折轨迹延伸的线形槽,在电池单体20内部压力达到起爆压力时,第一泄压区域2222可以是以第二泄压槽为边界打开,以泄放电池单体20内部的压力。
“刻痕232环绕设置于第二泄压槽沿第一方向在绝缘件23上的投影的外侧”也可以理解为刻痕232围设于第二泄压槽的外侧。或者说,沿第一方向,第二泄压槽位于刻痕232在壁部2221上的投影限定出的范围内。
通过在泄压件上设置第二泄压槽,形成薄弱位置,便于电池单体20泄压时第一泄压区域2222从薄弱位置打开。由于第二泄压槽沿着第一泄压区域2222的边缘设置,因此在电池单体20泄压时,第一泄压区域2222会沿着边缘打开,以提供较大的供气体通过的开口。
在一些实施例中,刻痕232环绕设置于泄压孔沿第一方向在绝缘件23上的投影的外侧。
“刻痕232环绕设置于泄压孔沿第一方向在绝缘件23上的投影的外侧”也可以理解为刻痕232围设于泄压孔的外侧。或者说,沿第一方向,泄压孔位于刻痕232在壁部2221上的投影限定出的范围内。
通过将刻痕232环绕设置于泄压孔沿第一方向在绝缘件23上的投影的外侧,若刻痕232贯穿了绝缘件23,则在电池单体20正常使用时,电解液经过刻痕232后不会直接流向泄压件,而是先与壁部2221撞击并改变流动方向,减小冲击力后再流向泄压件,使得泄压件不易受到电解液的冲刷。另外,在电池单体20泄压时,第二泄压区域231打开的面积大于泄压孔的面积,便于顺畅泄压。
请参照图4和图5,在一些实施例中,刻痕232包括多个刻痕段2321,多个刻痕段2321沿着第二泄压区域231的周向间隔布置。
刻痕段2321是刻痕232的一部分。多个刻痕段2321共同形成刻痕232。 “多个刻痕段2321沿着第二泄压区域231的周向间隔布置”也可以说是多个刻痕段2321沿着第一泄压区域2222的周向间隔布置。
通过设置多个刻痕段2321,在电池单体20泄压时,第二泄压区域231可以从多个刻痕段2321所在的位置打开,以便于气体经过绝缘件23从第一泄压区域2222泄放压力。由于沿着第二泄压区域231的周向间隔设置多个刻痕段2321,而不是沿着第二泄压区域231的周向形成整周刻痕232,第二泄压区域231的强度较高,即使电池单体20受到较大的振动,第二泄压区域231也不会误打开。
请参照图4和图5,在一些实施例中,沿第一方向,刻痕段2321贯穿绝缘件23相对的两表面。
沿第一方向,绝缘件23相对的两表面分别为第一表面233和第二表面234。刻痕段2321贯穿第一表面233和第二表面234。此时,刻痕段2321为开设于绝缘件23的通孔。
通过使刻痕段2321贯穿绝缘件23沿第一方向的两表面,使得电池单体20在泄压时第二泄压区域231更容易打开。另外,虽然刻痕段2321贯穿了绝缘件23沿第一方向的两表面,但由于刻痕232环绕设置于第一泄压区域2222的外侧,因此,经过绝缘件23的电解液不会直接冲刷到第一泄压区域2222,而是经过绝缘件23并改变方向后才可能会流向第一泄压区域2222,这样,电解液的冲击力不强,不易影响第一泄压区域2222的起爆压力。
请参照图4和图5,在一些实施例中,刻痕段2321的宽度为D1,满足:D1≤2mm。
刻痕段2321沿着第二泄压区域231的周向延伸,刻痕段2321的延伸方向也即其长度方向。D1表示的是刻痕段2321的宽度。多个刻痕段2321的宽度可以相同,也可以不同,但都小于或等于2mm。在本实施例中,多个刻痕段2321的宽度相同。刻痕段2321的宽度的取值可以为:D1=2mm、1.8mm、1.5mm、1.2mm、1mm、0.8mm、0.5mm等。
刻痕段2321的宽度小于2mm,实际上也限定了相邻的两个刻痕段2321之间剩余的部分的宽度,该部分的宽度越小,则在电池单体20泄压时第二泄压区域231越容易打开。若D1>2mm,则相邻的两个刻痕段2321之间剩余的部分的宽度也大于2mm,这样,该部分的宽度较大,在电池单体20泄压时第二泄压区域231不能及时打开,电池单体20无法及时泄压。
请参照图4和图5,在一些实施例中,沿第二泄压区域231的周向,相邻的两个刻痕段2321之间的距离为D2,满足:D2≤10mm。
沿第二泄压区域231的周向,多个刻痕段2321可以等间隔设置,也可以不等间隔设置,但相邻的两个刻痕段2321之间的距离均小于或等于10mm。在本实施例中,沿着第二泄压区域231的周向,多个刻痕段2321等间隔设置。沿第二泄压区域231的周向,相邻的两个刻痕段2321之间的距离的取值可以为:D2=10mm、9.5mm、9mm、8.5mm、8mm、7.5mm、6mm、5mm、4mm、3mm等。
相邻的两个刻痕段2321中有呈弧状的刻痕段2321时,沿第二泄压区域231 的周向,相邻的两个刻痕段2321之间的距离是指第一个刻痕段2321的靠近第二个刻痕段2321的端面与第二个刻痕段2321的靠近第一个刻痕段2321的端面之间的最短直线距离。
相邻的两个刻痕段2321之间的距离也即是相邻的两个刻痕段2321之间剩余的部分的长度,该部分的长度越小,则在电池单体20泄压时第二泄压区域231越容易打开。若D2>10mm,则相邻的两个刻痕段2321之间剩余的部分的长度也大于10mm,这样,该部分的长度较大,在电池单体20泄压时第二泄压区域231不能及时打开,电池单体20无法及时泄压。
请参照图4和图5,在一些实施例中,在垂直于第一方向的方向上,刻痕232与第一泄压区域2222的间距为D3,满足:D3≤3mm。
刻痕232与第一泄压区域2222的间距在不同的位置可以是不同的,刻痕232与第一泄压区域2222的间距在不同的位置也可以是相同的。但在垂直于第一方向的方向上,刻痕232与第一泄压区域2222的间距均小于或等于3mm。在垂直于第一方向的方向上,刻痕232与第一泄压区域2222的间距的取值可以为:D3=3mm、2.8mm、2.5mm、2.2mm、2mm、1.8mm、1.5mm、1mm等。
通过限制刻痕232与第一泄压区域2222在垂直于第一方向的方向上的间距,实际上也就限制了第二泄压区域231与第一泄压区域2222之间的面积关系。第二泄压区域231的面积比第一泄压区域2222的面积大,但是第二泄压区域231的面积不能过大,否则在第二泄压区域231打开时,第二泄压区域231与绝缘件23分离,分离出来的部分可能会落向第一泄压区域2222,从而封堵第一泄压区域2222,影响第一泄压区域2222泄压。
请参照图6和图7,图6为本申请另一些实施例提供的绝缘件23的正视示意图。图7为图6中C-C位置的剖视图。在另一些实施例中,绝缘件23设置有凹槽235,凹槽235的槽底壁和槽侧壁所限定出来的区域即为第二泄压区域231。
在电池单体20正常使用时,凹槽235的槽底壁分隔电极组件21与第一泄压区域2222,即使电池单体20受到振动,壳体22内的电解液也不易冲刷第一泄压区域2222而影响第一泄压区域2222的起爆压力。在电池单体20泄压时,凹槽235的槽底壁打开,从而允许气体经过绝缘件23从第一泄压区域2222泄放压力,具有较高的安全性。
请参照图8和图9,图8为本申请又一些实施例提供的绝缘件23的正视示意图。图9为图8中D-D位置的剖视图。在又一些实施例中,刻痕232为沿着封闭轨迹延伸的封闭结构。
封闭轨迹即为首尾两端相连的轨迹,比如长方形轨迹、椭圆形轨迹等。刻痕232的形状与封闭轨迹的形状相同。
刻痕232是沿着第二泄压区域231的边缘设置的整周刻痕232,这样,在电池单体20泄压时第二泄压区域231容易打开。
请参照图10和图11,图10为本申请再一些实施例提供的绝缘件23的正视示意图。图11为图10中E-E位置的剖视图。在再一些实施例中,刻痕232包括多个 槽段2322和多个孔段2323。沿第二泄压区域231的周向,槽段2322与孔段2323交替设置。沿第一方向,绝缘件23具有相对的第一表面233和第二表面234。槽段2322从第一表面233朝向第二表面234凹陷,孔段2323贯穿第一表面233和第二表面234。
需要说明的是图11中虚线仅是为了便于示出槽段2322的位置,并不表示实体结构。
沿着第二泄压区域231的周向,每相邻的两个槽段2322之间具有一个孔段2323,每相邻的两个孔段2323之间具有一个槽段2322。其中,槽段2322是贯穿绝缘件23的第一表面233,未贯穿绝缘件23的第二表面234的槽型结构。孔段2323是贯穿绝缘件23的第一表面233和第二表面234的孔型结构。
槽段2322和孔段2323的深度不同。孔段2323贯穿第一表面233和第二表面234,深度较大。槽段2322从第一表面233朝向第二表面234凹陷,深度较浅。通过将多个槽段2322和多个孔段2323沿着第二泄压区域231的周向间隔设置,使得电池单体20泄压时第二泄压区域231容易打开。
在一些实施例中,沿第一方向,绝缘件23具有面向壁部2221的第一表面233,刻痕232设置于第一表面233。
第一表面233是绝缘件23沿第一方向朝向壁部2221的表面,也即是绝缘件23沿第一方向背离电极组件21的表面。刻痕232设置于第一表面233,并向第二表面234凹陷。
通过将刻痕232设置在绝缘件23的朝向壁部2221的表面,使得刻痕232内不易聚集电解液,有利于保证电池单体20内电解液足量。
在一些实施例中,绝缘件23为平板结构。
将绝缘件23设置为平板结构,一方面,对电池单体20内的体积占用较小。另一方面,平板结构能够对电极组件21具有较好的支撑效果,并不易损坏电极组件21。
本申请实施例提供了一种电池100,电池100包括箱体10和上述的电池单体20,电池单体20容纳于箱体10内。
本申请实施例提供了一种用电设备,用电设备包括上述的电池100,电池100用于给用电设备提供电能。
根据本申请的一些实施例,请参照图4和图5。
本申请实施例提供了一种电池单体20,电池单体20包括电极组件21、壳体22及绝缘件23。壳体22用于容纳电极组件21。壳体22具有沿第一方向与电极组件21相对设置的壁部2221,壁部2221设置有第一泄压区域2222。沿第一方向,绝缘件23至少部分设置于电极组件21与壁部2221之间,以绝缘隔离电极组件21和壁部2221。其中,绝缘件23与第一泄压区域2222相对应的位置设置有第二泄压区域231,第一泄压区域2222和第二泄压区域231用于在电池单体20泄压时打开。
绝缘件23设置有刻痕232,刻痕232环绕设置于第一泄压区域2222的外侧。刻痕232包括多个刻痕段2321,多个刻痕段2321沿着第二泄压区域231的周向间隔布置。沿第一方向,刻痕段2321贯穿绝缘件23相对的两表面。
该电池单体20的电极组件21与设置第一泄压区域2222的壁部2221之间设置有绝缘件23,绝缘件23上具有与第一泄压区域2222位置相对应的第二泄压区域231。在电池单体20正常使用时,第二泄压区域231分隔电极组件21与第一泄压区域2222,即使电池单体20受到振动,壳体22内的电解液也不易冲刷第一泄压区域2222而影响第一泄压区域2222的起爆压力。在电池单体20泄压时,第二泄压区域231打开,从而允许气体经过绝缘件23从第一泄压区域2222泄放压力,具有较高的安全性。
通过在绝缘件23上设置刻痕232,形成薄弱位置,便于电池单体20泄压时第二泄压区域231从薄弱位置打开。由于刻痕232是沿着第二泄压区域231边缘设置的且环绕设置于第一泄压区域2222的外侧,因此,第二泄压区域231的范围大于第一泄压区域2222的范围。换句话说,沿第一方向,第二泄压区域231在壁部2221上的投影覆盖第一泄压区域2222。这样,在电池单体20泄压时,第二泄压区域231打开形成的开口的面积大于第一泄压区域2222的面积,以便于顺畅泄压。通过设置多个刻痕段2321,在电池单体20泄压时,第二泄压区域231可以从多个刻痕段2321所在的位置打开,以便于气体经过绝缘件23从第一泄压区域2222泄放压力。由于沿着第二泄压区域231的周向间隔设置多个刻痕段2321,而不是沿着第二泄压区域231的周向形成整周刻痕232,第二泄压区域231的强度较高,即使电池单体20受到较大的振动,第二泄压区域231也不会误打开。通过使刻痕段2321贯穿绝缘件23沿第一方向的两表面,使得电池单体20在泄压时第二泄压区域231更容易打开。另外,虽然刻痕段2321贯穿了绝缘件23沿第一方向的两表面,但由于刻痕232环绕设置于第一泄压区域2222的外侧,因此,经过绝缘件23的电解液不会直接冲刷到第一泄压区域2222,而是经过绝缘件23并改变方向后才可能会流向第一泄压区域2222,这样,电解液的冲击力不强,不易影响第一泄压区域2222的起爆压力。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (17)

  1. 一种电池单体,其中,包括:
    电极组件;
    壳体,用于容纳所述电极组件,所述壳体具有沿第一方向与所述电极组件相对设置的壁部,所述壁部设置有第一泄压区域;
    绝缘件,沿所述第一方向,所述绝缘件至少部分设置于所述电极组件与所述壁部之间,以绝缘隔离所述电极组件和所述壁部;
    所述绝缘件与所述第一泄压区域相对应的位置设置有第二泄压区域,所述第一泄压区域和所述第二泄压区域用于在所述电池单体泄压时打开。
  2. 根据权利要求1所述电池单体,其中,所述绝缘件设置有刻痕,所述刻痕沿着所述第二泄压区域的边缘设置。
  3. 根据权利要求2所述电池单体,其中,所述刻痕环绕设置于所述第一泄压区域沿所述第一方向在所述绝缘件上的投影的外侧。
  4. 根据权利要求3所述电池单体,其中,所述壁部上开设有第一泄压槽,所述第一泄压槽沿着所述第一泄压区域的边缘设置,所述刻痕环绕设置于所述第一泄压槽沿所述第一方向在所述绝缘件上的投影的外侧。
  5. 根据权利要求3所述电池单体,其中,所述电池单体包括泄压件,所述壁部上开设有泄压孔,所述泄压件覆盖所述泄压孔,所述泄压件上设有第二泄压槽,所述第二泄压槽沿着所述第一泄压区域的边缘设置,所述刻痕环绕设置于所述第二泄压槽沿所述第一方向在所述绝缘件上的投影的外侧。
  6. 根据权利要求5所述电池单体,其中,所述刻痕环绕设置于所述泄压孔沿所述第一方向在所述绝缘件上的投影的外侧。
  7. 根据权利要求3-6任一项所述电池单体,其中,所述刻痕包括多个刻痕段,所述多个刻痕段沿着所述第二泄压区域的周向间隔布置。
  8. 根据权利要求7所述电池单体,其中,沿所述第一方向,所述刻痕段贯穿所述绝缘件相对的两表面。
  9. 根据权利要求8所述电池单体,其中,所述刻痕段的宽度为D1,满足:D1≤2mm。
  10. 根据权利要求7-9任一项所述电池单体,其中,沿所述第二泄压区域的周向,相邻的两个所述刻痕段之间的距离为D2,满足:D2≤10mm。
  11. 根据权利要求3-10任一项所述电池单体,其中,在垂直于所述第一方向的方向上,所述刻痕与所述第一泄压区域的间距为D3,满足:D3≤3mm。
  12. 根据权利要求3所述电池单体,其中,所述刻痕为沿着封闭轨迹延伸的封闭结构。
  13. 根据权利要求12所述电池单体,其中,所述刻痕包括多个槽段和多个孔段,沿所述第二泄压区域的周向,所述槽段与所述孔段交替设置;
    沿所述第一方向,所述绝缘件具有相对的第一表面和第二表面,所述槽段从所述 第一表面朝向所述第二表面凹陷,所述孔段贯穿所述第一表面和所述第二表面。
  14. 根据权利要求2-13任一项所述电池单体,其中,沿所述第一方向,所述绝缘件具有面向所述壁部的第一表面,所述刻痕设置于所述第一表面。
  15. 根据权利要求1-14任一项所述电池单体,其中,所述绝缘件为平板结构。
  16. 一种电池,其中,包括:
    箱体;
    如权利要求1-15任一项所述的电池单体,所述电池单体容纳于所述箱体内。
  17. 一种用电设备,其中,包括如权利要求16所述的电池,所述电池用于给所述用电设备提供电能。
PCT/CN2022/114890 2022-08-25 2022-08-25 电池单体、电池及用电设备 WO2024040530A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2022/114890 WO2024040530A1 (zh) 2022-08-25 2022-08-25 电池单体、电池及用电设备
PCT/CN2023/075069 WO2024040879A1 (zh) 2022-08-25 2023-02-08 电池单体、电池及用电设备
CN202320168530.1U CN219575857U (zh) 2022-08-25 2023-02-08 电池单体、电池及用电设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/114890 WO2024040530A1 (zh) 2022-08-25 2022-08-25 电池单体、电池及用电设备

Publications (1)

Publication Number Publication Date
WO2024040530A1 true WO2024040530A1 (zh) 2024-02-29

Family

ID=87664776

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2022/114890 WO2024040530A1 (zh) 2022-08-25 2022-08-25 电池单体、电池及用电设备
PCT/CN2023/075069 WO2024040879A1 (zh) 2022-08-25 2023-02-08 电池单体、电池及用电设备

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075069 WO2024040879A1 (zh) 2022-08-25 2023-02-08 电池单体、电池及用电设备

Country Status (2)

Country Link
CN (1) CN219575857U (zh)
WO (2) WO2024040530A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205645905U (zh) * 2016-04-15 2016-10-12 合肥国轩高科动力能源有限公司 一种防过冲电池盖板
JP2018092726A (ja) * 2016-11-30 2018-06-14 株式会社豊田自動織機 蓄電装置
CN215988966U (zh) * 2021-09-28 2022-03-08 宁德时代新能源科技股份有限公司 端盖组件、电池单体、电池以及用电装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018049737A (ja) * 2016-09-21 2018-03-29 株式会社豊田自動織機 蓄電装置
CN216720178U (zh) * 2022-01-24 2022-06-10 宁德时代新能源科技股份有限公司 电池单体、电池以及用电设备
CN218548705U (zh) * 2022-08-25 2023-02-28 宁德时代新能源科技股份有限公司 电池单体、电池及用电设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205645905U (zh) * 2016-04-15 2016-10-12 合肥国轩高科动力能源有限公司 一种防过冲电池盖板
JP2018092726A (ja) * 2016-11-30 2018-06-14 株式会社豊田自動織機 蓄電装置
CN215988966U (zh) * 2021-09-28 2022-03-08 宁德时代新能源科技股份有限公司 端盖组件、电池单体、电池以及用电装置

Also Published As

Publication number Publication date
CN219575857U (zh) 2023-08-22
WO2024040879A1 (zh) 2024-02-29

Similar Documents

Publication Publication Date Title
US20230327275A1 (en) Pressure relief apparatus, battery cell, battery, and electrical device
WO2024087381A1 (zh) 电池单体、电池及用电设备
WO2023185327A1 (zh) 端盖、电池单体、电池及用电设备
CN218548705U (zh) 电池单体、电池及用电设备
US11955658B2 (en) Battery cell and manufacturing method and manufacturing system thereof, battery and power consumption apparatus
WO2023028867A1 (zh) 壳体、电池单体、电池及用电设备
WO2023050098A1 (zh) 泄压装置、电池单体、电池及用电设备
WO2024040530A1 (zh) 电池单体、电池及用电设备
WO2023220881A1 (zh) 端盖、电池单体、电池及用电设备
WO2023220886A1 (zh) 端盖、电池单体、电池及用电设备
WO2023240553A1 (zh) 电池单体、电池及用电设备
WO2023220885A1 (zh) 端盖、电池单体、电池及用电设备
WO2023184110A1 (zh) 外壳、电池单体、电池及用电设备
WO2023220887A1 (zh) 端盖、电池单体、电池及用电设备
WO2023159640A1 (zh) 外壳、电池单体、电池及用电设备
WO2023240551A1 (zh) 端盖组件、电池单体、电池及用电设备
WO2023245430A1 (zh) 电池单体、电池及用电设备
WO2024011629A1 (zh) 端盖组件、电池单体、电池及用电设备
WO2023159639A1 (zh) 外壳、电池单体、电池及用电设备
WO2023206451A1 (zh) 电池单体、电池及用电设备
WO2024098292A1 (zh) 泄压装置、电池单体、电池、用电设备及制造方法
WO2023220882A1 (zh) 端盖、电池单体、电池及用电设备
WO2023220883A1 (zh) 端盖、电池单体、电池及用电设备
WO2023028865A1 (zh) 泄压装置、电池单体、电池及用电设备
WO2024077557A1 (zh) 电池单体、电池及用电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956077

Country of ref document: EP

Kind code of ref document: A1