WO2023219020A1 - フルオロポリエーテル系硬化性組成物及び硬化物、並びに電気・電子部品 - Google Patents

フルオロポリエーテル系硬化性組成物及び硬化物、並びに電気・電子部品 Download PDF

Info

Publication number
WO2023219020A1
WO2023219020A1 PCT/JP2023/016939 JP2023016939W WO2023219020A1 WO 2023219020 A1 WO2023219020 A1 WO 2023219020A1 JP 2023016939 W JP2023016939 W JP 2023016939W WO 2023219020 A1 WO2023219020 A1 WO 2023219020A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
fluoropolyether
component
integer
formula
Prior art date
Application number
PCT/JP2023/016939
Other languages
English (en)
French (fr)
Inventor
竜人 林
健一 福田
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2023219020A1 publication Critical patent/WO2023219020A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers

Definitions

  • the present invention provides a fluoropolyether that contains at least one filler selected from organic resin powder such as polyimide resin powder and carbon black powder, and provides a cured product that has durability against hydrofluoric acid and electrolyte solutions for lithium ion batteries.
  • the present invention relates to a curable composition, a cured product of the composition, and an electrical/electronic component containing the cured product.
  • a fluoropolyether-based curable composition that utilizes an addition reaction between an alkenyl group and a hydrosilyl group is known.
  • a curable composition one molecule of a fluoropolyether compound (hereinafter also referred to as "base oil") having two or more alkenyl groups in one molecule and a perfluoropolyether structure in the main chain.
  • base oil a fluoropolyether compound having two or more alkenyl groups in one molecule and a perfluoropolyether structure in the main chain.
  • a composition containing a fluorine-containing organohydrogensiloxane having two or more hydrogen atoms directly bonded to a silicon atom therein and a platinum group metal compound has been proposed (Patent Document 1: JP-A-8-199070, Patent Document 2: JP 2011-201940A).
  • composition has been proposed in which self-adhesiveness is imparted by adding an organopolysiloxane having a hydrosilyl group and an epoxy group and/or a trialkoxysilyl group to the composition as a third component (adhesiveness improver).
  • Patent Document 3 Japanese Patent Application Publication No. 9-95615
  • Patent Document 4 Japanese Patent Application Publication No. 2011-219692.
  • the composition can be cured by heating for a short time, and the resulting cured product (fluoropolyether cured product) has excellent solvent resistance, chemical resistance, heat resistance, low temperature properties, low moisture permeability, and electrical properties. Because of its excellent properties, it is used in various industrial fields that require these properties.
  • a curable fluoropolyether composition containing a fluorine-containing organohydrogensiloxane having two or more hydrogen atoms directly bonded to a silicon atom in one molecule contains siloxane bonds that are unstable to acids and has the required level of acid resistance. It was not possible to demonstrate sufficient performance in applications where the In particular, it has low durability against hydrofluoric acid, making it unsuitable for applications such as parts for semiconductor manufacturing equipment.
  • the curable composition often contains a large amount of silica as a reinforcing filler.
  • Silica exhibits high reactivity with hydrofluoric acid, so in addition to acid resistance, excellent mechanical properties of the cured product are important, especially when hardness and tensile strength are important. Under measures such as reducing the amount, it is necessary to use other fillers that can exhibit a reinforcing effect on the cured product.
  • the fluorine-containing organohydrogensilane compound tends to occupy a large proportion of the entire non-fluorinated organic structure molecules. This is largely due to the convenience of synthesizing the fluorine-containing organohydrogensilane compound. In this case, short-chain perfluoroalkylene groups have poor compatibility with base oils. Based on these trends, when a fluorine-containing organohydrogensilane compound is added to a curable fluoropolyether composition, the curable fluoropolyether composition sometimes becomes cloudy and has a high viscosity. Furthermore, the surface of the fluoropolyether cured product obtained from the fluoropolyether curable composition was sometimes dotted with oily uncured parts.
  • fluoropolyether-based curable compositions containing fluorine-containing organohydrogensiloxanes having two or more hydrogen atoms directly bonded to silicon atoms in one molecule and their cured products have low durability against electrolytes for lithium ion batteries.
  • a fluoropolyether-based curable composition containing a fluorine-containing organohydrogensilane compound that does not contain a siloxane bond and has two or more hydrogen atoms directly bonded to a silicon atom in one molecule.
  • the cured product thereof there is no knowledge regarding its durability against electrolytes for lithium ion batteries, and it was unclear whether it could be applied to this purpose.
  • the present invention was made in view of the above circumstances, and has durability against hydrofluoric acid and lithium ion battery electrolyte, has good mechanical properties, and is uncured due to low compatibility between constituent components.
  • the object of the present invention is to provide a fluoropolyether-based curable composition that provides a cured product with no spots and good mold releasability, a cured product of the composition, and an electrical/electronic component containing the cured product.
  • a compound having a monovalent perfluoropolyether group and an alkenyl group is used as a curing agent for a fluoropolyether-based curable composition.
  • a fluorine-containing organohydrogensilane compound obtained by introducing it into an organohydrogensilane compound having three or more hydrosilyl groups with the structure it has high compatibility with the base oil, a perfluoropolyether compound having an alkenyl group.
  • the cured product obtained by curing the fluoropolyether curable composition prepared by adding the fluorine-containing organohydrogensilane compound exhibits durability against hydrofluoric acid and lithium ion battery electrolyte, and has no surface residue. It has been found that there is no hardened portion and that the mold has good mold releasability. Furthermore, by using at least one filler selected from organic resin powder such as polyimide resin powder and carbon black powder as a filler, the mechanical properties of the cured product can be improved without impairing acid resistance. I found out.
  • organic resin powders such as polyimide resin powders generally have an average particle size of 10 ⁇ m or more, but by pulverizing organic resin powders such as polyimide resin powders, the average particle size can be reduced to several ⁇ m or less. Therefore, when an organic resin powder such as the pulverized polyimide resin powder is blended into a fluoropolyether curable composition, the amount that can be filled is larger than that of an organic resin powder such as a polyimide resin powder with an average particle size of 10 ⁇ m or more. The inventors have discovered that this further strengthens the cured product obtained from the fluoropolyether curable composition, and have completed the present invention.
  • the present invention provides the following fluoropolyether-based curable composition, a cured product obtained from the curable composition, and electrical/electronic parts containing the cured product.
  • A Perfluoropolyether compound having two or more alkenyl groups in one molecule: 100 parts by mass
  • B A fluorine-containing organohydrogensilane compound represented by the following general formula (1) and having two or more hydrosilyl groups: Bonded to the silicon atom in the (B) component per mole of the alkenyl group in the (A) component.
  • Rf is a monovalent perfluoropolyether group
  • A is a divalent organic group having 1 to 20 carbon atoms that may contain at least one selected from oxygen atom, nitrogen atom, and silicon atom.
  • R is independently a monovalent hydrocarbon group having 1 to 6 carbon atoms
  • x is an integer of 1 to 3
  • B independently has one or more diorganohydrosilyl group, and is a monovalent organic group forming a sylalkylene structure with a silicon atom, and when x is 1, B has two or more diorganohydrosilyl groups.
  • y is 1 or 2.
  • a 1 is independently a divalent organic group having 1 to 20 carbon atoms which may contain at least one selected from oxygen atom, nitrogen atom and silicon atom
  • B 1 is a carbon atom or a silicon atom
  • X is independently a hydrogen atom, a methyl group, or an alkenyl group having 2 to 8 carbon atoms, provided that at least two of X are alkenyl groups having 2 to 8 carbon atoms
  • Rf 1 is a divalent perfluoropolyether group.
  • Rf in the above general formula (1) is a group represented by the following general formula (5).
  • D is a fluorine atom or a perfluorooxyalkyl group having 1 to 6 carbon atoms
  • a, b, c, and d are each independently an integer of 0 to 100, and 2 ⁇ a+b+c+d ⁇ 100.
  • a in the above general formula (1) is an alkylene group containing an alkylene group having 1 to 12 carbon atoms, an arylene group having 6 to 8 carbon atoms, and the alkylene groups are bonded to each other via a diorganosilylene group.
  • a in the above general formula (1) is a fluorocarbon compound according to any one of [1] to [4], wherein A in the above general formula (1) is a group represented by any of the following general formulas (6) to (9).
  • Polyether curable composition is any one of [1] to [3], which is selected from divalent groups having at least one selected from groups and amide bonds.
  • X 0 is a hydrogen atom, a methyl group, or an ethyl group
  • X 1 is independently a hydrogen atom, a fluorine atom, a methyl group, an ethyl group, or a trifluoromethyl group
  • X 2 is a hydrogen atom, a methyl group, ethyl group, isopropyl group, or phenyl group
  • R' is independently a methyl group or ethyl group
  • f is an integer from 1 to 6
  • t is 0 or 1.
  • R in the above general formula (1) is any one of a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, and a phenyl group [1] to [5]
  • the fluoropolyether curable composition of the present invention contains a fluorine-containing organohydrogensilane compound having a specific structure that exhibits high compatibility with the base oil (A) component, the fluoropolyether curable composition Does not cause cloudiness or thickening of the product. Moreover, by curing the composition, a fluoropolyether cured product can be obtained that has durability against hydrofluoric acid and electrolyte solution for lithium ion batteries and is free from oil-like uncured parts. Furthermore, by using at least one filler selected from organic resin powder such as polyimide resin powder and carbon black powder as a filler, the mechanical properties of the cured product can be improved without impairing acid resistance. .
  • the fluoropolyether curable composition has excellent heat resistance, chemical resistance, and solvent resistance comparable to the fluoropolyether cured products obtained from the fluoropolyether curable compositions described in Patent Documents 1 to 5. It has excellent mechanical properties.
  • the perfluoropolyether compound as component (A) used in the curable fluoropolyether composition of the present invention has at least two alkenyl groups in one molecule, and is preferably represented by the general formula (2) described below. It has a divalent perfluoropolyether structure in its main chain as shown in FIG.
  • the degree of polymerization (or molecular weight) of the polyfluoro compound which reflects the number of repeats of perfluorooxyalkylene units constituting the perfluoropolyether structure of the main chain, is determined by, for example, gelling using a fluorine-based solvent as a developing solvent. It can be determined as the number average degree of polymerization (or number average molecular weight) in terms of polystyrene in permeation chromatography (GPC) analysis. Further, the number average degree of polymerization (or number average molecular weight) of the perfluoropolyether compound described below can also be calculated from 19 F-NMR (the same applies hereinafter).
  • Component (A) is preferably a perfluoropolyether compound having a structure represented by the following general formula (2).
  • a 1 is independently a divalent organic group having 1 to 20 carbon atoms which may contain at least one selected from oxygen atom, nitrogen atom and silicon atom
  • B 1 is a carbon atom or a silicon atom
  • X is independently a hydrogen atom, a methyl group, or an alkenyl group having 2 to 8 carbon atoms, provided that at least two of X are alkenyl groups having 2 to 8 carbon atoms
  • the bonding B 1 is a carbon atom.
  • Rf 1 is a divalent perfluoropolyether group.
  • a 1 is independently a divalent organic group having 1 to 20 carbon atoms which may contain at least one selected from oxygen atom, nitrogen atom and silicon atom, preferably oxygen
  • a 1 is -(CH 2 ) f -*, -OCH 2 -*, -(CH 2 ) f OCH 2 -*, -(CH 2 ) f -NX 2 -CO-*, -(CH 2 ) f -O-CO-*, the following general formula (3), ( It is preferable that it is any group selected from the groups represented by 4).
  • bonds marked with * are bonded to Rf 1 , and the bonds not marked are bonded to B 1 .
  • X 1 is independently a hydrogen atom, a fluorine atom, a methyl group, an ethyl group, or a trifluoromethyl group
  • X 2 is a hydrogen atom, a methyl group, an ethyl group, an isopropyl group, or a phenyl group
  • f is an integer from 1 to 6.
  • Examples of A 1 include -CH 2 -*, -CH 2 CH 2 CH 2 -*, -OCH 2 -*, -CH 2 OCH 2 - *, -(CH 2 ) 2 OCH 2 -*, -( CH 2 ) 3 OCH 2 -*, -CH 2 -NH-CO-*, -CH 2 -N(CH 3 )-CO-*, -CH 2 CH 2 -NH-CO-*, -(CH 2 ) 3 -NH-CO-*, -(CH 2 ) 3 -N(CH 3 )-CO-*, -(CH 2 ) 3 -N(CH 2 CH 3 )-CO-*, -(CH 2 ) 3 -N(CH(CH 3 ) 2 ) -CO-*, -(CH 2 ) 3 -O-CO-*, the following general formulas (3A), (3B), (3C), (3D), (4A) , (4B) and (4C), among which groups represented
  • B 1 is a carbon atom or a silicon atom.
  • X is independently a hydrogen atom, a methyl group, or an alkenyl group having 2 to 8 carbon atoms, provided that at least two of the X's are alkenyl groups having 2 to 8 carbon atoms.
  • At least two of the six Xs present in the molecule is an alkenyl group
  • the alkenyl group preferably has 2 to 8 carbon atoms, particularly 2 to 6 carbon atoms, and has a CH 2 ⁇ CH structure at the end, such as a vinyl group, an allyl group
  • Examples include a propenyl group, an isopropenyl group, a butenyl group, a hexenyl group, and among them, a vinyl group and an allyl group are preferable.
  • X is not an alkenyl group
  • the structure becomes either a hydrogen atom or a methyl group when B 1 is a carbon atom, and a methyl group when B 1 is a silicon atom.
  • Rf 1 is a divalent perfluoropolyether group and contains a repeating unit of -C a F 2a O- (wherein a is an integer from 1 to 6).
  • Examples include those represented by the following formula (11). -(C g F 2g O) h - (11) (In the formula, g is an integer of 1 to 6, h is an integer of 5 to 600, preferably an integer of 10 to 400, more preferably an integer of 30 to 200.)
  • Examples of the repeating unit represented by the above formula -C g F 2g O- include units represented by the following formula. -CF 2 O- -CF 2 CF 2 O- -CF 2 CF 2 CF 2 O- -CF( CF3 ) CF2O- -CF 2 CF 2 CF 2 CF 2 O- -CF 2 CF 2 CF 2 CF 2 CF 2 O-
  • repeating units in the above divalent perfluoropolyether group may be composed of one type of these alone, or may be composed of a combination of two or more types.
  • the divalent perfluoropolyether group includes a structure of the following formula.
  • G is a fluorine atom or a trifluoromethyl group
  • k1, a1, s1, t1 and u1 are respectively 1 ⁇ k1 ⁇ 3, 2 ⁇ a1 ⁇ 6, 0 ⁇ s1 ⁇ 100, 0 ⁇ t1 ⁇ 100, 2 ⁇ s1+t1 ⁇ 200, 0 ⁇ u1 ⁇ 6, especially 2 ⁇ s1+t1 ⁇ 150, 0 ⁇ u1 ⁇ 4, 2 ⁇ s1+t1+u1 ⁇ 150
  • v1 and w1 are each 1 ⁇ An integer that satisfies v1 ⁇ 100, 1 ⁇ w1 ⁇ 100, 2 ⁇
  • Rf 1 examples include those represented by the following formula.
  • p1, q1, r1, v1, w1, z1, z1' are the same as above.
  • t1'' is an integer from 2 to 100.
  • Each repeating unit shown in parentheses with v1 and w1 may be randomly combined.
  • the amount of alkenyl groups contained in the perfluoropolyether compound of component (A) is preferably 0.002 to 0.3 mol/100g, more preferably 0.008 to 0.12 mol/100g. If the amount of alkenyl groups contained in the perfluoropolyether compound is less than 0.002 mol/100g, the degree of crosslinking may become insufficient and curing defects may occur, which is not preferable. If it exceeds 100 g, it is not preferable because the mechanical properties of the cured product as a rubber elastic body may be impaired. In the present invention, the amount of alkenyl groups can be measured by 1 H-NMR (the same applies to Examples).
  • the viscosity (23°C) of the perfluoropolyether compound of component (A) is within the range of 40 to 100,000 mPa ⁇ s, more preferably 50 to 50,000 mPa ⁇ s, and still more preferably 60 to 20,000 mPa ⁇ s.
  • the curable fluoropolyether composition of the present invention is used for sealing, potting, coating, impregnation, etc., it is desirable that the cured product has appropriate physical properties. Within this viscosity range, the most appropriate viscosity can be selected depending on the application. In the present invention, the viscosity (23° C.) can be measured using a rotational viscometer (eg, BL type, BH type, BS type, cone plate type, rheometer, etc.) (the same applies hereinafter).
  • a rotational viscometer eg, BL type, BH type, BS type, cone plate type, rheometer, etc.
  • these perfluoropolyether compounds can be used alone or in combination of two or more.
  • Component (B) used in the fluoropolyether curable composition of the present invention is a fluorine-containing organohydrogensilane compound represented by the following general formula (1) and having two or more hydrosilyl groups, and specifically, A compound having two or more hydrosilyl groups, in which all the connections between silicon atoms are composed of a silalkylene structure (the alkylene group in the silalkylene structure may be a partially fluorine-substituted fluorine-substituted alkylene group) ) and does not contain siloxane bonds.
  • Rf is a monovalent perfluoropolyether group
  • A is a divalent organic group having 1 to 20 carbon atoms that may contain at least one selected from oxygen atom, nitrogen atom, and silicon atom.
  • R is independently a monovalent hydrocarbon group having 1 to 6 carbon atoms
  • x is an integer of 1 to 3
  • B independently has one or more diorganohydrosilyl group, and is a monovalent organic group forming a sylalkylene structure with a silicon atom, and when x is 1, B has two or more diorganohydrosilyl groups.
  • y is 1 or 2.
  • Rf in the above general formula (1) is a monovalent perfluoropolyether group.
  • Rf is introduced to impart compatibility with the base oil in the fluoropolyether curable composition (particularly the thermosetting fluoropolyether composition).
  • perfluoropolyether groups Compared to perfluoroalkyl groups, perfluoropolyether groups have a greater effect of imparting compatibility with base oil when introduced into organohydrogensilane compounds, and can provide fluoropolyether cured products with good properties. .
  • Rf in the above general formula (1) is preferably a monovalent perfluoropolyether group represented by the following general formula (5).
  • D is a fluorine atom or a perfluorooxyalkyl group having 1 to 6 carbon atoms
  • a, b, c, and d are each independently an integer of 0 to 100, and 2 ⁇ a+b+c+d ⁇ 100.
  • a is an integer of 0 to 50
  • b is an integer of 0 to 50
  • c is an integer of 0 to 50
  • d is an integer of 0 to 50, 5 ⁇ a+b+c+d ⁇ 50, more preferably a is 0 to 50.
  • b is an integer of 0 to 40
  • c is an integer of 0 to 30
  • d is an integer of 0 to 30, 6 ⁇ a+b+c+d ⁇ 40, more preferably 7 ⁇ a+b+c+d ⁇ 30
  • e is 1 It is an integer of ⁇ 3.
  • the repeating units shown in parentheses above may be randomly bonded, and each of these units may be linear or branched.
  • D is a fluorine atom or a perfluorooxyalkyl group having 1 to 6 carbon atoms
  • the perfluorooxyalkyl group having 1 to 6 carbon atoms is C g F 2g+1 O-( g is an integer from 1 to 6)
  • specific examples include groups represented by the following formula. CF 3 O- CF 3 CF 2 O- CF 3 CF 2 CF 2 O- CF 3 CF(CF 3 )O- CF 3 CF 2 CF 2 CF 2 O- CF 3 CF 2 CF 2 CF 2 O- D is preferably a fluorine atom.
  • Examples of the monovalent perfluoropolyether group represented by the above general formula (5) include the following.
  • g is an integer from 1 to 6
  • c' is an integer from 2 to 100
  • b' is an integer from 2 to 100
  • c'' and d' are each an integer from 0 to 100.
  • c''+d' is an integer from 2 to 100
  • a' is an integer from 2 to 100
  • ca' is an integer from 1 to 99.
  • c'' and d' are attached. (Each repeating unit shown in parentheses may be randomly combined.)
  • A is a divalent organic group having 1 to 20 carbon atoms which may contain at least one selected from oxygen atom, nitrogen atom and silicon atom, preferably oxygen atom, nitrogen atom and silicon atom.
  • a divalent hydrocarbon group having 1 to 20 carbon atoms which may contain at least one kind selected from silicon atoms, and including an alkylene group having 1 to 12 carbon atoms and an arylene group having 6 to 8 carbon atoms.
  • 1 to 12 alkylene groups (for example, alkylene/arylene groups having 8 to 20 carbon atoms), divalent groups in which alkylene groups having 1 to 10 carbon atoms are bonded to each other via a diorganosilylene group, and 1 to 1 carbon atoms.
  • A contains a silicon atom (diorganosilylene group)
  • the silicon atom (diorganosilylene group) and the silicon atom to which A is connected is an alkylene group (preferably an unsubstituted or fluorine-substituted silicon atom having 1 to 1 carbon atoms). 12 alkylene groups, more preferably ethylene groups.
  • A is preferably one represented by any of the following general formulas (6) to (9).
  • X 0 is a hydrogen atom, a methyl group, or an ethyl group
  • X 1 is independently a hydrogen atom, a fluorine atom, a methyl group, an ethyl group, or a trifluoromethyl group
  • X 2 is a hydrogen atom, a methyl group, ethyl group, isopropyl group, or phenyl group
  • R' is independently a methyl group or ethyl group
  • f is an integer from 1 to 6
  • t is 0 or 1.
  • the bond is bonded to the Si atom in the above general formula (1), and the unmarked bond is bonded to Rf.
  • Examples of the structure of A represented by the above general formulas (6) to (9) include the following. (In the formula, Me is a methyl group and Et is an ethyl group. Note that the bond marked with * is bonded to the Si atom in the above general formula (1), and the unmarked bond is bonded to Rf. )
  • R in the above general formula (1) is independently a monovalent hydrocarbon group having 1 to 6 carbon atoms, specifically a methyl group, ethyl group, isopropyl group, tert-butyl group, or phenyl group. It is preferably a methyl group or an ethyl group.
  • B in the above general formula (1) has one or more diorganohydrosilyl groups and is a monovalent organic group forming a silalkylene structure with the connected silicon atom, that is, when x is 1, two or more preferably has 2 to 5 diorganohydrosilyl groups, and when x is 2 or 3 independently has 1 or more diorganohydrosilyl groups, preferably 1 to 3 diorganohydrosilyl groups, and the silicon atom connected It is a monovalent silicon-containing organic group having a silalkylene structure and does not contain a siloxane bond.
  • the silalkylene structure is preferably a structure in which silicon atoms are connected to each other via an unsubstituted and/or fluorine-substituted alkylene group R A having 1 to 12 carbon atoms.
  • B preferably has one or more silicon atoms, more preferably 1 to 6 silicon atoms, and even more preferably 1 to 4 silicon atoms.
  • a continuous silalkylene structure in the molecular chain between Rf in the above general formula (1) and the diorganohydrosilyl group in B i.e., -A-Si-, -Si-(CH 2 ) y in the formula
  • the number of consecutive silalkylene bonds (-Si-R A -Si-) including -Si- and -Si-B is preferably 2 or more, and preferably 2, 3 or 4. More preferred.
  • B is preferably represented by the following general formula (10).
  • p is an integer of 1 to 6, preferably an integer of 1 to 4
  • q is an integer of 0 to 6, preferably 0 or an integer of 4 to 6
  • r is an integer of 1 to 3.
  • R is the same as above
  • E is a hydrogen atom or the following formula A group represented by (an integer of ⁇ 6) (however, when E is a hydrogen atom, r is 1).
  • the repeating units shown in parentheses with p, q or p', q' may be randomly combined.
  • R in the above general formula (10) is a monovalent hydrocarbon group having 1 to 6 carbon atoms, and among them, a methyl group, an ethyl group, a propyl group, an isopropyl group. , tert-butyl group, and phenyl group are particularly preferred.
  • Examples of B in the above general formula (1) include the following. (In the formula, Me is a methyl group, Et is an ethyl group, iPr is an isopropyl group, tBu is a tertiary butyl group, and Ph is a phenyl group.)
  • the method for producing the fluorine-containing organohydrogensilane compound represented by the above general formula (1) as component (B) includes, for example, a compound containing an alkenyl group (vinyl group, allyl group, etc.) represented by the following general formula (1A).
  • a fluorine-containing compound has two or more diorganohydrosilyl groups in a predetermined connection structure. It is preferable to include a step of introducing a diorganohydrosilyl group.
  • a 2 is a divalent organic group having 1 to 18 carbon atoms which may contain at least one selected from oxygen atom, nitrogen atom and silicon atom.
  • the explanation about Rf, R, B, y, and x in the above general formulas (1A) and (1B) is the same as the explanation about Rf, R, B, y, and x in the above general formula (1).
  • Rf is a monovalent perfluoropolyether group
  • R is independently a monovalent hydrocarbon group having 1 to 6 carbon atoms
  • x is 1 is an integer of ⁇ 3
  • B is a monovalent organic group that independently has one or more diorganohydrosilyl groups and forms a silalkylene structure with the connected silicon atom, and when x is 1, B is It has two or more diorganohydrosilyl groups.
  • y is 1 or 2.
  • a 2 is a divalent organic group having 1 to 18 carbon atoms (preferably a hydrocarbon group) which may contain at least one selected from oxygen atom, nitrogen atom and silicon atom;
  • divalent groups having at least one group selected from ether-bonded oxygen atoms, secondary amino groups (imino groups), tertiary amino groups (substituted imino groups), and amide bonds.
  • it is a divalent group containing at least one selected from an ether-bonded oxygen atom, a secondary amino group (imino group), a tertiary amino group (substituted imino group), and an amide bond in its molecular chain. It is preferable.
  • a 2 is preferably one represented by any of the following general formulas.
  • X 0 , X 1 , X 2 , and f are the same as above, and their explanation is the same as the explanation of X 0 , X 1 , X 2 , and f in the above formula (1).
  • f ' is an integer from 0 to 4. Bonds marked with * are bonded to the vinyl group of the above general formula (1A), and unmarked bonds are bonded to Rf.
  • Examples of the structure of A 2 represented by the above general formula include the following. (In the formula, Me is a methyl group and Et is an ethyl group. A bond with an asterisk (*) indicates that it bonds with the vinyl group of the general formula (1A), and a bond with no mark indicates that it bonds with Rf. )
  • Rf, A, R, B, y, and x in the reaction formula shown in the above steps is the same as the explanation of Rf, A, R, B, y, and x in the above general formula (1).
  • the explanation of A 2 is the same as that of A 2 in the above general formula (1A).
  • M is a metal catalyst.
  • a fluorine-containing organohydrogensilane compound represented by the above general formula (1) is produced by subjecting an organohydrogensilane compound having at least three diorganohydrosilyl groups to a hydrosilylation reaction in the presence of a metal catalyst (M).
  • the fluorine-containing compound represented by the above general formula (1A) and having an alkenyl group (preferably a vinyl group or an allyl group) at the end of the molecular chain for example, the following compounds can be used.
  • b' is an integer from 2 to 100
  • c''' and d'' are each an integer from 1 to 99
  • c'''+d'' an integer from 2 to 100
  • ca' is an integer from 1 to 99
  • Me is a methyl group
  • Et is an ethyl group.
  • Each repeating unit shown in parentheses with c''' and d'' is randomly bonded.
  • organohydrogensilane compound represented by the above general formula (1B) and having at least three diorganohydrosilyl groups in the molecule for example, the following compounds can be used.
  • Me is a methyl group
  • Et is an ethyl group
  • Ph is a phenyl group.
  • the amount of the fluorine-containing compound represented by the above general formula (1A) and having an alkenyl group (preferably a vinyl group or an allyl group) at the end of the molecular chain is such that the alkenyl group amount of the fluorine-containing compound is expressed by the above general formula ( The amount is 0.16 to 0.30 equivalent, preferably 0.20 to 0.25 equivalent, relative to the hydrosilyl group weight of the compound represented by 1B).
  • the alkenyl group weight of the fluorine-containing compound is less than 0.16 equivalent with respect to the hydrosilyl group weight of the compound represented by the above general formula (1B), the resulting fluorine-containing organohydrogensilane compound is subjected to fluoropolyether curing.
  • M metal catalyst
  • M is not particularly limited as long as it is a metal catalyst that can serve as a catalyst for hydrosilylation, but compounds containing metal atoms such as platinum, rhodium, ruthenium, palladium, etc. can be suitably used.
  • chloroplatinic acid or a complex of chloroplatinic acid with an olefin such as ethylene, a complex with alcohol or vinyl siloxane, metallic platinum supported on silica, alumina, carbon, etc. RhCl(PPh 3 ) 3 , RhCl(CO)( Examples include PPh 3 ) 2 , Ru 3 (CO) 12 , IrCl(CO)(PPh 3 ) 2 , and Pd(PPh 3 ) 4 .
  • Ph is a phenyl group.
  • platinum compounds are particularly preferred.
  • M metal catalyst
  • M may be added after dissolving them in a small amount of an organic solvent.
  • Usable solvents include benzene, toluene, xylene, 1,3-bistrifluoromethylbenzene, and 1,3-bistrifluoromethylbenzene is preferred.
  • the amount of hydrosilyl groups in the fluorine-containing organohydrogensilane compound of component (B) is preferably 0.05 to 0.35 mol/100 g, more preferably 0.06 to 0.30 mol/100 g.
  • the amount of hydrosilyl groups can be measured by 1 H-NMR (the same applies to Examples).
  • the amount of component (B) to be blended is determined based on the amount of hydrogen atoms bonded to silicon atoms (hydrosilyl groups, i.e., Si- H group) is 0.1 to 2.5 mol, preferably 0.2 to 2 mol. If the number of hydrosilyl groups is too small, the degree of crosslinking will be insufficient and a cured product will not be obtained, and if the number is too large, foaming will occur during curing.
  • the target product may be isolated after the reaction is completed. Furthermore, mixtures containing unreacted substances and by-products can also be used by removing the addition reaction catalyst, as long as the characteristics of the present invention are not impaired. In either case, a hydrosilyl group in an amount of 0.1 to 2.5 mol, preferably 0.2 to 2 mol, per mol of alkenyl groups such as vinyl groups and allyl groups in component (A); That is, it is sufficient if it contains a Si--H group.
  • these fluorine-containing organohydrogensilane compounds may be used alone or in combination of two or more.
  • Component (C) used in the fluoropolyether curable composition of the present invention is a platinum group metal catalyst.
  • This is a hydrosilylation reaction catalyst, which promotes the addition reaction between the alkenyl group in component (A) and the hydrosilyl group in component (B) and the adhesion improver or adhesion promoter, which is an optional component described below. It is.
  • This hydrosilylation reaction catalyst is generally a noble metal compound and is expensive, so platinum or a platinum compound, which is relatively easily available, is often used.
  • platinum compound examples include chloroplatinic acid or a complex of chloroplatinic acid with an olefin such as ethylene, a complex with alcohol or vinyl siloxane, and metal platinum supported on silica, alumina, carbon, etc.
  • Rhodium, ruthenium, iridium, and palladium-based compounds are also known as platinum group metal catalysts other than platinum compounds, such as RhCl(PPh 3 ) 3 , RhCl(CO)(PPh 3 ) 2 , Ru 3 (CO) 12 , IrCl(CO)(PPh 3 ) 2 , Pd(PPh 3 ) 4 and the like.
  • Ph is a phenyl group.
  • the amount of component (C) used may be a catalytic amount, but for example, it is preferably blended in an amount of 0.1 to 1,000 ppm (in terms of platinum group metal atoms) based on the mass of component (A), and 1 to 500 ppm is preferred. More preferred. Component (C) can be used alone or in combination of two or more.
  • Component (D) used in the fluoropolyether curable composition of the present invention is at least one filler selected from organic resin powder and carbon black powder. This is used to improve the mechanical properties of the cured product obtained from the fluoropolyether curable composition, such as hardness, tensile strength, and elongation at break.
  • the organic resin powder may be of any type as long as it exhibits durability against strong acids. Specifically, polyimide resin (PI) powder, polytetrafluoroethylene resin (PTFE) powder, polyphenylene sulfide resin (PPS) powder, polyetheretherketone resin (PEEK) powder, polyphenylsulfone resin powder, polyetherimide resin.
  • component (D) powder examples of the carbon black powder include furnace black powder, lamp black powder, acetylene black powder, channel black powder, etc., and acetylene black powder is preferable.
  • Component (D) is further preferably a pulverized organic resin powder, preferably a polyimide resin powder.
  • a pulverized organic resin powder preferably a polyimide resin powder.
  • the average particle size of the pulverized organic resin powder is preferably 0.001 to 5 ⁇ m, more preferably 0.001 to 3 ⁇ m, and even more preferably 0.001 to 2.8 ⁇ m.
  • the average particle size is 5 ⁇ m or less, the amount that can be filled into the curable fluoropolyether composition increases, and the effect of improving the mechanical properties of the resulting cured product becomes greater.
  • the type of pulverizer used to pulverize the organic resin powder is not particularly limited as long as it can produce an average particle size of 5 ⁇ m or less.
  • pulverizers such as a roller mill, jet mill, hammer mill, pin mill, rotary mill, vibration mill, planetary mill, attriter, and bead mill can be used.
  • the pulverization treatment conditions are not particularly limited as long as the average particle size of the organic resin powder is 5 ⁇ m or less.
  • Component (D) can be used alone or in combination of two or more, and is particularly preferably polyimide resin powder and/or carbon black powder, or pulverized polyimide resin powder.
  • the amount of component (D) to be blended is 0.1 to 200 parts by weight, preferably 1 to 100 parts by weight, per 100 parts by weight of component (A).
  • amount of component (D) is less than 0.1 part by mass with respect to 100 parts by mass of component (A)
  • the effect of improving the mechanical properties of the cured product obtained from the curable fluoropolyether composition is improved. This is not desirable because it becomes smaller.
  • the blending amount of component (D) exceeds 200 parts by mass with respect to 100 parts by mass of component (A), the viscosity of the curable fluoropolyether composition increases significantly, resulting in poor workability (handling properties). Therefore, it is undesirable.
  • component (D) when using a pulverized organic resin powder as component (D), it is recommended that the fluoropolyether In addition to suppressing the separation of component (D) and other liquid components (particularly component (A)) over time in the curable fluoropolyether composition, workability is achieved by a significant increase in the viscosity of the curable fluoropolyether composition. This is preferable from the viewpoint of avoiding deterioration in handling properties.
  • the adhesion improver acts as an adhesion improver to make the fluoropolyether curable composition of the present invention exhibit self-adhesion by blending it, and contains silicon atoms in one molecule.
  • An organohydrogenpolysiloxane compound having at least one hydrogen atom (Si-H group) bonded to , and one or more epoxy groups and/or trialkoxysilyl groups bonded to a silicon atom via a carbon atom or a carbon atom and an oxygen atom. It is.
  • the adhesion improver since the adhesion improver has a molecular structure that corresponds to fluorine-containing organohydrogensiloxane, the use of this adhesion improver allows it to withstand hydrofluoric acid, electrolytes for lithium ion secondary batteries, etc. for a long period of time. Although it is difficult to maintain self-adhesiveness, in cases where initial self-adhesiveness is required, such as during the manufacturing process of an article having a cured product obtained from the fluoropolyether curable composition of the present invention. is extremely effective.
  • the adhesion improver further includes a nitrogen atom bonded to a silicon atom through a divalent linking group containing at least one selected from oxygen atom, nitrogen atom, carbon atom and silicon atom in one molecule.
  • Those having one or more perfluoropolyether groups (perfluorooxyalkyl groups) are more preferred.
  • Examples of such perfluoroalkyl groups include groups represented by C j F 2j+1 - (j is an integer of 1 to 10, preferably 3 to 7).
  • Examples of the monovalent perfluoropolyether group include those exemplified by Rf in formula (1) for component (B) above.
  • the divalent linking group that connects this perfluoroalkyl group or monovalent perfluoropolyether group to a silicon atom may contain at least one kind selected from an oxygen atom, a nitrogen atom, and a silicon atom.
  • a divalent organic group (preferably a hydrocarbon group) having 1 to 20 carbon atoms can be used.
  • the siloxane skeleton of the organohydrogen polysiloxane compound of the adhesion improver may be cyclic, linear, branched, etc., or may be a mixture of two or more of these, but is preferably cyclic.
  • organohydrogen polysiloxane compound of the adhesion improver those represented by the following general formula can be used.
  • R 2 is an unsubstituted or halogen-substituted monovalent hydrocarbon group
  • L 1 is a monovalent perfluoropolyether group bonded to the silicon atom via a divalent linking group
  • M 1 is an epoxy group or trialkoxysilyl group bonded to a silicon atom via a carbon atom or a carbon atom and an oxygen atom shown below.
  • w2 is preferably an integer satisfying 0 ⁇ w2 ⁇ 50, more preferably 0 ⁇ An integer satisfying w2 ⁇ 20, x2 preferably an integer satisfying 1 ⁇ x2 ⁇ 50, more preferably an integer satisfying 1 ⁇ x2 ⁇ 20, and y2 preferably an integer satisfying 0 ⁇ y2 ⁇ 50. , more preferably an integer satisfying 1 ⁇ y2 ⁇ 20, and z2 preferably an integer satisfying 1 ⁇ z2 ⁇ 50, more preferably an integer satisfying 1 ⁇ z2 ⁇ 20.
  • Each repeating unit shown in may be randomly combined.
  • the unsubstituted or halogen-substituted monovalent hydrocarbon group for R 2 is preferably one that does not contain an aliphatic unsaturated bond and has 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms.
  • Examples include alkyl groups such as methyl, ethyl, propyl, butyl, hexyl, cyclohexyl, and octyl; aryl groups such as phenyl and tolyl; aralkyl groups such as benzyl and phenylethyl; , substituted monovalent hydrocarbon groups in which some or all of the hydrogen atoms of these groups are substituted with halogen atoms such as fluorine, and the like, among which methyl groups are particularly preferred.
  • the above L 1 is a monovalent perfluoropolyether group bonded to a silicon atom via a divalent linking group, and is preferably represented by the following general formula. -Z-Rf 2
  • Rf 2 is a monovalent perfluoropolyether group and is the same as Rf in the above general formula (1), and examples thereof can be the same as those exemplified for Rf.
  • Z is a divalent organic group (preferably a hydrocarbon group) having 1 to 20 carbon atoms which may contain at least one selected from oxygen atom, nitrogen atom and silicon atom.
  • Z examples include -CH 2 -*, -CH 2 CH 2 CH 2 -*, -OCH 2 -*, -CH 2 OCH 2 - *, -(CH 2 ) 2 OCH 2 -*, -(CH 2 ) 3 OCH 2 -*, -CH 2 -NH-CO-*, -(CH 2 ) 3 -NH-CO-*, -(CH 2 ) 3 -N(CH 3 )-CO-*, -( CH 2 ) 3 -N(CH 2 CH 3 )-CO-*, -(CH 2 ) 3 -N(CH(CH 3 ) 2 )-CO-*, -CH 2 -N(Ph)-CO-* , -(CH 2 ) 3 -O-CO-*, -CH 2 OCH 2 CH 2 CH 2 -Si(CH 3 ) 2 -O-Si(CH 3 ) 2 -(CH 2 ) 2 -*, -CO -
  • Ph represents a phenyl group and Ph' represents a phenylene group.
  • a bond with an * indicates that it is bonded to a monovalent perfluoropolyether group, and a bond without an * indicates that it is bonded to a silicon atom in the organohydrogen polysiloxane.
  • the above M 1 represents an epoxy group or a trialkoxysilyl group bonded to a silicon atom via a carbon atom or a carbon atom and an oxygen atom, and specifically, the following groups can be mentioned.
  • R 3 is a divalent hydrocarbon group having 1 to 10 carbon atoms, especially 1 to 5 carbon atoms, in which an oxygen atom may be present (alkylene group such as methylene group, ethylene group, propylene group, cyclohexylene group) Cycloalkylene groups such as oxyethylene groups, oxypropylene groups, oxybutylene groups, etc., preferably -(CH 2 ) 3 OCH 2 -*' (The bond marked with * is bonded to an epoxy group. (indicates))).
  • alkylene group such as methylene group, ethylene group, propylene group, cyclohexylene group
  • Cycloalkylene groups such as oxyethylene groups, oxypropylene groups, oxybutylene groups, etc., preferably -(CH 2 ) 3 OCH 2 -*' (The bond marked with * is bonded to an epoxy group. (indicates))).
  • R 4 represents a divalent hydrocarbon group having 1 to 10 carbon atoms, particularly 1 to 4 carbon atoms (alkylene group such as methylene group, ethylene group, propylene group, etc.), and R 5 independently has a carbon number of 1 to 8, especially a monovalent hydrocarbon group having 1 to 4 carbon atoms (such as an alkyl group such as a methyl group, ethyl group, propyl group, butyl group, etc.)
  • R 6 is a hydrogen atom or a methyl group
  • R 7 is independently a monovalent hydrocarbon group having 1 to 8 carbon atoms, particularly 1 to 4 carbon atoms (methyl group, ethyl group, propyl group, butyl group) (such as alkyl groups), where l represents an integer from 2 to 10.)
  • the organohydrogenpolysiloxane compound used as an adhesion improver is an organohydrogenpolysiloxane having three or more silicon-bonded hydrogen atoms (Si-H groups) in one molecule, and a fatty acid such as a vinyl group or an allyl group.
  • Si-H groups silicon-bonded hydrogen atoms
  • a fatty acid such as a vinyl group or an allyl group.
  • a compound containing a group unsaturated group and an epoxy group and/or a trialkoxysilyl group, and further, if necessary, a compound containing an aliphatic unsaturated group and a perfluoroalkyl group or a perfluorooxyalkyl group, is prepared by a conventional method. It can be obtained by addition reaction. Note that the number of aliphatic unsaturated groups needs to be smaller than the number of Si--H groups.
  • the target substance When producing an organohydrogenpolysiloxane compound used as an adhesion improver, the target substance may be isolated after the reaction is completed, but it is also possible to use a mixture from which unreacted substances and addition reaction catalyst have been removed.
  • organohydrogen polysiloxane compounds used as adhesion improvers include those represented by the following structural formula. Note that these compounds may be used alone or in combination of two or more. In addition, in the following formula, Me represents a methyl group.
  • the amount of the hydrosilyl group (Si-H group) in the adhesion improver is preferably 0.005 to 0.5 mole per mole of alkenyl group in component (A).
  • the amount is preferably from 0.01 to 0.2 mol, and even more preferably from 0.05 to 0.1 mol.
  • polyfluoromonoalkenyl compounds represented by the following general formula (12) and/or polyfluoro compounds represented by the following general formulas (13) and (14) are used as the plasticizer, viscosity modifier, and flexibility imparting agent. Can be used together.
  • Rf 3 - (Z 1 ) p2 CH CH 2 (12)
  • Z 1 is a divalent organic group (preferably a hydrocarbon group) having 1 to 20 carbon atoms which may contain at least one selected from oxygen atom, nitrogen atom and silicon atom, and p2 is 0 or 1
  • Rf 3 is a monovalent perfluoropolyether group represented by the following general formula.
  • f2 is an integer of 2 to 200, preferably an integer of 2 to 100
  • h2 is an integer of 1 to 3
  • Y 1 is independently a group represented by the formula: C k2 F 2k2+1 - (k2 is an integer of 1 to 3), c2 is an integer of 1 to 200, and used (A ) component is smaller than the molecular weight of Rf 1 in formula (2). ]
  • Y 2 is the same as Y 1 above
  • d2 and e2 are each an integer of 1 to 200, and is smaller than the molecular weight of Rf 1 in formula (2) in the component (A) used.
  • each repeating unit shown in parentheses above may be randomly combined.
  • Z 1 is a divalent organic group (preferably a hydrocarbon group) having 1 to 20 carbon atoms which may contain at least one selected from oxygen atom, nitrogen atom and silicon atom.
  • Z divalent linking group
  • the bond marked with * is Rf 3 (A bond without an * indicates a bond with a carbon atom.)
  • polyfluoromonoalkenyl compound represented by the above general formula (12) examples include the following. Note that f2 below satisfies the above requirements.
  • polyfluoro compounds represented by the above general formulas (13) and (14) include the following. Note that the following c2, d2, e2 and the sum of d2 and e2 satisfy the above requirements.
  • the viscosity (23° C.) of the polyfluoro compounds of formulas (12), (13), and (14) is preferably in the range of 2,000 to 50,000 mPa ⁇ s. Further, when blending the polyfluoro compounds of the above formulas (12), (13), and (14), the blending amount is preferably 1 to 300 parts by mass, more preferably 50 parts by mass, per 100 parts by mass of component (A). ⁇ 250 parts by mass.
  • ethynylcyclohexanol also known as 1-ethynyl-1-hydroxycyclohexane
  • 3-methyl-1-butyn-3-ol 3,5-dimethyl-1- Acetylenic alcohols such as hexyn-3-ol, 3-methyl-1-penten-3-ol, phenylbutynol
  • reaction products of the above-mentioned chlorosilanes having monovalent fluorine-containing substituents with acetylenic alcohols 3- Examples include methyl-3-penten-1-yne, 3,5-dimethyl-3-hexen-1-yne, triallylisocyanurate, polyvinyl siloxane, organic phosphorus compounds, etc., and their addition improves curing reactivity and storage. Stability can be maintained appropriately.
  • the blending amount is arbitrary within a range that can provide the desired curability
  • Inorganic fillers include, for example, fumed silica (fumed silica or dry silica), precipitated silica (wet silica), spherical silica (fused silica), and sol-gel.
  • Silica powder such as processed silica and silica airgel, various surface-treated silica powders, quartz powders, and fused silicas obtained by hydrophobicizing the untreated surface of the silica powders with various organochlorosilanes, organodisilazane, cyclic organopolysilazane, etc.
  • Powder, reinforcing or semi-reinforcing fillers such as diatomaceous earth and calcium carbonate, inorganic pigments such as titanium oxide, iron oxide, and cobalt aluminate, titanium oxide, iron oxide, cerium oxide, cerium hydroxide, zinc carbonate, magnesium carbonate, A heat resistance improver such as manganese carbonate, a thermal conductivity imparting agent such as alumina, boron nitride, silicon carbide, metal powder, etc., a conductivity imparting agent such as silver powder, conductive zinc white, etc. can be added.
  • the blending amount is preferably 0.1 to 100 parts by mass, more preferably 1 to 60 parts by mass, per 100 parts by mass of component (A).
  • the adhesion promoter contains the above-mentioned adhesion promoter, it improves the adhesion-imparting ability of the above-mentioned adhesion promoter, and improves the adhesive properties of the cured product obtained by curing the fluoropolyether-based curable composition of the present invention. This is to promote the development of adhesive properties.
  • carboxylic acid anhydrides can be suitably used.
  • carboxylic anhydride examples include carboxylic anhydrides that are solid at 23°C. Specifically, the following compounds are exemplified. In addition, in the following formula, Me represents a methyl group.
  • a carboxylic acid anhydride a hydrogen atom directly bonded to a silicon atom in one molecule, and a divalent hydrocarbon group which may contain at least one selected from an oxygen atom, a nitrogen atom, and a silicon atom
  • siloxane-modified carboxylic anhydride compounds examples include those represented by the following general formula (15).
  • This fluorine-containing organopolysiloxane-modified carboxylic anhydride compound has a molecular structure that corresponds to fluorine-containing organohydrogensiloxane, so the use of this compound makes it resistant to hydrofluoric acid and electrolytes for lithium-ion secondary batteries. Although it is difficult to maintain self-adhesive properties over a long period of time, initial self-adhesive properties may be necessary, such as during the manufacturing process of an article having a cured product obtained from the curable fluoropolyether composition of the present invention.
  • L 2 is a monovalent perfluoropolyether group independently bonded to a silicon atom via a divalent hydrocarbon group
  • J is independently bonded to a silicon atom via a divalent hydrocarbon group.
  • R 8 is independently an unsubstituted or halogen-substituted monovalent hydrocarbon group
  • t2 is an integer of 1 to 6
  • u2 is an integer of 1 to 4
  • v2 is an integer of 1 to 4.
  • the integer t2+u2+v2 is an integer from 4 to 10.
  • L 2 is a monovalent perfluoropolyether group bonded to a silicon atom via a divalent hydrocarbon group, and examples thereof include the same groups as L 1 above. These groups are introduced from the viewpoints of compatibility with component (A), dispersibility, uniformity after curing, and the like.
  • R 8 is an unsubstituted or halogen-substituted monovalent hydrocarbon group, and examples include the same groups as R 2 described above, with methyl and ethyl groups being preferred.
  • J is a cyclic carboxylic anhydride residue bonded to a silicon atom via a divalent hydrocarbon group, and specific examples include groups represented by the following general formula. .
  • R 9 is a divalent hydrocarbon group having 2 to 15 carbon atoms, and specific examples thereof include ethylene group, propylene group, butylene group, and among them, propylene group is preferred.
  • t2 is an integer of 1 to 6, preferably an integer of 2 to 5
  • u2 is an integer of 1 to 4
  • v2 is an integer of 1 to 4
  • t2+u2+v2 is an integer from 4 to 10, preferably from 4 to 8.
  • the arrangement order of the ((H)(R 8 )SiO) units, ((L 2 )(R 8 )SiO) units, and ((J)(R 8 )SiO) units is random.
  • Examples of the cyclic organopolysiloxane represented by the above general formula (15) include the following compounds.
  • Me represents a methyl group.
  • adhesion promoters may be used alone or in combination of two or more.
  • the above-mentioned carboxylic acid anhydride that is solid at 23° C. and the above-mentioned cyclic organopolysiloxane (fluorine-containing organopolysiloxane-modified carboxylic anhydride compound) may be used in combination.
  • the blending amount is preferably 0.01 to 2 parts by mass, more preferably 0.05 to 1 part by mass, per 100 parts by mass of component (A). Furthermore, the amount of hydrosilyl group (Si-H group) in the adhesion promoter is 0.005 to 0.5 mol, particularly 0.05 to 0.1 mol, per 1 mol of alkenyl group in component (A). It is preferable. Note that the total amount of hydrosilyl groups contained in the composition (particularly, the total amount of hydrosilyl groups in component (B), the adhesion improver, and the adhesion promoter) per mole of alkenyl groups in component (A) is It is preferably 0.1 to 2.5 mol, particularly 0.2 to 2 mol.
  • the method for producing the curable fluoropolyether composition of the present invention is not particularly limited, and can be produced by kneading the above components.
  • the fluoropolyether curable composition of the present invention is prepared by mixing the above-mentioned components (A) to (D) and other optional components in a mixing device such as a planetary mixer, Ross mixer, or Hobart mixer, as necessary. It can be manufactured by uniformly mixing using a kneading device such as a kneader or three rolls depending on the situation. Alternatively, a two-part composition may be prepared and mixed at the time of use.
  • the produced fluoropolyether-based curable composition can be cured at room temperature depending on the type of catalyst used as component (C), but it is best to heat it to accelerate curing. In order to stabilize the physical properties, it is preferable to cure at a temperature of 60° C. or higher, preferably 100 to 200° C., for a period of several minutes to several hours.
  • the composition when using the fluoropolyether-based curable composition of the present invention, may be mixed with a suitable fluorinated solvent such as 1,3-bis(trifluoromethyl)benzene, fluorinate ( 3M), perfluorobutyl methyl ether, perfluorobutyl ethyl ether, etc., to a desired concentration.
  • a suitable fluorinated solvent such as 1,3-bis(trifluoromethyl)benzene, fluorinate ( 3M), perfluorobutyl methyl ether, perfluorobutyl ethyl ether, etc.
  • a solvent in thin film coating applications.
  • the fluoropolyether-based curable composition of the present invention is suitable for use in automobiles, chemical plants, semiconductor manufacturing lines, analytical and physical and chemical equipment, living environments, communication equipment, communication equipment, aircraft, railway vehicles, It is preferable to use it as an electric/electronic component for mobile devices, power storage devices, robots, lithium ion batteries, etc. Particularly preferred are electrical and electronic components using the cured product of the fluoropolyether curable composition of the present invention as a gasket, packing, protective seal, or coating layer.
  • the present invention will be specifically explained by showing synthesis examples, working examples, and comparative examples, but the present invention is not limited to the following examples.
  • parts indicate parts by mass.
  • the number average molecular weight was determined as the number average molecular weight in terms of polystyrene in gel permeation chromatography (GPC) analysis using a fluorine-based solvent AK-225 (manufactured by Asahi Glass Co., Ltd.) as a developing solvent.
  • GPC gel permeation chromatography
  • Viscosity is measured at 23°C in accordance with the viscosity test method using a rotational viscometer specified in JIS K6249, and the average particle size is the cumulative particle size measured by particle size distribution measurement using laser light diffraction/scattering method, unless otherwise noted.
  • the value of the volume average diameter (D50) is shown.
  • the compound represented by the following formula (18) (hydrosilyl group amount 0.143 mol/100 g) is obtained by concentrating it under reduced pressure. 376g of was obtained.
  • the 1 H-NMR spectrum of the obtained product shows the following signals: ⁇ 7.86-6.55 (m, 4H), 4.38-3.64 (m, 3H), 3.15 (s, 3H) , 2.46 to 1.48 (br, 4H), and 1.18 to -0.91 (m, 52H), and the production of the compound represented by the above formula (18) was confirmed.
  • the 1 H-NMR spectrum of the obtained product shows the following signals: ⁇ 6.89-6.61 (s, 1H), 4.39-3.66 (m, 3H), 3.41-3.07 ( m, 2H), 2.46 to 1.47 (br, 4H), 1.74 to 1.39 (m, 2H), and 1.18 to -0.90 (m, 44H) were confirmed, and the above formula Production of the compound represented by (24) was confirmed.
  • the fluoropolyether cured product obtained above was post-cured at 200°C for 4 hours, and then evaluated for heat resistance, chemical resistance, solvent resistance, and electrolyte resistance as shown below. .
  • the results are shown in Tables 2-5.
  • Amount of change in hardness (hardness of cured product after 150°C/7 days) - (initial hardness of cured product)
  • Tensile strength change rate (%) ((150°C/tensile strength of cured product after 7 days) - (initial tensile strength of cured product)) / (initial tensile strength of cured product) x
  • Change rate of elongation at cutting (%) ((Elongation at cutting of cured product after 150°C/7 days) - (Elongation at cutting in the initial stage of cured product)) / (Elongation at cutting in the initial stage of cured product) x 100
  • the fluoropolyether-based cured products obtained from the fluoropolyether-based curable compositions of Reference Examples 1 to 10 and Comparative Examples 1 and 2 showed differences in hardness, surface stickiness, and appearance before and after immersion in lithium-ion battery electrolyte. Almost no change was observed. From this, it was found that the above composition and cured product can be applied to lithium ion batteries.
  • the fluoropolyether cured product obtained from the fluoropolyether curable composition of Comparative Example 3 changes such as swelling and surface decomposition were observed when immersed in the lithium ion battery electrolyte. Moreover, when both ends of the cured product were pulled, it was easily torn.
  • Example 2 In Example 1, a curable composition was prepared in the same manner as in Example 1 except that (A2) 100 parts of the polymer represented by the above formula (33) was used instead of (A1) the polymer represented by the above formula (31). I prepared something.
  • Example 3 In Example 1, (A1) instead of the polymer represented by the above formula (31), (A3) 100 parts of the polymer represented by the above formula (34), (B1) 25.16 parts of the compound represented by the above formula (18) A curable composition was prepared in the same manner as in Example 1 except that
  • Example 4 In Example 1, 20.42 parts of (B2) the compound represented by the above formula (20) obtained in Synthesis Example 2 was used instead of (B1) the compound represented by the above formula (18), and the rest was carried out. A curable composition was prepared in the same manner as in Example 1.
  • Example 5 In Example 1, 5.73 parts of (B3) the compound represented by the above formula (22) obtained in Synthesis Example 3 was used instead of (B1) the compound represented by the above formula (18), and the rest was as follows. A curable composition was prepared in the same manner as in Example 1.
  • Example 6 In Example 1, in place of (B1) the compound represented by the above formula (18), (B4) 8.24 parts of the compound represented by the above formula (24) obtained in Synthesis Example 4 was used, and the rest was carried out. A curable composition was prepared in the same manner as in Example 1.
  • Example 7 In Example 1, in place of (B1) the compound represented by the above formula (18), the same method was used except that the solution obtained in Synthesis Example 1 was directly concentrated under reduced pressure without extracting the main component by preparative liquid chromatography. (B5) Using 9.61 parts of a mixture of compounds represented by the above formulas (18), (35), (36), (37) and (38), otherwise the same as in Example 1. A curable composition was prepared.
  • Example 8 In Example 1, 15.97 parts of (B6) the compound represented by the above formula (26) obtained in Synthesis Example 5 was used instead of (B1) the compound represented by the above formula (18), and the rest was carried out. A curable composition was prepared in the same manner as in Example 1.
  • Example 9 In Example 1, (B1) 12.44 parts of the compound represented by the above formula (28) obtained in Synthesis Example 5 was used instead of (B7) the compound represented by the above formula (18), and the rest was carried out. A curable composition was prepared in the same manner as in Example 1.
  • Example 10 In Example 1, (B1) 12.44 parts of the compound represented by the above formula (30) obtained in Synthesis Example 5 was used instead of the compound represented by the above formula (18) (B8), and the rest was carried out. A curable composition was prepared in the same manner as in Example 1.
  • Example 11 In Example 7, a curable composition was prepared in the same manner as in Example 7 except that (A2) 100 parts of the polymer represented by the above formula (33) was used instead of (A1) the polymer represented by the above formula (31). I prepared something.
  • Example 12 In Example 1, a curable composition was prepared in the same manner as in Example 1 except that 40 parts of the polyimide resin powder (D1) was used.
  • Example 13 In Example 12, a curable composition was prepared in the same manner as in Example 12 except that (A2) 100 parts of the polymer represented by the above formula (33) was used instead of (A1) the polymer represented by the above formula (31). I prepared something.
  • Example 14 In Example 1, a curable composition was prepared in the same manner as in Example 1 except that 60 parts of the polyimide resin powder (D1) was used.
  • Example 15 In Example 1, 10 parts of (D2) acetylene black carbon powder (manufactured by Denka Corporation, granular product, average particle size 0.035 ⁇ m) was used instead of the polyimide resin powder (D1), and the rest was as in Example 1. A curable composition was prepared in the same manner.
  • Example 16 In Example 15, a curable composition was prepared in the same manner as in Example 15 except that (A2) 100 parts of the polymer represented by the above formula (33) was used instead of (A1) the polymer represented by the above formula (31). I prepared something.
  • Example 17 In Example 1, 10 parts of (D3) acetylene black carbon powder (manufactured by Denka Corporation, powdered product, average particle size 0.035 ⁇ m) was used instead of the polyimide resin powder (D1), and the rest was the same as in Example 1. A curable composition was prepared in the same manner as above.
  • Example 18 In Example 17, a curable composition was prepared in the same manner as in Example 17 except that (A2) 100 parts of the polymer represented by the above formula (33) was used instead of (A1) the polymer represented by the above formula (31). I prepared something.
  • Example 19 In Example 1, in addition to the polyimide resin powder of (D1), 10 parts of (D2) acetylene black carbon powder (manufactured by Denka Co., Ltd., granular product, average particle size 0.035 ⁇ m) was used, and the rest was the same as that of Example 1. A curable composition was prepared in the same manner as above.
  • Example 4 In Example 1, 23.0 parts of (D4) fumed silica (Aerosil R-972, manufactured by Aerosil Co., Ltd., average particle size (catalog value): 16 nm) was used instead of the polyimide resin powder of (D1), and A curable composition was prepared in the same manner as in Example 1 except for this.
  • (D4) fumed silica (Aerosil R-972, manufactured by Aerosil Co., Ltd., average particle size (catalog value): 16 nm) was used instead of the polyimide resin powder of (D1), and A curable composition was prepared in the same manner as in Example 1 except for this.
  • each fluoropolyether cured product (Examples 1 to 19, Comparative Example 4) was left in an oven at 150°C for 7 days, and then the physical properties of the cured product were evaluated in accordance with JIS K 6249.
  • the amount of change in hardness, rate of change in tensile strength (%), and rate of change in elongation at cutting (%) were calculated using the following formulas. The results are shown in Table 7.
  • Amount of change in hardness (hardness of cured product after 150°C/7 days) - (initial hardness of cured product)
  • Tensile strength change rate (%) ((150°C/tensile strength of cured product after 7 days) - (initial tensile strength of cured product)) / (initial tensile strength of cured product) x
  • Change rate of elongation at cutting (%) ((Elongation at cutting of the cured product after 150°C/7 days) - (Elongation at cutting at the initial stage of the cured product)) / (Elongation at cutting at the initial stage of the cured product) x 100
  • the fluoropolyether cured products obtained from the fluoropolyether curable compositions of Examples 1 to 19 showed almost no change in hardness, surface stickiness, or appearance before and after immersion in the lithium ion battery electrolyte. There wasn't. From this, it was found that the above composition and cured product containing at least one filler selected from organic resin powder and carbon black powder can be applied to lithium ion battery applications.
  • the fluoropolyether cured product obtained from the fluoropolyether curable composition of Comparative Example 4 showed almost no stickiness or change in appearance when immersed in the lithium ion battery electrolyte; A significant decrease in quality was confirmed. Furthermore, when both ends of the cured product were pulled, it was easily torn, suggesting a decrease in the mechanical properties of the cured product.
  • each polyimide resin has an average particle size of (D5) 2.0 ⁇ m, (D6) an average particle size of 3.0 ⁇ m, and (D7) an average particle size of 5.0 ⁇ m.
  • Three types of powder were prepared. Using each of these polyimide resin powders, an attempt was made to prepare a fluoropolyether-based curable composition.
  • Example 20 First, (A1) 100 parts of the polymer represented by the above formula (31) and (D5) 70 parts of polyimide resin powder (average particle size: 2.0 ⁇ m) were kneaded at room temperature for 1 hour using a planetary mixer, and then The mixture was kneaded at room temperature for 1 hour under reduced pressure of -98.0 kPaG. Further, the mixture was kneaded at 150° C. for 1 hour under reduced pressure of -98.0 kPaG. As a result, a paste-like kneaded product was obtained.
  • the kneaded product was cooled to room temperature and subjected to a three-roll mill treatment, and then 0.1 part of a toluene solution (platinum concentration 0.5% by mass) of (C1) platinum-divinyltetramethyldisiloxane complex and the above 0.07 parts of the compound represented by formula (32) and 9.74 parts of the compound represented by formula (18) obtained in Synthesis Example 1 (B1) were added and mixed to prepare a curable composition.
  • a toluene solution platinum concentration 0.5% by mass
  • Example 21 In Example 20, a curable composition was prepared in the same manner as in Example 20 except that 100 parts of the polyimide resin powder (D5) (average particle size: 2.0 ⁇ m) was used.
  • Example 22 In Example 20, 70 parts of (D6) polyimide resin powder (average particle size: 3.0 ⁇ m) was used instead of (D5) polyimide resin powder (average particle size: 2.0 ⁇ m), and the other conditions were as in Example 20. A curable composition was prepared in the same manner.
  • Example 23 a curable composition was prepared in the same manner as in Example 22 except that 100 parts of the polyimide resin powder (D6) (average particle size: 3.0 ⁇ m) was used.
  • Example 24 In Example 20, 70 parts of the polyimide resin powder (D7) (average particle size: 5.0 ⁇ m) was used instead of the polyimide resin powder (D5) (average particle size: 2.0 ⁇ m), and the rest was Example 20. A curable composition was prepared in the same manner as above.
  • Example 25 a curable composition was prepared in the same manner as in Example 20 except that (A2) 100 parts of the polymer represented by the above formula (33) was used instead of (A1) the polymer represented by the above formula (31). I prepared something.
  • Example 26 In Example 21, a curable composition was prepared in the same manner as in Example 21 except that (A2) 100 parts of the polymer represented by the above formula (33) was used instead of (A1) the polymer represented by the above formula (31). I prepared something.
  • Example 27 a curable composition was prepared in the same manner as in Example 22 except that (A2) 100 parts of the polymer represented by the above formula (33) was used instead of (A1) the polymer represented by the above formula (31). I prepared something.
  • Example 28 In Example 23, a curable composition was prepared in the same manner as in Example 23 except that (A2) 100 parts of the polymer represented by the above formula (33) was used instead of (A1) the polymer represented by the above formula (31). I prepared something.
  • Example 29 In Example 24, a curable composition was prepared in the same manner as in Example 24 except that (A2) 100 parts of the polymer represented by the above formula (33) was used instead of (A1) the polymer represented by the above formula (31). I prepared something.
  • Example 30 In Example 20, a curable composition was prepared in the same manner as in Example 20 except that (A3) 100 parts of the polymer represented by the above formula (34) was used instead of (A1) the polymer represented by the above formula (31). I prepared something.
  • the fluoropolyether cures obtained from the fluoropolyether curable compositions of Examples 1 to 3, 12, and 13 using the polyimide resin powder (D1) that was not subjected to pulverization treatment.
  • the ether-based cured product has improved hardness and tensile strength. From the above results, it was possible to confirm the reinforcing effect of the cured product by filling a large amount of organic resin powder.
  • the heat resistance, chemical resistance, and solvent resistance of the fluoropolyether cured products obtained from the fluoropolyether curable compositions of Examples 20 to 30 were evaluated in the same manner as in Examples 1 to 19.
  • the results of heat resistance, chemical resistance, solvent resistance, and electrolyte resistance were generally consistent with Examples 1 to 3, 12, and 13, and the organic resin powder was pulverized. It was confirmed that there were no adverse effects as a result of this.
  • the fluoropolyether cured product obtained from the fluoropolyether curable composition of the present invention has both durability and mold releasability against hydrofluoric acid and lithium ion battery electrolyte. Furthermore, it has been found that the addition of at least one filler selected from organic resin powder and carbon black powder improves the mechanical properties of the cured product without impairing the aforementioned properties. Furthermore, by pulverizing the organic resin powder to reduce the average particle size, it is possible to increase the amount of filling into the fluoropolyether curable composition, which further strengthens the fluoropolyether cured product. I also found out that I can get it. The above demonstrates the effects of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

(A)1分子中に2個以上のアルケニル基を有するパーフルオロポリエーテル化合物、 (B)特定構造のヒドロシリル基を2個以上有する含フッ素オルガノ水素シラン化合物、 (C)白金族金属系触媒、及び (D)有機樹脂粉末及びカーボンブラック粉末から選ばれる少なくとも1種の充填剤 の特定量を含有してなるフルオロポリエーテル系硬化性組成物が、フッ酸やリチウムイオン電池用電解液に対する耐久性を有すると共に、機械的物性が良好であり、かつ構成成分同士の相溶性の低さによる未硬化箇所がなく良好な離型性を有する硬化物を与えるフルオロポリエーテル系硬化性組成物となり得る。

Description

フルオロポリエーテル系硬化性組成物及び硬化物、並びに電気・電子部品
 本発明は、ポリイミド樹脂粉末等の有機樹脂粉末及びカーボンブラック粉末から選ばれる少なくとも1種の充填剤を含有し、フッ酸やリチウムイオン電池用電解液に対する耐久性を有する硬化物を与えるフルオロポリエーテル系硬化性組成物及び該組成物の硬化物、並びに該硬化物を有する電気・電子部品に関する。
 アルケニル基とヒドロシリル基との付加反応を利用したフルオロポリエーテル系硬化性組成物は公知である。例えば、硬化性組成物として、1分子中に2個以上のアルケニル基を有し、かつ主鎖中にパーフルオロポリエーテル構造を有するフルオロポリエーテル化合物(以下、「ベースオイル」とも記載)、1分子中にケイ素原子に直結した水素原子を2個以上有する含フッ素オルガノ水素シロキサン及び白金族金属化合物を含む組成物が提案されている(特許文献1:特開平8-199070号公報、特許文献2:特開2011-201940号公報)。さらに第3成分(接着性向上剤)として、ヒドロシリル基とエポキシ基及び/又はトリアルコキシシリル基とを有するオルガノポリシロキサンを該組成物に添加することにより自己接着性を付与した組成物が提案されている(特許文献3:特開平9-95615号公報、特許文献4:特開2011-219692号公報)。当該組成物は、短時間の加熱により硬化させることができ、得られる硬化物(フルオロポリエーテル系硬化物)は、耐溶剤性、耐薬品性、耐熱性、低温特性、低透湿性、電気特性等に優れているので、これらの特性が要求される各種工業分野で使用されている。
 1分子中にケイ素原子に直結した水素原子を2個以上有する含フッ素オルガノ水素シロキサンを含むフルオロポリエーテル系硬化性組成物は、酸に対して不安定なシロキサン結合を含み、耐酸性の要求レベルが高い用途では十分な性能を発揮することができなかった。特に、フッ酸に対する耐久性が低く、半導体製造装置用部品などの用途には不向きであった。これに対し、該含フッ素オルガノ水素シロキサンに替えて、シロキサン結合を含まず、1分子中にケイ素原子に直結した水素原子を2個以上有する含フッ素オルガノ水素シラン化合物を用いることで、フルオロポリエーテル系硬化物の耐酸性を向上させることが提案されている(特許文献5:特開2002-012769号公報)。
 しかし、前記硬化性組成物は、補強性充填剤としてシリカを多量に含む場合が多い。シリカはフッ酸に対して高い反応性を示すため、耐酸性に加えて硬化物の優れた機械的物性、特に、硬さや引張強さを重視する場合には、シリカを含有しない又はシリカの含有量を削減するといった対策のもと、硬化物の補強効果を示し得る他の充填剤を使用する必要がある。
 また、上記含フッ素オルガノ水素シラン化合物は、フッ素化されていない有機構造の分子全体に占める割合が大きくなる傾向がある。これは含フッ素オルガノ水素シラン化合物の合成上の都合によるところが大きい。この場合、短鎖のパーフルオロアルキレン基はベースオイルに対する相溶性に乏しい。これらの傾向から、フルオロポリエーテル系硬化性組成物に含フッ素オルガノ水素シラン化合物を添加すると、フルオロポリエーテル系硬化性組成物が白濁し、粘度が高くなることがあった。さらに、該フルオロポリエーテル系硬化性組成物から得られたフルオロポリエーテル系硬化物表面にも、オイル状の未硬化部分が点在することがあった。この未硬化部分の点在により、該フルオロポリエーテル系硬化物の離型性が損なわれることが多く、該硬化物を含む物品の製造過程において、製造設備内の部品から該硬化物が剥がれず製造を円滑に進めることができなくなる不具合が発生し得るため好ましくない。
 近年環境問題に対する関心の高まりからリチウムイオン電池を用いた製品の開発が世界的に活発に進められている。しかし、1分子中にケイ素原子に直結した水素原子を2個以上有する含フッ素オルガノ水素シロキサンを含むフルオロポリエーテル系硬化性組成物及びその硬化物は、リチウムイオン電池用電解液に対する耐久性が低く、本用途への適用が困難であることが分かった。また、該含フッ素オルガノ水素シロキサンに替えて、シロキサン結合を含まず、1分子中にケイ素原子に直結した水素原子を2個以上有する含フッ素オルガノ水素シラン化合物を含むフルオロポリエーテル系硬化性組成物及びその硬化物については、リチウムイオン電池用電解液に対する耐久性に関する知見がなく、本用途へ適用できるか否かは不明であった。
特開平8-199070号公報 特開2011-201940号公報 特開平9-95615号公報 特開2011-219692号公報 特開2002-012769号公報
 本発明は、上記事情に鑑みなされたもので、フッ酸やリチウムイオン電池用電解液に対する耐久性を有すると共に、機械的物性が良好であり、かつ構成成分同士の相溶性の低さによる未硬化箇所がなく良好な離型性を有する硬化物を与えるフルオロポリエーテル系硬化性組成物及び該組成物の硬化物、並びに該硬化物を有する電気・電子部品を提供することを目的とする。
 本発明者らは、上記の課題を解決するために鋭意検討を行った結果、フルオロポリエーテル系硬化性組成物の硬化剤として、1価のパーフルオロポリエーテル基及びアルケニル基を有する化合物を所定の構造の3個以上のヒドロシリル基を有するオルガノ水素シラン化合物に導入することにより得られる含フッ素オルガノ水素シラン化合物を用いた場合、ベースオイルであるアルケニル基を有するパーフルオロポリエーテル化合物との高い相溶性を示すことを知見した。該含フッ素オルガノ水素シラン化合物を添加してなるフルオロポリエーテル系硬化性組成物を硬化させることにより得られる硬化物が、フッ酸やリチウムイオン電池用電解液に対する耐久性を示し、かつ表面に未硬化部分が存在せず、良好な離型性を有することを見出した。さらに、充填剤としてポリイミド樹脂粉末等の有機樹脂粉末及びカーボンブラック粉末から選ばれる少なくとも1種の充填剤を用いることにより、耐酸性を損なわずに該硬化物の機械的物性を向上させることができることを見出した。また、市販のポリイミド樹脂粉末等の有機樹脂粉末は、平均粒径10μm以上のものが一般的であるが、このポリイミド樹脂粉末等の有機樹脂粉末を粉砕処理することで平均粒径が数μm以下となり、該粉砕処理ポリイミド樹脂粉末等の有機樹脂粉末をフルオロポリエーテル系硬化性組成物に配合した場合、平均粒径10μm以上のポリイミド樹脂粉末等の有機樹脂粉末よりも充填可能量が多くなること、これにより該フルオロポリエーテル系硬化性組成物から得られる硬化物がさらに補強されることを見出し、本発明をなすに至った。
 従って、本発明は、下記のフルオロポリエーテル系硬化性組成物、該硬化性組成物から得られる硬化物、並びに該硬化物を含む電気・電子部品を提供する。
〔1〕
 (A)1分子中に2個以上のアルケニル基を有するパーフルオロポリエーテル化合物: 100質量部、
(B)下記一般式(1)で表され、ヒドロシリル基を2個以上有する含フッ素オルガノ水素シラン化合物: (A)成分中のアルケニル基1モルに対して(B)成分中のケイ素原子に結合した水素原子が0.1~2.5モルとなる量、
Figure JPOXMLDOC01-appb-C000014
(式中、Rfは1価のパーフルオロポリエーテル基であり、Aは酸素原子、窒素原子及びケイ素原子から選ばれる少なくとも1種を含んでいてもよい炭素数1~20の2価の有機基であり、Rは独立して炭素数1~6の1価炭化水素基であり、xは1~3の整数であり、Bは独立して1個以上のジオルガノヒドロシリル基を有すると共に、連結するケイ素原子とシルアルキレン構造をなす1価の有機基であり、xが1の場合、Bは2個以上のジオルガノヒドロシリル基を有する。yは1又は2である。)
(C)白金族金属系触媒: (A)成分の質量に対して白金族金属原子換算で0.1~2,000ppm、及び
(D)有機樹脂粉末及びカーボンブラック粉末から選ばれる少なくとも1種の充填剤: 0.1~200質量部
を含有してなるフルオロポリエーテル系硬化性組成物。
〔2〕
 (A)成分が、下記一般式(2)で表されるパーフルオロポリエーテル化合物である〔1〕に記載のフルオロポリエーテル系硬化性組成物。
Figure JPOXMLDOC01-appb-C000015
[式中、A1は独立して、酸素原子、窒素原子及びケイ素原子から選ばれる少なくとも1種を含んでいてもよい炭素数1~20の2価の有機基であり、B1は炭素原子又はケイ素原子であり、Xは独立して、水素原子、メチル基又は炭素数2~8のアルケニル基であり、ただし、Xの少なくとも2個は炭素数2~8のアルケニル基であり、Xが水素原子の場合、結合するB1は炭素原子である。Rf1は2価のパーフルオロポリエーテル基である。]
〔3〕
 (B)成分において、上記一般式(1)におけるRfが、下記一般式(5)で表される基である〔1〕又は〔2〕に記載のフルオロポリエーテル系硬化性組成物。
Figure JPOXMLDOC01-appb-C000016
(式中、Dはフッ素原子又は炭素数1~6のパーフルオロオキシアルキル基であり、a、b、c及びdは、それぞれ独立して0~100の整数で、2≦a+b+c+d≦100であり、eは1~3の整数である。上記( )内に示される各繰り返し単位はランダムに結合されていてよく、これら各単位は直鎖状であっても分岐状であってもよい。)
〔4〕
 (B)成分において、上記一般式(1)におけるAが、炭素数1~12のアルキレン基、炭素数6~8のアリーレン基を含むアルキレン基、アルキレン基相互がジオルガノシリレン基を介して結合している2価の基、アルキレン基とアリーレン基とがジオルガノシリレン基を介して結合している2価の基、及びこれらの基にさらにエーテル結合酸素原子、2級アミノ基、3級アミノ基及びアミド結合から選ばれる少なくとも1種を有する2価の基から選ばれるものである〔1〕~〔3〕のいずれかに記載のフルオロポリエーテル系硬化性組成物。
〔5〕
 (B)成分において、上記一般式(1)におけるAが、下記一般式(6)~(9)で表される基のいずれかである〔1〕~〔4〕のいずれかに記載のフルオロポリエーテル系硬化性組成物。
Figure JPOXMLDOC01-appb-C000017
(式中、X0は水素原子、メチル基又はエチル基であり、X1は独立して水素原子、フッ素原子、メチル基、エチル基又はトリフルオロメチル基であり、X2は水素原子、メチル基、エチル基、イソプロピル基又はフェニル基であり、R’は独立してメチル基又はエチル基であり、fは1~6の整数であり、tは0又は1である。なお、*付きの結合手は上記一般式(1)中のSi原子と結合し、無印の結合手はRfと結合することを示す。)
〔6〕
 (B)成分において、上記一般式(1)におけるRが、メチル基、エチル基、イソプロピル基、ターシャリーブチル基、フェニル基のうちのいずれかである〔1〕~〔5〕のいずれかに記載のフルオロポリエーテル系硬化性組成物。
〔7〕
 (B)成分において、上記一般式(1)のRfとB中のジオルガノヒドロシリル基との間の分子鎖におけるシルアルキレン構造が連続して2個以上である〔1〕~〔6〕のいずれかに記載のフルオロポリエーテル系硬化性組成物。
〔8〕
 (B)成分において、上記一般式(1)におけるBが、下記一般式(10)で表される基である〔1〕~〔7〕のいずれかに記載のフルオロポリエーテル系硬化性組成物。
Figure JPOXMLDOC01-appb-C000018
[式中、pは1~6の整数であり、qは0~6の整数であり、rは1~3の整数であり、Rは上記と同じであり、Eは水素原子又は下記式
Figure JPOXMLDOC01-appb-C000019
で表される基(式中、Rは上記と同じであり、p’は1~6の整数であり、q’は0~6の整数である。)である(ただし、Eが水素原子のとき、rは1である。)。上記p、q又はp’、q’が付された( )内に示される各繰り返し単位はランダムに結合されていてよい。]
〔9〕
 (B)成分が、下記式で表される含フッ素オルガノ水素シラン化合物から選ばれるものである〔1〕~〔8〕のいずれかに記載のフルオロポリエーテル系硬化性組成物。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
(式中、b’は2~100の整数であり、c'''、d''はそれぞれ1~99の整数で、c'''+d''=2~100の整数であり、ca’は1~99の整数であり、Meはメチル基であり、Etはエチル基であり、Phはフェニル基である。c'''、d''が付された( )内に示される各繰り返し単位はランダムに結合されていてよい。)
〔10〕
 (D)成分の平均粒径が、0.001~100μmである〔1〕~〔9〕のいずれかに記載のフルオロポリエーテル系硬化性組成物。
〔11〕
 (D)成分がポリイミド樹脂粉末及び/又はカーボンブラック粉末である〔1〕~〔10〕のいずれかに記載のフルオロポリエーテル系硬化性組成物。
〔12〕
 (D)成分が粉砕処理を施した有機樹脂粉末である〔1〕~〔9〕のいずれかに記載のフルオロポリエーテル系硬化性組成物。
〔13〕
 (D)成分の平均粒径が、0.001~5μmである〔12〕に記載のフルオロポリエーテル系硬化性組成物。
〔14〕
 (D)成分がポリイミド樹脂粉末である〔12〕又は〔13〕に記載のフルオロポリエーテル系硬化性組成物。
〔15〕
 (D)成分の配合量が、(A)成分100質量部に対して10~200質量部である〔12〕~〔14〕のいずれかに記載のフルオロポリエーテル系硬化性組成物。
〔16〕
 〔1〕~〔15〕のいずれかに記載のフルオロポリエーテル系硬化性組成物から得られる硬化物。
〔17〕
 〔16〕に記載の硬化物を有する電気・電子部品。
〔18〕
 硬化物が、ガスケット、パッキン、保護用シール又はコーティング層である〔17〕に記載の電気・電子部品。
〔19〕
 自動車用、化学プラント用、半導体製造ライン用、分析・理化学機器用、住環境用、通信機器用、通信設備用、航空機用、鉄道車両用、携帯機器用、電力貯蔵装置用、ロボット用又はリチウムイオン電池用である、〔17〕又は〔18〕に記載の電気・電子部品。
 本発明のフルオロポリエーテル系硬化性組成物は、ベースオイルである上記(A)成分との高い相溶性を示す特定構造の含フッ素オルガノ水素シラン化合物を含有するため、該フルオロポリエーテル系硬化性組成物の白濁や増粘を引き起こさない。また、該組成物を硬化させることにより、フッ酸及びリチウムイオン電池用電解液に対する耐久性を有し、かつオイル状の未硬化部分が点在しないフルオロポリエーテル系硬化物を得ることができる。さらに、充填剤としてポリイミド樹脂粉末等の有機樹脂粉末及びカーボンブラック粉末から選ばれる少なくとも1種の充填剤を用いることにより、耐酸性を損なわずに該硬化物の機械的物性を向上させることができる。さらに、該有機樹脂粉末に粉砕処理を施すことにより該フルオロポリエーテル系硬化性組成物への充填可能量が増し、機械的物性を向上させることもできる。該フルオロポリエーテル系硬化性組成物は、特許文献1~5に記載のフルオロポリエーテル系硬化性組成物から得られるフルオロポリエーテル系硬化物に匹敵する優れた耐熱性、耐薬品性、耐溶剤性を有すると共に、機械的物性が良好である。
 以下、本発明をさらに詳細に説明する。
[(A)成分]
 本発明のフルオロポリエーテル系硬化性組成物に用いる(A)成分のパーフルオロポリエーテル化合物は、1分子中に少なくとも2個のアルケニル基を有し、好ましくは後述する一般式(2)で示されるように主鎖中に2価のパーフルオロポリエーテル構造を有するものであって、本発明のフルオロポリエーテル系硬化性組成物において主剤(ベースオイル)として作用するものである。
 本発明において、主鎖のパーフルオロポリエーテル構造を構成するパーフルオロオキシアルキレン単位の繰り返し数などが反映されるポリフルオロ化合物の重合度(又は分子量)は、例えば、フッ素系溶剤を展開溶媒としてゲルパーミエーションクロマトグラフィ(GPC)分析におけるポリスチレン換算の数平均重合度(又は数平均分子量)等として求めることができる。また、後述するパーフルオロポリエーテル化合物の数平均重合度(又は数平均分子量)は19F-NMRから算出することもできる(以下、同じ。)。
 (A)成分は、下記一般式(2)で示される構造を有するパーフルオロポリエーテル化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000027
[式中、A1は独立して、酸素原子、窒素原子及びケイ素原子から選ばれる少なくとも1種を含んでいてもよい炭素数1~20の2価の有機基であり、B1は炭素原子又はケイ素原子であり、Xは独立して、水素原子、メチル基又は炭素数2~8のアルケニル基であり、ただし、Xの少なくとも2個は炭素数2~8のアルケニル基であり、Xが水素原子の場合、結合するB1は炭素原子である。Rf1は2価のパーフルオロポリエーテル基である。]
 上記一般式(2)において、A1は独立して、酸素原子、窒素原子及びケイ素原子から選ばれる少なくとも1種を含んでいてもよい炭素数1~20の2価の有機基、好ましくは酸素原子、窒素原子及びケイ素原子から選ばれる少なくとも1種を含んでいてもよい炭素数1~20の2価の炭化水素基であり、A1としては、-(CH2f-*、-OCH2-*、-(CH2fOCH2-*、-(CH2f-NX2-CO-*、-(CH2f-O-CO-*、下記一般式(3)、(4)で表される基から選ばれるいずれかの基であることが好ましい。なお、*付きの結合手はRf1と結合し、無印の結合手はB1と結合することを示す。
Figure JPOXMLDOC01-appb-C000028
(式中、X1は独立して、水素原子、フッ素原子、メチル基、エチル基又はトリフルオロメチル基であり、X2は水素原子、メチル基、エチル基、イソプロピル基又はフェニル基であり、fは1~6の整数である。)
 A1としては、例えば、-CH2-*、-CH2CH2CH2-*、-OCH2-*、-CH2OCH2-*、-(CH22OCH2-*、-(CH23OCH2-*、-CH2-NH-CO-*、-CH2-N(CH3)-CО-*、-CH2CH2-NH-CО-*、-(CH23-NH-CO-*、-(CH23-N(CH3)-CO-*、-(CH23-N(CH2CH3)-CO-*、-(CH23-N(CH(CH32)-CO-*、-(CH23-O-CO-*、下記一般式(3A)、(3B)、(3C)、(3D)、(4A)、(4B)及び(4C)で表される基が挙げられ、中でも一般式(3A)又は(4A)で表される基が好ましい。なお、*付きの結合手はRf1と結合し、無印の結合手はB1と結合することを示す。また、式中Meはメチル基であり、Etはエチル基である。
Figure JPOXMLDOC01-appb-C000029
 上記一般式(2)において、B1は炭素原子又はケイ素原子である。
 また、Xは独立して、水素原子、メチル基又は炭素数2~8のアルケニル基であり、ただし、Xの少なくとも2個は炭素数2~8のアルケニル基である。分子中に6個(即ち、分子鎖両末端のそれぞれに3個ずつ)存在するXのうち、少なくとも2個(特には、分子鎖両末端のそれぞれに3個ずつ存在するXのうち、少なくとも1個ずつ)はアルケニル基であり、該アルケニル基としては、炭素数2~8、特に2~6で、かつ末端にCH2=CH-構造を有するものが好ましく、例えば、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基等が挙げられ、中でもビニル基、アリル基が好ましい。Xがアルケニル基でない場合、B1が炭素原子のときに水素原子又はメチル基のいずれかとなり、B1がケイ素原子のときにメチル基となった構造となる。
 上記一般式(2)において、Rf1は、2価のパーフルオロポリエーテル基であり、-Ca2aO-(式中、aは1~6の整数である。)の繰り返し単位を含むものであり、例えば下記式(11)で表されるもの等が挙げられる。
 -(Cg2gO)h-   (11)
(式中、gは1~6の整数であり、hは5~600の整数、好ましくは10~400の整数、より好ましくは30~200の整数である。)
 上記式-Cg2gO-で表される繰り返し単位としては、例えば下記式で表される単位等が挙げられる。
-CF2O-
-CF2CF2O-
-CF2CF2CF2O-
-CF(CF3)CF2O-
-CF2CF2CF2CF2O-
-CF2CF2CF2CF2CF2CF2O-
 これらの中で、特に下記式で表される単位が好適である。
-CF2O-
-CF2CF2O-
-CF2CF2CF2O-
-CF(CF3)CF2O-
 なお、上記2価のパーフルオロポリエーテル基中の繰り返し単位は、これらのうち1種単独で構成されていてもよいし、2種以上の組み合わせで構成されていてもよい。
 また、上記2価のパーフルオロポリエーテル基は、下記式の構造を含んでいることが好ましい。
Figure JPOXMLDOC01-appb-C000030
(式中、Gはフッ素原子又はトリフルオロメチル基であり、p1、q1及びr1は、それぞれp1≧0、q1≧0、0≦p1+q1≦200、特に2≦p1+q1≦150、及び0≦r1≦6(p1+q1=0のとき、1≦r1≦6)を満たす整数であり、k1、a1、s1、t1及びu1は、それぞれ1≦k1≦3、2≦a1≦6、0≦s1≦100、0≦t1≦100、2≦s1+t1≦200、0≦u1≦6、特に2≦s1+t1≦150、0≦u1≦4、2≦s1+t1+u1≦150を満たす整数であり、v1及びw1は、それぞれ1≦v1≦100、1≦w1≦100、2≦v1+w1≦200を満たす整数であり、z1は1≦z1≦200を満たす整数であり、k1’、a1’及びa1''は、それぞれ1≦k1’≦3、1≦a1’≦6、1≦a1''≦6、a1’≠a1''を満たす整数であり、z1’は1≦z1’≦200を満たす整数である。v1、w1が付された( )内に示される各繰り返し単位はランダムに結合されていてよい。)
 上記一般式(2)において、Rf1の具体例としては、下記式で表されるものが例示される。
Figure JPOXMLDOC01-appb-C000031
(式中、p1、q1、r1、v1、w1、z1、z1’は上記と同じである。s1’、t1’はそれぞれ1~100の整数であり、s1’+t1’=2~200の整数である。t1''は2~100の整数である。v1、w1が付された( )内に示される各繰り返し単位はランダムに結合されていてよい。)
 上記一般式(2)で表されるパーフルオロポリエーテル化合物としては、B1がケイ素原子の場合、特に下記式で表されるものが好適である。なお、式中Meはメチル基であり、Etはエチル基である。
Figure JPOXMLDOC01-appb-C000032
(s1’、t1’はそれぞれ1~100の整数であり、s1’+t1’=2~200の整数である。)
Figure JPOXMLDOC01-appb-C000033
(s1’、t1’はそれぞれ1~100の整数であり、s1’+t1’=2~200の整数である。)
Figure JPOXMLDOC01-appb-C000034
(s1’、t1’はそれぞれ1~100の整数であり、s1’+t1’=2~200の整数である。)
Figure JPOXMLDOC01-appb-C000035
(s1’、t1’はそれぞれ1~100の整数であり、s1’+t1’=2~200の整数である。)
Figure JPOXMLDOC01-appb-C000036
(s1’、t1’はそれぞれ1~100の整数であり、s1’+t1’=2~200の整数である。)
 上記一般式(2)で表されるパーフルオロポリエーテル化合物としては、B1が炭素原子の場合、下記式で表されるものが好適である。
Figure JPOXMLDOC01-appb-C000037
(v1、w1はそれぞれ1~100の整数であり、v1+w1=2~200の整数である。v1、w1が付された( )内に示される各繰り返し単位はランダムに結合されていてよい。)
 (A)成分のパーフルオロポリエーテル化合物に含まれるアルケニル基量は0.002~0.3mol/100gが好ましく、さらに好ましくは0.008~0.12mol/100gである。パーフルオロポリエーテル化合物に含まれるアルケニル基量が0.002mol/100g未満の場合には、架橋度合いが不十分になり硬化不具合が生じる可能性があるため好ましくなく、アルケニル基量が0.3mol/100g超の場合には、この硬化物のゴム弾性体としての機械的特性が損なわれる可能性があるため好ましくない。本発明において、アルケニル基量は、1H-NMRにより測定することができる(実施例においても同じ)。
 (A)成分のパーフルオロポリエーテル化合物の粘度(23℃)は、40~100,000mPa・s、より好ましくは50~50,000mPa・s、さらに好ましくは60~20,000mPa・sの範囲内にあることが、本発明のフルオロポリエーテル系硬化性組成物をシール、ポッティング、コーティング、含浸等に使用する際に、硬化物においても適当な物理的特性を有しているので望ましい。当該粘度範囲内で、用途に応じて最も適切な粘度を選択することができる。本発明において、粘度(23℃)は、回転粘度計など(例えば、BL型、BH型、BS型、コーンプレート型、レオメータ等)で測定することができる(以下、同じ)。
 (A)成分は、これらのパーフルオロポリエーテル化合物を1種単独で又は2種以上を組み合わせて使用することができる。
[(B)成分]
 本発明のフルオロポリエーテル系硬化性組成物に用いる(B)成分は、下記一般式(1)で表され、ヒドロシリル基を2個以上有する含フッ素オルガノ水素シラン化合物であり、具体的には、ヒドロシリル基を2個以上有し、ケイ素原子同士の連結がすべてシルアルキレン構造からなる化合物(なお、該シルアルキレン構造中のアルキレン基は部分的にフッ素置換されたフッ素置換アルキレン基であってもよい)であることを特徴とし、シロキサン結合を含まないものである。
Figure JPOXMLDOC01-appb-C000038
(式中、Rfは1価のパーフルオロポリエーテル基であり、Aは酸素原子、窒素原子及びケイ素原子から選ばれる少なくとも1種を含んでいてもよい炭素数1~20の2価の有機基であり、Rは独立して炭素数1~6の1価炭化水素基であり、xは1~3の整数であり、Bは独立して1個以上のジオルガノヒドロシリル基を有すると共に、連結するケイ素原子とシルアルキレン構造をなす1価の有機基であり、xが1の場合、Bは2個以上のジオルガノヒドロシリル基を有する。yは1又は2である。)
 上記一般式(1)におけるRfは、1価のパーフルオロポリエーテル基である。Rfは、フルオロポリエーテル系硬化性組成物(特には、熱硬化性フルオロポリエーテル系組成物)中のベースオイルとの相溶性を付与するために導入されるものである。パーフルオロポリエーテル基はパーフルオロアルキル基に比べ、オルガノ水素シラン化合物に導入することでベースオイルへの相溶性を付与する効果が大きく、良好な特性を有するフルオロポリエーテル系硬化物を与えることができる。
 特に、上記一般式(1)におけるRfは、下記一般式(5)で表される1価のパーフルオロポリエーテル基であることが好ましい。
Figure JPOXMLDOC01-appb-C000039
(式中、Dはフッ素原子又は炭素数1~6のパーフルオロオキシアルキル基であり、a、b、c及びdは、それぞれ独立して0~100の整数で、2≦a+b+c+d≦100であり、好ましくはaは0~50の整数、bは0~50の整数、cは0~50の整数、dは0~50の整数、5≦a+b+c+d≦50であり、より好ましくはaは0~10の整数、bは0~40の整数、cは0~30の整数、dは0~30の整数、6≦a+b+c+d≦40であり、さらに好ましくは7≦a+b+c+d≦30であり、eは1~3の整数である。上記( )内に示される各繰り返し単位はランダムに結合されていてよく、これら各単位は直鎖状であっても分岐状であってもよい。)
 上記一般式(5)において、Dはフッ素原子又は炭素数1~6のパーフルオロオキシアルキル基であり、炭素数1~6のパーフルオロオキシアルキル基としては、Cg2g+1O-(gは1~6の整数)で表され、具体的には下記式で表される基が挙げられる。
CF3O-
CF3CF2O-
CF3CF2CF2O-
CF3CF(CF3)O-
CF3CF2CF2CF2O-
CF3CF2CF2CF2CF2CF2O-
 Dとしては、フッ素原子であることが好ましい。
 上記一般式(5)において、a+b+c+dが2よりも小さい場合、含フッ素オルガノ水素シラン化合物とベースオイルとの相溶性が低くなることがあるため、好ましくない。一方、a+b+c+dが100よりも大きい場合、該含フッ素オルガノ水素シラン化合物の粘度が高くなると同時に、該含フッ素オルガノ水素シラン化合物を添加したフルオロポリエーテル系硬化性組成物の粘度も高くなりすぎるため好ましくない。
 上記一般式(5)で表される1価のパーフルオロポリエーテル基としては、例えば以下のものが挙げられる。
Figure JPOXMLDOC01-appb-C000040
(式中、gは1~6の整数であり、c’は2~100の整数であり、b’は2~100の整数であり、c''、d’は、それぞれ0~100の整数であって、c''+d’が2~100の整数であり、a’は2~100の整数であり、ca’は1~99の整数である。c''、d’が付された( )内に示される各繰り返し単位はランダムに結合されていてよい。)
 上記一般式(1)において、Aは酸素原子、窒素原子及びケイ素原子から選ばれる少なくとも1種を含んでいてもよい炭素数1~20の2価の有機基、好ましくは酸素原子、窒素原子及びケイ素原子から選ばれる少なくとも1種を含んでいてもよい炭素数1~20の2価の炭化水素基であり、炭素数1~12のアルキレン基、炭素数6~8のアリーレン基を含む炭素数1~12のアルキレン基(例えば、炭素数8~20のアルキレン・アリーレン基)、炭素数1~10のアルキレン基相互がジオルガノシリレン基を介して結合している2価の基、炭素数1~10のアルキレン基と炭素数6~8のアリーレン基とがジオルガノシリレン基を介して結合している2価の基、及びこれらの基にさらにエーテル結合酸素原子、2級アミノ基(イミノ基)、3級アミノ基(置換イミノ基)及びアミド結合から選ばれる少なくとも1種を有する2価の基等が例示でき、中でも分子鎖内にエーテル結合酸素原子、2級アミノ基(イミノ基)、3級アミノ基(置換イミノ基)及びアミド結合から選ばれる少なくともいずれか1種を含んでいる2価の基であることが好ましい。なお、Aがケイ素原子(ジオルガノシリレン基)を含む場合、該ケイ素原子(ジオルガノシリレン基)とAが連結するケイ素原子とがアルキレン基(好ましくは、非置換又はフッ素置換の炭素数1~12のアルキレン基であり、より好ましくはエチレン基である。)を介して連結するシルアルキレン構造をなすことが好ましい。
 Aとして具体的には、下記一般式(6)~(9)のいずれかで表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000041
(式中、X0は水素原子、メチル基又はエチル基であり、X1は独立して水素原子、フッ素原子、メチル基、エチル基又はトリフルオロメチル基であり、X2は水素原子、メチル基、エチル基、イソプロピル基又はフェニル基であり、R’は独立してメチル基又はエチル基であり、fは1~6の整数であり、tは0又は1である。なお、*付きの結合手は上記一般式(1)中のSi原子と結合し、無印の結合手はRfと結合することを示す。)
 上記一般式(6)~(9)で表されるAの構造例として、例えば以下のものが挙げられる。
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
(式中、Meはメチル基であり、Etはエチル基である。なお、*付きの結合手は上記一般式(1)中のSi原子と結合し、無印の結合手はRfと結合することを示す。)
 上記一般式(1)におけるRは、独立して、炭素数1~6の1価の炭化水素基であり、具体的にはメチル基、エチル基、イソプロピル基、ターシャリーブチル基、フェニル基であることが好ましく、メチル基、エチル基であることがより好ましい。
 上記一般式(1)におけるBは、1個以上のジオルガノヒドロシリル基を有すると共に、連結するケイ素原子とシルアルキレン構造をなす1価の有機基、即ち、xが1のときに2個以上、好ましくは2~5個のジオルガノヒドロシリル基を有し、xが2又は3のときに独立して1個以上、好ましくは1~3個のジオルガノヒドロシリル基を有すると共に、連結するケイ素原子とシルアルキレン構造をなす1価のケイ素含有有機基であり、シロキサン結合は含まないものである。なお、シルアルキレン構造は、ケイ素原子同士が非置換及び/又はフッ素置換の炭素数1~12のアルキレン基RAを介して連結される構造であることが好ましい。また、Bは、ケイ素原子を1個以上有することが好ましく、1~6個有することがより好ましく、1~4個有することがさらに好ましい。式(1)では、このようなBがケイ素原子に1~3個結合し(x=1~3の整数であり)、2又は3個結合することが好ましい(好ましくは、xが2又は3である。)。
 また、上記一般式(1)のRfとB中のジオルガノヒドロシリル基との間の分子鎖における連続するシルアルキレン構造(即ち、式中の-A-Si-、-Si-(CH2y-Si-及び-Si-Bを含めた、連続したシルアルキレン結合(-Si-RA-Si-))の数が2個以上であることが好ましく、2、3又は4個であることがより好ましい。
 Bは、下記一般式(10)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000046
[式中、pは1~6の整数、好ましくは1~4の整数であり、qは0~6の整数、好ましくは0又は4~6の整数であり、rは1~3の整数であり、Rは上記と同じであり、Eは水素原子又は下記式
Figure JPOXMLDOC01-appb-C000047
で表される基(式中、Rは上記と同じであり、p’は1~6の整数、好ましくは1~4の整数であり、q’は0~6の整数、好ましくは0又は4~6の整数である。)である(ただし、Eが水素原子のとき、rは1である。)。上記p、q又はp’、q’が付された( )内に示される各繰り返し単位はランダムに結合されていてよい。]
 上記一般式(10)におけるRは、上記一般式(1)中のRと同様、炭素数1~6の1価の炭化水素基であり、その中でもメチル基、エチル基、プロピル基、イソプロピル基、ターシャリーブチル基、フェニル基が特に好ましい。
 上記一般式(1)におけるBは、例えば以下のものが挙げられる。
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
(式中、Meはメチル基であり、Etはエチル基であり、iPrはイソプロピル基であり、tBuはターシャリーブチル基であり、Phはフェニル基である。)
 上記一般式(1)で表される含フッ素オルガノ水素シラン化合物としては、例えば以下のものが挙げられる。
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
(式中、b’は2~100の整数であり、c'''、d''はそれぞれ1~99の整数で、c'''+d''=2~100の整数であり、ca’は1~99の整数であり、Meはメチル基であり、Etはエチル基であり、Phはフェニル基である。c'''、d''が付された( )内に示される各繰り返し単位はランダムに結合されていてよい。)
[含フッ素オルガノ水素シラン化合物の製造方法]
 (B)成分の上記一般式(1)で表される含フッ素オルガノ水素シラン化合物の製造方法は、例えば下記一般式(1A)で表されるアルケニル基(ビニル基、アリル基等)含有の含フッ素化合物と、下記一般式(1B)で表される少なくとも3個のジオルガノヒドロシリル基を有するオルガノ水素シラン化合物を用いた、ヒドロシリル化反応により、含フッ素化合物に所定の連結構造で2個以上のジオルガノヒドロシリル基を導入する工程を有することが好ましい。
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
 一般式(1A)中、A2は酸素原子、窒素原子及びケイ素原子から選ばれる少なくとも1種を含んでいてもよい炭素数1~18の2価の有機基である。上記一般式(1A)、(1B)におけるRf、R、B、y、xについての説明は、上記一般式(1)中のRf、R、B、y、xについての説明と共通する。即ち、上記一般式(1A)、(1B)中、Rfは1価のパーフルオロポリエーテル基であり、Rは独立して、炭素数1~6の1価炭化水素基であり、xは1~3の整数であり、Bは独立して1個以上のジオルガノヒドロシリル基を有すると共に、連結するケイ素原子とシルアルキレン構造をなす1価の有機基であり、xが1の場合、Bは2個以上のジオルガノヒドロシリル基を有する。yは1又は2である。
 A2は酸素原子、窒素原子及びケイ素原子から選ばれる少なくとも1種を含んでいてもよい炭素数1~18の2価の有機基(好ましくは炭化水素基)であり、炭素数1~10のアルキレン基、炭素数6~8のアリーレン基を含む炭素数1~10のアルキレン基(例えば、炭素数7~18のアルキレン・アリーレン基)、炭素数1~10のアルキレン基にジオルガノシリレン基が結合している2価の基、炭素数6~8のアリーレン基にジオルガノシリレン基が結合している2価の基、炭素数1~10のアルキレン基と炭素数1~8のアルキレン基とがジオルガノシリレン基を介して結合している2価の基、炭素数1~8のアルキレン基と炭素数6~8のアリーレン基とがジオルガノシリレン基を介して結合している2価の基、及びこれらの基にさらにエーテル結合酸素原子、2級アミノ基(イミノ基)、3級アミノ基(置換イミノ基)及びアミド結合から選ばれる少なくとも1種を有する2価の基等が例示でき、中でも分子鎖内にエーテル結合酸素原子、2級アミノ基(イミノ基)、3級アミノ基(置換イミノ基)及びアミド結合から選ばれる少なくともいずれか1種を含んでいる2価の基であることが好ましい。
 A2として具体的には、下記一般式のいずれかで表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
(式中、X0、X1、X2、fは上記と同じであり、これらの説明は、上記式(1)のX0、X1、X2、fの説明と同じである。f’は0~4の整数である。*付きの結合手は上記一般式(1A)のビニル基と結合し、無印の結合手はRfと結合することを示す。)
 上記一般式で表されるA2の構造例としては、例えば以下のものが挙げられる。
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
(式中、Meはメチル基であり、Etはエチル基である。*付きの結合手は上記一般式(1A)のビニル基と結合し、無印の結合手はRfと結合することを示す。)
 以下に含フッ素オルガノ水素シラン化合物の好ましい製造方法の製造工程(反応式)を示す。
Figure JPOXMLDOC01-appb-C000066
 上記工程に示す反応式中のRf、A、R、B、y、xの説明は、上記一般式(1)のRf、A、R、B、y、xの説明と同じである。A2の説明は上記一般式(1A)のA2の説明と同じである。Mは金属触媒である。
 上記工程では、上記一般式(1A)で表され、分子鎖の末端にアルケニル基(好ましくはビニル基又はアリル基)を有する含フッ素化合物と、上記一般式(1B)で表され、分子中に少なくとも3個のジオルガノヒドロシリル基を有するオルガノ水素シラン化合物を金属触媒(M)存在下でヒドロシリル化反応させることにより上記一般式(1)で表される含フッ素オルガノ水素シラン化合物を製造する。
 上記反応において、上記一般式(1A)で表され、分子鎖の末端にアルケニル基(好ましくはビニル基又はアリル基)を有する含フッ素化合物としては、例えば以下の化合物を使用することができる。
Figure JPOXMLDOC01-appb-C000067
(式中、b’は2~100の整数であり、c'''、d''はそれぞれ1~99の整数で、c'''+d''=2~100の整数であり、ca’は1~99の整数であり、Meはメチル基であり、Etはエチル基である。c'''、d''が付された( )内に示される各繰り返し単位はランダムに結合されていてよい。)
 上記一般式(1B)で表され、分子中に少なくとも3個のジオルガノヒドロシリル基を有するオルガノ水素シラン化合物としては、例えば以下の化合物を使用することができる。
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
(式中、Meはメチル基であり、Etはエチル基であり、Phはフェニル基である。)
 上記一般式(1A)で表され、分子鎖の末端にアルケニル基(好ましくはビニル基又はアリル基)を有する含フッ素化合物の使用量は、該含フッ素化合物のアルケニル基量が、上記一般式(1B)で表される化合物のヒドロシリル基量に対して、0.16~0.30当量となる量、好ましくは0.20~0.25当量となる量である。該含フッ素化合物のアルケニル基量が、上記一般式(1B)で表される化合物のヒドロシリル基量に対して0.16当量より少なくなると、得られる含フッ素オルガノ水素シラン化合物をフルオロポリエーテル系硬化性組成物に添加した際に白濁や増粘を引き起こす、熱硬化により得られた硬化物の表面に未硬化部分が点在するといった不具合が発生し得るため好ましくない。また、該含フッ素化合物のアルケニル基量が、上記一般式(1A)で表される化合物のヒドロシリル基量に対して0.30当量より多くなると、得られた含フッ素オルガノ水素シラン化合物中のヒドロシリル基量が少なくなりすぎてしまい、フルオロポリエーテル系硬化性組成物が硬化しにくくなるため好ましくない。
 また、上記反応工程はM(金属触媒)を添加することによりヒドロシリル化を速やかに進行させることができる。Mはヒドロシリル化の触媒となり得る金属触媒であれば特に限定されないが、白金、ロジウム、ルテニウム、パラジウム等の金属原子を含んだ化合物を好適に用いることができる。例えば、塩化白金酸又は塩化白金酸とエチレン等のオレフィンとの錯体、アルコールやビニルシロキサンとの錯体、シリカ、アルミナ、カーボン等に担持した金属白金、RhCl(PPh33、RhCl(CO)(PPh32、Ru3(CO)12、IrCl(CO)(PPh32、Pd(PPh34等を例示することができる。なお、前記式中、Phはフェニル基である。その中でも、白金化合物が特に好ましい。
 これらの触媒としての使用にあたっては、それが固体触媒であるときには固体状で使用することも可能であるが、反応をより速やかに進行させるためには上記金属触媒を適切な溶剤に溶解したものを使用することが好ましい。添加する際は、上記一般式(1A)で表され、分子鎖の末端にアルケニル基(好ましくはビニル基又はアリル基)を有する含フッ素化合物や上記一般式(1B)で表され、分子中に少なくとも3個のジオルガノヒドロシリル基を有するオルガノ水素シラン化合物が共存する系内が所定の温度まで加熱されたことを確認したうえで滴下することが望ましい。所定の温度とは、好ましくは50℃以上、さらに好ましくは65℃以上である。
 上記一般式(1A)で表され、分子鎖の末端にアルケニル基(好ましくはビニル基又はアリル基)を有する含フッ素化合物や上記一般式(1B)で表され、分子中に少なくとも3個のジオルガノヒドロシリル基を有するオルガノ水素シラン化合物が固体である場合や該化合物同士が溶解しない場合等には、これらを少量の有機溶剤に溶解させた上で、M(金属触媒)を添加してもよい。使用可能な溶剤としては、ベンゼン、トルエン、キシレン、1,3-ビストリフルオロメチルベンゼン等が挙げられ、好ましくは、1,3-ビストリフルオロメチルベンゼンである。
 (B)成分の含フッ素オルガノ水素シラン化合物におけるヒドロシリル基量は、0.05~0.35mol/100gであることが好ましく、0.06~0.30mol/100gであることがより好ましい。本発明において、ヒドロシリル基量は、1H-NMRにより測定することができる(実施例においても同じ)。
 上記(B)成分の配合量は、(A)成分中のビニル基、アリル基等のアルケニル基1モルに対して(B)成分中のケイ素原子に結合した水素原子(ヒドロシリル基、即ちSi-H基)が0.1~2.5モル、好ましくは0.2~2モルとなる量である。ヒドロシリル基が少なすぎると架橋度合いが不十分となる結果、硬化物が得られず、また、多すぎると硬化時に発泡してしまう。
 (B)成分の含フッ素オルガノ水素シラン化合物の製造方法に際しては、反応終了後に目的物を単離してよい。また、本発明の特性を損なわない範囲に限り、未反応物や副生成物を含む混合物に関しても、付加反応触媒を除去することで使用することができる。いずれの場合においても、(A)成分中のビニル基、アリル基等のアルケニル基1モルに対して0.1~2.5モル、好ましくは0.2~2モルとなる量のヒドロシリル基、即ちSi-H基が含まれていればよい。
 (B)成分は、これらの含フッ素オルガノ水素シラン化合物を1種単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
[(C)成分]
 本発明のフルオロポリエーテル系硬化性組成物に用いる(C)成分は、白金族金属系触媒である。これはヒドロシリル化反応触媒であり、(A)成分中のアルケニル基と、(B)成分及び後述する任意成分である接着性向上剤や接着促進剤中のヒドロシリル基との付加反応を促進する触媒である。このヒドロシリル化反応触媒は、一般に貴金属の化合物であり、高価格であることから、比較的入手し易い白金又は白金化合物がよく用いられる。
 白金化合物としては、例えば塩化白金酸又は塩化白金酸とエチレン等のオレフィンとの錯体、アルコールやビニルシロキサンとの錯体、シリカ、アルミナ、カーボン等に担持した金属白金等を挙げることができる。白金化合物以外の白金族金属系触媒として、ロジウム、ルテニウム、イリジウム、パラジウム系化合物も知られており、例えばRhCl(PPh33、RhCl(CO)(PPh32、Ru3(CO)12、IrCl(CO)(PPh32、Pd(PPh34等を例示することができる。なお、前記式中、Phはフェニル基である。
 これらの触媒としての使用にあたっては、それが固体触媒であるときには固体状で使用することも可能であるが、より均一な硬化物を得るためには塩化白金酸や錯体を適切な溶剤に溶解したものを(A)成分のパーフルオロポリエーテル化合物に相溶させて使用することが好ましい。
 (C)成分の使用量は、触媒量でよいが、例えば(A)成分の質量に対して0.1~1,000ppm(白金族金属原子換算)を配合することが好ましく、1~500ppmがより好ましい。(C)成分は1種単独で又は2種以上を組み合わせて使用することができる。
[(D)成分]
 本発明のフルオロポリエーテル系硬化性組成物に用いる(D)成分は、有機樹脂粉末及びカーボンブラック粉末から選ばれる少なくとも1種の充填剤である。これは、該フルオロポリエーテル系硬化性組成物から得られる硬化物の硬さ、引張強さ、切断時伸び等の機械的物性を向上させるために用いられるものである。
 (D)成分のうち、有機樹脂粉末としては、強酸に対して耐久性を示すものであれば種類は問わない。具体的には、ポリイミド樹脂(PI)粉末、ポリテトラフルオロエチレン樹脂(PTFE)粉末、ポリフェニレンサルファイド樹脂(PPS)粉末、ポリエーテルエーテルケトン樹脂(PEEK)粉末、ポリフェニルスルホン樹脂粉末、ポリエーテルイミド樹脂(PEI)粉末、ポリプロピレン樹脂(PP)粉末等が挙げられ、強酸に対する耐久性及び補強性の観点からポリイミド樹脂粉末が好ましい。
 また、(D)成分のうち、カーボンブラック粉末としては、ファーネスブラック粉末、ランプブラック粉末、アセチレンブラック粉末、チャンネルブラック粉末等が挙げられ、アセチレンブラック粉末が好ましい。
 (D)成分の平均粒径は、小さければ小さい程本発明のフルオロポリエーテル系硬化性組成物に対して好適に用いることができるが、具体的には0.001~100μm、好ましくは0.001~30μm、さらに好ましくは0.001~15μmである。(D)成分の平均粒径が100μmよりも大きい場合、該フルオロポリエーテル系硬化性組成物から得られる硬化物の機械的物性を向上させる効果が小さくなるおそれがある。また、(D)成分の平均粒径が0.001μmよりも小さいと、該フルオロポリエーテル系硬化性組成物中において長期保存中に時間の経過に伴って(D)成分と他の液状成分(特に(A)成分)とが分離する場合がある。なお、平均粒径は、レーザー光回析・散乱法による粒度分布測定における累積体積平均径(D50、又はメジアン径)等として求めることができる(以下、同じ)。
 (D)成分としては、更に、粉砕処理された有機樹脂粉末、好ましくはポリイミド樹脂粉末であることが好ましい。粉砕処理により有機樹脂粉末の平均粒径を小さくすることで、該フルオロポリエーテル系硬化性組成物に対する充填可能量を向上させることができる。
 粉砕処理された有機樹脂粉末の平均粒径としては、0.001~5μmが好ましく、より好ましくは0.001~3μm、さらに好ましくは0.001~2.8μmである。平均粒径が5μm以下であると、該フルオロポリエーテル系硬化性組成物への充填可能量が向上し、得られる硬化物の機械的物性を向上させる効果がより大きくなる。
 有機樹脂粉末を粉砕処理する粉砕機の種類は、平均粒径が5μm以下に仕上がるものであれば、特に問わない。具体的には、ローラーミル、ジェットミル、ハンマーミル、ピンミル、回転ミル、振動ミル、遊星ミル、アトライター、ビーズミル等の粉砕機を用いることができる。粉砕処理条件は、有機樹脂粉末の平均粒径が5μm以下になればよく、特に制限されるものではない。
 (D)成分は、1種単独で又は2種以上を組み合わせて使用することができ、特にはポリイミド樹脂粉末及び/又はカーボンブラック粉末や、粉砕処理されたポリイミド樹脂粉末であることが好ましい。
 (D)成分の配合量としては、(A)成分100質量部に対して0.1~200質量部、好ましくは1~100質量部である。(A)成分100質量部に対して(D)成分の配合量を0.1質量部未満にすると、該フルオロポリエーテル系硬化性組成物から得られる硬化物の機械的物性を向上させる効果が小さくなるため好ましくない。(A)成分100質量部に対して(D)成分の配合量を200質量部超にすると、該フルオロポリエーテル系硬化性組成物の粘度が著しく上昇して、作業性(ハンドリング性)に劣るため好ましくない。なお、(D)成分として粉砕処理された有機樹脂粉末を用いる場合、(A)成分100質量部に対して10~200質量部、特には30~100質量部配合することが、該フルオロポリエーテル系硬化性組成物中における(D)成分と他の液状成分(特に(A)成分)との経時での分離を抑制するとともに、該フルオロポリエーテル系硬化性組成物の著しい粘度上昇による作業性(ハンドリング性)の劣化を回避する点から好ましい。
[その他の成分]
 本発明のフルオロポリエーテル系硬化性組成物においては、その実用性を高めることを目的とし、上記の(A)~(D)成分以外にも、接着性向上剤(接着性付与剤)、可塑剤、粘度調節剤、可撓性付与剤、ヒドロシリル化反応触媒の制御剤、無機質充填剤(但し、(D)成分のカーボンブラック粉末を除く)、接着促進剤、シランカップリング剤等の各種配合剤を必要に応じて添加することができる。これら添加剤の配合量は、本発明の目的を損なわない範囲、及び組成物の特性及び硬化物の物性を損なわない限りにおいて任意である。
 接着性向上剤は、これを配合することによって本発明のフルオロポリエーテル系硬化性組成物に自己接着性を発現させるための接着性向上剤として作用するものであって、1分子中にケイ素原子に結合した水素原子(Si-H基)と、炭素原子又は炭素原子と酸素原子を介してケイ素原子に結合したエポキシ基及び/又はトリアルコキシシリル基とをそれぞれ1個以上有するオルガノ水素ポリシロキサン化合物である。なお、該接着性向上剤は含フッ素オルガノ水素シロキサンに該当する分子構造であるため、該接着性向上剤の使用によって、フッ酸やリチウムイオン二次電池用の電解液などに対して長期間にわたる自己接着性を維持することは困難であるものの、本発明のフルオロポリエーテル系硬化性組成物から得られる硬化物を有する物品の製造過程中などの、初期の自己接着性を必要とする場合においては極めて有効である。
 上記接着性向上剤において、さらに1分子中に酸素原子、窒素原子、炭素原子及びケイ素原子から選ばれる少なくとも1種を含む2価の連結基を介してケイ素原子に結合した、特には窒素原子と炭素原子を含む2価の連結基を介してケイ素原子に結合するか又は窒素原子と炭素原子と酸素原子を含む2価の連結基を介してケイ素原子に結合したパーフルオロアルキル基又は1価のパーフルオロポリエーテル基(パーフルオロオキシアルキル基)を1個以上有するものがより好ましい。このようなパーフルオロアルキル基としては、Cj2j+1-(jは1~10の整数、好ましくは3~7の整数である。)で表される基が挙げられる。また、1価のパーフルオロポリエーテル基としては、上記(B)成分で示した式(1)のRfで例示したものと同様のものが例示できる。また、このパーフルオロアルキル基又は1価のパーフルオロポリエーテル基とケイ素原子とをつなぐ2価の連結基としては、酸素原子、窒素原子及びケイ素原子から選ばれる少なくとも1種を含んでいてもよい炭素数1~20の2価の有機基(好ましくは炭化水素基)を用いることができる。
 接着性向上剤のオルガノ水素ポリシロキサン化合物のシロキサン骨格は、環状、直鎖状、分岐鎖状などのいずれでもよく、またこれらの2種以上の混合形態でもよいが、好ましくは、環状である。接着性向上剤のオルガノ水素ポリシロキサン化合物としては、下記一般式で表されるものを用いることができる。
Figure JPOXMLDOC01-appb-C000070
(式中、R2は非置換又はハロゲン置換の1価炭化水素基であり、L1は2価の連結基を介してケイ素原子に結合した1価のパーフルオロポリエーテル基であり、M1は下記に示す炭素原子又は炭素原子と酸素原子を介してケイ素原子に結合したエポキシ基又はトリアルコキシシリル基である。w2は好ましくは0≦w2≦50を満たす整数であり、より好ましくは0≦w2≦20を満たす整数であり、x2は好ましくは1≦x2≦50を満たす整数であり、より好ましくは1≦x2≦20を満たす整数であり、y2は好ましくは0≦y2≦50を満たす整数であり、より好ましくは1≦y2≦20を満たす整数であり、z2は好ましくは1≦z2≦50を満たす整数であり、より好ましくは1≦z2≦20を満たす整数である。上記( )内に示される各繰り返し単位はランダムに結合されていてよい。)
 上記R2の非置換又はハロゲン置換の1価炭化水素基としては、脂肪族不飽和結合を含まない、炭素数1~10のものが好ましく、炭素数1~8のものがより好ましく、具体的には、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、シクロヘキシル基、オクチル基等のアルキル基;フェニル基、トリル基等のアリール基;ベンジル基、フェニルエチル基等のアラルキル基などや、これらの基の水素原子の一部又は全部をフッ素等のハロゲン原子で置換した置換1価炭化水素基などが挙げられ、この中で特にメチル基が好ましい。
 上記L1は、2価の連結基を介してケイ素原子に結合した1価のパーフルオロポリエーテル基であり、下記一般式で表されるものが好ましい。
 -Z-Rf2
[式中、Rf2は1価のパーフルオロポリエーテル基であり、上記一般式(1)におけるRfと同じであり、Rfで例示したものと同様のものを例示することができる。Zは酸素原子、窒素原子及びケイ素原子から選ばれる少なくとも1種を含んでいてもよい炭素数1~20の2価の有機基(好ましくは炭化水素基)である。]
 Zとしては、例えば、-CH2-*、-CH2CH2CH2-*、-OCH2-*、-CH2OCH2-*、-(CH22OCH2-*、-(CH23OCH2-*、-CH2-NH-CO-*、-(CH23-NH-CO-*、-(CH23-N(CH3)-CO-*、-(CH23-N(CH2CH3)-CO-*、-(CH23-N(CH(CH32)-CO-*、-CH2-N(Ph)-CO-*、-(CH23-O-CO-*、-CH2OCH2CH2CH2-Si(CH32-O-Si(CH32-(CH22-*、-CO-N(CH3)-Ph’-Si(CH32-(CH22-*、-CO-N(CH2)-Ph’-Si(CH22-(CH22-Si(CH22-O-Si(CH22-(CH22-*、-CO-NH-Ph’-[Si(CH32-(CH223-CH2-*、-CO-N(CH3)-Ph’-[Si(CH32-(CH223-*、下記一般式で表される基が挙げられ、中でも-(CH23OCH2-*、-(CH23-NH-CO-*、下記一般式で表される基が好ましい。なお、Phはフェニル基、Ph’はフェニレン基を示す。また、*付きの結合手は、1価のパーフルオロポリエーテル基と結合することを示し、*なしの結合手は、オルガノ水素ポリシロキサン中のケイ素原子と結合することを示す。
Figure JPOXMLDOC01-appb-C000071
 上記M1は炭素原子又は炭素原子と酸素原子を介してケイ素原子に結合したエポキシ基又はトリアルコキシシリル基を示し、具体的には、下記の基を挙げることができる。
Figure JPOXMLDOC01-appb-C000072
(式中、R3は酸素原子が介在してもよい炭素数1~10、特に炭素数1~5の2価炭化水素基(メチレン基、エチレン基、プロピレン基等のアルキレン基、シクロヘキシレン基等のシクロアルキレン基、オキシエチレン基、オキシプロピレン基、オキシブチレン基等のオキシアルキレン基など、好ましくは-(CH23OCH2-*’(*’付きの結合手はエポキシ基と結合することを示す))を示す。)
 -R4-Si(OR53
(式中、R4は炭素数1~10、特に炭素数1~4の2価炭化水素基(メチレン基、エチレン基、プロピレン基等のアルキレン基など)を示し、R5は独立に炭素数1~8、特に炭素数1~4の1価炭化水素基(メチル基、エチル基、プロピル基、ブチル基等のアルキル基など)を示す。)
Figure JPOXMLDOC01-appb-C000073
(式中、R6は水素原子又はメチル基であり、R7は独立に炭素数1~8、特に炭素数1~4の1価炭化水素基(メチル基、エチル基、プロピル基、ブチル基等のアルキル基など)を示し、lは2~10の整数を示す。)
 接着性向上剤として用いるオルガノ水素ポリシロキサン化合物は、1分子中にケイ素原子に結合した水素原子(Si-H基)を3個以上有するオルガノハイドロジェンポリシロキサンに、ビニル基、アリル基等の脂肪族不飽和基とエポキシ基及び/又はトリアルコキシシリル基とを含有する化合物、さらに必要により脂肪族不飽和基とパーフルオロアルキル基又はパーフルオロオキシアルキル基とを含有する化合物を、常法に従って部分付加反応させることにより得ることができる。なお、上記脂肪族不飽和基の数は、Si-H基の数より少ない必要がある。
 接着性向上剤として用いるオルガノ水素ポリシロキサン化合物の製造に際しては、反応終了後に目的物質を単離してもよいが、未反応物及び付加反応触媒を除去しただけの混合物を使用することもできる。
 接着性向上剤として用いるオルガノ水素ポリシロキサン化合物として、具体的には下記の構造式で示されるものが例示される。なお、これらの化合物は単独で使用してもよく、2種以上を併用してもよい。なお下記式において、Meはメチル基を示す。
Figure JPOXMLDOC01-appb-C000074
(式中、x2’=2又は3、b1’=2~20の整数である。( )内に示される各繰り返し単位はランダムに結合されていてよい。)
Figure JPOXMLDOC01-appb-C000075
(式中、x2’=2又は3、b1’=2~20の整数である。( )内に示される各繰り返し単位はランダムに結合されていてよい。)
Figure JPOXMLDOC01-appb-C000076
(式中、x2’=1又は2、b1’=2~20の整数である。( )内に示される各繰り返し単位はランダムに結合されていてよい。)
Figure JPOXMLDOC01-appb-C000077
(式中、z2’=2又は3、b1’=2~20の整数である。( )内に示される各繰り返し単位はランダムに結合されていてよい。)
Figure JPOXMLDOC01-appb-C000078
(式中、y2’=2又は3、b1’=2~20の整数である。( )内に示される各繰り返し単位はランダムに結合されていてよい。)
 接着性向上剤を配合する場合の配合量は、好ましくは(A)成分中のアルケニル基1モルに対する接着性向上剤中のヒドロシリル基(Si-H基)が0.005~0.5モルとなる量、より好ましくは0.01~0.2モルとなる量、さらに好ましくは0.05~0.1モルとなる量である。
 可塑剤、粘度調節剤、可撓性付与剤としては、下記一般式(12)で表されるポリフルオロモノアルケニル化合物及び/又は下記一般式(13)、(14)で表されるポリフルオロ化合物を併用することができる。
 Rf3-(Z1p2CH=CH2   (12)
[式中、Z1は酸素原子、窒素原子及びケイ素原子から選ばれる少なくとも1種を含んでいてもよい炭素数1~20の2価の有機基(好ましくは炭化水素基)であり、p2は0又は1であり、Rf3は、下記一般式で表される1価のパーフルオロポリエーテル基である。
Figure JPOXMLDOC01-appb-C000079
(式中、f2は2~200の整数であり、好ましくは2~100の整数であり、h2は1~3の整数であり、かつ使用する(A)成分における式(2)中のRf1の分子量よりも小さい。)]
 Y1-O-(CF2CF2CF2O)c2-Y1   (13)
[式中、Y1は独立に式:Ck22k2+1-(k2は1~3の整数)で表される基であり、c2は1~200の整数であり、かつ使用する(A)成分における式(2)中のRf1の分子量よりも小さい。]
 Y2-O-(CF2O)d2(CF2CF2O)e2-Y2   (14)
(式中、Y2は上記Y1と同じであり、d2及びe2はそれぞれ1~200の整数であり、かつ、使用する(A)成分における式(2)中のRf1の分子量よりも小さい。上記( )内に示される各繰り返し単位はランダムに結合されていてよい。)
 上記一般式(12)において、Z1は酸素原子、窒素原子及びケイ素原子から選ばれる少なくとも1種を含んでいてもよい炭素数1~20の2価の有機基(好ましくは炭化水素基)であり、上記L1構造におけるZ(2価の連結基)と同様のものに加えて、さらに下記に示すものが例示できる(下記及びZの例示の式中、*付きの結合手は、Rf3と結合することを示し、*なしの結合手は、炭素原子と結合することを示す。)
Figure JPOXMLDOC01-appb-C000080
 上記一般式(12)で表されるポリフルオロモノアルケニル化合物の具体例としては、例えば、下記のものが挙げられる。なお、下記f2は、上記要件を満足するものである。
Figure JPOXMLDOC01-appb-C000081
 上記一般式(13)、(14)で表されるポリフルオロ化合物の具体例としては、例えば、下記のものが挙げられる。なお、下記c2、d2、e2及びd2とe2の和は、上記要件を満足するものである。
CF3O-(CF2CF2CF2O)c2-CF2CF3
CF3-O-(OCF2d2(OCF2CF2e2-CF3
 上記式(12)、(13)、(14)のポリフルオロ化合物の粘度(23℃)は、2,000~50,000mPa・sの範囲であることが望ましい。
 また、上記式(12)、(13)、(14)のポリフルオロ化合物を配合する場合の配合量は、(A)成分100質量部に対して1~300質量部が好ましく、より好ましくは50~250質量部である。
 また、ヒドロシリル化反応触媒の制御剤としては、例えば、エチニルシクロヘキサノール(別名:1-エチニル-1-ヒドロキシシクロヘキサン)、3-メチル-1-ブチン-3-オール、3,5-ジメチル-1-ヘキシン-3-オール、3-メチル-1-ペンテン-3-オール、フェニルブチノール等のアセチレン性アルコールや、上記の1価含フッ素置換基を有するクロロシランとアセチレン性アルコールとの反応物、3-メチル-3-ペンテン-1-イン、3,5-ジメチル-3-ヘキセン-1-イン、トリアリルイソシアヌレート等、あるいはポリビニルシロキサン、有機リン化合物等が挙げられ、その添加により硬化反応性と保存安定性を適度に保つことができる。該制御剤を配合する場合の配合量は、目的とする硬化性と保存安定性を付与することができる範囲内で任意である。
 無機質充填剤(但し、(D)成分のカーボンブラック粉末を除く)としては、例えば、煙霧質シリカ(ヒュームドシリカ又は乾式シリカ)、沈降性シリカ(湿式シリカ)、球状シリカ(溶融シリカ)、ゾルゲル法シリカ、シリカエアロゲル等のシリカ粉末、該シリカ粉末の未処理の表面を各種のオルガノクロロシラン、オルガノジシラザン、環状オルガノポリシラザン等で疎水化処理してなる各種表面処理シリカ粉末、石英粉末、溶融石英粉末、珪藻土、炭酸カルシウム等の補強性又は準補強性充填剤、酸化チタン、酸化鉄、アルミン酸コバルト等の無機顔料、酸化チタン、酸化鉄、酸化セリウム、水酸化セリウム、炭酸亜鉛、炭酸マグネシウム、炭酸マンガン等の耐熱向上剤、アルミナ、窒化硼素、炭化珪素、金属粉末等の熱伝導性付与剤、銀粉末、導電性亜鉛華等の導電性付与剤等を添加することができる。
 無機質充填剤を配合する場合の配合量は、(A)成分100質量部に対して0.1~100質量部であることが好ましく、1~60質量部であることがより好ましい。
 接着促進剤は、上記接着性向上剤を含む場合において、上記接着性向上剤の接着性付与能力を向上させ、本発明のフルオロポリエーテル系硬化性組成物を硬化して得られる硬化物の自己接着性発現を促進させるためのものである。特に、カルボン酸無水物を好適に用いることができる。
 カルボン酸無水物としては、例えば23℃下で固体のカルボン酸無水物が挙げられる。具体的には、下記化合物が例示される。なお下記式において、Meはメチル基を示す。
Figure JPOXMLDOC01-appb-C000082
 また、カルボン酸無水物としては、1分子中にケイ素原子に直結した水素原子と、酸素原子、窒素原子及びケイ素原子から選ばれる少なくとも1種を含んでいてもよい2価炭化水素基を介してケイ素原子に結合したパーフルオロアルキル基又はパーフルオロオキシアルキル基と、2価炭化水素基を介してケイ素原子に結合した環状無水カルボン酸残基とを有する環状オルガノポリシロキサン(即ち、含フッ素オルガノポリシロキサン変性無水カルボン酸化合物)であってもよい。このような化合物としては、下記一般式(15)で表されるものを例示することができる。なお、この含フッ素オルガノポリシロキサン変性無水カルボン酸化合物は含フッ素オルガノ水素シロキサンに該当する分子構造であるため、この化合物の使用によって、フッ酸やリチウムイオン二次電池用の電解液などに対して長期間にわたる自己接着性を維持することは困難であるものの、本発明のフルオロポリエーテル系硬化性組成物から得られる硬化物を有する物品の製造過程中などの、初期の自己接着性を必要とする場合においては極めて有効である。
Figure JPOXMLDOC01-appb-C000083
(式中、L2は独立に2価炭化水素基を介してケイ素原子に結合した1価のパーフルオロポリエーテル基であり、Jは独立に2価炭化水素基を介してケイ素原子に結合した環状無水カルボン酸残基であり、R8は独立に非置換又はハロゲン置換の1価炭化水素基であり、t2は1~6の整数、u2は1~4の整数、v2は1~4の整数、t2+u2+v2は4~10の整数である。上記( )内に示される各繰り返し単位はランダムに結合されていてよい。)
 上記式(15)において、L2は2価炭化水素基を介してケイ素原子に結合した1価のパーフルオロポリエーテル基であり、上記L1と同様の基が挙げられる。これらは、(A)成分との相溶性、分散性及び硬化後の均一性等の観点から導入される基である。
 また、上記式(15)において、R8は非置換又はハロゲン置換の1価炭化水素基であり、上述したR2と同様の基が挙げられ、メチル基、エチル基が好ましい。
 また、上記式(15)において、Jは2価炭化水素基を介してケイ素原子に結合した環状無水カルボン酸残基であり、具体的には下記一般式で表される基を挙げることができる。
Figure JPOXMLDOC01-appb-C000084
 上記式中、R9は、炭素数2~15の2価炭化水素基であり、具体的にはエチレン基、プロピレン基、ブチレン基等が挙げられ、中でもプロピレン基が好ましい。
 さらに、上記式(15)において、t2は1~6の整数、好ましくは2~5の整数、u2は1~4の整数、好ましくは1~3の整数、v2は1~4の整数、好ましくは1~3の整数、t2+u2+v2は4~10の整数、好ましくは4~8の整数である。ただし、((H)(R8)SiO)単位、((L2)(R8)SiO)単位、及び((J)(R8)SiO)単位の配列順序はランダムである。
 上記一般式(15)で表される環状オルガノポリシロキサンとしては、例えば下記の化合物が挙げられる。なお、下記式において、Meはメチル基を示す。
Figure JPOXMLDOC01-appb-C000085
(式中、t2’=2又は3、b2’=2~20の整数である。)
Figure JPOXMLDOC01-appb-C000086
(式中、v2’=2又は3、b2’=2~20の整数である。)
 これらの接着促進剤は、1種単独で使用してもよいし、2種以上のものを併用してもよい。その際、上記23℃下で固体のカルボン酸無水物と上記環状オルガノポリシロキサン(含フッ素オルガノポリシロキサン変性無水カルボン酸化合物)とを併用してもよい。
 接着促進剤を配合する場合の配合量は、(A)成分100質量部に対して0.01~2質量部であることが好ましく、0.05~1質量部であることがより好ましい。また、(A)成分中のアルケニル基1モルに対して接着促進剤中のヒドロシリル基(Si-H基)が0.005~0.5モル、特には0.05~0.1モルであることが好ましい。
 なお、(A)成分中のアルケニル基1モルに対して組成物中に含まれるヒドロシリル基の合計(特には、(B)成分、接着性向上剤及び接着促進剤中のヒドロシリル基の合計)が0.1~2.5モル、特には0.2~2モルであることが好ましい。
[フルオロポリエーテル系硬化性組成物の製造方法]
 本発明のフルオロポリエーテル系硬化性組成物の製造方法は特に制限されず、上記成分を練り合わせることにより製造することができる。具体的には、本発明のフルオロポリエーテル系硬化性組成物は、上記した(A)~(D)成分とその他の任意成分とをプラネタリーミキサー、ロスミキサー、ホバートミキサー等の混合装置、必要に応じてニーダー、三本ロール等の混練装置を使用して均一に混合することによって製造することができる。
また2剤の組成物とし、使用時に混合するようにしてもよい。
 製造されたフルオロポリエーテル系硬化性組成物は、(C)成分の触媒の種類により室温硬化も可能であるが、硬化を促進するためには加熱することがよく、特に、硬化物の機械的物性を安定させるためには、60℃以上、好ましくは100~200℃にて数分~数時間程度の時間で硬化させることが好ましい。
 なお、本発明のフルオロポリエーテル系硬化性組成物を使用するに当たり、その用途、目的に応じて該組成物を適当なフッ素系溶剤、例えば1,3-ビス(トリフルオロメチル)ベンゼン、フロリナート(3M社製)、パーフルオロブチルメチルエーテル、パーフルオロブチルエチルエーテル等に所望の濃度に溶解して使用してもよい。特に、薄膜コーティング用途においては溶剤を使用することが好ましい。
 本発明のフルオロポリエーテル系硬化性組成物は、自動車用、化学プラント用、半導体製造ライン用、分析・理化学機器用、住環境用、通信機器用、通信設備用、航空機用、鉄道車両用、携帯機器用、電力貯蔵装置用、ロボット用又はリチウムイオン電池用等の電気・電子部品として用いることが好ましい。
 特には本発明のフルオロポリエーテル系硬化性組成物の硬化物をガスケット、パッキン、保護用シール又はコーティング層として使用した電気・電子部品が好ましい。
 以下、合成例、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、下記の例において部は質量部を示す。また、数平均分子量はフッ素系溶剤であるAK-225(旭硝子社製)を展開溶媒としてゲルパーミエーションクロマトグラフィ(GPC)分析におけるポリスチレン換算の数平均分子量として求めた。粘度は23℃においてJIS K6249に規定される粘度試験の回転粘度計による方法に準拠して測定し、平均粒径は、特に注釈がない限り、レーザー光回析・散乱法による粒度分布測定における累積体積平均径(D50)の値を示す。
・含フッ素オルガノ水素シラン化合物の合成
[合成例1]
 1Lフラスコに、下記式(16)で示されるオルガノ水素シラン化合物(ヒドロシリル基量0.616mol/100g)
Figure JPOXMLDOC01-appb-C000087
150gと、下記式(17)で示される化合物(ビニル基量0.0681mol/100g)
Figure JPOXMLDOC01-appb-C000088
339gと、1,3-ビストリフルオロメチルベンゼン91gを仕込み、窒素置換した。
 70℃まで昇温した後、(C1)白金-ジビニルテトラメチルジシロキサン錯体のトルエン溶液(白金濃度0.5質量%)0.16gを滴下し、85℃下1時間攪拌した。反応溶液をクエンチし、減圧濃縮した。得られた残渣をFC-3283(524g)に溶解させ、活性炭(商品名 白鷺AS、大阪ガスケミカル社製)9.10gで1時間攪拌後、ろ過した。得られた溶液に活性炭(9.10g)を加え、1時間攪拌後ろ過した。
 得られた溶液から分取液体クロマトグラフィで主成分を抽出した後、減圧濃縮することで、下記式(18)で表される化合物(ヒドロシリル基量0.143mol/100g)
Figure JPOXMLDOC01-appb-C000089
を376g得た。得られた生成物の1H-NMRスペクトルでは次のシグナル:δ7.86~6.55(m、4H)、4.38~3.64(m、3H)、3.15(s、3H)、2.46~1.48(br、4H)、1.18~-0.91(m、52H)が確認され、上記式(18)で表される化合物の生成が確認された。
[合成例2]
 上記式(17)で表される化合物の代わりに下記式(19)で表される化合物(ビニル基量0.0228mol/100g)
Figure JPOXMLDOC01-appb-C000090
を1,012g用いたこと以外は、全て合成例1と同様の操作で行い、下記式(20)で表される化合物(ヒドロシリル基量:0.0682mol/100g)
Figure JPOXMLDOC01-appb-C000091
を741g得た。得られた生成物の1H-NMRスペクトルでは次のシグナル:δ7.68~6.36(m、4H)、4.21~3.44(s、3H)、3.03(s、3H)、2.29~1.41(br、4H)、1.13~-0.98(m、52H)が確認され、上記式(20)で表される化合物の生成が確認された。
[合成例3]
 上記式(16)で表される化合物の代わりに下記式(21)で表される化合物(ヒドロシリル基量1.09mol/100g)
Figure JPOXMLDOC01-appb-C000092
を85g用いたこと以外は、全て合成例1と同様の操作で行い、下記式(22)で表される化合物(ヒドロシリル基量:0.247mol/100g)
Figure JPOXMLDOC01-appb-C000093
を323g得た。得られた生成物の1H-NMRスペクトルでは次のシグナル:δ7.85~6.55(m、4H)、4.29~3.51(m、5H)、3.15(s、3H)、1.23~-0.91(m、62H)が確認され、上記式(22)で表される化合物の生成が確認された。
[合成例4]
 上記式(17)で表される化合物の代わりに下記式(23)で表される化合物(ビニル基量0.0873mol/100g)
Figure JPOXMLDOC01-appb-C000094
(m+nの平均=12、m:n=0.98:1)
を264g用いたこと以外は、全て合成例1と同様の操作で行い、下記式(24)で表される化合物(ヒドロシリル基量:0.169mol/100g)
Figure JPOXMLDOC01-appb-C000095
(m+nの平均=12、m:n=0.98:1)
を317g得た。得られた生成物の1H-NMRスペクトルでは次のシグナル:δ6.89~6.61(s、1H)、4.39~3.66(m、3H)、3.41~3.07(m、2H)、2.46~1.47(br、4H)、1.74~1.39(m、2H)、1.18~-0.90(m、44H)が確認され、上記式(24)で表される化合物の生成が確認された。
[合成例5]
 上記式(17)で表される化合物の代わりに下記式(25)で表される化合物(ビニル基量0.0382mol/100g)
Figure JPOXMLDOC01-appb-C000096
を605g用いたこと以外は、全て合成例1と同様の操作で行い、下記式(26)で表される化合物(ヒドロシリル基量:0.0872mol/100g)
Figure JPOXMLDOC01-appb-C000097
を502g得た。得られた生成物の1H-NMRスペクトルでは次のシグナル:δ4.39~3.66(m、5H)、3.59~3.30(s、2H)、2.46~1.47(m、6H)、1.18~-0.90(m、44H)が確認され、上記式(26)で表される化合物の生成が確認された。
[合成例6]
 上記式(17)で表される化合物の代わりに下記式(27)で表される化合物(ビニル基量0.0531mol/100g)
Figure JPOXMLDOC01-appb-C000098
を435g用いたこと以外は、全て合成例1と同様の操作で行い、下記式(28)で表される化合物(ヒドロシリル基量:0.112mol/100g)
Figure JPOXMLDOC01-appb-C000099
を446g得た。得られた生成物の1H-NMRスペクトルでは次のシグナル:δ4.41~3.64(m、5H)、3.59~3.29(s、2H)、2.46~1.47(m、6H)、1.18~-0.90(m、44H)が確認され、上記式(28)で表される化合物の生成が確認された。
[合成例7]
 上記式(17)で表される化合物の代わりに下記式(29)で表される化合物(ビニル基量0.0531mol/100g)
Figure JPOXMLDOC01-appb-C000100
を435g用いたこと以外は、全て合成例1と同様の操作で行い、下記式(30)で表される化合物(ヒドロシリル基量:0.112mol/100g)
Figure JPOXMLDOC01-appb-C000101
を438g得た。得られた生成物の1H-NMRスペクトルでは次のシグナル:δ4.41~3.64(m、5H)、3.59~3.29(s、2H)、2.46~1.47(m、6H)、1.18~-0.90(m、44H)が確認され、上記式(30)で表される化合物の生成が確認された。
<フルオロポリエーテル系硬化性組成物の調製、(B)成分と(A)成分(ベースオイル)との相溶性の確認>
[参考例1]
 (A1)下記式(31)で示されるポリマー(数平均分子量15,550、粘度10,900mPa・s、ビニル基量0.012mol/100g)100部に、(C1)白金-ジビニルテトラメチルジシロキサン錯体のトルエン溶液(白金濃度0.5質量%)0.1部、下記式(32)で示される化合物0.07部、(B1)合成例1で得られた下記式(18)で示される化合物(ヒドロシリル基量0.143mol/100g)9.74部を加え、混合して硬化性組成物を調製し、透明なオイルとして得られた。このことから、(B1)成分と(A1)成分との相溶性が高いことが示された。なお式中、Meはメチル基を示す。
Figure JPOXMLDOC01-appb-C000102
(式中、m及びnは1以上の整数であり、m+nの平均値=90である。)
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
[参考例2]
 参考例1において、(A1)上記式(31)で示されるポリマーの代わりに(A2)下記式(33)で示されるポリマー(数平均分子量15,630、粘度11,000mPa・s、ビニル基量0.012mol/100g)100部を用い、それ以外は参考例1と同様にして硬化性組成物を調製し、透明なオイルとして得られた。このことから、(B1)成分と(A2)成分との相溶性が高いことが示された。なお式中、Meはメチル基を示す。
Figure JPOXMLDOC01-appb-C000105
(式中、m及びnは1以上の整数であり、m+nの平均値=90である。)
[参考例3]
 参考例1において、(A1)上記式(31)で示されるポリマーの代わりに(A3)下記式(34)で示されるポリマー(数平均分子量3,350、粘度60mPa・s、ビニル基量0.031mol/100g)100部、(B1)上記式(18)で示される化合物25.16部を用い、それ以外は参考例1と同様にして硬化性組成物を調製し、透明なオイルとして得られた。このことから、(B1)成分と(A3)成分との相溶性が高いことが示された。
Figure JPOXMLDOC01-appb-C000106
(m:n=0.98:1、m+nの平均=34)
[参考例4]
 参考例1において、(B1)上記式(18)で示される化合物の代わりに(B2)合成例2で得られた下記式(20)で示される化合物(ヒドロシリル基量:0.0682mol/100g)20.42部を用い、それ以外は参考例1と同様にして硬化性組成物を調製し、透明なオイルとして得られた。このことから、(B2)成分と(A1)成分との相溶性が高いことが示された。なお式中、Meはメチル基を示す。
Figure JPOXMLDOC01-appb-C000107
[参考例5]
 参考例1において、(B1)上記式(18)で示される化合物の代わりに(B3)合成例3で得られた下記式(22)で示される化合物(ヒドロシリル基量:0.247mol/100g)5.73部を用い、それ以外は参考例1と同様にして硬化性組成物を調製し、透明なオイルとして得られた。このことから、(B3)成分と(A1)成分との相溶性が高いことが示された。なお式中、Meはメチル基を示す。
Figure JPOXMLDOC01-appb-C000108
[参考例6]
 参考例1において、(B1)上記式(18)で示される化合物の代わりに(B4)合成例4で得られた下記式(24)で示される化合物(ヒドロシリル基量:0.169mol/100g)8.24部を用い、それ以外は参考例1と同様にして硬化性組成物を調製し、透明なオイルとして得られた。このことから、(B4)成分と(A1)成分との相溶性が高いことが示された。なお式中、Meはメチル基を示す。
Figure JPOXMLDOC01-appb-C000109
(m:n=0.98:1、m+nの平均=12)
[参考例7]
 参考例1において、(B1)上記式(18)で示される化合物の代わりに、合成例1において得られた溶液から分取液体クロマトグラフィで主成分を抽出することなく、そのまま減圧濃縮した以外は同様にして得られた(B5)上記式(18)で示される化合物、下記式(35)、(36)、(37)及び(38)で示される化合物の混合物(質量比:(18)/(35)/(36)/(37)/(38)=80:9:6:1:4、ヒドロシリル基量:0.145mol/100g)9.61部を用い、それ以外は参考例1と同様にして硬化性組成物を調製し、透明なオイルとして得られた。このことから、(B5)成分と(A1)成分との相溶性が高いことが示された。なお式中、Meはメチル基を示す。
Figure JPOXMLDOC01-appb-C000110
[参考例8]
 参考例1において、(B1)上記式(18)で示される化合物の代わりに(B6)合成例5で得られた下記式(26)で示される化合物(ヒドロシリル基量:0.0872mol/100g)15.97部を用い、それ以外は参考例1と同様にして硬化性組成物を調製し、透明なオイルとして得られた。このことから、(B6)成分と(A1)成分との相溶性が高いことが示された。なお式中、Meはメチル基を示す。
Figure JPOXMLDOC01-appb-C000111
[参考例9]
 参考例1において、(B1)上記式(18)で示される化合物の代わりに(B7)合成例6で得られた下記式(28)で示される化合物(ヒドロシリル基量:0.112mol/100g)12.44部を用い、それ以外は参考例1と同様にして硬化性組成物を調製し、透明なオイルとして得られた。このことから、(B7)成分と(A1)成分との相溶性が高いことが示された。なお式中、Meはメチル基を示す。
Figure JPOXMLDOC01-appb-C000112
[参考例10]
 参考例1において、(B1)上記式(18)で示される化合物の代わりに(B8)合成例7で得られた下記式(30)で示される化合物(ヒドロシリル基量:0.112mol/100g)12.44部を用い、それ以外は参考例1と同様にして硬化性組成物を調製し、透明なオイルとして得られた。このことから、(B8)成分と(A1)成分との相溶性が高いことが示された。なお式中、Meはメチル基を示す。
Figure JPOXMLDOC01-appb-C000113
[比較例1]
 参考例1において、(B1)上記式(18)で示される化合物の代わりに(B9)上記式(16)で示される化合物(ヒドロシリル基量0.616mol/100g)2.26部を用い、それ以外は参考例1と同様にして硬化性組成物を調製し、白濁したオイルとして得られた。このことから、(B9)成分と(A1)成分との相溶性が低いことが示された。
[比較例2]
 参考例1において、(B1)上記式(18)で示される化合物の代わりに(B10)下記式(39)で示される化合物(特許文献5:特開2002-012769号公報の実施例1に記載の化合物、ヒドロシリル基量:0.408mol/100g)3.52部を用い、それ以外は参考例1と同様にして硬化性組成物を調製し、微白濁オイルとして得られた。このことから、(B10)成分と(A1)成分との相溶性が低いことが示された。なお式中、Meはメチル基を示す。
Figure JPOXMLDOC01-appb-C000114
[比較例3]
 参考例1において、(B1)上記式(18)で示される化合物の代わりに(B11)下記式(40)で示される化合物(ヒドロシリル基量0.394mol/100g)3.54部を用い、それ以外は参考例1と同様にして硬化性組成物を調製し、透明なオイルとして得られた。このことから、(B11)成分と(A1)成分との相溶性が高いことが示された。なお式中、Meはメチル基を示す。
Figure JPOXMLDOC01-appb-C000115
<フルオロポリエーテル系硬化物表面のオイル状成分(未硬化部分)の有無の確認、硬化物の離型性の評価>
 参考例1~10、比較例1~3で作製した上記フルオロポリエーテル系硬化性組成物を、テフロン(登録商標、以下同じ)製のシート上に置いた2mm厚のステンレススチール製の型に流し込み、別のテフロン製のシートで挟み込んだ後、150℃/10分間プレスキュアを行った。プレスキュア後、2mm厚のステンレススチール製の型を取り外して得られたフルオロポリエーテル系硬化物表面のオイル状成分の残存を下記の評価基準により評価した。結果を表1に示す。
[評価基準]
○:テフロンシートから硬化物を傷つけることなく容易に引き剥がすことができ、引き剥がした硬化物表面にオイル状成分の残存が見られなかった。
×:テフロンシートから硬化物を傷つけることなく引き剥がすことが困難であり、引き剥がした硬化物表面にオイル状成分の残存が見られた。
Figure JPOXMLDOC01-appb-T000116
 参考例1~10、比較例3のフルオロポリエーテル系硬化性組成物から得られるフルオロポリエーテル系硬化物は、硬化物表面に未硬化のオイル状成分の点在が確認されなかった。これは、参考例1~10、比較例3のフルオロポリエーテル系硬化性組成物に含まれる(B)成分が(A)成分との高い相溶性を示すことで、ほぼ全ての(B)成分と(A)成分が反応したためである。また、プレスキュア後にテフロンシートから容易に硬化物を引き剥がすこともできたため、離型性も問題ないことが確認された。一方、比較例1、2のフルオロポリエーテル系硬化性組成物から得られるフルオロポリエーテル系硬化物の表面には、未硬化のオイル状成分の点在が確認された。これは、(B6)、(B7)成分が(A)成分との相溶性に乏しく、熱硬化時に(A)成分との反応が不十分となったため、未反応物がオイル状成分としてフルオロポリエーテル系硬化物表面に残ってしまったと考えられる。さらに、プレスキュアにより硬化物がテフロンシートに固着してしまい、テフロンシートから引き剥がす際に硬化物が破断、欠損するなど、離型性も低い結果となった。
 上記で得られたフルオロポリエーテル系硬化物に対し、200℃/4時間のポストキュアを施した後、下記に示す耐熱性、耐薬品性、耐溶剤性、耐電解液性の評価を行った。結果を表2~5に示す。
<耐熱性>
 参考例1~10、比較例1~3のフルオロポリエーテル系硬化性組成物から得られたフルオロポリエーテル系硬化物の物性をJIS K 6249に準拠して評価した。次いで、参考例1~10、比較例1~3のフルオロポリエーテル系硬化性組成物から得られたフルオロポリエーテル系硬化物を、150℃のオーブン中で7日間放置した後、JIS K 6249に準拠して硬化物の物性を評価することで、硬さ変化量、引張強さ変化率(%)、切断時伸び変化率(%)を以下の計算式により算出した。結果を表2に示す。
硬さ変化量=(150℃/7日後の硬化物の硬さ)―(硬化物の初期の硬さ)
引張強さ変化率(%)=((150℃/7日後の硬化物の引張強さ)―(硬化物の初期の引張強さ))/(硬化物の初期の引張強さ)×100
切断時伸び変化率(%)=((150℃/7日後の硬化物の切断時伸び)―(硬化物の初期の切断時伸び))/(硬化物の初期の切断時伸び)×100
Figure JPOXMLDOC01-appb-T000117
<耐薬品性>
 参考例1~10、比較例1~3のフルオロポリエーテル系硬化性組成物から得られたフルオロポリエーテル系硬化物を20℃下、濃塩酸、濃硫酸、濃フッ酸、トリフルオロ酢酸、40質量%KOH(水酸化カリウム)水溶液に3日間浸漬し、浸漬前の硬さを基準として硬さの変化量を測定した。硬さ変化量の算出方法は、耐熱性試験時と同様の数式を用いた。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000118
 表3の結果より、参考例1~10、比較例1、2のフルオロポリエーテル系硬化性組成物から得られたフルオロポリエーテル系硬化物は、上記全ての薬品に対し優れた耐久性を有することが確認された。一方、比較例3のフルオロポリエーテル系硬化性組成物から得られたフルオロポリエーテル系硬化物は、濃フッ酸、トリフルオロ酢酸に対する耐久性に乏しいことが確認された。
<耐溶剤性>
 参考例1~10、比較例1~3のフルオロポリエーテル系硬化性組成物から得られたフルオロポリエーテル系硬化物を用い、JIS K 6258に準じて表4に示す各種有機溶剤に対する浸漬試験(浸漬時間:70時間)を実施し、浸漬前後での体積変化率(%)を測定し、耐溶剤膨潤性を評価した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000119
*1)IPA:イソプロピルアルコール
*2)MEK:メチルエチルケトン
*3)THF:テトラヒドロフラン
 表4の結果より、参考例1~10のフルオロポリエーテル系硬化性組成物から得られたフルオロポリエーテル系硬化物は、比較例1~3の硬化性フルオロポリエーテル系硬化性組成物から得られたフルオロポリエーテル系硬化物と同様、上記全ての溶剤に対し優れた耐久性を有することが確認された。
<耐電解液性>
 参考例1~10、比較例1~3のフルオロポリエーテル系硬化性組成物から得られたフルオロポリエーテル系硬化物を80℃下、リチウムイオン電池用電解液(キシダ化学社製)に3日間浸漬し、浸漬前後の硬化物の硬さ、べたつき、外観の変化をもとに、硬化物の劣化度合を下記の評価基準により評価した。
[評価基準]
〔硬さ〕
○:リチウムイオン電池用電解液浸漬前後で、硬さの変化がほとんど見られなかった。
×:リチウムイオン電池用電解液浸漬により、著しい硬さの低下が見られた。
〔べたつき〕
○:リチウムイオン電池用電解液浸漬による、硬化物表面のべたつきの変化はなかった。
×:リチウムイオン電池用電解液浸漬により、硬化物表面がべたつくようになった。
〔外観の変化〕
○:リチウムイオン電池用電解液浸漬前後で、外観の変化がほとんど見られなかった。
×:リチウムイオン電池用電解液浸漬により、硬化物の膨潤、変形、分解が見られた。
Figure JPOXMLDOC01-appb-T000120
 参考例1~10、比較例1、2のフルオロポリエーテル系硬化性組成物から得られたフルオロポリエーテル系硬化物は、リチウムイオン電池用電解液の浸漬前後で硬さ、表面のべたつき、外観にほとんど変化は見られなかった。このことから、上記組成物及び硬化物がリチウムイオン電池用途に適用できることが分かった。一方、比較例3のフルオロポリエーテル系硬化性組成物から得られたフルオロポリエーテル系硬化物は、リチウムイオン電池用電解液への浸漬により膨潤する、表面の分解といった変化が確認された。また、該硬化物の両端を引っ張ると簡単に千切れた。
<充填剤を含有したフルオロポリエーテル系硬化性組成物の調製>
[実施例1]
 まず、(A1)上記式(31)で示されるポリマー100部及び(D1)ポリイミド樹脂粉末(エボニック社製、球状、平均粒径:9.2μm)30部を、プラネタリーミキサーを用いて室温で1時間混練した後、-98.0kPaGの減圧下、室温で1時間混練した。さらに、-98.0kPaGの減圧下、150℃で1時間混練した。次に、混練物を室温まで冷却後、3本ロールミル処理を施した。該混練物に(C1)白金-ジビニルテトラメチルジシロキサン錯体のトルエン溶液(白金濃度0.5質量%)0.1部、上記式(32)で示される化合物0.07部、(B1)合成例1で得られた上記式(18)で示される化合物9.74部を加え、混合して硬化性組成物を調製した。
[実施例2]
 実施例1において、(A1)上記式(31)で示されるポリマーの代わりに(A2)上記式(33)で示されるポリマー100部を用い、それ以外は実施例1と同様にして硬化性組成物を調製した。
[実施例3]
 実施例1において、(A1)上記式(31)で示されるポリマーの代わりに(A3)上記式(34)で示されるポリマー100部、(B1)上記式(18)で示される化合物25.16部を用い、それ以外は実施例1と同様にして硬化性組成物を調製した。
[実施例4]
 実施例1において、(B1)上記式(18)で示される化合物の代わりに(B2)合成例2で得られた上記式(20)で示される化合物20.42部を用い、それ以外は実施例1と同様にして硬化性組成物を調製した。
[実施例5]
 実施例1において、(B1)上記式(18)で示される化合物の代わりに(B3)合成例3で得られた上記式(22)で示される化合物5.73部を用い、それ以外は実施例1と同様にして硬化性組成物を調製した。
[実施例6]
 実施例1において、(B1)上記式(18)で示される化合物の代わりに(B4)合成例4で得られた上記式(24)で示される化合物8.24部を用い、それ以外は実施例1と同様にして硬化性組成物を調製した。
[実施例7]
 実施例1において、(B1)上記式(18)で示される化合物の代わりに、合成例1において得られた溶液から分取液体クロマトグラフィで主成分を抽出することなく、そのまま減圧濃縮した以外は同様にして得られた(B5)上記式(18)、(35)、(36)、(37)及び(38)で示される化合物の混合物9.61部を用い、それ以外は実施例1と同様にして硬化性組成物を調製した。
[実施例8]
 実施例1において、(B1)上記式(18)で示される化合物の代わりに(B6)合成例5で得られた上記式(26)で示される化合物15.97部を用い、それ以外は実施例1と同様にして硬化性組成物を調製した。
[実施例9]
 実施例1において、(B1)上記式(18)で示される化合物の代わりに(B7)合成例5で得られた上記式(28)で示される化合物12.44部を用い、それ以外は実施例1と同様にして硬化性組成物を調製した。
[実施例10]
 実施例1において、(B1)上記式(18)で示される化合物の代わりに(B8)合成例5で得られた上記式(30)で示される化合物12.44部を用い、それ以外は実施例1と同様にして硬化性組成物を調製した。
[実施例11]
 実施例7において、(A1)上記式(31)で示されるポリマーの代わりに(A2)上記式(33)で示されるポリマー100部を用い、それ以外は実施例7と同様にして硬化性組成物を調製した。
[実施例12]
 実施例1において、(D1)のポリイミド樹脂粉末を40部用い、それ以外は実施例1と同様にして硬化性組成物を調製した。
[実施例13]
 実施例12において、(A1)上記式(31)で示されるポリマーの代わりに(A2)上記式(33)で示されるポリマー100部を用い、それ以外は実施例12と同様にして硬化性組成物を調製した。
[実施例14]
 実施例1において、(D1)のポリイミド樹脂粉末を60部用い、それ以外は実施例1と同様にして硬化性組成物を調製した。
[実施例15]
 実施例1において、(D1)のポリイミド樹脂粉末の代わりに、(D2)アセチレンブラックカーボン粉末(デンカ社製、粒状品、平均粒径0.035μm)を10部用い、それ以外は実施例1と同様にして硬化性組成物を調製した。
[実施例16]
 実施例15において、(A1)上記式(31)で示されるポリマーの代わりに(A2)上記式(33)で示されるポリマー100部を用い、それ以外は実施例15と同様にして硬化性組成物を調製した。
[実施例17]
 実施例1において、(D1)のポリイミド樹脂粉末の代わりに、(D3)アセチレンブラックカーボン粉末(デンカ社製、粉状品、平均粒径0.035μm)を10部用い、それ以外は実施例1と同様にして硬化性組成物を調製した。
[実施例18]
 実施例17において、(A1)上記式(31)で示されるポリマーの代わりに(A2)上記式(33)で示されるポリマー100部を用い、それ以外は実施例17と同様にして硬化性組成物を調製した。
[実施例19]
 実施例1において、(D1)のポリイミド樹脂粉末に加えて、さらに(D2)アセチレンブラックカーボン粉末(デンカ社製、粒状品、平均粒径0.035μm)を10部用い、それ以外は実施例1と同様にして硬化性組成物を調製した。
[比較例4]
 実施例1において、(D1)のポリイミド樹脂粉末の代わりに、(D4)ヒュームドシリカ(Aerosil R-972、アエロジル社製、平均粒径(カタログ値):16nm)23.0部を用い、それ以外は実施例1と同様にして硬化性組成物を調製した。
<充填剤を含有したフルオロポリエーテル系硬化物の評価>
 参考例1~3、実施例1~19、比較例4で作製した上記フルオロポリエーテル系硬化性組成物を、テフロン製のシート上に置いた2mm厚のステンレススチール製の型に流し込み、別のテフロン製のシートで挟み込んだ後、150℃/10分間プレスキュアを行った。プレスキュア後、2mm厚のステンレススチール製の型を取り外して得られたフルオロポリエーテル系硬化物に対し、200℃/4時間のポストキュアを施した後、下記に示す耐熱性、耐薬品性、耐溶剤性、耐電解液性の評価を行った。結果を表6~13に示す。
<耐熱性>
 参考例1~3、実施例1~19、比較例4のフルオロポリエーテル系硬化性組成物から得られたフルオロポリエーテル系硬化物の物性をJIS K 6249に準拠して評価した。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000121
 次いで、各々のフルオロポリエーテル系硬化物(実施例1~19、比較例4)を、150℃のオーブン中で7日間放置した後、JIS K 6249に準拠して硬化物の物性を評価することで、硬さ変化量、引張強さ変化率(%)、切断時伸び変化率(%)を以下の計算式により算出した。結果を表7に示す。
硬さ変化量=(150℃/7日後の硬化物の硬さ)―(硬化物の初期の硬さ)
引張強さ変化率(%)=((150℃/7日後の硬化物の引張強さ)―(硬化物の初期の引張強さ))/(硬化物の初期の引張強さ)×100
切断時伸び変化率(%)=((150℃/7日後の硬化物の切断時伸び)―(硬化物の初期の切断時伸び))/(硬化物の初期の切断時伸び)×100
Figure JPOXMLDOC01-appb-T000122
 表6の結果より、有機樹脂粉末及びカーボンブラック粉末を含まない参考例1~3のフルオロポリエーテル系硬化性組成物から得られたフルオロポリエーテル系硬化物と比較して、有機樹脂粉末及びカーボンブラック粉末から選ばれる少なくとも1種の充填剤を含む実施例1~19のフルオロポリエーテル系硬化性組成物から得られたフルオロポリエーテル系硬化物の方が機械的物性、特に硬さと引張強さが優れていることが確認された。さらに、表7の結果より、有機樹脂粉末及びカーボンブラック粉末から選ばれる少なくとも1種の充填剤を添加した実施例1~19のフルオロポリエーテル系硬化性組成物から得られたフルオロポリエーテル系硬化物は、ヒュームドシリカにより補強した比較例4のフルオロポリエーテル系硬化性組成物から得られたフルオロポリエーテル系硬化物と同等レベルの耐熱性を有することが確認された。
<耐薬品性>
 実施例1~19、比較例4のフルオロポリエーテル系硬化性組成物から得られたフルオロポリエーテル系硬化物を20℃下、濃塩酸、濃硫酸、濃フッ酸、トリフルオロ酢酸に3日間浸漬し、浸漬前の硬さを基準として硬さの変化量を測定した。硬さ変化量の算出方法は、耐熱性試験時と同様の数式を用いた。結果を表8、表9に示す。
Figure JPOXMLDOC01-appb-T000123
Figure JPOXMLDOC01-appb-T000124
 表8、表9の結果より、実施例1~19のフルオロポリエーテル系硬化性組成物から得られたフルオロポリエーテル系硬化物は、上記全ての薬品に対し参考例1~10のフルオロポリエーテル系硬化性組成物から得られたフルオロポリエーテル系硬化物と同等レベルの耐久性を有することが確認された。一方、比較例4のフルオロポリエーテル系硬化性組成物から得られたフルオロポリエーテル系硬化物は、濃フッ酸、トリフルオロ酢酸に対する耐久性に乏しいことが確認された。
<耐溶剤性>
 実施例1~19、比較例4のフルオロポリエーテル系硬化性組成物から得られたフルオロポリエーテル系硬化物を用い、JIS K 6258に準じて表4に示す各種有機溶剤に対する浸漬試験(浸漬時間:70時間)を実施し、浸漬前後での体積変化率(%)を測定し、耐溶剤膨潤性を評価した。結果を表10、表11に示す。
Figure JPOXMLDOC01-appb-T000125
*1)IPA:イソプロピルアルコール
*2)MEK:メチルエチルケトン
*3)THF:テトラヒドロフラン
Figure JPOXMLDOC01-appb-T000126
*1)IPA:イソプロピルアルコール
*2)MEK:メチルエチルケトン
*3)THF:テトラヒドロフラン
 表10、表11の結果より、実施例1~19のフルオロポリエーテル系硬化性組成物から得られたフルオロポリエーテル系硬化物は、比較例4のフルオロポリエーテル系硬化性組成物から得られたフルオロポリエーテル系硬化物と同様、上記全ての溶剤に対し優れた耐久性を有することが確認された。上記結果により、有機樹脂粉末及びカーボンブラック粉末から選ばれる少なくとも1種の充填剤の添加による該フルオロポリエーテル系硬化性組成物の耐溶剤性への影響は少ないことが示された。
<耐電解液性>
 実施例1~19、比較例4のフルオロポリエーテル系硬化性組成物から得られたフルオロポリエーテル系硬化物を80℃下、リチウムイオン電池用電解液(キシダ化学社製)に3日間浸漬し、浸漬前後の硬化物の硬さ、べたつき、外観の変化をもとに、硬化物の劣化度合を下記の評価基準により評価した。結果を表12、表13に示す。
[評価基準]
〔硬さ〕
○:リチウムイオン電池用電解液浸漬前後で、硬さの変化がほとんど見られなかった。
×:リチウムイオン電池用電解液浸漬により、著しい硬さの低下が見られた。
〔べたつき〕
○:リチウムイオン電池用電解液浸漬による、硬化物表面のべたつきの変化はなかった。
×:リチウムイオン電池用電解液浸漬により、硬化物表面がべたつくようになった。
〔外観の変化〕
○:リチウムイオン電池用電解液浸漬前後で、外観の変化がほとんど見られなかった。
×:リチウムイオン電池用電解液浸漬により、硬化物の膨潤、変形、分解が見られた。
Figure JPOXMLDOC01-appb-T000127
Figure JPOXMLDOC01-appb-T000128
 実施例1~19のフルオロポリエーテル系硬化性組成物から得られたフルオロポリエーテル系硬化物は、リチウムイオン電池用電解液の浸漬前後で硬さ、表面のべたつき、外観にほとんど変化は見られなかった。このことから、有機樹脂粉末及びカーボンブラック粉末から選ばれる少なくとも1種の充填剤を含む上記組成物及び硬化物がリチウムイオン電池用途に適用できることが分かった。一方、比較例4のフルオロポリエーテル系硬化性組成物から得られたフルオロポリエーテル系硬化物は、リチウムイオン電池用電解液への浸漬によるべたつき、外観の変化はほとんど見られなかったものの、硬さの著しい低下が確認された。また、該硬化物の両端を引っ張ると簡単に千切れ、該硬化物の機械的物性の低下を示唆する結果となった。
<粉砕処理を施した充填剤を含有したフルオロポリエーテル系硬化性組成物の調製>
 上記ポリイミド樹脂粉末(D1)をジェットミルにより粉砕処理することにより、(D5)平均粒径2.0μm、(D6)平均粒径3.0μm、(D7)平均粒径5.0μmの各ポリイミド樹脂粉末3種類を準備した。これらの各ポリイミド樹脂粉末を用い、フルオロポリエーテル系硬化性組成物の作製を試みた。
[実施例20]
 まず、(A1)上記式(31)で示されるポリマー100部及び(D5)ポリイミド樹脂粉末(平均粒径:2.0μm)70部を、プラネタリーミキサーを用いて室温で1時間混練した後、-98.0kPaGの減圧下、室温で1時間混練した。さらに、-98.0kPaGの減圧下、150℃で1時間混練した。その結果、ペースト状の混練物が得られた。次に、該混練物を室温まで冷却し、3本ロールミル処理を施した後、(C1)白金-ジビニルテトラメチルジシロキサン錯体のトルエン溶液(白金濃度0.5質量%)0.1部、上記式(32)で示される化合物0.07部、(B1)合成例1で得られた上記式(18)で示される化合物9.74部を加え、混合して硬化性組成物を調製した。
[実施例21]
 実施例20において、(D5)のポリイミド樹脂粉末(平均粒径:2.0μm)を100部用い、それ以外は実施例20と同様にして硬化性組成物を調製した。
[実施例22]
 実施例20において、(D5)のポリイミド樹脂粉末(平均粒径:2.0μm)の代わりに(D6)ポリイミド樹脂粉末(平均粒径3.0μm)を70部用い、それ以外は実施例20と同様にして硬化性組成物を調製した。
[実施例23]
 実施例22において、(D6)のポリイミド樹脂粉末(平均粒径:3.0μm)を100部用い、それ以外は実施例22と同様にして硬化性組成物を調製した。
[実施例24]
 実施例20において、(D5)のポリイミド樹脂粉末(平均粒径:2.0μm)の代わりに(D7)のポリイミド樹脂粉末(平均粒径5.0μm)を70部用い、それ以外は実施例20と同様にして硬化性組成物を調製した。
[実施例25]
 実施例20において、(A1)上記式(31)で示されるポリマーの代わりに(A2)上記式(33)で示されるポリマー100部を用い、それ以外は実施例20と同様にして硬化性組成物を調製した。
[実施例26]
 実施例21において、(A1)上記式(31)で示されるポリマーの代わりに(A2)上記式(33)で示されるポリマー100部を用い、それ以外は実施例21と同様にして硬化性組成物を調製した。
[実施例27]
 実施例22において、(A1)上記式(31)で示されるポリマーの代わりに(A2)上記式(33)で示されるポリマー100部を用い、それ以外は実施例22と同様にして硬化性組成物を調製した。
[実施例28]
 実施例23において、(A1)上記式(31)で示されるポリマーの代わりに(A2)上記式(33)で示されるポリマー100部を用い、それ以外は実施例23と同様にして硬化性組成物を調製した。
[実施例29]
 実施例24において、(A1)上記式(31)で示されるポリマーの代わりに(A2)上記式(33)で示されるポリマー100部を用い、それ以外は実施例24と同様にして硬化性組成物を調製した。
[実施例30]
 実施例20において、(A1)上記式(31)で示されるポリマーの代わりに(A3)上記式(34)で示されるポリマー100部を用い、それ以外は実施例20と同様にして硬化性組成物を調製した。
<粉砕処理を施した充填剤を含有したフルオロポリエーテル系硬化物の評価>
 実施例20~30で作製した上記フルオロポリエーテル系硬化性組成物を、テフロン製のシート上に置いた2mm厚のステンレススチール製の型に流し込み、別のテフロン製のシートで挟み込んだ後、150℃/10分間プレスキュアを行った。プレスキュア後、2mm厚のステンレススチール製の型を取り外して得られたフルオロポリエーテル系硬化物に対し、200℃/4時間のポストキュアを施した。
 実施例20~30のフルオロポリエーテル系硬化性組成物から得られたフルオロポリエーテル系硬化物の物性をJIS K 6249に準拠して評価した。これらの結果を上記実施例1~3、12、13の結果と共に表14に示す。
Figure JPOXMLDOC01-appb-T000129
※( )内の数値は充填量(質量部)を表す
 表14の結果より、粉砕処理を行っていない(D1)のポリイミド樹脂粉末を用いた上記実施例1~3、12、13のフルオロポリエーテル系硬化性組成物から得られたフルオロポリエーテル系硬化物に比べ、粉砕処理を施した(D5)、(D6)、(D7)のいずれかのポリイミド樹脂粉末を用いた実施例20~30のフルオロポリエーテル系硬化性組成物から得られたフルオロポリエーテル系硬化物の方が、硬さや引張強さが向上している。上記結果から、有機樹脂粉末を大量に充填したことによる硬化物の補強効果を確認することができた。
 また、実施例20~30のフルオロポリエーテル系硬化性組成物から得られたフルオロポリエーテル系硬化物について、実施例1~19の評価と同様にして、耐熱性、耐薬品性、耐溶剤性、耐電解液性の評価を行ったところ、耐熱性、耐薬品性、耐溶剤性、耐電解液性の結果は、実施例1~3、12、13と概ね一致し、有機樹脂粉末を粉砕したことによる悪影響がないことを確認した。
 以上、本発明のフルオロポリエーテル系硬化性組成物から得られたフルオロポリエーテル系硬化物が、フッ酸やリチウムイオン電池用電解液に対する耐久性及び離型性を両立することが分かった。さらに、有機樹脂粉末及びカーボンブラック粉末から選ばれる少なくとも1種の充填剤の添加により、該硬化物の前記特性を損なうことなく機械的物性が向上することが分かった。さらに、該有機樹脂粉末を粉砕処理し平均粒径を小さくすることで、フルオロポリエーテル系硬化性組成物への充填量を増やすことができ、これによりさらに補強されたフルオロポリエーテル系硬化物が得られることも分かった。以上により、本発明の効果が示された。

Claims (19)

  1.  (A)1分子中に2個以上のアルケニル基を有するパーフルオロポリエーテル化合物: 100質量部、
    (B)下記一般式(1)で表され、ヒドロシリル基を2個以上有する含フッ素オルガノ水素シラン化合物: (A)成分中のアルケニル基1モルに対して(B)成分中のケイ素原子に結合した水素原子が0.1~2.5モルとなる量、
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rfは1価のパーフルオロポリエーテル基であり、Aは酸素原子、窒素原子及びケイ素原子から選ばれる少なくとも1種を含んでいてもよい炭素数1~20の2価の有機基であり、Rは独立して炭素数1~6の1価炭化水素基であり、xは1~3の整数であり、Bは独立して1個以上のジオルガノヒドロシリル基を有すると共に、連結するケイ素原子とシルアルキレン構造をなす1価の有機基であり、xが1の場合、Bは2個以上のジオルガノヒドロシリル基を有する。yは1又は2である。)
    (C)白金族金属系触媒: (A)成分の質量に対して白金族金属原子換算で0.1~2,000ppm、及び
    (D)有機樹脂粉末及びカーボンブラック粉末から選ばれる少なくとも1種の充填剤: 0.1~200質量部
    を含有してなるフルオロポリエーテル系硬化性組成物。
  2.  (A)成分が、下記一般式(2)で表されるパーフルオロポリエーテル化合物である請求項1に記載のフルオロポリエーテル系硬化性組成物。
    Figure JPOXMLDOC01-appb-C000002
    [式中、A1は独立して、酸素原子、窒素原子及びケイ素原子から選ばれる少なくとも1種を含んでいてもよい炭素数1~20の2価の有機基であり、B1は炭素原子又はケイ素原子であり、Xは独立して、水素原子、メチル基又は炭素数2~8のアルケニル基であり、ただし、Xの少なくとも2個は炭素数2~8のアルケニル基であり、Xが水素原子の場合、結合するB1は炭素原子である。Rf1は2価のパーフルオロポリエーテル基である。]
  3.  (B)成分において、上記一般式(1)におけるRfが、下記一般式(5)で表される基である請求項1に記載のフルオロポリエーテル系硬化性組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式中、Dはフッ素原子又は炭素数1~6のパーフルオロオキシアルキル基であり、a、b、c及びdは、それぞれ独立して0~100の整数で、2≦a+b+c+d≦100であり、eは1~3の整数である。上記( )内に示される各繰り返し単位はランダムに結合されていてよく、これら各単位は直鎖状であっても分岐状であってもよい。)
  4.  (B)成分において、上記一般式(1)におけるAが、炭素数1~12のアルキレン基、炭素数6~8のアリーレン基を含むアルキレン基、アルキレン基相互がジオルガノシリレン基を介して結合している2価の基、アルキレン基とアリーレン基とがジオルガノシリレン基を介して結合している2価の基、及びこれらの基にさらにエーテル結合酸素原子、2級アミノ基、3級アミノ基及びアミド結合から選ばれる少なくとも1種を有する2価の基から選ばれるものである請求項1に記載のフルオロポリエーテル系硬化性組成物。
  5.  (B)成分において、上記一般式(1)におけるAが、下記一般式(6)~(9)で表される基のいずれかである請求項1に記載のフルオロポリエーテル系硬化性組成物。
    Figure JPOXMLDOC01-appb-C000004
    (式中、X0は水素原子、メチル基又はエチル基であり、X1は独立して水素原子、フッ素原子、メチル基、エチル基又はトリフルオロメチル基であり、X2は水素原子、メチル基、エチル基、イソプロピル基又はフェニル基であり、R’は独立してメチル基又はエチル基であり、fは1~6の整数であり、tは0又は1である。なお、*付きの結合手は上記一般式(1)中のSi原子と結合し、無印の結合手はRfと結合することを示す。)
  6.  (B)成分において、上記一般式(1)におけるRが、メチル基、エチル基、イソプロピル基、ターシャリーブチル基、フェニル基のうちのいずれかである請求項1に記載のフルオロポリエーテル系硬化性組成物。
  7.  (B)成分において、上記一般式(1)のRfとB中のジオルガノヒドロシリル基との間の分子鎖におけるシルアルキレン構造が連続して2個以上である請求項1に記載のフルオロポリエーテル系硬化性組成物。
  8.  (B)成分において、上記一般式(1)におけるBが、下記一般式(10)で表される基である請求項1に記載のフルオロポリエーテル系硬化性組成物。
    Figure JPOXMLDOC01-appb-C000005
    [式中、pは1~6の整数であり、qは0~6の整数であり、rは1~3の整数であり、Rは上記と同じであり、Eは水素原子又は下記式
    Figure JPOXMLDOC01-appb-C000006
    で表される基(式中、Rは上記と同じであり、p’は1~6の整数であり、q’は0~6の整数である。)である(ただし、Eが水素原子のとき、rは1である。)。上記p、q又はp’、q’が付された( )内に示される各繰り返し単位はランダムに結合されていてよい。]
  9.  (B)成分が、下記式で表される含フッ素オルガノ水素シラン化合物から選ばれるものである請求項1に記載のフルオロポリエーテル系硬化性組成物。
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    Figure JPOXMLDOC01-appb-C000010
    Figure JPOXMLDOC01-appb-C000011
    Figure JPOXMLDOC01-appb-C000012
    Figure JPOXMLDOC01-appb-C000013
    (式中、b’は2~100の整数であり、c'''、d''はそれぞれ1~99の整数で、c'''+d''=2~100の整数であり、ca’は1~99の整数であり、Meはメチル基であり、Etはエチル基であり、Phはフェニル基である。c'''、d''が付された( )内に示される各繰り返し単位はランダムに結合されていてよい。)
  10.  (D)成分の平均粒径が、0.001~100μmである請求項1~9のいずれか1項に記載のフルオロポリエーテル系硬化性組成物。
  11.  (D)成分がポリイミド樹脂粉末及び/又はカーボンブラック粉末である請求項1~9のいずれか1項に記載のフルオロポリエーテル系硬化性組成物。
  12.  (D)成分が粉砕処理を施した有機樹脂粉末である請求項1~9のいずれか1項に記載のフルオロポリエーテル系硬化性組成物。
  13.  (D)成分の平均粒径が、0.001~5μmである請求項12に記載のフルオロポリエーテル系硬化性組成物。
  14.  (D)成分がポリイミド樹脂粉末である請求項12に記載のフルオロポリエーテル系硬化性組成物。
  15.  (D)成分の配合量が、(A)成分100質量部に対して10~200質量部である請求項12に記載のフルオロポリエーテル系硬化性組成物。
  16.  請求項1に記載のフルオロポリエーテル系硬化性組成物から得られる硬化物。
  17.  請求項16に記載の硬化物を有する電気・電子部品。
  18.  硬化物が、ガスケット、パッキン、保護用シール又はコーティング層である請求項17に記載の電気・電子部品。
  19.  自動車用、化学プラント用、半導体製造ライン用、分析・理化学機器用、住環境用、通信機器用、通信設備用、航空機用、鉄道車両用、携帯機器用、電力貯蔵装置用、ロボット用又はリチウムイオン電池用である、請求項17又は18に記載の電気・電子部品。
PCT/JP2023/016939 2022-05-11 2023-04-28 フルオロポリエーテル系硬化性組成物及び硬化物、並びに電気・電子部品 WO2023219020A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-077828 2022-05-11
JP2022077828 2022-05-11
JP2022172605 2022-10-27
JP2022-172605 2022-10-27

Publications (1)

Publication Number Publication Date
WO2023219020A1 true WO2023219020A1 (ja) 2023-11-16

Family

ID=88730492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016939 WO2023219020A1 (ja) 2022-05-11 2023-04-28 フルオロポリエーテル系硬化性組成物及び硬化物、並びに電気・電子部品

Country Status (2)

Country Link
TW (1) TW202402948A (ja)
WO (1) WO2023219020A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02251964A (ja) * 1989-03-27 1990-10-09 Tokyo Ohka Kogyo Co Ltd ホトレジスト被膜の形成方法
JP2000261008A (ja) * 1999-03-10 2000-09-22 Mitsubishi Electric Corp 太陽電池用シリコン基板の粗面化方法
JP2002012769A (ja) * 2000-06-29 2002-01-15 Shin Etsu Chem Co Ltd 硬化性フルオロポリエーテルゴム組成物
JP2003327820A (ja) * 2002-05-14 2003-11-19 Shin Etsu Chem Co Ltd 硬化性フルオロポリエーテルゴム組成物及びゴム製品
JP2006022319A (ja) * 2004-06-11 2006-01-26 Shin Etsu Chem Co Ltd 硬化性パーフルオロポリエーテル組成物及びその硬化物を用いたゴム及びゲル製品
JP2008085172A (ja) * 2006-09-28 2008-04-10 Shinetsu Astec Kk 発光装置
JP2010040407A (ja) * 2008-08-07 2010-02-18 Sumitomo Electric Fine Polymer Inc ガスケット及び密閉型二次電池
JP2011219692A (ja) * 2010-04-14 2011-11-04 Shin-Etsu Chemical Co Ltd 接着剤組成物
JP2012102187A (ja) * 2010-11-08 2012-05-31 Shin-Etsu Chemical Co Ltd パーフルオロポリエーテルゲル硬化物の耐酸性を向上する方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02251964A (ja) * 1989-03-27 1990-10-09 Tokyo Ohka Kogyo Co Ltd ホトレジスト被膜の形成方法
JP2000261008A (ja) * 1999-03-10 2000-09-22 Mitsubishi Electric Corp 太陽電池用シリコン基板の粗面化方法
JP2002012769A (ja) * 2000-06-29 2002-01-15 Shin Etsu Chem Co Ltd 硬化性フルオロポリエーテルゴム組成物
JP2003327820A (ja) * 2002-05-14 2003-11-19 Shin Etsu Chem Co Ltd 硬化性フルオロポリエーテルゴム組成物及びゴム製品
JP2006022319A (ja) * 2004-06-11 2006-01-26 Shin Etsu Chem Co Ltd 硬化性パーフルオロポリエーテル組成物及びその硬化物を用いたゴム及びゲル製品
JP2008085172A (ja) * 2006-09-28 2008-04-10 Shinetsu Astec Kk 発光装置
JP2010040407A (ja) * 2008-08-07 2010-02-18 Sumitomo Electric Fine Polymer Inc ガスケット及び密閉型二次電池
JP2011219692A (ja) * 2010-04-14 2011-11-04 Shin-Etsu Chemical Co Ltd 接着剤組成物
JP2012102187A (ja) * 2010-11-08 2012-05-31 Shin-Etsu Chemical Co Ltd パーフルオロポリエーテルゲル硬化物の耐酸性を向上する方法

Also Published As

Publication number Publication date
TW202402948A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
JP3239717B2 (ja) 硬化性組成物
TWI513788B (zh) 熱固性氟聚醚黏著劑組成物及黏著方法
EP1081185B1 (en) Curable fluorinated elastomer compositions
US20060014895A1 (en) Curable fluoropolyether composition
CN107286891B (zh) 导热性含氟粘接剂组合物和电气·电子部件
EP3013887B1 (en) Fluoropolyether-polysiloxane elastomer compositions and shaped articles
US6576737B2 (en) Curable compositions of fluorinated amide compounds
JP2001220509A (ja) 硬化性組成物
US9023927B2 (en) Adhesive composition
KR20220031869A (ko) 광경화성 플루오로폴리에터계 고무 조성물로 이루어지는 고무계 접착제
JP6753382B2 (ja) 熱硬化性フルオロポリエーテル系接着剤組成物及び電気・電子部品
US11535749B2 (en) Curable composition
JP5110280B2 (ja) 硬化性フルオロポリエーテル系ゴム組成物
JP4269127B2 (ja) 硬化性組成物
JP4985911B2 (ja) 導電性フルオロポリエーテル系ゴム組成物
JP5387517B2 (ja) 熱硬化性フルオロポリエーテル系接着剤組成物及びその接着方法
JP2004143322A (ja) 硬化性組成物
JP2004331903A (ja) パーフルオロアルキルエーテル系接着剤組成物の製造方法
WO2023219020A1 (ja) フルオロポリエーテル系硬化性組成物及び硬化物、並びに電気・電子部品
WO2023276779A1 (ja) フルオロポリエーテル系硬化性組成物及び硬化物、並びに電気・電子部品
JP6801638B2 (ja) 熱硬化性フルオロポリエーテル系接着剤組成物及び電気・電子部品
JP2003292761A (ja) 硬化性フルオロポリエーテル系ゴム組成物及びゴム製品
CN117597394A (zh) 氟聚醚系固化性组合物和固化物、以及电气电子部件
CN109111889B (zh) 热固性氟聚醚型粘接剂组合物以及电气部件/电子部件
CN114269874B (zh) 固化性氟聚醚系粘接剂组合物和光学部件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23803498

Country of ref document: EP

Kind code of ref document: A1