WO2023210678A1 - 車両用灯具 - Google Patents

車両用灯具 Download PDF

Info

Publication number
WO2023210678A1
WO2023210678A1 PCT/JP2023/016410 JP2023016410W WO2023210678A1 WO 2023210678 A1 WO2023210678 A1 WO 2023210678A1 JP 2023016410 W JP2023016410 W JP 2023016410W WO 2023210678 A1 WO2023210678 A1 WO 2023210678A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lens
section
light source
slit
Prior art date
Application number
PCT/JP2023/016410
Other languages
English (en)
French (fr)
Inventor
泰宏 大久保
孝幸 川村
Original Assignee
市光工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022073748A external-priority patent/JP2023162988A/ja
Priority claimed from JP2022086939A external-priority patent/JP2023174207A/ja
Priority claimed from JP2022091900A external-priority patent/JP2023178905A/ja
Application filed by 市光工業株式会社 filed Critical 市光工業株式会社
Publication of WO2023210678A1 publication Critical patent/WO2023210678A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/143Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/151Light emitting diodes [LED] arranged in one or more lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/265Composite lenses; Lenses with a patch-like shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/40Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by screens, non-reflecting members, light-shielding members or fixed shades
    • F21S41/43Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by screens, non-reflecting members, light-shielding members or fixed shades characterised by the shape thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/10Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source
    • F21S43/13Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source characterised by the type of light source
    • F21S43/14Light emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/10Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source
    • F21S43/13Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source characterised by the type of light source
    • F21S43/15Strips of light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/10Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source
    • F21S43/19Attachment of light sources or lamp holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/20Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/20Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
    • F21S43/27Attachment thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/50Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by aesthetic components not otherwise provided for, e.g. decorative trim, partition walls or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2103/00Exterior vehicle lighting devices for signalling purposes
    • F21W2103/20Direction indicator lights
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2103/00Exterior vehicle lighting devices for signalling purposes
    • F21W2103/60Projection of signs from lighting devices, e.g. symbols or information being projected onto the road
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present disclosure relates to a vehicle lamp.
  • Vehicle lamps that form an irradiation pattern on the road surface around the vehicle are considered (for example, see Patent Document 1).
  • This conventional vehicle lamp can form an irradiation pattern by projecting light from a light source through a slit in a shade (shading member), thereby informing the viewer of some intention.
  • This conventional vehicle lamp efficiently utilizes the light from the light source by guiding the light from the light source to the shade using a light guide.
  • light from a light source is collected by a condensing lens, the condensed light is irradiated onto a slit in a light shielding member, and the light transmitted through the slit is projected in front of the vehicle by a projection lens. It is configured to irradiate the road surface.
  • each of the optical members, such as the condenser lens, the light shielding member, and the projection lens is supported by the support member while being held by parts such as the frame and the case.
  • the present disclosure has been made in view of the above circumstances, and is a vehicle capable of efficiently utilizing light from a light source, forming an irradiation pattern with a desired brightness distribution, and attaching optical components with precision.
  • the purpose is to provide lighting equipment for
  • the vehicle lamp of the present disclosure includes a first light source and a second light source that are arranged in parallel, a condenser lens that condenses light from the first light source and the second light source, and a condenser lens that condenses light from the condenser lens.
  • a light-shielding member provided with an irradiation slit that partially transmits light; and a projection lens that projects the light that has passed through the light-shielding member to form an irradiation pattern, and the condensing lens is configured to It has a first lens section corresponding to the second light source and a second lens section corresponding to the second light source, and the irradiation slit is a near slit corresponding to a near irradiation pattern projected at a close position in the irradiation pattern.
  • the second lens section is arranged to face the near slit section.
  • a vehicle lamp includes a plurality of light sources, a condenser lens that condenses light from the plurality of light sources, and a plurality of slits that partially pass the light condensed by the condenser lens.
  • a projection lens that forms an irradiation pattern having a plurality of irradiation patterns corresponding to the plurality of slits by projecting light that has passed through the light shielding member;
  • the condensing lens is provided to individually correspond to the slit portions, and the condenser lens has a plurality of lens portions that individually correspond to the slit portions, and a light attenuating portion for reducing light is provided between the plurality of lens portions. It is characterized by the fact that it is provided.
  • a vehicle lamp according to the present disclosure provides a condensing lens member in which a light source, a condensing lens that condenses light emitted from the light source, and a condensing lens frame that holds the condensing lens are formed as one member.
  • a light-shielding member formed of a slit-forming part having a slit through which a part of the light collected by the condensing lens passes and a light-shielding frame holding the slit-forming part as one member; a projection lens member in which a projection lens is formed to form an irradiation pattern by projecting the light that has passed through the road surface onto a road surface; and a support member that supports the light source;
  • the lens member is characterized in that the condenser lens frame and the light shielding frame are fixed to the support member such that they overlap in the optical axis direction.
  • the condenser lens member is entirely formed using a material constituting the condenser lens, and the light shielding member includes the condenser lens and the condenser lens of the condenser lens member when viewed from the front. It is characterized in that it is formed so as to cover the condenser lens frame.
  • the projection lens member includes the projection lens and a projection lens frame that holds the projection lens formed as one member, and the condenser lens member, the light shielding member, and the projection lens member , the condenser lens frame, the light shielding frame, and the projection lens frame are fixed to the support member so as to overlap in the optical axis direction.
  • the condenser lens member is arranged so that the condenser lens is disposed rearward in the optical axis direction with respect to the condenser lens frame, and the projection lens member is arranged with respect to the projection lens frame.
  • the projection lens is arranged in front in the optical axis direction.
  • the support member includes a base portion having a support surface that supports the light source, and a fixing portion that fixes the condenser lens frame, the light shielding frame, and the projection lens frame, and
  • the fixing part is characterized in that it protrudes from the support surface.
  • the fixing portion is provided with an end surface in a protruding direction that serves as a reference surface for fixing the condensing lens frame, the light shielding frame, and the projection lens frame, and the end surface is provided on the tip of the optical axis. It is characterized by being formed perpendicular to the direction.
  • the vehicle lamp of the present disclosure it is possible to form an irradiation pattern with a desired brightness distribution while efficiently utilizing the light from the light source, and it is possible to attach optical components with high precision.
  • FIG. 2 is an explanatory diagram showing how the vehicle lamp of Example 1 according to the present disclosure is mounted on a vehicle and each forms an irradiation pattern.
  • FIG. 2 is an explanatory diagram showing the configuration of a vehicle lamp.
  • FIG. 2 is an explanatory diagram showing an exploded configuration of a vehicle lamp.
  • FIG. 2 is an explanatory diagram showing only the optical members in the configuration of the vehicle lamp in an exploded manner.
  • FIG. 2 is an explanatory diagram showing the configuration and positional relationship of a first light source and a second light source.
  • FIG. 2 is an explanatory diagram showing the condensing lens body of the condensing lens viewed from the shade side.
  • FIG. 2 is an explanatory diagram showing the positional relationship between both light sources and a condensing lens body of a condensing lens.
  • FIG. 3 is an explanatory diagram showing a light distribution at FIG.
  • FIG. 3 is an explanatory diagram showing a light distribution of a first light distribution area formed by overlapping an inner ring light distribution area and an outer ring light distribution area formed by the first light source on a shade.
  • FIG. 7 is an explanatory diagram showing a state in which the vehicle lamps of Example 2 according to the present disclosure are mounted on a vehicle and each forms an irradiation pattern (all lights).
  • FIG. 2 is an explanatory diagram showing an exploded configuration of a vehicle lamp.
  • FIG. 3 is an explanatory diagram showing the configuration and positional relationship of a first light source, a second light source, and a third light source in a light source section.
  • FIG. 3 is an explanatory diagram showing a condensing lens viewed from the light source side.
  • 17 is an explanatory diagram showing a cross section taken along the line II shown in FIG. 16.
  • FIG. FIG. 2 is an explanatory diagram showing a condensing lens viewed from the shade side.
  • FIG. 3 is an explanatory diagram showing the condenser lens viewed from the light source side and diagonally from below in the vertical direction.
  • FIG. 6 is an explanatory diagram showing how light from a second light source passes between a first lens part and a second lens part and becomes stray light in a condensing lens.
  • the stray light shown in FIG. 20 appears in the third slit part in an unintended light distribution (stray light area).
  • FIG. 3 is an exploded perspective view showing an example of a vehicle lamp according to a third embodiment.
  • FIG. 3 is a diagram showing a state in which the vehicle lamp is viewed from the front.
  • 24 is a diagram showing the configuration along the FF cross section in FIG. 23.
  • FIG. 24 is a diagram showing the configuration along the GG cross section in FIG. 23.
  • FIG. FIG. 3 is a diagram illustrating an example of the operation of a vehicle lamp.
  • FIG. 3 is a diagram showing an example of an irradiation pattern formed on a road surface by a vehicle lamp.
  • FIG. 1 the vehicle light 10 is emphasized with respect to the vehicle 1 in order to make it easier to understand how the vehicle light 10 is installed, and the illustration does not necessarily match the actual state. It's not a thing.
  • FIG. 4 optical members from among the constituent members of the vehicle lamp 10, that is, the parts where the light from both light sources (21, 22) is optically acted upon to form the irradiation pattern Pi are extracted. It shows.
  • FIGS. 1 the vehicle light 10 is emphasized with respect to the vehicle 1 in order to make it easier to understand how the vehicle light 10 is installed, and the illustration does not necessarily match the actual state. It's not a thing.
  • FIG. 4 optical members from among the constituent members of the vehicle lamp 10, that is, the parts where the light from both light sources (21, 22) is optically acted upon to form the irradiation pattern Pi are extracted. It shows.
  • the vehicle lamp 10 of the first embodiment is used as a lamp for a vehicle 1 such as an automobile. It is provided at the front of the vehicle 1 to form an irradiation pattern Pi on the vehicle 2.
  • the surrounding area in front of the vehicle 1 necessarily includes an adjacent area closer to the vehicle 1 than the headlight area illuminated by the headlights provided on the vehicle 1, and partially includes the headlight area. In some cases.
  • the vehicle lamp 10 may also form the irradiation pattern Pi on the road surface 2 around the rear and sides of the vehicle 1, and is not limited to the configuration of the first embodiment.
  • each vehicle lamp 10 is arranged at a position higher than the road surface 2 at the front end of the vehicle 1, and the projection optical axis Lp (see FIG. 2, etc.) is inclined with respect to the road surface 2. It will be done.
  • the two vehicular lamps 10 have basically the same configuration except that the positions where they are attached and the positions where the irradiation pattern Pi is formed are different.
  • the direction in which the projection optical axis Lp, which is the direction in which light is irradiated (projected), extends is referred to as the optical axis direction (Z in the drawing), and the optical axis direction is along the horizontal plane.
  • the vertical direction is the vertical direction (designated as Y in the drawing), and the direction (horizontal direction) perpendicular to the optical axis direction and the vertical direction is the width direction (designated as X in the drawing) (see Figure 2, etc.) .
  • the vehicle lamp 10 includes a light source section 12, a light shielding frame 13, a condensing lens 14, a shade 15, and a projection lens 16 attached to an installation base section 11, and a single projection lens.
  • the optical system constitutes a projector type road surface projection unit.
  • the installation base section 11 is a place where the light source section 12 is installed, and is formed of heat-conductive aluminum die-casting or resin, and functions as a heat sink that releases the heat generated in the light source section 12 to the outside.
  • the installation base section 11 includes a base section 21, a plurality of heat radiation fins 22 (see FIG. 4), and a pair of mounting arm sections 23.
  • the base portion 21 has a flat plate shape perpendicular to the optical axis direction, and a light source attachment point 24 is provided in the center.
  • the light source attachment point 24 defines a place where the light source section 12 is attached, and as shown in FIG. 3, it is a flat surface and is provided with a pair of screw holes 24a and a pair of positioning protrusions 24b. There is.
  • the pair of screw holes 24a are provided at diagonal positions in the light source mounting location 24, and can be fixed by screwing in a screw 25.
  • the pair of positioning protrusions 24b are provided at the ends of the light source attachment point 24 in the width direction, and protrude toward the front side in the optical axis direction.
  • Each radiation fin 22 has a plate shape that is perpendicular to the width direction on the rear side of the base portion 21 (rear side in the optical axis direction (opposite side to the direction in which light is irradiated)).
  • the radiation fins 22 are arranged in a row (parallel) at a predetermined interval in the width direction.
  • a pair of positioning protrusions 21a are provided on the lower side of both mounting arm portions 23, and a screw hole 21b is provided on the upper side of one of the mounting arm portions 23.
  • the positioning projection 21a projects forward in the optical axis direction.
  • the light shielding frame 13 can be fixed to the screw hole 21b by screwing the screw 26.
  • the installation base section 11 radiates heat generated by the light source section 12 installed at the light source attachment point 24 to the outside mainly through each radiation fin 22.
  • the pair of mounting arms 23 are provided in pairs on both outer sides of the light source mounting location 24 in the width direction, and protrude from the base portion 21 toward the front side in the optical axis direction.
  • the front end portions 23a of both mounting arms 23 in the optical axis direction are a plane perpendicular to the optical axis direction, and the mutual end portions 23a are placed at the same position (on the same plane) in the optical axis direction. has been done.
  • Each end 23a is provided with a positioning projection 23b and a screw hole 23c.
  • the positioning protrusion 23b is provided at the lower part of the end portion 23a in the vertical direction, and protrudes forward in the optical axis direction.
  • the screw hole 23c is provided in the upper part of the end portion 23a in the vertical direction, and allows the condenser lens 14, the shade 15, and the projection lens 16 to be fixed by screwing the screw 27.
  • the light source section 12 includes a first light source 31, a second light source 32, a connector terminal 33, and a substrate 34 on which they are mounted.
  • the first light source 31 and the second light source 32 are composed of light emitting elements such as LEDs (Light Emitting Diodes).
  • the first light source 31 and the second light source 32 emit amber light (amber light) with a Lambertian distribution centered on the emission optical axis.
  • the first light source 31 and the second light source 32 may have colors (wavelength bands), distribution modes, number of colors, etc. set as appropriate, and are not limited to the configuration of the first embodiment.
  • the first light source 31 and the second light source 32 of the first embodiment are provided in parallel in the vertical direction with the projection optical axis Lp in between, as shown in FIG.
  • the second light source 32 is also located above the projection optical axis Lp.
  • the first light source 31 has a rectangular shape elongated in the width direction, and includes two LED chips 31a and a phosphor 31b covering each of the LED chips 31a.
  • the second light source 32 has a substantially square shape and includes one LED chip 32a and a phosphor 32b covering each LED chip 32a.
  • the first light source 31 and the second light source 32 emit light from the respective LED chips 31a and 32a as amber light by passing the light through the phosphors 31b and 32b. Therefore, in the first light source 31, the phosphor 31b functions as a first light emitting surface, and in the second light source 32, the phosphor 32b functions as a second light emitting surface.
  • the first light source 31 and the second light source 32 have emission optical axes 31L and 32L extending from their respective centers in the optical axis direction.
  • the output optical axis 31L and the output optical axis 32L are substantially parallel to the projection optical axis Lp. Both the output optical axes 31L and 32L have a positional relationship such that a straight line connecting them passes through the projection optical axis Lp.
  • the distance from the projection optical axis Lp to the first light source 31 and the output optical axis 31L is smaller than the distance from the projection optical axis Lp to the second light source 32 and the output optical axis 32L in the vertical direction.
  • the first light source 31 is positioned closer to the projection optical axis Lp than the second light source 32 is.
  • the connector terminal 33 is electrically connected to the wiring pattern of the board 34, and a connecting connector connected to the lighting control circuit is detachable.
  • the connector terminal 33 is provided at the lower end of the substrate 34 in the vertical direction, so that the connector can be easily attached and detached.
  • the connector terminal 33 enables power to be supplied from the lighting control circuit to each of the light sources 31 and 32 via a wiring pattern by attaching a connecting connector.
  • the substrate 34 has a plate shape made of a resin material such as a glass epoxy substrate, and the first light source 31 and the second light source 32 are mounted thereon.
  • the board 34 is provided with a pair of screw holes corresponding to the pair of screw holes 24a of the light source attachment point 24 of the base section 21 of the installation table section 11, and a pair of screw holes 24b corresponding to the pair of positioning protrusions 24b of the light source attachment point 24.
  • a pair of positioning holes 34a are provided.
  • This board 34 is attached to the light source mounting portion 24 by passing the positioning projections 24b corresponding to the pair of positioning holes 34a and screwing the screws 25 passed through the pair of screw holes into the corresponding screw holes 24a. It is attached.
  • the substrate 34 causes the light source mounting portion 24, that is, the first light source 31 and the second light source 32 mounted thereon, to face the condenser lens 14.
  • the board 34 lights up the first light source 31 and the second light source 32 by appropriately supplying power from the lighting control circuit via the connector terminal 33.
  • the light-shielding frame 13 prevents the light emitted from the first light source 31 and the second light source 32 from leaking from between the light source section 12 (substrate 34) and the condensing lens 14. 35 and a mounting portion 36.
  • the frame main body 35 is composed of a plate-like member having a predetermined dimension in the optical axis direction and extending in an annular shape surrounding substantially the entire area of the light source section 12 (substrate 34).
  • the frame main body 35 has a partially reduced dimension in the optical axis direction on the lower side in the vertical direction, and allows the connector terminal 33 of the light source section 12 to be attached to and detached from the connector.
  • the pair of attachment parts 36 are plate-shaped and protrude from the frame main body 35 in the width direction at positions corresponding to the positioning protrusions 21a and screw holes 21b of the base part 21.
  • a positioning hole 36a is provided in the mounting portion 36 corresponding to the positioning protrusion 21a, and a screw hole through which the screw 26 can be passed is provided in the mounting portion 36 corresponding to the screw hole 21b.
  • the light shielding frame 13 is attached to the base portion 21 of the installation base portion 11 by passing the positioning protrusion 21a through the positioning hole 36a and screwing the screw 26 passed through the screw hole into the screw hole 21b.
  • the condenser lens 14 condenses the light emitted from the first light source 31 and the second light source 32, and condenses the light emitted from the first light source 31 and the second light source 32, and condenses the light emitted from the first light source 31 and the second light source 32. 54 and focuses the light on a region where each slit portion 54 is provided.
  • the condensing lens 14 includes a condensing lens body 41 that condenses light from the first light source 31 and the second light source 32, and a pair of condensing lens attachments protruding from the condensing lens body 41 in the width direction. It has a piece part 42.
  • the condensing lens body 41 is basically a convex lens, and its optical characteristics are set to form an inner light distribution area Ai and an outer light distribution area Ao (see FIGS. 8 and 9) on the shade 15. There is. This will be discussed later.
  • Both condensing lens attachment pieces 42 are plate-shaped and perpendicular to the optical axis direction, and can be attached to the ends 23a of both attachment arms 23 of the base 21 of the installation stand 11. .
  • Each condensing lens attachment piece 42 is provided with a condensing lens positioning hole 42a and a condensing lens screw hole 42b.
  • Each condensing lens positioning hole 42a is configured such that the positioning protrusion 23b can be fitted into the condensing lens mounting piece 42 with the condensing lens attachment piece 42 facing the end 23a.
  • Each of the condensing lens screw holes 42b allows the screw 27 to be inserted into the screw hole 23c with the condensing lens attachment piece 42 facing the end 23a.
  • the condensing lens 14 is assembled by screwing each screw 27 passed through each condensing lens screw hole 42b into the corresponding screw hole 23c while passing the positioning protrusion 23b corresponding to each condensing lens positioning hole 42a. , are attached to both mounting arms 23 (ends 23a thereof) of the installation base section 11.
  • the shade 15 is an example of a light shielding member that forms an irradiation pattern Pi by partially passing the light from the first light source 31 and the second light source 32 focused by the condensing lens 14 through the irradiation slit 53.
  • the irradiation pattern Pi as shown in FIG. 1, three irradiation patterns Di are arranged at approximately equal intervals in a direction moving away from the vehicle 1.
  • the one farthest from the vehicle 1 is the first irradiation pattern Di1
  • the second irradiation pattern Di2 and the third irradiation pattern Di3 shall be.
  • the first irradiation pattern Di1 and the second irradiation pattern Di2 are wide open V-shaped symbols, and the first irradiation pattern Di1 is larger than the second irradiation pattern Di2.
  • the third irradiation pattern Di3 has an elongated pentagonal shape extending from the vehicle 1 toward the second irradiation pattern Di2, and the base end on the vehicle 1 side is located at both ends of a straight line perpendicular to the arrow direction Da described later. It has a shape with corners, and the other end remote from the vehicle 1 has a V-shape that matches the first irradiation pattern Di1 and the second irradiation pattern Di2.
  • the dimension of the third irradiation pattern Di3 in the direction perpendicular to the arrow direction Da is smaller than that of the first irradiation pattern Di1 and the second irradiation pattern Di2.
  • the first irradiation pattern Di1 and the second irradiation pattern Di2 become the far irradiation pattern
  • the third irradiation pattern Di3 becomes the near irradiation pattern.
  • This irradiation pattern Pi is formed by arranging a first irradiation pattern Di1, a second irradiation pattern Di2, and a third irradiation pattern Di3 on the same straight line so as to move away from the vehicle 1 on a road surface 2 serving as a projection surface. . Therefore, the irradiation pattern Pi can be made to look like an arrow pointing in the arrow direction Da from the vehicle 1 by arranging the three irradiation patterns Di.
  • the direction indicated by the arrow as the irradiation pattern Pi is defined as the arrow direction Da, and the side it points to (first irradiation pattern Di1 side) is the front side in the arrow direction Da.
  • the three irradiation patterns Di have both side ends Die located in a direction orthogonal to the arrow direction Da. Both ends Die are located on the same straight line that slopes inward (to the side approaching the vehicle 1) toward the rear of the arrow direction Da, and points in the arrow direction Da with three irradiation patterns Di. This emphasizes the impression that they form an arrow.
  • the irradiation pattern Pi consisting of these three irradiation patterns Di is formed by the shade 15.
  • the shade 15 is basically formed of a plate-shaped member that blocks the transmission of light, and includes a shade portion 51 and a pair of shade attachment pieces 52.
  • the shade attachment pieces 52 protrude from the shade part 51 on both sides in the width direction, and each of the condenser lens attachment pieces of the condenser lens 14 attached to the ends 23 a of both attachment arms 23 of the installation base 11 42.
  • Each shade attachment piece 52 is provided with a shade positioning hole 52a and a shade screw through hole 52b.
  • Each shade positioning hole 52a is configured such that the positioning protrusion 23b inserted therein can be fitted in a state in which the shade attachment piece 52 is directed toward the condenser lens attachment piece 42.
  • Each shade screw hole 52b is configured to allow the screw 27 to pass through the condenser lens screw hole 42b when the shade mounting piece 52 is attached to the condenser lens attachment piece 42. There is.
  • the positioning protrusions 23b corresponding to each shade positioning hole 52a are passed through, and each screw 27 passed through each shade screw through hole 52b is screwed into the corresponding screw hole 23c, so that the condenser lens 14 It is attached to both attachment arms 23 of the installation base section 11 via.
  • the shade attachment piece portion 52 is attached to both attachment arms 23, so that the center position of the shade portion 51 is located on the projection optical axis Lp.
  • the shade part 51 is provided with an irradiation slit 53 that is partially cut out from a plate-shaped member and penetrated through it.
  • the irradiation slit 53 partially passes the light from the first light source 31 and the second light source 32 that are focused by the condenser lens 14 (its condenser lens body 41), thereby projecting an irradiation pattern Pi into a predetermined shape. Form into shape.
  • the irradiation slit 53 corresponds to the irradiation pattern Pi, and as shown in FIGS. 3, 4, 8, etc., in the first embodiment, it is composed of three slit parts 54.
  • each slit portion 54 corresponds one-to-one to the three irradiation patterns Di. Since the projection lens 16 inverts the shade 15 (irradiation slit 53) and projects it onto the road surface 2, each slit portion 54 has a projection optical axis Lp with respect to the positional relationship of each irradiation pattern Di of the irradiation pattern Pi. The positional relationship is rotational symmetry with respect to the center (see FIGS. 3 and 4). Therefore, in each slit section 54, the first slit section 541 at the bottom in the vertical direction corresponds to the first irradiation pattern Di1 of the irradiation pattern Pi, and the second slit section 542 above it corresponds to the second irradiation pattern Di1.
  • the first slit part 541 and the second slit part 542 become far-field slit parts corresponding to the first irradiation pattern Di1 and the second irradiation pattern Di2, which are far-field irradiation patterns. Further, in each slit portion 54, the uppermost third slit portion 543 becomes a near slit portion corresponding to the third irradiation pattern Di3, that is, the near irradiation pattern.
  • each slit portion 54 on the shade portion 51 is set so that each irradiation pattern Di has a desired size and a desired positional relationship on the road surface 2.
  • the third slit part 543 is provided above the projection optical axis Lp
  • the second slit part 542 is provided below it
  • the first slit part 541 is provided below it. It is provided.
  • the second slit portion 542 is substantially entirely located below the horizontal line including the projection optical axis Lp, and a portion of both ends in the width direction is located above the horizontal line including the projection optical axis Lp. positioned.
  • the first slit portion 541 and the second slit portion 542, which are the far slit portions, are shaped to imitate a wide open V-shaped symbol similar to each corresponding irradiation pattern Di, and each irradiation pattern Di
  • the top, bottom, left and right are reversed.
  • the third slit portion 543 which is the near slit portion, has a pentagonal shape extending from the upper side toward the second slit portion 542, similar to the corresponding third irradiation pattern Di3, and is connected to the third irradiation pattern Di3.
  • the top, bottom, left and right are reversed.
  • each irradiation pattern Di has the size shown in FIG. 1 and is approximately equally spaced on the road surface 2.
  • the vehicle lamp 10 is provided so that the projection optical axis Lp is inclined with respect to the road surface 2, so that the distance from the shade 15 and the projection lens 16 to the road surface 2 is different.
  • each slit portion 54 (each irradiated pattern Di, which is the light transmitted therethrough) has a size and an interval corresponding to the distance.
  • each slit portion 54 are set according to the distance to the road surface 2 so that each irradiation pattern Di has the above-mentioned size and is approximately equally spaced on the road surface 2.
  • the first slit portion 541 has a shape that resembles a thin V-shaped symbol
  • the second slit portion 542 has a shape that resembles a thicker V-shaped symbol than the first slit portion 541. It is said that The second slit portion 542 is positioned in the shade portion 51 in a positional relationship such that the bent part of the upper outline of the outline patterning the downwardly projecting V-shaped symbol coincides with the projection optical axis Lp. (See Figure 8, etc.).
  • the third slit portion 543 has a shape resembling a regular pentagon that protrudes toward the second slit portion 542.
  • Each slit portion 54 has a shape that is wider in the width direction than the corresponding irradiation pattern Di.
  • the three slit portions 54 have different sizes and different intervals from each irradiation pattern Di.
  • the first slit section 541 has the smallest reduction ratio for the corresponding irradiation pattern Di, and when the light that has passed through is projected onto the road surface 2, it is enlarged at the largest enlargement ratio. 1 irradiation pattern Di1 is formed.
  • the third slit section 543 has the largest reduction ratio for the corresponding irradiation pattern Di, and when the light passing through is projected onto the road surface 2, it is enlarged at the smallest enlargement ratio. to form the third irradiation pattern Di3.
  • the projection lens 16 includes a projection lens body 55 that projects the light that has passed through the shade 15, and a pair of projection lens attachment pieces 56 that project from the projection lens body 55 in the width direction.
  • the projection lens body 55 is a circular convex lens when viewed in the optical axis direction, and in Example 1, the projection lens body 55 is a free-form surface with a convex entrance surface and an exit surface.
  • the projection lens body 55 forms an irradiation pattern Pi on the road surface 2 that is inclined with respect to the projection optical axis Lp, as shown in FIG. do.
  • the entrance surface and the exit surface may be convex or concave as long as the projection lens body 55 is a convex lens, and are not limited to the configuration of the first embodiment.
  • Both projection lens attachment pieces 56 are plate-shaped and are perpendicular to the optical axis direction, and are attached to each shade attachment piece 52 of the shade 15 attached to the ends 23a of both attachment arms 23 of the installation base 11. It is said that it is possible to Each projection lens attachment piece 56 is provided with a projection lens positioning hole 56a and a projection lens screw hole. Each projection lens positioning hole 56a is configured to allow the positioning protrusion 23b passed through the projection lens mounting piece 56 to be fitted therein with the projection lens mounting piece 56 facing the shade mounting piece 52. Each projection lens screw hole allows the screw 27 to be passed through the shade screw hole 52b with the projection lens attachment piece 56 facing the shade attachment piece 52.
  • the projection lens 16 is mounted on the installation base by passing the positioning protrusion 23b corresponding to each projection lens positioning hole 56a and screwing each screw 27 passed through each projection lens screw hole into the corresponding screw hole 23c. It is attached to both attachment arms 23 (ends 23a thereof) of No. 11. Thereby, in the projection lens 16, the projection optical axis Lp, which is the optical axis of the projection lens body 55, is oriented in a predetermined direction, and the direction of the projection optical axis Lp of the vehicle lamp 10 is set.
  • the condensing lens body 41 has a first lens section 61 corresponding to the first light source 31 and a second lens section 62 corresponding to the second light source 32.
  • the condensing lens 14 (condensing lens main body 41) of Example 1 with the second lens section 62 placed on the first lens section 61, the first lens section 61 and the second lens section 62 are are integrally formed.
  • the first lens portion 61 has a substantially circular shape when viewed from the front in the optical axis direction.
  • the first lens section 61 of the first embodiment condenses the spread light emitted from the first light source 31 into a state close to parallel to the projection optical axis Lp, and causes the light to proceed to the shade section 51.
  • This first lens section 61 has a first entrance surface 63 facing the first light source 31 and a first exit surface 64 facing the opposite side.
  • the first incident surface 63 has a central portion recessed inside the first lens portion 61 (on the opposite side from the first light source 31), and a curved surface convexly curved outward at the center. It has an entrance surface section 65 and an annular entrance surface section 66 surrounding it. Further, around the first entrance surface 63, a truncated conical reflecting surface 67 surrounding the annular entrance surface portion 66 is provided.
  • the curved entrance surface portion 65 faces the first light source 31 in the optical axis direction, and the first light source 31 is located near the rear focal point (rear focal point).
  • the curved entrance surface section 65 allows the light emitted from the first light source 31 to enter the first lens section 61 as parallel light traveling substantially parallel to the axis of the first lens section 61 . Note that this parallel light (parallel light) refers to light that has been collimated by passing through the curved incident surface portion 65.
  • the annular entrance surface section 66 is provided to protrude from the curved entrance surface section 65 toward the first light source 31 side, and among the light from the first light source 31, the light that does not proceed to the curved entrance surface section 65 is directed to the first lens section 61. Inject it into the inside.
  • the reflective surface 67 is formed at a position where light entering the first lens portion 61 from the annular entrance surface portion 66 travels. When the reflecting surface 67 reflects the light incident from the annular entrance surface section 66, it becomes parallel light that travels substantially parallel to the axis of the first lens section 61. Note that the reflective surface 67 may reflect light using total reflection, or may reflect light by adhering aluminum, silver, or the like by vapor deposition, painting, or the like.
  • the first entrance surface 63 allows the light emitted from the first light source 31 to travel into the first lens part 61 as parallel light that travels approximately parallel to the axis of the first lens part 61.
  • the light is guided to the first exit surface 64 .
  • the light that has passed through the curved entrance surface section 65 becomes direct light that goes directly toward the first exit surface 64 , and is reflected at the reflection surface 67 after passing through the annular entrance surface section 66 .
  • the emitted light is reflected inside and becomes reflected light directed toward the first output surface 64.
  • the first output surface 64 outputs the light incident from the first input surface 63 and made into parallel light to the front side in the front-rear direction.
  • the first output surface 64 has a substantially circular shape when viewed from the front, and includes an inner output surface section 68 and an outer output surface section 69 having different optical settings.
  • the inner exit surface section 68 is provided in the vicinity of the center of the first exit surface 64 in a region through which the light that has passed through the curved entrance surface section 65 travels.
  • the inner exit surface portion 68 of the first embodiment has a substantially circular shape when viewed from the front.
  • the inner exit surface section 68 refracts the light that has passed through the curved entrance surface section 65, thereby causing the light to travel toward the front side in the front-rear direction while being largely diffused in the width direction (horizontal direction).
  • the inner exit surface section 68 irradiates light from the first light source 31 through the curved entrance surface section 65, thereby distributing the light of the first light source 31 to a plurality of positions on the shade 15 (shade section 51) according to the optical characteristics.
  • the images are formed by appropriately overlapping them.
  • This optical characteristic can be set by adjusting the curvature (surface shape) of the curved entrance surface section 65 and the inner exit surface section 68 for each location, and in the first embodiment, the curvature is set by gradually changing the curvature.
  • This inner output surface section 68 appropriately refracts the light emitted from the first light source 31 and passes through the curved entrance surface section 65, thereby irradiating it onto the shade 15 to form an inner light distribution area Ai shown in FIG.
  • This inner light distribution area Ai substantially covers the entire area of the first slit portion 541 on the shade 15, which corresponds to the far side in the far slit portion (forms the first irradiation pattern Di1 located on the far side in the far irradiation pattern). The amount of light is the same.
  • the outer output surface section 69 is provided in a region surrounding the inner output surface section 68, and is a region in which light from the first light source 31, passed through the annular entrance surface section 66, and reflected by the reflection surface 67 travels. It is located in The outer output surface section 69 refracts the light from the first light source 31 through the annular entrance surface section 66 and reflected by the reflection surface 67, so that the light is focused on the axis side of the first lens section 61 toward the front side in the front-rear direction. Proceed toward.
  • the outer emission surface portion 69 forms a plurality of light distribution images of the first light source 31 in appropriate overlapping positions on the shade 15 in accordance with the optical characteristics.
  • This optical characteristic can be set by adjusting the curvature (surface shape) of the outer emission surface portion 69 together with the reflection surface 67 for each location, and in the first embodiment, these curvatures are set by gradually changing.
  • This outer output surface section 69 appropriately refracts the light emitted from the first light source 31, passes through the annular entrance surface section 66, and is reflected by the reflection surface 67, thereby irradiating it onto the shade 15 and providing an outer ring light distribution as shown in FIG. A region Ao is formed.
  • This outer ring light distribution area Ao is an area that forms a high luminous flux (light amount) on the shade 15.
  • the outer ring light distribution area Ao has the highest luminous flux from the apex of the first slit section 541 to the middle position in the width direction and near the apex of the second slit section 542, and has a lower luminous flux than that at the remaining far slit section.
  • the outer ring light distribution region Ao has a central luminous flux having a maximum value higher than at least the inner ring light distribution area Ai.
  • the first lens section 61 has its lens optical axis extending toward the apex of the first slit section 541, thereby making it easy to form the outer ring light distribution area Ao as described above.
  • the first lens section 61 forms an inner light distribution area Ai in which the entire area of the first slit section 541 is irradiated with the light from the first light source 31 that has passed through the inner exit surface section 68, and the outer exit surface section 69
  • the light from the first light source 31 that has passed through the first slit section 541 forms an outer ring light distribution area Ao that illuminates the entire distant slit section while having the highest luminous flux near the apex of the first slit section 541. Therefore, the first lens section 61 divides the light from the first light source 31 into the direct light which passes through the curved entrance surface section 65 to the inner exit surface section 68 and the reflection surface 67 which passes through the annular entrance surface section 66.
  • the first light distribution area A1 shown in FIG. 10 is formed by passing the reflected light toward the outer output surface portion 69 through different optical paths.
  • This first light distribution area A1 is a superposition of the above-described inner ring light distribution area Ai and outer ring light distribution area Ao, and extends from the apex of the first slit portion 541 to an intermediate position in the width direction and the second slit portion.
  • the first slit section 541 and the second slit section 542, that is, the far slit section, are irradiated with the highest luminous flux near the apex of the slit 542.
  • the second lens portion 62 is a convex lens having a substantially rectangular shape elongated in the width direction when viewed from the front in the optical axis direction, and as a whole, from the second light source 32.
  • the emitted light with a wide spread is condensed in a state close to parallel to the projection optical axis Lp, and is caused to proceed to the shade section 51.
  • the second lens section 62 has a second entrance surface 71 facing the second light source 32 and a second exit surface 72 facing the opposite side. Therefore, the second entrance surface 71 constitutes the entrance surface of the condenser lens 14 together with the first entrance surface 63 of the first lens section 61 .
  • the second exit surface 72 and the first exit surface 64 of the first lens section 61 constitute the exit surface of the condenser lens 14 .
  • the second lens portion 62 is a free-form surface in which the second entrance surface 71 and the second exit surface 72 are convex.
  • the second entrance surface 71 and the second exit surface 72 may be convex or concave as long as the second lens portion 62 is a convex lens, and are not limited to the configuration of the first embodiment.
  • the second entrance surface 71 faces the second light source 32 in the optical axis direction, and the second light source 32 is located near the rear focal point (rear focal point).
  • the curved entrance surface section 65 allows the light emitted from the second light source 32 to enter the second lens section 62 as parallel light traveling substantially parallel to the axis of the second lens section 62 .
  • the second exit surface 72 is provided on the opposite side to the second entrance surface 71, and refracts the light that has passed through the second entrance surface 71, thereby causing the light to travel forward in the front-rear direction while being diffused.
  • the second exit surface 72 irradiates the light from the second light source 32 through the second entrance surface 71, so that the plurality of second light sources 32 are positioned on the shade 15 (shade portion 51) in accordance with the optical characteristics.
  • the light distribution images are formed by appropriately overlapping each other.
  • This optical characteristic can be set by adjusting the curvature (surface shape) of the second entrance surface 71 and the second exit surface 72 for each location, and in the first embodiment, the curvature is set by gradually changing the curvature. .
  • This second output surface 72 appropriately refracts the light emitted from the second light source 32 and passes through the second entrance surface 71, and irradiates it onto the shade 15 to form a second light distribution area A2 shown in FIG. do.
  • this second light distribution area A2 on the shade 15, the entire area of the third slit section 543, which is the near slit section, has a substantially equal luminous flux (light amount).
  • the term "approximately equal luminous flux over the entire area” means that the luminous flux changes less than at least in the outer ring light distribution area Ao, and preferably means that the luminous flux is approximately uniform.
  • the second light distribution area A2 of the first embodiment has a lower luminous flux than the first light distribution area A1, that is, the inner light distribution area Ai and the outer light distribution area Ao.
  • the condensing lens 14 has a first light distribution area A1 formed by the first lens part 61 with the light from the first light source 31, and a second light distribution area A1 formed by the light from the second light source 32. By overlapping the second light distribution area A2, the light distribution area A shown in FIG. 12 is formed.
  • This light distribution area A has the highest luminous flux from the apex of the first slit part 541 to an intermediate position in the width direction and near the apex of the second slit part 542, and the rest in the first slit part 541 and the second slit part 542.
  • the light flux is set to be the next highest, and the entire area of the third slit portion 543 is made uniform with a light flux lower than those points.
  • the condensing lens 14 of Example 1 has the maximum luminous flux near the apex of the first slit portion 541 forming the first irradiation pattern Di1 on the shade 15.
  • the condensing lens 14 can form a predetermined luminous flux distribution with a predetermined intonation (sharpness (height difference in luminous flux)) for the far slit portion on the shade 15, and can form a predetermined luminous flux distribution with a predetermined intonation (sharpness (height difference in luminous flux)) for the far slit portion.
  • the vehicle lamp 10 can turn on and off the light sources (21, 22) as appropriate by supplying power from the lighting control circuit to both light sources (21, 22) from the board 34.
  • the light from both light sources (21, 22) is focused by the condensing lens 14, illuminates the shade 15, and is projected by the projection lens 16 after passing through the irradiation slit 53 (each slit portion 54). Then, an irradiation pattern Pi is formed on the road surface 2.
  • the irradiation pattern Pi is created by projecting the light transmitted through the irradiation slit 53 (each slit portion 54 thereof) of the shade 15 having the above-mentioned light distribution (luminous flux) distribution by the projection lens 16, thereby creating the first irradiation pattern.
  • the three irradiation patterns Di are arranged substantially in a straight line, with the highest luminous flux in Di1, especially near the tip. Further, in the vehicle lamp 10 of the first embodiment, since the first light source 31 and the second light source 32 are monochromatic, the influence of chromatic aberration in the projection lens 16 can be significantly suppressed, and the irradiation pattern Pi, that is, each irradiation The pattern Di can be made clear.
  • the vehicle lamp 10 is linked to a turn lamp, and when either the left or right turn lamp is turned on, the first light source 31 and the second light source 32 provided on the side where the left or right turn lamp is turned on are turned on.
  • An irradiation pattern Pi is formed on the road surface 2. For this reason, in a scene where the vehicle 1 is about to proceed from an alley with poor visibility to another alley, the vehicle lamp 10 can prevent the vehicle 1 from moving on the road surface 2 even if a person in the other alley cannot see the vehicle 1.
  • the irradiation pattern Pi formed on the screen can be visually recognized.
  • the two left and right vehicle lamps 10 simultaneously form the irradiation pattern Pi on the road surface 2, so if only the left and right turn lamps are blinking. Compared to this, it is possible to more reliably recognize that the hazard lamps are turned on.
  • the vehicle lamp 10 makes the first irradiation pattern Di1 and the second irradiation pattern Di2 which are far irradiation patterns V-shaped, and the third irradiation pattern which is a near irradiation pattern.
  • Di3 has a pentagonal shape that is elongated in the arrow direction Da. Therefore, in the vehicle lamp 10, the far-field irradiation pattern (first irradiation pattern Di1, second irradiation pattern Di2) corresponds to the arrow head in the arrow symbol, and the near-field irradiation pattern (third irradiation pattern Di3) corresponds to the arrow head.
  • the irradiation pattern Pi of Example 1 arranges both ends Die of the three irradiation patterns Di on the same straight line with an inclination toward the inside (the side approaching the vehicle 1) toward the rear side of the arrow direction Da. It is located in Thereby, the vehicle lamp 10 can make people around the vehicle 1 more intuitively understand that the irradiation pattern Pi points in the arrow direction Da.
  • the first light source 31 of the light source section 12 has two LED chips 31a arranged in parallel in the width direction, and a corresponding far slit section, that is, a first slit section 541 and a second slit section 542.
  • the shape is shaped like a V-shaped symbol that is elongated in the width direction. Therefore, the vehicle lamp 10 can efficiently irradiate the far slit portion over the entire width direction, and the far slit portion forms the far irradiation pattern, that is, the first irradiation pattern Di1 and the second irradiation pattern.
  • the entire area of the pattern Di2 can be brightened.
  • the conventional vehicle lamps described in the prior art documents are provided with a plurality of light guides individually corresponding to a plurality of light sources, and efficiently utilize the light from each light source.
  • each light guiding member diffuses the light internally to emit light with a substantially uniform luminous flux distribution, and the light passing through each light guiding member illuminates the shade (light shielding member).
  • the shade light shielding member
  • the light distribution (luminous flux) distribution on the shade is made substantially uniform.
  • conventional vehicle lamps light from a corresponding light source is guided onto the shade for each light guide, so each light source is guided onto the shade separately. For this reason, conventional vehicle lamps obtain a desired light distribution on the shade by continuously changing the luminous flux in the low luminous flux region and forming a partial high luminous flux region on the shade. It is difficult to
  • the vehicle lamp 10 is provided with a single condensing lens 14 that condenses light from each of the two light sources (21, 22).
  • the condensing lens 14 includes a first lens section 61 corresponding to the first light source 31 and a second lens section 62 corresponding to the second light source 32.
  • the first lens section 61 the light emitted from the first light source 31 in a direction substantially along the output optical axis 31L is made to enter from the curved entrance surface section 65 of the first entrance surface 63, and the light is spread out from the first light source 31 (output).
  • the first lens section 61 mainly allows the light that has passed through the curved entrance surface section 65 to exit from the inner exit surface section 68 of the first exit surface 64, and mainly allows the light that has passed through the annular entrance surface section 66 and been reflected on the reflection surface 67 to exit.
  • the light is emitted from the outer emission surface portion 69 of the first emission surface 64.
  • the first lens section 61 forms an inner ring light distribution area Ai on the shade 15 with the light that has passed through the curved entrance surface section 65 and the inner exit surface section 68, passes through the annular entrance surface section 66, is reflected by the reflective surface 67, and is emitted to the outside.
  • the light passing through the surface portion 69 forms an inner light distribution area Ai on the shade 15.
  • the first lens section 61 by utilizing the difference between the optical path passing through the curved entrance surface section 65 and the inner exit surface section 68 and the optical path passing through the annular entrance surface section 66, the reflective surface 67, and the outer exit surface section 69, An outer ring light distribution area Ao and an inner ring light distribution area Ai are formed with mutually different positions, sizes, and light distributions (luminous fluxes). Then, the first lens section 61 is arranged in a predetermined position on the far slit section (first slit section 541, second slit section 542) by overlapping the outer ring light distribution area Ao and the inner ring light distribution area Ai, which have different light distributions.
  • a first light distribution area A1 is formed that has a luminous flux distribution with intonation (sharpness (height difference in luminous flux)).
  • the second lens section 62 is a convex lens, the light from the second light source 32 is made incident through the second incident surface 71 and emitted from the second exit surface 72, thereby allowing the light to enter the near slit portion of the shade 15.
  • a second light distribution area A2 having a lower and uniform luminous flux than the first light distribution area A1 is formed on (the third slit portion 543).
  • the near slit portion corresponds to the third irradiation pattern Di3, which is a near irradiation pattern in the irradiation pattern Pi, and is projected at a location close to the vehicle 1, that is, a location close to the vehicle lamp 10. Therefore, in order to form a near-field illumination pattern that is easy to see, it is desirable that the light flux be uniform and lower than that of the far-field slit section.
  • the vehicle lamp 10 can illuminate the shade 15 with a desired light distribution, and can achieve the desired luminous flux distribution. It is possible to form one light distribution area A1 and a second light distribution area A2 with a uniform luminous flux lower than the second light distribution area A1.
  • the vehicle lamp 10 forms the light distribution area A by overlapping the first light distribution area A1 and the second light distribution area A2 on the shade 15, thereby creating an easy-to-see irradiation pattern Pi with a desired brightness distribution. Can be formed. Therefore, compared to conventional vehicle lamps, the vehicle lamp 10 has a simpler configuration using a single condensing lens 14, and allows adjustment of the light distribution in the light distribution area A formed on the shade 15. This can be done easily, and the irradiation pattern Pi to be formed can have a desired brightness distribution.
  • the third irradiation pattern Di3 of Example 1 has an elongated shape in the arrow direction Da and extends to the vicinity of the vehicle 1 on which the vehicle lamp 10 is mounted.
  • the third irradiation pattern Di3 of Example 1 has an elongated shape in the arrow direction Da so as to reduce the distance from the vehicle 1.
  • the third slit portion 543 corresponds to the third irradiation pattern Di3, it has a large area on the shade portion 51.
  • the third slit part 543 is irradiated using a lens that has a predetermined luminous flux distribution with a modulated luminous flux like the first lens part 61, it will be difficult to irradiate the entire area.
  • the third irradiation pattern Di3 may have uneven brightness, such as dark spots, and may not be able to form an appropriate third irradiation pattern Di3.
  • the vehicle lamp 10 uses the first lens section 61 for the far slit section (first slit section 541, second slit section 542) to provide a first light distribution area A1 with a predetermined luminous flux distribution.
  • a second light distribution area A2 with a uniform light flux is formed using the second lens part 62 for the near slit part (third slit part 543). Therefore, even if the vehicle lamp 10 uses a single condensing lens 14, on the shade portion 51, a portion with a predetermined luminous flux distribution with a modulation and a portion with a uniform luminous flux are formed together. can do.
  • the vehicle lamp 10 can make the center of the tip of the far irradiation pattern (first irradiation pattern Di1, second irradiation pattern Di2) clear, and the near irradiation pattern (third irradiation pattern Di3) can be clearly defined.
  • the whole can be made clear, and a more appropriate irradiation pattern P can be formed.
  • the vehicle lamp 10 of Example 1 can obtain the following effects.
  • the vehicle lamp 10 includes a first light source 31 and a second light source 32 arranged in parallel, a condensing lens 14 that condenses light from them, and an irradiation slit 53 that partially passes the condensed light.
  • the projector includes a shade 15 as a light-shielding member, and a projection lens 16 that projects the light passing through the shade 15 to form an irradiation pattern Pi.
  • the condensing lens 14 has a first lens section 61 corresponding to the first light source 31 and a second lens section 62 corresponding to the second light source 32.
  • the irradiation slit 53 includes a near slit portion (third slit portion 543) corresponding to the near irradiation pattern (third irradiation pattern Di3) and a far irradiation pattern (first irradiation pattern Di1, second irradiation pattern Di2). It has a far slit section (a first slit section 541, a second slit section 542) corresponding to the above.
  • the first lens part 61 is arranged to face the far slit part
  • the second lens part 62 is arranged to face the near slit part.
  • the vehicle lamp 10 uses a single condensing lens 14 for the two light sources (21, 22), and creates two different optical paths between the first lens section 61 and the second lens section 62.
  • two light distribution areas in Example 1, a first light distribution area A1 and a second light distribution area A2 with different positions, sizes, and light distributions (luminous fluxes) can be formed.
  • the optical characteristics of the first lens part 61 are set according to the light distribution area required on the far slit part, and the second lens part 62 is set to match the light distribution area required on the near slit part.
  • Optical characteristics can be set according to the area.
  • the vehicle lamp 10 can efficiently utilize the light from both the light sources (21, 22), and can simplify the configuration of the first lens section 61 and the second lens section 62 while also providing a near slit section and a The far slit portion can be irradiated with a desired luminous flux distribution. Therefore, the vehicle lamp 10 can easily adjust the light distribution on the light shielding member, and can make the formed irradiation pattern Pi have a desired brightness distribution.
  • the first lens part 61 forms a first light distribution area A1 on the light shielding member (shade 15) that illuminates the entire area of the far slit part with light from the first light source 31, and
  • the lens section 62 forms a second light distribution area A2 on the light shielding member (shade 15) in which the entire area of the near slit section is irradiated with light from the second light source 32. Therefore, in the vehicle lamp 10, the positions and optical characteristics of the first light source 31 and the first lens portion 61 are set to form the first light distribution area A1, and at the same time, to form the second light distribution area A2.
  • the positions and optical characteristics of the second light source 32 and the second lens section 62 can be set accordingly. From this, the vehicle lamp 10 can simplify the configuration of the condensing lens 14 and make the formed irradiation pattern Pi have a desired brightness distribution.
  • the first lens section 61 has a curved entrance surface section 65 facing the first light source 31, an annular entrance surface section 66 surrounding the curved entrance surface section 65, and a reflective surface 67 surrounding the annular entrance surface section 66.
  • the second lens portion 62 is a convex lens that condenses the light from the second light source 32.
  • the first lens section 61 forms an inner light distribution area Ai on the light shielding member (shade 15), which illuminates the far slit section with light from the first light source 31 that has passed through the curved entrance surface section 65.
  • the first lens section 61 also uses light from the first light source 31 that passes through the annular entrance surface section 66 and is reflected by the reflective surface 67 on the light shielding member (shade 15) to make the vicinity of the center of the far slit section higher than the surrounding area.
  • An outer ring light distribution area Ao is formed that illuminates the entire distant slit portion while providing a luminous flux. Therefore, the vehicle lamp 10 utilizes the difference in the optical path in the first lens portion 61 to create an outer ring light distribution area Ao and an inner ring light distribution area Ai that have different positions, sizes, and light distributions (luminous fluxes). By forming and overlapping them, it is possible to form the first light distribution area A1 with a luminous flux distribution with a predetermined intonation, and it is possible to form a long-distance illumination pattern with a desired brightness distribution.
  • the second light distribution area A2 has a lower luminous flux than the inner ring light distribution area Ai and the outer ring light distribution area Ao, and has a smaller luminous flux difference than the outer ring light distribution area Ao. Therefore, the vehicle lamp 10 can easily form the second light distribution area A2 as described above by the second lens portion 62, which is a convex lens, and form a near-field illumination pattern with a desired brightness distribution. can.
  • the vehicle lamp 10 has a first lens part 61 and a second lens part 62 integrated. Therefore, the vehicle lamp 10 can improve the relative positional accuracy of the first lens part 61 and the second lens part 62, and can simplify the assembly process and the like.
  • first slit portion 541, second slit portion 542 is positioned below the projection optical axis Lp of the projection lens 16. It is set up. Therefore, in the vehicle lamp 10, the first lens part 61 and the second lens part 62 (their center positions (axis lines)) are provided in the condensing lens 14, arranged vertically so as to sandwich the projection optical axis Lp. , and the overall configuration can be small.
  • the vehicle lamp 10 has a first light source 31 and a second light source 32 arranged in parallel in the vertical direction, and the first light source 31 is located below the second light source 32. Therefore, the vehicle lamp 10 can be provided with the first light source 31 and the second light source 32 in line with the first lens part 61 and the second lens part 62 in the condensing lens 14, and has a small overall structure. It can be done.
  • the far-field irradiation pattern includes a first irradiation pattern Di1 and a second irradiation pattern Di2, and the far slit portion includes a first slit portion 541 corresponding to the first irradiation pattern Di1 and a second irradiation pattern. It has a second slit portion 542 corresponding to Di2.
  • the first light distribution area A1 has the highest luminous flux near the center of the first slit portion 541 in the first light distribution area A1 and the second light distribution area A2.
  • the vehicle lamp 10 can irradiate the center of the far slit portion with the highest luminous flux, make the center of the far irradiation pattern of the irradiation pattern Pi clear, and adjust the irradiation pattern Pi to a desired brightness distribution. Visibility can be increased as a result.
  • the vehicle lamp 10 of Example 1 as a vehicle lamp according to the present disclosure can form an irradiation pattern Pi with a desired brightness distribution while efficiently utilizing the light from both light sources (11, 12). .
  • the two first irradiation patterns Di1 and second irradiation pattern Di2, which are V-shaped symbols, and the third irradiation pattern Di3, which has an evenly spaced shape, are arranged in the direction away from the vehicle 1.
  • the irradiation pattern Pi is formed by arranging them at substantially equal intervals.
  • the irradiation pattern is formed by a shade (light shielding member) and has a far irradiation pattern and a near irradiation pattern
  • the irradiation pattern Di includes the symbol design, the position to form, and the irradiation pattern.
  • the number of Di and the like may be set as appropriate, and are not limited to the configuration of the first embodiment.
  • the near irradiation pattern may be one projected at a close position in the irradiation pattern Pi, and the corresponding near slit portion may be disposed facing the second lens portion 62. configuration. Furthermore, if the far-field irradiation pattern is projected at a position farther than the near-field irradiation pattern in the irradiation pattern Pi, and the corresponding far-field slit part is arranged facing the first lens part 61, then
  • the present invention is not limited to the configuration of the first embodiment.
  • the vehicle lamp 10 was provided at the front of the vehicle 1 in the first embodiment, it may be housed in the door mirror if it is provided on the vehicle 1 depending on the position that forms the irradiation pattern with respect to the vehicle 1. It may be arranged in the headlight chamber or the taillight chamber (light chambers on both left and right sides of the rear of the vehicle), or it may be provided in the vehicle body, and is not limited to the configuration of the first embodiment.
  • the first light source 31 and the second light source 32 are designed to emit amber light.
  • the color of the light emitted from the light source may be appropriately set depending on the location where it is provided and the content to be conveyed, and is not limited to the configuration of the first embodiment.
  • a shade 15 that allows the light collected by the condensing lens 14 to pass through the irradiation slit 53 is used as the light shielding member.
  • the light shielding member may have any other configuration as long as it is provided with the irradiation slit 53 that partially passes the light condensed by the condensing lens 14, and is not limited to the configuration of each embodiment.
  • Other configurations include, for example, providing a plate-shaped film member that blocks light transmission with an irradiation slit that partially transmits the light, and a light shielding plate (filter) that transmits the light that has passed through the condenser lens 14 from the irradiation slit. It can be done.
  • a vehicle lamp 10 is provided in a vehicle 1 driven by a driver.
  • the vehicle lamp may be provided in a vehicle having an automatic driving function, and is not limited to the configuration of the first embodiment.
  • the vehicular lamp may form an irradiation pattern at a timing according to the intended use, that is, at a timing according to some intention regarding the operation of the vehicle 1, and is not limited to the configuration of the first embodiment.
  • the light source section 12 is provided on an installation base section 11 that functions as a heat sink, and a light shielding frame 13, a condensing lens 14, a shade 15, and a projection lens 16 are attached to this installation base section 11.
  • the vehicle lamp may have any other configuration as long as it forms an irradiation pattern by condensing light from a light source onto a light shielding member with a condensing lens and projecting it with a projection lens. configuration.
  • the first light source 31 has two LED chips 31a and a phosphor 31b covering them, and the second light source 32 has one LED chip 32a and a phosphor 32b covering it. It is assumed that it has the following. However, as long as the first light source 31 corresponds to the first lens section 61 and the second light source 32 corresponds to the second lens section 62, the configurations of both light sources may be set as appropriate. It is not limited to the configuration of the first embodiment.
  • FIG. 13 in order to make it easier to understand how the vehicle light fixture 110 is provided, the vehicle light fixture 110 is emphasized with respect to the vehicle 101, and this does not necessarily match the actual state. It's not a thing.
  • a second light distribution area is formed in the second slit part 1362 by the light from the second light source 125 on the shade 114 (the irradiation slit 135 of the shade part 133), and a second light distribution area is formed in the second slit part 1362 on the shade 114 (the irradiation slit 135 of the shade part 133).
  • a vehicle lamp 110 of Example 2 according to an embodiment of the vehicle lamp according to the present disclosure will be described with reference to FIGS. 13 to 21.
  • the vehicle lamp 110 of the second embodiment is used as a lamp for a vehicle 101 such as a car. It is provided at the front of the vehicle 101 to form an irradiation pattern Pi at 102 .
  • the surrounding area in front of the vehicle 101 necessarily includes an adjacent area closer to the vehicle 101 than the headlight area illuminated by the headlights provided on the vehicle 101, and partially includes the headlight area. In some cases.
  • the vehicle lamp 110 may also form the irradiation pattern Pi on the road surface 102 around the rear and sides of the vehicle 101, and is not limited to the configuration of the second embodiment.
  • each vehicle lamp 110 is arranged at a position higher than the road surface 102 at the front end of the vehicle 101, and the projection optical axis Lp (see FIG. 14, etc.) is inclined with respect to the road surface 102. It will be done.
  • the two vehicular lamps 110 have basically the same configuration except that the mounting positions and the positions where the irradiation patterns Pi are formed are different.
  • the direction in which the projection optical axis Lp, which is the direction in which light is irradiated (projected), extends is referred to as the optical axis direction (Z in the drawing), and the optical axis direction is along the horizontal plane.
  • the vertical direction is the vertical direction (designated as Y in the drawing), and the direction perpendicular to the optical axis direction and the vertical direction (horizontal direction) is the width direction (designated as X in the drawing) (see Figure 14, etc.) .
  • the vehicle lamp 110 has a light source section 112, a condensing lens 113, a shade 114, and a projection lens 115 attached to an installation base section 111 to form a single projection optical system, and is used as a projector. type of road surface projection unit.
  • the installation base section 111 is a place where the light source section 112 is installed, and is formed of heat-conductive aluminum die-casting or resin, and functions as a heat sink that releases the heat generated in the light source section 112 to the outside.
  • the installation stand section 111 has a base section 121 and a pair of attachment arm sections 122.
  • the base portion 121 has a flat plate shape perpendicular to the optical axis direction, and the light source portion 112 is attached to the light source attachment point in the center.
  • This light source attachment point is a flat surface, and is provided with a plurality of screw holes and a plurality of positioning protrusions.
  • the base portion 121 is provided with a plurality of radiation fins, and the heat generated in the light source portion 112 installed at the light source mounting location is mainly radiated to the outside from each radiation fin.
  • the pair of mounting arms 122 are provided in pairs on both outer sides of the light source section 112 in the width direction, and protrude from the base section 121 toward the front side in the optical axis direction.
  • the front ends of both attachment arms 122 in the optical axis direction are flat surfaces perpendicular to the optical axis direction.
  • a positioning protrusion 122a and a screw hole 122b are provided at each end.
  • the positioning protrusion 122a is provided at the lower part of the end in the vertical direction and protrudes forward in the optical axis direction.
  • the screw hole 122b is provided in the upper part of the end portion in the vertical direction, and allows the condenser lens 113, the shade 114, and the projection lens 115 to be fixed by screwing the screw 123.
  • the light source section 112 includes a first light source 124, a second light source 125, a third light source 126 (see FIG. 15, etc.), a connector terminal 127, and a substrate 128 on which they are mounted.
  • These three light sources (124, 125, 126) are composed of light emitting elements such as LEDs (Light Emitting Diodes).
  • the three light sources (124, 125, 126) emit amber light (amber light) with a Lambertian distribution centered on the emission optical axis.
  • the three light sources (124, 125, 126) may be appropriately set in color (wavelength band), distribution mode, number of colors, etc., and are not limited to the configuration of the second embodiment.
  • the three light sources (124, 125, 126) of the second embodiment are provided in parallel in the vertical direction with the projection optical axis Lp in between, as shown in FIG.
  • the second light source 125 is located above the projection optical axis Lp, and the third light source 126 is located above the second light source 125.
  • the first light source 124 has a rectangular shape elongated in the width direction, and includes two LED chips 124a and a phosphor 124b covering each of the LED chips 124a.
  • the second light source 125 has a substantially square shape and includes one LED chip 125a and a phosphor 125b covering each LED chip 125a.
  • the third light source 126 has a substantially square shape and includes one LED chip 126a and a phosphor 126b covering each of the LED chips 126a.
  • the three light sources (124, 125, 126) emit light from the respective LED chips 124a, 125a, 126a as amber light by passing the light through phosphors 124b, 125b, 126b. Therefore, in the first light source 124, the phosphor 124b functions as a first light emitting surface, in the second light source 125, the phosphor 125b functions as a second light emitting surface, and in the third light source 126, the phosphor 126b functions as a first light emitting surface. 3 Functions as a light emitting surface.
  • the connector terminal 127 is electrically connected to the wiring pattern of the board 128, and the connector connected to the lighting control circuit is detachable.
  • the connector terminal 127 is provided at the lower end of the substrate 128 in the vertical direction, so that the connector can be easily attached and detached.
  • the connector terminal 127 allows power to be supplied from the lighting control circuit to each light source (124, 125, 126) via a wiring pattern by attaching a connecting connector.
  • the board 128 is a plate-shaped board made of a resin material such as a glass epoxy board, and each light source (124, 125, 126) is mounted thereon.
  • a plurality of screw holes are provided corresponding to the screw holes at the light source attachment point of the base section 121 of the installation table section 111, and a plurality of positioning holes are provided corresponding to each positioning protrusion at the light source attachment point. It is provided.
  • This board 128 is attached to the base portion 121 by passing the positioning projections corresponding to each positioning hole and screwing the screws 129 passed through each screw hole into the corresponding screw hole.
  • the substrate 128 allows each of the mounted light sources (124, 125, 126) to face the condenser lens 113.
  • the board 128 appropriately supplies power from the lighting control circuit via the connector terminal 127 to turn on each light source (124, 125, 126) as appropriate.
  • the condenser lens 113 condenses the light emitted from each light source (124, 125, 126), and condenses the light emitted from each light source (124, 125, 126), and condenses the light emitted from each light source (124, 125, 126), and condenses the light around each slit section 136 on the shade 114, that is, all the slit sections on the shade 114. 136 and focuses light on a region where each slit portion 136 is provided.
  • the condenser lens 113 includes a condenser lens body 131 that condenses light from each light source (124, 125, 126), and a pair of condenser lens attachment pieces 132 that protrude from the condenser lens body 131 in the width direction. .
  • the condensing lens main body 131 and the condensing lens attachment piece 132 are integrally formed, and in the second embodiment, they are integrally formed by resin molding using a mold.
  • the condensing lens body 131 has optical characteristics set so as to form a predetermined light distribution area on the shade 114. This will be discussed later.
  • Both condensing lens attachment pieces 132 are plate-shaped and perpendicular to the optical axis direction, and can be attached to the ends of both attachment arms 122 of the base 121 of the installation stand 111.
  • Each condensing lens attachment piece 132 is provided with a condensing lens positioning hole 132a and a condensing lens screw hole 132b.
  • Each condensing lens positioning hole 132a can be fitted with its positioning protrusion 122a with the condensing lens attachment piece 132 directed toward its end.
  • Each of the condensing lens screw holes 132b allows the screw 123 to be inserted into the screw hole 122b with the condensing lens mounting piece 132 facing toward the end.
  • the condensing lens 113 is assembled by screwing each screw 123 passed through each condensing lens screw hole 132b into the corresponding screw hole 122b while passing the positioning protrusion 122a corresponding to each condensing lens positioning hole 132a. , are attached to both mounting arms 122 (ends thereof) of the installation base section 111.
  • the shade 114 is an example of a light shielding member that forms an irradiation pattern Pi by partially passing the light from each light source (124, 125, 126) focused by the condensing lens 113 through an irradiation slit 135, which will be described later. .
  • the irradiation pattern Pi as shown in FIG. 13, three irradiation patterns Di are arranged at approximately equal intervals in a direction moving away from the vehicle 101.
  • the one farthest from the vehicle 101 is the first irradiation pattern Di1
  • the second irradiation pattern Di2 and the third irradiation pattern Di3 shall be.
  • each of the irradiation patterns Di is a substantially isosceles triangle whose base is on the vehicle 101 side, and has substantially the same size and shape.
  • This irradiation pattern Pi is formed by arranging a first irradiation pattern Di1, a second irradiation pattern Di2, and a third irradiation pattern Di3 on the same straight line so as to move away from the vehicle 101 on a road surface 102 serving as a projection surface. . Therefore, the irradiation pattern Pi can be made to look like an arrow pointing in the direction in which the three irradiation patterns Di are arranged.
  • the direction in which the arrow as this irradiation pattern Pi points is defined as the arrow direction Da, and the side it points to (first irradiation pattern Di1 side) is the front side in the arrow direction Da.
  • the irradiation pattern Pi consisting of the three irradiation patterns Di is formed by the shade 114.
  • the shade 114 is basically formed of a plate-shaped member that blocks the transmission of light, and includes a shade portion 133 and a pair of shade attachment pieces 134.
  • the shade attachment piece portion 134 protrudes from the shade portion 133 on both sides in the width direction, and is attached to each condenser lens attachment piece portion 132 of the condenser lens 113 attached to the ends of both attachment arms 122 of the installation base portion 111. It is said that it is possible to address.
  • Each shade attachment piece 134 is provided with a shade positioning hole 134a and a shade screw through hole 134b.
  • Each shade positioning hole 134a is configured to allow the positioning protrusion 122a inserted therein to be fitted in a state where the shade attachment piece 134 is directed toward the condenser lens attachment piece 132.
  • Each shade screw through hole 134b is configured such that the screw 123 that is inserted into the condenser lens screw through hole 132b can be passed through when the shade attachment piece 134 is attached to the condenser lens attachment piece 132.
  • the shade 114 is configured such that the condenser lens 113 is inserted by passing the positioning protrusion 122a corresponding to each shade positioning hole 134a and by screwing each screw 123 passed through each shade screw hole 134b into the corresponding screw hole 122b.
  • the shade attachment piece portion 134 is attached to both attachment arm portions 122, so that the center position of the shade portion 133 is located on the projection optical axis Lp.
  • the shade part 133 is provided with an irradiation slit 135 that is partially cut out from a plate-shaped member and penetrated through it.
  • the irradiation slit 135 partially passes the light from each light source (124, 125, 126) focused by the condenser lens 113 (its condenser lens body 131), thereby projecting an irradiation pattern Pi into a predetermined shape. Form into shape.
  • the irradiation slit 135 corresponds to the irradiation pattern Pi, and is composed of three slit parts 136 in the second embodiment.
  • each slit portion 136 corresponds one-to-one to the three irradiation patterns Di. Since the projection lens 115 inverts the shade 114 (irradiation slit 135) and projects it onto the road surface 102, each slit portion 136 has a projection optical axis Lp with respect to the positional relationship of each irradiation pattern Di of the irradiation pattern Pi. The positional relationship is rotationally symmetrical about the center. Therefore, in each slit section 136, the first slit section 1361 at the bottom in the vertical direction corresponds to the first irradiation pattern Di1 of the irradiation pattern Pi, and the second slit section 1362 above it corresponds to the second irradiation pattern Di2. Correspondingly, the third slit portion 1363 above it corresponds to the third irradiation pattern Di3.
  • each slit portion 136 on the shade portion 133 are set so that each irradiation pattern Di has a targeted size and a targeted positional relationship on the road surface 102.
  • the third slit section 1363 is provided above the projection optical axis Lp
  • the second slit section 1362 is provided on the projection optical axis Lp
  • the first slit section is provided below the third slit section 1363.
  • a section 1361 is provided (see FIG. 21). The light transmitted through the shade 114 (each slit portion 136 of the irradiation slit 135) is projected onto the road surface 102 by the projection lens 115.
  • Each slit portion 136 has a substantially isosceles triangular shape similar to each corresponding irradiation pattern Di, and is inverted vertically and horizontally with respect to each irradiation pattern Di.
  • the three slit portions 136 have their sizes and intervals set according to the distance to the road surface 102 so that each irradiation pattern Di has the size shown in FIG. 13 described above and is approximately equally spaced on the road surface 102. There is. Specifically, since the vehicle lamp 110 is provided with the projection optical axis Lp inclined with respect to the road surface 102, the distance from the shade 114 and the projection lens 115 to the road surface 102 is different.
  • each slit portion 136 (each irradiation pattern Di, which is the light transmitted therethrough) has a size and an interval according to the distance.
  • the first slit portion 1361 is the smallest and has a substantially isosceles triangle shape that is shortened in the height direction
  • the second slit portion 1362 is a substantially isosceles triangle that is larger than the first slit portion 1361.
  • the third slit portion 1363 is a substantially isosceles triangle larger than the second slit portion 1362, and the bottom surface is curved so as to bulge out a little.
  • Each slit portion 136 is wider in the width direction than the corresponding irradiation pattern Di, and the distance between the second slit portion 1362 and the third slit portion is wider than the distance between the first slit portion 1361 and the second slit portion 1362.
  • the distance from the portion 1363 is larger.
  • the three slit portions 136 have different sizes and different intervals from each irradiation pattern Di.
  • the first slit section 1361 has the smallest reduction ratio for the corresponding irradiation pattern Di, and when the light that has passed through is projected onto the road surface 102, it is enlarged at the largest enlargement ratio. 1 irradiation pattern Di1 is formed.
  • the third slit section 1363 has the largest reduction ratio for the corresponding irradiation pattern Di, and when the light passing through is projected onto the road surface 102, it is enlarged at the smallest enlargement ratio. to form the third irradiation pattern Di3.
  • the projection lens 115 has a projection lens main body 137 that projects the light passing through the shade 114, and a pair of projection lens attachment pieces 138 that protrude from the projection lens main body 137 in the width direction.
  • the projection lens body 137 is a circular convex lens when viewed in the optical axis direction, and in the second embodiment, the projection lens body 137 is a free-form surface with a convex entrance surface and an exit surface.
  • the projection lens body 137 forms an irradiation pattern Pi on the road surface 102 that is inclined with respect to the projection optical axis Lp by projecting the irradiation slit 135 (each slit portion 136 thereof) of the shade 114 (see FIG. 13).
  • the entrance surface and the exit surface may be convex or concave as long as the projection lens body 137 is a convex lens, and are not limited to the configuration of the second embodiment.
  • Both projection lens attachment pieces 138 are plate-shaped and perpendicular to the optical axis direction, and are attached to each shade attachment piece 134 of the shade 114 attached to the ends of both attachment arms 122 of the installation base 111. It is considered possible.
  • Each projection lens mounting piece 138 is provided with a projection lens positioning hole 138a and a projection lens screw hole. Each projection lens positioning hole 138a can fit the positioning protrusion 122a passed therein with the projection lens attachment piece 138 facing the shade attachment piece 134.
  • Each projection lens screw through hole allows the screw 123 to be passed through the shade screw through hole 134b with the projection lens attachment piece 138 facing the shade attachment piece 134.
  • the projection lens 115 is mounted on the installation base by screwing each screw 123 passed through each projection lens screw hole into the corresponding screw hole 122b while passing the positioning protrusion 122a corresponding to each projection lens positioning hole 138a. It is attached to both attachment arms 122 (ends thereof) of 111. Thereby, in the projection lens 115, the projection optical axis Lp, which is the optical axis of the projection lens body 137, is oriented in a predetermined direction, and the direction of the projection optical axis Lp of the vehicle lamp 110 is set.
  • This condensing lens body 131 (condensing lens 113) has a front surface 141 facing the shade 114 and a back surface 142 facing the light source section 112.
  • This condensing lens body 131 includes a first lens section 143 corresponding to the first light source 124, a second lens section 144 corresponding to the second light source 125, and a third lens section 145 corresponding to the third light source 126. has.
  • the condensing lens 113 (condensing lens body 131) of Example 2, the second lens section 144 is placed on the first lens section 143, and the third lens section 145 is placed on the second lens section 144. In this state, the first lens section 143, second lens section 144, and third lens section 145 are integrally formed.
  • the condensing lens 113 of the second embodiment has a first lens section 143 and a first lens section 143 in order to appropriately illuminate each slit section 136 of the shade 114 with the light emitted from the light source section 112, that is, each light source (124, 125, 126).
  • the shapes (optical) of the front surface 141 side and the back surface 142 side of the second lens section 144 and the third lens section 145 are set.
  • the first lens portion 143 is opposed to the first light source 124 in the optical axis direction (located on the output optical axis of the first light source 124), and directs the light from the first light source 124 to the first slit portion 1361 of the shade 114. focuses light on the area provided. As shown in FIG. 16, FIG. 17, FIG.
  • the back surface 142 of the first lens portion 143 has a central portion recessed inside the condenser lens 113 (on the opposite side from the light source portion 112);
  • a first opposing entrance surface section 151 that is curved convexly to the outside, a first inclined entrance surface section 152 surrounding it, and a first reflective surface 153 that surrounds the first inclined entrance surface section 152 in a truncated conical shape are provided. ing.
  • the first opposing entrance surface section 151 is provided on the output optical axis of the first light source 124, facing the first light source 124 in the optical axis direction, and the first light source 124 is located near the rear focal point (rear focal point). Ru.
  • the first opposing entrance surface section 151 allows the light emitted from the first light source 124 to enter the first lens section 143 as parallel light traveling approximately parallel to the axis of the first lens section 143. 1 toward the inner exit surface section 155. Note that this parallel light (parallel light) refers to light that has been collimated by passing through the first opposing incident surface portion 151.
  • the first inclined incidence surface section 152 is provided to protrude toward the first light source 124 side, and directs light from the first light source 124 that does not proceed to the first opposing entrance surface section 151 into the first lens section 143. Inject it into the
  • the first reflective surface 153 is provided at a position where light entering the condensing lens 113 from the first inclined entrance surface section 152 travels.
  • the first reflective surface 153 reflects the light incident from the first inclined entrance surface section 152 and converts it into parallel light traveling approximately parallel to the axis of the first lens section 143 to a first outer exit surface section 156 (described later) of the surface 141. Proceed toward.
  • the first reflecting surface 153 may reflect light using total reflection, or may reflect light by adhering aluminum, silver, or the like by vapor deposition, painting, or the like. For these reasons, the back surface 142 efficiently allows the light emitted from the first light source 124 to enter thereinto and guides it to the front surface 141.
  • the first lens section 143 the light that has passed through the first opposing entrance surface section 151 becomes direct light that goes directly toward the surface 141, and the light that has passed through the first inclined entrance surface section 152 and is reflected on the first reflective surface 153. is reflected inside and then becomes reflected light heading towards the surface 141 side. Since this first lens section 143 has such a configuration, it can efficiently utilize the light emitted from the corresponding first light source 124.
  • This first lens portion 143 is provided with a first output surface 154 that outputs the light incident on the surface 141 side to the front side in the front-rear direction.
  • the first output surface 154 has a circular shape with a part of the upper side cut away when viewed from the front, and has a first inner output surface section 155 and a first outer output surface part 155 having different optical settings. and an output surface section 156.
  • the first inner exit surface section 155 is provided in a region of the first exit surface 154 where the light that has passed through the first opposing entrance surface section 151 travels, and has a substantially circular shape when viewed from the front.
  • the first inner exit surface portion 155 protrudes further to the outside of the condenser lens 113 (projection lens 115 side (front side in the front-rear direction)) than the first outer exit surface portion 156 .
  • the first inner exit surface section 155 refracts the light that has passed from the first light source 124 through the first opposing entrance surface section 151, thereby positioning the first light source at a position corresponding to the optical characteristics on the first slit section 1361 of the shade 114.
  • a plurality of 124 light distribution images are appropriately overlapped and formed.
  • This optical characteristic can be set by adjusting the curvature (surface shape) of the first inner exit surface section 155 together with the first opposing entrance surface section 151 for each location, and in the second embodiment, it is set by gradually changing the curvature. ing.
  • the first outer emission surface section 156 is provided so as to surround a region sandwiching the first inner emission surface section 155 in the width direction and a region below the first inner emission surface section 155, and is provided with a first oblique incidence from the first light source 124. It is located in a region through which light reflected by the first reflecting surface 153 passes through the surface portion 152.
  • the first outer output surface section 156 is located (concave) inside the condenser lens 113 (on the rear side in the front-rear direction) than the first inner output surface section 155 .
  • the first outer output surface section 156 refracts the light from the first light source 124 through the first inclined entrance surface section 152 and reflected at the first reflective surface 153, thereby improving optical properties on the first slit section 1361 of the shade 114.
  • a plurality of light distribution images of the first light source 124 are appropriately overlapped and formed at positions corresponding to the above.
  • This optical characteristic can be set by adjusting the curvature (surface shape) of the first outer output surface section 156 together with the first reflection surface 153 for each location, and in the second embodiment, these curvatures are gradually changed and set. ing.
  • the first lens section 143 forms a light distribution area that brightens the entire area of the first slit section 1361 with the light that has passed through the first inner output surface section 155, and the first lens section 143 with the light that has passed through the first outer output surface section 156.
  • a light distribution area that brightens the vicinity of the apex of the 1-slit portion 1361 is formed.
  • the first lens section 143 brightens the entire area of the first slit section 1361 by overlapping the light that has passed through the first inner exit surface section 155 and the light that has passed through the first outer exit surface section 156.
  • a first light distribution region is formed in which the highest luminous flux (light amount) is near the apex of one slit portion 1361.
  • the first lens part 143 forms a light distribution area that brightens the first slit part 1361 from the viewpoint of appropriately forming the corresponding first irradiation pattern Di1, and the first inner emission surface part 155 and the first lens part 143 are the same.
  • the brightness distribution, shape, etc. in the light distribution area formed by the first outer emission surface section 156 may be set as appropriate, and are not limited to the second embodiment.
  • the second lens part 144 is opposed to the second light source 125 in the optical axis direction (located on the output optical axis of the second light source 125), and directs the light from the second light source 125 to the second slit part 1362 of the shade 114. focuses light on the area provided.
  • This second lens section 144 has a basic structure on the back surface 142 and the front surface 141, and the second slit section, except for detailed optical settings due to differences in size and shape of the corresponding slit section 136.
  • the basic concept of light collection for 1362 is made equal. Therefore, the configuration and optical settings of the second lens section 144 will be briefly described below.
  • the back surface 142 of the second lens portion 144 has a central portion recessed inside the condenser lens 113 (on the opposite side from the light source portion 112);
  • a second opposing entrance surface portion 157 that is curved outwardly in a convex manner, a second inclined entrance surface portion 158 surrounding it, and a second reflective surface 159 that surrounds the second inclined entrance surface portion 158 in a truncated conical shape are provided. ing.
  • the second opposing entrance surface section 157 is provided on the output optical axis of the second light source 125 to face the second light source 125 in the optical axis direction, and the second opposing entrance surface section 157 is arranged so that the light emitted from the second light source 125 is approximately equal to the axis of the second lens section 144.
  • the light is made to enter the condenser lens 113 as parallel light traveling in parallel, and is made to travel toward a second inner exit surface portion 162 of the surface 141, which will be described later.
  • the second inclined entrance surface section 158 is provided to protrude toward the second light source 125 side, and directs light from the second light source 125 that does not proceed to the second opposing entrance surface section 157 into the second lens section 144.
  • the second reflecting surface 159 reflects the light that has entered the condensing lens 113 from the second inclined incidence surface section 158 and converts the light that is incident on the surface 141 into parallel light that travels approximately parallel to the axis of the second lens section 144. The light is focused so as to proceed toward the second outer output surface section 163.
  • This second lens portion 144 is provided with a second output surface 161 that outputs the light incident on the surface 141 side to the front side in the front-rear direction.
  • the second exit surface 161 has a substantially rectangular shape elongated in the width direction when viewed from the front, and includes a second inner exit surface section 162 and a second outer exit surface section 163 having different optical settings.
  • the second inner exit surface section 162 is provided in a region of the second exit surface 161 where the light that has passed through the second opposing entrance surface section 157 travels, has a substantially circular shape when viewed from the front, and is more concentrated than the second outer exit surface section 163. It protrudes to the outside of the optical lens 113 (projection lens 115 side (front side in the front-rear direction)).
  • the second outer output surface section 163 is provided in a region sandwiching the second inner output surface section 162 in the width direction, and the light from the second light source 125 passes through the second inclined entrance surface section 158 and is reflected at the second reflection surface 159. It is located in the advancing region, and is located (concave) on the inside (rear side in the front-rear direction) of the condenser lens 113 than the second inner exit surface portion 162 .
  • the second lens section 144 forms a light distribution area that brightens the entire area of the second slit section 1362 by the light that has passed through the second inner output surface section 162, and by the light that has passed through the second outer output surface section 163.
  • a light distribution area that brightens the vicinity of the apex of the second slit portion 1362 is formed.
  • the second lens section 144 brightens the entire area of the second slit section 1362 by superimposing the light that has passed through the second inner exit surface section 162 and the light that has passed through the second outer exit surface section 163.
  • a second light distribution area AL (see FIG. 21) is formed in which the highest luminous flux (light amount) is near the apex of the two-slit portion 1362.
  • the second lens part 144 can be used to form a light distribution area that brightens the second slit part 1362 from the viewpoint of appropriately forming the corresponding first irradiation pattern Di1.
  • the brightness distribution, shape, etc. in the light distribution area formed by the second outer output surface section 163 may be set as appropriate, and are not limited to the second embodiment.
  • the third lens portion 145 is a convex lens having a substantially rectangular shape elongated in the width direction when viewed from the front in the optical axis direction, and as a whole, light is emitted from the third light source 126.
  • the spread light is condensed in a state close to parallel to the projection optical axis Lp and allowed to proceed to the shade section 133.
  • This third lens section 145 has a third entrance surface 164 facing the third light source 126 and a third exit surface 165 facing the opposite side.
  • the third lens portion 145 has a free-form surface in which the third entrance surface 164 and the third exit surface 165 are convex surfaces. Note that the third entrance surface 164 and the third exit surface 165 may be convex or concave as long as the third lens portion 145 is a convex lens, and are not limited to the configuration of the second embodiment.
  • the third entrance surface 164 faces the third light source 126 in the optical axis direction, and the third light source 126 is located near the rear focal point (rear focal point).
  • the third entrance surface 164 allows the light emitted from the third light source 126 to enter the third lens section 145 as parallel light traveling substantially parallel to the axis of the third lens section 145 .
  • the third exit surface 165 is provided on the opposite side to the third entrance surface 164, and refracts the light that has passed through the third entrance surface 164, thereby causing the light to travel forward in the front-rear direction while being diffused.
  • the third exit surface 165 irradiates the third light source 126 with light that has passed through the third entrance surface 164, so that the plurality of third light sources 126 are positioned on the shade 114 (shade portion 133) in accordance with the optical characteristics.
  • the light distribution images are formed by appropriately overlapping each other.
  • This optical characteristic can be set by adjusting the curvature (surface shape) of the third entrance surface 164 and the third exit surface 165 for each location, and in the second embodiment, it is set by gradually changing the curvature. .
  • the third exit surface 165 appropriately refracts the light emitted from the third light source 126 and passes through the third entrance surface 164, thereby making the entire area of the third slit portion 1363 of the shade 114 substantially equal in luminous flux (light amount).
  • a third light distribution area is formed.
  • the term "approximately equal luminous flux over the entire area” means that the luminous flux changes less than at least the above-mentioned first light distribution area and second light distribution area AL, and preferably, it means that the luminous flux is approximately uniform.
  • the third light distribution area of Example 2 has a lower luminous flux than the first light distribution area and the second light distribution area AL.
  • This condensing lens 113 forms a first light distribution area in the first slit part 1361 with the light from the first light source 124 using the first lens part 143, and forms a first light distribution area in the first slit part 1361 with the light from the second light source 125 using the second lens part 144.
  • a second light distribution area AL is formed in the second slit part 1362, and a third light distribution area is formed in the third slit part 1363 using the light from the third light source 126 using the third lens part 145.
  • the condensing lens 113 forms a predetermined luminous flux distribution with a predetermined intonation (sharpness (height difference of the luminous flux)) for the first slit portion 1361 and the second slit portion 1362 on the shade 114. Therefore, it is possible to form a uniform luminous flux distribution in the third slit portion 1363 that is lower than that in the first slit portion 1361 and the second slit portion 1362.
  • a first light attenuation section 171 and a second light attenuation section 172 are provided in the condenser lens body 131.
  • the first light attenuation section 171 and the second light attenuation section 172 are for weakening or blocking the light (luminous flux) from each light source (124, 125, 126) in the condensing lens body 131.
  • the part 171 is located between the first lens part 143 and the second lens part 144, and the second light reduction part 172 is located between the second lens part 144 and the third lens part 145.
  • the first light attenuation section 171 has the front side first light attenuation section 173 and the back side first light attenuation section 174
  • the second light attenuation section 172 has the front side second light attenuation section 175. It has a back side second light attenuation part 176.
  • This surface-side first light attenuation section 173 is located between the first exit surface 154 of the first lens section 143 and the second exit surface 161 of the second lens section 144 on the surface 141 of the condensing lens body 131. It is formed using a light reduction process.
  • the front-side second light attenuation section 175 is located between the second exit surface 161 of the second lens section 144 and the third exit surface 165 of the third lens section 145 on the front surface 141 of the condensing lens body 131. It is formed using a light reduction process.
  • the back side first light attenuating section 174 has a first opposite entrance surface section 151, a first inclined entrance surface section 152, and a first reflective surface 153 of the first lens section 143 on the back surface 142 of the condensing lens body 131.
  • a light reduction process is performed between the second opposing entrance surface section 157, the second inclined entrance surface section 158, and the second reflective surface 159 of the two-lens section 144.
  • the back side second light attenuation section 176 has a second opposite entrance surface section 157, a second inclined entrance surface section 158, a second reflective surface 159 of the second lens section 144, and a third lens on the back surface 142 of the condensing lens body 131.
  • a light reduction process is performed between the third incident surface 164 of the portion 145 and the third incident surface 164 .
  • Light reduction treatments include creating a light-shielding surface by applying black or other light-shielding paint, or creating a scattering surface by forming minute optical elements, prisms (irregularities), texture, etc. .
  • the above-mentioned light reduction process is performed on a band-shaped region extending in the width direction and having a predetermined size in the vertical direction at the above-mentioned position on the front surface 141 or the back surface 142.
  • a first light attenuation section 171 and a second light attenuation section 172 are provided.
  • the first light attenuating portion 171 and the second light attenuating portion 172 have a vertical size of 1 mm or less, and in Example 2, the size is 0.5 mm.
  • the bottom surface 145a located on the second lens section 144 side is also subjected to light reduction processing, so that the bottom surface side forming a part of the second light reduction section 172 is A second light reduction section 177 is provided.
  • the bottom surface 145a is a free-form surface in which the third lens portion 145 is a convex lens and the third entrance surface 164 is a convex surface, whereas the second lens portion 144 is a second opposing entrance surface portion. 157, a second inclined incidence surface portion 158, and a second reflective surface 159, the two are formed by different shapes (see FIG. 18).
  • the bottom surface 145 a is located diagonally above and in front of the second light source 125 , there is a possibility that the light traveling directly from the second light source 125 may enter the third lens portion 145 . For this reason, in the second embodiment, the bottom surface 145a of the third lens section 145 is also subjected to a light reduction process to form a second bottom surface side light reduction section 177.
  • each light source 124, 125, 126
  • the vehicle lamp 110 can turn on and off the light sources (124, 125, 126) individually, sequentially, or simultaneously.
  • the light from each light source (124, 125, 126) is condensed by a condensing lens 113, illuminates the shade 114, passes through the irradiation slit 135 (each slit portion 136), and is then projected by the projection lens 115. By doing so, an irradiation pattern Pi is formed on the road surface 102.
  • the irradiation pattern Pi is created by projecting the light transmitted through the irradiation slit 135 (each slit part 136 of the shade 114) of the shade 114, which has the above-mentioned light distribution (luminous flux) distribution, by the projection lens 115, thereby forming three irradiation patterns. Di are formed individually, sequentially, or simultaneously at positions arranged in the arrow direction Da.
  • the vehicle lamp 110 is linked to a turn lamp, and when either the left or right turn lamp is turned on, each light source (124, 125, 126) provided on the side where the left or right turn lamp is turned on is turned on.
  • An irradiation pattern Pi is formed on the road surface 102.
  • first the third light source 126 is turned on, then the second light source 125 is turned on while the third light source 126 remains turned on, and then the third light source 126 and the second light source 125 are turned on.
  • the first light source 124 is turned on while being maintained, and then each light source (124, 125, 126) is turned off all at once, and this is repeated thereafter.
  • the irradiation pattern Pi can be made to appear as if the third irradiation pattern Di3, the second irradiation pattern Di2, and the first irradiation pattern Di1 are lit in this order and extend in the arrow direction Da.
  • the vehicle lamp 110 can prevent the vehicle 101 from appearing on the road surface 102 even if a person in the other alley cannot see the vehicle 101.
  • the irradiation pattern Pi formed on the screen can be visually recognized.
  • the two left and right vehicle lamps 110 simultaneously form the irradiation pattern Pi on the road surface 102 as described above, so only the left and right turn lamps blink. Compared to the case where the hazard lamps are turned on, the driver can more reliably recognize that the hazard lamps are turned on.
  • the conventional vehicle lamps described in the prior art documents are provided with a plurality of light guides individually corresponding to a plurality of light sources, and efficiently utilize the light from each light source.
  • each light guiding member diffuses the light internally to emit light with a substantially uniform luminous flux distribution, and the light passing through each light guiding member illuminates the shade (light shielding member).
  • the shade light shielding member
  • the light distribution (luminous flux) distribution on the shade is made substantially uniform.
  • conventional vehicle lamps light from a corresponding light source is guided onto the shade for each light guide, so each light source is guided onto the shade separately. For this reason, conventional vehicle lamps obtain a desired light distribution on the shade by continuously changing the luminous flux in the low luminous flux region and forming a partial high luminous flux region on the shade. It is difficult to
  • the condenser lens 113 has a single first lens part 143 and a second lens part that condense light from each of the three light sources (124, 125, 126).
  • a lens section 144 and a third lens section 145 are provided.
  • the first lens part 143 brightens the entire area of the first slit part 1361 on the shade part 133 of the shade 114 with light from the corresponding first light source 124, and brightens the vicinity of the apex of the first slit part 1361 most brightly.
  • a first light distribution area is formed.
  • the second lens section 144 brightens the entire area of the second slit section 1362 on the shade section 133 of the shade 114 with the light from the corresponding second light source 125, and brightens the area near the apex of the second slit section 1362 most.
  • a second light distribution area AL to be brightened is formed.
  • the third lens section 145 has a third lens section 145 on the shade section 133 of the shade 114 that brightens the entire area of the third slit section 1363 with a uniform luminous flux that is lower than the first light distribution area and the second light distribution area AL. Form a light area.
  • the third slit portion 1363 corresponds to the third irradiation pattern Di3 located closest to the vehicle 101 in the irradiation pattern Pi, and is projected at a location close to the vehicle lamp 110, making it easy to see.
  • the luminous flux is uniform and lower than that of the other irradiation patterns Di. This is due to the following. Since the third slit portion 1363 corresponds to the third irradiation pattern Di3, it has a large area on the shade portion 133.
  • the third slit part 1363 is irradiated with a lens having a predetermined luminous flux distribution with a modulated luminous flux, such as the first lens part 143 or the second lens part 144, it is possible to irradiate the entire area. This may cause unevenness in brightness such as dark spots in the third irradiation pattern Di3 to be formed, and it may become impossible to form an appropriate third irradiation pattern Di3.
  • the first slit part 1361 and the second slit part 1362 correspond to the first irradiation pattern Di1 and the second irradiation pattern Di2 located away from the vehicle 101 in the irradiation pattern Pi, and the vehicle lamp 110, the luminous flux distribution has a predetermined intonation (sharpness (height difference in the luminous flux)) in order to form the first irradiated pattern Di1 and the second irradiated pattern Di2 that are easy to see. It is desirable that
  • the vehicle lamp 110 includes a first lens section 143, a second lens section 144, and a third lens section 145 that individually correspond to each light source (124, 125, 126) in the single condensing lens 113.
  • the shade 114 can be illuminated with a desired light distribution. That is, the vehicle lamp 110 uses the first lens part 143 and the second lens part 144 for the first slit part 1361 and the second slit part 1362 to create a first light distribution area with a predetermined inflected luminous flux distribution. , a second light distribution area AL is formed, and the third lens unit 145 is used for the third slit portion 1363 to form a third light distribution area with a uniform luminous flux.
  • the vehicle lamp 110 uses a single condensing lens 113, on the shade portion 133, a portion with a predetermined luminous flux distribution with a modulation and a portion with a uniform luminous flux are formed together. can do.
  • the vehicle lamp 110 can make the center of the tips of the first irradiation pattern Di1 and the second irradiation pattern Di2 clear, and can also make the entire third irradiation pattern Di3 clear, making it more suitable.
  • An irradiation pattern Pi can be formed. Therefore, compared to conventional vehicle lamps, the vehicle lamp 110 has a simple configuration using a single condensing lens 113, and allows easy adjustment of the light distribution of the light distribution area formed on the shade 114. Therefore, an easy-to-see irradiation pattern Pi can be formed with a desired brightness distribution.
  • the condenser lens body 131 of the condenser lens 113 has different optical characteristics.
  • a first lens section 143, a second lens section 144, and a third lens section 145 are integrally provided so as to overlap in the vertical direction. Then, in the vehicle lamp 110, a part of the light from each light source (124, 125, 126) travels to a different lens part (143, 144, 145) from the corresponding one, and Therefore, an unintended light distribution area may be formed on the shade portion 133 of the shade 114. This will be explained below.
  • the light from the first light source 124 basically passes through the first lens portion 143 (its first opposing entrance surface portion 151). , the first inclined incidence surface section 152), the light from the second light source 125 advances to the second lens section 144 (its second opposing entrance surface section 157, second inclined incidence surface section 158), and the light from the third light source 126.
  • the light advances to the third lens section 145 (its third incident surface 164).
  • each of the light sources (124, 125, 126) has a predetermined spread in the direction in which it emits light, there is a possibility that some of the light may travel to a lens section adjacent to the corresponding lens section.
  • FIGS. 20 and 21 An example of this is shown in FIGS. 20 and 21.
  • a condensing lens 113 (condensing lens main body 131) having a configuration similar to that of the present invention is used. This is because even if the condensing lens 113 (condensing lens body 131) is not provided with the first light attenuation section 171 or the second light attenuation section 172, a similar problem will occur. Therefore, in the following description, in the condensing lens 113 (condensing lens main body 131), the front side first light attenuating part 173 and the front side second light attenuating part 175 on the front surface 141, and the back side first light attenuating part 175 on the back surface 142 will be described. An explanation will be given using unintended light that may occur when the light attenuating section 174 and the second back side light attenuating section 176 are not provided.
  • stray light S a part of the light from the second light source 125 (hereinafter also referred to as stray light S) is transmitted between the second lens part 144 and the third lens part 145 (into the second light attenuation part 172).
  • the figure shows the progress toward the shade 114 side through the corresponding part).
  • stray light S enters the condenser lens body 131 from between the second opposing entrance surface section 157 and the second inclined entrance surface section 158 of the second lens section 144 and the third entrance surface 164 of the third lens section 145. is incident (referred to as stray light S1).
  • This stray light S travels between the second lens section 144 and the third lens section 145 (a location corresponding to the second light reduction section 172) (referred to as stray light S2), and is emitted from the second lens section 144.
  • the light is emitted from between the surface 161 and the third exit surface 165 of the third lens section 145 and heads toward the third slit section 1363 of the shade 114 (referred to as stray light S3).
  • FIG. 21 shows the light distribution on the shade portion 133 of the shade 114 when only the second light source 125 is turned on and the above-mentioned stray light S occurs.
  • the light from the second light source 125 is irradiated through the second lens section 144, thereby brightening the entire area of the second slit section 1362 and brightening the area near the apex of the second slit section 1362.
  • a second light distribution area AL that makes the light brightest is formed.
  • This stray light area AS brightens the vicinity of the center of the third slit portion 1363 even though the third light source 126 is turned off. Therefore, in the vehicle lamp 110, when such stray light S occurs, the second irradiation pattern Di2 can be clearly formed even when the second light source 125 is turned on while the third light source 126 is turned off. However, a part of the area where the third irradiation pattern Di3 is formed becomes vaguely bright. In addition, in the vehicle lamp 110, when such stray light S occurs, even if the second light source 125 and the third light source 126 are turned on at the same time, the second irradiation pattern Di2 can be appropriately formed. An unintended area of the third irradiation pattern Di3 becomes brighter by the amount of the stray light area AS, resulting in uneven brightness and resulting in a different appearance than intended.
  • a front-side second light attenuation section 175 as a second light attenuation section 172 is provided between the second lens section 144 and the third lens section 145. and a back side second light reduction section 176. Therefore, the stray light S1 as described above is blocked or scattered by the back side second light reduction section 176 on the back surface 142 of the condensing lens body 131, and the stray light S2 is blocked or scattered by the condensing lens body. 131 is prevented.
  • the back side second light attenuating section 176 blocks the incidence of stray light S1 to prevent it from becoming stray light S2, or diffuses stray light S1 to prevent strong light (high luminous flux) from forming a stray light area AS. ) can be prevented from proceeding into the condenser lens body 131 as stray light S2. Further, after passing through the back side second light attenuation section 176, the stray light S2 is blocked or scattered by the front side second light attenuation section 175 on the front surface 141 of the condenser lens body 131.
  • the stray light S2 is diffused and sufficiently weakened by the second light attenuation section 176 on the back side as described above, and then is blocked or diffused by the second light attenuation section 175 on the front side, so that the stray light S2 can be more reliably Strong light (high luminous flux) that would form the stray light area AS is prevented from being emitted from the condenser lens body 131 as stray light S3.
  • the above-mentioned stray light S2 may occur even if it does not pass through the back side second light attenuation section 176, it is caused by the front side second light attenuation section 175 on the front surface 141 of the condenser lens body 131.
  • the light is blocked or scattered, and the stray light S3 is prevented from being emitted from the condenser lens body 131.
  • the vehicle lamp 110 can prevent a stray light area AS from being formed in the third slit portion 1363 of the shade 114 due to the stray light S from the second light source 125 as described above.
  • the vehicle lamp 110 when the second light source 125 is turned on while the third light source 126 is turned off, the second irradiation pattern Di2 can be clearly formed, and the area where the third irradiation pattern Di3 is formed remains dark. It can be done. Furthermore, when the second light source 125 and the third light source 126 are turned on at the same time, the vehicle lamp 110 can appropriately form the second irradiation pattern Di2 and the third irradiation pattern Di3, thereby achieving the intended appearance. can do.
  • the above stray light causes a similar problem even when the light from the third light source 126 goes from between the second lens section 144 and the third lens section 145 to the second slit section 1362 of the shade 114. It is possible to invite.
  • the vehicle lamp 110 can block or scatter such stray light by the front side second light reduction part 175 and the back side second light reduction part 176 as the second light reduction part 172. .
  • the above-mentioned stray light includes light from the second light source 125 that travels from between the second lens section 144 and the first lens section 143 to the first slit section 1361 of the shade 114, and light that comes from the first light source 124. It is conceivable that a similar problem may occur if the light is directed from between the second lens section 144 and the first lens section 143 to the second slit section 1362 of the shade 114.
  • the first dimming section 171 is provided between the first lens section 143 and the second lens section 144 in the condensing lens body 131, so that the first dimming section 171 is provided on the front surface side.
  • Such stray light can also be blocked or scattered by the light attenuating section 173 and the first back side light attenuating section 174.
  • the vehicle lamp 110 can appropriately form each irradiation pattern Di, and each can be made to look as intended.
  • the condensing lens main body 131 (condensing lens 113) of Example 2 has a first light attenuation section 173 on the surface side of the surface 141 and a first light attenuation section 173 on the surface side as the first light attenuation section 171 and the second light attenuation section 172. 2 light attenuating section 175, and a back side first light attenuating section 174 and a back side second light attenuating section 176 on the back surface 142. Therefore, the first light attenuation section 171 and the second light attenuation section 172 do not block or scatter the light traveling between the respective lens sections (143, 144, 145) within the condensing lens body 131. I can't.
  • each lens part (143, 144, 145) allows light from a corresponding light source (124, 125, 126) to enter as parallel light traveling approximately in parallel. Therefore, it is possible to minimize the number of times the lens moves toward an adjacent lens portion.
  • the condensing lens main body 131 (condensing lens 113) has a first light attenuating portion 171 and a second light attenuating portion 172 formed by subjecting predetermined positions of the front surface 141 and the back surface 142 to light attenuation processing.
  • the influence of stray light as described above can be sufficiently suppressed.
  • the bottom surface 145a located on the second lens section 144 side is also subjected to a light attenuation process, thereby achieving a second attenuation.
  • a bottom-side second dimming section 177 that constitutes a part of the light section 172 is provided. Therefore, in the third lens section 145, due to the difference in shape between the third entrance surface 164 and the second opposite entrance surface section 157, second inclined entrance surface section 158, and second reflective surface 159 in the second lens section 144, , it is possible to prevent light from entering from the bottom surface 145a facing the second light source 125 and becoming stray light.
  • the condensing lens body 131 (condensing lens 113) keeps the area where the third irradiation pattern Di3 is formed dark.
  • the second irradiation pattern Di2 and the third irradiation pattern Di3 can be appropriately formed.
  • the vehicle lamp 110 of the second embodiment can obtain the following effects.
  • the vehicle lamp 110 includes a plurality of light sources (124, 125, 126), a condenser lens 113 that condenses light from the light sources, and a plurality of slits 136 that partially pass the condensed light.
  • a projection lens 115 is provided, which forms an irradiation pattern Pi having a plurality of irradiation patterns Di corresponding to the plurality of slit parts 136 by projecting light passed through the shade 114.
  • the light sources (124, 125, 126) are provided individually corresponding to the slit section 136, and the condenser lens 113 is composed of a plurality of lens sections (143, 144, 145) that individually correspond to the slit section 136.
  • Light attenuating parts (171, 172) for reducing light are provided between the plurality of lens parts (143, 144, 145). Therefore, in the vehicle lamp 110, the light incident on the corresponding lens section (143, 144, 145) from each light source (124, 125, 126) is directed to a different slit section 136 from the corresponding one. The influence of stray light can be sufficiently suppressed.
  • the light attenuating parts (171, 172) are connected to the plurality of lens parts (143, 144, 145) on the back surface 142 which is on the plurality of light sources (124, 125, 126) side of the condensing lens 113. It is formed by performing a light reduction process in between. Therefore, in the vehicle lamp 110, the location of the irradiation pattern Di that is not lit is caused by the light (stray light S1 ⁇ S2) that enters the condenser lens 113 from between each lens part (143, 144, 145). It is possible to suppress the brightness of the irradiation pattern Di and the uneven brightness of the formed irradiation pattern Di, which makes it appear different from the intended appearance.
  • the light attenuating section (171, 172) is configured to reduce the light between the plurality of lens sections (143, 144, 145) on the surface 141 on the light shielding member (shade 114) side of the condensing lens 113. It is formed by being processed. Therefore, the vehicle lamp 110 brightens the area of the illumination pattern Di that is not lit due to the light (stray light S2 ⁇ S3) emitted from between the lens parts (143, 144, 145). It is possible to suppress unevenness in brightness of the formed irradiation pattern Di, which causes it to appear different from the intended appearance.
  • the vehicle lamp 110 can sequentially turn on a plurality of light sources (124, 125, 126). Therefore, the vehicle lamp 110 can prevent the illumination pattern Di corresponding to the light source that has been turned off from becoming brighter, and can appropriately express the intention of sequentially turning on the lights.
  • the plurality of slit parts 136 include a first slit part 1361 corresponding to the first irradiation pattern Di1 of the irradiation pattern Pi, and a second slit part 1362 corresponding to the second irradiation pattern Di2 of the irradiation pattern Pi. , and a third slit portion 1363 corresponding to the third irradiation pattern Di3 of the irradiation pattern Pi.
  • the plurality of lens parts (143, 144, 145) include a first lens part 143 facing the first slit part 1361, a second lens part 144 facing the second slit part 1362, and a third slit part 1363.
  • the first lens section 143 has a first opposing entrance surface section 151 facing the corresponding first light source 124, a first inclined entrance surface section 152 surrounding it, and a first reflective surface 153 surrounding it.
  • the second lens section 144 has a second opposing entrance surface section 157 facing the corresponding second light source 125, a second inclined entrance surface section 158 surrounding it, and a second reflecting surface 159 surrounding it.
  • the third lens section 145 is a convex lens that condenses light from the corresponding third light source 126.
  • the vehicular lamp 110 can efficiently utilize the light from the first light source 124 and the second light source 125, while simplifying the configuration of the first lens section 143 and the second lens section 144.
  • a predetermined luminous flux distribution can be formed in the slit portion 1361 and the second slit portion 1362.
  • the vehicle lamp 110 can form a uniform luminous flux distribution with the light from the third light source 126 with respect to the third slit section 1363 using the third lens section 145. For these reasons, even if the vehicle lamp 110 uses a single condensing lens 113, it is possible to make the center of the tips of the first irradiation pattern Di1 and the second irradiation pattern Di2 clear, and also to make the third irradiation pattern clear. The entire pattern Di3 can be made clear, and a more appropriate irradiation pattern Pi can be formed.
  • the bottom surface 145a of the third lens portion 145 located on the second lens portion 144 side is also subjected to dimming processing. Therefore, in the vehicle lamp 110, when the second light source 125 is turned on while the third light source 126 is turned off, the area where the third irradiation pattern Di3 is formed can remain dark, and the second light source 125 and the third light source 126 at the same time, the second irradiation pattern Di2 and the third irradiation pattern Di3 can be appropriately formed.
  • the vehicle lamp 110 a plurality of lens parts (143, 144, 145) are integrated. Therefore, the vehicle lamp 110 can improve the relative positional accuracy with the plurality of lens parts (143, 144, 145), and can simplify the assembly process.
  • the vehicle lamp 110 of Example 2 as a vehicle lamp according to the present disclosure efficiently utilizes the light from the plurality of light sources (124, 125, 126) while achieving an irradiation pattern Pi with a desired brightness distribution. can be formed.
  • vehicle lamp of the present disclosure has been described above based on the second embodiment, the specific configuration is not limited to the second embodiment, and does not depart from the gist of the invention according to each claim. Changes and additions to the design are permitted as long as possible.
  • the three irradiation patterns Di are arranged as substantially isosceles triangles with the base facing the vehicle 101 and arranged at substantially equal intervals in the direction away from the vehicle 101 to form the irradiation pattern Pi.
  • the irradiation pattern is composed of a plurality of irradiation patterns Di formed by a shade (light shielding member)
  • the design of the symbol as the irradiation pattern Di, the position at which it is formed, the number of irradiation patterns Di, etc. are set as appropriate.
  • the configuration is not limited to the configuration of the second embodiment.
  • the vehicle lamp 110 was provided at the front of the vehicle 101 in the second embodiment, it may be housed in the door mirror if it is provided on the vehicle 101 according to the position where the irradiation pattern is formed with respect to the vehicle 101. It may be arranged in the headlamp light chamber or the taillight light chamber (light chambers on both left and right sides of the rear of the vehicle), or may be provided in the vehicle body, and is not limited to the configuration of the second embodiment.
  • each light source (124, 125, 126) emits amber light.
  • the color of the light emitted from the light source may be appropriately set according to the location where it is provided and the content to be conveyed, and is not limited to the configuration of the second embodiment.
  • a shade 114 that allows the light collected by the condensing lens 113 to pass through the irradiation slit 135 is used as the light shielding member.
  • the light shielding member may have any other configuration as long as it is provided with a plurality of slits 136 (irradiation slits 135) that partially pass the light collected by the condensing lens 113, Not limited to configuration.
  • Other configurations include, for example, providing a plurality of irradiation slits that partially transmit light on a plate-shaped film member that blocks light transmission, and transmitting light that has passed through the condenser lens 113 through the plurality of irradiation slits. It can be a plate (filter).
  • a vehicle lamp 110 is provided in a vehicle 101 driven by a driver.
  • the vehicle lamp may be provided in a vehicle having an automatic driving function, and is not limited to the configuration of the second embodiment.
  • the vehicular lamp may form an irradiation pattern at a timing that corresponds to the purpose for which it is provided, that is, at a timing that corresponds to some intention regarding the operation of the vehicle 101, and is not limited to the configuration of the second embodiment.
  • a light source section 112 is provided on an installation stand section 111 that functions as a heat sink, and a condenser lens 113, a shade 114, and a projection lens 115 are attached to this installation stand section 111.
  • the vehicle lamp may have any other configuration as long as it forms an irradiation pattern by condensing light from a light source onto a light shielding member with a condensing lens and projecting it with a projection lens. configuration.
  • each light source (124, 125, 126) includes an LED chip and a phosphor covering the LED chip.
  • each configuration may be set appropriately, and is limited to the configuration of Example 2. Not done.
  • the third light source 126 is turned on, then the second light source 125 is turned on while the third light source 126 remains turned on, and then the third light source 126 and the second light source 125 are turned on.
  • the first light source 124 is turned on while being maintained, and then each light source (124, 125, 126) is turned off all at once, and this is repeated thereafter.
  • all of the light sources (124, 125, 126) may be lit at the same time, all may be lit individually, or may be lit in appropriate random combinations, and the order in which they are lit may be changed.
  • the mode of lighting can be set as appropriate and is not limited to the mode of the second embodiment.
  • the first light attenuating section 171 and the second light attenuating section 172 are connected to the first light attenuating section 173 on the surface side and the second light attenuating section 173 on the surface side of the surface 141 in the condensing lens body 131 (condensing lens 113). It consists of a light section 175, a first back side light attenuating section 174 and a second back side light attenuating section 176 on the back side 142.
  • each light attenuation part (171, 172) may be provided between the corresponding lens parts (143, 144, 145) to block or scatter the progress of light. configuration.
  • each light attenuation part (171, 172) is formed in a plate shape between the corresponding lens part (143, 144, 145), that is, each lens part (143, 145, 144, 145) may be used to block or scatter light from traveling between them.
  • Example 3 the constituent elements in Example 3 below include those that can be easily replaced by those skilled in the art, or those that are substantially the same.
  • FIG. 22 is an exploded perspective view showing an example of a vehicle lamp 200 according to the third embodiment.
  • FIG. 23 is a diagram showing a state in which the vehicle lamp 200 is viewed from the front.
  • FIG. 24 is a diagram showing the configuration along the FF cross section in FIG. 23.
  • FIG. 25 is a diagram showing the configuration along the GG cross section in FIG. 23.
  • FIG. 25 shows a portion fixed to the fixing part 253 in an enlarged manner.
  • the vehicle lamp 200 includes a light source section 210, a condensing lens member 220, a light shielding member 230, a projection lens member 240, and a support member 250.
  • the light source section 210 includes a light source 211 and a substrate 212.
  • the light source 211 is, for example, a semiconductor light source such as an LED.
  • the light source 211 has a light emitting surface 211a that emits light.
  • the light emitting surface 211a is arranged to face the condenser lens 221 of the condenser lens member 220.
  • the light source 211 emits, for example, orange (amber) light from the light emitting surface 211a.
  • the light sources 211 are arranged in a line in the vertical direction when mounted on the vehicle. For example, two light sources 211 are arranged. Note that the arrangement and number of light sources 211 are not limited to the above. Further, the color of the light emitted from the light emitting surface 211a is not limited to orange, but may be other colors such as white.
  • the light source 211 is mounted on the substrate 212. On the substrate 212, wiring, circuits, etc. for transmitting signals to the light source 211 are formed.
  • the substrate 212 is fixed to a base portion 251 of a support member 250, which will be described later.
  • the condensing lens member 220 includes a condensing lens 221, a cylindrical portion 222, and a condensing lens frame 223.
  • the condensing lens member 220 includes a condensing lens 221, a cylindrical portion 222, and a condensing lens frame 223 formed as one member.
  • the condenser lens member 220 is entirely formed using the material that constitutes the condenser lens 221 .
  • the condenser lens 221 is formed using a material that can transmit the light from the light source 211. Examples of such materials include resin materials such as polycarbonate, but other materials such as acrylic may also be used. In this case, by integrally molding the material constituting the condenser lens 221, the entire condenser lens member 220 can be easily formed.
  • the condenser lens member 220 at least a portion of a portion different from the condenser lens 221, that is, the cylindrical portion 222 and the condenser lens frame 223, is formed using a material different from that of the condenser lens 221. Good too.
  • the condensing lens 221 condenses the light emitted from the light source 211. As shown in FIG. 24, the condensing lens 221 has a first entrance surface 221a, a second entrance surface 221b, a reflection surface 221c, and an exit surface 221d.
  • the first entrance surface 221a is arranged in front of the light source 211. The light emitted forward from the light source 211 enters the first entrance surface 221a.
  • the second entrance surface 221b is arranged along the outer periphery of the first entrance surface 221a.
  • the light emitted from the light source 211 at an angle with respect to the optical axis AX enters the second entrance surface 221b.
  • the optical axis direction D is a direction along the optical axis AX. In the third embodiment, it is assumed that the optical axis direction D coincides with the front-rear direction.
  • the reflective surface 221c internally reflects the light incident from the second incident surface 221b.
  • the output surface 221d outputs forward the light that entered from the first entrance surface 221a and the light that entered from the second entrance surface 221b and was internally reflected by the reflection surface 221c.
  • the cylindrical part 222 holds the condensing lens 221.
  • the cylindrical portion 222 is, for example, cylindrical.
  • the cylindrical portion 222 connects the condenser lens 221 and the condenser lens frame 223.
  • the cylindrical portion 222 is provided so as to protrude rearward (toward the light source side) with respect to the condenser lens frame 223. With this configuration, the condenser lens 221 is placed rearward with respect to the condenser lens frame 223.
  • the condenser lens frame 223 holds the condenser lens 221 via the cylindrical portion 222.
  • the condensing lens frame 223 has a flat plate shape.
  • the condensing lens frame 223 has an annular portion 225 that protrudes from the cylindrical portion 222 in the vertical direction, and a band portion 226 that protrudes from the cylindrical portion 222 in the left-right direction.
  • the annular portion 225 is annularly provided along the outer periphery of the cylindrical portion 222 .
  • the strip portion 226 is provided linearly from the cylindrical portion 222 in the left-right direction. Corners on both sides of the band-shaped portion 226 in the left-right direction have a rounded shape.
  • the strip portion 226 is supported by an end surface 253c of a fixed portion 253 of a support member 250, which will be described later.
  • the strip portion 226 has a positioning opening 226a and a fixing opening 226b.
  • a positioning protrusion 253a of a support member 250 which will be described later, is inserted into the positioning opening 226a.
  • a fixing member 260 which will be described later, is inserted into the fixing opening 226b.
  • the strip portion 226 has contact portions 226c and 226d.
  • the contact portion 226c is arranged along the outer periphery of the positioning opening 226a, and protrudes forward from the strip portion 226.
  • the contact portion 226d is arranged along the outer periphery of the fixing opening 226b and protrudes forward from the strip portion 226.
  • the contact portions 226c and 226d have flat end surfaces in the protruding direction.
  • the condensing lens frame 223 contacts the light shielding member 230 at contact portions 226c and 226d. With this configuration, the positional accuracy of the condenser lens frame 223 can be ensured by appropriately defining dimensions such as the height of the contact portions 226c and 226d in the protruding direction of the strip portion 226.
  • the light shielding member 230 has a slit forming part 231 and a light shielding frame 232.
  • the light shielding member 230 is formed into a flat plate shape including a slit forming portion 231 and a light shielding frame 232 as one member.
  • the light blocking member 230 is entirely formed using a material that can block light. Examples of such materials include materials such as metals, but other materials may also be used.
  • the slit forming portion 231 is provided, for example, in a circular shape.
  • the slit forming portion 231 has a slit 233.
  • the slit 233 allows a portion of the light collected by the condenser lens 221 to pass through.
  • three slits 233 are formed in a line in the vertical direction.
  • the number and arrangement of slits 233 are not limited to the above.
  • the light-shielding frame 232 projects linearly from the slit forming portion 231 in the left-right direction.
  • the light-shielding frame 232 has rounded corners on both sides in the left-right direction.
  • the light-shielding frame 232 has flat front and rear surfaces.
  • the light shielding frame 232 is supported by the contact portions 226c and 226d of the strip portion 226 of the condenser lens frame 223.
  • the light shielding frame 232 is supported by the contact portions 226c and 226d, so that the light shielding frame 232 has a positioning opening 232a and a fixing opening 232b.
  • a positioning protrusion 253a of a support member 250 which will be described later, is inserted into the positioning opening 232a.
  • a fixing member 260 which will be described later, is inserted into the fixing opening 232b.
  • the light shielding member 230 is formed to cover the condenser lens 221 of the condenser lens member 220 and the condenser lens frame 223 when viewed from the front.
  • the slit forming part 231 is arranged at a position corresponding to the condenser lens 221 and formed in a shape and size corresponding to the condenser lens 221.
  • the light shielding frame 232 is disposed at a position corresponding to the condenser lens frame 223 and is formed in a shape and size corresponding to the condenser lens frame 223.
  • the light shielding member 230 is formed so that its outer shape matches or almost matches the condensing lens member 220 when viewed from the front. With this configuration, the light passing through the condenser lens 221 and the condenser lens frame 223 can be blocked by the light shielding member 230.
  • the projection lens member 240 includes a projection lens 241, a cylindrical portion 242, and a projection lens frame 243.
  • the projection lens 241 projects the light that has passed through the slit 233 onto the road surface in front of the vehicle to form an irradiation pattern.
  • the projection lens member 240 includes a projection lens 241, a cylindrical portion 242, and a projection lens frame 243 formed as one member.
  • the projection lens member 240 is entirely formed using a material that transmits light.
  • the projection lens 241 is formed using a material that can transmit the light from the light source 211. Examples of such materials include resin materials such as acrylic, but other materials may also be used. In this case, the entire projection lens member 240 can be easily formed by integrally molding the material forming the projection lens 241.
  • the projection lens member 240 is entirely formed of a material different from that of the condensing lens member 220, it may be entirely formed using the same material as the condensing lens member 220. Note that at least a portion of the projection lens member 240 that is different from the projection lens 241, that is, the cylindrical portion 242 and the projection lens frame 243, may be formed using a different material from the projection lens 241.
  • the projection lens 241 has an entrance surface 241a and an exit surface 241b.
  • the light that has passed through the slit 233 enters the entrance surface 241a.
  • the output surface 241b outputs the light incident from the input surface 241a forward.
  • the cylindrical part 242 holds the projection lens 241.
  • the cylindrical portion 242 is, for example, cylindrical.
  • the cylindrical portion 242 connects the projection lens 241 and the projection lens frame 243.
  • the cylindrical portion 242 is provided so as to protrude forward with respect to the projection lens frame 243. With this configuration, the projection lens 241 is placed in front of the projection lens frame 243.
  • the projection lens frame 243 holds the projection lens 241 via the cylindrical portion 242.
  • the projection lens frame 243 has a flat plate shape.
  • the projection lens frame 243 has an annular portion 245 that protrudes from the cylindrical portion 242 in the vertical direction, and a band portion 246 that protrudes from the cylindrical portion 242 in the left-right direction.
  • the annular portion 245 is annularly provided along the outer periphery of the cylindrical portion 242 .
  • the strip portion 246 is provided linearly from the cylindrical portion 242 in the left-right direction. Corners on both sides of the band-shaped portion 246 in the left-right direction have a rounded shape.
  • the strip portion 246 has a positioning opening 246a and a fixing opening 246b.
  • a positioning protrusion 253a of a support member 250 which will be described later, is inserted into the positioning opening 246a.
  • a fixing member 260 which will be described later, is inserted into the fixing opening 246b.
  • the strip portion 246 has contact portions 246c and 246d.
  • the contact portion 246c is arranged along the outer periphery of the positioning opening 246a, and protrudes rearward from the strip portion 246.
  • the contact portion 246d is arranged along the outer periphery of the fixing opening 246b and protrudes rearward from the strip portion 246.
  • the contact portions 246c and 246d have flat end surfaces in the protruding direction.
  • the projection lens frame 243 contacts the light shielding member 230 at contact portions 246c and 246d. With this configuration, the positional accuracy of the projection lens frame 243 can be ensured by appropriately defining dimensions such as the height of the contact portions 246c and 246d in the protruding direction of the strip portion 246.
  • the support member 250 has a base portion 251, fins 252, and a fixing portion 253.
  • the base portion 251 has a flat plate shape.
  • the base portion 251 has a support surface 251a that supports the light source portion 210.
  • the support surface 251a is the front surface of the base portion 251 and supports the substrate 212.
  • the fins 252 protrude rearward from the base portion 251.
  • a plurality of fins 252 are provided. Fins 252 radiate heat generated in light source 211 .
  • the fixing part 253 projects forward from the support surface 251a of the base part 251.
  • the fixing part 253 fixes the condenser lens frame 223, the light shielding frame 232, and the projection lens frame 243.
  • the fixing part 253 has a positioning protrusion 253a and a fixing opening 253b.
  • the positioning protrusion 253a and the fixing opening 253b are provided on the front end surface 253c of the fixing part 253.
  • the positioning protrusion 253a protrudes forward and is provided in the positioning opening 226a provided in the strip 226 of the condenser lens frame 223, the positioning opening 232a provided in the light shielding frame 232, and the strip 246 of the projection lens frame 243. It passes through the provided positioning opening 246a in the front-rear direction.
  • a fixing member 260 which will be described later, is inserted into the fixing opening 253b.
  • the end surface 253c is, for example, formed into a planar shape. As shown in FIG. 25, the end surface 253c is formed perpendicular or almost perpendicular to the optical axis AX.
  • the condensing lens member 220 is supported by the end surface 253c so as to overlap in the optical axis direction D. That is, the end surface 253c becomes a reference surface when supporting the condenser lens member 220, the light shielding member 230, and the projection lens member 240.
  • the condenser lens member 220, the light shielding member 230, and the projection lens member 240 are appropriately arranged along the optical axis AX. can do.
  • the fixing member 260 fixes the condenser lens frame 223, the light shielding frame 232, and the projection lens frame 243 to the fixing part 253.
  • a fastening member such as a screw is used, for example.
  • the fixing member 260 includes a fixing opening 226b provided in the strip 226 of the condenser lens frame 223, a fixing opening 232b provided in the light shielding frame 232, and a fixing opening provided in the strip 246 of the projection lens frame 243. 246b and is inserted into the fixing opening 253b of the fixing part 253.
  • FIG. 26 is a diagram showing an example of the operation of the vehicle lamp 200.
  • the vehicle lamp 200 emits light from the light emitting surface 211a of the light source 211 in response to the operation. .
  • a part of the light L emitted from the light emitting surface 211a enters the first entrance surface 221a and the second entrance surface 221b of the condenser lens 221.
  • the light L1 that has entered the first entrance surface 221a travels inside the condenser lens 221 and is emitted forward from the exit surface 221d.
  • the light L2 that has entered the second entrance surface 221b is reflected forward by the reflection surface 221c, and is emitted forward from the exit surface 221d.
  • a part of the light L emitted from the light emitting surface 211a enters the cylindrical portion 222 or the condensing lens frame 223.
  • the light L3 that has entered the cylindrical portion 222 or the condensing lens frame 223 passes through the cylindrical portion 222 and the condensing lens frame 223 and is emitted forward.
  • the light L3 reaches the light shielding frame 232 of the light shielding member 230 and is blocked by the light shielding frame 232.
  • the condenser lens member 220 and the light shielding member 230 are provided so that their outer shapes overlap when viewed from the optical axis direction D. Therefore, the light L3 emitted forward from the portion of the condenser lens member 220 other than the condenser lens 221, that is, the cylindrical portion 222 or the condenser lens frame 223, is blocked by the light shielding member 230. Therefore, generation of glare can be prevented.
  • FIG. 27 is a diagram showing an example of an irradiation pattern formed on a road surface by the vehicle lamp 200. As shown in FIG. 27, the lights L1 and L2 emitted in front of the vehicle form an irradiation pattern P on the road surface in front of the vehicle.
  • the vehicle lamp 200 includes the light source 211, the condenser lens 221 that condenses the light emitted from the light source 211, and the condenser lens frame 223 that holds the condenser lens 221.
  • a condensing lens member 220 formed as one member, a slit forming part 231 having a slit 233 through which a part of the light condensed by the condensing lens 221 passes, and a light shielding frame 232 holding the slit forming part 231.
  • a light shielding member 230 formed as one member; a projection lens member 240 including a projection lens 241 that projects the light passing through the slit 233 onto the road surface to form an irradiation pattern P; and a support that supports the light source 211.
  • the condenser lens member 220, the light shielding member 230, and the projection lens member 240 are fixed to the support member 250 such that the condenser lens frame 223 and the light shielding frame 232 overlap in the optical axis direction D.
  • each optical element of the condenser lens member 220, the light shielding member 230, and the projection lens member 240 can be reduced. By reducing the number of parts required for fixing, each optical member can be attached with high precision.
  • the condenser lens member 220 is entirely formed using a material that transmits light
  • the light shielding member 230 is configured to cover the condenser lens 221 of the condenser lens member 220 when viewed from the front. and is formed to cover the condenser lens frame 223.
  • the entire condenser lens member 220 can be formed using the material that constitutes the lens portion that transmits light. Therefore, the condenser lens member 220 can be formed easily and at low cost.
  • the light from the light source 211 passes through a portion of the condenser lens member 220 other than the condenser lens 221, the light can be blocked by the light shielding member 230. Therefore, generation of glare light can be prevented.
  • the projection lens member 240 includes a projection lens 241 and a projection lens frame 243 holding the projection lens 241 formed as one member, and includes a condenser lens member 220 and a light shielding member 230.
  • the projection lens member 240 is fixed to the support member 250 such that the condenser lens frame 223, the light shielding frame 232, and the projection lens frame 243 overlap in the optical axis direction D.
  • the projection lens frame 243 is also fixed to the support member 250 so as to overlap in the optical axis direction D, so each optical member can be attached with high precision. I can do it.
  • the condenser lens 221 in the condenser lens member 220, the condenser lens 221 is arranged behind the condenser lens frame 223 in the optical axis direction, and in the projection lens member 240, the condenser lens 221 is arranged behind the condenser lens frame 223.
  • the projection lens 241 is arranged in front in the optical axis direction. According to this configuration, the condenser lens 221 and the projection lens 241 can be efficiently arranged.
  • the support member 250 includes a base portion 251 having a support surface 251a that supports the light source 211, and a fixing portion that fixes the condenser lens frame 223, the light shielding frame 232, and the projection lens frame 243. 253, and the fixing portion 253 protrudes from the support surface 251a. According to this configuration, a sufficient space in the support member 250 for arranging the condenser lens 221 can be secured.
  • the fixing portion 253 is provided with an end surface 253c at the tip in the protruding direction, which serves as a reference surface for fixing the condenser lens frame 223, the light-shielding frame 232, and the projection lens frame 243. is formed perpendicular to the optical axis AX. According to this configuration, the condenser lens member 220, the light shielding member 230, and the projection lens member 240 can be appropriately arranged along the optical axis AX.
  • the technical scope of the present invention is not limited to the third embodiment described above, and changes can be made as appropriate without departing from the spirit of the present invention.
  • a configuration in which the entire condensing lens member 220 is formed using a material that transmits light has been described as an example, but the present invention is not limited to this.
  • the condensing lens member 220 may be configured such that at least the condensing lens 221 is formed using a material that transmits light, and the cylindrical portion 222 and the condensing lens frame 223 are made of a material that does not transmit light. Good too.
  • the entire projection lens member 240 is formed using a material that transmits light
  • the projection lens member 240 may be configured such that at least the projection lens 241 is formed using a material that transmits light, and the cylindrical portion 242 and the projection lens frame 243 may be made of a material that does not transmit light.
  • the condenser lens 221 is arranged rearward in the optical axis direction with respect to the condenser lens frame 223 in the condenser lens member 220, and the projection lens 221 is disposed behind the condenser lens frame 223 in the projection lens member 240.
  • 241 has been described as an example of a configuration in which it is disposed at the front in the optical axis direction, but the present invention is not limited to this.
  • the condenser lens frame 223 and the projection lens frame 243 may have the same thickness as the condenser lens 221 and the projection lens 241, respectively.
  • the condenser lens frame 223 may be configured to protrude toward the support surface 251a.
  • the vehicle lamp 200 is arranged at the front of the vehicle M.
  • the vehicle lamp 200 is arranged at the rear or side of the vehicle M, and may be configured to form an irradiation pattern on the road surface at the rear or side of the vehicle M.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

光源からの光を効率良く利用しつつ、所望の明るさ分布の照射パターンを形成でき、光学部品を精度よく取り付けることが可能な車両用灯具を提供する。 車両用灯具は、第1光源および第2光源と、それらからの光を集光する集光レンズと、そこで集光された光を照射スリットから通す遮光部材と、その光で照射パターンを形成する投影レンズと、を備える。集光レンズは、第1光源に対応する第1レンズ部と、第2光源に対応する第2レンズ部と、を有し、照射スリットは、照射パターンの近方照射図柄に対応する近方スリット部と、照射パターンの遠方照射図柄に対応する遠方スリット部と、を有し、第1レンズ部は、遠方スリット部に対向して配置され、第2レンズ部は、近方スリット部に対向して配置されている。また、集光レンズ部材、遮光部材及び投影レンズ部材は、集光レンズフレーム及び遮光フレームが光軸方向に重なるように支持部材に固定されている。

Description

車両用灯具
 本開示は、車両用灯具に関する。
 車両用灯具は、車両の周辺の路面に照射パターンを形成するものが考えられている(例えば、特許文献1等参照)。この従来の車両用灯具は、光源からの光をシェード(遮光部材)のスリットを通して投影することにより照射パターンを形成して、見た者に何らかの意図を知らせることができる。この従来の車両用灯具は、光源からの光をライトガイドによりシェードに導くことで、光源からの光を効率良く利用している。また、特許文献3に記載の車両用灯具では、光源からの光を集光レンズで集光し、集光した光を遮光部材のスリットに照射し、スリットを透過した光を投影レンズにより車両前方の路面に照射する構成である。この構成において、集光レンズ、遮光部材及び投影レンズの各光学部材は、それぞれフレーム、ケース等の部品により保持された状態で支持部材に支持される。
特開2019-192350号公報 特開2020-102332号公報 特開2021-111465号公報
 ところが、従来の車両用灯具は、光源からの光をライトガイド内で拡散してシェード上での配光(光束)分布を均一的なものとしているので、シェード上における配光分布を調整することが困難であり、形成する照射パターンを所望の明るさ分布とすることが困難となる。また、特許文献3に記載の車両用灯具においては、各光学部材を精度よく取り付けることが求められる。
 本開示は、上記の事情に鑑みて為されたもので、光源からの光を効率良く利用しつつ、所望の明るさ分布の照射パターンを形成でき、光学部品を精度よく取り付けることが可能な車両用灯具を提供することを目的とする。
 本開示の車両用灯具は、並列された第1光源および第2光源と、前記第1光源および前記第2光源からの光を集光する集光レンズと、前記集光レンズで集光された光を部分的に通す照射スリットが設けられた遮光部材と、前記遮光部材を通した光を投影して照射パターンを形成する投影レンズと、を備え、前記集光レンズは、前記第1光源に対応する第1レンズ部と、前記第2光源に対応する第2レンズ部と、を有し、前記照射スリットは、前記照射パターンにおいて近い位置に投影される近方照射図柄に対応する近方スリット部と、前記照射パターンにおいて前記近方照射図柄よりも遠い位置に投影される遠方照射図柄に対応する遠方スリット部と、を有し、前記第1レンズ部は、前記遠方スリット部に対向して配置され、前記第2レンズ部は、前記近方スリット部に対向して配置されていることを特徴とする。
 本開示の車両用灯具は、複数の光源と、複数の前記光源からの光を集光する集光レンズと、前記集光レンズで集光された光を部分的に通す複数のスリット部が設けられた遮光部材と、前記遮光部材を通した光を投影することにより、複数の前記スリット部に対応する複数の照射図柄を有する照射パターンを形成する投影レンズと、を備え、前記光源は、前記スリット部に個別に対応して設けられ、前記集光レンズは、前記スリット部に個別に対応する複数のレンズ部が重ねられ、複数の前記レンズ部の間には光を低減する減光部が設けられていることを特徴とする。
 本開示の車両用灯具は、光源と、前記光源から出射された光を集光する集光レンズと前記集光レンズを保持する集光レンズフレームとが一つの部材として形成された集光レンズ部材と、前記集光レンズで集光された前記光の一部を通過させるスリットを有するスリット形成部と前記スリット形成部を保持する遮光フレームとが一つの部材として形成された遮光部材と、前記スリットを通過した前記光を路面に投影して照射パターンを形成する投影レンズが形成された投影レンズ部材と、前記光源を支持する支持部材とを備え、前記集光レンズ部材、前記遮光部材及び前記投影レンズ部材は、前記集光レンズフレーム及び前記遮光フレームが光軸方向に重なるように前記支持部材に固定されていることを特徴とする。
 上記の車両用灯具において、前記集光レンズ部材は、前記集光レンズを構成する材料を用いて全体が形成され、前記遮光部材は、前方から見て前記集光レンズ部材の前記集光レンズ及び前記集光レンズフレームを覆うように形成されていることを特徴とする。
 上記の車両用灯具において、前記投影レンズ部材は、前記投影レンズと当該投影レンズを保持する投影レンズフレームとが一つの部材として形成され、前記集光レンズ部材、前記遮光部材及び前記投影レンズ部材は、前記集光レンズフレーム、前記遮光フレーム及び前記投影レンズフレームが前記光軸方向に重なるように前記支持部材に固定されていることを特徴とする。
 上記の車両用灯具において、前記集光レンズ部材は、前記集光レンズフレームに対して前記集光レンズが前記光軸方向の後方に配置され、前記投影レンズ部材は、前記投影レンズフレームに対して前記投影レンズが前記光軸方向の前方に配置されていることを特徴とする。
 上記の車両用灯具において、前記支持部材は、前記光源を支持する支持面を有するベース部と、前記集光レンズフレーム、前記遮光フレーム及び前記投影レンズフレームを固定する固定部とを有し、前記固定部は、前記支持面から突出していることを特徴とする。
 上記の車両用灯具において、前記固定部は、前記集光レンズフレーム、前記遮光フレーム及び前記投影レンズフレームを固定する基準面となる端面が突出方向の先端に設けられ、前記端面は、前記光軸方向に直交するように形成されていることを特徴とする。
 本開示の車両用灯具によれば、光源からの光を効率良く利用しつつ、所望の明るさ分布の照射パターンを形成でき、光学部品を精度よく取り付けることが可能になる。
本開示に係る実施例1の車両用灯具が車両に搭載されてそれぞれ照射パターンを形成した様子を示す説明図である。 車両用灯具の構成を示す説明図である。 車両用灯具の構成を分解して示す説明図である。 車両用灯具の構成における光学部材のみを分解して示す説明図である。 第1光源および第2光源の構成および位置関係を示す説明図である。 シェード側から集光レンズの集光レンズ本体を見た様子を示す説明図である。 両光源と集光レンズの集光レンズ本体との位置関係を示す説明図である。 湾曲入射面部からの集光レンズの第1レンズ部に入射して第1出射面の内側出射面部から出射した第1光源からの光がシェード上に形成する内輪配光領域での配光分布を示す説明図である。 環状入射面部から集光レンズの第1レンズ部に入射して反射面で反射された後に第1出射面の外側出射面部から出射した第1光源からの光がシェード上に形成する外輪配光領域での配光分布を示す説明図である。 第1光源による内輪配光領域および外輪配光領域をシェード上で重ねて形成した第1配光領域の配光分布を示す説明図である。 第2入射面から集光レンズの第2レンズ部に入射して第2出射面から出射した第2光源からの光がシェード上に形成する第2配光領域での配光分布を示す説明図である。 第1光源および第2光源によるシェード上での配光領域の配光分布を示す説明図である。 本開示に係る実施例2の車両用灯具が車両に搭載されてそれぞれ照射パターンを形成した様子(全灯)を示す説明図である。 車両用灯具の構成を分解して示す説明図である。 光源部における第1光源、第2光源、第3光源の構成および位置関係を示す説明図である。 集光レンズを光源部側から見た様子を示す説明図である。 図16に示すI-I線に沿って得られた断面で示す説明図である。 集光レンズをシェード側から見た様子を示す説明図である。 集光レンズを光源部側であって上下方向の斜め下側から見た様子を示す説明図である。 集光レンズにおいて、第2光源からの光が第1レンズ部と第2レンズ部との間を通り迷光となる様子を示す説明図である。 第2レンズ部を通した第2光源からの光がシェードの第2スリット部に配光分布を形成する際に、図20に示す迷光が第3スリット部に意図しない配光分布(迷光領域)を形成する様子を示す説明図である。 実施例3に係る車両用灯具の一例を示す分解斜視図である。 車両用灯具を前方から見た状態を示す図である。 図23におけるF-F断面に沿った構成を示す図である。 図23におけるG-G断面に沿った構成を示す図である。 車両用灯具の動作の一例を示す図である。 車両用灯具により路面に形成される照射パターンの一例を示す図である。
 以下に、本開示に係る車両用灯具の一例としての車両用灯具10の実施例1について図面を参照しつつ説明する。なお、図1では、車両用灯具10が設けられている様子の把握を容易とするために、車両1に対して車両用灯具10を強調して示しており、必ずしも実際の様子とは一致するものではない。また、図4では、車両用灯具10の各構成部材のうちの光学的な部材、すなわち照射パターンPiを形成するために両光源(21、22)からの光に光学的に作用させる箇所を抜き出して示している。さらに、図8から図12では、シェード15(そのシェード部51のスリット部54)上に各領域が形成される様子の把握を容易とするために、シェード部51(その各スリット部54)の周辺のみを示している。また、図8から図12では、それぞれが示す各領域において、光束(光量)の高さに応じた領域を破線で囲んでおり、その領域の中心に向かうほど光束が高くなる等高線のように配光(光束)分布を示している。
 本開示に係る車両用灯具の一実施形態に係る実施例1の車両用灯具10を、図1から図12を用いて説明する。実施例1の車両用灯具10は、図1に示すように、自動車等の車両1の灯具として用いられるもので、車両1に設けられる前照灯とは別に、車両1の前方の周辺の路面2に照射パターンPiを形成すべく車両1の前部に設けられる。その車両1の前方の周辺とは、車両1に設けられる前照灯により照射される前照灯領域よりも車両1に近い近接領域を必ず含むものであり、部分的に前照灯領域を含む場合もある。なお、車両用灯具10は、車両1の後方や側方の周辺の路面2にも照射パターンPiを形成してもよく、実施例1の構成に限定されない。
 各車両用灯具10は、実施例1では、車両1の前端における路面2よりも高い位置に配置されており、投影光軸Lp(図2等参照)が路面2に対して傾斜した状態で設けられる。2つの車両用灯具10は、取り付けられる位置および照射パターンPiを形成する位置が異なることを除くと、基本的に等しい構成とされている。以下の説明では、各車両用灯具10において、光を照射(投影)する方向となる投影光軸Lpが伸びる方向を光軸方向(図面ではZとする)とし、光軸方向を水平面に沿う状態とした際の鉛直方向を上下方向(図面ではYとする)とし、光軸方向および上下方向に直交する方向(水平方向)を幅方向(図面ではXとする)とする(図2等参照)。
 車両用灯具10は、図2から図4に示すように、設置台部11に、光源部12と遮光枠13と集光レンズ14とシェード15と投影レンズ16とが取り付けられ、単一の投射光学系とされて、プロジェクタタイプの路面投影ユニットを構成する。設置台部11は、光源部12が設けられる箇所であり、熱伝導性を有するアルミダイカストや樹脂で形成され、全体として光源部12で発生する熱を外部に逃がすヒートシンクとして機能する。設置台部11は、ベース部21と、複数の放熱フィン22(図4参照)と、一対の取付腕部23と、を有する。
 ベース部21は、光軸方向に直交する平板状とされ、真ん中に光源取付個所24が設けられている。光源取付個所24は、光源部12が取り付けられる箇所を規定するもので、図3に示すように、平坦な面とされるとともに、一対のネジ孔24aと一対の位置決め突起24bとが設けられている。一対のネジ孔24aは、光源取付個所24における対角位置に設けられており、ネジ25の捻じ込みによる固定が可能とされている。一対の位置決め突起24bは、光源取付個所24における幅方向の端部に設けられており、光軸方向の前方側に突出されている。各放熱フィン22は、ベース部21の後方側(光軸方向の後側(光が照射される向きとは反対側))において、幅方向に直交する板状とされている。各放熱フィン22は、幅方向に所定の間隔を開けて並んで(並列して)設けられている。
 ベース部21では、両取付腕部23の下側に一対の位置決め突起21aが設けられ、一方の取付腕部23の上側にネジ孔21bが設けられている。位置決め突起21aは、光軸方向の前方側に突出されている。ネジ孔21bは、ネジ26の捻じ込みによる遮光枠13の固定が可能とされている。設置台部11は、光源取付個所24に設置された光源部12で発生した熱を主に各放熱フィン22から外部に放熱する。
 一対の取付腕部23は、光源取付個所24の幅方向での両外側で対を為して設けられ、ベース部21から光軸方向の前方側に突出されている。両取付腕部23は、光軸方向の前方側の端部23aが光軸方向に直交する平面とされており、その互いの端部23aを光軸方向で互いに等しい位置(同じ平面上)とされている。各端部23aには、位置決め突起23bとネジ孔23cとが設けられている。位置決め突起23bは、端部23aにおける上下方向の下部に設けられており、光軸方向の前方側に突出されている。ネジ孔23cは、端部23aにおける上下方向の上部に設けられており、ネジ27の捻じ込みによる集光レンズ14とシェード15と投影レンズ16との固定が可能とされている。
 光源部12は、第1光源31と、第2光源32と、コネクタ端子33と、それらが実装される基板34と、を有する。第1光源31と第2光源32とは、LED(Light Emitting Diode)等の発光素子で構成されている。第1光源31と第2光源32とは、実施例1では、出射光軸を中心とするランバーシアン分布でアンバー色の光(アンバー色光)を出射する。なお、第1光源31と第2光源32とは、色(波長帯域)や、分布の態様や、色の数等は適宜設定すればよく、実施例1の構成に限定されない。
 実施例1の第1光源31と第2光源32とは、図5等に示すように、投影光軸Lpを挟んで上下方向で並列して設けられ、第1光源31が投影光軸Lpよりも下側に位置され、第2光源32が投影光軸Lpよりも上側に位置されている。第1光源31は、幅方向に長尺な矩形状とされており、2つのLEDチップ31aと、それぞれを覆う蛍光体31bと、を有する。第2光源32は、略正方形状とされており、1つのLEDチップ32aと、それぞれを覆う蛍光体32bと、を有する。第1光源31と第2光源32とは、各LEDチップ31a、32aからの光を蛍光体31b、32bを通すことでアンバー色光として出射する。このため、第1光源31では、蛍光体31bが第1発光面として機能し、第2光源32では、蛍光体32bが第2発光面として機能する。
 第1光源31と第2光源32とでは、それぞれの中心から光軸方向にのびて出射光軸31L、32Lが設定されている。この出射光軸31Lと出射光軸32Lとは、投影光軸Lpと略平行とされている。両出射光軸31L、32Lは、互いを結ぶ直線が投影光軸Lpを通る位置関係とされている。実施例1では、上下方向で、投影光軸Lpから第1光源31および出射光軸31Lまでの間隔が、投影光軸Lpから第2光源32および出射光軸32Lまでの間隔よりも小さくされている。換言すると、実施例1では、第1光源31が第2光源32よりも投影光軸Lpに近い位置関係とされている。
 コネクタ端子33は、基板34の配線パターンと電気的に接続されており、点灯制御回路に接続された接続コネクタが着脱自在とされている。コネクタ端子33は、基板34の上下方向の下側の端部に設けられており、接続コネクタの着脱が容易とされている。コネクタ端子33は、接続コネクタが取り付けられることで、配線パターンを介する点灯制御回路から各光源31、32への電力の供給を可能とする。
 基板34は、ガラスエポキシ基板等の樹脂材料で形成された板状とされ、第1光源31と第2光源32とが実装される。基板34では、設置台部11のベース部21の光源取付個所24の一対のネジ孔24aに対応して一対のネジ通し孔が設けられるとともに、光源取付個所24の一対の位置決め突起24bに対応して一対の位置決め孔34aが設けられている。この基板34は、一対の位置決め孔34aに対応する位置決め突起24bが通されつつ、一対のネジ通し孔に通されたネジ25が対応するネジ孔24aに捻じ込まれることにより、光源取付個所24に取り付けられる。これにより、基板34は、光源取付個所24すなわちそこに実装された第1光源31と第2光源32とを、集光レンズ14に対向させる。基板34は、コネクタ端子33を介して点灯制御回路から電力を適宜供給して第1光源31と第2光源32とを点灯させる。
 遮光枠13は、第1光源31、第2光源32から出射された光が、光源部12(基板34)と集光レンズ14との間から漏れ出ることを防止するものであり、枠部本体35と取付部36とを有する。枠部本体35は、光軸方向に所定の寸法を有しつつ光源部12(基板34)の略全域を取り囲む環状に伸びる板状部材で構成されている。この枠部本体35は、上下方向の下側が部分的に光軸方向の寸法が小さくされており、光源部12のコネクタ端子33の接続コネクタとの着脱を可能としている。一対の取付部36は、ベース部21の位置決め突起21aとネジ孔21bとに対応する位置で枠部本体35から幅方向に突出する板状とされている。位置決め突起21aに対応する取付部36では、位置決め孔36aが設けられ、ネジ孔21bに対応する取付部36では、ネジ26を通すことができるネジ通し孔が設けられている。遮光枠13は、位置決め孔36aに位置決め突起21aが通されつつ、ネジ通し孔に通されたネジ26がネジ孔21bに捻じ込まれることにより、設置台部11のベース部21に取り付けられる。
 集光レンズ14は、第1光源31、第2光源32から出射された光を集光するものであり、シェード15上における後述する各スリット部54の周辺、すなわちシェード15上において全てのスリット部54を含みつつ各スリット部54が設けられた領域に光を集める。集光レンズ14は、図3に示すように、第1光源31、第2光源32からの光を集光する集光レンズ本体41と、そこから幅方向に突出された一対の集光レンズ取付片部42と、を有する。集光レンズ本体41は、基本的に凸レンズとされており、シェード15上に内輪配光領域Aiと外輪配光領域Ao(図8、図9参照)とを形成すべく光学特性が設定されている。これについては、後述する。
 両集光レンズ取付片部42は、光軸方向に直交する板状とされ、設置台部11のベース部21の両取付腕部23の端部23aに宛がうことが可能とされている。各集光レンズ取付片部42には、集光レンズ位置決め孔42aと集光レンズネジ通し孔42bとが設けられている。各集光レンズ位置決め孔42aは、集光レンズ取付片部42が端部23aに宛がわれた状態で、その位置決め突起23bを嵌め入れることが可能とされている。各集光レンズネジ通し孔42bは、集光レンズ取付片部42が端部23aに宛がわれた状態で、そのネジ孔23cに捻じ込まれるネジ27を通すことが可能とされている。集光レンズ14は、各集光レンズ位置決め孔42aに対応する位置決め突起23bが通されつつ、各集光レンズネジ通し孔42bに通された各ネジ27が対応するネジ孔23cに捻じ込まれることにより、設置台部11の両取付腕部23(その端部23a)に取り付けられる。
 シェード15は、集光レンズ14で集光された第1光源31や第2光源32からの光を照射スリット53から部分的に通すことで照射パターンPiを形成する遮光部材の一例である。その照射パターンPiは、図1に示すように、3つの照射図柄Diが車両1から遠ざかる方向に略等しい間隔で整列されている。ここで、各照射図柄Diは、個別に示す際には、車両1から最も遠いものを第1照射図柄Di1とし、そこから車両1に近づくにつれて順に、第2照射図柄Di2、第3照射図柄Di3とする。実施例1では、第1照射図柄Di1と第2照射図柄Di2とが大きく開くV字形状の記号とされており、第1照射図柄Di1が第2照射図柄Di2よりも大きくされている。そして、第3照射図柄Di3が、車両1から第2照射図柄Di2へ向けて伸びる長尺な五角形状とされており、車両1側の基端が後述する矢印方向Daに直交する直線の両端に角が設けられた形状とされ、車両1から離れた他端が第1照射図柄Di1や第2照射図柄Di2に合わせたV字形状とされている。この第3照射図柄Di3は、矢印方向Daに直交する方向での寸法が、第1照射図柄Di1と第2照射図柄Di2とよりも小さくされている。この照射パターンPiでは、第1照射図柄Di1と第2照射図柄Di2とが遠方照射図柄となり、第3照射図柄Di3が近方照射図柄となる。
 この照射パターンPiは、投影面となる路面2上において、第1照射図柄Di1と第2照射図柄Di2と第3照射図柄Di3とが、車両1から遠ざかるように同一直線上に並べて形成されている。このため、照射パターンPiは、3つの照射図柄Diが並べられることで、車両1から矢印方向Daを指し示す矢印のように見せることができる。この照射パターンPiとしての矢印が指し示す方向すなわち各照射図柄DiのV字形状の頂点が並ぶ方向を矢印方向Daとし、その指し示す側(第1照射図柄Di1側)を矢印方向Daの前側とする。実施例1では、3つの照射図柄Diが、矢印方向Daに直交する方向に位置する両側端Dieを有する。その両側端Dieは、矢印方向Daの後側に向かうに連れて内側(車両1に近付く側)に向かう傾斜の同一の直線上に位置されており、3つの照射図柄Diで矢印方向Daを指し示す矢印を構成するような印象を強調している。この3つの照射図柄Diからなる照射パターンPiは、シェード15により形成される。
 シェード15は、図3、図4に示すように、基本的に光の透過を阻む板状の部材で形成されており、シェード部51と一対のシェード取付片部52とを有する。シェード取付片部52は、シェード部51から幅方向の両側に突出しており、設置台部11の両取付腕部23の端部23aに取り付けられた集光レンズ14の各集光レンズ取付片部42に宛がうことが可能とされている。各シェード取付片部52には、シェード位置決め孔52aとシェードネジ通し孔52bとが設けられている。各シェード位置決め孔52aは、シェード取付片部52が集光レンズ取付片部42に宛がわれた状態で、そこに通された位置決め突起23bを嵌め入れることが可能とされている。各シェードネジ通し孔52bは、シェード取付片部52が集光レンズ取付片部42に宛がわれた状態で、その集光レンズネジ通し孔42bに通されるネジ27を通すことが可能とされている。シェード15は、各シェード位置決め孔52aに対応する位置決め突起23bが通されつつ、各シェードネジ通し孔52bに通された各ネジ27が対応するネジ孔23cに捻じ込まれることにより、集光レンズ14を介して設置台部11の両取付腕部23に取り付けられる。シェード15は、シェード取付片部52が両取付腕部23に取り付けられることで、シェード部51の中心位置が投影光軸Lp上に位置される。
 シェード部51は、板状の部材が部分的に切り欠かれて貫通された照射スリット53が設けられている。照射スリット53は、集光レンズ14(その集光レンズ本体41)で集光された第1光源31、第2光源32からの光を部分的に通すことで、投影する照射パターンPiを所定の形状に成形する。照射スリット53は、照射パターンPiに対応されており、図3、図4、図8等に示すように、実施例1では3つのスリット部54で構成されている。
 この3つのスリット部54は、3つの照射図柄Diに一対一で対応している。その各スリット部54は、投影レンズ16がシェード15(照射スリット53)を反転させて路面2に投影することから、照射パターンPiの各照射図柄Diの位置関係に対して、投影光軸Lpを中心として回転対象な位置関係とされている(図3、図4参照)。このため、各スリット部54は、上下方向の最も下側の第1スリット部541が、照射パターンPiの第1照射図柄Di1に対応するとともに、その上の第2スリット部542が、第2照射図柄Di2に対応する。このことから、第1スリット部541と第2スリット部542とは、遠方照射図柄である第1照射図柄Di1と第2照射図柄Di2とに対応する遠方スリット部となる。また、各スリット部54は、最も上側の第3スリット部543が第3照射図柄Di3すなわち近方照射図柄に対応する近方スリット部となる。
 各スリット部54は、路面2上で各照射図柄Diが狙った大きさでかつ狙った位置関係となるように、シェード部51上での位置が設定されている。実施例1のシェード15では、上下方向において、第3スリット部543が投影光軸Lpよりも上方に設けられ、その下に第2スリット部542が設けられ、その下に第1スリット部541が設けられている。その第2スリット部542は、略全体が投影光軸Lpを含む水平線よりも下側に位置されているとともに、幅方向の両端部の一部が投影光軸Lpを含む水平線を跨いで上側に位置している。このため、遠方スリット部(第1スリット部541、第2スリット部542)は、シェード15(シェード部51)において、4分の3以上が投影レンズ16の投影光軸Lpよりも下側に設けられている。このシェード15(照射スリット53の各スリット部54)を透過した光は、投影レンズ16により路面2に投影される。
 その遠方スリット部となる第1スリット部541と第2スリット部542とは、それぞれが対応する各照射図柄Diと同様に大きく開くV字の記号を模る形状とされており、各照射図柄Diに対して上下左右が反転されている。また、近方スリット部となる第3スリット部543は、対応する第3照射図柄Di3と同様に、上側から第2スリット部542へ向けて伸びる五角形状とされており、第3照射図柄Di3に対して上下左右が反転されている。3つのスリット部54は、路面2上で各照射図柄Diが上記した図1に示す大きさで略等間隔となるように、それぞれ路面2までの距離に応じて大きさおよび間隔が設定されている。詳細には、車両用灯具10は、路面2に対して投影光軸Lpが傾斜して設けられることでシェード15および投影レンズ16から路面2までの距離が異なるので、投影レンズ16により路面2上に投影されると各スリット部54(そこを透過した光である各照射図柄Di)がその距離に応じた大きさおよび間隔とされる。
 このため、各スリット部54は、路面2上で各照射図柄Diが上記した大きさで略等間隔となるように、路面2までの距離に応じて大きさおよび間隔が設定されている。具体的には、実施例1では、第1スリット部541が細いV字の記号を模る形状とされ、第2スリット部542が第1スリット部541よりも太いV字の記号を模る形状とされている。この第2スリット部542は、シェード部51において、下向きに突出するV字の記号を模る外郭線のうち、上側の外郭線の屈曲箇所が投影光軸Lpと一致する位置関係とされている(図8等参照)。また、第3スリット部543が、第2スリット部542へ向けて突出した正五角形状に似た形状とされている。そして、各スリット部54は、それぞれ対応する照射図柄Diよりも幅方向に拡がった形状とされている。
 このように、3つのスリット部54は、各照射図柄Diとは異なる大きさとされるとともに異なる間隔とされている。各スリット部54では、対応する照射図柄Diに対する縮小比が、第1スリット部541が最も小さくされており、通った光が路面2上に投影される際に最も大きな拡大率で拡大されて第1照射図柄Di1を形成する。また、各スリット部54では、対応する照射図柄Diに対する縮小比が、第3スリット部543が最も大きくされており、通った光が路面2上に投影される際に最も小さな拡大率で拡大されて第3照射図柄Di3を形成する。
 投影レンズ16は、図2、図3に示すように、シェード15を通した光を投影する投影レンズ本体55と、そこから幅方向に突出された一対の投影レンズ取付片部56と、を有する。投影レンズ本体55は、図4等に示すように、光軸方向で見て円形状の凸レンズとされており、実施例1では、入射面および出射面が凸面とされた自由曲面とされている。投影レンズ本体55は、シェード15の照射スリット53(その各スリット部54)を投影することで、図1に示すように、投影光軸Lpに対して傾斜する路面2上に照射パターンPiを形成する。なお、入射面と出射面とは、投影レンズ本体55を凸レンズとするものであれば、凸面でもよく凹面でもよく、実施例1の構成に限定されない。
 両投影レンズ取付片部56は、光軸方向に直交する板状とされ、設置台部11の両取付腕部23の端部23aに取り付けられたシェード15の各シェード取付片部52に宛がうことが可能とされている。各投影レンズ取付片部56には、投影レンズ位置決め孔56aと投影レンズネジ通し孔とが設けられている。各投影レンズ位置決め孔56aは、投影レンズ取付片部56がシェード取付片部52に宛がわれた状態で、そこに通された位置決め突起23bを嵌め入れることが可能とされている。各投影レンズネジ通し孔は、投影レンズ取付片部56がシェード取付片部52に宛がわれた状態で、そのシェードネジ通し孔52bに通されるネジ27を通すことが可能とされている。投影レンズ16は、各投影レンズ位置決め孔56aに対応する位置決め突起23bが通されつつ、各投影レンズネジ通し孔に通された各ネジ27が対応するネジ孔23cに捻じ込まれることにより、設置台部11の両取付腕部23(その端部23a)に取り付けられる。これにより、投影レンズ16は、投影レンズ本体55の光軸である投影光軸Lpが所定の方向に向けられて、車両用灯具10の投影光軸Lpの向きが設定される。
 次に、集光レンズ14の集光レンズ本体41の構成について、主に図6および図7を用いて説明する。集光レンズ本体41は、第1光源31に対応する第1レンズ部61と、第2光源32に対応する第2レンズ部62とを有する。実施例1の集光レンズ14(集光レンズ本体41)では、第1レンズ部61の上に第2レンズ部62が載せられた状態で、その第1レンズ部61と第2レンズ部62とが一体に形成されている。
 第1レンズ部61は、光軸方向で正面視して略円形状とされている。実施例1の第1レンズ部61は、全体として第1光源31から出射された広がりのある光を、投影光軸Lpと平行に近い状態に集光してシェード部51へと進行させる。この第1レンズ部61は、第1光源31に対向された第1入射面63と、その反対側に向けられた第1出射面64と、を有する。
 第1入射面63は、図7に示すように、中央部分が第1レンズ部61の内側(第1光源31とは反対側)に凹んでおり、その中央で外側に凸に湾曲された湾曲入射面部65と、それを取り巻く環状入射面部66と、を有する。また、第1入射面63の周辺では、環状入射面部66を取り囲む円錐台状の反射面67が設けられている。
 湾曲入射面部65は、光軸方向で第1光源31と対向しており、後側の焦点(後側焦点)の近傍に第1光源31が位置される。湾曲入射面部65は、第1光源31から出射される光を第1レンズ部61の軸線と略平行に進行する平行光として第1レンズ部61内に入射させる。なお、この平行光(平行な光)とは、光が湾曲入射面部65を経ることでコリメートされた状態の光のことをいう。
 環状入射面部66は、湾曲入射面部65から第1光源31側へと突出して設けられており、第1光源31からの光のうち、湾曲入射面部65へと進行しないものを第1レンズ部61内に入射させる。反射面67は、環状入射面部66から第1レンズ部61内に入射した光が進行する位置に形成されている。反射面67は、環状入射面部66から入射した光を反射すると、第1レンズ部61の軸線と略平行に進行する平行光とする。なお、反射面67は、全反射を利用して光を反射してもよく、蒸着や塗装等によりアルミや銀等を接着させることで光を反射してもよい。これらのことから、第1入射面63は、第1光源31から出射された光を、第1レンズ部61の軸線と略平行に進行する平行光として第1レンズ部61内に進行させて、第1出射面64へと導く。
 このため、第1レンズ部61では、第1入射面63において、湾曲入射面部65を経た光が直接第1出射面64に向かう直射光となるとともに、環状入射面部66を経て反射面67で反射された光が内部で反射されてから第1出射面64に向かう反射光となる。
 第1出射面64は、第1入射面63から入射されて平行光とされた光を、前後方向の前側に出射させる。第1出射面64は、図6等に示すように、正面視して略円形状とされており、光学的な設定の異なる内側出射面部68と外側出射面部69とを有する。内側出射面部68は、第1出射面64における中心の近傍であって湾曲入射面部65を経た光が進行する領域に設けられている。実施例1の内側出射面部68は、正面視して略円形状とされている。内側出射面部68は、湾曲入射面部65を経た光を屈折させることで、幅方向(水平方向)に大きく拡散しつつ前後方向の前側へ向けて進行させる。内側出射面部68は、第1光源31から湾曲入射面部65を経た光を照射することで、シェード15(シェード部51)上において、光学特性に応じた位置に第1光源31の複数の配光像を適宜重ねて形成する。この光学特性は、湾曲入射面部65とともに内側出射面部68の曲率(面形状)を場所毎に調整することで設定でき、実施例1ではその曲率を漸次的に変化させて設定されている。
 この内側出射面部68は、第1光源31から出射されて湾曲入射面部65を経た光を適宜屈折させることで、シェード15上に照射して図8に示す内輪配光領域Aiを形成する。この内輪配光領域Aiは、シェード15上において、遠方スリット部において遠方側に対応する(遠方照射図柄において遠方側に位置する第1照射図柄Di1を形成する)第1スリット部541の全域を略等しい光量としている。
 外側出射面部69は、図6等に示すように、内側出射面部68を取り囲む領域に設けられており、第1光源31から環状入射面部66を経て反射面67で反射された光が進行する領域に位置されている。外側出射面部69は、第1光源31から環状入射面部66を経て反射面67で反射された光を屈折させることで、第1レンズ部61の軸線側に集光させるように前後方向の前側へ向けて進行させる。この外側出射面部69は、反射面67で反射された光を照射することで、シェード15上において、光学特性に応じた位置に第1光源31の複数の配光像を適宜重ねて形成する。この光学特性は、反射面67とともに外側出射面部69の曲率(面形状)を場所毎に調整することで設定でき、実施例1ではそれらの曲率が漸次的に変化されて設定されている。
 この外側出射面部69は、第1光源31から出射されて環状入射面部66を経て反射面67で反射された光を適宜屈折させることで、シェード15上に照射して図9に示す外輪配光領域Aoを形成する。この外輪配光領域Aoは、シェード15上において高い光束(光量)を形成する領域である。外輪配光領域Aoは、第1スリット部541の頂点から幅方向の中間位置までと第2スリット部542の頂点付近とを光束の最高値としつつ、そこよりも低い光束で残りの遠方スリット部全域すなわち第1スリット部541と第2スリット部542との残りの全域を取り囲むものとされている。そして、外輪配光領域Aoは、光束を最高値とした領域と、そこを取り囲む領域と、の光束の差が大きくされているとともに、その境界における光束の変化が連続的とされている。この外輪配光領域Aoは、最高値とする中央の光束を、少なくとも内輪配光領域Aiよりも高いものとしている。ここで、第1レンズ部61は、そのレンズ光軸を第1スリット部541の頂点へ向けて伸びるものとすることで、上記のような外輪配光領域Aoを形成することが容易となる。
 このように、第1レンズ部61は、内側出射面部68を経た第1光源31からの光により第1スリット部541の全域を照射する内輪配光領域Aiを形成するとともに、外側出射面部69を経た第1光源31からの光により第1スリット部541の頂点付近を最も高い光束としつつ遠方スリット部全域を照射する外輪配光領域Aoを形成する。このため、第1レンズ部61は、第1光源31からの光を、上記のように、湾曲入射面部65を経て内側出射面部68に向かう直射光と、環状入射面部66を経て反射面67で反射されて外側出射面部69に向かう反射光と、で異なる光路を通すことにより、図10に示す第1配光領域A1を形成する。この第1配光領域A1は、上記した内輪配光領域Aiと外輪配光領域Aoとを重ね合わせたものであり、第1スリット部541の頂点から幅方向で中間位置までと第2スリット部542の頂点付近とを最も高い光束としつつ、第1スリット部541および第2スリット部542すなわち遠方スリット部を全体に照射している。
 第2レンズ部62は、図6、図7に示すように、光軸方向で正面視して幅方向に長尺な略長方形状とされた凸レンズとされており、全体として第2光源32から出射された広がりのある光を、投影光軸Lpと平行に近い状態に集光してシェード部51へと進行させる。この第2レンズ部62は、第2光源32に対向された第2入射面71と、その反対側に向けられた第2出射面72と、を有する。このため、第2入射面71は、第1レンズ部61の第1入射面63とともに集光レンズ14における入射面を構成する。また、第2出射面72は、第1レンズ部61の第1出射面64とともに集光レンズ14における出射面を構成する。第2レンズ部62は、実施例1では、第2入射面71および第2出射面72が凸面とされた自由曲面とされている。なお、第2入射面71と第2出射面72とは、第2レンズ部62を凸レンズとするものであれば、凸面でもよく凹面でもよく、実施例1の構成に限定されない。
 第2入射面71は、光軸方向で第2光源32と対向しており、後側の焦点(後側焦点)の近傍に第2光源32が位置される。湾曲入射面部65は、第2光源32から出射される光を第2レンズ部62の軸線と略平行に進行する平行光として第2レンズ部62内に入射させる。第2出射面72は、第2入射面71と反対側に設けられており、第2入射面71を経た光を屈折させることで、拡散しつつ前後方向の前側へ向けて進行させる。第2出射面72は、第2光源32から第2入射面71を経た光を照射することで、シェード15(シェード部51)上において、光学特性に応じた位置に第2光源32の複数の配光像を適宜重ねて形成する。この光学特性は、第2入射面71とともに第2出射面72の曲率(面形状)を場所毎に調整することで設定でき、実施例1ではその曲率を漸次的に変化させて設定されている。
 この第2出射面72は、第2光源32から出射されて第2入射面71を経た光を適宜屈折させることで、シェード15上に照射して図11に示す第2配光領域A2を形成する。この第2配光領域A2は、シェード15上において、近方スリット部となる第3スリット部543の全域を略等しい光束(光量)としている。ここで、全域を略等しい光束とするとは、少なくとも外輪配光領域Aoよりも光束の変化が少ないことをいい、好適には略均一な光束であることをいう。実施例1の第2配光領域A2は、第1配光領域A1すなわち内輪配光領域Aiや外輪配光領域Aoよりも光束が低いものとされている。
 これらのことから、集光レンズ14は、第1光源31からの光で第1レンズ部61が形成した第1配光領域A1と、第2光源32からの光で第2レンズ部62が形成した第2配光領域A2と、を重ね合わせることにより、図12に示す配光領域Aを形成する。この配光領域Aは、第1スリット部541の頂点から幅方向で中間位置までと第2スリット部542の頂点付近とを最も高い光束とし、第1スリット部541および第2スリット部542における残りの箇所をその次に高い光束とし、それらよりも低い光束で第3スリット部543の全域を均一としている。このため、実施例1の集光レンズ14は、シェード15上において、第1照射図柄Di1を形成する第1スリット部541の頂点付近を最大光束箇所としている。このように、集光レンズ14は、シェード15上において、遠方スリット部に対しては所定の抑揚(メリハリ(光束の高低差))を付けた所定の光束分布を形成できるとともに、近方スリット部に対しては遠方スリット部よりも低い均一な光束とすることができる。
 次に、車両用灯具10の作用について説明する。車両用灯具10は、点灯制御回路からの電力を基板34から両光源(21、22)に供給することで、それらを適宜点灯および消灯できる。両光源(21、22)からの光は、集光レンズ14で集光されてシェード15を照射し、その照射スリット53(各スリット部54)を透過した後に、投影レンズ16により投影されることで、照射パターンPiを路面2上に形成する。その照射パターンPiは、上記の配光(光束)分布とされたシェード15の照射スリット53(その各スリット部54)を透過した光が、投影レンズ16により投影されることで、第1照射図柄Di1、特にその先端近傍が最も高い光束とされつつ略一直線上に3つの照射図柄Diが並べられる。また、実施例1の車両用灯具10では、第1光源31、第2光源32を単色光としているので、投影レンズ16における色収差の影響を大幅に抑制することができ、照射パターンPiすなわち各照射図柄Diを明確なものにできる。
 車両用灯具10は、ターンランプと連動されており、左右いずれかのターンランプが点灯されると、その点灯された側に設けられたものの第1光源31、第2光源32が点灯されて、照射パターンPiを路面2上に形成する。このため、車両用灯具10は、見通しの悪い路地から他の路地へと車両1が進行しようとしている場面において、他の路地にいる者が車両1を視認できない場合であっても、路面2上に形成された照射パターンPiを視認させることができる。加えて、車両1は、ハザードランプが点灯された場合には、左右の2つの車両用灯具10が同時に照射パターンPiを路面2上に形成するので、左右のターンランプのみを点滅させている場合と比較して、ハザードランプが点灯されていることをより確実に認識させることができる。
 さらに、車両用灯具10は、形成する照射パターンPiにおいて、遠方照射図柄である第1照射図柄Di1と第2照射図柄Di2とをV字形状とするとともに、近方照射図柄である第3照射図柄Di3を矢印方向Daに長尺な五角形状としている。このため、車両用灯具10は、遠方照射図柄(第1照射図柄Di1、第2照射図柄Di2)が矢印の記号におけるアローヘッドに相当するとともに、近方照射図柄(第3照射図柄Di3)矢印の記号におけるシャフトに相当する印象を与えることができ、より効果的に矢印方向Daを指し示す印象を与えることができる。加えて、実施例1の照射パターンPiは、3つの照射図柄Diの両側端Dieを、矢印方向Daの後側に向かうに連れて内側(車両1に近付く側)に向かう傾斜の同一の直線上に位置させている。これにより、車両用灯具10は、車両1の周囲の者に対して、照射パターンPiが矢印方向Daを指し示していることをより直感的に把握させることができる。
 車両用灯具10は、光源部12の第1光源31を2つのLEDチップ31aを幅方向に並列する構成とするとともに、対応する遠方スリット部すなわち第1スリット部541と第2スリット部542とを幅方向に長尺なV字の記号を模る形状としている。このため、車両用灯具10は、効率よく遠方スリット部に対して幅方向の全域に亘って照射することができ、その遠方スリット部が形成する遠方照射図柄すなわち第1照射図柄Di1と第2照射図柄Di2を全域に亘って明るくすることができる。
 ここで、先行技術文献に記載の従来の車両用灯具は、複数の光源に個別に対応させて複数のライトガイドを設けており、各光源からの光を効率良く利用している。その従来の車両用灯具は、各導光部材が内部で光を拡散させて光束分布が略均一とした光を出射させており、各導光部材を通した光でシェード(遮光部材)上を照射することで、シェード上の配光(光束)分布を略均一なものとしている。また、従来の車両用灯具は、シェード上において、ライトガイド毎に対応する光源からの光が導かれるので、光源毎に別々にシェード上に導いている。このため、従来の車両用灯具は、シェード上において、光束の低い領域の中において光束の変化を連続的としつつ部分的に光束の高い領域を形成することのように所望の配光分布を得るのが困難である。
 これに対して、車両用灯具10は、2つの光源(21、22)に対して、それぞれからの光を集光する単一の集光レンズ14を設けている。その集光レンズ14は、第1光源31に対応する第1レンズ部61と、第2光源32に対応する第2レンズ部62とを有するものとしている。その第1レンズ部61では、第1光源31から出射光軸31Lに略沿う方向で出射された光を第1入射面63の湾曲入射面部65から入射させるとともに、第1光源31から広がる(出射光軸31Lに対する角度が大きい)方向で出射された光を第1入射面63の環状入射面部66から入射させて反射面67で反射させる。そして、第1レンズ部61は、湾曲入射面部65を経た光を主に第1出射面64の内側出射面部68から出射させるとともに、環状入射面部66を経て反射面67で反射された光を主に第1出射面64の外側出射面部69から出射させる。すると、第1レンズ部61は、湾曲入射面部65および内側出射面部68を経た光でシェード15上に内輪配光領域Aiを形成し、環状入射面部66を経て反射面67で反射して外側出射面部69を経た光でシェード15上に内輪配光領域Aiを形成する。このように、第1レンズ部61では、湾曲入射面部65および内側出射面部68を経る光路と、環状入射面部66、反射面67および外側出射面部69を経る光路と、の違いを利用して、互いに異なる位置、大きさおよび配光(光束)分布の外輪配光領域Aoと内輪配光領域Aiとを形成している。そして、第1レンズ部61は、配光分布の異なる外輪配光領域Aoと内輪配光領域Aiとを重ねることで、遠方スリット部(第1スリット部541、第2スリット部542)上に所定の抑揚(メリハリ(光束の高低差))を付けた光束分布の第1配光領域A1を形成する。
 また、第2レンズ部62は、凸レンズとされているので、第2光源32からの光を第2入射面71から入射させて第2出射面72から出射させて、シェード15の近方スリット部(第3スリット部543)上に第1配光領域A1よりも低く均一な光束の第2配光領域A2を形成する。ここで、近方スリット部は、照射パターンPiにおいて近方照射図柄となる第3照射図柄Di3に対応しており、車両1に近い場所すなわち車両用灯具10からの距離が近い場所に投影されるので、見易い近方照射図柄を形成するために、遠方スリット部よりも低い一様な光束とされることが望ましい。
 このため、車両用灯具10は、両光源(21、22)に対して単一の集光レンズ14を用いることにより、シェード15上を所望の配光分布で照射でき、所望の光束分布の第1配光領域A1と、そこよりも低い均一な光束の第2配光領域A2と、を形成できる。そして、車両用灯具10は、第1配光領域A1と第2配光領域A2とをシェード15上に重ねて配光領域Aを形成することで、所望の明るさ分布で見易い照射パターンPiを形成できる。よって、車両用灯具10は、従来の車両用灯具と比較して、単一の集光レンズ14を用いる簡易な構成としつつ、シェード15上に形成する配光領域Aの配光分布の調整を容易とすることができ、形成する照射パターンPiを所望の明るさ分布とすることができる。
 ここで、実施例1の第3照射図柄Di3は、矢印方向Daに長尺な形状として、車両用灯具10が搭載された車両1の近傍まで伸びるものとしている。換言すると、実施例1の第3照射図柄Di3は、車両1との間隔を小さくするように、矢印方向Daに長尺な形状とされている。すると、第3スリット部543は、第3照射図柄Di3に対応するものであることから、シェード部51上において大きな面積を有するものとなる。すると、第3スリット部543は、第1レンズ部61のように光束の抑揚を付けた所定の光束分布とするレンズを用いて照射すると、全域に亘って照射することが困難となり、形成する第3照射図柄Di3において暗い箇所が生じる等の明るさのムラを生じさせて、適正な第3照射図柄Di3を形成できなくなる虞がある。
 これに対して、車両用灯具10は、遠方スリット部(第1スリット部541、第2スリット部542)に対しては第1レンズ部61を用いて所定の光束分布の第1配光領域A1を形成し、近方スリット部(第3スリット部543)に対しては第2レンズ部62を用いて一様な光束の第2配光領域A2を形成している。このため、車両用灯具10は、単一の集光レンズ14を用いても、シェード部51上において、抑揚のある所定の光束分布の箇所と、一様な光束の箇所と、を一緒に形成することができる。このため、車両用灯具10は、遠方照射図柄(第1照射図柄Di1、第2照射図柄Di2)の先端中央を中心として明確なものにできるとともに、近方照射図柄(第3照射図柄Di3)の全体を明確なものにでき、より適切な照射パターンPを形成することができる。
 実施例1の車両用灯具10は、以下の各作用効果を得ることができる。
 車両用灯具10は、並列された第1光源31および第2光源32と、それらからの光を集光する集光レンズ14と、そこで集光された光を部分的に通す照射スリット53が設けられた遮光部材としてのシェード15と、そこを通した光を投影して照射パターンPiを形成する投影レンズ16と、を備える。その集光レンズ14は、第1光源31に対応する第1レンズ部61と、第2光源32に対応する第2レンズ部62と、を有する。また、照射スリット53は、近方照射図柄(第3照射図柄Di3)に対応する近方スリット部(第3スリット部543)と、遠方照射図柄(第1照射図柄Di1、第2照射図柄Di2)に対応する遠方スリット部(第1スリット部541、第2スリット部542)と、を有する。そして、第1レンズ部61は、遠方スリット部に対向して配置され、第2レンズ部62は、近方スリット部に対向して配置されている。このため、車両用灯具10は、2つの光源(21、22)に対して単一の集光レンズ14を用いて、その第1レンズ部61と第2レンズ部62との2つの異なる光路を通すことにより、異なる位置、大きさおよび配光(光束)分布の2つの配光領域(実施例1では、第1配光領域A1、第2配光領域A2)を形成できる。また、車両用灯具10は、第1レンズ部61を遠方スリット部上に求められる配光領域に合わせて光学特性を設定するとともに、第2レンズ部62を近方スリット部上に求められる配光領域に合わせて光学特性を設定することができる。このため、車両用灯具10は、両光源(21、22)からの光を効率良く利用できるとともに、第1レンズ部61や第2レンズ部62の構成を簡易なものとしつつ近方スリット部や遠方スリット部を所望の光束分布で照射できる。このため、車両用灯具10は、遮光部材上における配光分布を容易に調整することができ、形成する照射パターンPiを所望の明るさ分布とすることができる。
 車両用灯具10は、第1レンズ部61が、遮光部材(シェード15)上において、第1光源31からの光で遠方スリット部の全域を照射する第1配光領域A1を形成し、第2レンズ部62が、遮光部材(シェード15)上において、第2光源32からの光で近方スリット部の全域を照射する第2配光領域A2を形成する。このため、車両用灯具10は、第1配光領域A1を形成するために第1光源31および第1レンズ部61の位置や光学特性を設定するとともに、第2配光領域A2を形成するために第2光源32および第2レンズ部62の位置や光学特性を設定することができる。このことから、車両用灯具10は、集光レンズ14の構成を簡易なものとしつつ形成する照射パターンPiを所望の明るさ分布とすることができる。
 車両用灯具10では、第1レンズ部61が、第1光源31と対向する湾曲入射面部65と、湾曲入射面部65を取り巻く環状入射面部66と、環状入射面部66を取り囲む反射面67を有する。また、第2レンズ部62は、第2光源32からの光を集光する凸レンズとされている。その第1レンズ部61は、遮光部材(シェード15)上において、湾曲入射面部65を経た第1光源31からの光で遠方スリット部を照射する内輪配光領域Aiを形成する。また、第1レンズ部61は、遮光部材(シェード15)上において、環状入射面部66を経て反射面67で反射された第1光源31からの光で遠方スリット部の中心近傍を周辺よりも高い光束としつつ遠方スリット部全域を照射する外輪配光領域Aoを形成する。このため、車両用灯具10は、第1レンズ部61における光路の違いを利用して、互いに異なる位置、大きさおよび配光(光束)分布の外輪配光領域Aoと内輪配光領域Aiとを形成し、それらを重ねることで所定の抑揚を付けた光束分布の第1配光領域A1を形成でき、所望の明るさ分布の遠方照射図柄を形成できる。
 車両用灯具10は、第2配光領域A2を、内輪配光領域Aiや外輪配光領域Aoよりも低い光束とするとともに、外輪配光領域Aoよりも光束差を小さくしている。このため、車両用灯具10は、凸レンズとしている第2レンズ部62により、上記のような第2配光領域A2を容易に形成することができ、所望の明るさ分布の近方照射図柄を形成できる。
 車両用灯具10は、第1レンズ部61と第2レンズ部62とを一体としている。このため、車両用灯具10は、第1レンズ部61と第2レンズ部62との相対的な位置精度を高めることができるとともに、組み立て工程等を容易なものにできる。
 車両用灯具10は、遮光部材(シェード15)において、遠方スリット部(第1スリット部541、第2スリット部542)の4分の3以上を投影レンズ16の投影光軸Lpよりも下側に設けている。このため、車両用灯具10は、集光レンズ14において、投影光軸Lpを挟むように上下に並べて第1レンズ部61と第2レンズ部62と(それらの中心位置(軸線))を設けることができ、全体として小さな構成とすることができる。
 車両用灯具10は、第1光源31と第2光源32とを鉛直方向で並列させ、その第1光源31を第2光源32よりも下側に位置させている。このため、車両用灯具10は、集光レンズ14における第1レンズ部61と第2レンズ部62との並びに合わせて第1光源31と第2光源32とを設けることができ、全体として小さな構成とすることができる。
 車両用灯具10は、遠方照射図柄が第1照射図柄Di1と第2照射図柄Di2とを有し、遠方スリット部が、第1照射図柄Di1に対応する第1スリット部541と、第2照射図柄Di2に対応する第2スリット部542と、を有する。そして、車両用灯具10は、第1配光領域A1が、第1スリット部541の中心近傍を、第1配光領域A1と第2配光領域A2とにおける最も高い光束としている。このため、車両用灯具10は、遠方スリット部の中心を最も高い光束で照射でき、照射パターンPiの遠方照射図柄の中心を明確なものとすることができ、照射パターンPiを所望の明るさ分布として視認性を高めることができる。
 したがって、本開示に係る車両用灯具としての実施例1の車両用灯具10は、両光源(11、12)からの光を効率良く利用しつつ、所望の明るさ分布の照射パターンPiを形成できる。
 以上、本開示の車両用灯具を実施例1に基づき説明してきたが、具体的な構成については実施例1に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
 なお、実施例1では、V字形状の記号である2つの第1照射図柄Di1および第2照射図柄Di2と、そこに合わせた互角形状の第3照射図柄Di3と、を車両1から遠ざかる方向に略等しい間隔で整列させて照射パターンPiを構成している。しかしながら、照射パターンは、シェード(遮光部材)により形成するものであって、遠方照射図柄と近方照射図柄とを有するものであれば、照射図柄Diとしての記号の図柄や形成る位置や照射図柄Diの数等は適宜設定すればよく、実施例1の構成に限定されない。その近方照射図柄は、照射パターンPiにおいて近い位置に投影されるものであって、対応する近方スリット部が第2レンズ部62に対向して配置されるものであればよく、実施例1の構成に限定されない。また、遠方照射図柄は、照射パターンPiにおいて近方照射図柄よりも遠い位置に投影されるものであって、対応する遠方スリット部が第1レンズ部61に対向して配置されるものであればよく、実施例1の構成に限定されない。
 また、車両用灯具10は、実施例1では車両1の前部に設けられていたが、車両1に対して照射パターンを形成する位置に応じて車両1に設ければ、ドアミラーに収容したり、前照灯の灯室や尾灯の灯室(車両の後部の左右両側の灯室)に配置したり、車体に設けたりしてもよく、実施例1の構成に限定されない。
 さらに、実施例1では、第1光源31と第2光源32とをアンバー色の光を出射するものとしている。しかしながら、光源から出射する光の色は、設ける箇所や伝える内容に合わせて適宜設定すればよく、実施例1の構成に限定されない。
 実施例1では、遮光部材として、集光レンズ14で集光された光を照射スリット53から通すシェード15を用いている。しかしながら、遮光部材は、集光レンズ14で集光された光を部分的に通す照射スリット53が設けられたものであれば、他の構成でもよく、各実施例の構成に限定されない。その他の構成としては、例えば、光の透過を阻む板状のフィルム部材に、光を部分的に透過させる照射スリットを設け、集光レンズ14を経た光を照射スリットから透過させる遮光板(フィルタ)とすることができる。
 実施例1では、運転手が運転する車両1に車両用灯具10を設けている。しかしながら、車両用灯具は、自動運転機能を有する車両に設けられてもよく、実施例1の構成に限定されない。この場合、車両用灯具は、設けられる用途に応じたタイミング、すなわち車両1の動作に関する何らかの意図に応じたタイミングで照射パターンを形成すればよく、実施例1の構成に限定されない。
 実施例1では、光源部12がヒートシンクとしての機能を有する設置台部11に設けられており、この設置台部11に遮光枠13と集光レンズ14とシェード15と投影レンズ16とが取り付けられる構成としている。しかしながら、車両用灯具は、光源からの光を集光レンズで遮光部材上に集光し、投影レンズで投影することで照射パターンを形成するものであれば、他の構成でもよく、実施例1の構成に限定されない。
 実施例1では、第1光源31を、2つのLEDチップ31aと、それを覆う蛍光体31bと、を有するものとし、第2光源32を、1つのLEDチップ32aと、それを覆う蛍光体32bと、を有するものとしている。しかしながら、両光源は、第1光源31が第1レンズ部61に対応され、かつ第2光源32が第2レンズ部62に対応されるものであれば、それぞれの構成は適宜設定すればよく、実施例1の構成に限定されない。
 以下に、本開示に係る車両用灯具の一例としての車両用灯具110の実施例2について図面を参照しつつ説明する。なお、図13では、車両用灯具110が設けられている様子の把握を容易とするために、車両101に対して車両用灯具110を強調して示しており、必ずしも実際の様子とは一致するものではない。また、図21では、シェード114(そのシェード部133の照射スリット135)上に第2光源125からの光により第2スリット部1362に第2配光領域が形成されるとともに、第3スリット部1363に意図しない配光領域(迷光領域)が形成される様子の把握を容易とするために、シェード部133(その各スリット部136)の周辺のみを示している。その図21では、それぞれが示す各領域において、光束(光量)の高さに応じた領域を破線で囲んでおり、その領域の中心に向かうほど光束が高くなる等高線のように配光(光束)分布を示している。
 本開示に係る車両用灯具の一実施形態に係る実施例2の車両用灯具110を、図13から図21を用いて説明する。実施例2の車両用灯具110は、図13に示すように、自動車等の車両101の灯具として用いられるもので、車両101に設けられる前照灯とは別に、車両101の前方の周辺の路面102に照射パターンPiを形成すべく車両101の前部に設けられる。その車両101の前方の周辺とは、車両101に設けられる前照灯により照射される前照灯領域よりも車両101に近い近接領域を必ず含むものであり、部分的に前照灯領域を含む場合もある。なお、車両用灯具110は、車両101の後方や側方の周辺の路面102にも照射パターンPiを形成してもよく、実施例2の構成に限定されない。
 各車両用灯具110は、実施例2では、車両101の前端における路面102よりも高い位置に配置されており、投影光軸Lp(図14等参照)が路面102に対して傾斜した状態で設けられる。2つの車両用灯具110は、取り付けられる位置および照射パターンPiを形成する位置が異なることを除くと、基本的に等しい構成とされている。以下の説明では、各車両用灯具110において、光を照射(投影)する方向となる投影光軸Lpが伸びる方向を光軸方向(図面ではZとする)とし、光軸方向を水平面に沿う状態とした際の鉛直方向を上下方向(図面ではYとする)とし、光軸方向および上下方向に直交する方向(水平方向)を幅方向(図面ではXとする)とする(図14等参照)。
 車両用灯具110は、図14に示すように、設置台部111に、光源部112と集光レンズ113とシェード114と投影レンズ115とが取り付けられ、単一の投射光学系とされて、プロジェクタタイプの路面投影ユニットを構成する。設置台部111は、光源部112が設けられる箇所であり、熱伝導性を有するアルミダイカストや樹脂で形成され、全体として光源部112で発生する熱を外部に逃がすヒートシンクとして機能する。設置台部111は、ベース部121と、一対の取付腕部122と、を有する。
 ベース部121は、光軸方向に直交する平板状とされ、真ん中に光源取付個所に光源部112が取り付けられる。この光源取付個所は、平坦な面とされており、複数のネジ孔と複数の位置決め突起とが設けられている。また、ベース部121では、複数の放熱フィンが設けられており、光源取付個所に設置された光源部112で発生した熱を主に各放熱フィンから外部に放熱する。
 一対の取付腕部122は、光源部112の幅方向での両外側で対を為して設けられ、ベース部121から光軸方向の前方側に突出されている。両取付腕部122は、光軸方向の前方側の端部が光軸方向に直交する平面とされている。各端部には、位置決め突起122aとネジ孔122bとが設けられている。位置決め突起122aは、端部における上下方向の下部に設けられ、光軸方向の前方側に突出されている。ネジ孔122bは、端部における上下方向の上部に設けられ、ネジ123の捻じ込みによる集光レンズ113とシェード114と投影レンズ115との固定が可能とされている。
 光源部112は、第1光源124と、第2光源125と、第3光源126(図15等参照)と、コネクタ端子127と、それらが実装される基板128と、を有する。この3つの光源(124、125、126)は、LED(Light Emitting Diode)等の発光素子で構成されている。3つの光源(124、125、126)は、実施例2では、出射光軸を中心とするランバーシアン分布でアンバー色の光(アンバー色光)を出射する。なお、3つの光源(124、125、126)は、色(波長帯域)や、分布の態様や、色の数等は適宜設定すればよく、実施例2の構成に限定されない。
 実施例2の3つの光源(124、125、126)は、図15等に示すように、投影光軸Lpを挟んで上下方向で並列して設けられ、第1光源124が投影光軸Lpよりも下側に位置され、第2光源125が投影光軸Lpよりも上側に位置され、第3光源126が第2光源125よりも上側に位置されている。第1光源124は、幅方向に長尺な矩形状とされており、2つのLEDチップ124aと、それぞれを覆う蛍光体124bと、を有する。第2光源125は、略正方形状とされており、1つのLEDチップ125aと、それぞれを覆う蛍光体125bと、を有する。第3光源126は、略正方形状とされており、1つのLEDチップ126aと、それぞれを覆う蛍光体126bと、を有する。3つの光源(124、125、126)は、各LEDチップ124a、125a、126aからの光を蛍光体124b、125b、126bを通すことでアンバー色光として出射する。このため、第1光源124では、蛍光体124bが第1発光面として機能し、第2光源125では、蛍光体125bが第2発光面として機能し、第3光源126では、蛍光体126bが第3発光面として機能する。
 コネクタ端子127は、図14に示すように、基板128の配線パターンと電気的に接続されており、点灯制御回路に接続された接続コネクタが着脱自在とされている。コネクタ端子127は、基板128の上下方向の下側の端部に設けられており、接続コネクタの着脱が容易とされている。コネクタ端子127は、接続コネクタが取り付けられることで、配線パターンを介する点灯制御回路から各光源(124、125、126)への電力の供給を可能とする。
 基板128は、ガラスエポキシ基板等の樹脂材料で形成された板状とされ、各光源(124、125、126)が実装される。基板128では、設置台部111のベース部121の光源取付個所の各ネジ孔に対応して複数のネジ通し孔が設けられるとともに、光源取付個所の各位置決め突起に対応して複数の位置決め孔が設けられている。この基板128は、各位置決め孔に対応する位置決め突起が通されつつ、各ネジ通し孔に通されたネジ129が対応するネジ孔に捻じ込まれることにより、ベース部121に取り付けられる。これにより、基板128は、実装された各光源(124、125、126)を、集光レンズ113に対向させる。基板128は、コネクタ端子127を介して点灯制御回路から電力を適宜供給して各光源(124、125、126)を適宜点灯させる。
 集光レンズ113は、各光源(124、125、126)から出射された光を集光するものであり、シェード114上における後述する各スリット部136の周辺、すなわちシェード114上において全てのスリット部136を含みつつ各スリット部136が設けられた領域に光を集める。集光レンズ113は、各光源(124、125、126)からの光を集光する集光レンズ本体131と、そこから幅方向に突出された一対の集光レンズ取付片部132と、を有する。この集光レンズ本体131と集光レンズ取付片部132とは、一体とされて形成されており、実施例2では型枠を用いた樹脂成形により一体に形成されている。集光レンズ本体131は、シェード114上に所定の配光領域を形成すべく光学特性が設定されている。これについては、後述する。
 両集光レンズ取付片部132は、光軸方向に直交する板状とされ、設置台部111のベース部121の両取付腕部122の端部に宛がうことが可能とされている。各集光レンズ取付片部132には、集光レンズ位置決め孔132aと集光レンズネジ通し孔132bとが設けられている。各集光レンズ位置決め孔132aは、集光レンズ取付片部132が端部に宛がわれた状態で、その位置決め突起122aを嵌め入れることができる。各集光レンズネジ通し孔132bは、集光レンズ取付片部132が端部に宛がわれた状態で、そのネジ孔122bに捻じ込まれるネジ123を通すことができる。集光レンズ113は、各集光レンズ位置決め孔132aに対応する位置決め突起122aが通されつつ、各集光レンズネジ通し孔132bに通された各ネジ123が対応するネジ孔122bに捻じ込まれることにより、設置台部111の両取付腕部122(その端部)に取り付けられる。
 シェード114は、集光レンズ113で集光された各光源(124、125、126)からの光を後述する照射スリット135から部分的に通すことで照射パターンPiを形成する遮光部材の一例である。その照射パターンPiは、図13に示すように、3つの照射図柄Diが車両101から遠ざかる方向に略等しい間隔で整列されている。ここで、各照射図柄Diは、個別に示す際には、車両101から最も遠いものを第1照射図柄Di1とし、そこから車両101に近づくにつれて順に、第2照射図柄Di2、第3照射図柄Di3とする。実施例2では、各照射図柄Diは、車両101側を底辺とする略二等辺三角形とされており、互いに略等しい大きさで等しい形状とされている。
 この照射パターンPiは、投影面となる路面102上において、第1照射図柄Di1と第2照射図柄Di2と第3照射図柄Di3とが、車両101から遠ざかるように同一直線上に並べて形成されている。このため、照射パターンPiは、3つの照射図柄Diが並べられることで、その並べられた方向を指し示す矢印のように見せることができる。この照射パターンPiとしての矢印が指し示す方向すなわち各照射図柄Diの略二等辺三角形の頂点が並ぶ方向を矢印方向Daとし、その指し示す側(第1照射図柄Di1側)を矢印方向Daの前側とする。この3つの照射図柄Diからなる照射パターンPiは、シェード114により形成される。
 シェード114は、図14に示すように、基本的に光の透過を阻む板状の部材で形成されており、シェード部133と一対のシェード取付片部134とを有する。シェード取付片部134は、シェード部133から幅方向の両側に突出しており、設置台部111の両取付腕部122の端部に取り付けられた集光レンズ113の各集光レンズ取付片部132に宛がうことが可能とされている。各シェード取付片部134には、シェード位置決め孔134aとシェードネジ通し孔134bとが設けられている。各シェード位置決め孔134aは、シェード取付片部134が集光レンズ取付片部132に宛がわれた状態で、そこに通された位置決め突起122aを嵌め入れることが可能とされている。各シェードネジ通し孔134bは、シェード取付片部134が集光レンズ取付片部132に宛がわれた状態で、その集光レンズネジ通し孔132bに通されるネジ123を通すことが可能とされている。シェード114は、各シェード位置決め孔134aに対応する位置決め突起122aが通されつつ、各シェードネジ通し孔134bに通された各ネジ123が対応するネジ孔122bに捻じ込まれることにより、集光レンズ113を介して設置台部111の両取付腕部122に取り付けられる。シェード114は、シェード取付片部134が両取付腕部122に取り付けられることで、シェード部133の中心位置が投影光軸Lp上に位置される。
 シェード部133は、板状の部材が部分的に切り欠かれて貫通された照射スリット135が設けられている。照射スリット135は、集光レンズ113(その集光レンズ本体131)で集光された各光源(124、125、126)からの光を部分的に通すことで、投影する照射パターンPiを所定の形状に成形する。照射スリット135は、照射パターンPiに対応されており、実施例2では3つのスリット部136で構成されている。
 この3つのスリット部136は、3つの照射図柄Diに一対一で対応している。その各スリット部136は、投影レンズ115がシェード114(照射スリット135)を反転させて路面102に投影することから、照射パターンPiの各照射図柄Diの位置関係に対して、投影光軸Lpを中心として回転対称な位置関係とされている。このため、各スリット部136は、上下方向の最も下側の第1スリット部1361が照射パターンPiの第1照射図柄Di1に対応し、その上の第2スリット部1362が第2照射図柄Di2に対応し、その上の第3スリット部1363が第3照射図柄Di3に対応する。
 各スリット部136は、路面102上で各照射図柄Diが狙った大きさでかつ狙った位置関係となるように、シェード部133上での位置および大きさが設定されている。実施例2のシェード114では、上下方向において、第3スリット部1363が投影光軸Lpよりも上方に設けられ、投影光軸Lp上に第2スリット部1362が設けられ、その下に第1スリット部1361が設けられている(図21参照)。このシェード114(照射スリット135の各スリット部136)を透過した光は、投影レンズ115により路面102に投影される。
 その各スリット部136は、それぞれが対応する各照射図柄Diと同様に略二等辺三角形状とされており、各照射図柄Diに対して上下左右が反転されている。3つのスリット部136は、路面102上で各照射図柄Diが上記した図13に示す大きさで略等間隔となるように、それぞれ路面102までの距離に応じて大きさおよび間隔が設定されている。詳細には、車両用灯具110は、路面102に対して投影光軸Lpが傾斜して設けられることでシェード114および投影レンズ115から路面102までの距離が異なるので、投影レンズ115により路面102上に投影されると各スリット部136(そこを透過した光である各照射図柄Di)がその距離に応じた大きさおよび間隔とされる。具体的には、実施例2では、第1スリット部1361が最も小さいとともに高さ方向に縮められた略二等辺三角形とされ、第2スリット部1362が第1スリット部1361よりも大きな略二等辺三角形とされ、第3スリット部1363が第2スリット部1362よりも大きな略二等辺三角形で底面が少し膨らむように湾曲された形状とされている。そして、各スリット部136は、それぞれ対応する照射図柄Diよりも幅方向に拡げられており、第1スリット部1361と第2スリット部1362との間隔よりも、第2スリット部1362と第3スリット部1363との間隔の方が大きくされている。
 このように、3つのスリット部136は、各照射図柄Diとは異なる大きさとされるとともに異なる間隔とされている。各スリット部136では、対応する照射図柄Diに対する縮小比が、第1スリット部1361が最も小さくされており、通った光が路面102上に投影される際に最も大きな拡大率で拡大されて第1照射図柄Di1を形成する。また、各スリット部136では、対応する照射図柄Diに対する縮小比が、第3スリット部1363が最も大きくされており、通った光が路面102上に投影される際に最も小さな拡大率で拡大されて第3照射図柄Di3を形成する。
 投影レンズ115は、シェード114を通した光を投影する投影レンズ本体137と、そこから幅方向に突出された一対の投影レンズ取付片部138と、を有する。投影レンズ本体137は、光軸方向で見て円形状の凸レンズとされており、実施例2では、入射面および出射面が凸面とされた自由曲面とされている。投影レンズ本体137は、シェード114の照射スリット135(その各スリット部136)を投影することで、投影光軸Lpに対して傾斜する路面102上に照射パターンPiを形成する(図13参照)。なお、入射面と出射面とは、投影レンズ本体137を凸レンズとするものであれば、凸面でもよく凹面でもよく、実施例2の構成に限定されない。
 両投影レンズ取付片部138は、光軸方向に直交する板状とされ、設置台部111の両取付腕部122の端部に取り付けられたシェード114の各シェード取付片部134に宛がうことが可能とされている。各投影レンズ取付片部138には、投影レンズ位置決め孔138aと投影レンズネジ通し孔とが設けられている。各投影レンズ位置決め孔138aは、投影レンズ取付片部138がシェード取付片部134に宛がわれた状態で、そこに通された位置決め突起122aを嵌め入れることができる。各投影レンズネジ通し孔は、投影レンズ取付片部138がシェード取付片部134に宛がわれた状態で、そのシェードネジ通し孔134bに通されるネジ123を通すことができる。投影レンズ115は、各投影レンズ位置決め孔138aに対応する位置決め突起122aが通されつつ、各投影レンズネジ通し孔に通された各ネジ123が対応するネジ孔122bに捻じ込まれることにより、設置台部111の両取付腕部122(その端部)に取り付けられる。これにより、投影レンズ115は、投影レンズ本体137の光軸である投影光軸Lpが所定の方向に向けられて、車両用灯具110の投影光軸Lpの向きが設定される。
 次に、集光レンズ113の集光レンズ本体131の構成について、主に図16から図19を用いて説明する。この集光レンズ本体131(集光レンズ113)は、シェード114に対向された表面141と、光源部112に対向された裏面142と、を有する。この集光レンズ本体131は、第1光源124に対応する第1レンズ部143と、第2光源125に対応する第2レンズ部144と、第3光源126に対応する第3レンズ部145と、を有する。実施例2の集光レンズ113(集光レンズ本体131)では、第1レンズ部143の上に第2レンズ部144が載せられ、その第2レンズ部144の上に第3レンズ部145が載せられた状態で、その第1レンズ部143と第2レンズ部144と第3レンズ部145とが一体に形成されている。実施例2の集光レンズ113は、光源部112すなわち各光源(124、125、126)から出射された光により、シェード114の各スリット部136を適切に照射すべく、第1レンズ部143と第2レンズ部144と第3レンズ部145とにおける表面141側および裏面142側の形状(光学的)が設定されている。
 第1レンズ部143は、第1光源124と光軸方向で対向(第1光源124の出射光軸上に位置)されており、第1光源124からの光をシェード114の第1スリット部1361が設けられた領域に光を集める。その第1レンズ部143の裏面142は、図16、図17、図19等に示すように、中央部分が集光レンズ113の内側(光源部112とは反対側)に凹んでおり、その中央で外側に凸に湾曲された第1対向入射面部151と、それを取り巻く第1傾斜入射面部152と、その第1傾斜入射面部152を円錐台状に取り巻く第1反射面153と、が設けられている。
 第1対向入射面部151は、光軸方向で第1光源124と対向してその出射光軸上に設けられており、後側の焦点(後側焦点)の近傍に第1光源124が位置される。第1対向入射面部151は、第1光源124から出射される光を第1レンズ部143の軸線と略平行に進行する平行光として第1レンズ部143内に入射させ、表面141の後述する第1内側出射面部155へ向けて進行させる。なお、この平行光(平行な光)とは、光が第1対向入射面部151を経ることでコリメートされた状態の光のことをいう。
 第1傾斜入射面部152は、第1光源124側へと突出して設けられており、第1光源124からの光のうち、第1対向入射面部151へと進行しないものを第1レンズ部143内に入射させる。第1反射面153は、第1傾斜入射面部152から集光レンズ113内に入射した光が進行する位置に設けられている。第1反射面153は、第1傾斜入射面部152から入射した光を反射し、第1レンズ部143の軸線と略平行に進行する平行光として、表面141の後述する第1外側出射面部156へ向けて進行させる。なお、第1反射面153は、全反射を利用して光を反射してもよく、蒸着や塗装等によりアルミや銀等を接着させることで光を反射してもよい。これらのことから、裏面142は、第1光源124から出射された光を、効率良く入射させて表面141へと導く。
 このため、第1レンズ部143では、第1対向入射面部151を経た光が直接表面141側に向かう直射光となるとともに、第1傾斜入射面部152を経て第1反射面153で反射された光が内部で反射されてから表面141側に向かう反射光となる。この第1レンズ部143は、このような構成とされているので、対応する第1光源124から出射された光を効率良く利用することができる。
 この第1レンズ部143では、表面141側に入射された光を前後方向の前側に出射させる第1出射面154が設けられている。第1出射面154は、図18等に示すように、正面視して上側の一部を切り欠いた円形状とされており、光学的な設定の異なる第1内側出射面部155と第1外側出射面部156とを有する。第1内側出射面部155は、第1出射面154において第1対向入射面部151を経た光が進行する領域に設けられ、正面視して略円形状とされている。第1内側出射面部155は、第1外側出射面部156よりも集光レンズ113における外側(投影レンズ115側(前後方向の前側))に突出している。この第1内側出射面部155は、第1光源124から第1対向入射面部151を経た光を屈折させることで、シェード114の第1スリット部1361上において、光学特性に応じた位置に第1光源124の複数の配光像を適宜重ねて形成する。この光学特性は、第1対向入射面部151とともに第1内側出射面部155の曲率(面形状)を場所毎に調整することで設定でき、実施例2ではその曲率を漸次的に変化させて設定されている。
 第1外側出射面部156は、第1内側出射面部155を幅方向で挟む領域および第1内側出射面部155の下側の領域を取り囲むように設けられており、第1光源124から第1傾斜入射面部152を経て第1反射面153で反射された光が進行する領域に位置されている。第1外側出射面部156は、第1内側出射面部155よりも集光レンズ113における内側(前後方向の後側)に位置して(凹んで)いる。第1外側出射面部156は、第1光源124から第1傾斜入射面部152を経て第1反射面153で反射された光を屈折させることで、シェード114の第1スリット部1361上において、光学特性に応じた位置に第1光源124の複数の配光像を適宜重ねて形成する。この光学特性は、第1反射面153とともに第1外側出射面部156の曲率(面形状)を場所毎に調整することで設定でき、実施例2ではそれらの曲率が漸次的に変化されて設定されている。
 この第1レンズ部143は、例えば、第1内側出射面部155を経た光により第1スリット部1361の全域を明るくするような配光領域を形成し、第1外側出射面部156を経た光により第1スリット部1361の頂点近傍を明るくする配光領域を形成する。そして、第1レンズ部143は、第1内側出射面部155を経た光と、第1外側出射面部156を経た光と、を重ね合わせることにより、第1スリット部1361の全域を明るくしつつ、第1スリット部1361の頂点近傍を最も高い光束(光量)とする第1配光領域を形成する。なお、第1レンズ部143は、対応する第1照射図柄Di1を適切に形成する観点から第1スリット部1361を明るくする配光領域を形成するものであれば、第1内側出射面部155と第1外側出射面部156とが形成する配光領域における明るさの分布や形状等は適宜設定すればよく、実施例2に限定されない。
 第2レンズ部144は、第2光源125と光軸方向で対向(第2光源125の出射光軸上に位置)されており、第2光源125からの光をシェード114の第2スリット部1362が設けられた領域に光を集める。この第2レンズ部144は、対応するスリット部136の大きさや形状が異なることに起因する細かな光学的な設定を除くと、それぞれの裏面142および表面141における基本的な構成や第2スリット部1362に対する集光の基本的な概念が等しくされている。このため、以下では、第2レンズ部144の構成および光学的な設定について、簡単に説明する。
 その第2レンズ部144の裏面142は、図16、図17、図19等に示すように、中央部分が集光レンズ113の内側(光源部112とは反対側)に凹んでおり、その中央で外側に凸に湾曲された第2対向入射面部157と、それを取り巻く第2傾斜入射面部158と、その第2傾斜入射面部158を円錐台状に取り巻く第2反射面159と、が設けられている。第2対向入射面部157は、光軸方向で第2光源125と対向してその出射光軸上に設けられており、第2光源125から出射される光を第2レンズ部144の軸線と略平行に進行する平行光として集光レンズ113内に入射させ、表面141の後述する第2内側出射面部162へ向けて進行させる。第2傾斜入射面部158は、第2光源125側へと突出して設けられており、第2光源125からの光のうち、第2対向入射面部157へと進行しないものを第2レンズ部144内に入射させる。第2反射面159は、第2傾斜入射面部158から集光レンズ113内に入射した光を反射し、第2レンズ部144の軸線と略平行に進行する平行光として、表面141の後述する第2外側出射面部163へ向けて進行するように集光させる。
 この第2レンズ部144では、表面141側に入射された光を前後方向の前側に出射させる第2出射面161が設けられている。第2出射面161は、正面視して幅方向に長尺な略矩形状とされており、光学的な設定の異なる第2内側出射面部162と第2外側出射面部163とを有する。第2内側出射面部162は、第2出射面161において第2対向入射面部157を経た光が進行する領域に設けられ、正面視して略円形状とされ、第2外側出射面部163よりも集光レンズ113における外側(投影レンズ115側(前後方向の前側))に突出している。第2外側出射面部163は、第2内側出射面部162を幅方向で挟む領域に設けられており、第2光源125から第2傾斜入射面部158を経て第2反射面159で反射された光が進行する領域に位置されて、第2内側出射面部162よりも集光レンズ113における内側(前後方向の後側)に位置して(凹んで)いる。
 この第2レンズ部144は、例えば、第2内側出射面部162を経た光により、第2スリット部1362の全域を明るくするような配光領域を形成し、第2外側出射面部163を経た光により第2スリット部1362の頂点近傍を明るくする配光領域を形成する。そして、第2レンズ部144は、第2内側出射面部162を経た光と、第2外側出射面部163を経た光と、を重ね合わせることにより、第2スリット部1362の全域を明るくしつつ、第2スリット部1362の頂点近傍を最も高い光束(光量)とする第2配光領域AL(図21参照)を形成する。なお、第2レンズ部144は、対応する第1照射図柄Di1を適切に形成する観点から第2スリット部1362を明るくする配光領域を形成するものであれば、第2内側出射面部162と第2外側出射面部163とが形成する配光領域における明るさの分布や形状等は適宜設定すればよく、実施例2に限定されない。
 第3レンズ部145は、図16から図19等に示すように、光軸方向で正面視して幅方向に長尺な略長方形状とされた凸レンズとされ、全体として第3光源126から出射された広がりのある光を、投影光軸Lpと平行に近い状態に集光してシェード部133へと進行させる。この第3レンズ部145は、第3光源126に対向された第3入射面164と、その反対側に向けられた第3出射面165と、を有する。第3レンズ部145は、実施例2では、第3入射面164および第3出射面165が凸面とされた自由曲面とされている。なお、第3入射面164と第3出射面165とは、第3レンズ部145を凸レンズとするものであれば、凸面でもよく凹面でもよく、実施例2の構成に限定されない。
 第3入射面164は、光軸方向で第3光源126と対向しており、後側の焦点(後側焦点)の近傍に第3光源126が位置される。第3入射面164は、第3光源126から出射される光を第3レンズ部145の軸線と略平行に進行する平行光として第3レンズ部145内に入射させる。第3出射面165は、第3入射面164と反対側に設けられており、第3入射面164を経た光を屈折させることで、拡散しつつ前後方向の前側へ向けて進行させる。第3出射面165は、第3光源126から第3入射面164を経た光を照射することで、シェード114(シェード部133)上において、光学特性に応じた位置に第3光源126の複数の配光像を適宜重ねて形成する。この光学特性は、第3入射面164とともに第3出射面165の曲率(面形状)を場所毎に調整することで設定でき、実施例2ではその曲率を漸次的に変化させて設定されている。
 この第3出射面165は、第3光源126から出射されて第3入射面164を経た光を適宜屈折させることで、シェード114の第3スリット部1363の全域を略等しい光束(光量)とする第3配光領域を形成する。ここで、全域を略等しい光束とするとは、少なくとも上記した第1配光領域や第2配光領域ALよりも光束の変化が少ないことをいい、好適には略均一な光束であることをいう。実施例2の第3配光領域は、第1配光領域や第2配光領域ALよりも光束が低いものとされている。
 この集光レンズ113は、第1レンズ部143により第1光源124からの光で第1スリット部1361に第1配光領域を形成し、第2レンズ部144により第2光源125からの光で第2スリット部1362に第2配光領域ALを形成し、第3レンズ部145により第3光源126からの光で第3スリット部1363に第3配光領域を形成する。このため、集光レンズ113は、シェード114上において、第1スリット部1361、第2スリット部1362に対しては所定の抑揚(メリハリ(光束の高低差))を付けた所定の光束分布を形成でき、第3スリット部1363に対しては第1スリット部1361、第2スリット部1362よりも低い均一な光束分布を形成できる。
 この集光レンズ113では、集光レンズ本体131において、第1減光部171と第2減光部172とが設けられている。この第1減光部171と第2減光部172とは、集光レンズ本体131において、各光源(124、125、126)からの光(光束)を弱めるまたは遮るもので、第1減光部171が第1レンズ部143と第2レンズ部144との間に位置され、第2減光部172が第2レンズ部144と第3レンズ部145との間に位置されている。
 実施例2では、第1減光部171が表面側第1減光部173と裏面側第1減光部174とを有し、第2減光部172が表面側第2減光部175と裏面側第2減光部176とを有する。この表面側第1減光部173は、集光レンズ本体131の表面141において、第1レンズ部143の第1出射面154と、第2レンズ部144の第2出射面161と、の間に減光処理が施されて形成されている。また、表面側第2減光部175は、集光レンズ本体131の表面141において、第2レンズ部144の第2出射面161と、第3レンズ部145の第3出射面165と、の間に減光処理が施されて形成されている。さらに、裏面側第1減光部174は、集光レンズ本体131の裏面142において、第1レンズ部143の第1対向入射面部151、第1傾斜入射面部152および第1反射面153と、第2レンズ部144の第2対向入射面部157、第2傾斜入射面部158および第2反射面159と、の間に減光処理が施されて形成されている。裏面側第2減光部176は、集光レンズ本体131の裏面142において、第2レンズ部144の第2対向入射面部157、第2傾斜入射面部158および第2反射面159と、第3レンズ部145の第3入射面164と、の間に減光処理が施されて形成されている。
 その減光処理は、黒色等の遮光性の塗料を塗布することにより遮光面とすることや、微細な光学素子やプリズム(凹凸)やシボ等を形成することにより散乱面とすることがあげられる。集光レンズ本体131では、表面141または裏面142における上記の位置に対して、幅方向に伸びつつ上下方向に所定の大きさの帯状の領域に対して上記の減光処理を施すことにより、第1減光部171と第2減光部172とが設けられている。ここで、第1減光部171と第2減光部172とは、上下方向での大きさが1mm以下とされており、実施例2では0.5mmとされている。
 加えて、実施例2では、第3レンズ部145において、第2レンズ部144側に位置する底面145aにも減光処理が施されて、第2減光部172の一部を構成する底面側第2減光部177が設けられている。底面145aは、上記のように第3レンズ部145が凸レンズとされて第3入射面164が凸面とされた自由曲面とされているのに対して、第2レンズ部144が第2対向入射面部157と第2傾斜入射面部158と第2反射面159とを有していることにより、互いの形状の差異によって形成されている(図18参照)。そして、この底面145aは、第2光源125の斜め前方上側に位置することから、第2光源125からの直接進行してきた光を第3レンズ部145内に入射させる可能性がある。このため、実施例2では、第3レンズ部145の底面145aにも減光処理を施して底面側第2減光部177を形成している。
 次に、車両用灯具110の作用について説明する。車両用灯具110は、点灯制御回路からの電力を基板128から各光源(124、125、126)に供給することで、それらを個別にまたは順次または同時に点灯および消灯できる。各光源(124、125、126)からの光は、集光レンズ113で集光されてシェード114を照射し、その照射スリット135(各スリット部136)を透過した後に、投影レンズ115により投影されることで、照射パターンPiを路面102上に形成する。その照射パターンPiは、上記の配光(光束)分布とされたシェード114の照射スリット135(その各スリット部136)を透過した光が、投影レンズ115により投影されることで、3つの照射図柄Diが矢印方向Daに並べられた位置に、個別にまたは順次または同時に形成される。
 車両用灯具110は、ターンランプと連動されており、左右いずれかのターンランプが点灯されると、その点灯された側に設けられたものの各光源(124、125、126)が点灯されて、照射パターンPiを路面102上に形成する。実施例2では、最初に第3光源126が点灯され、次に第3光源126の点灯が維持されたまま第2光源125が点灯され、次に第3光源126および第2光源125の点灯が維持されたまま第1光源124が点灯され、次に各光源(124、125、126)が一斉に消灯され、以降はこれを繰り返す。これにより、照射パターンPiは、第3照射図柄Di3、第2照射図柄Di2、第1照射図柄Di1の順で点灯されて矢印方向Daに伸びていくように見せることができる。このため、車両用灯具110は、見通しの悪い路地から他の路地へと車両101が進行しようとしている場面において、他の路地にいる者が車両101を視認できない場合であっても、路面102上に形成された照射パターンPiを視認させることができる。加えて、車両101は、ハザードランプが点灯された場合には、左右の2つの車両用灯具110が同時に照射パターンPiを路面102上に上記のように形成するので、左右のターンランプのみを点滅させている場合と比較して、ハザードランプが点灯されていることをより確実に認識させることができる。
 ここで、先行技術文献に記載の従来の車両用灯具は、複数の光源に個別に対応させて複数のライトガイドを設けており、各光源からの光を効率良く利用している。その従来の車両用灯具は、各導光部材が内部で光を拡散させて光束分布が略均一とした光を出射させており、各導光部材を通した光でシェード(遮光部材)上を照射することで、シェード上の配光(光束)分布を略均一なものとしている。また、従来の車両用灯具は、シェード上において、ライトガイド毎に対応する光源からの光が導かれるので、光源毎に別々にシェード上に導いている。このため、従来の車両用灯具は、シェード上において、光束の低い領域の中において光束の変化を連続的としつつ部分的に光束の高い領域を形成することのように所望の配光分布を得るのが困難である。
 これに対して、車両用灯具110は、集光レンズ113において、3つの光源(124、125、126)に対して、それぞれからの光を集光する単一の第1レンズ部143と第2レンズ部144と第3レンズ部145とを設けている。その第1レンズ部143は、シェード114のシェード部133上において、対応する第1光源124からの光で、第1スリット部1361の全域を明るくしつつ第1スリット部1361の頂点近傍を最も明るくする第1配光領域を形成する。また、第2レンズ部144は、シェード114のシェード部133上において、対応する第2光源125からの光で、第2スリット部1362の全域を明るくしつつ第2スリット部1362の頂点近傍を最も明るくする第2配光領域ALを形成する。そして、第3レンズ部145は、シェード114のシェード部133上において、第1配光領域や第2配光領域ALよりも低く均一な光束で第3スリット部1363の全域を明るくする第3配光領域を形成する。
 ここで、第3スリット部1363は、照射パターンPiにおいて最も車両101に近くに位置する第3照射図柄Di3に対応しており、車両用灯具110からの距離が近い場所に投影されるので、見易い第3照射図柄Di3を形成するために、他の照射図柄Diよりも低い一様な光束とされることが望ましい。これは、以下のことによる。第3スリット部1363は、第3照射図柄Di3に対応するものであることから、シェード部133上において大きな面積を有するものとなる。すると、第3スリット部1363は、第1レンズ部143や第2レンズ部144のように光束の抑揚を付けた所定の光束分布とするレンズを用いて照射すると、全域に亘って照射することが困難となり、形成する第3照射図柄Di3において暗い箇所が生じる等の明るさのムラを生じさせて、適正な第3照射図柄Di3を形成できなくなる虞がある。これに対して、第1スリット部1361と第2スリット部1362とは、照射パターンPiにおいて車両101から離れた位置の第1照射図柄Di1、第2照射図柄Di2に対応しており、車両用灯具110からの距離が遠い場所に投影されるので、見易い第1照射図柄Di1、第2照射図柄Di2を形成するために、所定の抑揚(メリハリ(光束の高低差))を付けた光束分布とされることが望ましい。
 そして、車両用灯具110は、単一の集光レンズ113において各光源(124、125、126)に対して個別に対応させた第1レンズ部143と第2レンズ部144と第3レンズ部145とを設けることにより、シェード114上を所望の配光分布で照射できる。すなわち、車両用灯具110は、第1スリット部1361、第2スリット部1362に対しては第1レンズ部143、第2レンズ部144を用いて所定の抑揚のある光束分布の第1配光領域、第2配光領域ALを形成し、第3スリット部1363に対しては第3レンズ部145を用いて一様な光束の第3配光領域を形成している。このため、車両用灯具110は、単一の集光レンズ113を用いても、シェード部133上において、抑揚のある所定の光束分布の箇所と、一様な光束の箇所と、を一緒に形成することができる。これにより、車両用灯具110は、第1照射図柄Di1、第2照射図柄Di2の先端中央を中心として明確なものにできるとともに、第3照射図柄Di3の全体を明確なものにでき、より適切な照射パターンPiを形成することができる。よって、車両用灯具110は、従来の車両用灯具と比較して、単一の集光レンズ113を用いる簡易な構成としつつ、シェード114上に形成する配光領域の配光分布の調整を容易とすることができ、所望の明るさ分布で見易い照射パターンPiを形成できる。
 ここで、車両用灯具110では、単一の集光レンズ113で各光源(124、125、126)に個別に対応させるために、集光レンズ113の集光レンズ本体131において、光学特性の異なる第1レンズ部143と第2レンズ部144と第3レンズ部145とを上下方向に重ねて一体的に設けている。すると、車両用灯具110では、各光源(124、125、126)からの光の一部が対応されたものとは異なるレンズ部(143、144、145)へと進行し、その光に起因してシェード114のシェード部133上に意図しない配光領域が形成される恐れがある。これについて、以下で説明する。
 先ず、集光レンズ113の集光レンズ本体131では、上記のように構成されていることから、基本的に、第1光源124からの光が第1レンズ部143(その第1対向入射面部151、第1傾斜入射面部152)に進行し、第2光源125からの光が第2レンズ部144(その第2対向入射面部157、第2傾斜入射面部158)に進行し、第3光源126からの光が第3レンズ部145(その第3入射面164)に進行する。しかしながら、各光源(124、125、126)は、光を出射する方向に所定の広がりのあることから、一部の光が対応するレンズ部に隣接するレンズ部へと向かう虞がある。この一例を図20、図21に示す。なお、図20では、本願発明と同様の構成の集光レンズ113(集光レンズ本体131)を用いている。これは、集光レンズ113(集光レンズ本体131)であっても、第1減光部171や第2減光部172を設けていない場合には同様の問題が生じることによる。このため、以下の説明では、集光レンズ113(集光レンズ本体131)において、表面141の表面側第1減光部173および表面側第2減光部175と、裏面142の裏面側第1減光部174および裏面側第2減光部176と、を設けていない場合に生じ得る意図しない光を用いて説明する。
 図20に示す例では、第2光源125からの光の一部(以下では、迷光Sともいう)が、第2レンズ部144と第3レンズ部145との間(第2減光部172に相当する箇所)を通して、シェード114側へと進行した様子を示す。このような迷光Sは、第2レンズ部144の第2対向入射面部157や第2傾斜入射面部158と、第3レンズ部145の第3入射面164と、の間から集光レンズ本体131に入射する(迷光S1とする)。この迷光Sは、第2レンズ部144と第3レンズ部145との間(第2減光部172に相当する箇所)を進行(迷光S2とする)し、第2レンズ部144の第2出射面161と第3レンズ部145の第3出射面165との間から出射されて、シェード114の第3スリット部1363へと向かう(迷光S3とする)。第2光源125のみが点灯された場合であって、上記の迷光Sが生じた場合のシェード114のシェード部133上における配光分布を図21に示す。
 シェード部133では、上記したように、第2光源125からの光が第2レンズ部144を通して照射されることにより、第2スリット部1362の全域を明るくしつつ、第2スリット部1362の頂点近傍を最も明るくする第2配光領域ALが形成される。そして、上記のような迷光Sが生じると、その迷光Sがシェード114の第3スリット部1363へと向かうことにより、第3スリット部1363において意図しない配光領域(以下では、迷光領域ASとする)が形成される。この迷光領域ASは、第3光源126が消灯されているにも関わらず第3スリット部1363の中央近傍を明るくしている。このため、車両用灯具110では、このような迷光Sが生じると、第3光源126を消灯しつつ第2光源125を点灯させた場合であっても、第2照射図柄Di2を明確に形成できるものの、第3照射図柄Di3が形成される領域の一部をぼんやりと明るくしてしまう。また、車両用灯具110では、このような迷光Sが生じると、第2光源125と第3光源126とを同時に点灯させた場合であっても、第2照射図柄Di2は適切に形成できるものの、第3照射図柄Di3が迷光領域ASの分だけ意図しない領域が明るくなってしまい、明るさのムラが生じたりして意図した見え方とは異なるものとなってしまう。
 これに対して、車両用灯具110は、集光レンズ本体131において、第2レンズ部144と第3レンズ部145との間に、第2減光部172としての表面側第2減光部175および裏面側第2減光部176を設けている。このため、上記のような迷光S1は、集光レンズ本体131の裏面142において、裏面側第2減光部176により遮られる、もしくは散乱されることとなり、迷光S2のようには集光レンズ本体131内へと進行することが防止される。すなわち、裏面側第2減光部176は、迷光S1の入射を遮ることで迷光S2となることを防止する、もしくは迷光S1を拡散させることにより迷光領域ASを形成するような強い光(高い光束)の迷光S2として集光レンズ本体131内へと進行することを防止することができる。また、迷光S2は、裏面側第2減光部176を経た後に、集光レンズ本体131の表面141において、表面側第2減光部175により遮られる、もしくは散乱されることとなる。このため、迷光S2は、裏面側第2減光部176により上記のように拡散されて十分に弱められた後に、表面側第2減光部175により遮られるもしくは拡散されるので、より確実に迷光領域ASを形成するような強い光(高い光束)の迷光S3として集光レンズ本体131から出射されることが防止される。
 また、上記のような迷光S2は、裏面側第2減光部176を通らなかった場合であっても生じうるが、集光レンズ本体131の表面141において、表面側第2減光部175により遮られる、もしくは散乱されることとなり、迷光S3のようには集光レンズ本体131から出射されることが防止される。これにより、車両用灯具110は、上記のような第2光源125から迷光Sに起因して、シェード114の第3スリット部1363に迷光領域ASが形成されることを防止できる。このため、車両用灯具110は、第3光源126を消灯しつつ第2光源125を点灯させると、第2照射図柄Di2を明確に形成でき、第3照射図柄Di3が形成される領域を暗いままとすることができる。また、車両用灯具110は、第2光源125と第3光源126とを同時に点灯させると、第2照射図柄Di2と第3照射図柄Di3とを適切に形成することができ、意図した見え方とすることができる。
 ここで、上記のような迷光は、第3光源126からの光が第2レンズ部144と第3レンズ部145との間からシェード114の第2スリット部1362へと向かうものでも同様の問題を招くことが考えられる。これに対して、車両用灯具110は、第2減光部172としての表面側第2減光部175および裏面側第2減光部176により、このような迷光も遮るもしくは散乱することができる。
 また、上記のような迷光は、第2光源125からの光が第2レンズ部144と第1レンズ部143との間からシェード114の第1スリット部1361へと向かうもの、第1光源124からの光が第2レンズ部144と第1レンズ部143との間からシェード114の第2スリット部1362へと向かうもの、でも同様の問題を招くことが考えられる。これに対して、車両用灯具110は、集光レンズ本体131において、第1レンズ部143と第2レンズ部144との間に第1減光部171を設けているので、その表面側第1減光部173および裏面側第1減光部174により、このような迷光も遮るもしくは散乱することができる。これらのことから、車両用灯具110は、各照射図柄Diを適切に形成することができ、それぞれを意図した見え方とすることができる。
 ここで、実施例2の集光レンズ本体131(集光レンズ113)は、第1減光部171および第2減光部172として、表面141の表面側第1減光部173および表面側第2減光部175と、裏面142の裏面側第1減光部174および裏面側第2減光部176と、で構成している。このため、第1減光部171および第2減光部172は、集光レンズ本体131内での各レンズ部(143、144、145)間での光の進行を遮ったり散乱させたりすることはできない。しかしながら、集光レンズ本体131では、3つの光源(124、125、126)に個別に対応させて3つのレンズ部(143、144、145)を設けているので、各光源(124、125、126)から対応するレンズ部(143、144、145)に入射された光が、隣接するレンズ部へと向かうことを抑えることができる。特に、実施例2の集光レンズ本体131は、各レンズ部(143、144、145)が対応する光源(124、125、126)からの光を略平行に進行する平行光として入射させるものとしているので、隣接するレンズ部へと向かうことを極めて少ないものにできる。このことから、集光レンズ本体131(集光レンズ113)は、表面141や裏面142の所定の位置に減光処理を施して形成した第1減光部171および第2減光部172であっても、上記したような迷光による影響を十分に抑制できる。
 加えて、実施例2の集光レンズ本体131(集光レンズ113)は、第3レンズ部145において、第2レンズ部144側に位置する底面145aにも減光処理を施して、第2減光部172の一部を構成する底面側第2減光部177を設けている。このため、第3レンズ部145では、その第3入射面164と、第2レンズ部144における第2対向入射面部157、第2傾斜入射面部158および第2反射面159と、の形状の差異によって、第2光源125に面する底面145aから光が入射して迷光となることを抑制できる。このことから、集光レンズ本体131(集光レンズ113)は、第3光源126を消灯しつつ第2光源125を点灯させた場合には第3照射図柄Di3が形成される領域を暗いままとすることができ、第2光源125と第3光源126とを同時に点灯させると、第2照射図柄Di2と第3照射図柄Di3とを適切に形成することができる。
 実施例2の車両用灯具110は、以下の各作用効果を得ることができる。
 車両用灯具110は、複数の光源(124、125、126)と、そこからの光を集光する集光レンズ113と、そこで集光された光を部分的に通す複数のスリット部136が設けられたシェード114と、そこを通した光を投影することにより、複数のスリット部136に対応する複数の照射図柄Diを有する照射パターンPiを形成する投影レンズ115と、を備える。その光源(124、125、126)は、スリット部136に個別に対応して設けられ、集光レンズ113は、スリット部136に個別に対応する複数のレンズ部(143、144、145)が重ねられ、複数のレンズ部(143、144、145)の間には光を低減する減光部(171、172)が設けられている。このため、車両用灯具110は、各光源(124、125、126)から対応するレンズ部(143、144、145)に入射された光が、対応されたものとは異なるスリット部136へと向かう迷光による影響を十分に抑制できる。
 車両用灯具110では、減光部(171、172)が、集光レンズ113において、複数の光源(124、125、126)側となる裏面142における複数のレンズ部(143、144、145)の間に減光処理が施されて形成されている。このため、車両用灯具110は、各レンズ部(143、144、145)の間から集光レンズ113に入射する光(迷光S1→S2)に起因して、点灯させていない照射図柄Diの場所を明るくしたり、形成した照射図柄Diに明るさのムラを生じさせて意図した見え方とは異ならせたりすることを抑制できる。
 車両用灯具110では、減光部(171、172)が、集光レンズ113において、遮光部材(シェード114)側となる表面141における複数のレンズ部(143、144、145)の間に減光処理が施されて形成されている。このため、車両用灯具110は、各レンズ部(143、144、145)の間から出射される光(迷光S2→S3)に起因して、点灯させていない照射図柄Diの場所を明るくしたり、形成した照射図柄Diに明るさのムラを生じさせて意図した見え方とは異ならせたりすることを抑制できる。
 車両用灯具110は、複数の光源(124、125、126)を順次点灯させることができる。このため、車両用灯具110は、消灯された光源に対応する照射図柄Diの場所を明るくすることを防止できるので、順次点灯させた意図を適切に表現できる。
 車両用灯具110では、複数のスリット部136が、照射パターンPiの第1照射図柄Di1に対応する第1スリット部1361と、照射パターンPiの第2照射図柄Di2に対応する第2スリット部1362と、照射パターンPiの第3照射図柄Di3に対応する第3スリット部1363と、を有する。また、複数のレンズ部(143、144、145)は、第1スリット部1361に対向する第1レンズ部143と、第2スリット部1362に対向する第2レンズ部144と、第3スリット部1363に対向する第3レンズ部145と、を有する。そして、第1レンズ部143は、対応する第1光源124と対向する第1対向入射面部151と、それを取り巻く第1傾斜入射面部152と、それを取り巻く第1反射面153と、を有する。加えて、第2レンズ部144は、対応する第2光源125と対向する第2対向入射面部157と、それを取り巻く第2傾斜入射面部158と、それを取り巻く第2反射面159と、を有し、第3レンズ部145は、対応する第3光源126からの光を集光する凸レンズとされている。このため、車両用灯具110は、第1光源124および第2光源125からの光を効率良く利用できるとともに、第1レンズ部143や第2レンズ部144の構成を簡易なものとしつつ、第1スリット部1361や第2スリット部1362に所定の光束分布を形成できる。また、車両用灯具110は、第3光源126からの光により、第3スリット部1363に対しては第3レンズ部145を用いて一様な光束分布を形成できる。これらのことから、車両用灯具110は、単一の集光レンズ113を用いても、第1照射図柄Di1、第2照射図柄Di2の先端中央を中心として明確なものにできるとともに、第3照射図柄Di3の全体を明確なものにでき、より適切な照射パターンPiを形成することができる。
 車両用灯具110では、第3レンズ部145において、第2レンズ部144側に位置する底面145aにも減光処理を施している。このため、車両用灯具110は、第3光源126を消灯しつつ第2光源125を点灯させた場合には第3照射図柄Di3が形成される領域を暗いままとすることができ、第2光源125と第3光源126とを同時に点灯させると、第2照射図柄Di2と第3照射図柄Di3とを適切に形成することができる。
 車両用灯具110では、複数のレンズ部(143、144、145)を一体としている。このため、車両用灯具110は、複数のレンズ部(143、144、145)との相対的な位置精度を高めることができるとともに、組み立て工程等を容易なものにできる。
 したがって、本開示に係る車両用灯具としての実施例2の車両用灯具110は、複数の光源(124、125、126)からの光を効率良く利用しつつ、所望の明るさ分布の照射パターンPiを形成できる。
 以上、本開示の車両用灯具を実施例2に基づき説明してきたが、具体的な構成については実施例2に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
 なお、実施例2では、3つの照射図柄Diを車両101側を底辺とする略二等辺三角形として、車両101から遠ざかる方向に略等しい間隔で整列させて照射パターンPiを構成している。しかしながら、照射パターンは、シェード(遮光部材)により形成する複数の照射図柄Diで構成されるものであれば、照射図柄Diとしての記号の図柄や形成る位置や照射図柄Diの数等は適宜設定すればよく、実施例2の構成に限定されない。
 また、車両用灯具110は、実施例2では車両101の前部に設けられていたが、車両101に対して照射パターンを形成する位置に応じて車両101に設ければ、ドアミラーに収容したり、前照灯の灯室や尾灯の灯室(車両の後部の左右両側の灯室)に配置したり、車体に設けたりしてもよく、実施例2の構成に限定されない。
 さらに、実施例2では、各光源(124、125、126)をアンバー色の光を出射するものとしている。しかしながら、光源から出射する光の色は、設ける箇所や伝える内容に合わせて適宜設定すればよく、実施例2の構成に限定されない。
 実施例2では、遮光部材として、集光レンズ113で集光された光を照射スリット135から通すシェード114を用いている。しかしながら、遮光部材は、集光レンズ113で集光された光を部分的に通す複数のスリット部136(照射スリット135)が設けられたものであれば、他の構成でもよく、実施例2の構成に限定されない。その他の構成としては、例えば、光の透過を阻む板状のフィルム部材に、光を部分的に透過させる複数の照射スリットを設け、集光レンズ113を経た光を複数の照射スリットから透過させる遮光板(フィルタ)とすることができる。
 実施例2では、運転手が運転する車両101に車両用灯具110を設けている。しかしながら、車両用灯具は、自動運転機能を有する車両に設けられてもよく、実施例2の構成に限定されない。この場合、車両用灯具は、設けられる用途に応じたタイミング、すなわち車両101の動作に関する何らかの意図に応じたタイミングで照射パターンを形成すればよく、実施例2の構成に限定されない。
 実施例2では、光源部112がヒートシンクとしての機能を有する設置台部111に設けられており、この設置台部111に集光レンズ113とシェード114と投影レンズ115とが取り付けられる構成としている。しかしながら、車両用灯具は、光源からの光を集光レンズで遮光部材上に集光し、投影レンズで投影することで照射パターンを形成するものであれば、他の構成でもよく、実施例2の構成に限定されない。
 実施例2では、各光源(124、125、126)を、LEDチップ、それを覆う蛍光体と、を有するものとしている。しかしながら、各光源(124、125、126)は、それぞれが個別にレンズ部(143、144、145)に対応されていれば、それぞれの構成は適宜設定すればよく、実施例2の構成に限定されない。
 実施例2では、最初に第3光源126が点灯され、次に第3光源126の点灯が維持されたまま第2光源125が点灯され、次に第3光源126および第2光源125の点灯が維持されたまま第1光源124が点灯され、次に各光源(124、125、126)が一斉に消灯され、以降はこれを繰り返すものとしている。しかしながら、各光源(124、125、126)は、全てが同時に点灯されてもよく、全てが個別に点灯されてもよく、適宜無作為に組み合わされて点灯されてもよく、点灯される順番や点灯の態様は適宜設定することができ、実施例2の態様に限定されない。
 実施例2では、第1減光部171および第2減光部172を、集光レンズ本体131(集光レンズ113)において、表面141の表面側第1減光部173および表面側第2減光部175と、裏面142の裏面側第1減光部174および裏面側第2減光部176と、で構成している。しかしながら、各減光部(171、172)は、対応するレンズ部(143、144、145)の間に設けられて、光の進行を遮ったり散乱させたりするものであればよく、実施例2の構成に限定されない。例えば、各減光部(171、172)は、対応するレンズ部(143、144、145)の間で板状に形成されている、すなわち集光レンズ本体131内での各レンズ部(143、144、145)間での光の進行を遮ったり散乱させたりするものとしてもよい。
 以下、本開示に係る車両用灯具の実施例3を図面に基づいて説明する。なお、この実施例3によりこの発明が限定されるものではない。また、下記実施例3における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。
 図22は、実施例3に係る車両用灯具200の一例を示す分解斜視図である。図23は、車両用灯具200を前方から見た状態を示す図である。図24は、図23におけるF-F断面に沿った構成を示す図である。図25は、図23におけるG-G断面に沿った構成を示す図である。図25は、固定部253に固定される部分を拡大して示している。図22から図25に示すように、車両用灯具200は、光源部210と、集光レンズ部材220と、遮光部材230と、投影レンズ部材240と、支持部材250とを備える。
 光源部210は、光源211及び基板212を有する。光源211は、例えばLED等の半導体型光源である。光源211は、光を出射する発光面211aを有する。発光面211aは、集光レンズ部材220の集光レンズ221に対向して配置される。光源211は、発光面211aから例えば橙色(アンバー)の光を出射する。光源211は、車両搭載状態における上下方向に並んだ状態で配置される。光源211は、例えば2つ配置される。なお、光源211の配置及び個数については、上記に限定されない。また、発光面211aから出射される光の色は、橙色に限定されず、例えば白色等の他の色であってもよい。
 基板212は、光源211が実装される。基板212は、光源211に信号を伝達する配線、回路等が形成される。基板212は、後述する支持部材250のベース部251に固定される。
 集光レンズ部材220は、集光レンズ221と、筒状部222と、集光レンズフレーム223とを有する。集光レンズ部材220は、集光レンズ221、筒状部222及び集光レンズフレーム223が一つの部材として形成される。集光レンズ部材220は、集光レンズ221を構成する材料を用いて全体が形成される。集光レンズ221は、光源211からの光を透過可能な材料を用いて形成される。このような材料としては、例えばポリカーボネート等の樹脂材料が挙げられるが、アクリル等の他の材料が用いられてもよい。この場合、集光レンズ221を構成する材料を用いて一体成型することで、集光レンズ部材220の全体を容易に形成することができる。なお、集光レンズ部材220は、集光レンズ221とは異なる部分、すなわち筒状部222及び集光レンズフレーム223のうちの少なくとも一部が集光レンズ221とは異なる材料を用いて形成されてもよい。
 集光レンズ221は、光源211から出射された光を集光する。集光レンズ221は、図24に示すように、第1入射面221aと、第2入射面221bと、反射面221cと、出射面221dとを有する。第1入射面221aは、光源211の前方に配置される。第1入射面221aは、光源211から前方に出射された光が入射する。
 第2入射面221bは、第1入射面221aの外周に沿って配置される。第2入射面221bは、光源211から光軸AXに対して傾いて出射された光が入射する。実施例3において、光軸方向Dは、光軸AXに沿った方向である。実施例3において、光軸方向Dは、前後方向に一致するものとする。
 反射面221cは、第2入射面221bから入射した光を内面反射する。
 出射面221dは、第1入射面221aから入射した光、及び第2入射面221bから入射して反射面221cで内面反射された光を前方に出射する。
 筒状部222は、集光レンズ221を保持する。筒状部222は、例えば円筒状である。筒状部222は、集光レンズ221と集光レンズフレーム223との間を接続する。筒状部222は、集光レンズフレーム223に対して後方(光源側)に突出するように設けられる。この構成により、集光レンズ221が集光レンズフレーム223に対して後方に配置された状態となる。
 集光レンズフレーム223は、筒状部222を介して集光レンズ221を保持する。集光レンズフレーム223は、平板状である。集光レンズフレーム223は、筒状部222から上下方向に突出する環状部225と、筒状部222から左右方向に突出する帯状部226とを有する。環状部225は、筒状部222の外周に沿って環状に設けられる。帯状部226は、筒状部222から左右方向に直線状に設けられる。帯状部226の左右方向の両側の角部は、丸みを帯びた形状となっている。帯状部226は、後述する支持部材250の固定部253の端面253cに支持される。帯状部226は、位置決め用開口部226a及び固定用開口部226bを有する。位置決め用開口部226aは、後述する支持部材250の位置決め用突出部253aが挿入される。固定用開口部226bは、後述する固定部材260が挿入される。帯状部226は、接触部226c、226dを有する。接触部226cは、位置決め用開口部226aの外周に沿って配置され、帯状部226から前方に突出する。接触部226dは、固定用開口部226bの外周に沿って配置され、帯状部226から前方に突出する。接触部226c、226dは、突出方向の先端面が平面状に形成される。集光レンズフレーム223は、接触部226c、226dにおいて遮光部材230に接触する。この構成により、帯状部226のうち接触部226c、226dの突出方向の高さ等の寸法を適切に規定することで、集光レンズフレーム223の位置精度を確保することができる。
 遮光部材230は、スリット形成部231及び遮光フレーム232を有する。遮光部材230は、スリット形成部231及び遮光フレーム232が一つの部材として平板状に形成される。遮光部材230は、光を遮光可能な材料を用いて全体が形成される。このような材料としては、例えば金属等の材料が挙げられるが、他の材料が用いられてもよい。
 スリット形成部231は、例えば円形状に設けられる。スリット形成部231は、スリット233を有する。スリット233は、集光レンズ221で集光された光の一部を通過させる。スリット233は、例えば上下方向に3つ並んだ状態で形成される。スリット233の数及び配置については上記に限定されない。
 遮光フレーム232は、スリット形成部231から左右方向に直線状に突出する。遮光フレーム232は、左右方向の両側の角部は、丸みを帯びた形状となっている。遮光フレーム232は、前側及び後側の両面が平面状である。遮光フレーム232は、集光レンズフレーム223の帯状部226の接触部226c、226dに支持される。遮光フレーム232は、接触部226c、226dに支持されることにより、遮光フレーム232は、位置決め用開口部232a及び固定用開口部232bを有する。位置決め用開口部232aは、後述する支持部材250の位置決め用突出部253aが挿入される。固定用開口部232bは、後述する固定部材260が挿入される。
 遮光部材230は、前方から見て、集光レンズ部材220の集光レンズ221及び集光レンズフレーム223を覆うように形成される。例えば、スリット形成部231は、集光レンズ221に対応する位置に配置され、集光レンズ221に対応する形状及び寸法に形成される。また、遮光フレーム232は、集光レンズフレーム223に対応する位置に配置され、集光レンズフレーム223に対応する形状及び寸法に形成される。実施例3において、遮光部材230は、前方から見て集光レンズ部材220と外形が一致又はほぼ一致するように形成される。この構成により、集光レンズ221及び集光レンズフレーム223を通過した光を遮光部材230により遮光することが可能となる。
 投影レンズ部材240は、投影レンズ241と、筒状部242と、投影レンズフレーム243とを有する。投影レンズ241は、スリット233を通過した光を車両前方の路面に投影して照射パターンを形成する。投影レンズ部材240は、投影レンズ241、筒状部242及び投影レンズフレーム243が一つの部材として形成される。投影レンズ部材240は、光を透過する材料を用いて全体が形成される。投影レンズ241は、光源211からの光を透過可能な材料を用いて形成される。このような材料としては、例えばアクリル等の樹脂材料が挙げられるが、他の材料が用いられてもよい。この場合、投影レンズ241を構成する材料を用いて一体成型することで、投影レンズ部材240の全体を容易に形成することができる。投影レンズ部材240は、集光レンズ部材220とは異なる材料により全体が形成された構成であるが、集光レンズ部材220と同一の材料を用いて全体が形成されてもよい。なお、投影レンズ部材240は、投影レンズ241とは異なる部分、すなわち筒状部242及び投影レンズフレーム243のうちの少なくとも一部が投影レンズ241とは異なる材料を用いて形成されてもよい。
 投影レンズ241は、図24に示すように、入射面241aと、出射面241bとを有する。入射面241aは、スリット233を通過した光が入射する。出射面241bは、入射面241aから入射した光を前方に出射する。
 筒状部242は、投影レンズ241を保持する。筒状部242は、例えば円筒状である。筒状部242は、投影レンズ241と投影レンズフレーム243との間を接続する。筒状部242は、投影レンズフレーム243に対して前方に突出するように設けられる。この構成により、投影レンズ241が投影レンズフレーム243に対して前方に配置された状態となる。
 投影レンズフレーム243は、筒状部242を介して投影レンズ241を保持する。投影レンズフレーム243は、平板状である。投影レンズフレーム243は、筒状部242から上下方向に突出する環状部245と、筒状部242から左右方向に突出する帯状部246とを有する。環状部245は、筒状部242の外周に沿って環状に設けられる。帯状部246は、筒状部242から左右方向に直線状に設けられる。帯状部246の左右方向の両側の角部は、丸みを帯びた形状となっている。帯状部246は、位置決め用開口部246a及び固定用開口部246bを有する。位置決め用開口部246aは、後述する支持部材250の位置決め用突出部253aが挿入される。固定用開口部246bは、後述する固定部材260が挿入される。帯状部246は、接触部246c、246dを有する。接触部246cは、位置決め用開口部246aの外周に沿って配置され、帯状部246から後方に突出する。接触部246dは、固定用開口部246bの外周に沿って配置され、帯状部246から後方に突出する。接触部246c、246dは、突出方向の先端面が平面状に形成される。投影レンズフレーム243は、接触部246c、246dにおいて遮光部材230に接触する。この構成により、帯状部246のうち接触部246c、246dの突出方向の高さ等の寸法を適切に規定することで、投影レンズフレーム243の位置精度を確保することができる。
 支持部材250は、ベース部251と、フィン252と、固定部253とを有する。ベース部251は、平板状である。ベース部251は、光源部210を支持する支持面251aを有する。支持面251aは、ベース部251の前側の面であり、基板212を支持する。
 フィン252は、ベース部251から後方に突出する。フィン252は、複数設けられる。フィン252は、光源211において発生する熱を放出する。
 固定部253は、ベース部251の支持面251aから前方に突出している。固定部253は、集光レンズフレーム223、遮光フレーム232及び投影レンズフレーム243を固定する。固定部253は、位置決め用突出部253aと、固定用開口部253bとを有する。位置決め用突出部253a及び固定用開口部253bは、固定部253の前方の端面253cに設けられる。
 位置決め用突出部253aは、前方に突出し、集光レンズフレーム223の帯状部226に設けられる位置決め用開口部226a、遮光フレーム232に設けられる位置決め用開口部232a、投影レンズフレーム243の帯状部246に設けられる位置決め用開口部246aを前後方向に貫通する。固定用開口部253bは、後述する固定部材260が挿入される。
 端面253cは、例えば平面状に形成される。図25に示すように、端面253cは、光軸AXに垂直又はほぼ垂直となるように形成される。上記した集光レンズ部材220、遮光部材230及び投影レンズ部材240は、光軸方向Dに重なるように集光レンズ部材220が端面253cに支持される。つまり、端面253cは、集光レンズ部材220、遮光部材230及び投影レンズ部材240を支持する際の基準面となる。この基準面となる端面253cが光軸AXに垂直又はほぼ垂直となるように形成されるため、集光レンズ部材220、遮光部材230及び投影レンズ部材240を当該光軸AXに沿って適切に配置することができる。
 固定部材260は、集光レンズフレーム223、遮光フレーム232及び投影レンズフレーム243を固定部253に固定する。固定部材260は、例えばねじ等の締結部材が用いられる。固定部材260は、集光レンズフレーム223の帯状部226に設けられる固定用開口部226b、遮光フレーム232に設けられる固定用開口部232b、投影レンズフレーム243の帯状部246に設けられる固定用開口部246bを貫通して、固定部253の固定用開口部253bに挿入される。
 次に、上記のように構成された車両用灯具200の動作の一例を説明する。図26は、車両用灯具200の動作の一例を示す図である。運転者によって車両側の方向指示器の操作又はハザードスイッチの操作等、所定の操作が行われた場合、車両用灯具200は、当該操作に応じて、光源211の発光面211aから光を出射する。
 発光面211aから出射された光Lの一部は、集光レンズ221の第1入射面221a及び第2入射面221bに入射する。このうち、第1入射面221aに入射した光L1は、集光レンズ221の内部を進行して出射面221dから前方に出射される。第2入射面221bに入射した光L2は、反射面221cで前方に反射され、出射面221dから前方に出射される。また、発光面211aから出射された光Lの一部は、筒状部222又は集光レンズフレーム223に入射する。筒状部222又は集光レンズフレーム223に入射した光L3は、当該筒状部222及び集光レンズフレーム223を透過して前方に出射される。
 出射面221dから前方に出射された光L1、L2、筒状部222又は集光レンズフレーム223から前方に出射された光L3は、遮光部材230のスリット形成部231に到達する。スリット形成部231に到達した光L1、L2の一部は、遮光部材230のスリット233を通過し、残りは遮光部材230により遮光される。また、光L3は、遮光部材230の遮光フレーム232に到達し、当該遮光フレーム232により遮光される。実施例3では、光軸方向Dから見て集光レンズ部材220及び遮光部材230の外形が重なるように設けられる。したがって、集光レンズ部材220において集光レンズ221以外の部分、つまり筒状部222又は集光レンズフレーム223から前方に出射された光L3が遮光部材230により遮光される。したがって、グレアの発生を防止できる。
 スリット233を通過した光L1、L2は、投影レンズ241の入射面241aに入射し、出射面241bから車両前方に出射される。図27は、車両用灯具200により路面に形成される照射パターンの一例を示す図である。図27に示すように、車両前方に出射された光L1、L2により、車両前方の路面上に照射パターンPが形成される。
 以上のように、実施例3に係る車両用灯具200は、光源211と、光源211から出射された光を集光する集光レンズ221と集光レンズ221を保持する集光レンズフレーム223とが一つの部材として形成された集光レンズ部材220と、集光レンズ221で集光された光の一部を通過させるスリット233を有するスリット形成部231とスリット形成部231を保持する遮光フレーム232とが一つの部材として形成された遮光部材230と、スリット233を通過した光を路面に投影して照射パターンPを形成する投影レンズ241が形成された投影レンズ部材240と、光源211を支持する支持部材250とを備え、集光レンズ部材220、遮光部材230及び投影レンズ部材240は、集光レンズフレーム223及び遮光フレーム232が光軸方向Dに重なるように支持部材250に固定される。
 この構成によれば、集光レンズフレーム223及び遮光フレーム232が光軸方向Dに重なるように支持部材250に固定されるため、集光レンズ部材220、遮光部材230及び投影レンズ部材240の各光学部材を固定するために要する部品点数を少なくすることができる。固定に要する部品点数を少なくすることにより、各光学部材を精度よく取り付けることができる。
 実施例3に係る車両用灯具200において、集光レンズ部材220は、全体が光を透過する材料を用いて形成され、遮光部材230は、前方から見て集光レンズ部材220の集光レンズ221及び集光レンズフレーム223を覆うように形成される。この構成によれば、光を透過するレンズ部分を構成する材料を用いて集光レンズ部材220の全体を形成することができる。このため、集光レンズ部材220を容易にかつ低コストで形成することができる。また、この構成において、光源211からの光が集光レンズ部材220の集光レンズ221以外の部分を透過しても、遮光部材230により遮光することができる。したがって、グレア光の発生を防止できる。
 実施例3に係る車両用灯具200において、投影レンズ部材240は、投影レンズ241と当該投影レンズ241を保持する投影レンズフレーム243とが一つの部材として形成され、集光レンズ部材220、遮光部材230及び投影レンズ部材240は、集光レンズフレーム223、遮光フレーム232及び投影レンズフレーム243が光軸方向Dに重なるように支持部材250に固定される。この構成によれば、集光レンズフレーム223及び遮光フレーム232に加えて、投影レンズフレーム243についても光軸方向Dに重なるように支持部材250に固定されるため、各光学部材を精度よく取り付けることができる。
 実施例3に係る車両用灯具200において、集光レンズ部材220は、集光レンズフレーム223に対して集光レンズ221が光軸方向の後方に配置され、投影レンズ部材240は、投影レンズフレーム243に対して投影レンズ241が光軸方向の前方に配置される。この構成によれば、集光レンズ221及び投影レンズ241を効率的に配置できる。
 実施例3に係る車両用灯具200において、支持部材250は、光源211を支持する支持面251aを有するベース部251と、集光レンズフレーム223、遮光フレーム232及び投影レンズフレーム243を固定する固定部253とを有し、固定部253は、支持面251aから突出している。この構成によれば、支持部材250において集光レンズ221を配置するスペースを十分に確保することができる。
 実施例3に係る車両用灯具200において、固定部253は、集光レンズフレーム223、遮光フレーム232及び投影レンズフレーム243を固定する基準面となる端面253cが突出方向の先端に設けられ、端面253cは、光軸AXに直交するように形成される。この構成によれば、集光レンズ部材220、遮光部材230及び投影レンズ部材240を当該光軸AXに沿って適切に配置することができる。
 本発明の技術範囲は上記実施例3に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更を加えることができる。例えば、上記実施例3では、集光レンズ部材220の全体が光を透過する材料を用いて形成された構成を例に挙げて説明したが、これに限定されない。集光レンズ部材220は、少なくとも集光レンズ221が光を透過する材料を用いて形成された構成であればよく、筒状部222及び集光レンズフレーム223については光を透過しない材料であってもよい。
 同様に、上記実施例3では、投影レンズ部材240の全体が光を透過する材料を用いて形成された構成を例に挙げて説明したが、これに限定されない。投影レンズ部材240は、少なくとも投影レンズ241が光を透過する材料を用いて形成された構成であればよく、筒状部242及び投影レンズフレーム243については光を透過しない材料であってもよい。
 また、上記実施例3では、集光レンズ部材220において集光レンズフレーム223に対して集光レンズ221が光軸方向の後方に配置され、投影レンズ部材240において投影レンズフレーム243に対して投影レンズ241が光軸方向の前方に配置される構成を例に挙げて説明したが、これに限定されない。例えば、集光レンズフレーム223及び投影レンズフレーム243の厚さがそれぞれ集光レンズ221、投影レンズ241と同様の構成であってもよい。
 また、上記実施例3では、支持部材250において、固定部253が支持面251aから突出している構成を例に挙げて説明したが、これに限定されない。例えば、集光レンズフレーム223が支持面251a側に突出した構成であってもよい。
 また、上記実施例3では、車両用灯具200が車両Mの前部に配置される構成を例に挙げて説明したが、これに限定されない。車両用灯具200は、車両Mの後部又は側部に配置される構成であり、車両Mの後方又は側方の路面に照射パターンを形成する構成であってもよい。
 10 車両用灯具  14 集光レンズ  15 (遮光部材の一例としての)シェード  16 投影レンズ  31 第1光源  32 第2光源  53 照射スリット  541 (遠方スリット部の一例としての)第1スリット部  542 (遠方スリット部の一例としての)第2スリット部  543 (近方スリット部の一例としての)第3スリット部  61 第1レンズ部  62 第2レンズ部  65 湾曲入射面部  66 環状入射面部  67 反射面  110 車両用灯具  113 集光レンズ  114 (遮光部材の一例としての)シェード  115 投影レンズ  124 第1光源  125 第2光源  126 第3光源  136 スリット部  1361 第1スリット部  1362 第2スリット部  1363 第3スリット部  141 表面  142 裏面  143 第1レンズ部  144 第2レンズ部  145 第3レンズ部  145a 底面  151 第1対向入射面部  152 第1傾斜入射面部  153 第1反射面  157 第2対向入射面部  158 第2傾斜入射面部  159 第2反射面  171 (減光部の一例としての)第1減光部  172 (減光部の一例としての)第2減光部  200 車両用灯具  210 光源部  211 光源  211a 発光面  212 基板  220 集光レンズ部材  221 集光レンズ  221a 第1入射面  221b 第2入射面  221c 反射面  221d,241b 出射面  222,242 筒状部  223 集光レンズフレーム  225,245 環状部  226,246 帯状部  226a,232a,246a 位置決め用開口部  226b,232b,246b,253b 固定用開口部  226c,226d,246c,246d 接触部  230 遮光部材  231 スリット形成部  232 遮光フレーム  233 スリット  240 投影レンズ部材  241 投影レンズ  241a 入射面  243 投影レンズフレーム  250 支持部材  251 ベース部  251a 支持面  252 フィン  253 固定部  253a 位置決め用突出部  253c 端面  260 固定部材  Ai 内輪配光領域  Ao 外輪配光領域  A1 第1配光領域  A2 第2配光領域  AX 光軸  D 光軸方向  Di 照射図柄  Di1 第1照射図柄  Di2 第2照射図柄  Di3 第3照射図柄  L,L1,L2,L3 光  Lp 投影光軸  M 車両  Pi 照射パターン

Claims (21)

  1.  並列された第1光源および第2光源と、
     前記第1光源および前記第2光源からの光を集光する集光レンズと、
     前記集光レンズで集光された光を部分的に通す照射スリットが設けられた遮光部材と、
     前記遮光部材を通した光を投影して照射パターンを形成する投影レンズと、を備え、
     前記集光レンズは、前記第1光源に対応する第1レンズ部と、前記第2光源に対応する第2レンズ部と、を有し、
     前記照射スリットは、前記照射パターンにおいて近い位置に投影される近方照射図柄に対応する近方スリット部と、前記照射パターンにおいて前記近方照射図柄よりも遠い位置に投影される遠方照射図柄に対応する遠方スリット部と、を有し、
     前記第1レンズ部は、前記遠方スリット部に対向して配置され、
     前記第2レンズ部は、前記近方スリット部に対向して配置されていることを特徴とする車両用灯具。
  2.  前記第1レンズ部は、前記遮光部材上において、前記第1光源からの光で前記遠方スリット部の全域を照射する第1配光領域を形成し、
     前記第2レンズ部は、前記遮光部材上において、前記第2光源からの光で前記近方スリット部の全域を照射する第2配光領域を形成することを特徴とする請求項1に記載の車両用灯具。
  3.  前記第1レンズ部は、前記第1光源と対向する湾曲入射面部と、前記湾曲入射面部を取り巻く環状入射面部と、前記環状入射面部を取り囲む反射面と、を有し、
     前記第2レンズ部は、前記第2光源からの光を集光する凸レンズとされ、
     前記第1レンズ部は、前記遮光部材上において、前記湾曲入射面部を経た前記第1光源からの光で前記遠方スリット部を照射する内輪配光領域を形成するとともに、前記環状入射面部を経て前記反射面で反射された前記第1光源からの光で前記遠方スリット部の中心近傍を周辺よりも高い光束としつつ前記遠方スリット部全域を照射する外輪配光領域を形成し、
     前記第1配光領域は、前記内輪配光領域と前記外輪配光領域とが重ね合わされて形成されていることを特徴とする請求項2に記載の車両用灯具。
  4.  前記第2配光領域は、前記内輪配光領域や前記外輪配光領域よりも低い光束とされるとともに、前記外輪配光領域よりも光束差が小さくされていることを特徴とする請求項3に記載の車両用灯具。
  5.  前記第1レンズ部と前記第2レンズ部とは、一体とされていることを特徴とする請求項1に記載の車両用灯具。
  6.  前記遠方スリット部は、前記遮光部材において、4分の3以上が前記投影レンズの投影光軸よりも下側に設けられていることを特徴とする請求項1に記載の車両用灯具。
  7.  前記第1光源と前記第2光源とは、鉛直方向で並列され、
     前記第1光源は、前記第2光源よりも下側に位置されていることを特徴とする請求項1に記載の車両用灯具。
  8.  前記遠方照射図柄は、遠方側の第1照射図柄と、そこよりも前記近方照射図柄側の第2照射図柄と、を有し、
     前記遠方スリット部は、前記第1照射図柄に対応する第1スリット部と、前記第2照射図柄に対応する第2スリット部と、を有し、
     前記第1配光領域は、前記第1スリット部の中心近傍を、前記第1配光領域と前記第2配光領域とにおける最も高い光束としていることを特徴とする請求項2に記載の車両用灯具。
  9.  複数の光源と、
     複数の前記光源からの光を集光する集光レンズと、
     前記集光レンズで集光された光を部分的に通す複数のスリット部が設けられた遮光部材と、
     前記遮光部材を通した光を投影することにより、複数の前記スリット部に対応する複数の照射図柄を有する照射パターンを形成する投影レンズと、を備え、
     前記光源は、前記スリット部に個別に対応して設けられ、
     前記集光レンズは、前記スリット部に個別に対応する複数のレンズ部が重ねられ、複数の前記レンズ部の間には光を低減する減光部が設けられていることを特徴とする車両用灯具。
  10.  前記減光部は、前記集光レンズにおいて、複数の前記光源側となる裏面における複数の前記レンズ部の間に減光処理が施されて形成されていることを特徴とする請求項9に記載の車両用灯具。
  11.  前記減光部は、前記集光レンズにおいて、前記遮光部材側となる表面における複数の前記レンズ部の間に減光処理が施されて形成されていることを特徴とする請求項9に記載の車両用灯具。
  12.  複数の前記光源は、順次点灯されることを特徴とする請求項9に記載の車両用灯具。
  13.  複数の前記スリット部は、前記照射パターンにおいて離れた位置に投影される第1照射図柄に対応する第1スリット部と、前記照射パターンにおいて前記第1照射図柄よりも近い位置に投影される第2照射図柄に対応する第2スリット部と、前記照射パターンにおいて前記第2照射図柄よりも近い位置に投影される第3照射図柄に対応する第3スリット部と、を有し、
     複数の前記レンズ部は、前記第1スリット部に対向する第1レンズ部と、前記第2スリット部に対向する第2レンズ部と、前記第3スリット部に対向する第3レンズ部と、を有し、
     前記第1レンズ部は、対応する前記光源と対向する第1対向入射面部と、前記第1対向入射面部を取り巻く第1傾斜入射面部と、前記第1傾斜入射面部を取り巻く第1反射面と、を有し、
     前記第2レンズ部は、対応する前記光源と対向する第2対向入射面部と、前記第2対向入射面部を取り巻く第2傾斜入射面部と、前記第2傾斜入射面部を取り巻く第2反射面と、を有し、
     前記第3レンズ部は、対応する前記光源からの光を集光する凸レンズとされていることを特徴とする請求項9に記載の車両用灯具。
  14.  前記第3レンズ部では、前記第2レンズ部側に位置する底面にも減光処理が施されていることを特徴とする請求項13に記載の車両用灯具。
  15.  複数の前記レンズ部は、一体とされていることを特徴とする請求項9に記載の車両用灯具。
  16.  光源と、
     前記光源から出射された光を集光する集光レンズと前記集光レンズを保持する集光レンズフレームとが一つの部材として形成された集光レンズ部材と、
     前記集光レンズで集光された前記光の一部を通過させるスリットを有するスリット形成部と前記スリット形成部を保持する遮光フレームとが一つの部材として形成された遮光部材と、
     前記スリットを通過した前記光を路面に投影して照射パターンを形成する投影レンズが形成された投影レンズ部材と、
     前記光源を支持する支持部材と
     を備え、
     前記集光レンズ部材、前記遮光部材及び前記投影レンズ部材は、前記集光レンズフレーム及び前記遮光フレームが光軸方向に重なるように前記支持部材に固定されていることを特徴とする車両用灯具。
  17.  前記集光レンズ部材は、前記集光レンズを構成する材料を用いて全体が形成され、
     前記遮光部材は、前方から見て前記集光レンズ部材の前記集光レンズ及び前記集光レンズフレームを覆うように形成されていることを特徴とする請求項16に記載の車両用灯具。
  18.  前記投影レンズ部材は、前記投影レンズと当該投影レンズを保持する投影レンズフレームとが一つの部材として形成され、
     前記集光レンズ部材、前記遮光部材及び前記投影レンズ部材は、前記集光レンズフレーム、前記遮光フレーム及び前記投影レンズフレームが前記光軸方向に重なるように前記支持部材に固定されていることを特徴とする請求項16に記載の車両用灯具。
  19.  前記集光レンズ部材は、前記集光レンズフレームに対して前記集光レンズが前記光軸方向の後方に配置され、
     前記投影レンズ部材は、前記投影レンズフレームに対して前記投影レンズが前記光軸方向の前方に配置されていることを特徴とする請求項18に記載の車両用灯具。
  20.  前記支持部材は、前記光源を支持する支持面を有するベース部と、前記集光レンズフレーム、前記遮光フレーム及び前記投影レンズフレームを固定する固定部とを有し、
     前記固定部は、前記支持面から突出していることを特徴とする請求項19に記載の車両用灯具。
  21.  前記固定部は、前記集光レンズフレーム、前記遮光フレーム及び前記投影レンズフレームを固定する基準面となる端面が突出方向の先端に設けられ、
     前記端面は、前記光軸方向に直交するように形成されていることを特徴とする請求項20に記載の車両用灯具。
PCT/JP2023/016410 2022-04-27 2023-04-26 車両用灯具 WO2023210678A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2022-073748 2022-04-27
JP2022073748A JP2023162988A (ja) 2022-04-27 2022-04-27 車両用灯具
JP2022-086939 2022-05-27
JP2022086939A JP2023174207A (ja) 2022-05-27 2022-05-27 車両用灯具
JP2022-091900 2022-06-06
JP2022091900A JP2023178905A (ja) 2022-06-06 2022-06-06 車両用灯具

Publications (1)

Publication Number Publication Date
WO2023210678A1 true WO2023210678A1 (ja) 2023-11-02

Family

ID=88519045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016410 WO2023210678A1 (ja) 2022-04-27 2023-04-26 車両用灯具

Country Status (1)

Country Link
WO (1) WO2023210678A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019084915A (ja) * 2017-11-06 2019-06-06 株式会社小糸製作所 多重画像描画装置
JP2019192350A (ja) * 2018-04-18 2019-10-31 マクセル株式会社 路面映像投射装置および車両用灯具
JP2019215958A (ja) * 2018-06-11 2019-12-19 市光工業株式会社 車両用灯具
JP2021111465A (ja) * 2020-01-07 2021-08-02 市光工業株式会社 車両用灯具
US20220120406A1 (en) * 2020-10-20 2022-04-21 Sl Corporation Lamp for vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019084915A (ja) * 2017-11-06 2019-06-06 株式会社小糸製作所 多重画像描画装置
JP2019192350A (ja) * 2018-04-18 2019-10-31 マクセル株式会社 路面映像投射装置および車両用灯具
JP2019215958A (ja) * 2018-06-11 2019-12-19 市光工業株式会社 車両用灯具
JP2021111465A (ja) * 2020-01-07 2021-08-02 市光工業株式会社 車両用灯具
US20220120406A1 (en) * 2020-10-20 2022-04-21 Sl Corporation Lamp for vehicle

Similar Documents

Publication Publication Date Title
CN112135998B (zh) 车辆用灯具
EP2487407B1 (en) Vehicle lighting device
JP4798784B2 (ja) 車両用灯具
JP7351225B2 (ja) 車両用灯具
KR20040020851A (ko) 차량용 전조등
JP6609135B2 (ja) 車両用リアコンビネーションランプ
JP7095131B1 (ja) 車両用灯体装置
WO2022158294A1 (ja) 車両用灯具
CN108224352B (zh) 灯具
JP2018116869A (ja) 灯具
JP6793494B2 (ja) 車両用灯具
WO2023210678A1 (ja) 車両用灯具
US20240198896A1 (en) Vehicle lamp
US11873960B2 (en) Vehicular lamp
JP6648428B2 (ja) 車両用灯具
JP7187825B2 (ja) 車両用灯具
JP7235387B2 (ja) フォグランプユニット
JP2023178905A (ja) 車両用灯具
JP4158140B2 (ja) 車両用灯具
JP2023162988A (ja) 車両用灯具
WO2023085344A1 (ja) ランプユニット、車両用灯具
WO2023106422A1 (ja) ランプユニット、車両用灯具
JP7234681B2 (ja) 車両用灯具
WO2024048390A1 (ja) ランプユニット、車両用灯具
JP7101547B2 (ja) 車両用前照灯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796418

Country of ref document: EP

Kind code of ref document: A1