WO2023210573A1 - 非水電解質二次電池用負極活物質、及び非水電解質二次電池 - Google Patents

非水電解質二次電池用負極活物質、及び非水電解質二次電池 Download PDF

Info

Publication number
WO2023210573A1
WO2023210573A1 PCT/JP2023/016094 JP2023016094W WO2023210573A1 WO 2023210573 A1 WO2023210573 A1 WO 2023210573A1 JP 2023016094 W JP2023016094 W JP 2023016094W WO 2023210573 A1 WO2023210573 A1 WO 2023210573A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
secondary battery
electrolyte secondary
electrode active
active material
Prior art date
Application number
PCT/JP2023/016094
Other languages
English (en)
French (fr)
Inventor
舜 溝端
安展 岩見
公 小泉
茂樹 守屋
Original Assignee
パナソニックエナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックエナジー株式会社 filed Critical パナソニックエナジー株式会社
Publication of WO2023210573A1 publication Critical patent/WO2023210573A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a negative electrode active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery.
  • Patent Document 1 discloses that in a negative electrode containing a Si-based material, a skeleton is formed in the negative electrode mixture layer using a skeleton forming agent containing a silicate having a siloxane bond or a phosphate having an aluminophosphate bond. A technique for suppressing short circuits during a stab test has been disclosed.
  • Patent Document 1 when the technique described in Patent Document 1 is used, the conductivity of the negative electrode is reduced due to the skeleton formed by the skeleton forming agent, and battery capacity may be reduced due to repeated charging and discharging. Patent Document 1 does not examine the compatibility between battery safety and charge/discharge cycle characteristics, and there is still room for improvement.
  • An object of the present disclosure is to provide a nonaqueous electrolyte secondary battery with excellent safety and charge/discharge cycle characteristics.
  • a negative electrode active material for a non-aqueous electrolyte secondary battery which is an embodiment of the present disclosure, includes a Si-containing composite material, and the Si-containing composite material includes a base particle in which Si fine particles are dispersed in a matrix, and a surface of the base particle. coated GaN.
  • a non-aqueous electrolyte secondary battery that is one aspect of the present disclosure is characterized by comprising a negative electrode containing the above negative electrode active material for a non-aqueous electrolyte secondary battery, a positive electrode, and a non-aqueous electrolyte.
  • the safety and charge/discharge cycle characteristics of a nonaqueous electrolyte secondary battery can be improved.
  • FIG. 1 is an axial cross-sectional view of a cylindrical secondary battery that is an example of an embodiment.
  • FIG. 2 is a cross-sectional view of a Si-containing composite material in an example of an embodiment.
  • a cylindrical secondary battery in which a wound electrode body is housed in a cylindrical exterior body is exemplified, but the electrode body is not limited to the wound type, and can include a plurality of positive electrodes and a plurality of positive electrodes.
  • a laminated type in which negative electrodes are alternately laminated one by one with separators interposed therebetween may be used.
  • the exterior body is not limited to a cylindrical shape, and may be, for example, square, coin-shaped, or the like. Further, the exterior body may be a pouch type made of a laminate sheet including a metal layer and a resin layer.
  • the expression "numerical value (A) to numerical value (B)" means greater than or equal to numerical value (A) and less than or equal to numerical value (B).
  • FIG. 1 is a cross-sectional view of a cylindrical secondary battery 10 that is an example of an embodiment.
  • the secondary battery 10 includes a wound electrode body 14, a non-aqueous electrolyte, and an outer can 16 that houses the electrode body 14 and the non-aqueous electrolyte.
  • the electrode body 14 includes a positive electrode 11 , a negative electrode 12 , and a separator 13 , and has a wound structure in which the positive electrode 11 and the negative electrode 12 are spirally wound with the separator 13 in between.
  • the outer can 16 is a bottomed cylindrical metal container with an opening on one axial side, and the opening of the outer can 16 is closed with a sealing member 17 .
  • the sealing body 17 side of the battery is referred to as the upper side
  • the bottom side of the outer can 16 is referred to as the lower side.
  • the positive electrode 11, the negative electrode 12, and the separator 13 that constitute the electrode body 14 are all long strip-shaped bodies, and are wound in a spiral shape so that they are alternately stacked in the radial direction of the electrode body 14.
  • Separator 13 isolates positive electrode 11 and negative electrode 12 from each other.
  • the negative electrode 12 is formed to be one size larger than the positive electrode 11 in order to prevent precipitation of lithium. That is, the negative electrode 12 is formed longer than the positive electrode 11 in the longitudinal direction and the width direction (short direction).
  • the two separators 13 are formed to be at least one size larger than the positive electrode 11, and are arranged to sandwich the positive electrode 11, for example.
  • the electrode body 14 includes a positive electrode lead 20 connected to the positive electrode 11 by welding or the like, and a negative electrode lead 21 connected to the negative electrode 12 by welding or the like.
  • Insulating plates 18 and 19 are arranged above and below the electrode body 14, respectively.
  • the positive electrode lead 20 passes through the through hole of the insulating plate 18 and extends toward the sealing body 17, and the negative electrode lead 21 passes through the outside of the insulating plate 19 and extends toward the bottom of the outer can 16.
  • the positive electrode lead 20 is connected by welding or the like to the lower surface of the internal terminal plate 23 of the sealing body 17, and the cap 27, which is the top plate of the sealing body 17 and electrically connected to the internal terminal plate 23, serves as a positive electrode terminal.
  • the negative electrode lead 21 is connected to the bottom inner surface of the outer can 16 by welding or the like, and the outer can 16 serves as a negative electrode terminal.
  • a gasket 28 is provided between the outer can 16 and the sealing body 17 to ensure airtightness inside the battery.
  • the outer can 16 is formed with a grooved part 22 that supports the sealing body 17 and has a part of the side surface protruding inward.
  • the grooved portion 22 is preferably formed in an annular shape along the circumferential direction of the outer can 16, and supports the sealing body 17 on its upper surface.
  • the sealing body 17 is fixed to the upper part of the outer can 16 by the grooved part 22 and the open end of the outer can 16 caulked to the sealing body 17.
  • the sealing body 17 has a structure in which an internal terminal plate 23, a lower valve body 24, an insulating member 25, an upper valve body 26, and a cap 27 are laminated in order from the electrode body 14 side.
  • Each member constituting the sealing body 17 has, for example, a disk shape or a ring shape, and each member except the insulating member 25 is electrically connected to each other.
  • the lower valve body 24 and the upper valve body 26 are connected at their respective central portions, and an insulating member 25 is interposed between their respective peripheral portions.
  • the positive electrode 11, negative electrode 12, separator 13, and non-aqueous electrolyte that constitute the secondary battery 10 will be explained in detail, especially the negative electrode 12.
  • the negative electrode 12 includes, for example, a negative electrode current collector and a negative electrode mixture layer formed on the surface of the negative electrode current collector.
  • the negative electrode mixture layer is preferably formed on both sides of the negative electrode current collector.
  • As the negative electrode current collector a foil of a metal such as copper that is stable in the potential range of the negative electrode, a film in which the metal is disposed on the surface layer, or the like can be used.
  • the negative electrode mixture layer contains, for example, a negative electrode active material, a binder, and the like.
  • the negative electrode 12 is produced by, for example, applying a negative electrode mixture slurry containing a negative electrode active material, a binder, etc. to both sides of a negative electrode current collector, drying it to form a negative electrode mixture layer, and then rolling this negative electrode mixture layer. It can be made by
  • binder included in the negative electrode mixture layer examples include fluororesin, polyimide resin, acrylic resin, polyolefin resin, polyacrylonitrile (PAN), styrene-butadiene rubber (SBR), and nitrile-butadiene rubber ( NBR), carboxymethyl cellulose (CMC) or its salts, polyacrylic acid (PAA) or its salts (PAA-Na, PAA-K, etc., and partially neutralized salts may also be used), polyvinyl alcohol (PVA) etc. These may be used alone or in combination of two or more.
  • the negative electrode active material contained in the negative electrode mixture layer includes the Si-containing composite material 30.
  • FIG. 2 shows a cross-sectional view of the Si-containing composite material 30 in an example of an embodiment.
  • the Si-containing composite material 30 includes base particles 35 in which Si fine particles 32 are dispersed in a matrix 34, and GaN 36 coated on the surface of the base particles 35.
  • the safety and charge/discharge cycle characteristics of the secondary battery can be improved.
  • the GaN 36 covering the surface improves the thermal conductivity of the Si-containing composite material 30 and improves the safety of the secondary battery.
  • the charge/discharge cycle characteristics deteriorate, but the inventors of the present invention found that the charge/discharge cycle characteristic does not specifically deteriorate when coated with GaN 36. It has been found.
  • the base particles 35 have, for example, a sea-island structure in which Si fine particles 32 are substantially uniformly dispersed in the base phase 34.
  • the matrix 34 is composed of, for example, a collection of particles finer than the Si fine particles 32.
  • the content of the Si fine particles 32 is, for example, 30% by mass to 70% by mass based on the total mass of the base particles 35.
  • the parent phase 34 is, for example, a silicate phase.
  • the parent phase 34 may be a lithium silicate phase.
  • the lithium silicate phase is composed of, for example, a compound represented by the general formula Li 2z SiO (2+z) (0 ⁇ z ⁇ 2).
  • the parent phase 34 may be a silicon oxide (SiO 2 ) phase.
  • the parent phase 34 may be an amorphous carbon phase.
  • the base particles 35 may have a carbon coating 38 on the surface. This improves the electrical conductivity of the Si-containing composite material 30.
  • the carbon film 38 may exist in a dotted manner so as to cover at least a part of the surface of the particles consisting of the Si fine particles 32 and the matrix 34, or the carbon coating 38 may exist in a dotted manner so as to cover at least a part of the surface of the particles consisting of the Si fine particles 32 and the matrix 34.
  • the particles may be present so as to cover the entire surface of the particles.
  • the thickness of the carbon film 38 is preferably 1 nm to 200 nm in order to achieve both electrical conductivity and diffusion of Li ions into the inside of the particles.
  • the GaN 36 When the base particles 35 have a carbon coating 38 on the surface, the GaN 36 preferably covers at least a portion of the surface of the carbon coating 38. In this case, GaN 36 may coat the surface of base particles 35 where carbon coating 38 is not present. As shown in FIG. 2, GaN 36 may be present in a dotted manner so as to cover at least a portion of the surface of the base particle 35, or may be present so as to cover the entire surface of the base particle 35.
  • the mass of GaN 36 is preferably 10 parts by mass to 20 parts by mass. If the amount of GaN 36 is within this range, the effect of GaN described above will be more pronounced.
  • the proportion of the Si-containing composite material 30 in the negative electrode active material is preferably 1% by mass to 15% by mass with respect to the total mass of the negative electrode active material. If the proportion of the Si-containing composite material 30 is within this range, the effect of GaN described above will be more pronounced.
  • the method of forming the GaN film on the surface of the base particles 35 is not particularly limited, and for example, vapor deposition, sputtering, etc. can be used. It is preferable that GaN 36 be formed by a sputtering method. GaN 36 is formed, for example, by performing sputtering film formation while flowing base particles 35. Examples of methods for causing the base particles 35 to flow include rotating or vibrating a container containing the base particles 35.
  • the positive electrode active materials are Li x NiO 2 , Li x Co y Ni 1-y O 2 , Li x Ni 1-y M y O z ( M; at least one of Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, B, 0 ⁇ x ⁇ 1.2, 0 ⁇ y ⁇ 0 .9, 2.0 ⁇ z ⁇ 2.3) and the like.
  • Examples of the conductive agent include carbon-based particles such as carbon black (CB), acetylene black (AB), Ketjen black, carbon nanotube (CNT), graphene, and graphite. These may be used alone or in combination of two or more.
  • binder examples include fluororesins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF), polyimide resins, acrylic resins, polyolefin resins, and polyacrylonitrile (PAN). These may be used alone or in combination of two or more.
  • fluororesins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF), polyimide resins, acrylic resins, polyolefin resins, and polyacrylonitrile (PAN).
  • separator 13 for example, a porous sheet having ion permeability and insulation properties is used. Specific examples of porous sheets include microporous thin films, woven fabrics, and nonwoven fabrics. Suitable materials for the separator include olefin resins such as polyethylene and polypropylene, cellulose, and the like.
  • the separator 13 may be a laminate having a cellulose fiber layer and a thermoplastic resin fiber layer such as an olefin resin.
  • a multilayer separator including a polyethylene layer and a polypropylene layer may be used, or a separator 13 whose surface is coated with a material such as aramid resin or ceramic may be used.
  • the non-aqueous electrolyte is a liquid electrolyte (electrolyte solution) containing a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • non-aqueous solvents examples include esters, ethers, nitriles such as acetonitrile, amides such as dimethylformamide, and mixed solvents of two or more of these.
  • the non-aqueous solvent may contain a halogen-substituted product in which at least a portion of hydrogen in these solvents is replaced with a halogen atom such as fluorine.
  • esters examples include cyclic carbonate esters such as ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate, dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), diethyl carbonate (DEC), and methylpropyl carbonate. , chain carbonate esters such as ethylpropyl carbonate and methyl isopropyl carbonate, cyclic carboxylic acid esters such as ⁇ -butyrolactone and ⁇ -valerolactone, methyl acetate, ethyl acetate, propyl acetate, methyl propionate (MP), ethyl propionate, etc. and chain carboxylic acid esters.
  • cyclic carbonate esters such as ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate, dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), diethyl carbonate (DEC), and methylpropyl carbonate
  • ethers examples include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, propylene oxide, 1,2-butylene oxide, 1,3-dioxane, 1,4 - Cyclic ethers such as dioxane, 1,3,5-trioxane, furan, 2-methylfuran, 1,8-cineole, crown ether, 1,2-dimethoxyethane, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether , dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, butylphenyl ether, pentylphenyl ether, methoxytoluene, benzyl ethyl ether, diphenyl ether, dibenzyl
  • fluorinated cyclic carbonate esters such as fluoroethylene carbonate (FEC), fluorinated chain carbonate esters, fluorinated chain carboxylic acid esters such as methyl fluoropropionate (FMP), etc. .
  • the electrolyte salt is a lithium salt.
  • lithium salts include LiBF4 , LiClO4 , LiPF6 , LiAsF6 , LiSbF6 , LiAlCl4 , LiSCN, LiCF3SO3 , LiCF3CO2 , Li(P( C2O4 ) F4 ) , LiPF 6-x (C n F 2n+1 ) x (1 ⁇ x ⁇ 6, n is 1 or 2), LiB 10 Cl 10 , LiCl, LiBr, LiI, chloroborane lithium, lower aliphatic carboxylic acid lithium, Li 2 B 4 O 7 , borates such as Li(B(C 2 O 4 )F 2 ), LiN(SO 2 CF 3 ) 2 , LiN(C 1 F 2l+1 SO 2 )(C m F 2m+1 SO 2 ) ⁇ l , m is an integer of 1 or more ⁇ , and the like.
  • the lithium salts may be used alone or in combination
  • Example 1 [Preparation of positive electrode] A lithium transition metal oxide represented by powdered LiNi 0.88 Co 0.09 Al 0.03 O 2 was used as the positive electrode active material. 95 parts by mass of positive electrode active material, 2.5 parts by mass of acetylene black (AB), and 2.5 parts by mass of polyvinylidene fluoride (PVDF) were mixed, and further N-methyl-2-pyrrolidone (NMP) was mixed. An appropriate amount of was added to prepare a positive electrode mixture slurry. This positive electrode mixture slurry is applied to both sides of a positive electrode current collector made of aluminum foil, and after the coating film is dried, the coating film is rolled with a rolling roller to form a positive electrode mixture layer on both sides of the positive electrode current collector. A positive electrode was prepared using the following methods.
  • Li 2 A lithium silicate represented by O.2.1SiO2 was obtained.
  • the obtained lithium silicate was pulverized to have an average particle size of 10 ⁇ m.
  • This sintered body is crushed, passed through a 400 ⁇ m mesh, added with coal pitch (MCP250, manufactured by JFE Chemical Co., Ltd.), and then fired at 800°C for 5 hours in an inert atmosphere, so that the surface becomes carbonized.
  • a base particle having a coating was prepared. The amount of carbon coating was 5% by mass based on the total mass of the base particles. Thereafter, the base particles were crushed and classified using an air classifier. The average particle size of the base particles after classification was 10 ⁇ m.
  • a nonaqueous electrolyte was prepared by dissolving LiPF 6 at a concentration of 1.0 mol/L in a nonaqueous solvent containing ethylene carbonate (EC) and diethyl carbonate (DEC) mixed at a volume ratio of 3:7. did.
  • a wound type electrode is created by attaching an aluminum positive lead to the positive current collector and a nickel negative lead to the negative current collector, and spirally winding the positive and negative electrodes through a polyolefin separator.
  • the body was created.
  • This electrode body was housed in a bottomed cylindrical battery case body with an outer diameter of 18.2 mm and a height of 65 mm, and after the non-aqueous electrolyte was injected, the opening of the battery case body was sealed with a gasket and a sealing body.
  • a cylindrical secondary battery of type 18650 was manufactured.
  • Example 2 A secondary battery was fabricated in the same manner as in Example 1, except that in fabricating the Si-containing composite material, the amount of GaN film formed was changed to 10% by mass based on the mass of the base particles.
  • Example 3 A secondary battery was produced in the same manner as in Example 1, except that in producing the negative electrode, the mixing ratio of the Si-containing composite material constituting the negative electrode active material and graphite was changed to a mass ratio of 15:85.
  • Example 4 In the production of the Si-containing composite material, the amount of GaN deposited was changed to 10% by mass based on the mass of the base particles, and in the production of the negative electrode, the Si-containing composite material constituting the negative electrode active material and graphite were A secondary battery was produced in the same manner as in Example 1, except that the mixing ratio was changed to a mass ratio of 15:85.
  • Example 5 In producing the negative electrode, a secondary battery was manufactured in the same manner as in Example 1, except that the mixing ratio of the Si-containing composite material and graphite constituting the negative electrode active material was changed to a mass ratio of 2.8:97.2. Created.
  • Example 3 A secondary battery was produced in the same manner as in Example 1, except that the sputtering target was changed to form a film of Ga 2 O 3 instead of GaN in the production of the Si-containing composite material.
  • Example 4 A secondary battery was fabricated in the same manner as in Example 1, except that in fabricating the Si-containing composite material, the sputtering target was changed and AlN was formed instead of GaN.
  • a secondary battery was produced in the same manner as in Example 1, except that the sputtering target was changed to form a film of SiC instead of GaN in the production of the Si-containing composite material.
  • a secondary battery was produced in the same manner as in Example 1, except that the sputtering target was changed to form a film of Si 3 N 4 instead of GaN in the production of the Si-containing composite material.
  • Table 1 summarizes the evaluation results of the nail penetration test and cycle test for each of the secondary batteries of Examples and Comparative Examples. Table 1 also shows the type and amount of coating material added in the Si-containing composite material, and the proportion of the Si-containing composite material in the negative electrode active material.
  • the secondary battery of the example had better nail penetration test results than the secondary battery of Comparative Example 1, and the capacity retention rate was also the same or higher.
  • Comparative Example 2 in which GaN was contained in the negative electrode mixture layer without coating the Si-containing composite material, the capacity retention rate was lower than that of the secondary battery of Comparative Example 1.
  • the secondary batteries of Comparative Examples 3 to 6 using Si-containing composite materials coated with materials other than GaN results that were compatible with the nail penetration test and the capacity retention rate were not obtained.
  • Configuration 1 A negative electrode active material for a non-aqueous electrolyte secondary battery containing a Si-containing composite material,
  • the Si-containing composite material is a negative electrode active material for a non-aqueous electrolyte secondary battery, which includes base particles in which Si fine particles are dispersed in a base phase, and GaN coated on the surface of the base particles.
  • Configuration 2 The negative electrode active material for a non-aqueous electrolyte secondary battery according to configuration 1, wherein the base particles have a carbon coating on the surface.
  • Configuration 3 The negative electrode active material for a non-aqueous electrolyte secondary battery according to configuration 2, wherein the GaN covers at least a part of the surface of the carbon film.
  • Configuration 4 The negative electrode active material for a non-aqueous electrolyte secondary battery according to any one of configurations 1 to 3, wherein the parent phase is a silicate phase.
  • Configuration 5 The negative electrode active material for a non-aqueous electrolyte secondary battery according to any one of configurations 1 to 3, wherein the parent phase is a silicate phase.
  • Configuration 6 The negative electrode active material for a non-aqueous electrolyte secondary battery according to any one of configurations 1 to 3, wherein the parent phase is an amorphous carbon phase.
  • Configuration 7 In the Si-containing composite material, the mass of the GaN is 10 parts by mass to 20 parts by mass when the mass of the base particles is 100 parts by mass. Negative electrode active material for water electrolyte secondary batteries.
  • Configuration 8 The proportion of the Si-containing composite material in the negative electrode active material for nonaqueous electrolyte secondary batteries is 1% by mass to 15% by mass with respect to the total mass of the negative electrode active material for nonaqueous electrolyte secondary batteries. 8. The negative electrode active material for a non-aqueous electrolyte secondary battery according to any one of 1 to 7.
  • Configuration 9 A nonaqueous electrolyte secondary battery comprising a negative electrode containing the negative electrode active material for a nonaqueous electrolyte secondary battery according to any one of Configurations 1 to 8, a positive electrode, and a nonaqueous electrolyte.
  • Non-aqueous electrolyte secondary battery 11 positive electrode, 12 negative electrode, 13 separator, 14 electrode body, 16 outer can, 17 sealing body, 18, 19 insulating plate, 20 positive electrode lead, 21 negative electrode lead, 22 grooved part, 23 internal terminal Plate, 24 Lower valve body, 25 Insulating member, 26 Upper valve body, 27 Cap, 28 Gasket, 30 Si-containing composite material, 32 Si fine particles, 34 Mother phase, 35 Mother particle, 36 GaN, 38 Carbon coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

安全性と充放電サイクル特性に優れた非水電解質二次電池を提供する。本開示の一態様である非水電解質二次電池用負極活物質は、Si含有複合材料を含み、Si含有複合材料は、Si微粒子が母相中に分散した母粒子と、母粒子の表面に被覆されたGaNとを含む。

Description

非水電解質二次電池用負極活物質、及び非水電解質二次電池
 本開示は、非水電解質二次電池用負極活物質、及び非水電解質二次電池に関する。
 近年、高容量化の観点から、非水電解質二次電池の負極活物質として、Si系材料が使用される場合がある。特許文献1には、Si系材料を含む負極において、シロキサン結合を有するケイ酸塩又はアルミノリン酸結合を有するリン酸塩を含む骨格形成剤で負極合剤層中に骨格を形成することで、釘刺し試験時の短絡を抑制する技術が開示されている。
特開2018-85276号公報
 しかし、特許文献1に記載された技術を用いると、骨格形成剤で形成された骨格によって負極の導電性が低下し、充放電の繰り返すことで電池容量が低下する場合がある。特許文献1は、電池の安全性と充放電サイクル特性の両立については検討しておらず、未だ改良の余地がある。
 本開示の目的は、安全性と充放電サイクル特性に優れた非水電解質二次電池を提供することにある。
 本開示の一態様である非水電解質二次電池用負極活物質は、Si含有複合材料を含み、Si含有複合材料は、Si微粒子が母相中に分散した母粒子と、母粒子の表面に被覆されたGaNとを含むことを特徴とする。
 本開示の一態様である非水電解質二次電池は、上記の非水電解質二次電池用負極活物質を含む負極と、正極と、非水電解質とを備えることを特徴とする。
 本開示に係る非水電解質二次電池用負極活物質によれば、非水電解質二次電池の安全性と充放電サイクル特性を向上させることができる。
実施形態の一例である円筒形の二次電池の軸方向断面図である。 実施形態の一例におけるSi含有複合材料の断面図である。
 以下では、図面を参照しながら、本開示に係る円筒形の二次電池の実施形態の一例について詳細に説明する。以下の説明において、具体的な形状、材料、数値、方向等は、本発明の理解を容易にするための例示であって、二次電池の仕様に合わせて適宜変更することができる。また、以下では、巻回型の電極体が円筒形の外装体に収容された円筒形の二次電池を例示するが、電極体は、巻回型に限定されず、複数の正極と複数の負極がセパレータを介して交互に1枚ずつ積層されてなる積層型であってもよい。外装体は円筒形に限定されず、例えば、角形、コイン形等であってもよい。また、外装体は金属層及び樹脂層を含むラミネートシートで構成されたパウチ型であってもよい。また、本明細書において、「数値(A)~数値(B)」との記載は、数値(A)以上、数値(B)以下であることを意味する。
 図1は、実施形態の一例である円筒形の二次電池10の断面図である。図1に示すように、二次電池10は、巻回型の電極体14と、非水電解質と、電極体14及び非水電解質を収容する外装缶16とを備える。電極体14は、正極11、負極12、及びセパレータ13を有し、正極11と負極12がセパレータ13を介して渦巻き状に巻回された巻回構造を有する。外装缶16は、軸方向一方側が開口した有底円筒形状の金属製容器であって、外装缶16の開口は封口体17によって塞がれている。以下では、説明の便宜上、電池の封口体17側を上、外装缶16の底部側を下とする。
 電極体14を構成する正極11、負極12、及びセパレータ13は、いずれも帯状の長尺体であって、渦巻状に巻回されることで電極体14の径方向に交互に積層される。セパレータ13は、正極11及び負極12を相互に隔離している。負極12は、リチウムの析出を防止するために、正極11よりも一回り大きな寸法で形成される。即ち、負極12は、正極11よりも長手方向及び幅方向(短手方向)に長く形成される。2枚のセパレータ13は、少なくとも正極11よりも一回り大きな寸法で形成され、例えば正極11を挟むように配置される。電極体14は、溶接等により正極11に接続された正極リード20と、溶接等により負極12に接続された負極リード21とを備える。
 電極体14の上下には、絶縁板18,19がそれぞれ配置される。図1に示す例では、正極リード20が絶縁板18の貫通孔を通って封口体17側に延び、負極リード21が絶縁板19の外側を通って外装缶16の底部側に延びている。正極リード20は封口体17の内部端子板23の下面に溶接等で接続され、内部端子板23と電気的に接続された封口体17の天板であるキャップ27が正極端子となる。負極リード21は外装缶16の底部内面に溶接等で接続され、外装缶16が負極端子となる。
 外装缶16と封口体17の間にはガスケット28が設けられ、電池内部の密閉性が確保される。外装缶16には、側面部の一部が内側に張り出した、封口体17を支持する溝入部22が形成されている。溝入部22は、外装缶16の周方向に沿って環状に形成されることが好ましく、その上面で封口体17を支持する。封口体17は、溝入部22と、封口体17に対してかしめられた外装缶16の開口端部とにより、外装缶16の上部に固定される。
 封口体17は、電極体14側から順に、内部端子板23、下弁体24、絶縁部材25、上弁体26、及びキャップ27が積層された構造を有する。封口体17を構成する各部材は、例えば円板形状又はリング形状を有し、絶縁部材25を除く各部材は互いに電気的に接続されている。下弁体24と上弁体26は各々の中央部で接続され、各々の周縁部の間には絶縁部材25が介在している。異常発熱で電池の内圧が上昇すると、下弁体24が上弁体26をキャップ27側に押し上げるように変形して破断することにより、下弁体24と上弁体26の間の電流経路が遮断される。さらに内圧が上昇すると、上弁体26が破断し、キャップ27の開口部からガスが排出される。
 以下、二次電池10を構成する正極11、負極12、セパレータ13及び非水電解質について、特に負極12について詳説する。
 [負極]
 負極12は、例えば、負極集電体と、負極集電体の表面に形成された負極合剤層とを有する。負極合剤層は、負極集電体の両面に形成されることが好ましい。負極集電体には、銅などの負極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等が用いることができる。負極合剤層は、例えば、負極活物質、結着剤等を含む。負極12は、例えば、負極活物質、結着剤等を含む負極合剤スラリーを負極集電体の両面に塗布、乾燥して負極合剤層を形成した後、この負極合剤層を圧延することにより作製できる。
 負極合剤層に含まれる結着剤としては、例えば、フッ素系樹脂、ポリイミド系樹脂、アクリル系樹脂、ポリオレフィン系樹脂、ポリアクリロニトリル(PAN)、スチレン-ブタジエンゴム(SBR)、ニトリル-ブタジエンゴム(NBR)、カルボキシメチルセルロース(CMC)又はその塩、ポリアクリル酸(PAA)又はその塩(PAA-Na、PAA-K等、また部分中和型の塩であってもよい)、ポリビニルアルコール(PVA)等が挙げられる。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 負極合剤層に含まれる負極活物質は、Si含有複合材料30を含む。図2に、実施形態の一例におけるSi含有複合材料30の断面図を示す。Si含有複合材料30は、図2に示すように、Si微粒子32が母相34中に分散した母粒子35と、母粒子35の表面に被覆されたGaN36とを含む。これにより、二次電池の安全性と充放電サイクル特性を向上させることができる。表面を被覆するGaN36によって、Si含有複合材料30の熱伝導性が向上し、二次電池の安全性が向上すると推察される。また、一般に母粒子35の表面に半導体等の化合物を被覆すると充放電サイクル特性が低下するが、本願発明者らの検討により、GaN36を被覆した場合には特異的に充放電サイクル特性が低下しないことが判明した。
 母粒子35は、例えば、母相34中にSi微粒子32が略均一に分散した海島構造を有する。母相34は、例えば、Si微粒子32よりも微細な粒子の集合によって構成される。Si微粒子32の含有率は、例えば、母粒子35の総質量に対して30質量%~70質量%である。
 母相34は、例えば、シリケート相である。母相34は、リチウムシリケート相であってもよい。リチウムシリケート相は、例えば、一般式Li2zSiO(2+z)(0<z<2)で表される化合物で構成される。母相34は、酸化ケイ素(SiO)相であってもよい。また、母相34は、アモルファス炭素相であってもよい。
 母粒子35は、表面に、炭素被膜38を有してもよい。これにより、Si含有複合材料30の導電性が向上する。炭素被膜38は、図2に示すように、Si微粒子32と母相34からなる粒子の表面の少なくとも一部を被覆するように点状に存在してもよいし、Si微粒子32と母相34からなる粒子の全面を被覆するように存在してもよい。炭素被膜38の厚みは、導電性と粒子内部へのLiイオンの拡散を両立させるために、1nm~200nmであることが好ましい。
 母粒子35が表面に炭素被膜38を有する場合、GaN36は、炭素被膜38の表面の少なくとも一部を被覆していることが好ましい。この場合、GaN36は、炭素被膜38が存在しない母粒子35の表面を被覆してもよい。GaN36は、図2に示すように、母粒子35の表面の少なくとも一部を被覆するように点状に存在してもよいし、母粒子35の全面を被覆するように存在してもよい。
 Si含有複合材料30において、母粒子35の質量を100質量部とした場合に、GaN36の質量は、10質量部~20質量部であることが好ましい。GaN36の量がこの範囲であれば、上述したGaNの効果がより顕著となる。
 負極合剤層に含まれる負極活物質は、Si含有複合材料30以外に、例えば、黒鉛を含んでもよい。黒鉛としては、例えば、鱗片状黒鉛等の天然黒鉛、塊状人造黒鉛、黒鉛化メソフェーズカーボンマイクロビーズ等の人造黒鉛などが挙げられる。また、負極活物質は、Si、Sn等のリチウムと合金化する金属、又はこれらを含む合金等を含んでもよい。
 負極活物質におけるSi含有複合材料30の割合は、負極活物質の総質量に対して、1質量%~15質量%であることが好ましい。Si含有複合材料30の割合がこの範囲であれば、上述したGaNの効果がより顕著となる。
 母粒子35表面へのGaN36被膜の形成方法は、特に限定されないが、例えば、蒸着、スパッタリング法等を用いることができる。GaN36は、スパッタリング法により形成されることが好ましい。GaN36は、例えば、母粒子35を流動させつつスパッタ成膜を行うことで形成される。母粒子35を流動させる方法としては、例えば、母粒子35を収容した容器を回転又は振動させることが挙げられる。
 [正極]
 正極11は、例えば、正極集電体と、正極集電体の表面に形成された正極合剤層とを有する。正極合剤層は、正極集電体の両面に形成されることが好ましい。正極集電体には、アルミニウムなどの正極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。正極合剤層は、例えば、正極活物質、結着剤、導電剤等を含む。正極11は、例えば、正極活物質、結着剤、導電剤等を含む正極合剤スラリーを正極集電体の両面に塗布、乾燥して正極合剤層を形成した後、この正極合剤層を圧延することにより作製できる。
 正極活物質としては、Co、Mn、Ni等の遷移金属元素を含有するリチウム遷移金属酸化物が例示できる。リチウム遷移金属酸化物は、例えばLiCoO、LiNiO、LiMnO、LiCoNi1-y、LiCo1-y、LiNi1-y、LiMn、LiMn2-y、LiMPO、LiMPOF(M;Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、Bのうち少なくとも1種、0<x≦1.2、0<y≦0.9、2.0≦z≦2.3)である。これらは、1種単独で用いてもよいし、複数種を混合して用いてもよい。非水電解質二次電池の高容量化を図ることができる点で、正極活物質は、LiNiO、LiCoNi1-y、LiNi1-y(M;Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、Bのうち少なくとも1種、0<x≦1.2、0<y≦0.9、2.0≦z≦2.3)等のリチウムニッケル複合酸化物を含むことが好ましい。
 導電剤は、例えば、カーボンブラック(CB)、アセチレンブラック(AB)、ケッチェンブラック、カーボンナノチューブ(CNT)、グラフェン、黒鉛等のカーボン系粒子などが挙げられる。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 結着剤は、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等のフッ素系樹脂、ポリイミド系樹脂、アクリル系樹脂、ポリオレフィン系樹脂、ポリアクリロニトリル(PAN)などが挙げられる。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 [セパレータ]
 セパレータ13には、例えば、イオン透過性及び絶縁性を有する多孔性シート等が用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータの材質としては、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、セルロースなどが好適である。セパレータ13は、セルロース繊維層及びオレフィン系樹脂等の熱可塑性樹脂繊維層を有する積層体であってもよい。また、ポリエチレン層及びポリプロピレン層を含む多層セパレータであってもよく、セパレータ13の表面にアラミド系樹脂、セラミック等の材料が塗布されたものを用いてもよい。
 [非水電解質]
 非水電解質は、非水溶媒、及び、非水溶媒に溶解した電解質塩を含む、液体電解質(電解液)である。非水溶媒には、例えばエステル類、エーテル類、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類、及びこれらの2種以上の混合溶媒等を用いることができる。非水溶媒は、これら溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有していてもよい。
 上記エステル類の例としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート等の環状炭酸エステル、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネート等の鎖状炭酸エステル、γ-ブチロラクトン、γ-バレロラクトン等の環状カルボン酸エステル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル(MP)、プロピオン酸エチル等の鎖状カルボン酸エステルなどが挙げられる。
 上記エーテル類の例としては、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフラン、プロピレンオキシド、1,2-ブチレンオキシド、1,3-ジオキサン、1,4-ジオキサン、1,3,5-トリオキサン、フラン、2-メチルフラン、1,8-シネオール、クラウンエーテル等の環状エーテル、1,2-ジメトキシエタン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o-ジメトキシベンゼン、1,2-ジエトキシエタン、1,2-ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1-ジメトキシメタン、1,1-ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル等の鎖状エーテル類などが挙げられる。
 上記ハロゲン置換体としては、フルオロエチレンカーボネート(FEC)等のフッ素化環状炭酸エステル、フッ素化鎖状炭酸エステル、フルオロプロピオン酸メチル(FMP)等のフッ素化鎖状カルボン酸エステル等を用いることが好ましい。
 電解質塩は、リチウム塩であることが好ましい。リチウム塩の例としては、LiBF、LiClO、LiPF、LiAsF、LiSbF、LiAlCl、LiSCN、LiCFSO、LiCFCO、Li(P(C)F)、LiPF6-x(C2n+1(1<x<6,nは1又は2)、LiB10Cl10、LiCl、LiBr、LiI、クロロボランリチウム、低級脂肪族カルボン酸リチウム、Li、Li(B(C)F)等のホウ酸塩類、LiN(SOCF、LiN(C2l+1SO)(C2m+1SO){l,mは1以上の整数}等のイミド塩類などが挙げられる。リチウム塩は、これらを1種単独で用いてもよいし、複数種を混合して用いてもよい。これらのうち、イオン伝導性、電気化学的安定性等の観点から、LiPFを用いることが好ましい。リチウム塩の濃度は、溶媒1L当り0.8~1.8molとすることが好ましい。
 以下、実施例により本開示をさらに説明するが、本開示はこれらの実施例に限定されるものではない。
 <実施例1>
 [正極の作製]
 正極活物質として、粉末状のLiNi0.88Co0.09Al0.03で表されるリチウム遷移金属酸化物を用いた。95質量部の正極活物質と、2.5質量部のアセチレンブラック(AB)と、2.5質量部のポリフッ化ビニリデン(PVDF)とを混合し、さらにN-メチル-2-ピロリドン(NMP)を適量加えて、正極合剤スラリーを調製した。この正極合剤スラリーをアルミニウム箔からなる正極集電体の両面に塗布し、塗膜を乾燥した後、圧延ローラにより塗膜を圧延して、正極集電体の両面に正極合剤層が形成された正極を作製した。
 [Si含有複合材料の作製]
 SiOとLiCOとを、Si:Liが原子比で1.05:1になるように、混合し、この混合物を大気雰囲気下において、950℃で10時間焼成することで、LiO・2.1SiOで表されるリチウムシリケートを得た。次に、得られたリチウムシリケートを粉砕し、平均粒径が10μmとなるようにした。
 このリチウムシリケート(LiO・2.1SiO)と、原料Si(3N、平均粒径10μm)とを50:50の質量比で混合した。次に、この混合物を遊星ボールミル(フリュチュ社製、P-5)のSUS製のポット(容積500mL)に充填し、さらに、ポットに直径20mmのSUS製のボール24個を入れて、不活性雰囲気下において、200rpmで50時間複合化処理を行った。さらに、複合化処理後の混合物を不活性雰囲気下において、600℃で4時間焼成することで、リチウムシリケート相中にSi微粒子が分散した粒子の焼結体を得た。
 この焼結体を粉砕してから400μmのメッシュを通し、石炭ピッチ(JFEケミカル社製、MCP250)を添加してから、不活性雰囲気下において、800℃で5時間焼成することで、表面に炭素被膜を有する母粒子を作製した。炭素被膜の量は、母粒子の総質量に対して、5質量%とした。その後、母粒子を気流分級装置により粉砕、分級した。分級後の母粒子の平均粒径は、10μmであった。
 次に、スパッタリング法によって、この母粒子の表面にGaNを被覆してSi含有複合材料を作製した。具体的には、100gの母粒子をスパッタリング装置の真空チャンバ内に配置し、5インチ径のGaNのターゲットを用いて、RF方式でスパッタ成膜を行った。GaNの成膜量は、母粒子の質量に対して、20質量%とした。スパッタ成膜は、真空チャンバの圧力が1.8Paになるまで真空引きを行った後に、真空チャンバの圧力が1Pa程度となるようにArガスフローの環境下で行った。成膜温度は、1000℃であった。また、スパッタ成膜は、母粒子を収容した容器を回転させることで、母粒子を流動させつつ行った。スパッタ成膜後の母粒子を気流分級装置により粉砕、分級することで、平均粒径10μmのSi含有複合材料を作製した。
 [負極の作製]
 上記のSi含有複合材料と平均粒径22μmの黒鉛とを4.8:95.2の質量比で混合して、負極活物質とした。100質量部の負極活物質と、1質量部のカルボキシメチルセルロース(CMC)と、1質量部のスチレン-ブタジエン共重合体ゴム(SBR)とを混合し、その混合物を水中で混練して、負極合剤スラリーを調製した。負極合剤スラリーを銅箔からなる負極集電体の両面に塗布し、塗膜を乾燥した後、圧延ローラにより塗膜を圧延して、負極集電体の両面に負極合剤層が形成された負極を作製した。
 [非水電解質の作製]
 エチレンカーボネート(EC)と、ジエチルカーボネート(DEC)とを体積比で3:7となるように混合した非水溶媒に、LiPFを1.0mol/Lの濃度で溶解して非水電解質を作製した。
 [二次電池の作製]
 正極集電体にアルミニウム製の正極リードを、負極集電体にニッケル製の負極リードをそれぞれ取り付け、ポリオレフィン製のセパレータを介して正極と負極を渦巻き状に巻回することにより巻回型の電極体を作製した。この電極体を、外径18.2mm、高さ65mmの有底円筒形状の電池ケース本体に収容し、上記非水電解質を注入した後、ガスケット及び封口体により電池ケース本体の開口部を封口して、18650型の円筒形の二次電池を作製した。
 <実施例2>
 Si含有複合材料の作製において、GaNの成膜量を、母粒子の質量に対して、10質量%に変更したこと以外は、実施例1と同様にして二次電池を作製した。
 <実施例3>
 負極の作製において、負極活物質を構成するSi含有複合材料と黒鉛との混合比を15:85の質量比に変更したこと以外は、実施例1と同様にして二次電池を作製した。
 <実施例4>
 Si含有複合材料の作製において、GaNの成膜量を、母粒子の質量に対して、10質量%に変更したことと、負極の作製において、負極活物質を構成するSi含有複合材料と黒鉛との混合比を15:85の質量比に変更したこと以外は、実施例1と同様にして二次電池を作製した。
 <実施例5>
 負極の作製において、負極活物質を構成するSi含有複合材料と黒鉛との混合比を2.8:97.2の質量比に変更したこと以外は、実施例1と同様にして二次電池を作製した。
 <比較例1>
 Si含有複合材料の作製において、GaNを成膜しなかったこと以外は、実施例1と同様にして二次電池を作製した。
 <比較例2>
 Si含有複合材料の作製において、GaNを成膜しなかったことと、負極の作製において、負極活物質を構成するSi含有複合材料と黒鉛との混合比率を4.0:95.2の質量比に変更し、負極活物質とGaN粉末の質量比が99.2:0.8となるようにGaN粉末を負極活物質に添加したこと以外は、実施例1と同様にして二次電池を作製した。
 <比較例3>
 Si含有複合材料の作製において、スパッタ成膜のターゲットを変更して、GaNの代わりにGaを成膜したこと以外は、実施例1と同様にして二次電池を作製した。
 <比較例4>
 Si含有複合材料の作製において、スパッタ成膜のターゲットを変更して、GaNの代わりにAlNを成膜したこと以外は、実施例1と同様にして二次電池を作製した。
 <比較例5>
 Si含有複合材料の作製において、スパッタ成膜のターゲットを変更して、GaNの代わりにSiCを成膜したこと以外は、実施例1と同様にして二次電池を作製した。
 <比較例6>
 Si含有複合材料の作製において、スパッタ成膜のターゲットを変更して、GaNの代わりにSiを成膜したこと以外は、実施例1と同様にして二次電池を作製した。
 [釘刺し試験]
 実施例及び比較例の各電池について以下の手順で釘刺し試験を行った。
(1)25℃の環境下において、0.5Cで、電池電圧が4.2Vになるまで定電流充電を行い、その後、4.2Vで、電流値が1/50Cになるまで定電圧充電を行った。
(2)25℃の環境下で、(1)で充電した二次電池の側面中央部に直径2mmの鉄釘を5mm/秒の速度で突き刺しながら、電池の側面温度を測定し、その際の最高温度を求めた。
(3)二次電池に破裂及び発火がなく、最高温度が100℃以下の場合には、「〇」と評価した。二次電池に破裂及び発火がないが、最高温度が100℃超の場合には、「△」と評価した。二次電池に破裂又は発火が発生した場合には、「×」と評価した。
 [サイクル試験]
 環境温度25℃の下、各実施例及び各比較例の二次電池を、0.5Cで、電池電圧が4.2Vまで定電流充電した後、4.2Vで、電流値が1/50Cになるまで定電圧充電した。その後、0.5Cで、2.85Vまで定電流放電した。この充放電を1サイクルとして、200サイクルのサイクル試験を行った。以下の式により、各実施例及び各比較例の二次電池の充放電サイクルにおける容量維持率を求めた。
 容量維持率=(200サイクル目の放電容量/1サイクル目の放電容量)×100
 表1に、実施例及び比較例の各二次電池の釘刺し試験及びサイクル試験の評価結果をまとめた。また、表1には、Si含有複合材料における被覆材料の種類及び添加量、並びに、負極活物質におけるSi含有複合材料の割合も併せて示す。
Figure JPOXMLDOC01-appb-T000001
 実施例の二次電池は、比較例1の二次電池に比較して、釘刺し試験の結果が良好であり、且つ、容量維持率も同等以上であった。一方、GaNをSi含有複合材料に被覆させずに負極合剤層中に含有させた比較例2は、比較例1の二次電池よりも容量維持率が低下した。また、GaN以外で被覆したSi含有複合材料を用いた比較例3~6の二次電池では、釘刺し試験と容量維持率とを両立できる結果は得られなかった。これらの結果から、母粒子の表面にGaNを被覆させることで、二次電池において、充放電サイクル特性を低下させずに安全性を向上できることが分かる。
 本開示は、以下の実施形態によりさらに説明される。
構成1:
 Si含有複合材料を含む非水電解質二次電池用負極活物質であって、
 前記Si含有複合材料は、Si微粒子が母相中に分散した母粒子と、前記母粒子の表面に被覆されたGaNとを含む、非水電解質二次電池用負極活物質。
構成2:
 前記母粒子は、表面に、炭素被膜を有する、構成1に記載の非水電解質二次電池用負極活物質。
構成3:
 前記GaNは、前記炭素被膜の表面の少なくとも一部を被覆している、構成2に記載の非水電解質二次電池用負極活物質。
構成4:
 前記母相は、シリケート相である、構成1~3のいずれか1つに記載の非水電解質二次電池用負極活物質。
構成5:
 前記母相は、シリケート相である、構成1~3のいずれか1つに記載の非水電解質二次電池用負極活物質。
構成6:
 前記母相は、アモルファス炭素相である、構成1~3のいずれか1つに記載の非水電解質二次電池用負極活物質。
構成7:
 前記Si含有複合材料において、前記母粒子の質量を100質量部とした場合に、前記GaNの質量は、10質量部~20質量部である、構成1~6のいずれか1つに記載の非水電解質二次電池用負極活物質。
構成8:
 前記非水電解質二次電池用負極活物質における前記Si含有複合材料の割合は、前記非水電解質二次電池用負極活物質の総質量に対して、1質量%~15質量%である、構成1~7のいずれか1つに記載の非水電解質二次電池用負極活物質。
構成9:
 構成1~8のいずれか1つに記載の非水電解質二次電池用負極活物質を含む負極と、正極と、非水電解質とを備える、非水電解質二次電池。
 10 非水電解質二次電池、11 正極、12 負極、13 セパレータ、14 電極体、16 外装缶、17 封口体、18,19 絶縁板、20 正極リード、21 負極リード、22 溝入部、23 内部端子板、24 下弁体、25 絶縁部材、26 上弁体、27 キャップ、28 ガスケット、30 Si含有複合材料、32 Si微粒子、34 母相、35 母粒子、36 GaN、38 炭素被膜

Claims (9)

  1.  Si含有複合材料を含む非水電解質二次電池用負極活物質であって、
     前記Si含有複合材料は、Si微粒子が母相中に分散した母粒子と、前記母粒子の表面に被覆されたGaNとを含む、非水電解質二次電池用負極活物質。
  2.  前記母粒子は、表面に、炭素被膜を有する、請求項1に記載の非水電解質二次電池用負極活物質。
  3.  前記GaNは、前記炭素被膜の表面の少なくとも一部を被覆している、請求項2に記載の非水電解質二次電池用負極活物質。
  4.  前記母相は、シリケート相である、請求項1に記載の非水電解質二次電池用負極活物質。
  5.  前記母相は、リチウムシリケート相である、請求項1に記載の非水電解質二次電池用負極活物質。
  6.  前記母相は、アモルファス炭素相である、請求項1に記載の非水電解質二次電池用負極活物質。
  7.  前記Si含有複合材料において、前記母粒子の質量を100質量部とした場合に、前記GaNの質量は、10質量部~20質量部である、請求項1に記載の非水電解質二次電池用負極活物質。
  8.  前記非水電解質二次電池用負極活物質における前記Si含有複合材料の割合は、前記非水電解質二次電池用負極活物質の総質量に対して、1質量%~15質量%である、請求項1に記載の非水電解質二次電池用負極活物質。
  9.  請求項1~8のいずれか1項に記載の非水電解質二次電池用負極活物質を含む負極と、正極と、非水電解質とを備える、非水電解質二次電池。
PCT/JP2023/016094 2022-04-26 2023-04-24 非水電解質二次電池用負極活物質、及び非水電解質二次電池 WO2023210573A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022072282 2022-04-26
JP2022-072282 2022-04-26

Publications (1)

Publication Number Publication Date
WO2023210573A1 true WO2023210573A1 (ja) 2023-11-02

Family

ID=88518901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016094 WO2023210573A1 (ja) 2022-04-26 2023-04-24 非水電解質二次電池用負極活物質、及び非水電解質二次電池

Country Status (1)

Country Link
WO (1) WO2023210573A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035290A1 (ja) * 2014-09-03 2016-03-10 三洋電機株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池
WO2020066576A1 (ja) * 2018-09-26 2020-04-02 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極及び非水電解質二次電池
CN112768695A (zh) * 2021-01-13 2021-05-07 山东大学 一种高安全无枝晶锂金属电池及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035290A1 (ja) * 2014-09-03 2016-03-10 三洋電機株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池
WO2020066576A1 (ja) * 2018-09-26 2020-04-02 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極及び非水電解質二次電池
CN112768695A (zh) * 2021-01-13 2021-05-07 山东大学 一种高安全无枝晶锂金属电池及其制备方法和应用

Similar Documents

Publication Publication Date Title
JP7319265B2 (ja) 非水電解質二次電池
JP7182107B2 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池
JP7209303B2 (ja) 非水電解質二次電池
JP7336736B2 (ja) 非水電解質二次電池
WO2018105539A1 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
JP7233013B2 (ja) 非水電解質二次電池
WO2021117480A1 (ja) 非水電解液二次電池
JP7361340B2 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
WO2023176503A1 (ja) 非水電解質二次電池
WO2023032490A1 (ja) 非水電解質二次電池
WO2022158375A1 (ja) 非水電解質二次電池
JP7361339B2 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
JP7233010B2 (ja) 二次電池用正極、二次電池用正極集電体、及び二次電池
JP7358229B2 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
JP7300658B2 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2023210573A1 (ja) 非水電解質二次電池用負極活物質、及び非水電解質二次電池
WO2019146413A1 (ja) 非水電解質二次電池用正極及び非水電解質二次電池
WO2018179901A1 (ja) 非水電解質二次電池
WO2023210584A1 (ja) 非水電解質二次電池
WO2022113796A1 (ja) 非水電解質二次電池用正極及び非水電解質二次電池
WO2023053626A1 (ja) 非水電解質二次電池
WO2024004836A1 (ja) 非水電解質二次電池
WO2023181848A1 (ja) 非水電解質二次電池
WO2022118737A1 (ja) 非水電解質二次電池用正極及び非水電解質二次電池
WO2023162709A1 (ja) 非水電解質二次電池用正極、及び非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796313

Country of ref document: EP

Kind code of ref document: A1