WO2023210429A1 - 基板搬送ロボットシステムおよび基板搬送ロボット - Google Patents

基板搬送ロボットシステムおよび基板搬送ロボット Download PDF

Info

Publication number
WO2023210429A1
WO2023210429A1 PCT/JP2023/015356 JP2023015356W WO2023210429A1 WO 2023210429 A1 WO2023210429 A1 WO 2023210429A1 JP 2023015356 W JP2023015356 W JP 2023015356W WO 2023210429 A1 WO2023210429 A1 WO 2023210429A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
hand
substrate transfer
arm
robot system
Prior art date
Application number
PCT/JP2023/015356
Other languages
English (en)
French (fr)
Inventor
知 橋崎
真也 北野
亮介 金丸
雄大 山下
知也 長澤
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Publication of WO2023210429A1 publication Critical patent/WO2023210429A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment

Definitions

  • This disclosure relates to a substrate transfer robot system and a substrate transfer robot, and particularly relates to a substrate transfer robot system and a substrate transfer robot that include a substrate transfer hand.
  • Japanese Unexamined Patent Publication No. 2015-037098 discloses a transport system that includes a holding section that holds a substrate such as a substrate for a liquid crystal FPD (Flat Panel Display), and that transports the substrate held by the holding section.
  • a camera placed above the holding section photographs the substrate held by the holding section. The presence of a chip in the substrate held by the holding section is then determined based on the image taken by the camera.
  • Location information of notches or orientation flats in the substrate may be required.
  • the substrate is placed on an aligner that detects the notch or orientation flat of the substrate while the substrate is being transported by a substrate transport robot, and the notch or orientation flat of the substrate is detected. It is conceivable to obtain positional information of a notch or orientation flat on the substrate by detecting it.
  • An object of the present invention is to provide a substrate transfer robot system and a substrate transfer robot that are possible.
  • a substrate transfer robot system includes a substrate transfer hand that transfers a substrate, an imaging section disposed below the substrate transfer hand, and a control section, and the control section is configured to transfer a substrate. Based on an image photographed from below by the photographing unit during the process, positional information of a notch or an orientation flat on the substrate conveyed by the substrate conveyance hand is acquired.
  • a substrate transfer robot includes a substrate transfer hand that transfers a substrate, an imaging section disposed below the substrate transfer hand, and a control section, and the control section is configured to control the substrate transfer while the substrate is being transferred. Based on the image photographed from below by the photographing unit, the positional information of the notch or orientation flat on the substrate conveyed by the substrate conveyance hand is acquired.
  • the substrate transfer robot system according to the first aspect of this disclosure and the substrate transfer robot according to the second aspect include an imaging section and a control section that acquires positional information of a notch or an orientation flat on a substrate.
  • the control unit acquires positional information of a notch or an orientation flat on the substrate conveyed by the substrate conveyance hand based on an image photographed from below the substrate conveyance hand by the photographing unit during conveyance of the substrate. This makes it possible to obtain positional information of a notch or orientation flat on a substrate without interrupting the transportation of the substrate, unlike the case where detection is performed by an aligner during transportation of the substrate. As a result, positional information of a notch or an orientation flat on a substrate can be obtained while suppressing an increase in substrate transportation time.
  • FIG. 1 is an overall diagram showing the configuration of a substrate transfer robot system and a semiconductor manufacturing apparatus according to a first embodiment.
  • FIG. 2 is a diagram showing the substrate transfer robot according to the first embodiment as seen from above.
  • FIG. 1 is a block diagram showing the configuration of a semiconductor manufacturing apparatus according to a first embodiment.
  • FIG. 1 is a side view showing the configuration of a substrate transfer robot according to the first embodiment.
  • FIG. 3 is a diagram showing the lower hand according to the first embodiment as seen from below.
  • FIG. 3 is a diagram showing the lower hand according to the first embodiment as seen from above.
  • FIG. 3 is a side view showing the configuration of a laser sensor attached to the lower hand.
  • FIG. 3 is a side view showing the configuration of a laser sensor attached to the upper hand.
  • FIG. 1 is an overall diagram showing the configuration of a substrate transfer robot system and a semiconductor manufacturing apparatus according to a first embodiment.
  • FIG. 2 is a diagram showing the substrate transfer robot according to the first embodiment as seen from above
  • FIG. 7 is a side view showing the configuration of a substrate transfer robot according to a second embodiment.
  • FIG. 7 is a side view showing the configuration of a substrate transfer robot according to a third embodiment.
  • FIG. 7 is a diagram illustrating the arrangement of an imaging unit according to a modified example.
  • the substrate transfer robot system 100 includes a substrate transfer robot 101, as shown in FIG.
  • the substrate transport robot 101 is a robot that transports the substrate 1 within the semiconductor manufacturing apparatus 110.
  • the semiconductor manufacturing apparatus 110 also includes a substrate processing section 102 , an intra-processing section transfer robot 103 , a substrate storage section 104 , and a manufacturing apparatus control section 105 .
  • the substrate transfer robot 101 transfers the substrate 1 from the substrate storage section 104 that stores a plurality of substrates 1. Further, the substrate transfer robot 101 carries the substrate 1 into the substrate storage section 104.
  • the substrate storage section 104 includes, for example, a FOUP (Front Opening Unify Pod).
  • the substrate 1 is, for example, a silicon wafer, a SiC wafer, a compound semiconductor wafer, or a sapphire wafer.
  • the substrate 1 is transported to the substrate processing section 102 by the substrate transport robot 101.
  • the substrate 1 transported to the substrate processing section 102 is transported by an intra-processing section transport robot 103 disposed inside the substrate processing section 102 .
  • the substrate processing unit 102 includes a plurality of chambers 102a in which chemical or physical processing is performed on the substrate 1.
  • the inside of the substrate processing section 102 is maintained in a vacuum state.
  • the processing unit transport robot 103 is a robot that can operate in a vacuum environment.
  • the substrate 1 transferred to the substrate processing section 102 is transferred to the chamber 102a by the intra-processing section transfer robot 103.
  • the manufacturing equipment control unit 105 controls the entire semiconductor manufacturing equipment 110 including control of processing of the substrate 1 by the substrate processing unit 102 and the like.
  • the manufacturing apparatus control unit 105 is, for example, a computer including a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like.
  • the direction in which the substrate transfer robot 101 and the substrate storage section 104 are adjacent to each other is referred to as the X direction.
  • the direction in which the substrate storage section 104 is arranged with respect to the substrate transfer robot 101 is defined as the X1 direction
  • the direction in which the substrate processing section 102 is disposed with respect to the substrate transfer robot 101 is defined as the X2 direction.
  • the vertical direction is defined as the Z direction
  • the upward direction is defined as the Z1 direction
  • the downward direction is defined as the Z2 direction.
  • the direction perpendicular to the XZ plane is the Y direction
  • one side in the Y direction is the Y1 direction
  • the other side in the Y direction is the Y2 direction.
  • the substrate transfer robot 101 of the substrate transfer robot system 100 includes a horizontal articulated robot arm 10, a substrate transfer hand 20 that transfers the substrate 1, an imaging section 30, a sensor section 40, and a base section. 50 and a control section 60.
  • the substrate transfer hand 20 is attached to the horizontal articulated robot arm 10.
  • the horizontal articulated robot arm 10 includes a first arm 11 and a second arm 12 connected to the first arm 11.
  • the photographing unit 30 is attached to the second arm 12.
  • the photographing unit 30 includes, for example, a two-dimensional camera having an image sensor such as a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal Oxide Semiconductor) image sensor, and a wide-angle lens. Note that the photographing unit 30 may be composed of a three-dimensional camera.
  • the substrate transfer hand 20 includes a lower hand 21 arranged above the second arm 12 and an upper hand 22 arranged above the lower hand 21.
  • the lower hand 21 and the upper hand 22 are attached to the second arm 12 of the horizontal articulated robot arm 10.
  • the lower hand 21 is an example of the first hand.
  • the upper hand 22 is an example of a second hand.
  • the base part 50 is attached to the horizontal articulated robot arm 10. Specifically, one end of the first arm 11 is connected to the base portion 50 via a first joint 51. Further, one end of the second arm 12 is connected to the other end of the first arm 11 via a second joint 52. The substrate transfer hand 20 is connected to the other end of the second arm 12 via a third joint 53. Further, an imaging unit 30 is arranged near the third joint 53 of the second arm 12.
  • a servo motor which is a drive source for rotational drive, and a rotational position sensor, which detects the rotational position of the output shaft of the servomotor, are arranged at each of the first joint 51, second joint 52, and third joint 53. There is.
  • the substrate transfer robot 101 includes an elevating shaft portion that moves the horizontal multi-joint robot arm 10 up and down in the Z direction.
  • a servo motor and a rotational position sensor that detects the rotational position of the output shaft of the servomotor are arranged on the lifting shaft.
  • a substrate transfer hand 20 including a lower hand 21 and an upper hand 22 is connected to the other end of the second arm 12 via a third joint 53.
  • the lower hand 21 includes a hand base 21a and a blade 21b attached to the hand base 21a.
  • the upper hand 22 includes a hand base 22a and a blade 22b attached to the hand base 22a.
  • the blades 21b and 22b are thin support plates that support the substrate 1.
  • the blades 21b and 22b have a bifurcated tip.
  • the blades 21b and 22b support the outer peripheral edge of the back surface of the substantially circular substrate 1 from below.
  • the substrate transfer robot 101 uses the lower hand 21 and upper hand 22 of the substrate transfer hand 20 to transfer the substrate 1 housed in the substrate storage section 104 based on a previously taught transfer path.
  • the substrate transfer hand 20 holds the substrate 1 when one of the lower hand 21 and the upper hand 22 enters the substrate storage section 104 that stores the substrate 1 while the substrate 1 is being transferred.
  • the other of the lower hand 21 and the upper hand 22 in this state is retracted to a retracted position overlapping above the second arm 12.
  • the substrate transfer hand 20 moves the lower hand 21 holding the substrate 1. , and is retracted to a retracted position overlapping above the second arm 12.
  • the substrate transfer robot 101 is configured to prevent interference between the lower hand 21 and the substrate 1 transferred by the lower hand 21 and the substrate 1 transferred by the upper hand 22 and the upper hand 22. While the substrate 1 is being transported, the upper hand 22 supporting the substrate 1 is also retracted to a retracted position overlapping the second arm 12 .
  • the substrate transfer robot system 100 then uses the photographing unit 30 to capture the substrate 1 carried by the substrate transfer hand 20 at a position overlapping the transfer path of the substrate 1 by the substrate transfer hand 20 when viewed from above. Shoot from below 20.
  • the sensor section 40 includes a laser sensor 41 attached to the lower hand 21 and a laser sensor 42 attached to the upper hand 22.
  • Laser sensors 41 and 42 are attached to the roots of blades 21b and 22b, respectively.
  • Laser sensors 41 and 42 include, for example, laser line sensors.
  • the laser sensor 41 includes an irradiation section 41a that irradiates laser light, and a detection section 41b that detects the laser light irradiated from the irradiation section 41a.
  • the laser sensor 42 includes an irradiation section 42a that irradiates laser light, and a detection section 42b that detects the laser light irradiated from the irradiation section 42a.
  • control unit 60 controls the operation of the substrate transfer robot 101.
  • the control unit 60 is, for example, a computer including a CPU, a ROM, and the like. Further, the control unit 60 has a storage device including a flash memory such as an SSD (Solid State Drive).
  • the control section 60 controls the operation of each section of the substrate transfer robot 101 based on programs and parameters stored in advance in a storage device.
  • the control unit 60 acquires position information of the notch N in the substrate 1 transported by the substrate transport hand 20 based on an image photographed from below by the photographing unit 30 while the substrate 1 is being transported. As shown in FIG. 2, the control unit 60 controls notches in the substrate 1 transported by the substrate transport hand 20 based on an image taken from below of the board 1 when the board 1 is retracted to the retracted position while the board 1 is being transported. Obtain location information of N. In the first embodiment, the control unit 60 controls the substrate transport hand 20 based on an image photographed from below by the photographing unit 30 during transport of the substrate 1 and the detection result of the sensor unit 40 during transport of the substrate 1. The positional information of the notch N on the substrate 1 transported by is acquired.
  • the control unit 60 transmits the obtained position information of the notch N on the substrate 1 to the manufacturing apparatus control unit 105 that controls the substrate processing unit 102 to which the substrate 1 is transported, as shown in FIG. and output it.
  • the substrate processing unit 102 is an example of a destination device.
  • the manufacturing equipment control unit 105 is an example of a control device.
  • the control unit 60 in addition to acquiring the positional information of the notch N in the substrate 1, the control unit 60 also controls the substrate 1 carried by the substrate carrying hand 20 to be transferred to the imaging unit while the substrate 1 is being carried by the substrate carrying hand 20.
  • 30 performs control for photographing from below. Specifically, as shown in FIG. 2, the control unit 60 supports the substrate 1 by folding the lower hand 21 so that the tip of the blade 21b faces the direction in which the second joint 52 is arranged. When the blade 21b in this state is retracted, the photographing section 30 photographs the substrate 1. Further, like the lower hand 21, the control unit 60 is configured to support the board 1 by folding back the upper hand 22 so that the tip of the blade 22b faces the direction in which the second joint 52 is arranged. When the blade 22b is retracted, the photographing section 30 photographs the substrate 1.
  • the substrate storage section 104 stores a plurality of substrates 1.
  • the plurality of substrates 1 are arranged vertically in line within the substrate storage section 104.
  • the plurality of substrates 1 are arranged at predetermined intervals from each other.
  • the horizontal articulated robot arm 10 is arranged below the substrate transfer hand 20 that transfers the substrate 1 from the substrate storage section 104.
  • a base portion 50 is arranged below the horizontal articulated robot arm 10.
  • the second arm 12 is arranged above the first arm 11. In the substrate transfer robot 101, the upper hand 22, the lower hand 21, the second arm 12, the first arm 11, and the base part 50 are arranged in this order from the Z1 direction side.
  • the photographing unit 30 is arranged below the substrate transport hand 20 including the lower hand 21 and the upper hand 22.
  • the imaging unit 30 is arranged on the horizontal articulated robot arm 10.
  • the imaging unit 30 is arranged on the upper surface 12a of the second arm 12.
  • the photographing section 30 is embedded in the second arm 12 and photographs the substrate 1 from the Z2 direction side. That is, the substrate 1 is photographed from below by the photographing section 30 embedded in the second arm 12.
  • the control unit 60 acquires position information of the notch N in the substrate 1 based on an image photographed from below the substrate 1 by the photographing unit 30 and the detection result of the sensor unit 40.
  • the sensor section 40 including the laser sensors 41 and 42 detects the outer shape of the substrate 1 at a portion where the outer peripheral edge 1a of the substrate 1 and the substrate transfer hand 20 overlap when viewed from below.
  • the laser sensor 41 detects the external shape of the substrate 1 at a portion where the outer peripheral edge 1a of the substrate 1 and the lower hand 21 of the substrate transfer hand 20 overlap when viewed from below. To detect.
  • the irradiating section 41a and the detecting section 41b are arranged so as to sandwich the substrate 1 between them in the Z direction.
  • the irradiation unit 41a irradiates a portion where the outer peripheral end 1a of the substrate 1 and the lower hand 21 of the substrate transfer hand 20 overlap when viewed from below with laser light.
  • the irradiation unit 41a irradiates laser light in a line along the direction in which the hand base 21a and the blade 21b are adjacent to each other.
  • the laser light emitted from the irradiation part 41a is not detected by the detection part 41b because the laser light is not blocked by the substrate 1. Ru.
  • the laser sensor 41 can detect the presence or absence of the notch N in the portion where the laser sensor 41 is attached.
  • the control unit 60 can obtain position information of the notch N on the substrate 1 from the detection result of the laser sensor 41.
  • the laser sensor 42 detects the outer shape of the substrate 1 at the portion where the outer peripheral edge 1a of the substrate 1 and the lower hand 21 of the substrate transfer hand 20 overlap when viewed from below.
  • the irradiating section 42a and the detecting section 42b are arranged so as to sandwich the substrate 1 between them in the Z direction. Similar to the irradiation unit 41a, the irradiation unit 42a irradiates a portion where the outer peripheral end 1a of the substrate 1 and the upper hand 22 of the substrate transfer hand 20 overlap when viewed from below with laser light.
  • the irradiation unit 42a irradiates laser light in a line along the direction in which the hand base 22a and the blade 22b are adjacent to each other. Similar to the laser sensor 41, the laser sensor 42 detects the outer shape of the substrate 1 at a portion where the outer peripheral end 1a of the substrate 1 and the upper hand 22 of the substrate transfer hand 20 overlap when viewed from below. Then, the control unit 60 can obtain position information of the notch N on the substrate 1 from the detection result of the laser sensor 42.
  • the control unit 60 determines the positional deviation of the substrate 1 supported by the blade 21b of the lower hand 21 based on the image photographed by the photographing unit 30 in addition to the positional information of the notch N on the substrate 1.
  • the positional deviation of the substrate 1 supported by the blade 21b of the upper hand 22 is also acquired. Thereby, the control unit 60 can determine whether or not each of the lower hand 21 and the upper hand 22 has erroneously supported the substrate 1 .
  • control unit 60 moves the horizontal multi-joint robot arm 10 to cause the lower hand 21 to enter the substrate storage section 104 and move it below the substrate 1 stored in the substrate storage section 104.
  • the lower hand 21 that has entered the substrate storage section 104 moves upward as the horizontal multi-joint robot arm 10 is moved upward under the control of the control section 60 and supports the substrate 1 from below.
  • control unit 60 moves the horizontal multi-joint robot arm 10 to evacuate the lower hand 21 from the substrate storage unit 104.
  • the substrate transfer robot 101 moves the upper hand 22 into the substrate storage section 104 and positions the tip of the lower hand 21 supporting the substrate 1 near the second joint 52.
  • the lower hand 21 is rotated about the third joint 53 as a rotation axis. Thereby, the substrate 1 conveyed by the lower hand 21 is arranged so as to overlap above the photographing section 30.
  • control section 60 controls the photographing section 30 to photograph the substrate 1 being conveyed by the lower hand 21. Further, the control unit 60 controls the laser sensor 41 to detect the outer shape of the substrate 1 being conveyed by the lower hand 21 .
  • control unit 60 captures an image photographed from below the substrate 1 by the photographing unit 30 while the substrate 1 is being conveyed by the lower hand 21 and the upper hand 22, and the detection of the laser sensor 41 while the substrate 1 is being conveyed. Based on the results, position information of the notch N on the substrate 1 conveyed by the lower hand 21 is acquired.
  • the photographing section 30 performs photographing under the control of the control section 60.
  • the control unit 60 uses the laser sensor 42 to detect the outer shape of the substrate 1 being conveyed by the upper hand 22 . Then, the control unit 60 captures an image photographed from below the substrate 1 by the photographing unit 30 while the substrate 1 is being conveyed by the lower hand 21 and the upper hand 22, and the detection of the laser sensor 42 while the substrate 1 is being conveyed. Based on the results, position information of the notch N on the substrate 1 transported by the upper hand 22 is acquired.
  • the substrate transfer robot system 100 and the substrate transfer robot 101 include an imaging unit 30 and a control unit 60 that acquires position information of the notch N in the substrate 1 transferred by the substrate transfer hand 20.
  • the control unit 60 acquires position information of the notch N in the substrate 1 conveyed by the substrate conveyance hand 20 based on an image photographed by the photographing unit 30 from below the substrate conveyance hand 20 while the substrate 1 is conveyed. .
  • the position information of the notch N in the substrate 1 can be acquired without interrupting the transportation of the substrate 1.
  • the positional information of the notch N on the substrate 1 can be acquired while suppressing an increase in the transportation time of the substrate 1.
  • the substrate transfer robot system 100 uses an imaging unit 30 to capture the substrate 1 carried by the substrate transfer hand 20 from the substrate transfer hand 20 at a position overlapping the transfer path of the substrate 1 by the substrate transfer hand 20 when viewed from above. Also photographed from below. Thereby, there is no need to change the conveyance path of the substrate 1 by the substrate conveyance hand 20 in accordance with the position of the photographing section 30. As a result, it is possible to suppress an increase in the transport time of the substrate 1 due to a change in the transport route depending on the position of the imaging unit 30.
  • the photographing unit 30 is arranged below the substrate transfer hand 20. This makes it possible to suppress an increase in the size of the substrate transfer robot 101 in the height direction, compared to the case where the imaging unit 30 is arranged above the substrate transfer hand 20.
  • the substrate transfer robot system 100 includes a sensor unit 40 that detects the external shape of the substrate 1 at a portion where the outer peripheral edge 1a of the substrate 1 and the substrate transfer hand 20 overlap when viewed from below. Then, the control unit 60 controls the substrate 1 to be transported by the substrate transport hand 20 based on the image photographed from below by the photographing unit 30 during transport of the substrate 1 and the detection result of the sensor unit 40 during transport of the board 1. The positional information of the notch N on the substrate 1 is acquired. As a result, based on the detection result of the sensor section 40 during conveyance of the substrate 1, the control section can also inform the position information of the notch N at the portion where the outer peripheral edge 1a of the substrate 1 and the substrate conveyance hand 20 overlap when viewed from below. It can be obtained by 60. As a result, more detailed position information of the notch N on the substrate 1 can be obtained.
  • the sensor unit 40 includes irradiation units 41a and 42a that irradiate laser beams to a portion where the outer peripheral edge 1a of the substrate 1 and the substrate transfer hand 20 overlap when viewed from below, and irradiation units 41a and 42a, respectively. It includes detection units 41b and 42b that detect the irradiated laser light. As a result, the control unit 60 determines whether the outer peripheral end 1a of the substrate 1 and the substrate transfer hand 20 are in a downward direction based on the detection results of the detection units 41b and 42b that detect the laser beams irradiated from the irradiation units 41a and 42a, respectively. It is possible to obtain positional information of the notch N in the overlapping portion when viewed from above.
  • the substrate transfer robot system 100 includes a horizontal articulated robot arm 10 to which a substrate transfer hand 20 is attached and arranged below the substrate transfer hand 20.
  • the imaging unit 30 is arranged on the horizontal articulated robot arm 10. As a result, since the imaging section 30 is disposed on the horizontal articulated robot arm 10 disposed below the substrate transfer hand 20, the substrate transfer robot 10 The size increase in the height direction can be suppressed.
  • the horizontal articulated robot arm 10 includes a first arm 11 and a second arm 12 arranged above the first arm 11 and connected to the first arm 11.
  • the photographing unit 30 is arranged on the upper surface 12a of the second arm 12.
  • the photographing section 30 is disposed on the upper surface 12a of the second arm 12 disposed above the first arm 11, so that the substrate 1 can be photographed from below without being obstructed by the first arm 11.
  • the substrate 1 is being transported, regardless of the position of the first arm 11, the substrate 1 being transported by the substrate transport hand 20 can be photographed from below.
  • the substrate transfer hand 20 includes a lower hand 21 arranged above the second arm 12 and an upper hand 22 arranged above the lower hand 21. Then, during the transportation of the substrate 1, when one of the lower hand 21 and the upper hand 22 enters the substrate storage section 104 that stores the substrate 1, the substrate transfer hand 20 is moved under the state in which the substrate 1 is held. The other of the hand 21 and the upper hand 22 is retracted to a retracted position overlapping above the second arm 12. Then, while the substrate 1 is being transported, the control unit 60 obtains position information of the notch N in the substrate 1 transported by the board transport hand 20 based on an image taken from below of the board 1 when the board 1 is evacuated to the retracted position. get.
  • position information of the notch N in the substrate 1 is acquired based on an image photographed from below of the substrate 1 while the relative position between the imaging unit 30 disposed on the second arm 12 and the substrate 1 does not change. can.
  • the positional information of the notch N on the substrate 1 is obtained more accurately than when the position information of the notch N on the substrate 1 is obtained based on an image taken from below of the substrate 1 while the relative position between the imaging unit 30 and the substrate 1 is changing.
  • positional information of the notch N on the substrate 1 can be obtained. Thereby, the positional information of the notch N on the substrate 1 can be acquired with high accuracy.
  • the control unit 60 outputs the obtained position information of the notch N on the substrate 1 to the manufacturing apparatus control unit 105 that controls the substrate processing unit 102 to which the substrate 1 is transported. Thereby, the manufacturing apparatus control unit 105 can cause the substrate processing unit 102 to perform processing on the substrate 1 according to the position information of the notch N in the substrate 1 acquired by the control unit 60.
  • the control section 60 uses the photographing section 30 to photograph the substrate 1 being conveyed by the substrate conveying hand 20 from below while the substrate 1 is being conveyed by the substrate conveying hand 20. Take control. Thereby, the complexity of the substrate transfer robot system 100 can be suppressed compared to the case where the photographing by the photographing section 30 is controlled by a control section separate from the control section 60 that acquires the position information of the notch N on the substrate 1. .
  • the substrate transfer robot 201 of the substrate transfer robot system 200 according to the second embodiment is different from the substrate transfer robot 101 of the substrate transfer robot system 100 according to the first embodiment, which includes the imaging unit 30 on the second arm 12. is different, and includes an imaging section 230 on a base section 50 attached to the horizontal multi-joint robot arm 10.
  • the photographing section 230 is arranged in the base section 50 disposed below the substrate transfer hand 20 at a position overlapping the conveyance path of the substrate 1 by the substrate transfer hand 20 when viewed from above. There is.
  • the photographing section 230 is arranged on the upper surface 50a of the base section 50.
  • the imaging unit 230 is arranged between the board storage unit 104 and the first joint 51 in the X direction. Then, in the substrate transfer robot system 200, the photographing section 230 disposed in the base section 50 photographs the substrate 1 carried out from the substrate storage section 104 from below.
  • the position information of the notch N on the substrate 1 can be acquired while suppressing an increase in the transfer time of the substrate 1, similarly to the first embodiment.
  • the substrate transfer robot system 200 includes a horizontal articulated robot arm 10 to which a substrate transfer hand 20 is attached and arranged below the substrate transfer hand 20, and a horizontal articulated robot arm arranged below the horizontal articulated robot arm 10. 10.
  • the photographing section 230 is disposed in the base section 50 disposed below the substrate conveyance hand 20 at a position overlapping the conveyance path of the substrate 1 by the substrate conveyance hand 20 when viewed from above.
  • the photographing section 30 is disposed on the base section 50 which is disposed below the substrate transfer hand 20, the height of the substrate transfer robot 201 is lower than when the photographing section 30 is provided above the substrate transfer hand 20.
  • the size increase in the direction can be suppressed.
  • the substrate transfer robot system 300 is arranged on the floor 106, unlike the substrate transfer robot system 100 according to the first embodiment, which includes the imaging unit 30 on the second arm 12.
  • a photographing section 330 is provided.
  • the photographing unit 330 is arranged on the floor surface 106 below the substrate transport hand 20 at a position that overlaps the transport path of the substrate 1 by the substrate transport hand 20 when viewed from above.
  • the imaging unit 330 is arranged between the substrate storage unit 104 and the base unit 50 of the substrate transfer robot 301 in the X direction. Then, in the substrate transfer robot system 300, the photographing section 330 disposed on the floor 106 photographs the substrate 1 carried out from the substrate storage section 104 from below.
  • the position information of the notch N on the substrate 1 can be acquired while suppressing an increase in the transfer time of the substrate 1, similarly to the first and second embodiments.
  • the photographing unit 30 is disposed on the floor 106 below the substrate transport hand 20 at a position that overlaps the transport path of the substrate 1 by the substrate transport hand 20 when viewed from above.
  • the imaging section 30 is arranged on the floor surface 106 below the substrate transfer hand 20
  • the size of the substrate transfer robot 301 in the height direction is smaller than when the imaging section 30 is provided above the substrate transfer hand 20. can suppress the increase in
  • first embodiment second embodiment
  • third embodiment may be combined.
  • the control unit 60 acquires position information of the notch N in the substrate 1 carried by the substrate carrying hand 20 based on an image photographed by the photographing unit 30 while the substrate 1 is being carried.
  • the control unit may acquire positional information of an orientation flat on the substrate conveyed by the substrate conveyance hand based on an image photographed by the photographing unit during conveyance of the substrate.
  • a plurality of imaging units may be arranged on the second arm.
  • a plurality of photographing units 430 may be arranged corresponding to a plurality of substrate storage units 104, as in a substrate transfer robot system 400 and a substrate transfer robot 401 according to a modified example shown in FIG.
  • three photographing units 430 including a CCD image sensor or a CMOS image sensor are arranged on the floor surface 106, corresponding to the three substrate storage units 104.
  • the substrate transport robot systems 100, 200, and 300 are transported by the substrate transport hand 20 at a position overlapping with the transport path of the substrate 1 by the substrate transport hand 20 when viewed from above.
  • the photographing unit 30 may be arranged at a position that does not overlap the substrate transport path by the substrate transport hand when viewed from above, and the substrate passing through the transport path may be photographed. That is, the photographing unit may photograph the substrate from an obliquely downward direction instead of from directly below the substrate transport path.
  • the control unit 60 controls the substrate 1 based on the image photographed from below by the photographing unit 30 while the substrate 1 is being conveyed, and the detection result of the sensor unit 40 while the substrate 1 is being conveyed.
  • the position information of the notch N on the substrate 1 transported by the transport hand 20 is acquired, the present disclosure is not limited to this.
  • the position information of the notch or orientation flat on the substrate conveyed by the substrate conveyance hand is based only on the image taken from below during the conveyance of the substrate.
  • the control unit may acquire whether or not the object exists at the position to be wrapped.
  • the control section may acquire positional information of a notch or orientation flat on the substrate based only on an image photographed from below by the photographing section.
  • the laser sensors 41 and 52 include laser line sensors, but the present disclosure is not limited to this.
  • the sensor unit may include a TOF (Time of Flight) sensor or a LiDAR (Light Detection And Ranging) sensor.
  • the detection section is arranged at a position where it can detect the laser light irradiated by the irradiation section and reflected from the substrate.
  • the irradiating section and the detecting section are arranged to face the substrate and adjacent to each other. Then, the outer shape of the substrate is detected by the detection section detecting the laser light irradiated by the irradiation section and reflected from the substrate.
  • the sensor section may include a sensor that does not use laser light, such as an illuminance sensor.
  • the substrate transfer robot 101 of the substrate transfer robot system 100 includes the horizontal articulated robot arm 10 including the first arm 11 and the second arm 12, but the present disclosure It is not limited to this.
  • the substrate transfer robot of the substrate transfer robot system may be a linear motion mechanism type substrate transfer robot that moves a substrate transfer hand along a rail.
  • the photographing unit 30 is arranged on the upper surface 12a of the second arm 12, but the present disclosure is not limited thereto.
  • the imaging unit may be disposed on the side surface of the second arm and may photograph the substrate from below.
  • the substrate transfer hand transfers the second hand holding the substrate to the second hand when the first hand disposed below the second hand enters the substrate storage part during transfer of the substrate.
  • the board is evacuated to a retracted position that overlaps the upper part of the arm, and the positional information of the notch or orientation flat on the board carried by the second hand is acquired based on an image taken from below of the board when the board is retracted to the retracted position. It's okay.
  • the substrate transfer hand 20 includes the lower hand 21 and the lower hand 21, but the present disclosure is not limited to this.
  • the substrate transfer robot may be a single-handed robot that includes only one substrate transfer hand, or may be a robot that includes three or more substrate transfer hands.
  • the imaging unit 30 captures the substrate 1 transported by the substrate transportation hand 20.
  • the substrate transport robot system and the substrate transport robot may separately include a control unit that controls imaging by the imaging unit and a control unit that acquires positional information of a notch or orientation flat on the substrate.
  • the photographing unit 30 is arranged below the substrate transfer hand 20, but the present disclosure is not limited thereto.
  • the imaging unit only needs to be disposed below the substrate transport hand at least during imaging.
  • the photographing section is placed at the same height as the board transport hand or at a higher height than the board transport hand when not photographing, and is moved below the board transport hand when photographing. Good too.
  • (Item 2) An item in which the photographing section photographs the substrate being transported by the substrate transporting hand from below the substrate transporting hand at a position overlapping the transporting path of the substrate by the board transporting hand when viewed from above. 1.
  • the substrate transfer robot system according to 1.
  • the horizontal articulated robot arm is a first arm; a second arm disposed above the first arm and connected to the first arm; The substrate transfer robot system according to item 6, wherein the photographing unit is disposed on the upper surface of the second arm.
  • (Item 9) a horizontal articulated robot arm to which the substrate transfer hand is attached and arranged below the substrate transfer hand; further comprising a base portion disposed below the horizontal multi-joint robot arm and to which the horizontal multi-joint robot arm is attached;
  • the photography department is Any one of items 1 to 5, which is arranged in the base portion disposed below the substrate transfer hand at a position that overlaps with the substrate transfer path by the substrate transfer hand when viewed from above.
  • the substrate transfer robot system according to item 1.
  • the photography department is According to any one of items 1 to 5, the device is arranged on a floor below the substrate transfer hand at a position that overlaps the substrate transfer path by the substrate transfer hand when viewed from above. substrate transfer robot system.
  • a board transport hand that transports the board; an imaging unit disposed below the substrate transfer hand; comprising a control unit; The control unit acquires positional information of a notch or an orientation flat in the substrate carried by the substrate carrying hand based on an image photographed from below by the photographing unit while the substrate is carried. .

Abstract

この基板搬送ロボットシステム(100)では、制御部(60)は、基板(1)の搬送中に撮影部(30)によって基板搬送ハンド(20)より下方から撮影された画像に基づいて、基板(1)におけるノッチ(N)またはオリエンテーションフラットの位置情報を取得する。

Description

基板搬送ロボットシステムおよび基板搬送ロボット
 この開示は、基板搬送ロボットシステムおよび基板搬送ロボットに関し、特に、基板搬送ハンドを備える基板搬送ロボットシステムおよび基板搬送ロボットに関する。
 従来、基板を保持する保持部を備える搬送システムが知られている。たとえば、特開2015-037098号公報参照。
 特開2015-037098号公報には、液晶FPD(Flat Panel Display)用基板などの基板を保持する保持部を備え、保持部によって保持された基板を搬送する搬送システムが開示されている。特開2015-037098号公報に記載の搬送システムは、保持部の上方に配置されるカメラによって、保持部によって保持された状態の基板が撮影される。そして、カメラによって撮影された画像に基づいて、保持部によって保持される基板の欠けの存在が判断される。
特開2015-037098号公報
 ここで、特開2015-037098号公報には記載されていないが、半導体ウエハなどの基板を基板搬送ロボットによって搬送する搬送システムにおいては、基板の搬送先の処理装置における基板に対する処理のために、基板におけるノッチまたはオリエンテーションフラットの位置情報が必要となる場合がある。基板におけるノッチまたはオリエンテーションフラットの位置情報を取得する方法として、基板搬送ロボットによる基板の搬送途中に、基板のノッチまたはオリエンテーションフラットを検出するアライナに基板を載置して、基板のノッチまたはオリエンテーションフラットを検出することによって、基板におけるノッチまたはオリエンテーションフラットの位置情報を取得することが考えられる。しかしながら、基板の搬送途中に、アライナに基板を載置して、基板におけるノッチまたはオリエンテーションフラットの位置情報を取得する場合には、基板の搬送を中断してアライナによる検出を行うので、基板の搬送時間が増大してしまうという問題点がある。そのため、基板の搬送時間の増大を抑制しつつ、基板におけるノッチまたはオリエンテーションフラットの位置情報を取得可能な基板搬送ロボットシステムおよび基板搬送ロボットが望まれている。
 この開示は、上記のような課題を解決するためになされたものであり、この開示の1つの目的は、基板の搬送時間の増大を抑制しつつ、基板におけるノッチまたはオリエンテーションフラットの位置情報を取得可能な基板搬送ロボットシステムおよび基板搬送ロボットを提供することである。
 この開示の第1の局面による基板搬送ロボットシステムは、基板を搬送する基板搬送ハンドと、基板搬送ハンドより下方に配置される撮影部と、制御部と、を備え、制御部は、基板の搬送中に撮影部により下方から撮影された画像に基づいて、基板搬送ハンドによって搬送される基板におけるノッチまたはオリエンテーションフラットの位置情報を取得する。
 この開示の第2の局面による基板搬送ロボットは、基板を搬送する基板搬送ハンドと、基板搬送ハンドより下方に配置される撮影部と、制御部と、を備え、制御部は、基板の搬送中に撮影部により下方から撮影された画像に基づいて、基板搬送ハンドによって搬送される基板におけるノッチまたはオリエンテーションフラットの位置情報を取得する。
 この開示の第1の局面による基板搬送ロボットシステムおよび第2の局面による基板搬送ロボットは、上記のように、撮影部と、基板におけるノッチまたはオリエンテーションフラットの位置情報を取得する制御部とを備える。制御部は、基板の搬送中に撮影部によって前記基板搬送ハンドより下方から撮影された画像に基づいて、基板搬送ハンドによって搬送される基板におけるノッチまたはオリエンテーションフラットの位置情報を取得する。これにより、基板の搬送の途中においてアライナによって検出する場合と異なり、基板の搬送を中断することなく、基板におけるノッチまたはオリエンテーションフラットの位置情報を取得できる。その結果、基板の搬送時間の増大を抑制しつつ、基板におけるノッチまたはオリエンテーションフラットの位置情報を取得できる。
 本開示によれば、基板の搬送時間の増大を抑制しつつ、基板におけるノッチまたはオリエンテーションフラットの位置情報を取得できる。
第1実施形態による基板搬送ロボットシステムおよび半導体製造装置の構成を示す全体図である。 上方から見た第1実施形態による基板搬送ロボットを示した図である。 第1実施形態による半導体製造装置の構成を示すブロック図である。 第1実施形態による基板搬送ロボットの構成を示す側面図である。 下方から見た第1実施形態による下ハンドを示した図である。 上方から見た第1実施形態による下ハンドを示した図である。 下ハンドに取り付けられるレーザセンサの構成を示す側面図である。 上ハンドに取り付けられるレーザセンサの構成を示す側面図である。 第2実施形態による基板搬送ロボットの構成を示す側面図である。 第3実施形態による基板搬送ロボットの構成を示す側面図である。 変形例による撮影部の配置を示す図である。
 以下、本開示を具体化した本開示の一実施形態を図面に基づいて説明する。
 [第1実施形態]
 図1から図8までを参照して、第1実施形態による基板搬送ロボットシステム100の構成について説明する。
 基板搬送ロボットシステム100は、図1に示すように、基板搬送ロボット101を含む。基板搬送ロボット101は、半導体製造装置110内において、基板1を搬送するロボットである。また、半導体製造装置110は、基板処理部102と、処理部内搬送ロボット103と、基板収納部104と、製造装置制御部105とを備える。
 基板搬送ロボット101は、複数の基板1を収納する基板収納部104から基板1の搬送を行う。また、基板搬送ロボット101は、基板収納部104への基板1の搬入を行う。基板収納部104は、たとえば、FOUP(Front Opening Unify Pod)を含む。また、基板1は、たとえば、シリコンウエハ、SiCウエハ、化合物半導体ウエハ、または、サファイアウエハなどである。
 基板1は、基板搬送ロボット101によって基板処理部102へ搬送される。基板処理部102へ搬送された基板1は、基板処理部102の内部に配置される処理部内搬送ロボット103によって搬送される。基板処理部102は、基板1に対して化学的または物理的な処理が行われる複数のチャンバ102aを含む。基板処理部102の内部は、真空状態に保たれている。処理部内搬送ロボット103は、真空環境下において動作可能なロボットである。基板処理部102へ搬送された基板1は、処理部内搬送ロボット103によって、チャンバ102aへ搬送される。また、製造装置制御部105は、基板処理部102による基板1に対する処理の制御などを含む半導体製造装置110全体の制御を行う。製造装置制御部105は、たとえば、CPU(Central Processing Unit)、RAM(Random Access Memory)、および、ROM(Read Only Memory)などを備えるコンピュータである。
 なお、本明細書中において、基板搬送ロボット101および基板収納部104が隣り合う方向をX方向とする。そして、基板搬送ロボット101に対して、基板収納部104が配置される方向をX1方向、基板搬送ロボット101に対して、基板処理部102が配置される方向をX2方向とする。また、上下方向をZ方向とし、上方向をZ1方向、下方向をZ2方向とする。また、XZ面に垂直な方向をY方向とし、Y方向における一方側をY1方向、Y方向における他方側をY2方向とする。
 図2に示すように、基板搬送ロボットシステム100の基板搬送ロボット101は、水平多関節ロボットアーム10と、基板1を搬送する基板搬送ハンド20と、撮影部30と、センサ部40と、ベース部50と、制御部60とを備える。基板搬送ハンド20は、水平多関節ロボットアーム10に取り付けられる。そして、水平多関節ロボットアーム10は、第1アーム11と、第1アーム11に対して接続される第2アーム12とを含む。
 撮影部30は、第2アーム12に取り付けられている。撮影部30は、たとえば、CCD(Charge Coupled Device)イメージセンサまたはCMOS(Complementary Metal Oxide Semiconductor)イメージセンサなどのイメージセンサと、広角レンズとを有する2次元カメラからなる。なお、撮影部30は、3次元カメラから構成されてもよい。
 基板搬送ハンド20は、第2アーム12の上方に配置される下ハンド21と、下ハンド21の上方に配置される上ハンド22とを含む。下ハンド21および上ハンド22は、水平多関節ロボットアーム10の第2アーム12に取り付けられている。なお、下ハンド21は、第1ハンドの一例である。また、上ハンド22は、第2ハンドの一例である。
 ベース部50は、水平多関節ロボットアーム10に取り付けられる。具体的には、第1アーム11の一方端部が、第1関節51を介してベース部50に接続されている。また、第2アーム12の一方端部が、第2関節52を介して第1アーム11の他方端部に接続されている。第2アーム12の他方端部には、第3関節53を介して基板搬送ハンド20が接続されている。また、第2アーム12の第3関節53近傍には、撮影部30が配置されている。第1関節51、第2関節52および第3関節53の各関節には、回転駆動の駆動源であるサーボモータと、サーボモータの出力軸の回転位置を検出する回転位置センサとが配置されている。また、基板搬送ロボット101は、水平多関節ロボットアーム10をZ方向に昇降させる昇降軸部を備えている。昇降軸部には、サーボモータと、サーボモータの出力軸の回転位置を検出する回転位置センサとが配置されている。
 第2アーム12の他方端部には、第3関節53を介して、下ハンド21および上ハンド22を含む基板搬送ハンド20が接続されている。下ハンド21は、ハンド基部21aと、ハンド基部21aに取り付けられたブレード21bとを備える。上ハンド22は、ハンド基部22aと、ハンド基部22aに取り付けられたブレード22bとを備える。ブレード21bおよび22bは、基板1を支持する薄板状の支持板である。ブレード21bおよび22bは、先端が二股に分かれた形状を有している。ブレード21bおよび22bは、略円形状の基板1の裏面の外周縁部を下方から支持する。基板搬送ロボット101は、予めティーチングされた搬送経路に基づいて、基板収納部104に収容された基板1を、基板搬送ハンド20の下ハンド21および上ハンド22によって搬送する。
 第1実施形態では、基板搬送ハンド20は、基板1の搬送中において、下ハンド21および上ハンド22のうちの一方が基板1を収納する基板収納部104に侵入する際に、基板1を保持した状態の下ハンド21および上ハンド22のうちの他方を、第2アーム12の上方にオーバーラップする退避位置に退避させている。具体的には、図2に示すように、基板搬送ハンド20は、基板1の搬送中において、上ハンド22が基板収納部104に侵入する際に、基板1を保持した状態の下ハンド21を、第2アーム12の上方にオーバーラップする退避位置に退避させている。また、基板搬送ロボット101は、基板1の搬送中において、下ハンド21および下ハンド21が搬送する基板1と、上ハンド22および上ハンド22が搬送する基板1とが干渉することを避けるために、基板1の搬送中において、第2アーム12の上方にオーバーラップする退避位置に、基板1を支持した状態の上ハンド22を退避させる動作も行う。
 そして、基板搬送ロボットシステム100は、上方から見て、基板搬送ハンド20による基板1の搬送経路とオーバーラップする位置において、基板搬送ハンド20によって搬送される基板1を、撮影部30によって基板搬送ハンド20よりも下方から撮影する。
 また、センサ部40は、下ハンド21に取り付けられるレーザセンサ41と、上ハンド22に取り付けられるレーザセンサ42とを含む。レーザセンサ41および42は、それぞれブレード21bおよび22bの根本に取り付けられている。レーザセンサ41および42は、たとえば、レーザラインセンサを含む。
 図3に示すように、レーザセンサ41は、レーザ光を照射する照射部41aと、照射部41aから照射されたレーザ光を検出する検出部41bとを含む。また、レーザセンサ42は、レーザ光を照射する照射部42aと、照射部42aから照射されたレーザ光を検出する検出部42bとを含む。
 第1実施形態において、制御部60は、基板搬送ロボット101の動作を制御する。制御部60は、たとえば、CPUおよびROMなどを備えるコンピュータである。また、制御部60は、SSD(Solid State Drive)などのフラッシュメモリを含む記憶装置を有している。制御部60は、予め記憶装置に記憶されているプログラムおよびパラメータに基づいて基板搬送ロボット101の各部の動作を制御する。
 そして、制御部60は、基板1の搬送中に撮影部30により下方から撮影された画像に基づいて、基板搬送ハンド20によって搬送される基板1におけるノッチNの位置情報を取得する。制御部60は、図2に示すように、基板1の搬送中に、退避位置に退避した際の基板1を下方から撮影した画像に基づいて、基板搬送ハンド20によって搬送される基板1におけるノッチNの位置情報を取得する。第1実施形態では、制御部60は、基板1の搬送中に撮影部30により下方から撮影された画像、および、基板1の搬送中におけるセンサ部40の検出結果に基づいて、基板搬送ハンド20によって搬送される基板1におけるノッチNの位置情報を取得する。
 第1実施形態では、制御部60は、取得した基板1におけるノッチNの位置情報を、図3に示すように、基板1が搬送される基板処理部102を制御する製造装置制御部105に対して出力する。なお、基板処理部102は、搬送先装置の一例である。また、製造装置制御部105は、制御装置の一例である。
 第1実施形態では、制御部60は、基板1におけるノッチNの位置情報を取得に加えて、基板搬送ハンド20による基板1の搬送中において、基板搬送ハンド20によって搬送される基板1を撮影部30により下方から撮影する制御を行う。具体的には、制御部60は、図2に示すように、ブレード21bの先端が、第2関節52が配置される方向を向くように、下ハンド21を折り返すようにして、基板1を支持した状態のブレード21bを退避させた際に、撮影部30による基板1の撮影を行う。また、制御部60は、下ハンド21と同様に、ブレード22bの先端が、第2関節52が配置される方向を向くように、上ハンド22を折り返すようにして、基板1を支持した状態のブレード22bを退避させた際に、撮影部30による基板1の撮影を行う。
 図4に示すように、基板収納部104は、複数の基板1を収納する。複数の基板1は、基板収納部104内において、上下方向に並んで配置されている。複数の基板1は、互いに所定の間隔を隔てた状態で配置されている。
 水平多関節ロボットアーム10は、基板収納部104から基板1を搬送する基板搬送ハンド20より下方に配置される。水平多関節ロボットアーム10の下方には、ベース部50が配置される。第2アーム12は、第1アーム11の上方に配置される。基板搬送ロボット101では、Z1方向側から、上ハンド22、下ハンド21、第2アーム12、第1アーム11、ベース部50が、この順で配置されている。
 そして、撮影部30は、下ハンド21および上ハンド22を含む基板搬送ハンド20より下方に配置される。第1実施形態において、撮影部30は、水平多関節ロボットアーム10に配置されている。具体的には、撮影部30は、第2アーム12の上面12aに配置されている。撮影部30は、第2アーム12に埋設されており、Z2方向側から基板1を撮影する。すなわち、第2アーム12に埋設された撮影部30によって基板1が下方から撮影される。
 (基板におけるノッチの位置情報の取得)
 制御部60は、図5に示すように、撮影部30によって、基板1の下方から撮影した画像、および、センサ部40の検出結果に基づいて、基板1におけるノッチNの位置情報を取得する。
 レーザセンサ41および42を含むセンサ部40は、基板1の外周端1aと基板搬送ハンド20とが下方から見てオーバーラップする部分における基板1の外形形状を検出する。具体的には、図6に示すように、レーザセンサ41は、基板1の外周端1aと、基板搬送ハンド20の下ハンド21とが下方から見てオーバーラップする部分における基板1の外形形状を検出する。
 図7に示すように、照射部41aおよび検出部41bは、Z方向において、互いに基板1を挟むように配置されている。照射部41aは、基板1の外周端1aと、基板搬送ハンド20の下ハンド21とが下方から見てオーバーラップする部分に対して、レーザ光を照射する。照射部41aは、ハンド基部21aとブレード21bと隣り合う方向に沿ったライン状にレーザ光を照射する。そして、照射部41aと検出部41bとの間にノッチNが存在する場合には、レーザ光が基板1によって遮られないので、検出部41bによって、照射部41aから照射されるレーザ光が検出される。これにより、レーザセンサ41は、レーザセンサ41が取り付けられた部分において、ノッチNの有無を検出可能である。そして、制御部60は、レーザセンサ41の検出結果から基板1におけるノッチNの位置情報を取得できる。
 また、レーザセンサ42は、レーザセンサ41と同様に、基板1の外周端1aと、基板搬送ハンド20の下ハンド21とが下方から見てオーバーラップする部分における基板1の外形形状を検出する。図8に示すように、照射部42aおよび検出部42bは、Z方向において、互いに基板1を挟むように配置されている。照射部42aは、照射部41aと同様に、基板1の外周端1aと、基板搬送ハンド20の上ハンド22とが下方から見てオーバーラップする部分に対して、レーザ光を照射する。照射部42aは、ハンド基部22aとブレード22bと隣り合う方向に沿ったライン状にレーザ光を照射する。レーザセンサ41と同様に、レーザセンサ42は、基板1の外周端1aと、基板搬送ハンド20の上ハンド22とが下方から見てオーバーラップする部分における基板1の外形形状を検出する。そして、制御部60は、レーザセンサ42の検出結果から基板1におけるノッチNの位置情報を取得できる。
 第1実施形態では、制御部60は、基板1におけるノッチNの位置情報に加えて、撮影部30によって撮影した画像に基づいて、下ハンド21のブレード21bによって支持される基板1の位置ずれ、および、上ハンド22のブレード21bによって支持される基板1の位置ずれも取得している。これにより、制御部60は、下ハンド21および上ハンド22の各々による基板1の支持ミスの有無を判定できる。
 (基板搬送ロボットの動作)
 次に、基板搬送ロボット101の制御部60による下ハンド21によって搬送される基板1におけるノッチNの位置情報の取得の一例について説明する。
 まず、制御部60は、水平多関節ロボットアーム10を移動させることにより、下ハンド21を、基板収納部104に侵入させ、基板収納部104に収納される基板1の下方に移動させる。基板収納部104に侵入した下ハンド21は、制御部60の制御によって、水平多関節ロボットアーム10が上方に移動させられることにより、上方に移動して、基板1を下方から支持する。
 次に、制御部60は、水平多関節ロボットアーム10を移動させることにより、下ハンド21を基板収納部104から退避させる。そして、図2に示すように、基板搬送ロボット101は、上ハンド22を基板収納部104に侵入させるとともに、基板1を支持した状態の下ハンド21の先端が第2関節52近傍に位置するように、第3関節53を回動軸として下ハンド21を回動させる。これにより、下ハンド21によって搬送される基板1が、撮影部30の上方にオーバーラップするように配置される。
 そして、制御部60は、撮影部30を制御して、下ハンド21によって搬送される基板1を撮影する。また、制御部60は、レーザセンサ41を制御して、下ハンド21によって搬送される基板1の外形形状を検出する。
 そして、制御部60は、下ハンド21および上ハンド22による基板1の搬送を行いながら、撮影部30により基板1の下方から撮影された画像、および、基板1の搬送中におけるレーザセンサ41の検出結果に基づいて、下ハンド21によって搬送される基板1におけるノッチNの位置情報を取得する。
 なお、上ハンド22によって搬送される基板1は、撮影部30の上方にオーバーラップするように配置される際に、制御部60の制御によって撮影部30による撮影が行なわれる。また、制御部60は、レーザセンサ42によって、上ハンド22によって搬送される基板1の外形形状を検出する。そして、制御部60は、下ハンド21および上ハンド22による基板1の搬送を行いながら、撮影部30により基板1の下方から撮影された画像、および、基板1の搬送中におけるレーザセンサ42の検出結果に基づいて、上ハンド22によって搬送される基板1におけるノッチNの位置情報を取得する。
 [第1実施形態の効果]
 基板搬送ロボットシステム100および基板搬送ロボット101は、撮影部30と、基板搬送ハンド20によって搬送される基板1におけるノッチNの位置情報を取得する制御部60とを備える。制御部60は、基板1の搬送中に撮影部30によって前記基板搬送ハンド20より下方から撮影された画像に基づいて、基板搬送ハンド20によって搬送される基板1におけるノッチNの位置情報を取得する。これにより、基板1の搬送の途中においてアライナによって検出する場合と異なり、基板1の搬送を中断することなく、基板1におけるノッチNの位置情報を取得できる。その結果、基板1の搬送時間の増大を抑制しつつ、基板1におけるノッチNの位置情報を取得できる。
 基板搬送ロボットシステム100は、上方から見て、基板搬送ハンド20による基板1の搬送経路とオーバーラップする位置において、基板搬送ハンド20によって搬送される基板1を、撮影部30によって基板搬送ハンド20よりも下方から撮影する。これにより、基板搬送ハンド20による基板1の搬送経路を、撮影部30の位置に合わせて変更する必要がない。その結果、撮影部30の位置に応じた搬送経路の変更に起因する基板1の搬送時間の増大を抑制できる。
 撮影部30は、基板搬送ハンド20よりも下方に配置される。これにより、基板搬送ハンド20の上方に撮影部30を配置する場合に比べて、基板搬送ロボット101の高さ方向におけるサイズの増大を抑制できる。
 基板搬送ロボットシステム100は、基板1の外周端1aと基板搬送ハンド20とが下方から見てオーバーラップする部分における基板1の外形形状を検出するセンサ部40を備える。そして、制御部60は、基板1の搬送中に撮影部30により下方から撮影された画像、および、基板1の搬送中におけるセンサ部40の検出結果に基づいて、基板搬送ハンド20によって搬送される基板1におけるノッチNの位置情報を取得する。これにより、基板1の搬送中におけるセンサ部40の検出結果に基づいて、基板1の外周端1aと基板搬送ハンド20とが下方から見てオーバーラップする部分におけるノッチNの位置情報も、制御部60によって取得できる。その結果、基板1におけるノッチNの位置情報をより詳細に取得できる。
 センサ部40は、基板1の外周端1aと基板搬送ハンド20とが下方から見てオーバーラップする部分に対して、レーザ光を照射する照射部41aおよび42aと、照射部41aおよび42aのそれぞれから照射されたレーザ光を検出する検出部41bおよび42bとを含む。これにより、制御部60は、照射部41aおよび42aのそれぞれから照射されたレーザ光を検出する検出部41bおよび42bの検出結果に基づいて、基板1の外周端1aと基板搬送ハンド20とが下方から見てオーバーラップする部分におけるノッチNの位置情報を取得できる。
 基板搬送ロボットシステム100は、基板搬送ハンド20が取り付けられ、基板搬送ハンド20より下方に配置される水平多関節ロボットアーム10を備える。そして、撮影部30は、水平多関節ロボットアーム10に配置されている。これにより、基板搬送ハンド20より下方に配置される水平多関節ロボットアーム10に撮影部30が配置されるので、基板搬送ハンド20の上方に撮影部30を備える場合に比べて、基板搬送ロボット101の高さ方向におけるサイズの増大を抑制できる。
 水平多関節ロボットアーム10は、第1アーム11と、第1アーム11の上方に配置されるとともに、第1アーム11に対して接続される第2アーム12とを含む。そして、撮影部30は、第2アーム12の上面12aに配置されている。これにより、第1アーム11の上方に配置される第2アーム12の上面12aに撮影部30が配置されるので、第1アーム11に遮られることなく、基板1を下方から撮影できる。その結果、基板1の搬送中において、第1アーム11の位置に関わらず、基板搬送ハンド20によって搬送される基板1を下方から撮影できる。
 基板搬送ハンド20は、第2アーム12の上方に配置される下ハンド21と、下ハンド21の上方に配置される上ハンド22とを含む。そして、基板搬送ハンド20は、基板1の搬送中において、下ハンド21および上ハンド22のうちの一方が基板1を収納する基板収納部104に侵入する際に、基板1を保持した状態の下ハンド21および上ハンド22のうちの他方を、第2アーム12の上方にオーバーラップする退避位置に退避させている。そして、制御部60は、基板1の搬送中に、退避位置に退避した際の基板1を下方から撮影した画像に基づいて、基板搬送ハンド20によって搬送される基板1におけるノッチNの位置情報を取得する。これにより、第2アーム12に配置される撮影部30と、基板1との相対位置が変化しない状態において、基板1を下方から撮影した画像に基づいて、基板1におけるノッチNの位置情報を取得できる。その結果、撮影部30と基板1との相対位置が変化している際に基板1を下方から撮影した画像に基づいて、基板1におけるノッチNの位置情報を取得する場合に比べて、精度よく撮影した画像に基づいて、基板1におけるノッチNの位置情報を取得できる。これにより、基板1におけるノッチNの位置情報を精度よく取得できる。
 制御部60は、取得した基板1におけるノッチNの位置情報を、基板1が搬送される基板処理部102を制御する製造装置制御部105に対して出力する。これにより、製造装置制御部105は、基板1に対して、制御部60が取得した基板1におけるノッチNの位置情報に応じた処理を、基板処理部102によって行うことができる。
 制御部60は、基板1におけるノッチNの位置情報を取得に加えて、基板搬送ハンド20による基板1の搬送中において、基板搬送ハンド20によって搬送される基板1を撮影部30により下方から撮影する制御を行う。これにより、基板1におけるノッチNの位置情報を取得する制御部60とは別個の制御部によって、撮影部30による撮影の制御を行う場合に比べて、基板搬送ロボットシステム100の複雑化を抑制できる。
 [第2実施形態]
 図9を参照して、第2実施形態による基板搬送ロボットシステム200の構成について説明する。
 図9に示すように、第2実施形態による基板搬送ロボットシステム200の基板搬送ロボット201は、第2アーム12に撮影部30を備える第1実施形態による基板搬送ロボットシステム100の基板搬送ロボット101とは異なり、水平多関節ロボットアーム10に取り付けられるベース部50に撮影部230を備える。第2実施形態では、撮影部230は、基板搬送ハンド20より下方に配置されるベース部50において、上方から見て、基板搬送ハンド20による基板1の搬送経路とオーバーラップする位置に配置されている。撮影部230は、ベース部50の上面50aに配置されている。撮影部230は、X方向において、基板収納部104と第1関節51との間に配置されている。そして、基板搬送ロボットシステム200は、ベース部50に配置される撮影部230によって、基板収納部104から搬出された基板1を下方から撮影している。
 なお、第2実施形態のその他の構成は、上記第1実施形態と同様である。
 [第2実施形態の効果]
 第2実施形態による基板搬送ロボットシステム200では、上記第1実施形態と同様に、基板1の搬送時間の増大を抑制しつつ、基板1におけるノッチNの位置情報を取得できる。
 基板搬送ロボットシステム200は、基板搬送ハンド20が取り付けられ、基板搬送ハンド20より下方に配置される水平多関節ロボットアーム10と、水平多関節ロボットアーム10の下方に配置され、水平多関節ロボットアーム10に取り付けられるベース部50とを備える。そして、撮影部230は、基板搬送ハンド20より下方に配置されるベース部50において、上方から見て、基板搬送ハンド20による基板1の搬送経路とオーバーラップする位置に配置されている。これにより、基板搬送ハンド20より下方に配置されるベース部50に撮影部30が配置されるので、基板搬送ハンド20の上方に撮影部30を備える場合に比べて、基板搬送ロボット201の高さ方向におけるサイズの増大を抑制できる。
 なお、第2実施形態のその他の効果は、上記第1実施形態と同様である。
 [第3実施形態]
 図10を参照して、第3実施形態による基板搬送ロボットシステム300の構成について説明する。
 図10に示すように、第3実施形態による基板搬送ロボットシステム300は、第2アーム12に撮影部30を備える第1実施形態による基板搬送ロボットシステム100とは異なり、床面106に配置される撮影部330を備える。撮影部330は、基板搬送ハンド20より下方の床面106において、上方から見て、基板搬送ハンド20による基板1の搬送経路とオーバーラップする位置に配置されている。撮影部330は、X方向において、基板収納部104と、基板搬送ロボット301のベース部50との間に配置されている。そして、基板搬送ロボットシステム300は、床面106に配置される撮影部330によって、基板収納部104から搬出された基板1を下方から撮影している。
 なお、第3実施形態のその他の構成は、上記第1実施形態と同様である。
 [第3実施形態の効果]
 第3実施形態による基板搬送ロボットシステム300では、上記第1および第2実施形態と同様に、基板1の搬送時間の増大を抑制しつつ、基板1におけるノッチNの位置情報を取得できる。
 撮影部30は、基板搬送ハンド20より下方の床面106において、上方から見て、基板搬送ハンド20による基板1の搬送経路とオーバーラップする位置に配置されている。これにより、基板搬送ハンド20より下方の床面106に撮影部30が配置されるので、基板搬送ハンド20の上方に撮影部30を備える場合に比べて、基板搬送ロボット301の高さ方向におけるサイズの増大を抑制できる。
 なお、第3実施形態のその他の効果は、上記第1実施形態と同様である。
 また、第1実施形態、第2実施形態および第3実施形態のうち、2つ以上の実施形態が組み合わされてもよい。
 [変形例]
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施形態の説明ではなく請求の範囲によって示され、さらに請求の範囲と均等の意味および範囲内でのすべての変更および変形例が含まれる。
 たとえば、上記第1実施形態では、制御部60は、基板1の搬送中に撮影部30により撮影された画像に基づいて、基板搬送ハンド20によって搬送される基板1におけるノッチNの位置情報を取得する例を示したが、本開示はこれに限られない。本開示では、制御部は、基板の搬送中に撮影部により撮影された画像に基づいて、基板搬送ハンドによって搬送される基板におけるオリエンテーションフラットの位置情報を取得してもよい。
 また、上記第1実施形態では、第2アーム12に撮影部30が1つ配置されている例を示したが、本開示はこれに限られない。本開示では、撮影部は、第2アームに複数配置されてもよい。また、図11に示す変形例による基板搬送ロボットシステム400および基板搬送ロボット401のように、複数の基板収納部104に対応して、撮影部430が複数配置されてもよい。図11に示す例では、3つの基板収納部104に対応して、CCDイメージセンサまたはCMOSイメージセンサなどを含む撮影部430が、床面106上に3つ配置されている。
 また、上記第1実施形態では、基板搬送ロボットシステム100、200および300は、上方から見て、基板搬送ハンド20による基板1の搬送経路とオーバーラップする位置において、基板搬送ハンド20によって搬送される基板1を、撮影部30によって基板搬送ハンド20よりも下方から撮影する例を示したが、本開示はこれに限られない。本開示では、上方から見て、基板搬送ハンドによる基板の搬送経路にオーバーラップしない位置に撮影部を配置して、搬送経路を通る基板が撮影されてもよい。すなわち、撮影部は、基板の搬送経路の真下ではなく、斜め下方向から基板を撮影してもよい。
 また、上記第1実施形態では、制御部60は、基板1の搬送中に撮影部30により下方から撮影された画像、および、基板1の搬送中におけるセンサ部40の検出結果に基づいて、基板搬送ハンド20によって搬送される基板1におけるノッチNの位置情報を取得する例を示したが、本開示はこれに限られない。本開示では、基板の搬送中に撮影により下方から撮影された画像のみに基づいて、基板搬送ハンドによって搬送される基板におけるノッチまたはオリエンテーションフラットの位置情報として、ノッチまたはオリエンテーションフラットが基板搬送ハンドにオーバーラップする位置に存在するかを否かが制御部により取得されてもよい。また、基板搬送ハンドに透光性の部材を用いることによって、撮影部によって下方から撮影した画像のみに基づいて、基板におけるノッチまたはオリエンテーションフラットの位置情報が制御部により取得されてもよい。
 また、上記第1実施形態では、レーザセンサ41および52は、レーザラインセンサを含む例を示したが、本開示はこれに限られない。本開示では、センサ部は、TOF(Time of Flight)センサ、または、LiDAR(Light Detection And Ranging)センサを含んでもよい。この場合、検出部は、照射部によって照射され、基板から反射したレーザ光を検出可能な位置に配置される。たとえば、照射部および検出部は、基板に対向するように配置、かつ、互いに隣り合うように配置される。そして、照射部によって照射され、基板から反射したレーザ光を検出部が検出することによって、基板の外形形状が検出される。また、センサ部は、照度センサなどレーザ光を用いないセンサを含んでもよい。
 また、上記第1実施形態では、基板搬送ロボットシステム100の基板搬送ロボット101は、第1アーム11と第2アーム12とを含む水平多関節ロボットアーム10を備える例を示したが、本開示はこれに限られない。本開示では、基板搬送ロボットシステムの基板搬送ロボットは、レールに沿って基板搬送ハンドを移動させる直動機構型の基板搬送ロボットであってもよい。
 また、上記第1実施形態では、撮影部30は、第2アーム12の上面12aに配置されている例を示したが、本開示はこれに限られない。本開示では、撮影部は、第2アームの側面に配置され、下方から基板を撮影してもよい。
 また、上記第1実施形態では、基板搬送ハンド20は、基板1の搬送中において、上ハンド22が基板収納部104に侵入する際に、基板1を保持した状態の下ハンド21を、第2アーム12の上方にオーバーラップする退避位置に退避させ、退避位置に退避した際の基板1を下方から撮影した画像に基づいて、下ハンド21によって搬送される基板1におけるノッチNの位置情報を取得する例を示したが、本開示はこれに限られない。本開示では、基板搬送ハンドは、基板の搬送中において、第2ハンドの下方に配置される第1ハンドが基板収納部に侵入する際に、基板を保持した状態の第2ハンドを、第2アームの上方にオーバーラップする退避位置に退避させ、退避位置に退避した際の基板を下方から撮影した画像に基づいて、第2ハンドによって搬送される基板におけるノッチまたはオリエンテーションフラットの位置情報を取得してもよい。
 また、上記第1実施形態では、基板搬送ハンド20は、下ハンド21および下ハンド21を含む例を示したが、本開示はこれに限られない。本開示では、基板搬送ロボットは、基板搬送ハンドを1つのみ備えるシングルハンドのロボットであってもよいし、3つ以上の基板搬送ハンドを備えるロボットでもよい。
 また、上記第1実施形態では、基板1におけるノッチNの位置情報を取得に加えて、基板搬送ハンド20による基板1の搬送中において、基板搬送ハンド20によって搬送される基板1を撮影部30により下方から撮影する制御を行う例を示したが、本開示はこれに限られない。本開示では、基板搬送ロボットシステムおよび基板搬送ロボットは、撮影部による撮影の制御を行う制御部と、基板におけるノッチまたはオリエンテーションフラットの位置情報を取得する制御部とを別個に備えてもよい。
 また、上記第1実施形態では、基板搬送ロボット101が、基板におけるノッチまたはオリエンテーションフラットの位置情報を取得する制御部60を備える例を示したが、本開示はこれに限られない。本開示では、基板搬送ロボットシステムにおいて、基板におけるノッチまたはオリエンテーションフラットの位置情報を取得する制御部は、基板搬送ロボット101の外部に備えられてもよい。すなわち、基板搬送ロボットシステムは、基板搬送ロボットの全体を制御する制御部と、基板におけるノッチまたはオリエンテーションフラットの位置情報を取得する制御部とを別個に備えてもよい。
 本明細書で開示する要素の機能は、開示された機能を実行するよう構成またはプログラムされた汎用プロセッサ、専用プロセッサ、集積回路、ASIC(Application Specific Integrated Circuits)、従来の回路、および/または、それらの組み合わせ、を含む回路または処理回路を使用して実行できる。プロセッサは、トランジスタやその他の回路を含むため、処理回路または回路と見なされる。本開示において、回路、ユニット、または手段は、列挙された機能を実行するハードウェアであるか、または、列挙された機能を実行するようにプログラムされたハードウェアである。ハードウェアは、本明細書に開示されているハードウェアであってもよいし、あるいは、列挙された機能を実行するようにプログラムまたは構成されているその他の既知のハードウェアであってもよい。ハードウェアが回路の一種と考えられるプロセッサである場合、回路、手段、またはユニットはハードウェアとソフトウェアの組み合わせであり、ソフトウェアはハードウェアおよび/またはプロセッサの構成に使用される。
 また、上記第1実施形態では、撮影部30は、基板搬送ハンド20よりも下方に配置される例を示したが、本開示はこれに限られない。本開示では、撮影部は、少なくとも撮影時において、基板搬送ハンドよりも下方に配置されていればよい。すなわち、撮影部は、撮影時以外においては、基板搬送ハンドと同じ高さ位置、または、基板搬送ハンドよりも高い高さ位置に配置され、撮影時において、基板搬送ハンドよりも下方に移動してもよい。
 [態様]
 上記した例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
 (項目1)
 基板を搬送する基板搬送ハンドと、
 撮影部と、
 制御部と、を備え、
 前記制御部は、前記基板の搬送中に前記撮影部によって前記基板搬送ハンドより下方から撮影された画像に基づいて、前記基板搬送ハンドによって搬送される前記基板におけるノッチまたはオリエンテーションフラットの位置情報を取得する、基板搬送ロボットシステム。
 (項目2)
 上方から見て、前記基板搬送ハンドによる前記基板の搬送経路とオーバーラップする位置において、前記基板搬送ハンドによって搬送される前記基板を、前記撮影部によって前記基板搬送ハンドよりも下方から撮影する、項目1に記載の基板搬送ロボットシステム。
 (項目3)
 前記撮影部は、前記基板搬送ハンドよりも下方に配置される、項目1または2に記載の基板搬送ロボットシステム。
 (項目4)
 前記基板の外周端と前記基板搬送ハンドとが下方から見てオーバーラップする部分における前記基板の外形形状を検出するセンサ部をさらに備え、
 前記制御部は、前記基板の搬送中に前記撮影部により下方から撮影された画像、および、前記基板の搬送中における前記センサ部の検出結果に基づいて、前記基板搬送ハンドによって搬送される前記基板におけるノッチまたはオリエンテーションフラットの位置情報を取得する、項目1から項目3までのいずれか1項に記載の基板搬送ロボットシステム。
 (項目5)
 前記センサ部は、
  前記基板の外周端と前記基板搬送ハンドとが下方から見てオーバーラップする部分に対して、レーザ光を照射する照射部と、
  前記照射部から照射されたレーザ光を検出する検出部とを含む、項目4に記載の基板搬送ロボットシステム。
 (項目6)
 前記基板搬送ハンドが取り付けられ、前記基板搬送ハンドより下方に配置される水平多関節ロボットアームをさらに備え、
 前記撮影部は、前記水平多関節ロボットアームに配置されている、項目1から項目5までのいずれか1項に記載の基板搬送ロボットシステム。
 (項目7)
 前記水平多関節ロボットアームは、
  第1アームと、
  前記第1アームの上方に配置されるとともに、前記第1アームに対して接続される第2アームとを含み、
 前記撮影部は、前記第2アームの上面に配置されている、項目6に記載の基板搬送ロボットシステム。
 (項目8)
 前記基板搬送ハンドは、
  前記第2アームの上方に配置される第1ハンドと、
  前記第1ハンドの上方に配置される第2ハンドとを含み、
  前記基板の搬送中において、前記第1ハンドおよび前記第2ハンドのうちの一方が前記基板を収納する基板収納部に侵入する際に、前記基板を保持した状態の前記第1ハンドおよび前記第2ハンドのうちの他方を、前記第2アームの上方にオーバーラップする退避位置に退避させており、
 前記制御部は、前記基板の搬送中に、前記退避位置に退避した際の前記基板を下方から撮影した画像に基づいて、前記基板搬送ハンドによって搬送される前記基板におけるノッチまたはオリエンテーションフラットの位置情報を取得する、項目7に記載の基板搬送ロボットシステム。
 (項目9)
 前記基板搬送ハンドが取り付けられ、前記基板搬送ハンドより下方に配置される水平多関節ロボットアームと、
 前記水平多関節ロボットアームの下方に配置され、前記水平多関節ロボットアームが取り付けられるベース部と、をさらに備え、
 前記撮影部は、
  前記基板搬送ハンドより下方に配置される前記ベース部において、上方から見て、前記基板搬送ハンドによる前記基板の搬送経路とオーバーラップする位置に配置されている、項目1から項目5までのいずれか1項に記載の基板搬送ロボットシステム。
 (項目10)
 前記撮影部は、
  前記基板搬送ハンドより下方の床面において、上方から見て、前記基板搬送ハンドによる前記基板の搬送経路とオーバーラップする位置に配置されている、項目1から項目5までのいずれか1項に記載の基板搬送ロボットシステム。
 (項目11)
 前記制御部は、取得した前記基板におけるノッチまたはオリエンテーションフラットの位置情報を、前記基板が搬送される搬送先装置を制御する制御装置に対して出力する、項目1から項目10までのいずれか1項に記載の基板搬送ロボットシステム。
 (項目12)
 前記制御部は、前記基板におけるノッチまたはオリエンテーションフラットの位置情報を取得に加えて、前記基板搬送ハンドによる前記基板の搬送中において、前記基板搬送ハンドによって搬送される前記基板を前記撮影部により下方から撮影する制御を行う、項目1から項目11までのいずれか1項に記載の基板搬送ロボットシステム。
 (項目13)
 基板を搬送する基板搬送ハンドと、
 前記基板搬送ハンドより下方に配置される撮影部と、
 制御部と、を備え、
 前記制御部は、前記基板の搬送中に前記撮影部により下方から撮影された画像に基づいて、前記基板搬送ハンドによって搬送される前記基板におけるノッチまたはオリエンテーションフラットの位置情報を取得する、基板搬送ロボット。

Claims (13)

  1.  基板を搬送する基板搬送ハンドと、
     撮影部と、
     制御部と、を備え、
     前記制御部は、前記基板の搬送中に前記撮影部によって前記基板搬送ハンドより下方から撮影された画像に基づいて、前記基板搬送ハンドによって搬送される前記基板におけるノッチまたはオリエンテーションフラットの位置情報を取得する、基板搬送ロボットシステム。
  2.  上方から見て、前記基板搬送ハンドによる前記基板の搬送経路とオーバーラップする位置において、前記基板搬送ハンドによって搬送される前記基板を、前記撮影部によって前記基板搬送ハンドよりも下方から撮影する、請求項1に記載の基板搬送ロボットシステム。
  3.  前記撮影部は、前記基板搬送ハンドよりも下方に配置される、請求項1に記載の基板搬送ロボットシステム。
  4.  前記基板の外周端と前記基板搬送ハンドとが下方から見てオーバーラップする部分における前記基板の外形形状を検出するセンサ部をさらに備え、
     前記制御部は、前記基板の搬送中に前記撮影部により下方から撮影された画像、および、前記基板の搬送中における前記センサ部の検出結果に基づいて、前記基板搬送ハンドによって搬送される前記基板におけるノッチまたはオリエンテーションフラットの位置情報を取得する、請求項1に記載の基板搬送ロボットシステム。
  5.  前記センサ部は、
      前記基板の外周端と前記基板搬送ハンドとが下方から見てオーバーラップする部分に対して、レーザ光を照射する照射部と、
      前記照射部から照射されたレーザ光を検出する検出部とを含む、請求項4に記載の基板搬送ロボットシステム。
  6.  前記基板搬送ハンドが取り付けられ、前記基板搬送ハンドより下方に配置される水平多関節ロボットアームをさらに備え、
     前記撮影部は、前記水平多関節ロボットアームに配置されている、請求項3に記載の基板搬送ロボットシステム。
  7.  前記水平多関節ロボットアームは、
      第1アームと、
      前記第1アームの上方に配置されるとともに、前記第1アームに対して接続される第2アームとを含み、
     前記撮影部は、前記第2アームの上面に配置されている、請求項6に記載の基板搬送ロボットシステム。
  8.  前記基板搬送ハンドは、
      前記第2アームの上方に配置される第1ハンドと、
      前記第1ハンドの上方に配置される第2ハンドとを含み、
      前記基板の搬送中において、前記第1ハンドおよび前記第2ハンドのうちの一方が前記基板を収納する基板収納部に侵入する際に、前記基板を保持した状態の前記第1ハンドおよび前記第2ハンドのうちの他方を、前記第2アームの上方にオーバーラップする退避位置に退避させており、
     前記制御部は、前記基板の搬送中に、前記退避位置に退避した際の前記基板を下方から撮影した画像に基づいて、前記基板搬送ハンドによって搬送される前記基板におけるノッチまたはオリエンテーションフラットの位置情報を取得する、請求項7に記載の基板搬送ロボットシステム。
  9.  前記基板搬送ハンドが取り付けられ、前記基板搬送ハンドより下方に配置される水平多関節ロボットアームと、
     前記水平多関節ロボットアームの下方に配置され、前記水平多関節ロボットアームが取り付けられるベース部と、をさらに備え、
     前記撮影部は、
      前記基板搬送ハンドより下方に配置される前記ベース部において、上方から見て、前記基板搬送ハンドによる前記基板の搬送経路とオーバーラップする位置に配置されている、請求項3に記載の基板搬送ロボットシステム。
  10.  前記撮影部は、
      前記基板搬送ハンドより下方の床面において、上方から見て、前記基板搬送ハンドによる前記基板の搬送経路とオーバーラップする位置に配置されている、請求項3に記載の基板搬送ロボットシステム。
  11.  前記制御部は、取得した前記基板におけるノッチまたはオリエンテーションフラットの位置情報を、前記基板が搬送される搬送先装置を制御する制御装置に対して出力する、請求項1に記載の基板搬送ロボットシステム。
  12.  前記制御部は、前記基板におけるノッチまたはオリエンテーションフラットの位置情報を取得に加えて、前記基板搬送ハンドによる前記基板の搬送中において、前記基板搬送ハンドによって搬送される前記基板を前記撮影部により下方から撮影する制御を行う、請求項1から請求項11までのいずれか1項に記載の基板搬送ロボットシステム。
  13.  基板を搬送する基板搬送ハンドと、
     前記基板搬送ハンドより下方に配置される撮影部と、
     制御部と、を備え、
     前記制御部は、前記基板の搬送中に前記撮影部により下方から撮影された画像に基づいて、前記基板搬送ハンドによって搬送される前記基板におけるノッチまたはオリエンテーションフラットの位置情報を取得する、基板搬送ロボット。
PCT/JP2023/015356 2022-04-26 2023-04-17 基板搬送ロボットシステムおよび基板搬送ロボット WO2023210429A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-072399 2022-04-26
JP2022072399A JP2023161815A (ja) 2022-04-26 2022-04-26 基板搬送ロボットシステムおよび基板搬送ロボット

Publications (1)

Publication Number Publication Date
WO2023210429A1 true WO2023210429A1 (ja) 2023-11-02

Family

ID=88518593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015356 WO2023210429A1 (ja) 2022-04-26 2023-04-17 基板搬送ロボットシステムおよび基板搬送ロボット

Country Status (2)

Country Link
JP (1) JP2023161815A (ja)
WO (1) WO2023210429A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004063668A (ja) * 2002-07-26 2004-02-26 Juki Corp 基板搬送装置
JP2004193344A (ja) * 2002-12-11 2004-07-08 Tokyo Electron Ltd 基板搬送装置及び基板搬送方法
JP2006332460A (ja) * 2005-05-27 2006-12-07 Hitachi High-Tech Control Systems Corp ウェーハの搬送装置
JP2009088184A (ja) * 2007-09-28 2009-04-23 Yamatake Corp 画像処理装置
JP2011134820A (ja) * 2009-12-24 2011-07-07 Canon Anelva Corp ウェハー搬送ロボット、及び、それを備えた基板処理装置
JP2019530225A (ja) * 2016-09-08 2019-10-17 ブルックス オートメーション インコーポレイテッド 基板処理装置
JP2019201112A (ja) * 2018-05-16 2019-11-21 東京エレクトロン株式会社 搬送方法および搬送装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004063668A (ja) * 2002-07-26 2004-02-26 Juki Corp 基板搬送装置
JP2004193344A (ja) * 2002-12-11 2004-07-08 Tokyo Electron Ltd 基板搬送装置及び基板搬送方法
JP2006332460A (ja) * 2005-05-27 2006-12-07 Hitachi High-Tech Control Systems Corp ウェーハの搬送装置
JP2009088184A (ja) * 2007-09-28 2009-04-23 Yamatake Corp 画像処理装置
JP2011134820A (ja) * 2009-12-24 2011-07-07 Canon Anelva Corp ウェハー搬送ロボット、及び、それを備えた基板処理装置
JP2019530225A (ja) * 2016-09-08 2019-10-17 ブルックス オートメーション インコーポレイテッド 基板処理装置
JP2019201112A (ja) * 2018-05-16 2019-11-21 東京エレクトロン株式会社 搬送方法および搬送装置

Also Published As

Publication number Publication date
JP2023161815A (ja) 2023-11-08

Similar Documents

Publication Publication Date Title
JP7097691B2 (ja) ティーチング方法
KR102125839B1 (ko) 위치검출장치, 위치검출방법, 및 증착장치
TWI517292B (zh) 基板處理裝置及基板處理方法
KR100772843B1 (ko) 웨이퍼 얼라인 장치 및 방법
TWI619586B (zh) 基板搬送機器人及基板檢測方法
JP2008306162A (ja) 処理装置、処理方法、被処理体の認識方法および記憶媒体
US20090016857A1 (en) Substrate-replacing apparatus, substrate-processing apparatus, and substrate-inspecting apparatus
KR102560788B1 (ko) 주변 노광 장치, 주변 노광 방법, 프로그램, 및 컴퓨터 기억 매체
JP2011134898A (ja) 基板処理装置、基板処理方法及び記憶媒体
TWI702682B (zh) 搬運機構、電子零件製造裝置及電子零件的製造方法
TWI417977B (zh) 基材處理裝置與基材收納方法
TWI744148B (zh) 電子構件的處理裝置
WO2021161582A1 (ja) 基板搬送装置及び基板位置ずれ測定方法
WO2023210429A1 (ja) 基板搬送ロボットシステムおよび基板搬送ロボット
TWI758383B (zh) 攝影裝置、凸塊檢查裝置以及攝影方法
JP5859263B2 (ja) 荷電粒子ビーム描画装置および荷電粒子ビーム描画方法
TW202411037A (zh) 基板搬送機器人系統及基板搬送機器人
US20210074567A1 (en) Automatic Teaching of Substrate Handling for Production and Process-Control Tools
JP2013004927A (ja) ウェーハマッピング装置およびウェーハマッピング方法
WO2023026917A1 (ja) 基板搬送ロボットおよび基板搬送ロボットの制御方法
WO2024080332A1 (ja) 基板搬送ロボットシステム
JP2011138859A (ja) 真空処理装置、および半導体デバイスの製造方法。
WO2023210561A1 (ja) 半導体製造装置システム
TW202408757A (zh) 半導體製造裝置系統
KR20230104695A (ko) 기판 반송 로봇의 제어 장치 및 관절 모터의 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796172

Country of ref document: EP

Kind code of ref document: A1