WO2024080332A1 - 基板搬送ロボットシステム - Google Patents

基板搬送ロボットシステム Download PDF

Info

Publication number
WO2024080332A1
WO2024080332A1 PCT/JP2023/037070 JP2023037070W WO2024080332A1 WO 2024080332 A1 WO2024080332 A1 WO 2024080332A1 JP 2023037070 W JP2023037070 W JP 2023037070W WO 2024080332 A1 WO2024080332 A1 WO 2024080332A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrates
substrate
amount
robot arm
mounting
Prior art date
Application number
PCT/JP2023/037070
Other languages
English (en)
French (fr)
Inventor
泰希 今西
真也 北野
敦史 中矢
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Publication of WO2024080332A1 publication Critical patent/WO2024080332A1/ja

Links

Images

Definitions

  • This disclosure relates to a substrate transfer robot system, and in particular to a substrate transfer robot system equipped with a substrate holding hand that holds multiple substrates.
  • Japanese Patent No. 6833685 discloses a substrate processing apparatus equipped with a transfer robot that transfers substrates. An end effector that holds a substrate is disposed on the arm of the transfer robot.
  • the substrate processing apparatus of Japanese Patent No. 6833685 has a reference surface that is disposed in a predetermined positional relationship with respect to the substrate holding position to which the substrate is transferred.
  • the substrate processing apparatus moves the substrate on the end effector by bringing the substrate held by the end effector into contact with this reference surface, thereby changing the eccentricity between the end effector and the substrate.
  • the substrate holding position is taught to the transfer robot based on the measured change in eccentricity and the positional relationship between the substrate holding position and the reference surface.
  • the substrate processing apparatus of Japanese Patent No. 6833685 discloses an example in which the substrate on the end effector is brought into contact with a predetermined contact surface or pin, etc., to shift the substrate to a predetermined position relative to the end effector.
  • the above-mentioned Patent Publication No. 6833685 discloses an example in which an end effector that holds two substrates side-by-side in a transfer robot is arranged on one arm, thereby transporting two substrates together.
  • the position of the substrate held by the hand when a substrate is transported as in the transfer robot of the substrate processing apparatus described in the above Patent No. 6833685, the position of the substrate held by the hand, which is the end effector, may be shifted on the hand.
  • the substrate when holding the substrate for transport, the substrate may be held in a state where it is shifted from a predetermined position relative to the hand.
  • the amount of positional shift on the hand may differ for each of the multiple substrates. In that case, when each of the multiple substrates on the hand is moved by bringing the substrate into contact with a member other than the substrate, such as a predetermined contact surface or pin, as in the above Patent No.
  • This disclosure has been made to solve the problems described above, and one objective of this disclosure is to provide a substrate transport robot system that can transport multiple substrates with high precision while minimizing contact with components other than the substrates.
  • a substrate transport robot system includes a substrate holding hand having a plurality of holding parts for holding each of a plurality of substrates, a robot arm to which the substrate holding hand is attached, and a control unit that acquires an amount of deviation of each of the plurality of substrates from a predetermined reference position based on a detection result by a detection unit that detects each of the plurality of substrates held by the substrate holding hand, and controls a transport operation of the robot arm that transports the plurality of substrates so that each of the plurality of substrates is at least one of separately loaded onto a loading part and separately unloaded from the loading part based on each acquired amount of deviation.
  • the substrate transport robot system is equipped with a control unit that acquires the amount of misalignment of each of the multiple substrates relative to a predetermined reference position based on the detection results of a detection unit that detects each of the multiple substrates held by the substrate holding hand, and controls the transport operation of the robot arm that transports the multiple substrates so that each of the multiple substrates is at least one of separately loaded onto the mounting unit and separately unloaded from the mounting unit based on each acquired amount of misalignment.
  • the control unit controls the transport operation of the robot arm based on the amount of misalignment, so that each of the multiple substrates can be transported in a manner that corrects the misalignment of the substrates without changing the relative position of each of the multiple substrates relative to the substrate holding hand.
  • the multiple substrates can be transported with high precision while suppressing contact with members other than the substrates.
  • multiple substrates can be transported with high precision while minimizing contact with components other than the substrates.
  • FIG. 1 is a schematic diagram showing an overall configuration of a substrate processing system including a substrate transport robot system according to an embodiment
  • 1 is a block diagram showing a configuration of a substrate processing system including a substrate transport robot system.
  • FIG. 1 is a perspective view that illustrates a substrate transport robot system.
  • 1A and 1B are diagrams for explaining the configuration of a mounting section in a load lock section;
  • 11A and 11B are diagrams for explaining the configuration of a mounting part in each of a plurality of processing module parts.
  • 5A and 5B are diagrams for explaining detection of a substrate in a detection unit.
  • 13A to 13C are views for explaining the operation of transporting a substrate to each of the mounting parts of the plurality of processing module parts.
  • FIG. 13A and 13B are diagrams for explaining the operation of transporting a substrate to a mounting portion of a load lock unit.
  • FIG. 11 is a flowchart for explaining a control process of a substrate transport method by the substrate transport robot system.
  • 13A and 13B are schematic diagrams for explaining a processing module section according to a modified example of an embodiment of the present disclosure.
  • a substrate transfer robot system 100 transfers a substrate 10 in a substrate processing system 101.
  • the substrate processing system 101 includes the substrate transfer robot system 100, a load lock unit 102, and a plurality of processing module units 103.
  • the substrate processing system 101 includes four processing module units 103.
  • the substrate processing system 101 also includes a transfer chamber 104 and a load/unload chamber 105.
  • the substrate processing system 101 performs processing on a substrate 10 such as a semiconductor wafer or a printed circuit board.
  • the substrate 10 is, for example, a glass substrate or a silicon substrate having a substantially disk shape.
  • Each of the multiple processing module sections 103 performs processing such as coating a resist or etching on the substrate 10.
  • the multiple processing module sections 103 are arranged along the outer periphery of the transfer chamber 104.
  • the inside of the transfer chamber 104 is maintained at a predetermined vacuum level.
  • the substrate processing system 101 is a multi-chamber type vacuum processing apparatus.
  • a load lock section 102 is provided on the outer periphery of the transfer chamber 104.
  • a load/unload chamber 105 is provided on the opposite side of the load lock section 102 to the transfer chamber 104.
  • Three ports are provided on the opposite side of the load lock section 102 to the load lock section 102 for attaching carriers 106 capable of accommodating the substrate 10.
  • the substrate transport robot system 100 transports the substrate 10 out of the processing module section 103 where the substrate 10 is processed, and transports the substrate 10 into the processing module section 103.
  • the substrate 10 is transported from the carrier 106 to the load lock section 102 by a transport robot (not shown) arranged in the loading/unloading chamber 105.
  • the substrate transport robot system 100 of this embodiment transports the substrate 10 from the load lock section 102 to each of the multiple processing module sections 103.
  • the substrate 10 that has been processed in each of the multiple processing module sections 103 is transported from each of the multiple processing module sections 103 to the load lock section 102 by the substrate transport robot system 100.
  • the substrate 10 that has been processed is transported from the load lock section 102 to the carrier 106 by a transport robot (not shown) arranged in the loading/unloading chamber 105.
  • the carrier 106 stores multiple substrates 10.
  • the substrate transport robot system 100 includes a transport robot 20 and a control unit 30.
  • the transport robot 20 has a robot arm 21 and a robot arm 22.
  • the robot arm 21 and the robot arm 22 are respectively equipped with a substrate holding hand 23 and a substrate holding hand 24.
  • the transport robot 20 is disposed approximately in the center of the transport chamber 104.
  • the robot arm 21 and the robot arm 22 are examples of a first robot arm and a second robot arm, respectively.
  • the control unit 30 is a computer having, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), and a ROM (Read Only Memory).
  • the control unit 30 also has a storage device including a flash memory such as an SSD (Solid State Drive).
  • the control unit 30 may be located at a position separated from the transport robot 20, or may be located integrally with the transport robot 20.
  • the control unit 30 controls the operation of each part of the substrate transport robot system 100 based on programs and parameters previously stored in the storage device. In this embodiment, the control unit 30 controls the transport operation of each of the robot arms 21 and 22 that transport multiple substrates 10.
  • the control unit 30 controls the transport operation of the substrate 10 based on a control signal from a higher-level control device (not shown) that controls the entire substrate processing system 101. The control of the transport operation by the control unit 30 will be described in detail later.
  • the transport robot 20 is a horizontal multi-joint type wafer transport robot that loads and unloads the substrate 10 between the load lock section 102 and the processing module section 103.
  • Each of the robot arms 21 and 22 rotates and expands and contracts by driving multiple joints.
  • Each of the robot arms 21 and 22 operates separately through control processing by the control section 30.
  • each of the robot arms 21 and 22 has two arm sections that are connected to each other.
  • Each of the robot arms 21 and 22 has a servo motor as a drive source.
  • Each of the robot arms 21 and 22 has an encoder that acquires the rotation speed of the servo motor.
  • the control section 30 controls the operation of each of the robot arms 21 and 22 through feedback control based on the output from this encoder.
  • each of the robot arms 21 and 22 has a substrate holding hand 23 and a substrate holding hand 24 attached to one end of the two mutually connected arm parts, and is connected to a common base part 25 at the other end.
  • Each of the robot arms 21 and 22 rotates and expands and contracts separately with respect to the base part 25.
  • the base part 25 also has a linear motion mechanism that moves each of the robot arms 21 and 22 separately in the vertical direction. This linear motion mechanism has, for example, a servo motor as a drive source.
  • Each of the substrate holding hands 23 and 24 holds a pair of substrates 10.
  • the substrate holding hand 23 has a pair of holding portions 23a and 23b.
  • the substrate holding hand 24 has a pair of holding portions 24a and 24b.
  • Each of the holding portions 23a and 23b holds each of the pair of substrates 10. That is, each of the holding portions 23a and 23b holds one substrate 10.
  • the holding portions 24a and 24b hold one substrate 10 each.
  • Each of the holding portions 23a, 23b, 24a, and 24b is a thin support plate that supports the substrates 10.
  • Each of the holding parts 23a, 23b, 24a, and 24b has a U-shape with a bifurcated tip, and supports the back surface of the outer edge of the substantially disk-shaped substrate 10 from below in the vertical direction.
  • Each of the substrate holding hands 23 and 24 does not have an actuator that drives the substrate 10 held by each of the holding parts 23a, 23b, 24a, and 24b to fix the substrate 10, and is a passive type end effector that supports the substrate 10 from below in the vertical direction without fixing it.
  • the pair of substrates 10 are held in a state where they are aligned left and right along a horizontal plane.
  • the holding portions 23a and 23b, and the holding portions 24a and 24b are integrally formed. That is, in each of the substrate holding hands 23 and 24, the pair of substrates 10 are held in a state where their relative positional relationship is fixed.
  • the substrate transport robot system 100 transports the pair of substrates 10 held by the substrate holding hand 23 as a whole by operating the robot arm 21.
  • the substrate transport robot system 100 transports the pair of substrates 10 held by the substrate holding hand 24 as a whole by operating the robot arm 22.
  • the configuration of the substrate holding hand 23 and the configuration of the substrate holding hand 24 are common to each other.
  • the distance D1 between the centers of the positions at which the substrates 10 are held by the holding portions 23a and 23b of the substrate holding hand 23 and the distance D2 between the centers of the positions at which the substrates 10 are held by the holding portions 24a and 24b of the substrate holding hand 24 are approximately equal to each other.
  • the substrate 10 is placed on the placement unit 40.
  • the placement unit 40 has a pair of placement units 41 and 42 that are approximately equal in height, which is the vertical position of the placement position.
  • Each of the substrate holding hands 23 and 24 collectively holds the substrates 10 placed on the placement units 41 and 42, respectively.
  • the distance D3 between the centers of the positions at which the substrates 10 are held on the placement units 41 and 42 is approximately equal to the distance D1 between the placement units 23a and 23b, and the distance D2 between the placement units 24a and 24b.
  • each of the processing module sections 103 has a mounting section 50 on which the substrate 10 is placed.
  • each of the processing module sections 103 is configured to process two substrates 10 at a time. That is, in each of the processing module sections 103, two substrates 10 are placed on the mounting section 50.
  • each of the processing module sections 103 has, as the mounting section 50, a pair of mounting sections 51 and 52 having different mounting position heights.
  • the pair of mounting sections 51 and 52 have different heights, which are the vertical positions of the mounting positions.
  • the mounting section 52 has a lower mounting position height than the mounting section 51.
  • the positional relationship in the horizontal direction is the same as that of the mounting section 41 and the mounting section 42.
  • placement units 51 and 52 are arranged with the centers of the positions where the substrate 10 is held separated by a distance D4, which is approximately equal to the distance D1 in the holders 23a and 23b and the distance D2 in the holders 24a and 24b. Therefore, the distance D4 in each of the multiple processing module units 103 is approximately equal to the distance D3 in the load lock unit 102.
  • the substrate transport robot system 100 transports pairs of substrates 10 between the load lock unit 102 and each of the multiple processing module units 103 by separately operating the two robot arms 21 and 22. That is, in the substrate transport robot system 100, the substrates 10 are transported in pairs between the two placement units 41 and 42 of the load lock unit 102 and the two placement units 51 and 52 of each of the processing module units 103.
  • the substrate processing system 101 includes a detection unit 60.
  • the detection unit 60 detects each of the pair of substrates 10 held by each of the substrate holding hands 23 and 24 of the transfer robot 20.
  • the detection unit 60 detects each of the pair of substrates 10 for each of the robot arms 21 and 22.
  • the detection unit 60 includes a plurality of transmissive laser sensors.
  • the detection unit 60 includes, as a transmissive laser sensor, a light-emitting unit having a light source such as an LED (Light-Emitting Diode) that irradiates laser light, and a light-receiving unit having a light-receiving element such as a CCD (Charge Coupled Device) image sensor.
  • the detection unit 60 is disposed on the load lock unit 102 side and on each side of the plurality of processing module units 103 in the transfer chamber 104 of the substrate processing system 101.
  • the detection unit 60 is disposed with respect to the placement unit 40 or placement unit 50 so that the position through which the substrate 10 passes during the transfer operation is the detection target area. That is, the detection unit 60 is positioned so as to detect the position through which the substrate 10 passes before the placement unit 40 and the placement unit 50 when the substrate 10 held by each of the substrate holding hands 23 and 24 is transported toward the placement unit 40 or the placement unit 50.
  • detectors 60 are arranged on each of the placement units 40 and 50 on which a pair of substrates 10 are placed. That is, a pair of detectors 60, which are transmissive laser sensors including a pair of a light-emitting unit and a light-receiving unit, is arranged on each of the placement units 41 and 42 of the placement unit 40 on which one substrate 10 is placed, or on each of the placement units 51 and 52 of the placement unit 50.
  • a pair of detectors 60 which are transmissive laser sensors including a pair of a light-emitting unit and a light-receiving unit, is arranged on each of the placement units 41 and 42 of the placement unit 40 on which one substrate 10 is placed, or on each of the placement units 51 and 52 of the placement unit 50.
  • one substrate 10 is detected by a pair of detectors 60.
  • a pair of substrates 10 is transported to each of the four processing module units 103 and one load lock unit 102.
  • each of the multiple detectors 60 outputs a detection result indicating that the substrate 10 has been detected to the controller 30.
  • FIG. 6 illustrates an example in which the substrate 10 is transported to the placement unit 50 of the processing module unit 103 by the substrate holding hand 23, the same applies to the case of transport by the substrate holding hand 24 and the case of transport to the placement unit 40.
  • control unit 30 controls the transport operations of the robot arms 21 and 22 based on the detection result by the detection unit 60 so that each of the pair of substrates 10 is separately carried into the mounting units 41 and 42 of the mounting unit 40 and the mounting units 51 and 52 of the mounting unit 50. Note that since the control of the transport operation of the robot arm 21 and the control of the transport operation of the robot arm 22 are similar to each other, in the following description, only the control of the transport operation of the robot arm 21 will be described, and the description of the control of the transport operation of the robot arm 22 will be omitted.
  • the control unit 30 acquires the amount of misalignment of each of the pair of substrates 10 held by the substrate holding hand 23 relative to a predetermined reference position based on the detection result by the detection unit 60.
  • the control unit 30 acquires the amount of misalignment of each of the pair of substrates 10 relative to the substrate holding hand 23 based on the detection result by the detection unit 60.
  • the acquired "amount of misalignment” includes the magnitude and direction of the positional misalignment relative to the substrate holding hand 23 along the horizontal plane.
  • the control unit 30 calculates the positions of four points on the periphery of one substrate 10 based on the detection results from the two detection units 60 in order to obtain the amount of deviation of one substrate 10 relative to the substrate holding hand 23.
  • the control unit 30 stores in advance the positions that are the detection targets of the detection units 60.
  • the control unit 30 obtains the positions of the four points on the periphery of the substrate 10 by obtaining the positions that are the detection targets of the detection units 60 and the speed at which the substrate holding hand 23 is moved.
  • the control unit 30 calculates a circle that passes through three of the four obtained points as the substrate 10. Since there are four ways to select three points from the four points, the control unit 30 calculates four circles from the obtained positions of the four points. The control unit 30 obtains the average position of the center points of these four circles as the center position of the substrate 10 held by the substrate holding hand 23. If any of the four positions of the peripheral portion of the substrate 10 is detected as being outside a predetermined range, it may be excluded as a notch portion or orientation flat portion as a position reference, and the center of the circle passing through the remaining three points may be set as the center position of the substrate 10. The control unit 30 may also determine whether an abnormality has occurred in the transportation of the substrate 10 by determining whether the substrate 10 is placed at a position outside a predetermined range in the substrate holding hand 23.
  • control unit 30 calculates the central position of each of the pair of substrates 10 held by the substrate holding hand 23.
  • the control unit 30 then stores the detection result by the detection unit 60 in advance when the substrates 10 are not misaligned in the substrate holding hand 23 as a reference position.
  • control unit 30 calculates the amount of misalignment of the substrates 10 relative to the substrate holding hand 23 by comparing the detection result by the detection unit 60 with the previously stored reference position.
  • control unit 30 controls the transport operation of the robot arm 21 based on the amount of misalignment of each of the pair of substrates 10 obtained after being held by the substrate holding hand 23, so that each of the pair of substrates 10 held by each of the pair of holding portions 23a and 23b in the substrate holding hand 23 is separately placed on the placement portion 40 or the placement portion 50.
  • the control unit 30 sequentially places each of the pair of substrates 10 on each of the pair of placement units 51 and 52 based on the acquired deviation amount of each of the pair of substrates 10.
  • the pair of substrates 10 held by the substrate holding hand 23 one substrate 10 held by the holding unit 23a and placed on the placement unit 51 having a relatively high placement position height is referred to as substrate 10a.
  • substrate 10b The other substrate 10 held by the holding unit 23b and placed on the placement unit 52 having a relatively low placement position height.
  • the substrates 10a and 10b are examples of the first substrate and the second substrate, respectively.
  • the control unit 30 obtains the amount of misalignment of each of the substrates 10a and 10b based on the detection results by the detection unit 60. Then, when the pair of substrates 10, substrates 10a and 10b, are separately transported to the mounting units 51 and 52, respectively, the control unit 30 controls the transport operation of the robot arm 21 so that the substrate 10a is placed on the mounting unit 51 based on the amount of misalignment of the substrate 10a. After that, after the substrate 10a is placed on the mounting unit 51, the control unit 30 controls the transport operation of the robot arm 21 so that the substrate 10b is placed on the mounting unit 52 based on the amount of misalignment of the substrate 10b.
  • the control section 30 controls the transport operation of the robot arm 21 to move the substrate holding hand 23 holding the substrates 10a and 10b toward the mounting sections 51 and 52, which are the mounting sections 50 of the processing module section 103.
  • the detection section 60 arranged on the processing module section 103 side detects each of the substrates 10a and 10b, and the control section 30 obtains the amount of deviation of each of the substrates 10a and 10b based on the detection results by the detection section 60.
  • the control section 30 operates the robot arm 21 so that the substrate 10a held by one of the holding sections 23a of the substrate holding hand 23 is positioned directly above the position where the substrate 10a is placed on the mounting section 51, while correcting the transport operation of the robot arm 21 based on the obtained amount of deviation of the substrate 10a, relative to the preset position of the mounting section 51. Then, the control unit 30 lowers the robot arm 21 vertically downward so that the substrate 10a is placed on the placement unit 51.
  • the control unit 30 After the substrate 10a is placed on the placement unit 51, the control unit 30 operates the robot arm 21 so that the substrate 10b held by the holding unit 23b of the substrate holding hand 23 is positioned directly above the position where the substrate 10b is placed on the placement unit 52 based on the acquired amount of deviation of the substrate 10b. At this time, the control unit 30 moves the substrate holding hand 23 along the horizontal plane so as to adjust the position of the substrate 10b in the horizontal plane while holding the substrate 10b at a height between the placement units 51 and 52 in the vertical direction. Then, the control unit 30 lowers the robot arm 21 vertically downward so that the substrate 10b is placed on the placement unit 52. After the substrate 10b is placed on the placement unit 52, the control unit 30 operates the robot arm 21 so that the substrate holding hand 23 moves away from the processing module unit 103.
  • the control unit 30 places each of the pair of substrates 10 substantially simultaneously on each of the pair of mounting parts 41 and 42 based on the amount of misalignment of each of the pair of substrates 10. Specifically, the control unit 30 controls the transport operation of the robot arm 21 so that each of the pair of substrates 10 is substantially simultaneously placed on each of the pair of mounting parts 41 and 42 based on the average value of the amount of misalignment of each of the pair of substrates 10.
  • the control section 30 controls the transport operation of the robot arm 21 to move the substrate holding hand 23 holding the pair of substrates 10 toward the placement sections 41 and 42, which are the placement sections 40 of the load lock section 102.
  • the detection section 60 detects each of the pair of substrates 10, and the control section 30 obtains the amount of misalignment of each of the pair of substrates 10 based on the detection results by the detection section 60.
  • the control section 30 then calculates the average amount of misalignment of each of the pair of substrates 10, and corrects the transport operation of the robot arm 21 based on the calculated average amount of misalignment.
  • control section 30 operates the robot arm 21 so that the positions of both of the pair of substrates 10 held by the substrate holding hand 23 are corrected in the same direction by the magnitude of the average amount of misalignment vertically above the placement sections 41 and 42. Then, the control unit 30 lowers the robot arm 21 vertically downward so that the pair of substrates 10 are placed on the placement units 41 and 42 at approximately the same time. After the pair of substrates 10 are placed on the placement units 41 and 42, the control unit 30 operates the robot arm 21 so that the substrate holding hand 23 moves away from the load lock unit 102.
  • the control of the transport operation of the robot arm 22 when transporting a pair of substrates 10 held by the substrate holding hand 24 is similar.
  • the control unit 30 acquires the amount of misalignment of each of the pair of substrates 10 for each of the robot arms 21 and 22 based on the detection results by the detection unit 60.
  • the control unit 30 also controls the transport operation of each of the robot arms 21 and 22 based on the acquired amount of misalignment of each of the pair of substrates 10 for each of the robot arms 21 and 22 so that each of the pair of substrates 10 is separately placed on each of the placement units 41 and 42 of the placement unit 40, or each of the placement units 51 and 52 of the placement unit 50.
  • the control unit 30 controls the transport operation of the robot arm 21 and the transport operation of the robot arm 22 so that they are performed alternately.
  • Control process of substrate transport method 9 a control process for the substrate transport method by the substrate transport robot system 100 will be described.
  • the control process for the substrate transport method is executed by the control unit 30.
  • step S1 the substrates 10 placed on the placement sections 41 and 42 of the load lock section 102 are held by the holding sections 23a and 23b of the substrate holding hand 23, respectively.
  • step S2 the operation of the robot arm 21 is controlled to move the substrate holding hand 23 toward one of the multiple processing module parts 103.
  • step S3 the detection unit 60 arranged on the processing module section 103 side detects the pair of substrates 10 held by each of the holding portions 23a and 23b of the substrate holding hand 23, thereby obtaining the detection result from the detection unit 60.
  • step S4 the amount of misalignment of the pair of substrates 10 relative to each of the substrate holding hands 23 is obtained based on the detection results obtained from the detection unit 60.
  • step S5 the transport operation of the robot arm 21 is controlled so that the substrate 10 is sequentially placed on each of the placement parts 51 and 52, which are the placement parts 50 of each of the multiple processing module parts 103, based on the acquired deviation amount.
  • the substrate 10a based on the deviation amount of the substrate 10a, which is the substrate 10 held by the holding part 23a of the substrate holding hand 23, the substrate 10a is placed on the placement part 51, which is a relatively high placement position.
  • the substrate 10b is placed on the placement part 52, which is a relatively low placement position.
  • step S6 the substrate holding hand 23 is moved away from the mounting section 50 of the processing module section 103.
  • step S7 after the processing of the substrates 10 is completed in the processing module section 103, the substrates 10 placed one by one on each of the placement sections 51 and 52 of the placement section 50 of the processing module section 103 are held by the holding sections 23a and 23b of the substrate holding hand 23, respectively.
  • step S8 the operation of the robot arm 21 is controlled to move the substrate holding hand 23 toward the load lock unit 102.
  • step S9 the detection unit 60 arranged on the load lock unit 102 side detects the pair of substrates 10 held by each of the holding units 23a and 23b of the substrate holding hand 23, thereby obtaining the detection result from the detection unit 60.
  • step S10 similar to step S4, the amount of misalignment of the pair of substrates 10 relative to each of the substrate holding hands 23 is obtained based on the detection results obtained from the detection unit 60.
  • step S11 the transport operation of the robot arm 21 is controlled based on the acquired amount of misalignment so that the substrates 10 are placed on each of the placement parts 41 and 42, which are the placement parts 40 of the load lock part 102, at approximately the same time.
  • the pair of substrates 10 are placed on the placement parts 41 and 42 at approximately the same time based on the average value of the amount of misalignment of each of the pair of substrates 10 held by the substrate holding hand 23.
  • step S12 the substrate holding hand 23 is moved away from the placement section 40 of the load lock section 102.
  • steps S1 to S12 an example is described in which the robot arm 21 to which the substrate holding hand 23 is attached is operated, but the same applies to the case in which the robot arm 22 to which the substrate holding hand 24 is attached is operated.
  • the steps of transporting a pair of substrates 10 to the processing module section 103 from step S1 to step S6 may be performed multiple times for each processing module section 103 for the number of processing module sections 103, and then the steps of transporting a pair of substrates 10 to the load lock section 102 from step S7 to step S12 may be repeated the number of times for the number of processing module sections 103.
  • the robot arm 21 to which the substrate holding hand 23 is attached and the robot arm 22 to which the substrate holding hand 24 is attached may be operated alternately.
  • the control unit 30 obtains the amount of misalignment of each of the substrates 10 relative to a predetermined reference position based on the detection results by the detection unit 60 that detects each of the substrates 10 held by the substrate holding hands 23 and 24, and controls the transport operation of the robot arms 21 and 22 that transport the substrates 10 so that each of the substrates 10 is separately transported to the placement unit 40 or the placement unit 50 based on the obtained amount of misalignment.
  • the control unit 30 controls the transport operation of the robot arms 21 and 22 based on the amount of misalignment, so that each of the substrates 10 can be transported so as to correct the misalignment without changing the relative position of each of the substrates 10 relative to the substrate holding hands 23 and 24.
  • the substrates 10 can be transported with high precision while suppressing contact with members other than the substrates 10.
  • Each of the multiple substrates 10 is held by substrate holding hand 23, which has multiple holding portions 23a and 23b formed integrally therewith, and substrate holding hand 24, which has multiple holding portions 24a and 24b formed integrally therewith, in a state where they are lined up side by side along a horizontal plane, and control unit 30 controls the transport operation of robot arms 21 and 22 based on the respective acquired deviation amounts so that each of the multiple substrates 10 held by the multiple holding portions 23a and 23b formed integrally in substrate holding hand 23 is transported separately to mounting portion 40 or mounting portion 50, and each of the multiple substrates 10 held by the multiple holding portions 24a and 24b formed integrally in substrate holding hand 24 is transported separately to mounting portion 40 or mounting portion 50.
  • the holding portions 23a and 23b are integrally formed so that the multiple substrates 10 held by them do not move relative to each other, and even when the holding portions 24a and 24b are integrally formed, the multiple substrates 10 can be transported with high precision while preventing contact with members other than the substrates 10.
  • the control unit 30 When the control unit 30 loads each of the multiple substrates 10 separately onto each of the multiple placement units 51 and 52 having different placement position heights during the transport operation of the robot arms 21 and 22, the control unit 30 sequentially places each of the multiple substrates 10 on each of the multiple placement units 51 and 52 based on the amount of misalignment of each of the multiple substrates 10. By sequentially placing the substrates 10 on each of the multiple placement units 51 and 52 having different placement position heights, the substrates 10 can be placed one by one while being aligned sequentially onto each of the multiple placement units 51 and 52 based on the acquired amount of misalignment.
  • the substrates 10 can be placed on the placement units 51 and 52 in order to correspond to the amount of misalignment of each of the multiple substrates 10. Therefore, when transporting multiple substrates 10, the substrates 10 can be transported more accurately while suppressing contact with members other than the substrates 10.
  • the substrate holding hand 23 has a pair of holding parts 23a and 23b that hold each of the pair of substrates 10, the substrate holding hand 24 has a pair of holding parts 24a and 24b that hold each of the pair of substrates 10, the placement part 50 includes a placement part 51 on which substrate 10a, one of the pair of substrates 10, is placed, and a placement part 52, separate from the placement part 51, on which substrate 10b, the other of the pair of substrates 10, is placed and whose placement position is lower than that of placement part 51, and a control part 30 acquires the amount of misalignment of each of the substrates 10a and 10b based on the detection result by the detection unit 60, and when each of the multiple substrates 10 is carried separately into each of the placement units 51 and 52, controls the transport operation of the robot arms 21 and 22 so that the substrate 10a is placed on the placement unit 51 based on the amount of misalignment of the substrate 10a, and after the substrate 10a is placed on the placement unit 51, the substrate 10b is placed on the placement unit 52 based on
  • the transport operation of the robot arms 21 and 22 is performed so that the substrate 10a is placed on the placement unit 51, which has a higher placement position, of the placement units 51 and 52, which have different heights, and then the substrate 10 is placed on the placement unit 52, which has a lower placement position, thereby making it possible to transport the substrates 10a and 10b in order from the one with the highest placement position. Therefore, in a series of operations in which the substrate holding hands 23 and 24 are moved vertically from above to below, the robot arms 21 and 22 can be caused to perform a transport operation so that the substrates 10a and 10b are sequentially placed on the placement parts 51 and 52, respectively.
  • the transport operation of the robot arms 21 and 22 can be prevented from becoming complicated, so that the multiple substrates 10a and 10b can be transported accurately and easily while preventing contact with members other than the substrate 10.
  • the control section 30 loads the multiple substrates 10 onto the multiple placement sections 41 and 42 substantially simultaneously based on the amount of misalignment of the multiple substrates 10. This allows the multiple substrates 10 to be loaded onto the multiple placement sections 41 and 42 simultaneously while adjusting the position based on the amount of misalignment when the substrates 10 are loaded onto the multiple placement sections 41 and 42 having substantially equal loading position heights. Therefore, when the loading positions of the multiple placement sections 41 and 42 have substantially equal loading position heights, the substrates 10 can be loaded onto the placement sections 41 and 42 without multiple reciprocating motions, compared to placing the substrates 10 one by one in sequence. As a result, the transport operation of the substrate holding hands 23 and 24 can be prevented from becoming complicated, and the multiple substrates 10 can be transported accurately and easily while preventing contact with members other than the substrates 10.
  • the control unit 30 controls the transport operation of the robot arms 21 and 22 so that each of the multiple substrates 10 is placed on each of the multiple placement sections 41 and 42 at approximately the same time based on the average amount of misalignment of each of the multiple substrates 10.
  • the transport operation of the robot arms 21 and 22 can be controlled based on the average amount of misalignment, thereby transporting the multiple substrates 10 so that the amount of misalignment of each of the multiple substrates 10 is corrected on average. Therefore, each of the multiple substrates 10 can be transported more accurately to each of the multiple placement sections 41 and 42 while suppressing contact with members other than the substrate 10.
  • the control unit 30 obtains the amount of misalignment of each of the multiple substrates 10 based on the detection results by the detection unit 60 after each of the multiple substrates 10 is held by the substrate holding hands 23 and 24, and controls the transport operation of the robot arms 21 and 22 so that each of the multiple substrates 10 is placed separately at the placement unit 40 or at the placement unit 50 based on the amount of misalignment of each of the multiple substrates 10 obtained after being held by the substrate holding hands 23 and 24.
  • the control unit 30 can control the transport operation of the robot arms 21 and 22 to compensate for the amount of misalignment that occurred when the substrates 10 were held by the substrate holding hands 23 and 24 by obtaining the amount of misalignment of each of the multiple substrates 10 based on the detection results by the detection unit 60 after the multiple substrates 10 are held by the substrate holding hands 23 and 24.
  • the substrate 10 can be transported with high precision to the placement units 40 and 50 while preventing contact with components other than the substrate 10.
  • the control unit 30 obtains the amount of misalignment of each of the multiple substrates 10 relative to the substrate holding hands 23 and 24 based on the detection results by the detection unit 60.
  • This makes it possible to control the transport operation of the robot arms 21 and 22 to which the substrate holding hands 23 and 24 are attached based on the amount of misalignment of the substrate 10 relative to the substrate holding hands 23 and 24. Therefore, by controlling the transport operation of the robot arms 21 and 22, the substrate 10 can be transported while correcting the positions of the substrate holding hands 23 and 24 so that the substrate 10 held by the substrate holding hands 23 and 24 is placed on the placement units 40 and 50.
  • each of the multiple substrates 10 can be transported with high precision by the placement units 40 and 50 while suppressing contact with members other than the substrate 10.
  • the substrate transport robot system 100 includes robot arms 21 and 22, each of which has substrate holding hands 23 and 24 attached thereto and which operate separately, a detection unit 60 detects each of the multiple substrates 10 for each of the robot arms 21 and 22, and a control unit 30 acquires the amount of misalignment of each of the multiple substrates 10 for each of the robot arms 21 and 22 based on the detection results by the detection unit 60, and controls the transport operation of the robot arms 21 and 22 so that each of the multiple substrates 10 is separately transported to the mounting unit 40 or to the mounting unit 50 based on the acquired amount of misalignment of each of the multiple substrates 10 for each of the robot arms 21 and 22.
  • the multiple substrates 10 held by the substrate holding hands 23 and 24 attached to each of the robot arms 21 and 22 can be transported with high precision while preventing contact with members other than the substrates 10 for each of the robot arms 21 and 22.
  • the number of substrates 10 transported per hour can be improved by using two robot arms 21 and 22, so that when multiple substrates 10 are transported, the substrates can be transported with high precision while preventing contact with members other than the substrates 10, and the number of substrates transported per hour can be improved.
  • the control unit 30 when the control unit 30 carries each of the multiple substrates 10 separately into the placement units 40 and 50, the control unit 30 acquires the amount of deviation of the multiple substrates 10 and controls the transport operation of the robot arms 21 and 22 based on the acquired amount of deviation, but the present disclosure is not limited to this.
  • the control unit when the control unit carries each of the multiple substrates separately out of the placement units, the control unit may acquire the amount of deviation for each robot arm, as in the case of carrying in as in the above embodiment, and control the transport operation of the robot arms based on the acquired amount of deviation.
  • the position of the substrate placed on the placement unit may be detected by a detection unit such as an imaging unit, and the amount of deviation of each of the multiple substrates placed on the placement unit may be acquired using the position of the placement unit as a predetermined reference position.
  • each of the multiple substrates may be held in order from each of the multiple placement sections based on the amount of deviation of each of the multiple substrates. For example, when a pair of a first substrate and a second substrate is separately carried out from each of the first placement section and the second placement section, the second substrate may be held from the second placement section based on the amount of deviation of the second substrate, and after the second substrate is held from the second placement section, the first substrate may be held from the first placement section based on the amount of deviation of the first substrate.
  • each of the multiple substrates may be held in order from the lowest height position of each of the multiple placement sections based on the amount of deviation. This makes it possible to prevent the transport operation of the robot arm from becoming complicated, similar to the case of carrying in, so that the multiple substrates can be transported accurately and easily while preventing contact with members other than the substrates.
  • the multiple substrates when multiple substrates are separately removed from multiple mounting sections that are approximately the same height, the multiple substrates may be held approximately simultaneously based on the average deviation amount, as in the case of loading. This allows each of the multiple substrates to be transported more accurately to each of the multiple mounting sections while preventing contact with members other than the substrate, as in the case of loading. Furthermore, the deviation amount may be obtained during both loading and transport of the substrates, and the transport operation of the robot arm may be controlled based on the obtained deviation amount.
  • multiple substrates 10 are arranged side by side in the left-right direction along a horizontal plane in the substrate holding hands 23 and 24, but the present disclosure is not limited to this.
  • multiple substrates may be arranged side by side in the substrate holding hands, not along a horizontal plane, but offset in the vertical direction.
  • the substrate holding hands may hold multiple substrates arranged vertically, rather than side by side.
  • each of the substrate holding hands 23 and 24 holds a pair of substrates 10
  • the substrate holding hands may be configured to hold three or more substrates.
  • the shape of the holding portion of the substrate holding hand does not have to have a U-shape with a bifurcated tip.
  • the substrate holding hand does not have to be a passive type end effector.
  • the amount of deviation of the placement of the substrate 10 relative to the substrate holding hand 23 was obtained as the amount of deviation of the substrate 10 relative to a predetermined reference position based on the detection results by the detection unit 60, but the present disclosure is not limited to this.
  • the amount of deviation of the substrate 10 relative to a predetermined reference position may be the amount of deviation from a preset coordinate position, or the amount of deviation relative to the placement unit that is the transport destination.
  • the detection unit 60 that detects the substrate 10 is a transmissive laser sensor, but the present disclosure is not limited to this.
  • the detection unit may be a reflective laser sensor, or an imaging unit such as a camera that captures an external image. In other words, the amount of deviation of the substrate may be obtained based on the captured external image.
  • the detection unit may also be disposed in the transport robot of the substrate transport robot system.
  • the detection unit may be disposed in a base unit to which a robot arm is connected.
  • the detection unit may also be disposed in the robot arm or the substrate holding hand.
  • the detection unit 60 detects each of the pair of substrates 10 while moving toward placement parts 51 and 52, thereby obtaining the amount of misalignment of both of the pair of substrates 10 held by the substrate holding hands 23 and 24.
  • the present disclosure is not limited to this.
  • the amount of misalignment of the substrate placed on the placement part with the lower placement position may be obtained by detecting the substrate after it is placed on the placement part with the higher placement position and before it is placed on the placement part with the lower placement position.
  • each of the multiple processing module parts 103 has two mounting parts 50, namely, mounting part 51 and mounting part 52, which have different mounting position heights, but the present disclosure is not limited to this.
  • some or all of the multiple processing module parts may have multiple mounting parts whose mounting position heights are approximately equal to each other.
  • each of the multiple mounting parts may have a drive mechanism that changes the height of the mounting position.
  • the transport operation of the robot arm may be controlled so that the substrate held by the substrate holding hand is positioned directly above the mounting part, and the mounting part side may be moved upward to transport the substrate.
  • the substrate transfer robot system 100 transfers the substrate 10 in the transfer chamber 104 maintained at a predetermined vacuum level, but the present disclosure is not limited to this.
  • the substrate may be transferred at normal pressure.
  • the processing module sections 203 for processing one substrate 10 may be arranged in pairs adjacent to each other.
  • the height of the placement positions of the placement sections 251 and 252 of each pair of adjacent processing module sections 203 may be different from each other. That is, the placement position of one placement section 251 of each pair of adjacent processing module sections 203 may be higher than the placement position of the other placement section 252.
  • the transport operation may be controlled so that the substrate 10 is placed on the placement section 251 based on the amount of deviation of one substrate 10, and then the substrate 10 is placed on the placement section 252 based on the amount of deviation of the other substrate 10.
  • the placement sections 251 and 252 are examples of the first placement section and the second placement section, respectively.
  • circuitry or processing circuits including general purpose processors, special purpose processors, integrated circuits, ASICs (Application Specific Integrated Circuits), conventional circuits, and/or combinations thereof, configured or programmed to perform the disclosed functions.
  • Processors are considered processing circuits or circuits because they include transistors and other circuits.
  • a circuit, unit, or means is hardware that performs the recited functions or hardware that is programmed to perform the recited functions.
  • the hardware may be hardware disclosed herein or other known hardware that is programmed or configured to perform the recited functions. If the hardware is a processor, which is considered a type of circuit, the circuit, means, or unit is a combination of hardware and software, and the software is used to configure the hardware and/or the processor.
  • a substrate holding hand having a plurality of holding parts for holding the plurality of substrates; a robot arm to which the substrate holding hand is attached; a control unit that acquires an amount of deviation of each of the plurality of substrates from a predetermined reference position based on detection results by a detection unit that detects each of the plurality of substrates held by the substrate holding hand, and controls a transport operation of the robot arm that transports the plurality of substrates so that each of the plurality of substrates is at least one of separately loaded onto a mounting unit and separately unloaded from the mounting unit based on the acquired amount of deviation.
  • Each of the plurality of substrates is held by the substrate holding hand, in which the plurality of holding portions are integrally formed, in a state where the substrates are arranged side by side along a horizontal plane,
  • the control unit controls the transport operation of the robot arm so that each of the multiple substrates held by the multiple holders integrally formed in the substrate holding hand is at least one of separately loaded into the placement portion and separately unloaded from the placement portion based on the respective acquired deviation amounts.
  • control unit at least one of: when the plurality of substrates are separately loaded onto each of the plurality of mounting parts having mounting position heights different from one another during a transport operation of the robot arm, placing each of the plurality of substrates in sequence on each of the plurality of mounting parts based on the amount of deviation of each of the plurality of substrates; and when the plurality of substrates are separately unloaded from each of the plurality of mounting parts, holding each of the plurality of substrates in sequence from each of the plurality of mounting parts based on the amount of deviation of each of the plurality of substrates.
  • the substrate holding hand has a pair of the holding parts for holding the pair of substrates
  • the plurality of mounting sections include a first mounting section on which a first substrate, which is one of the pair of substrates, is mounted, and a second mounting section, separate from the first mounting section, on which a second substrate, which is the other of the pair of substrates, is mounted and whose mounting position is lower than that of the first mounting section;
  • the control unit is acquiring the amount of deviation of each of the first substrate and the second substrate based on a detection result by the detection unit; when each of the plurality of substrates is separately carried into each of the first mounting portion and the second mounting portion, a transport operation of the robot arm is controlled so that the first substrate is placed on the first mounting portion based on the amount of deviation of the first substrate, and after the first substrate is placed on the first mounting portion, the second substrate is placed on the second mounting portion based on the amount of deviation of the second substrate; 4.
  • (Item 5) 5. The substrate transport robot system of any one of items 1 to 4, wherein the control unit at least one of: when the plurality of substrates are separately loaded onto each of the plurality of mounting parts having mounting position heights that are approximately equal to each other during a transport operation of the robot arm, placing each of the plurality of substrates onto each of the plurality of mounting parts at approximately the same time based on the amount of deviation of each of the plurality of substrates; and when the plurality of substrates are separately unloaded from each of the plurality of mounting parts, holding each of the plurality of substrates from each of the plurality of mounting parts at approximately the same time based on the amount of deviation of each of the plurality of substrates.
  • the control unit is When each of the plurality of substrates is separately carried into the placement unit, after each of the plurality of substrates is held by the substrate holding hand, the deviation amount of each of the plurality of substrates is acquired based on a detection result by the detection unit, and 7.
  • the substrate transport robot system according to any one of claims 1 to 6, wherein the transport operation of the robot arm is controlled so that each of the plurality of substrates is placed separately on the placement section based on the amount of deviation of each of the plurality of substrates obtained after being held by the substrate holding hand.
  • the control unit is when each of the plurality of substrates is separately carried into the placement unit, the deviation amount of the arrangement of each of the plurality of substrates with respect to the substrate holding hand is acquired based on a detection result by the detection unit; 8.
  • the robot arm includes a first robot arm and a second robot arm each having the substrate holding hand attached thereto and operating independently;
  • the detection unit detects each of the plurality of substrates for each of the first robot arm and the second robot arm;
  • the control unit is acquiring the amount of deviation of each of the plurality of substrates for each of the first robot arm and the second robot arm based on a detection result by the detection unit;
  • 9. The substrate transport robot system according to any one of items 1 to 8, wherein the transport operation of the robot arms is controlled for each of the first robot arm and the second robot arm so that each of the plurality of substrates is at least one of separately loaded onto the mounting portion and separately unloaded from the mounting portion based on the acquired deviation amount for each of the plurality of substrates.

Abstract

この基板搬送ロボットシステム(100)は、複数の基板の各々を保持する基板保持ハンド(23)と、ロボットアーム(21)と、制御部(30)とを備える。制御部(30)は、検出部(60)による検出結果に基づいて、複数の基板の各々の所定の基準位置に対する配置のずれ量を取得するとともに、各々の取得されたずれ量に基づいて、複数の基板の各々が載置部に対して別個に搬入されること、および、載置部から別個に搬出されることの少なくとも一方が行われるように、複数の基板を搬送するロボットアーム(21)の搬送動作を制御する。

Description

基板搬送ロボットシステム
 この開示は、基板搬送ロボットシステムに関し、特に、複数の基板を保持する基板保持ハンドを備える基板搬送ロボットシステムに関する。
 従来、複数の基板を保持する基板搬送ロボットシステムが知られている。たとえば、特許第6833685号公報には、基板を搬送する移送ロボットを備えた基板処理装置が開示されている。移送ロボットのアームには、基板を保持するエンドエフェクタが配置されている。上記特許第6833685号公報の基板処理装置は、基板の搬送先である基板保持位置に対して所定の位置関係で配置された参照面を有する。基板処理装置は、この参照面に対して、エンドエフェクタに保持された状態の基板を接触させることによって、エンドエフェクタ上の基板を移動させてエンドエフェクタと基板との間の偏心を変化させる。そして、エンドエフェクタと基板との間の偏心の変化を測定することによって、測定された偏心の変化と、基板保持位置と参照面との位置関係とに基づいて、移送ロボットに対する基板保持位置の教示が行われる。また、上記特許第6833685号公報の基板処理装置では、エンドエフェクタ上の基板を所定の接触面またはピンなどに接触させることによって、基板をエンドエフェクタに対する所定の位置にずらして配置する例が開示されている。また、上記特許第6833685号公報には、移送ロボットにおいて、2つの基板を隣り合うように並べて保持するエンドエフェクタが1つのアームに配置されることにより、2つの基板をまとめて搬送する例が開示されている。
特許第6833685号公報
 ここで、上記特許第6833685号公報には明記されていないが、上記特許第6833685号公報に記載の基板処理装置の移送ロボットのように基板を搬送する場合に、エンドエフェクタであるハンドに保持された基板の位置がハンド上においてずれる場合がある。たとえば、基板を搬送するために保持する際に、ハンドに対して基板が所定の位置からずれた状態で保持される場合がある。特に、複数の基板をまとめて搬送する場合には、複数の基板の各々においてハンド上における位置ずれのずれ量が互いに異なる場合がある。その場合に、上記特許第6833685号公報のように所定の接触面またはピンなどの基板以外の部材と基板とを接触させて、ハンド上における複数の基板の各々を移動させる場合には、接触に起因して基板に割れまたは変形などの異常が生じること、または、接触により発生した異物に起因して基板の処理に異常が生じることが考えられる。また、基板以外の部材と基板との接触を抑制する場合には、ハンド上において基板の配置がずれた状態のまま搬送を行うこととなるため、複数の基板の各々を搬送先の載置部に精度よく搬送することが困難となる。そのため、複数の基板を、基板以外の部材との接触を抑制しながら精度よく搬送することが困難であるという問題点がある。
 この開示は、上記のような課題を解決するためになされたものであり、この開示の1つの目的は、複数の基板を、基板以外の部材との接触を抑制しながら精度よく搬送することが可能な基板搬送ロボットシステムを提供することである。
 この開示の一の局面による基板搬送ロボットシステムは、複数の基板の各々を保持する複数の保持部を有する基板保持ハンドと、基板保持ハンドが取り付けられたロボットアームと、基板保持ハンドに保持された複数の基板の各々を検出する検出部による検出結果に基づいて、複数の基板の各々の所定の基準位置に対する配置のずれ量を取得するとともに、各々の取得されたずれ量に基づいて、複数の基板の各々が載置部に対して別個に搬入されること、および、載置部から別個に搬出されることの少なくとも一方が行われるように、複数の基板を搬送する前記ロボットアームの搬送動作を制御する制御部と、を備える。
 この開示の一の局面による基板搬送ロボットシステムは、上記のように、基板保持ハンドに保持された複数の基板の各々を検出する検出部による検出結果に基づいて、複数の基板の各々の所定の基準位置に対する配置のずれ量を取得するとともに、各々の取得されたずれ量に基づいて、複数の基板の各々が載置部に対して別個に搬入されること、および、載置部から別個に搬出されることの少なくとも一方が行われるように、複数の基板を搬送するロボットアームの搬送動作を制御する制御部を備える。これにより、基板が所定の基準位置に対してずれた状態で配置されている場合にも、制御部がずれ量に基づいてロボットアームの搬送動作を制御することによって、基板保持ハンドに対する複数の基板の各々の相対的な配置を変更させずに、複数の基板の各々を、配置のずれを補正するように搬送することができる。その結果、複数の基板を、基板以外の部材との接触を抑制しながら精度よく搬送することができる。
 本開示によれば、複数の基板を、基板以外の部材との接触を抑制しながら精度よく搬送することができる。
一実施形態による基板搬送ロボットシステムを備える基板処理システムの全体構成を示した模式図である。 基板搬送ロボットシステムを備える基板処理システムの構成を示したブロック図である。 基板搬送ロボットシステムを模式的に示した斜視図である。 ロードロック部における載置部の構成を説明するための図である。 複数の処理モジュール部の各々における載置部の構成を説明するための図である。 検出部における基板の検出を説明するための図である。 複数の処理モジュール部の各々の載置部に対する基板の搬送動作を説明するための図である。 ロードロック部の載置部に対する基板の搬送動作を説明するための図である。 基板搬送ロボットシステムによる基板搬送方法の制御処理を説明するためのフローチャート図である。 本開示の一実施形態の変形例による処理モジュール部を説明するための模式図である。
 以下、本開示を具体化した本開示の実施形態を図面に基づいて説明する。
 図1から図8までを参照して、一実施形態による基板搬送ロボットシステム100の構成について説明する。
 (基板処理システムの構成)
 図1に示すように、本実施形態による基板搬送ロボットシステム100は、基板処理システム101において、基板10を搬送する。基板処理システム101は、基板搬送ロボットシステム100、ロードロック部102、および、複数の処理モジュール部103を備える。図1の例では、基板処理システム101は、4つの処理モジュール部103を備えている。また、基板処理システム101は、搬送室104および搬入出室105を備えている。基板処理システム101は、たとえば、半導体ウエハ、プリント基板などの基板10に対する処理を行う。基板10は、たとえば、略円盤形状を有するガラス基板またはシリコン基板である。
 複数の処理モジュール部103の各々は、たとえば、基板10に対して、レジストの塗布、または、エッヂングなどの処理を行う。複数の処理モジュール部103は、搬送室104の外周に沿って配置されている。搬送室104内は、所定の真空度に保たれている。すなわち、基板処理システム101は、マルチチャンバタイプの真空処理装置である。また、搬送室104の外周には、ロードロック部102が設けられている。このロードロック部102の搬送室104とは反対側には、搬入出室105が設けられている。搬入出室105のロードロック部102とは反対側には、基板10を収容可能なキャリア106をそれぞれ取り付けるための3つのポートが設けられている。
 基板搬送ロボットシステム100は、基板10に対する処理を行う処理モジュール部103から基板10を搬出することと処理モジュール部103に対して基板10を搬入することとを行う。基板処理システム101では、搬入出室105に配置された図示しない搬送ロボットによって、キャリア106から基板10がロードロック部102に搬入される。そして、本実施形態の基板搬送ロボットシステム100によって、ロードロック部102から複数の処理モジュール部103の各々に対して基板10が搬送される。複数の処理モジュール部103の各々において処理が行われた基板10は、基板搬送ロボットシステム100によって複数の処理モジュール部103の各々からロードロック部102に搬送される。そして、搬入出室105に配置された図示しない搬送ロボットによって、ロードロック部102からキャリア106に処理が行われた基板10が搬出される。キャリア106には、複数の基板10が収納される。
 (基板搬送ロボットシステムの構成)
 図2に示すように、基板搬送ロボットシステム100は、搬送ロボット20、および、制御部30を含む、搬送ロボット20は、ロボットアーム21およびロボットアーム22を有する。また、ロボットアーム21およびロボットアーム22には、それぞれ、基板保持ハンド23および基板保持ハンド24が取り付けられている。搬送ロボット20は、搬送室104の略中央に配置されている。なお、ロボットアーム21およびロボットアーム22は、それぞれ、第1ロボットアームおよび第2ロボットアームの一例である。
 制御部30は、たとえば、CPU(Central Processing Unit)、RAM(Random Access Memory)、および、ROM(Read Only Memory)などを有するコンピュータである。また、制御部30は、SSD(Solid State Drive)などのフラッシュメモリを含む記憶装置を有している。制御部30は、搬送ロボット20と離間した位置に配置されていてもよいし、搬送ロボット20と一体的に配置されていてもよい。制御部30は、予め記憶装置に記憶されているプログラムおよびパラメータに基づいて基板搬送ロボットシステム100の各部の動作を制御する。本実施形態では、制御部30は、複数の基板10を搬送するロボットアーム21およびロボットアーム22の各々の搬送動作を制御する。制御部30は、基板処理システム101の全体を制御する上位の図示しない制御装置からの制御信号に基づいて、基板10の搬送動作を制御する。制御部30による搬送動作の制御の詳細は後述する。
 図3に示すように、搬送ロボット20は、ロードロック部102と処理モジュール部103との間において、基板10の搬入出を行う水平多関節型のウエハ搬送ロボットである。ロボットアーム21およびロボットアーム22の各々は、複数の関節の駆動により旋回および伸縮する。また、ロボットアーム21およびロボットアーム22の各々は、制御部30による制御処理によって別個に動作する。具体的には、ロボットアーム21およびロボットアーム22の各々は、互いに接続された2つのアーム部を有している。ロボットアーム21およびロボットアーム22の各々は、サーボモータを駆動源として有している。また、ロボットアーム21およびロボットアーム22の各々は、サーボモータの回転数を取得するエンコーダを有している。制御部30は、このエンコーダからの出力に基づいてロボットアーム21およびロボットアーム22の各々の動作をフィードバック制御により制御する。また、ロボットアーム21およびロボットアーム22の各々は、互いに接続された2つのアーム部の一端側において基板保持ハンド23および基板保持ハンド24がそれぞれ取り付けられており、他端側において共通の基台部25に接続されている。ロボットアーム21およびロボットアーム22の各々は、基台部25に対して別個に旋回および伸縮の動作を行う。また、基台部25は、ロボットアーム21およびロボットアーム22の各々を、鉛直方向に別個に移動させる直動機構を有する。この直動機構は、たとえば、駆動源としてサーボモータを有する。
 基板保持ハンド23および基板保持ハンド24の各々は、一対の基板10を保持する。具体的には、基板保持ハンド23は、一対の保持部23aおよび保持部23bを有する。また、基板保持ハンド24も同様に、一対の保持部24aおよび保持部24bを有する。保持部23aおよび保持部23bの各々は、一対の基板10の各々を保持する。すなわち、保持部23aおよび保持部23bの各々は、基板10を1つずつ保持する。保持部24aおよび保持部24bも同様に基板10を1つずつ保持する。保持部23a、保持部23b、保持部24a、および、保持部24bの各々は、基板10を支持する薄板状の支持板である。また、保持部23a、保持部23b、保持部24a、および、保持部24bの各々は、先端が二股に分かれたU字形状を有しており、略円盤形状の基板10の外周縁部の裏面を鉛直方向の下方側から支持する。なお、基板保持ハンド23および基板保持ハンド24の各々は、保持部23a、保持部23b、保持部24a、および、保持部24bの各々が保持した基板10を固定するように駆動するアクチュエータなどを有しておらず、鉛直方向の下方から基板10を固定せずに支持するパッシブタイプのエンドエフェクタである。
 基板保持ハンド23および基板保持ハンド24の各々において、一対の基板10の各々は、水平面に沿うように左右に並べられた状態で保持される。保持部23aおよび保持部23b同士と、保持部24aおよび保持部24b同士とは、一体的に形成されている。すなわち、基板保持ハンド23および基板保持ハンド24の各々において、一対の基板10は、互いに相対的な位置関係が固定された状態で保持されている。基板搬送ロボットシステム100は、ロボットアーム21を動作させることによって、基板保持ハンド23に保持された一対の基板10を一体的に搬送する。同様に、基板搬送ロボットシステム100は、ロボットアーム22を動作させることによって、基板保持ハンド24に保持された一対の基板10を一体的に搬送する。なお、基板保持ハンド23の構成と基板保持ハンド24の構成とは、互いに共通である。すなわち、基板保持ハンド23に保持された一対の基板10同士の間隔と基板保持ハンド24に保持された一対の基板10同士の間隔とが互いに略等しくなるように、基板保持ハンド23の保持部23aおよび保持部23bの各々において基板10が保持される位置の中心同士の距離D1と、基板保持ハンド24の保持部24aおよび保持部24bの各々において基板10が保持される位置の中心同士の距離D2とは、互いに略等しい。
 図4に示すように、ロードロック部102において、基板10は、載置部40に載置される。載置部40は、載置位置の鉛直方向の位置である高さが互いに略等しい一対の載置部41および載置部42を有する。基板保持ハンド23および基板保持ハンド24の各々は、載置部41および載置部42の各々に配置された基板10をまとめて保持する。ロードロック部102において、載置部41および載置部42において基板10が保持される位置の中心同士の距離D3は、保持部23aおよび保持部23bにおける距離D1、および、保持部24aおよび保持部24bにおける距離D2の各々と略等しい。
 また、図5に示すように、複数の処理モジュール部103の各々は、基板10が載置される載置部50を有する。たとえば、複数の処理モジュール部103の各々は、基板10に対して2枚ずつまとめて処理を行うように構成されている。すなわち、複数の処理モジュール部103の各々では、載置部50に基板10が2つずつ載置される。具体的には、複数の処理モジュール部103の各々は、載置部50として、載置位置の高さが互いに異なる一対の載置部51および載置部52を有する。一対の載置部51および載置部52は、載置位置の鉛直方向の位置である高さが互いに異なる。具体的には、載置部52は、載置位置の高さが載置部51よりも低い。また、水平方向における位置関係は、載置部41および載置部42と同様である。すなわち、平面図において、載置部51および載置部52は、載置部41および載置部42と同様に、保持部23aおよび保持部23bにおける距離D1、および、保持部24aおよび保持部24bにおける距離D2と略等しい距離分である距離D4だけ、基板10が保持される位置の中心同士が離間した状態で配置されている。したがって、複数の処理モジュール部103の各々における距離D4は、ロードロック部102の距離D3と略等しい。
 基板搬送ロボットシステム100は、2つのロボットアーム21およびロボットアーム22を別個に動作させることによって、ロードロック部102と複数の処理モジュール部103の各々との間において、基板10を一対ずつまとめて搬送する。すなわち、基板搬送ロボットシステム100では、ロードロック部102の2つの載置部41および42と、処理モジュール部103の各々の2つの載置部51および載置部52との間において、基板10が一対ずつまとめて搬送される。
 (検出部)
 図2に示すように、基板処理システム101は、検出部60を備えている。検出部60は、搬送ロボット20の基板保持ハンド23および基板保持ハンド24の各々に保持された一対の基板10の各々を検出する。検出部60は、ロボットアーム21およびロボットアーム22の各々ごとに、一対の基板10の各々を検出する。
 図6に示すように、具体的には、検出部60は、複数の透過型レーザセンサを含む。検出部60は、透過型レーザセンサとして、レーザ光を照射するLED(Light-Emitting Diode)などの光源を有する投光部と、CCD(Charge Coupled Device)イメージセンサなどの受光素子を有する受光部とを含む。たとえば、検出部60は、基板処理システム101の搬送室104内において、ロードロック部102側と、複数の処理モジュール部103の各々側とに配置されている。検出部60は、載置部40または載置部50に対して、搬送動作において基板10が通過する位置を検出対象領域とするように配置されている。すなわち、検出部60は、基板保持ハンド23および基板保持ハンド24の各々に保持された基板10が載置部40または載置部50に向かって搬送される際に、載置部40および載置部50よりも手前において基板10が通過する位置を検出するように配置されている。
 検出部60は、一対の基板10が載置される載置部40および載置部50の各々ごとに4つずつ配置されている。すなわち、1つの基板10を載置する載置部40の載置部41および載置部42の各々ごと、または、載置部50の載置部51および載置部52の各々ごとに、投光部と受光部との1組を含む透過型レーザセンサである検出部60が、一対ずつ配置されている。基板処理システム101では、一対の検出部60によって、1つの基板10が検出される。たとえば、図1の例では、4つの処理モジュール部103と1つのロードロック部102との各々に対して一対の基板10が搬送される。したがって、基板処理システム101では、4つの処理モジュール部103と1つのロードロック部102との各々ごとに4つの検出部60が配置されており、合計で20個の検出部60が配置されている。そして、複数の検出部60の各々は、基板10が検出されたことを示す検出結果を制御部30に対して出力する。なお、図6では、基板保持ハンド23により処理モジュール部103の載置部50に基板10を搬送する場合の例を図示しているが、基板保持ハンド24による搬送の場合、および、載置部40に対する搬送の場合も同様である。
 (制御部による搬送動作の制御の詳細)
 図7および図8に示すように、本実施形態では、制御部30は、検出部60による検出結果に基づいて、載置部40の載置部41および載置部42と、載置部50の載置部51および載置部52とに対して、一対の基板10の各々が別個に搬入されるように、ロボットアーム21およびロボットアーム22の搬送動作を制御する。なお、ロボットアーム21の搬送動作の制御と、ロボットアーム22の搬送動作の制御とは、互いに同様であるため、以下の説明では、ロボットアーム21の搬送動作の制御の説明のみを行い、ロボットアーム22の搬送動作の制御の説明は省略する。
 本実施形態では、制御部30は、一対の基板10の各々が基板保持ハンド23に保持された後に、検出部60による検出結果に基づいて、基板保持ハンド23に保持された一対の基板10の各々の所定の基準位置に対するずれ量を取得する。たとえば、制御部30は、検出部60による検出結果に基づいて、一対の基板10の各々の基板保持ハンド23に対する配置のずれ量を取得する。ここで、取得される「ずれ量」は、水平面に沿った基板保持ハンド23に対する位置ずれの大きさと方向とを含む。
 具体的には、制御部30は、基板保持ハンド23に対する1つの基板10のずれ量を取得するために、2つの検出部60からの検出結果に基づいて、1つの基板10の周縁部分の4点の位置を算出する。透過型レーザセンサである検出部60の各々ごとに、基板10の通過によってレーザ光が透過状態から遮光状態に切り替わった点と、遮光状態から透過状態に切り替わった点との2点が検出される。制御部30は、検出部60の検出対象となっている位置を予め記憶している。制御部30は、検出部60の検出対象となっている位置と、基板保持ハンド23を移動させる速度とを取得することにより、基板10の周縁部の4点の位置を取得する。そして、制御部30は、取得された4点のうちの3点を通る円を基板10として算出する。4点のうちからの3点の選び方は4通りあるため、制御部30は、取得された4点の位置から4つの円を算出する。制御部30は、この4つの円の中心点の平均位置を、基板保持ハンド23に保持された基板10の中心位置として取得する。なお、基板10の周縁部の4点の位置のうちのいずれかが、所定の範囲を超える位置に検出された場合は、位置基準としてのノッチ部分またはオリエンテーション・フラット部分として除外するとともに残りの3点を通る円の中心を基板10の中心位置としてもよい。また、制御部30は、基板保持ハンド23において所定の範囲を越える位置に基板10が配置されているか否かを判断することによって、基板10の搬送に異常が生じているか否かを判断するようにしてもよい。
 上記のようにして、制御部30は、基板保持ハンド23に保持されている一対の基板10の各々の中心位置を算出する。そして、制御部30は、予め基板保持ハンド23において基板10が位置ずれを起こしていない場合の検出部60による検出結果を基準の配置位置として記憶している。制御部30は、一対の基板10の搬送を行う場合に、検出部60による検出結果と予め記憶している基準の配置位置とを比較することによって、基板10の基板保持ハンド23に対する配置のずれ量を算出する。
 そして、本実施形態では、制御部30は、基板保持ハンド23に保持された後に取得された一対の基板10の各々のずれ量に基づいて、基板保持ハンド23において一対の保持部23aおよび保持部23bの各々に保持された一対の基板10の各々が載置部40または載置部50において別個に載置されるように、ロボットアーム21の搬送動作を制御する。
 〈処理モジュール部の載置部に載置する場合〉
 図7に示すように、制御部30は、ロボットアーム21の搬送動作において、載置位置の高さが互いに異なる一対の載置部51および載置部52に対して一対の基板10の各々を別個に搬入する場合に、一対の基板10の各々の取得されたずれ量に基づいて、一対の基板10の各々を一対の載置部51および載置部52の各々に順に載置する。たとえば、基板保持ハンド23に保持されている一対の基板10のうち、保持部23aに保持され、載置位置の高さが比較的高い載置部51に載置される一方の基板10を基板10aとする。そして、保持部23bに保持され、載置位置の高さが比較的低い載置部52に載置される他方の基板10を基板10bとする。基板10aおよび基板10bは、それぞれ、第1基板および第2基板の一例である。
 制御部30は、検出部60による検出結果に基づいて、基板10aおよび基板10bの各々のずれ量を取得する。そして、制御部30は、載置部51および載置部52の各々に対して一対の基板10である基板10aおよび基板10bの各々を別個に搬入する場合に、基板10aのずれ量に基づいて、基板10aが載置部51に載置されるようにロボットアーム21の搬送動作を制御する。その後、制御部30は、基板10aを載置部51に載置した後に、基板10bのずれ量に基づいて、基板10bが載置部52に載置されるように、ロボットアーム21の搬送動作を制御する。
 たとえば、制御部30は、処理モジュール部103に対して一対の基板10である基板10aおよび基板10bを搬送する場合に、処理モジュール部103の載置部50である載置部51および載置部52に向かって基板10aおよび基板10bを保持した状態の基板保持ハンド23を移動させるようにロボットアーム21の搬送動作を制御する。この移動の最中に、処理モジュール部103側に配置された検出部60が基板10aおよび基板10bの各々を検出することによって、制御部30は、検出部60による検出結果に基づいて基板10aおよび基板10bの各々のずれ量を取得する。制御部30は、予め設定されている載置部51の位置に対して、取得された基板10aのずれ量に基づいてロボットアーム21の搬送動作を補正しながら、基板保持ハンド23の一方の保持部23aに保持された基板10aが載置部51に載置される位置の鉛直方向における真上の位置に配置されるように、ロボットアーム21を動作させる。そして、制御部30は、載置部51に基板10aが載置されるようにロボットアーム21を鉛直方向の下方に向かって降下させる。
 制御部30は、載置部51に基板10aが載置された後に、取得された基板10bのずれ量に基づいて、基板保持ハンド23の保持部23bに保持された基板10bが載置部52に載置される位置の鉛直方向の真上の位置に配置されるように、ロボットアーム21を動作させる。この時、制御部30は、鉛直方向において載置部51と載置部52との間の高さの位置に基板10bを保持した状態で、基板10bの水平面内における位置を調整するように、水平面に沿って基板保持ハンド23を移動させる。そして、制御部30は、載置部52に基板10bが載置されるようにロボットアーム21を鉛直方向の下方に向かって降下させる。基板10bが載置部52に載置された後、制御部30は、基板保持ハンド23が処理モジュール部103から離間するようにロボットアーム21を動作させる。
 〈ロードロック部の載置部に載置する場合〉
 図8に示すように、本実施形態では、制御部30は、ロボットアーム21の搬送動作において、載置位置の高さが互いに略等しい一対の載置部41および載置部42の各々に一対の基板10の各々を別個に搬入する場合に、一対の基板10の各々のずれ量に基づいて、一対の基板10の各々を一対の載置部41および載置部42の各々に略同時に載置する。具体的には、制御部30は、一対の基板10の各々のずれ量の平均値に基づいて、一対の基板10の各々を、一対の載置部41および載置部42の各々に略同時に載置するように、ロボットアーム21の搬送動作を制御する。
 制御部30は、ロードロック部102に対して一対の基板10を搬送する場合に、ロードロック部102の載置部40である載置部41および載置部42に向かって一対の基板10を保持した状態の基板保持ハンド23を移動させるようにロボットアーム21の搬送動作を制御する。処理モジュール部103に搬送する場合と同様に、この移動の最中に、検出部60が一対の基板10の各々を検出することによって、制御部30は、検出部60による検出結果に基づいて一対の基板10の各々のずれ量を取得する。そして、制御部30は、一対の基板10の各々のずれ量の平均値を算出するとともに、算出されたずれ量の平均値に基づいてロボットアーム21の搬送動作を補正する。すなわち、制御部30は、基板保持ハンド23に保持された一対の基板10の両方が、載置部41および載置部42の鉛直方向の上方において、ずれ量の平均値の大きさ分だけ同じ方向に位置が補正されるようにロボットアーム21を動作させる。そして、制御部30は、載置部41および載置部42に一対の基板10が略同時に載置されるようにロボットアーム21を鉛直方向の下方に向かって降下させる。一対の基板10が載置部41および載置部42に載置された後に、制御部30は、基板保持ハンド23がロードロック部102から離間するようにロボットアーム21を動作させる。
 基板保持ハンド24に保持された一対の基板10を搬送する場合のロボットアーム22の搬送動作の制御も同様である。制御部30は、検出部60による検出結果に基づいて、ロボットアーム21およびロボットアーム22の各々ごとに一対の基板10の各々のずれ量を取得する。また、制御部30は、ロボットアーム21およびロボットアーム22の各々ごとに、一対の基板10の各々の取得されたずれ量に基づいて、一対の基板10の各々が載置部40の載置部41および載置部42の各々、または、載置部50の載置部51および載置部52の各々に別個に載置されるように、ロボットアーム21およびロボットアーム22の各々の搬送動作を制御する。制御部30は、ロボットアーム21の搬送動作とロボットアーム22の搬送動作とが交互に行われるように制御する。
 (基板搬送方法の制御処理)
 次に、図9を参照して、基板搬送ロボットシステム100による基板搬送方法の制御処理について説明する。この基板搬送方法の制御処理は、制御部30によって実行される。
 まず、ステップS1において、ロードロック部102の載置部41および載置部42の各々に1つずつ載置された基板10が、それぞれ、基板保持ハンド23の保持部23aおよび保持部23bに保持される。
 次に、ステップS2において、ロボットアーム21の動作が制御されることによって、複数の処理モジュール部103のうちの1つの処理モジュール部103に向かって、基板保持ハンド23が移動される。
 次に、ステップS3において、処理モジュール部103側に配置された検出部60が基板保持ハンド23の保持部23aおよび保持部23bの各々に保持された一対の基板10を検出することによって、検出部60からの検出結果が取得される。
 次に、ステップS4において、取得された検出部60からの検出結果に基づいて、一対の基板10の各々の基板保持ハンド23に対する配置のずれ量が取得される。
 次に、ステップS5において、取得されたずれ量に基づいて、複数の処理モジュール部103の各々の載置部50である載置部51および載置部52の各々に基板10が順に載置されるようにロボットアーム21の搬送動作が制御される。具体的には、基板保持ハンド23の保持部23aに保持された基板10である基板10aのずれ量に基づいて、基板10aが、載置位置の比較的高い載置部51に載置される。その後に、基板保持ハンド23の保持部23bに保持された基板10である基板10bのずれ量に基づいて、基板10bが、載置位置の比較的低い載置部52に載置される。
 次に、ステップS6において、基板保持ハンド23が、処理モジュール部103の載置部50から退避するように移動させられる。
 次に、ステップS7において、処理モジュール部103において、基板10に対する処理が完了した後に、処理モジュール部103の載置部50である載置部51および載置部52の各々に1つずつ載置された基板10が、それぞれ、基板保持ハンド23の保持部23aおよび保持部23bに保持される。
 次に、ステップS8において、ロボットアーム21の動作が制御されることによって、ロードロック部102に向かって、基板保持ハンド23が移動される。
 次に、ステップS9において、ロードロック部102側に配置された検出部60が基板保持ハンド23の保持部23aおよび保持部23bの各々に保持された一対の基板10を検出することによって、検出部60からの検出結果が取得される。
 次に、ステップS10において、ステップS4と同様に、取得された検出部60からの検出結果に基づいて、一対の基板10の各々の基板保持ハンド23に対する配置のずれ量が取得される。
 次に、ステップS11において、取得されたずれ量に基づいて、ロードロック部102の各々の載置部40である載置部41および載置部42の各々に基板10が略同時に載置されるようにロボットアーム21の搬送動作が制御される。具体的には、基板保持ハンド23に保持された一対の基板10の各々のずれ量の平均値に基づいて、一対の基板10が略同時に載置部41および載置部42に載置される。
 次に、ステップS12において、基板保持ハンド23が、ロードロック部102の載置部40から退避するように移動させられる。
 なお、ステップS1~ステップS12では、基板保持ハンド23が取り付けられたロボットアーム21を動作させる場合の例を記載したが、基板保持ハンド24が取り付けられたロボットアーム22を動作させる場合も同様である。また、ステップS1からステップS6までの処理モジュール部103に一対の基板10を搬送するステップを、複数の処理モジュール部103の数の分だけ、処理モジュール部103の各々ごとに複数回行った後に、ステップS7からステップS12までのロードロック部102に一対の基板10を搬送するステップを処理モジュール部103の数の分だけ繰り返して行うようにしてもよい。その場合に、基板保持ハンド23が取り付けられたロボットアーム21と基板保持ハンド24が取り付けられたロボットアーム22とを交互に動作させるようにしてもよい。
 [実施形態の効果]
 本実施形態では、以下のような効果を得ることができる。
 基板保持ハンド23および24に保持された複数の基板10の各々を検出する検出部60による検出結果に基づいて、複数の基板10の各々の所定の基準位置に対する配置のずれ量を取得するとともに、各々の取得されたずれ量に基づいて、複数の基板10の各々が載置部40において、または、載置部50に対して別個に搬入されるように、複数の基板10を搬送するロボットアーム21および22の搬送動作を制御する制御部30を備える。これにより、基板10が所定の基準位置に対してずれた状態で配置されている場合にも、制御部30がずれ量に基づいてロボットアーム21および22の搬送動作を制御することによって、基板保持ハンド23および24に対する複数の基板10の各々の相対的な配置を変更させずに、複数の基板10の各々を、配置のずれを補正するように搬送することができる。その結果、複数の基板10を、基板10以外の部材との接触を抑制しながら精度よく搬送することができる。
 複数の基板10の各々は、水平面に沿うように左右に並べられた状態で複数の保持部23aおよび23bが一体的に形成された基板保持ハンド23と、複数の保持部24aおよび24bが一体的に形成された基板保持ハンド24とに保持され、制御部30は、各々の取得されたずれ量に基づいて、基板保持ハンド23において一体的に形成された複数の保持部23aおよび23bに保持された複数の基板10の各々が載置部40に対して、または、載置部50に対して別個に搬入され、基板保持ハンド24において一体的に形成された複数の保持部24aおよび24bに保持された複数の基板10の各々が載置部40に対して、または、載置部50に対して別個に搬入されるように、ロボットアーム21および22の搬送動作を制御する。これにより、基板保持ハンド23において一体的に形成された複数の保持部23aおよび23bの各々に基板10が保持されている場合と、基板保持ハンド24において一体的に形成された複数の保持部24aおよび24bの各々に基板10が保持されている場合とにおいても、各々の基板10のずれ量に基づいてロボットアーム21および22の搬送動作を制御することができる。そのため、一体的な保持部23aおよび23bと、一体的な保持部24aおよび24bとにおいて、互いに相対的な位置関係が変更されないように複数の基板10が保持されている場合にも、基板保持ハンド23および24に対する複数の基板10の各々の配置を変更させずに、複数の基板10の各々を載置部40および載置部50に精度よく載置することができる。その結果、複数の基板10をまとめて搬送する基板保持ハンド23および基板保持ハンド24の各々において、保持されている複数の基板10同士が相対的に移動しないように保持部23aおよび23bが一体的に形成され、保持部24aおよび24bが一体的に形成されている場合にも、基板10以外の部材との接触を抑制しながら複数の基板10を精度よく搬送することができる。
 制御部30は、ロボットアーム21および22の搬送動作において、載置位置の高さが互いに異なる複数の載置部51および52の各々に対して複数の基板10の各々を別個に搬入する場合に、複数の基板10の各々のずれ量に基づいて、複数の基板10の各々を複数の載置部51および52の各々に順に載置する。これにより、載置位置の高さが互いに異なる複数の載置部51および52の各々に対して順に基板10を載置することによって、取得されたずれ量に基づいて複数の載置部51および52の各々に対して順に位置合わせをしながら基板10を1つずつ載置することができる。そのため、複数の基板10の各々のずれ量が互いに異なる場合にも、複数の基板10の各々のずれ量に対応するように基板10を載置部51および載置部52に順に載置することができるので、複数の基板10を搬送する場合において、基板10以外の部材との接触を抑制しながらより精度よく搬送することができる。
 基板保持ハンド23は、一対の基板10の各々を保持する一対の保持部23aおよび23bを有し、基板保持ハンド24は、一対の基板10の各々を保持する一対の保持部24aおよび24bを有し、載置部50は、一対の基板10のうちの一方である基板10aが載置される載置部51と、載置部51とは別個に、一対の基板10のうちの他方である基板10bが載置され、載置位置の高さが載置部51よりも低い載置部52とを含み、制御部30は、検出部60による検出結果に基づいて基板10aおよび基板10bの各々のずれ量を取得するとともに、載置部51および載置部52の各々に対して複数の基板10の各々を別個に搬入する場合に、基板10aのずれ量に基づいて、基板10aを載置部51に載置し、基板10aを載置部51に載置した後に、基板10bのずれ量に基づいて、基板10bを載置部52に載置するように、ロボットアーム21および22の搬送動作を制御する。これにより、互いに高さの異なる載置部51と載置部52とのうちの載置位置が高い載置部51に基板10aを載置した後に、載置位置が低い載置部52に基板10を載置するようにロボットアーム21および22の搬送動作を行うことによって、載置位置の高さの大きい方から順に基板10aおよび基板10bを搬送することができる。そのため、基板保持ハンド23および24を鉛直方向の上方から下方に向かって移動させる一連の動作において、載置部51と載置部52との各々に順に基板10aおよび10bが載置されるようにロボットアーム21および22に搬送動作を行わせることができる。その結果、高さの互いに異なる載置部51および載置部52の各々に基板10aおよび10bを載置する場合に、ロボットアーム21および22の搬送動作が複雑化することを抑制することができるので、基板10以外の部材との接触を抑制しながら複数の基板10aおよび10bを精度よく、かつ、容易に搬送することができる。
 制御部30は、ロボットアーム21および22の搬送動作において、載置位置の高さが互いに略等しい複数の載置部41および42の各々に対して複数の基板10の各々を別個に搬入する場合に、複数の基板10の各々のずれ量に基づいて、複数の基板10の各々を複数の載置部41および42の各々に略同時に載置する。これにより、載置位置の高さが互いに略等しい複数の載置部41および42の各々に対して基板10を搬入する場合に、ずれ量に基づいて位置を調整しながら、複数の基板10を同時に複数の載置部41および42に載置することができる。そのため、複数の載置部41および42の載置位置の高さが略等しい場合に、1つずつ順に基板10を配置する場合に比べて、複数回往復する動作を行うことなく基板10を載置部41および42に載置することができる。その結果、基板保持ハンド23および24の搬送動作が複雑化することを抑制することができるので、基板10以外の部材との接触を抑制しながら複数の基板10を精度よく、かつ、容易に搬送することができる。
 制御部30は、複数の基板10の各々のずれ量の平均値に基づいて、複数の基板10の各々を、複数の載置部41および42の各々に略同時に載置するように、ロボットアーム21および22の搬送動作を制御する。これにより、載置位置の高さが互いに略等しい複数の載置部41および42の各々に対して基板10を載置する場合に、ずれ量の平均値に基づいてロボットアーム21および22の搬送動作を制御することによって、複数の基板10の各々のずれ量を平均的に補正するように複数の基板10を搬送することができる。そのため、複数の載置部41および42の各々に、基板10以外の部材との接触を抑制しながら複数の基板10の各々をより精度よく搬送することができる。
 制御部30は、載置部40および50に対して複数の基板10の各々を別個に搬入する場合において、複数の基板10の各々が基板保持ハンド23および24に保持された後に、検出部60による検出結果に基づいて複数の基板10の各々のずれ量を取得するとともに、基板保持ハンド23および24に保持された後に取得された複数の基板10の各々のずれ量に基づいて、複数の基板10の各々が載置部40において、または、載置部50において別個に載置されるように、ロボットアーム21および22の搬送動作を制御する。これにより、基板保持ハンド23および24に保持される際に基板10にずれが生じた場合にも、複数の基板10が基板保持ハンド23および24に保持された後に、検出部60による検出結果に基づいて複数の基板10の各々のずれ量を取得することによって、基板保持ハンド23および24に保持される際に生じたずれ量を補うようにロボットアーム21および22の搬送動作を制御することができる。その結果、基板保持ハンド23および24に保持される際に基板10にずれが生じた場合にも、基板10以外の部材との接触を抑制しながら基板10を載置部40および50に精度よく搬送することができる。
 制御部30は、載置部40および50に対して複数の基板10の各々を別個に搬入する場合において、検出部60による検出結果に基づいて、複数の基板10の各々の基板保持ハンド23および24に対する配置のずれ量を取得する。これにより、基板10の基板保持ハンド23および24に対するずれ量に基づいて、基板保持ハンド23および24が取り付けられたロボットアーム21および22の搬送動作を制御することができる。そのため、ロボットアーム21および22の搬送動作を制御することによって、基板保持ハンド23および24に保持された基板10が載置部40および50に載置されるように基板保持ハンド23および24の位置を補正しながら基板10を搬送することができる。その結果、基板10以外の部材との接触を抑制しながら複数の基板10の各々を載置部40および50により精度よく搬送することができる。
 基板搬送ロボットシステム100は、各々に基板保持ハンド23および24が取り付けられ、別個に動作するロボットアーム21およびロボットアーム22を含み、検出部60は、ロボットアーム21およびロボットアーム22の各々ごとに、複数の基板10の各々を検出し、制御部30は、検出部60による検出結果に基づいて、ロボットアーム21およびロボットアーム22の各々ごとに複数の基板10の各々のずれ量を取得するとともに、ロボットアーム21およびロボットアーム22の各々ごとに、複数の基板10の各々の取得されたずれ量に基づいて、複数の基板10の各々が載置部40に対して、または、載置部50に対して別個に搬入されるように、ロボットアーム21および22の搬送動作を制御する。これにより、ロボットアーム21およびロボットアーム22の各々ごとに、ずれ量に基づいてロボットアーム21および22の搬送動作を制御することによって、ロボットアーム21とロボットアーム22との各々に取り付けられた基板保持ハンド23および24に保持された複数の基板10を、ロボットアーム21およびロボットアーム22の各々ごとに基板10以外の部材との接触を抑制しながら精度よく搬送することができる。その結果、1つのロボットアームを用いて基板10の搬送を行う場合に比べて、2つのロボットアーム21および22を用いることによって基板10の搬送における時間当たりの搬送数を向上させることができるので、複数の基板10を搬送する場合に、基板10以外の部材との接触を抑制しながら精度よく搬送することができるとともに時間当たりの搬送数を向上させることができる。
 [変形例]
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施形態の説明ではなく請求の範囲によって示され、さらに請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
 たとえば、上記実施形態では、制御部30が、載置部40および50に対して複数の基板10の各々を別個に搬入する場合において、複数の基板10のずれ量を取得するとともに、取得されたずれ量に基づいてロボットアーム21および22の搬送動作を制御する例を示したが、本開示はこれに限られない。本開示では、制御部を、複数の基板の各々を載置部から別個に搬出する場合において、上記実施形態のように搬入を行う場合と同様に、ロボットアームごとに、ずれ量を取得するとともに、取得されたずれ量に基づいてロボットアームの搬送動作を制御するようにしてもよい。これにより、搬入を行う場合と同様に、複数の基板を、基板以外の部材との接触を抑制しながら精度よく搬送することができる。その場合、載置部に載置された基板の位置を撮像部などの検出部により検出することによって、載置部の位置を所定の基準位置として載置部に載置された状態の複数の基板の各々のずれ量を取得するようにしてもよい。
 また、載置位置の高さが互いに異なる複数の載置部の各々から複数の基板の各々を別個に搬出する場合には、搬入を行う場合と同様に、複数の基板の各々のずれ量に基づいて、複数の基板の各々を複数の載置部の各々から順に保持するようにしてもよい。たとえば、第1載置部および第2載置部の各々から一対の第1基板および第2基板の各々を別個に搬出する場合に、第2基板のずれ量に基づいて、第2基板を第2載置部から保持し、第2基板を第2載置部から保持した後に、第1基板のずれ量に基づいて、第1基板を第1載置部から保持するようにしてもよい。すなわち、ずれ量に基づいて複数の基板の各々を複数の載置部の各々の高さ位置が低い方から順に保持するようにしてもよい。これにより、搬入を行う場合と同様に、ロボットアームの搬送動作が複雑化することを抑制することができるので、基板以外の部材との接触を抑制しながら複数の基板を精度よく、かつ、容易に搬送することができる。
 また、載置位置の高さが略等しい複数の載置部の各々から複数の基板を別個に搬出する場合においても、搬入を行う場合と同様に、ずれ量の平均値に基づいて複数の基板を略同時に保持するようにしてもよい。これにより、搬入を行う場合と同様に、複数の載置部の各々に、基板以外の部材との接触を抑制しながら複数の基板の各々をより精度よく搬送することができる。また、基板の搬入と搬送との両方において、ずれ量を取得するとともに、取得されたずれ量に基づいてロボットアームの搬送動作を制御するようにしてもよい。
 また、上記実施形態では、基板保持ハンド23および24において、複数の基板10が水平面に沿うように左右方向に並べて配置されている例を示したが、本開示はこれに限られない。本開示では、基板保持ハンドにおいて、複数の基板が水平面に沿わず、鉛直方向にずれた状態で左右に並べて配置されていてもよい。また、基板保持ハンドを、複数の基板を左右方向に並べるのではなく、鉛直方向に沿って並べて保持するようにしてもよい。
 また、上記実施形態では、基板保持ハンド23および24の各々が、一対の基板10を保持する例を示したが、本開示はこれに限られない。本開示では、基板保持ハンドを、3つ以上の基板を保持するようにしてもよい。また、基板保持ハンドの保持部の形状は、先端が二股に分かれたU字形状を有していなくともよい。また、基板保持ハンドは、パッシブタイプのエンドエフェクタでなくともよい。
 また、上記実施形態では、検出部60による検出結果に基づいて、基板10の所定の基準位置に対するずれ量として、基板10の基板保持ハンド23に対する配置のずれ量を取得する例を示したが、本開示はこれに限られない。本開示では、基板10の所定の基準位置に対するずれ量として、予め設定された座標位置からのずれ量を取得するようにしてもよいし、搬送先である載置部に対するずれ量を取得するようにしてもよい。
 また、上記実施形態では、互いに別個に動作する2つのロボットアーム21およびロボットアーム22を備えている例を示したが、本開示はこれに限られない。本開示では、1つのロボットアームのみを備えていてもよいし、3つ以上のロボットアームを備えていてもよい。また、2つのロボットアームは、アーム部の一部を共通としてもよい。すなわち、基台部に対して回動する共通の部材に対して、2つのロボットアームの各々が接続されていてもよい。
 また、上記実施形態では、基板10を検出する検出部60が、透過型のレーザセンサである例を示したが、本開示はこれに限られない。本開示では、検出部は、反射型のレーザセンサであってもよいし、外観画像を取得するカメラなどの撮像部であってもよい。すなわち、撮像された外観画像に基づいて、基板のずれ量を取得するようにしてもよい。また、検出部は、基板搬送ロボットシステムの搬送ロボットに配置されていてもよい。たとえば、ロボットアームが接続される基台部に検出部を配置してもよい。また、ロボットアーム、または、基板保持ハンドに検出部を配置してもよい。
 また、上記実施形態では、互いに載置位置の高さが異なる載置部51および載置部52に基板10を順に載置する場合に、載置部51および載置部52に向かって移動している最中に検出部60が一対の基板10の各々を検出することによって、基板保持ハンド23および24に保持されている一対の基板10の両方のずれ量が取得される例を示したが、本開示はこれに限られない。本開示では、載置位置が高い方の載置部に基板を載置した後に、載置位置が低い方の載置部に基板を載置する前に基板を検出することによって、載置位置が低い方の載置部に載置される基板のずれ量を取得するようにしてもよい。
 また、上記実施形態では、複数の処理モジュール部103の各々が互いに載置位置の高さの異なる載置部51および載置部52の2つの載置部50を備えている例を示したが、本開示はこれに限られない。本開示では、複数の処理モジュール部のうちのいくつか、または、全てが、載置位置の高さが互いに略等しい複数の載置部を備えていてもよい。また、複数の載置部の各々が、載置位置の高さを変更する駆動機構を有していてもよい。その場合には、複数の基板の各々を載置する場合に、ずれ量に基づいて基板保持ハンドの位置を調整した状態で、載置部の高さを変更させることによって、複数の基板の各々が載置部に載置されるようにする。具体的には、基板保持ハンドに保持された基板が載置部の真上の位置に配置されるようにロボットアームの搬送動作を制御するとともに、載置部側を上方に移動させることによって、基板が搬入されるようにしてもよい。
 また、上記実施形態では、基板搬送ロボットシステム100が所定の真空度に保たれた搬送室104内において、基板10の搬送を行う例を示したが、本開示はこれに限られない。本開示では、常圧において基板を搬送するようにしてもよい。
 また、図10に示す変形例による基板処理システムのように、1つの基板10に対して処理を行う処理モジュール部203が一対ずつ隣り合うように配置されていてもよい。この場合には、隣り合う一対の処理モジュール部203の各々の載置部251および載置部252は、互いに載置位置の高さが異なっていてもよい。すなわち、隣り合う一対の処理モジュール部203の一方の載置部251の載置位置が、他方の載置部252の載置位置よりも高い位置であってもよい。その場合には、上記実施形態と同様に、一方の基板10のずれ量に基づいて載置部251に基板10が載置された後に、他方の基板10のずれ量に基づいて載置部252に基板10が載置されるように搬送動作が制御されてもよい。ここで、載置部251および載置部252は、それぞれ、第1載置部および第2載置部の一例である。
 本明細書で開示する要素の機能は、開示された機能を実行するよう構成またはプログラムされた汎用プロセッサ、専用プロセッサ、集積回路、ASIC(Application Specific Integrated Circuits)、従来の回路、および/または、それらの組み合わせ、を含む回路(circuitry)または処理回路を使用して実行できる。プロセッサは、トランジスタやその他の回路を含むため、処理回路または回路と見なされる。本開示において、回路、ユニット、または手段は、列挙された機能を実行するハードウェアであるか、または、列挙された機能を実行するようにプログラムされたハードウェアである。ハードウェアは、本明細書に開示されているハードウェアであってもよいし、あるいは、列挙された機能を実行するようにプログラムまたは構成されているその他の既知のハードウェアであってもよい。ハードウェアが回路の一種と考えられるプロセッサである場合、回路、手段、またはユニットはハードウェアとソフトウェアの組み合わせであり、ソフトウェアはハードウェアおよび/またはプロセッサの構成に使用される。
 [態様]
 上記した例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
 (項目1)
 複数の基板の各々を保持する複数の保持部を有する基板保持ハンドと、
 前記基板保持ハンドが取り付けられたロボットアームと、
 前記基板保持ハンドに保持された前記複数の基板の各々を検出する検出部による検出結果に基づいて、前記複数の基板の各々の所定の基準位置に対する配置のずれ量を取得するとともに、各々の取得された前記ずれ量に基づいて、前記複数の基板の各々が載置部に対して別個に搬入されること、および、前記載置部から別個に搬出されることの少なくとも一方が行われるように、前記複数の基板を搬送する前記ロボットアームの搬送動作を制御する制御部と、を備える、基板搬送ロボットシステム。
 (項目2)
 前記複数の基板の各々は、水平面に沿うように左右に並べられた状態で前記複数の保持部が一体的に形成された前記基板保持ハンドに保持され、
 前記制御部は、各々の取得された前記ずれ量に基づいて、前記基板保持ハンドにおいて一体的に形成された前記複数の保持部に保持された前記複数の基板の各々が前記載置部に対して別個に搬入されること、および、前記載置部から別個に搬出されることの少なくとも一方が行われるように、前記ロボットアームの搬送動作を制御する、項目1に記載の基板搬送ロボットシステム。
 (項目3)
 前記制御部は、前記ロボットアームの搬送動作において、載置位置の高さが互いに異なる複数の前記載置部の各々に対して前記複数の基板の各々を別個に搬入する場合に、前記複数の基板の各々の前記ずれ量に基づいて、前記複数の基板の各々を前記複数の載置部の各々に順に載置することと、前記複数の載置部の各々から前記複数の基板の各々を別個に搬出する場合に、前記複数の基板の各々の前記ずれ量に基づいて、前記複数の基板の各々を前記複数の載置部の各々から順に保持することとの少なくとも一方を行う、項目1または2に記載の基板搬送ロボットシステム。
 (項目4)
 前記基板保持ハンドは、一対の前記基板の各々を保持する一対の前記保持部を有し、
 前記複数の載置部は、前記一対の基板のうちの一方である第1基板が載置される第1載置部と、前記第1載置部とは別個に、前記一対の基板のうちの他方である第2基板が載置され、載置位置の高さが前記第1載置部よりも低い第2載置部とを含み、
 前記制御部は、
  前記検出部による検出結果に基づいて前記第1基板および前記第2基板の各々の前記ずれ量を取得するとともに、
  前記第1載置部および前記第2載置部の各々に対して前記複数の基板の各々を別個に搬入する場合に、前記第1基板の前記ずれ量に基づいて、前記第1基板を前記第1載置部に載置し、前記第1基板を前記第1載置部に載置した後に、前記第2基板の前記ずれ量に基づいて、前記第2基板を前記第2載置部に載置するように、前記ロボットアームの搬送動作を制御し、
  前記第1載置部および前記第2載置部の各々から前記複数の基板の各々を別個に搬出する場合に、前記第2基板の前記ずれ量に基づいて、前記第2基板を前記第2載置部から保持し、前記第2基板を前記第2載置部から保持した後に、前記第1基板の前記ずれ量に基づいて、前記第1基板を前記第1載置部から保持するように、前記ロボットアームの搬送動作を制御する、項目3に記載の基板搬送ロボットシステム。
 (項目5)
 前記制御部は、前記ロボットアームの搬送動作において、載置位置の高さが互いに略等しい複数の前記載置部の各々に対して前記複数の基板の各々を別個に搬入する場合に、前記複数の基板の各々の前記ずれ量に基づいて、前記複数の基板の各々を前記複数の載置部の各々に略同時に載置することと、前記複数の載置部の各々から前記複数の基板の各々を別個に搬出する場合に、前記複数の基板の各々の前記ずれ量に基づいて、前記複数の基板の各々を前記複数の載置部の各々から略同時に保持することとの少なくとも一方を行う、項目1~4のいずれか1項に記載の基板搬送ロボットシステム。
 (項目6)
 前記制御部は、前記複数の基板の各々の前記ずれ量の平均値に基づいて、前記複数の基板の各々を、前記複数の載置部の各々に略同時に載置することと、前記複数の載置部の各々から略同時に保持することとの少なくとも一方を行うように、前記ロボットアームの搬送動作を制御する、項目5に記載の基板搬送ロボットシステム。
 (項目7)
 前記制御部は、
  前記載置部に対して前記複数の基板の各々を別個に搬入する場合において、前記複数の基板の各々が前記基板保持ハンドに保持された後に、前記検出部による検出結果に基づいて前記複数の基板の各々の前記ずれ量を取得するとともに、
  前記基板保持ハンドに保持された後に取得された前記複数の基板の各々の前記ずれ量に基づいて、前記複数の基板の各々が前記載置部に別個に載置されるように、前記ロボットアームの搬送動作を制御する、項目1~6のいずれか1項に記載の基板搬送ロボットシステム。
 (項目8)
 前記制御部は、
  前記載置部に対して前記複数の基板の各々を別個に搬入する場合において、前記検出部による検出結果に基づいて、前記複数の基板の各々の前記基板保持ハンドに対する配置の前記ずれ量を取得し、
  前記載置部から前記複数の基板の各々を別個に搬出する場合において、前記検出部による検出結果に基づいて、前記複数の基板の各々の前記載置部に対する配置の前記ずれ量を取得する、項目1~7のいずれか1項に記載の基板搬送ロボットシステム。
 (項目9)
 前記ロボットアームは、各々に前記基板保持ハンドが取り付けられ、別個に動作する第1ロボットアームおよび第2ロボットアームを含み、
 前記検出部は、前記第1ロボットアームおよび前記第2ロボットアームの各々ごとに、前記複数の基板の各々を検出し、
 前記制御部は、
  前記検出部による検出結果に基づいて、前記第1ロボットアームおよび前記第2ロボットアームの各々ごとに前記複数の基板の各々の前記ずれ量を取得するとともに、
  前記第1ロボットアームおよび前記第2ロボットアームの各々ごとに、前記複数の基板の各々の取得された前記ずれ量に基づいて、前記複数の基板の各々が前記載置部に対して別個に搬入されること、および、前記載置部から別個に搬出されることの少なくとも一方が行われるように、前記ロボットアームの搬送動作を制御する、項目1~8のいずれか1項に記載の基板搬送ロボットシステム。

Claims (9)

  1.  複数の基板の各々を保持する複数の保持部を有する基板保持ハンドと、
     前記基板保持ハンドが取り付けられたロボットアームと、
     前記基板保持ハンドに保持された前記複数の基板の各々を検出する検出部による検出結果に基づいて、前記複数の基板の各々の所定の基準位置に対する配置のずれ量を取得するとともに、各々の取得された前記ずれ量に基づいて、前記複数の基板の各々が載置部に対して別個に搬入されること、および、前記載置部から別個に搬出されることの少なくとも一方が行われるように、前記複数の基板を搬送する前記ロボットアームの搬送動作を制御する制御部と、を備える、基板搬送ロボットシステム。
  2.  前記複数の基板の各々は、水平面に沿うように左右に並べられた状態で前記複数の保持部が一体的に形成された前記基板保持ハンドに保持され、
     前記制御部は、各々の取得された前記ずれ量に基づいて、前記基板保持ハンドにおいて一体的に形成された前記複数の保持部に保持された前記複数の基板の各々が前記載置部に対して別個に搬入されること、および、前記載置部から別個に搬出されることの少なくとも一方が行われるように、前記ロボットアームの搬送動作を制御する、請求項1に記載の基板搬送ロボットシステム。
  3.  前記制御部は、前記ロボットアームの搬送動作において、載置位置の高さが互いに異なる複数の前記載置部の各々に対して前記複数の基板の各々を別個に搬入する場合に、前記複数の基板の各々の前記ずれ量に基づいて、前記複数の基板の各々を前記複数の載置部の各々に順に載置することと、前記複数の載置部の各々から前記複数の基板の各々を別個に搬出する場合に、前記複数の基板の各々の前記ずれ量に基づいて、前記複数の基板の各々を前記複数の載置部の各々から順に保持することとの少なくとも一方を行う、請求項1に記載の基板搬送ロボットシステム。
  4.  前記基板保持ハンドは、一対の前記基板の各々を保持する一対の前記保持部を有し、
     前記複数の載置部は、前記一対の基板のうちの一方である第1基板が載置される第1載置部と、前記第1載置部とは別個に、前記一対の基板のうちの他方である第2基板が載置され、載置位置の高さが前記第1載置部よりも低い第2載置部とを含み、
     前記制御部は、
      前記検出部による検出結果に基づいて前記第1基板および前記第2基板の各々の前記ずれ量を取得するとともに、
      前記第1載置部および前記第2載置部の各々に対して前記複数の基板の各々を別個に搬入する場合に、前記第1基板の前記ずれ量に基づいて、前記第1基板を前記第1載置部に載置し、前記第1基板を前記第1載置部に載置した後に、前記第2基板の前記ずれ量に基づいて、前記第2基板を前記第2載置部に載置するように、前記ロボットアームの搬送動作を制御し、
      前記第1載置部および前記第2載置部の各々から前記複数の基板の各々を別個に搬出する場合に、前記第2基板の前記ずれ量に基づいて、前記第2基板を前記第2載置部から保持し、前記第2基板を前記第2載置部から保持した後に、前記第1基板の前記ずれ量に基づいて、前記第1基板を前記第1載置部から保持するように、前記ロボットアームの搬送動作を制御する、請求項3に記載の基板搬送ロボットシステム。
  5.  前記制御部は、前記ロボットアームの搬送動作において、載置位置の高さが互いに略等しい複数の前記載置部の各々に対して前記複数の基板の各々を別個に搬入する場合に、前記複数の基板の各々の前記ずれ量に基づいて、前記複数の基板の各々を前記複数の載置部の各々に略同時に載置することと、前記複数の載置部の各々から前記複数の基板の各々を別個に搬出する場合に、前記複数の基板の各々の前記ずれ量に基づいて、前記複数の基板の各々を前記複数の載置部の各々から略同時に保持することとの少なくとも一方を行う、請求項1に記載の基板搬送ロボットシステム。
  6.  前記制御部は、前記複数の基板の各々の前記ずれ量の平均値に基づいて、前記複数の基板の各々を、前記複数の載置部の各々に略同時に載置することと、前記複数の載置部の各々から略同時に保持することとの少なくとも一方を行うように、前記ロボットアームの搬送動作を制御する、請求項5に記載の基板搬送ロボットシステム。
  7.  前記制御部は、
      前記載置部に対して前記複数の基板の各々を別個に搬入する場合において、前記複数の基板の各々が前記基板保持ハンドに保持された後に、前記検出部による検出結果に基づいて前記複数の基板の各々の前記ずれ量を取得するとともに、
      前記基板保持ハンドに保持された後に取得された前記複数の基板の各々の前記ずれ量に基づいて、前記複数の基板の各々が前記載置部に別個に載置されるように、前記ロボットアームの搬送動作を制御する、請求項1に記載の基板搬送ロボットシステム。
  8.  前記制御部は、
      前記載置部に対して前記複数の基板の各々を別個に搬入する場合において、前記検出部による検出結果に基づいて、前記複数の基板の各々の前記基板保持ハンドに対する配置の前記ずれ量を取得し、
      前記載置部から前記複数の基板の各々を別個に搬出する場合において、前記検出部による検出結果に基づいて、前記複数の基板の各々の前記載置部に対する配置の前記ずれ量を取得する、請求項1に記載の基板搬送ロボットシステム。
  9.  前記ロボットアームは、各々に前記基板保持ハンドが取り付けられ、別個に動作する第1ロボットアームおよび第2ロボットアームを含み、
     前記検出部は、前記第1ロボットアームおよび前記第2ロボットアームの各々ごとに、前記複数の基板の各々を検出し、
     前記制御部は、
      前記検出部による検出結果に基づいて、前記第1ロボットアームおよび前記第2ロボットアームの各々ごとに前記複数の基板の各々の前記ずれ量を取得するとともに、
      前記第1ロボットアームおよび前記第2ロボットアームの各々ごとに、前記複数の基板の各々の取得された前記ずれ量に基づいて、前記複数の基板の各々が前記載置部に対して別個に搬入されること、および、前記載置部から別個に搬出されることの少なくとも一方が行われるように、前記ロボットアームの搬送動作を制御する、請求項1に記載の基板搬送ロボットシステム。
PCT/JP2023/037070 2022-10-14 2023-10-12 基板搬送ロボットシステム WO2024080332A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022165450 2022-10-14
JP2022-165450 2022-10-14

Publications (1)

Publication Number Publication Date
WO2024080332A1 true WO2024080332A1 (ja) 2024-04-18

Family

ID=90669759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/037070 WO2024080332A1 (ja) 2022-10-14 2023-10-12 基板搬送ロボットシステム

Country Status (1)

Country Link
WO (1) WO2024080332A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008155932A1 (ja) * 2007-06-19 2008-12-24 Ulvac, Inc. 基板搬送方法
US20120325148A1 (en) * 2011-06-22 2012-12-27 Asm Japan K.K. Method for Positioning Wafers in Multiple Wafer Transport
WO2013088547A1 (ja) * 2011-12-15 2013-06-20 タツモ株式会社 ウエハ搬送装置
US20150249028A1 (en) * 2007-11-30 2015-09-03 Novellus Systems, Inc. Wafer position correction with a dual, side-by-side wafer transfer robot
WO2022202626A1 (ja) * 2021-03-24 2022-09-29 東京エレクトロン株式会社 基板搬送方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008155932A1 (ja) * 2007-06-19 2008-12-24 Ulvac, Inc. 基板搬送方法
US20150249028A1 (en) * 2007-11-30 2015-09-03 Novellus Systems, Inc. Wafer position correction with a dual, side-by-side wafer transfer robot
US20120325148A1 (en) * 2011-06-22 2012-12-27 Asm Japan K.K. Method for Positioning Wafers in Multiple Wafer Transport
WO2013088547A1 (ja) * 2011-12-15 2013-06-20 タツモ株式会社 ウエハ搬送装置
WO2022202626A1 (ja) * 2021-03-24 2022-09-29 東京エレクトロン株式会社 基板搬送方法

Similar Documents

Publication Publication Date Title
TWI397969B (zh) 具有迅速工件定中心功能的加工裝置
JP4402811B2 (ja) 被処理体の搬送システムおよび被処理体の位置ずれ量の検出方法
US20190172742A1 (en) Teaching method
US9099508B2 (en) Method for automatic measurement and for teaching-in of location positions of objects within a substrate processing system by means of sensor carriers and associated sensor carrier
JP2006351884A (ja) 基板搬送機構及び処理システム
KR20120023517A (ko) 기판 반송 장치, 기판 반송 방법 및 그 기판 반송 방법을 실행시키기 위한 프로그램을 기록한 기록 매체
JP2000127069A (ja) 搬送システムの搬送位置合わせ方法
JP4576694B2 (ja) 被処理体の処理システムの搬送位置合わせ方法及び被処理体の処理システム
KR102247038B1 (ko) 호이스트 모듈의 위치 보정 방법
US7596425B2 (en) Substrate detecting apparatus and method, substrate transporting apparatus and method, and substrate processing apparatus and method
JP2013149902A (ja) ウエハ搬送装置
TW202133312A (zh) 基板處理裝置及基板處理方法
JP2012038922A (ja) 基板搬送装置、基板搬送方法及びその基板搬送方法を実行させるためのプログラムを記録した記録媒体
KR102471809B1 (ko) 티칭 방법
JP4357619B2 (ja) マルチチャンバシステム
JP4468159B2 (ja) 基板処理装置及びその搬送位置合わせ方法
WO2024080332A1 (ja) 基板搬送ロボットシステム
KR20220137071A (ko) 기판 반송 장치 및 기판 위치 어긋남 측정 방법
KR102462619B1 (ko) 기판 처리 장치, 기판 처리 장치의 운전 방법 및 기억 매체
JP4359365B2 (ja) 基板処理装置及び基板処理装置における基板位置ずれ補正方法
US7361920B2 (en) Substrate processing apparatus and transfer positioning method thereof
JP4047182B2 (ja) 基板の搬送装置
KR20220133107A (ko) 기판 처리 장치, 교시 정보 생성 방법, 교시 세트 및 기판형 지그
JP6700124B2 (ja) 搬送対象物を搬送する搬送方法
WO2023210561A1 (ja) 半導体製造装置システム