WO2023210250A1 - 接触抵抗測定装置およびインピーダンス測定装置 - Google Patents

接触抵抗測定装置およびインピーダンス測定装置 Download PDF

Info

Publication number
WO2023210250A1
WO2023210250A1 PCT/JP2023/012872 JP2023012872W WO2023210250A1 WO 2023210250 A1 WO2023210250 A1 WO 2023210250A1 JP 2023012872 W JP2023012872 W JP 2023012872W WO 2023210250 A1 WO2023210250 A1 WO 2023210250A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
contact
contact resistance
determined
measuring device
Prior art date
Application number
PCT/JP2023/012872
Other languages
English (en)
French (fr)
Inventor
淳司 飯島
克俊 西島
Original Assignee
日置電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日置電機株式会社 filed Critical 日置電機株式会社
Publication of WO2023210250A1 publication Critical patent/WO2023210250A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant

Definitions

  • the present invention provides an AC current for contact determination to a current path including a contact point to be determined, and synchronously detects the AC voltage generated at the contact point to be determined using a synchronous signal having the same frequency as the frequency of the AC voltage.
  • the present invention relates to a contact resistance measuring device that performs a process for determining the quality of a contact point to be determined based on a DC voltage obtained by applying the same, and an impedance measuring device that is equipped with the contact resistance measuring device and measures the impedance of a target to be measured.
  • an impedance measuring device disclosed in Patent Document 1 below is known as an impedance measuring device equipped with this type of contact resistance measuring device.
  • This impedance measurement device includes a measurement signal source that supplies an AC measurement signal to the measurement target (sample to be measured) through Hi side and Lo side signal supply source terminals, and a measurement signal source that supplies an AC measurement signal to the measurement target (sample to be measured) through Hi side and Lo side signal supply source terminals. It is equipped with a measurement section that measures the voltage generated in the object via each sense terminal for Hi side and Lo side signal detection.
  • the measurement unit includes an AC constant current for disconnection detection that supplies an AC constant current between the Hi side sense terminal and the Lo side sense terminal in order to detect the contact resistance of each sense terminal. It includes a current source and two lock-in amplifiers, first and second.
  • the frequency f11 of the AC constant current supplied from the signal source for measurement and the frequency f12 of the AC constant current supplied from the AC constant current source for disconnection detection are set to different frequencies, and the first lock-in amplifier performs synchronous detection at frequency f11, and the second lock-in amplifier performs synchronous detection at frequency f12.
  • the first lock-in amplifier outputs the voltage Va that occurs in the measurement target when the AC constant current for measurement flows
  • the second lock-in amplifier outputs the voltage Va that occurs in the measurement target when the AC constant current for disconnection detection flows.
  • a voltage Vb generated by the resistance between the Hi-side and Lo-side sense terminals is output.
  • the contact resistance of the Hi side source terminal is RC1
  • the contact resistance of the Lo side source terminal is RC2
  • the contact resistance of the Hi side sense terminal is RC3
  • the contact resistance of the Lo side source terminal is RC4.
  • the impedance to be measured is Rx
  • the resistance between the Hi side and Lo side sense terminals is a combined resistance of the resistance (RC3+Rx+RC4) and the output resistance R01 of the AC constant current source.
  • Patent No. 4695920 (page 7, Figure 4)
  • the impedance measuring device described above has the following problems that should be improved. Specifically, the impedance measuring device described above uses the second lock-in amplifier to detect the contact resistance between the Hi-side and Lo-side sense terminals. In this case, the second lock-in amplifier performs synchronous detection at the frequency f12 of the AC constant current of the AC constant current source for disconnection detection. Therefore, when noise with a frequency equal to or close to the frequency f12 of the AC constant current of the AC constant current source for disconnection detection occurs in the surrounding environment, an error will be included in the detection of the resistance (RC3 + Rx + RC4). , the contact resistance between the Hi-side and Lo-side sense terminals will be detected incorrectly.
  • the impedance measuring device described above As a result, a contact check error occurs in the impedance measuring device described above, and a measurement becomes impossible. On the other hand, it is possible to forcibly enable measurement by canceling the contact check settings. However, in such a case, the reliability of impedance measurement by the impedance measuring device will decrease. For this reason, the impedance measuring device described above has a problem to be improved in that the accuracy of the contact check should be improved.
  • the present invention has been made in view of the above problems, and a main purpose of the present invention is to provide a contact resistance measuring device that can perform an accurate contact check, and an impedance measuring device that can improve the reliability of impedance measurement. .
  • a contact resistance measuring device includes a first alternating current source that supplies an alternating current for contact determination to a current path including a contact point to be determined; By synchronously detecting the alternating current voltage that corresponds to the frequency of the contact determination alternating current when the contact determination alternating current is supplied and that is generated at the contact point to be determined, with a synchronous signal having the same frequency as the frequency of the said alternating current voltage, a synchronous detection unit that outputs a DC voltage whose voltage value changes according to the voltage value of the AC voltage; and a process for determining the quality of the contact point to be determined based on the DC voltage output from the synchronous detection unit.
  • a contact resistance measuring device comprising a processing unit that executes the contact resistance measuring device, wherein the first alternating current source is configured to be able to supply a plurality of the contact determination alternating currents defined at different frequencies to the current path,
  • the synchronous detection unit detects each of the AC voltages generated at the contact point to be determined when the plurality of AC currents for contact determination are supplied to the current path at a frequency that is the same as the different frequency of each of the AC voltages.
  • the contact resistance measuring device can accurately perform the contact check.
  • the first alternating current source is configured to be able to synthesize a plurality of contact determination alternating currents having different frequencies and supply the synthesized contact determination alternating current to the current path
  • the synchronous detection section comprising a plurality of synchronous detection circuits provided in one-to-one correspondence with the different frequencies, each of the plurality of synchronous detection circuits detecting the alternating current voltage of a frequency corresponding one-to-one with the different frequencies.
  • the processing unit executes the quality determination process for each of the different frequencies. Therefore, according to this contact resistance measuring device, as a result of outputting DC voltage simultaneously from each synchronous detection circuit, it is possible to simultaneously perform pass/fail judgment processing for each different frequency, so that a contact check for a contact point to be judged can be performed instantly. It can be done (in a short time).
  • the synchronous detection section sequentially synchronously detects each of the AC voltages with a synchronous signal having the same frequency as the different frequencies of the AC voltages, thereby detecting the different frequencies.
  • the processing unit sequentially outputs DC voltages whose voltage values change depending on the voltage values of the corresponding AC voltages, and executes the quality determination process for each of the different frequencies. Therefore, according to this contact resistance measuring device, the synchronous detection section can be easily configured compared to configuring the synchronous detection section with a plurality of synchronous detection circuits provided in one-to-one correspondence with different frequencies. It can be constructed at low cost.
  • the processing unit performs the quality determination process when the contact resistance of the contact point to be determined is smaller than a predetermined resistance value.
  • a determination process for determining that the contact resistance is good is executed at each of the different frequencies, and when it is determined that the contact resistance is good more than half of the times of the executed determination processes, the contact resistance of the contact point to be determined is finally determined to be good. do. Therefore, according to this contact resistance measuring device, even when noise of the same frequency or a nearby frequency as one of different frequencies occurs in the environment surrounding the contact resistance measuring device, other Since the frequency does not affect the contact check, the contact resistance measuring device can accurately perform the contact check.
  • the processing unit performs the quality determination process when the contact resistance of the contact point to be determined is smaller than a predetermined resistance value.
  • a determination process for determining that the contact resistance is good is executed at each of the different frequencies, and when all of the executed determination processes determine that the contact resistance is poor, the contact resistance at the contact point to be determined is finally determined to be defective. Therefore, according to this contact resistance measuring device, the contact resistance is ultimately determined to be good unless noise of the same frequency as all of the different frequencies or in the vicinity occurs in the environment surrounding the contact resistance measuring device. Therefore, the contact resistance measuring device can reduce the occurrence of contact check errors in which the contact resistance of the contact point to be determined is determined to be defective.
  • the impedance measuring device includes a second AC current source that supplies a measurement AC current to a measurement object whose one end and the other end are respectively connected to the source terminals on the Hi side and the Lo side;
  • An impedance measurement device comprising: a measurement unit that measures the impedance of the measurement target based on the voltage value of the measured AC voltage and the current value of the measurement AC current;
  • the first alternating current source includes the current path including the contact points between each of the source terminals and the one end and the other end of the object to be measured, and each of the sense terminals.
  • the contact determination alternating current is supplied to at least one of the current paths including contact points with the one end and the other end of the measurement object, and the processing unit The process for determining quality is performed for each of the different frequencies, with each contact location being the contact location to be determined.
  • the second AC current source also functions as the first AC current source, and the measurement AC current is selected from among the plurality of contact determination AC currents having different frequencies. One of them is to supply the current to the current path including each contact point between each of the source terminals and the one end and the other end of the object to be measured. Therefore, according to this impedance measuring device, since the second AC current source also functions as the first AC current source that supplies the AC current for contact determination, there is no need to provide two first AC current sources. , the impedance measuring device can be constructed easily and at low cost.
  • the processing unit outputs the impedance of the measurement target measured by the measurement unit when the contact resistance of the contact point to be determined is finally determined to be good. . Therefore, according to this impedance measuring device, the reliability of impedance measurement can be sufficiently improved.
  • the contact resistance measuring device even when noise having a frequency that is the same as or near one of different frequencies is generated in the environment surrounding the contact resistance measuring device, other noises can be detected. Since the contact check is not affected by the frequency, the contact resistance measuring device can accurately perform the contact check.
  • FIG. 1 is a configuration diagram showing the configuration of a contact resistance measuring device 1.
  • FIG. 1 is a configuration diagram showing the configuration of an impedance measuring device 100.
  • FIG. It is a block diagram which shows the structure of 100 A of impedance measurement apparatuses.
  • the contact resistance measuring device 1 will be explained with reference to FIG. 1.
  • the contact resistance measuring device 1 is configured to be able to determine the quality of the contact resistance at the contact point to be determined, and has a pair of terminals (Hi (high) side sense terminal Hp (sense terminal for signal detection) and Lo (low) side sense terminal Hp (sense terminal for signal detection)). ) side sense terminal Lp (also referred to as sense terminal for signal detection)), AC current source SS1, capacitors C1 and C2, operational amplifier circuit A1, filter FIL1, synchronous detection unit SDU1, comparators COM1 to COM3, processing unit CONT and an output section OUT.
  • the sense terminal Hp and the sense terminal Lp when connecting the sense terminal Hp and the sense terminal Lp to the positive terminal T1, which is one end of the battery BAT, which is a secondary battery, and the negative terminal T2, which is the other end, the sense terminal Hp and the positive terminal
  • the contact points with the terminal T1 and the contact points between the sense terminal Lp and the negative terminal T2 are the contact points to be judged, and the quality of the contact resistances RHP and RLP at each of the contact points to be judged is determined (prespecified).
  • the resistance value is smaller than the resistance value.
  • the alternating current source SS1 functions as a first alternating current source, and when a start signal is output from the processing unit CONT, outputs an alternating current voltage Vj for contact determination, and contacts a current path including a contact point to be determined.
  • the supply of the determination current Ij which is an AC constant current for determination, is started, and when a stop signal is output from the processing unit CONT, the output of the contact determination AC voltage Vj is stopped, and the supply of the determination current Ij is stopped. stop.
  • the alternating current source SS1 has a plurality of alternating currents specified at different frequencies (alternating current for contact determination: as an example, three frequencies f1 and f2 that are different from each other with a constant amplitude (known) and a constant frequency).
  • the determination current Ij can be combined and supplied as the determination current Ij.
  • the determination current Ij may be two alternating currents with different frequencies, or may be four or more alternating currents with different frequencies.
  • the determination current Ij supplied from the AC current source SS1 is applied to the coupling capacitor C1, the sense terminal Hp, the contact point between the sense terminal Hp and the positive terminal T1 (determination target contact point: contact resistance RHP), the battery BAT, the contact point between the negative terminal T2 and the sense terminal Lp (contact point to be determined: contact resistance RLP), and the current path returning to the AC current source SS1 via the sense terminal Lp.
  • the AC current source SS1 outputs synchronization signals Sf1 to Sf3 having frequencies f1, f2, and f3 that are the same as the frequency of the determination current Ij as synchronization signals for synchronous detection to the synchronous detection circuits SD1 to SD3, which will be described later. do.
  • the first amplifier A1 functions as an AC voltage detection section, and has a non-inverting input terminal connected to the ground G1 via an input resistor R1, a sense terminal Hp via a coupling capacitor C2, and an inverting input terminal. It is configured to include an operational amplifier OP1 having a terminal connected to ground G1 via an input resistor R2, and a feedback resistor R3 connected between an output terminal and an inverting input terminal, and functioning as a non-inverting amplifier.
  • the first amplifier A1 corresponds to the frequencies f1, f2, and f3 of the judgment current Ij, and also corresponds to the judgment target contact points (sense terminals Hp and The AC voltage generated between the sense terminals Lp) is input through the capacitor C2, and is detected as a detection voltage Vd1 (AC voltage), and the detection voltage Vd1 is amplified by a specified amplification factor and output.
  • Filter FIL1 outputs an AC voltage that is a frequency component of frequency f1, an AC voltage that is a frequency component of frequency f2, and an AC voltage that is a frequency component of frequency f3 that are included in the detection voltage Vd1 output from the first amplifier A1. It is configured as a narrow band pass filter that mainly passes the signal. With this configuration, the filter FIL1 inputs the detection voltage Vd1 output from the first amplifier A1, and removes frequency components (noise components) outside the passband included in the detection voltage Vd1 to generate the detection voltage Vd1. Output.
  • the synchronous detection unit SDU1 includes a plurality of (three in this example) synchronous detection circuits SD1 to SD3 provided in one-to-one correspondence to different frequencies f1, f2, and f3, and a subsequent stage of each synchronous detection circuit SD1 to SD3. It is configured to include low-pass filters LPF1 to LPF3 arranged respectively.
  • the synchronous detection circuit SD1 and the low-pass filter LPF1 function as a synchronous detection circuit provided in one-to-one correspondence with the frequency f1, and convert the detection voltage Vd1 detected by the first amplifier A1 into the detection voltage Vd1.
  • the synchronous detection circuit SD1 is configured using, for example, a multiplier, and is configured by multiplying the detection voltage Vd1 output from the filter FIL1 and the synchronization signal Sf1 output from the AC current source SS1. (In other words, by synchronously detecting the detection voltage Vd1 output from the filter FIL1 with the synchronization signal Sf1), the voltage value of the AC voltage based on the determination current Ij of frequency f1 among the AC voltages forming the detection voltage Vd1.
  • a voltage V1 including a DC voltage whose voltage value changes depending on (for example, amplitude) is output.
  • the low-pass filter LPF1 is configured as a low-pass filter, receives the voltage V1 output from the synchronous detection circuit SD1, and removes and smooths the alternating current component, thereby generating the detected voltage Vd1 at the frequency f1.
  • a voltage V1 as a DC voltage whose voltage value changes according to the voltage value of is output. That is, this synchronous detection circuit (synchronous detection circuit SD1 and low-pass filter LPF1) detects the magnitude of the detection voltage Vd1 corresponding to the frequency f1 of the determination current Ij.
  • the synchronous detection circuit SD2 and the low-pass filter LPF2 function as a synchronous detection circuit provided in one-to-one correspondence with the frequency f2, and make the detection voltage Vd1 detected by the first amplifier A1 the same frequency as the detection voltage Vd1.
  • a DC voltage V2 whose voltage value changes according to the voltage value of the detection voltage Vd1 is output.
  • the synchronous detection circuit SD2 is configured using, for example, a multiplier, and multiplies the detection voltage Vd1 output from the filter FIL1 and the synchronization signal Sf2 output from the AC current source SS1.
  • the low-pass filter LPF2 is configured as a low-pass filter, receives the voltage V2 output from the synchronous detection circuit SD2, and removes and smooths the alternating current component, thereby detecting the detected voltage Vd1 at the frequency f2.
  • a voltage V2 as a DC voltage whose voltage value changes according to the voltage value of is output. That is, this synchronous detection circuit (synchronous detection circuit SD2 and low-pass filter LPF2) detects the magnitude of the detection voltage Vd1 corresponding to the frequency f2 of the determination current Ij.
  • the synchronous detection circuit SD3 and the low-pass filter LPF3 function as a synchronous detection circuit provided in one-to-one correspondence with the frequency f3, and make the detection voltage Vd1 detected by the first amplifier A1 the same as the frequency of the detection voltage Vd1.
  • a DC voltage V3 whose voltage value changes according to the voltage value of the detection voltage Vd1 is output.
  • the synchronous detection circuit SD3 is configured using, for example, a multiplier, and multiplies the detection voltage Vd1 output from the filter FIL1 and the synchronization signal Sf3 output from the AC current source SS1.
  • the low-pass filter LPF3 is configured as a low-pass filter, receives the voltage V3 output from the synchronous detection circuit SD3, and removes and smooths the alternating current component, thereby generating the detected voltage Vd1 at the frequency f3.
  • a voltage V3 as a DC voltage whose voltage value changes according to the voltage value of is output. That is, this synchronous detection circuit (synchronous detection circuit SD3 and low-pass filter LPF3) detects the magnitude of the detection voltage Vd1 corresponding to the frequency f3 of the determination current Ij.
  • the comparator COM1 constitutes a "processing section" together with the other comparators COM2 and COM3 and the processing section CONT.
  • the comparator COM1 is composed of, for example, an operational amplifier, and a predetermined threshold voltage Vth1 is set to the inverting input terminal by the processing unit CONT, and is output from the low-pass filter LPF1 to the non-inverting input terminal.
  • a high (high voltage) determination signal S1 is output.
  • the voltage V1 is a voltage generated between the sense terminal Hp and the sense terminal Lp based on the determination current Ij of the frequency f1 among the voltages included in the detection voltage Vd1 (that is, the voltage generated between the sense terminal Hp and the sense terminal Lp based on the determination current Ij of the frequency f1).
  • the voltage value is determined by the internal resistance Rx of the battery BAT (the resistance value is Rx) and the contact resistance RHP (the resistance value is RHP)
  • the value ( ⁇ RHP+Rx+RLP) is proportional to the series combined resistance (RHP+Rx+RLP) with contact resistance RLP (resistance value is RLP).
  • the comparator COM2 is composed of an operational amplifier, and a predetermined threshold voltage Vth2 is set to the inverting input terminal by the processing unit CONT, and is output from the low-pass filter LPF2 and input to the non-inverting input terminal.
  • a high (high voltage) determination signal S2 is output.
  • the voltage V2 is a voltage generated between the sense terminal Hp and the sense terminal Lp based on the determination current Ij of frequency f2 among the voltages included in the detection voltage Vd1 (that is, the voltage generated between the sense terminal Hp and the sense terminal Lp based on the frequency f2 of the determination current Ij).
  • the voltage value is a value proportional to the series combined resistance (RHP+Rx+RLP) of the internal resistance Rx of the battery BAT, the contact resistance RHP, and the contact resistance RLP. ( ⁇ RHP+Rx+RLP). Further, when contact resistance (RHP+RLP) ⁇ internal resistance (Rx), voltage V2 becomes a voltage whose voltage value indicates the magnitude of contact resistance (RHP+RLP). Therefore, by setting the threshold voltage Vth2 to a voltage value corresponding to the maximum resistance value allowed for the contact resistance (RHP+RLP), the comparator COM2 can control the contact resistance (RHP+RLP) between the sense terminal Hp and the sense terminal Lp.
  • comparator COM2 When the resistance value exceeds the maximum allowable resistance value (that is, when the contact is defective), a high determination signal S2 is output. Conversely, comparator COM2 outputs a low (low voltage) determination signal S2 when the contact resistance (RHP+RLP) is a small resistance value that is less than or equal to the maximum allowable resistance value (that is, when the contact is good). do.
  • the comparator COM3 is composed of an operational amplifier, and a predetermined threshold voltage Vth3 is set to the inverting input terminal by the processing unit CONT, and is output from the low-pass filter LPF3 and input to the non-inverting input terminal.
  • a high (high voltage) determination signal S3 is output.
  • the voltage V3 is a voltage generated between the sense terminal Hp and the sense terminal Lp based on the determination current Ij of the frequency f3 among the voltages included in the detection voltage Vd1 (that is, the voltage generated between the sense terminal Hp and the sense terminal Lp based on the determination current Ij of the frequency f3).
  • the voltage value is a value proportional to the series combined resistance (RHP+Rx+RLP) of the internal resistance Rx of the battery BAT, the contact resistance RHP, and the contact resistance RLP. ( ⁇ RHP+Rx+RLP). Further, when contact resistance (RHP+RLP) ⁇ internal resistance (Rx), voltage V3 becomes a voltage whose voltage value indicates the magnitude of contact resistance (RHP+RLP). Therefore, by setting the threshold voltage Vth3 to a voltage value corresponding to the maximum resistance value allowed for the contact resistance (RHP+RLP), the comparator COM3 can control the contact resistance (RHP+RLP) between the sense terminal Hp and the sense terminal Lp.
  • a high determination signal S3 is output.
  • comparator COM3 outputs a low (low voltage) determination signal S3 when the contact resistance (RHP+RLP) is a small resistance value that is less than or equal to the maximum allowable resistance value (that is, when the contact is good). do.
  • the above comparison process between the voltages V1 to V3 and the threshold voltages Vth1 to Vth3 by the comparators COM1 to COM3 is performed based on the DC voltage output from the synchronous detection unit (in this example, the voltages V1 to V3). This corresponds to "a part of the process for determining quality that is executed at different frequencies for contact points.”
  • the processing unit CONT is composed of, for example, a CPU, functions as a “processing unit” together with the comparators COM1 to COM3, and converts the detection voltage Vd1 of the AC voltage detected by the first amplifier A1 (in this example, frequencies f1, f2,
  • the contact point to be determined (in this example, the contact resistance between the sense terminal Hp and the sense terminal Lp (RHP+RLP) ) is executed for each different frequency f1, f2, f3.
  • the processing unit CONT determines whether the contact resistance (RHP+RLP) of the contact point to be determined is a small resistance value that is less than or equal to the allowable maximum resistance value based on the determination signals S1 to S3 output from the comparators COM1 to COM3.
  • the processing unit CONT outputs display data Sd representing the processing result of the quality determination process to the output unit OUT. Further, the processing unit CONT outputs the above-mentioned threshold voltages Vth1 to Vth3 to the corresponding comparators COM1 to COM3.
  • the comparators COM1 to COM3 may be configured using the internal circuit of the processing unit CONT, and if this configuration is adopted, the arrangement of the comparators COM1 to COM3 after the low-pass filters LPF1 to LPF3 can be omitted. At the same time, the voltages V1 to V3 output from the low-pass filters LPF1 to LPF3 are directly input to the processing unit CONT. Further, in this example, the determination signals S1 to S3 are generated using the comparators COM1 to COM3, but the voltages V1 to V3 output from the low-pass filters LPF1 to LPF3 are directly input to the processing unit CONT to generate the determination signals S1 to S3.
  • An arithmetic circuit including an A/D converter inside CONT calculates the voltage values of voltages V1 to V3 and determines whether the contact resistance (RHP+RLP) of the contact point to be determined is a small resistance value that is less than or equal to the maximum allowable resistance value. (In other words, the quality of contact at the contact point to be determined) may be adopted.
  • the processing unit CONT calculates the contact resistance (RHP+RLP) by dividing the voltage values of voltages V1 to V3 by the known current value of the determination current Ij. Calculate.
  • the processing unit CONT calculates (measures) the contact resistance (RHP+RLP)
  • the processing unit CONT includes data for displaying the contact resistance (RHP+RLP) in the display data Sd and outputs the contact resistance (RHP+RLP) to the output unit OUT.
  • RHP+RLP can also be displayed. Note that the processing unit CONT only calculates the contact resistance (RHP+RLP) and outputs the display data Sd to the output unit OUT, and does not judge the quality of the contact at the contact point to be determined, that is, it does not display it on the output unit OUT.
  • the measurer is responsible for determining whether the contact at the contact point to be determined is good or bad based on the contact resistance (RHP+RLP).
  • the calculation of the contact resistance (RHP+RLP) and the output of the display data Sd to the output section OUT correspond to the quality determination process.
  • the output unit OUT is configured with a display device, receives the display data Sd output from the processing unit CONT, and displays the quality of the contact at the contact point to be determined. Furthermore, when the display data Sd including data for displaying the contact resistance (RHP+RLP) is input, the output unit OUT displays the resistance value of the contact resistance (RHP+RLP).
  • the output section OUT can be configured with various interface circuits instead of the display device, and when configured with an external interface circuit, the contact point to be determined is connected to an external device connected via a transmission path via the external interface circuit.
  • the contact resistance measuring device 1 will be explained with reference to FIG. 1. It is assumed that the sense terminal Hp and the sense terminal Lp are respectively connected to the positive terminal T1 and the negative terminal T2 of the battery BAT via two measurement cables (not shown). Further, the contact resistance between the sense terminal Hp and the positive terminal T1 of the B battery BAT and the wiring resistance of the measurement cable is defined as the contact resistance RHP, and the contact resistance between the sense terminal Lp and the negative terminal T2 of the battery BAT and the wiring resistance of the measurement cable The wiring resistance and the contact resistance RLP. Furthermore, since the wiring resistance of the measurement cable is small, it will be ignored in the description of this example.
  • the processing unit CONT When executing the quality/failure determination process for the contact point to be determined, the processing unit CONT outputs a start signal to the AC current source SS1 and outputs threshold voltages Vth1 to Vth3 corresponding to the comparators COM1 to COM3.
  • the alternating current source SS1 outputs the contact determination alternating current voltage Vj to supply alternating currents of frequencies f1, f2, and f3 to the above-mentioned current path including the contact point to be determined via the capacitor C1.
  • the supply of the synthesized determination current Ij is started, and synchronization signals Sf1 to Sf3 are output to the synchronous detection circuits SD1 to SD3.
  • the determination current Ij is supplied between the sense terminal Hp and the sense terminal Lp, so that the current Ij is supplied between the sense terminal Hp and the positive terminal T1 of the battery BAT, and between the negative terminal T2 of the battery BAT and the sense terminal Lp.
  • An alternating current voltage is generated due to the judgment current Ij having frequencies f1, f2, and f3 flowing through the judgment target contact points between the two.
  • the generated AC voltage is input as the detection voltage Vd1 to the non-inverting input terminal of the operational amplifier OP1 via the capacitor C2.
  • the first amplifier A1 amplifies the input detection voltage Vd1 by a specified amplification factor and outputs it to the filter FIL1.
  • the filter FIL1 inputs the detection voltage Vd1 output from the first amplifier A1, and removes frequency components (noise components) outside the passband included in the detection voltage Vd1, and adjusts the detection voltage Vd1 to the detection voltage Vd1.
  • the alternating current voltage that is the frequency component of the included frequencies f1, f2, and f3 is passed as the detection voltage Vd1.
  • the detection voltage Vd1 which is the frequency component of frequencies f1, f2, and f3 that has passed through the filter FIL1 is input to the synchronous detection circuits SD1 to SD3.
  • the synchronous detection circuit SD1 synchronously detects the input detection voltage Vd1 using the synchronous signal Sf1 output from the AC current source SS1, and converts it into the determination current Ij of frequency f1 of the AC voltage forming the detection voltage Vd1.
  • a voltage V1 whose voltage value changes depending on the voltage value (for example, amplitude) of the base AC voltage is output.
  • the low-pass filter LPF1 inputs the voltage V1 output from the synchronous detection circuit SD1, removes the AC component and smoothes it, and outputs the DC voltage V1 to the non-inverting terminal of the comparator COM1. .
  • the synchronous detection circuit SD2 synchronously detects the input detection voltage Vd1 using the synchronous signal Sf2 output from the AC current source SS1, and converts it into a determination current Ij of frequency f2 of the AC voltage forming the detection voltage Vd1.
  • a voltage V2 whose voltage value changes according to the voltage value (for example, amplitude) of the base AC voltage is output.
  • the low-pass filter LPF2 inputs the voltage V2 output from the synchronous detection circuit SD2, removes the AC component and smoothes it, and outputs the DC voltage V2 to the non-inverting terminal of the comparator COM2. .
  • the synchronous detection circuit SD3 synchronously detects the input detection voltage Vd1 using the synchronous signal Sf3 output from the AC current source SS1, and converts it into a determination current Ij of frequency f3 of the AC voltage forming the detection voltage Vd1.
  • a voltage V3 whose voltage value changes depending on the voltage value (for example, amplitude) of the base AC voltage is output.
  • the low-pass filter LPF3 inputs the voltage V3 output from the synchronous detection circuit SD3, removes the AC component and smoothes it, and outputs the DC voltage V3 to the non-inverting terminal of the comparator COM3. .
  • the comparator COM1 compares the voltage V1 input to the non-inverting terminal with the threshold voltage Vth1 input to the inverting terminal, so that the voltage V1 becomes the voltage value of the threshold voltage Vth1.
  • a high (high voltage) determination signal S1 is output, and when the voltage V1 is less than or equal to the threshold voltage Vth1, a low (low voltage) determination signal S1 is output to the processing unit CONT.
  • noise with a frequency equal to or near the frequency f1 occurs in the environment surrounding the contact resistance measuring device 1, the voltage value of the voltage V1 increases, so that the voltage V1 exceeds the voltage value of the threshold voltage Vth1.
  • the comparator COM1 outputs a high (high voltage) determination signal S1 indicating that the contact resistance is defective.
  • the comparator COM2 compares the voltage V2 input to the non-inverting terminal with the threshold voltage Vth2 input to the inverting terminal as part of the pass/fail determination process, so that the voltage V2 is equal to or lower than the threshold voltage Vth2.
  • a high (high voltage) determination signal S2 is output, and when the voltage V2 is less than or equal to the threshold voltage Vth2, a low (low voltage) determination signal S2 is output to the processing unit CONT. do.
  • the comparator COM2 when noise with a frequency equal to or near the frequency f2 occurs in the environment surrounding the contact resistance measuring device 1, the voltage value of the voltage V2 increases, so that the voltage V2 exceeds the voltage value of the threshold voltage Vth2. As a result, the comparator COM2 outputs a high (high voltage) determination signal S2 indicating that the contact resistance is defective. Similarly, as part of the pass/fail determination process, the comparator COM3 compares the voltage V3 input to the non-inverting terminal with the threshold voltage Vth3 input to the inverting terminal, so that the voltage V3 is lower than the threshold voltage Vth3.
  • a high (high voltage) determination signal S3 is output, and when the voltage V1 is less than or equal to the voltage value of the threshold voltage Vth1, a low (low voltage) determination signal S3 is output to the processing unit CONT. do.
  • the comparator COM3 outputs a high (high voltage) determination signal S3 indicating that the contact resistance is defective.
  • the processing unit CONT executes the quality determination process for each of the different frequencies f1, f2, and f3 based on the input determination signals S1 to S3. Specifically, the processing unit CONT compares the voltages V1, V2, V3 with the threshold voltages Vth1, Vth2, Vth3 performed by the comparators COM1 to COM3 (determination processing that is part of the pass/fail determination processing). Based on this, the quality of the contact resistance of the contact point to be determined is finally determined as a quality determination process. More specifically, the processing unit CONT performs more than half of the multiple (three times in this example) determination processes performed by the comparators COM1 to COM3 at different frequencies f1, f2, and f3 as pass/fail determination processes.
  • the processing unit CONT determines that the contact resistance of the contact point to be determined is a predetermined resistance value in less than half (less than 2 times in this example) of multiple times (3 times in this example) of the determination processing performed by the comparators COM1 to COM3.
  • the judgment target The contact resistance at the contact point is ultimately determined to be defective.
  • the pass/fail judgment process it is possible to detect noise even when noise at a frequency that is the same as or near one frequency (for example, frequency f1) is occurring in the environment surrounding the contact resistance measuring device 1.
  • the contact resistance measuring device 1 processing unit CONT
  • the processing unit CONT processes all of the multiple (three times in this example) determination processes performed by the comparators COM1 to COM3 at different frequencies f1, f2, and f3 as pass/fail determination processes.
  • the contact resistance of the contact point to be determined is a large resistance value exceeding a predefined resistance value (threshold voltage Vth1 to Vth3) (in other words, when it is determined to be defective), the contact point of the contact point to be determined is The resistor is finally determined to be defective, and in at least one of the multiple (three times in this example) determination processes performed by the comparators COM1 to COM3, the contact resistance of the contact point to be determined is determined to be a predetermined resistance value (threshold voltage Vth1). ⁇ Vth3) or less, the contact resistance of the contact point to be determined is finally determined to be good.
  • the contact resistance measuring device 1 can be detected as long as the noise at the same frequency as or in the vicinity of all three frequencies f1, f2, and f3 occurs in the environment surrounding the contact resistance measuring device 1. Since the resistance is ultimately determined to be good, the contact resistance measuring device 1 (processing unit CONT) can reduce the occurrence of contact check errors in which the contact resistance at the contact point to be determined is determined to be poor.
  • the processing unit CONT outputs the final judgment result of the pass/fail judgment process to the output unit OUT as display data Sd.
  • the output section OUT determines whether the contact resistance (RHP+RLP) of the contact point to be determined is smaller than the maximum resistance value allowed, that is, the contact resistance of the contact point to be determined, based on the display data Sd. Displays the quality of the product. In this case, when the contact resistance of the contact point to be determined is displayed as poor, a warning display may also be displayed. Further, a configuration may be adopted in which an audio output section is provided in the output section OUT to output a warning sound.
  • the processing unit CONT includes only the determination results of multiple (three times in this example) determination processes by the comparators COM1 to COM3 in the display data Sd and outputs the result to the output unit OUT.
  • the measurer makes the determination based on the determination result of the determination process.
  • the AC current source SS1 supplies a plurality of determination currents Ij defined at different frequencies to the current path, and the synchronous detection circuits SD1 to SD3 and the low pass filters LPF1 to The LPF 3 detects each detection voltage Vd1 (the frequency of the detection voltage Vd1) corresponding to the different frequencies f1, f2, and 3 that occur at the contact point to be determined when a plurality of determination currents Ij are supplied to the above current path.
  • the detection voltage Vd1 corresponding to the frequencies f1, f2, 3 is obtained by synchronously detecting the alternating current voltages corresponding to the frequencies f1, f2, and 3 respectively using the synchronization signals Sf1 to Sf3 having the same frequencies as the frequencies f1, f2, and 3, respectively.
  • the processing unit CONT outputs voltages V1 to V3 whose voltage values each change according to the voltage value of , and executes a quality determination process for each frequency f1, f2, and 3.
  • the AC current source SS1 synthesizes a plurality of AC currents for contact determination having different frequencies (current for determination Ij having frequencies f1, f2, and f3) and supplies the synthesized current to the current path.
  • each of a plurality of synchronous detection circuits (synchronous detection circuits SD1 to SD3 and low-pass filters LPF1 to LPF3) provided in one-to-one correspondence to different frequencies f1, f2, f3 has one pair corresponding to different frequencies f1, f2, f3.
  • Detection voltage Vd1 of a corresponding frequency is converted into a synchronization signal (synchronization signal Sf1 to Sf3) of the same frequency (one of frequencies f1, f2, f3) as the frequency of detection voltage Vd1.
  • a DC voltage (voltage V1 . Therefore, according to this contact resistance measuring device 1, voltages V1 to V3, which are DC voltages, are output simultaneously from each synchronous detection circuit (SD1 to SD3 and low-pass filters LPF1 to LPF3), resulting in different frequencies f1, f2, f3. Since the quality determination process can be executed simultaneously for each contact, a contact check can be performed instantaneously (in a short period of time) for the contact location to be determined.
  • the processing unit (comparators COM1 to COM3 and the processing unit CONT) performs a process for determining the quality of the contact resistance at the contact point to be determined (between the sense terminal Hp and the sense terminal Lp).
  • the contact resistance (RHP+RLP) of the contact point to be determined is determined to be good, the contact resistance (RHP+RLP) is finally determined to be good.
  • this contact resistance measuring device even when noise of a frequency that is the same as or near one frequency (for example, frequency f1) is generated in the environment around the contact resistance measuring device 1, , other frequencies (in this example, frequencies f2 and f3) do not affect the contact check, so the contact resistance measuring device 1 (processing unit CONT) can accurately perform the contact check.
  • a frequency that is the same as or near one frequency for example, frequency f1
  • other frequencies in this example, frequencies f2 and f3
  • the processing unit (comparators COM1 to COM3 and the processing unit CONT) performs a process for determining the quality of the contact resistance at the contact point to be determined (between the sense terminal Hp and the sense terminal Lp).
  • (RHP+RLP) is smaller than a predetermined resistance value
  • the contact resistance of the contact point to be determined is determined to be good.
  • a determination process is executed at different frequencies f1, f2, and f3, and all of the executed determination processes determine that the contact resistance is good.
  • the contact resistance (RHP+RLP) of the contact point to be determined is finally determined to be defective.
  • the contact resistance measuring device 1 can be measured as long as there is no noise occurring in the environment around the contact resistance measuring device 1 at a frequency that is the same as or near all of the different frequencies f1, f2, and f3. Since the contact resistance measurement device 1 ultimately determines that the contact resistance is good, it is possible to reduce the occurrence of a contact check error in which the contact resistance of the contact point to be determined is determined to be poor.
  • an impedance measuring device that includes the above contact resistance measuring device 1 and measures the impedance of a measurement target will be described with reference to FIG. 2. Note that components having the same functions as those of the contact resistance measuring device 1 described above are given the same reference numerals, and redundant explanations will be omitted.
  • the impedance measuring device 100 includes a source terminal Hc on the Hi side (a source terminal for supplying an AC signal for measurement), a source terminal Lc on the Lo side (a source terminal for supplying an AC signal for measurement), an AC current source PM for measurement, and a capacitor.
  • C3, a synchronous detection unit SDU2, comparators COM4, COM5, and a measurement unit MU, and a Hi-side source terminal Hc and a Hi-side sense terminal Hp are connected to the positive terminal T1 (one electrode) of the battery BAT as an example of the measurement target.
  • the Lo side source terminal Lc and the Lo side sense terminal Lp were connected to the negative terminal T2 (the other electrode) of the battery BAT (for example, (connected via a measurement cable (not shown)), the internal resistance Rx of the battery BAT, which is an example of impedance, can be measured.
  • the measurement AC current source PM functions as a first AC current source and a second AC current source, and supplies an output AC current Io to the battery BAT connected between each source terminal Hc and Lc on the Hi side and Lo side. do.
  • the measurement AC current source PM includes an AC current source SS2, an operational amplifier OP2, a feedback resistor 4, a grounding resistor 5, and a coupling capacitor C4.
  • the measurement AC current source PM is supplied with a DC voltage (DC voltage (DC voltage) based on the potential of the ground G2, which has a different potential from the ground G1) supplied from a power supply system (not shown) for the measurement AC current source PM. Voltage and direct current negative voltage)).
  • the AC current source SS2 When the measurement start signal is output from the processing unit CONT, the AC current source SS2 outputs an AC voltage Vo and supplies an output AC current, which is an AC constant current for measurement and contact determination, to a current path including the battery BAT.
  • the alternating current source SS1 synthesizes and outputs a plurality of alternating currents with different frequencies (for example, two alternating currents of frequencies f4 and f5 that have a constant amplitude (known) and a constant frequency but are different from each other) and output the synthesized signal.
  • the AC current source SS2 outputs synchronization signals Sf4 and Sf5 having the same frequencies f4 and f5 as the frequency of the output AC current Io as synchronization signals for synchronous detection to the synchronous detection circuits SD4 and SD5, which will be described later.
  • a synchronization signal Sf4 having a frequency f4 is output as a synchronization signal for synchronous detection to a synchronous detection circuit SDR, which will be described later.
  • the AC current source SS2 is not limited to the two output AC currents Io with frequencies f4 and f5, but also synthesizes three or more AC currents that are different from frequencies f1, f2, and f3 and have mutually different frequencies, and outputs an AC current. It may be configured such that it can be supplied as the current Io.
  • a feedback resistor R4 is connected between the output terminal and the inverting input terminal, and the inverting input terminal is connected to the ground G2 via the grounding resistor R5.
  • the voltage Vo is amplified and output.
  • the operational amplifier OP2 has an output terminal connected to the source terminal Hc via the capacitor C4, and an inverting input terminal connected to the source terminal Lc. With this configuration, the operational amplifier OP2 outputs an AC constant current of a known current value obtained by dividing the voltage value of the AC voltage Vo by the resistance value of the grounding resistor 5, and outputs it between the source terminals Hc and Lc. It can be supplied to the connected battery BAT.
  • the ground G2 which serves as a reference for the above-mentioned DC voltage (DC positive voltage and DC negative voltage for operation) for the AC current source PM for measurement, is Since the output AC current Io is electrically separated from the ground G1, which serves as a reference for negative voltage (negative voltage), the output AC current Io flows from the output terminal of the operational amplifier OP2 to the capacitor C4, the source terminal Hc, and the battery, as shown in FIG. It flows only through the path leading to ground G2 via BAT, source terminal Lc, and grounding resistor 5.
  • the battery BAT in this example is a battery that generates a DC electromotive force
  • a capacitor C4 is provided in order to avoid a situation where this DC electromotive force is applied to the output terminal of the operational amplifier OP2. . Therefore, when the object to be measured does not generate DC electromotive force, a configuration may be adopted in which the output terminal of the operational amplifier OP2 is directly connected to the source terminal Hc without providing the capacitor C4.
  • the synchronous detection unit SDU2 is arranged after a plurality of (two in this example) synchronous detection circuits SD4, SD5 provided in one-to-one correspondence with different frequencies f4, f5, and each synchronous detection circuit SD4, SD5.
  • the filter is configured to include low-pass filters LPF4 and LPF5.
  • the synchronous detection circuit SD4 and the low-pass filter LPF4 function as a synchronous detection circuit provided in one-to-one correspondence with the frequency f4, and when the output AC current Io is supplied from the measurement AC current source PM, By synchronously detecting the AC voltage Vd3 generated at the source terminal Hc with the synchronization signal Sf4 having the same frequency as the detection voltage Vd3, a DC voltage V4 whose voltage value changes according to the voltage value of the detection voltage Vd3 is detected. Output.
  • the synchronous detection circuit SD4 is configured using a multiplier, for example, and multiplies the detection voltage Vd3 and the synchronization signal Sf4 output from the AC current source SS2 (in other words, the detection voltage
  • the voltage value changes according to the voltage value (for example, amplitude) of the AC voltage based on the output AC current Io of frequency f4 among the AC voltages that constitute the detected voltage Vd3.
  • a voltage V4 including a DC voltage is output.
  • the low-pass filter LPF4 is configured as a low-pass filter, receives the voltage V4 output from the synchronous detection circuit SD4, removes the AC component, and smoothes the detected voltage Vd3 at the frequency f4.
  • a voltage V4 as a DC voltage whose voltage value changes according to the voltage value of is output. That is, this synchronous detection circuit (synchronous detection circuit SD4 and low-pass filter LPF4) detects the magnitude of the detection voltage Vd3 corresponding to the frequency f4 of the output AC current Io.
  • the synchronous detection circuit SD5 and the low-pass filter LPF5 function as a synchronous detection circuit provided in one-to-one correspondence with the frequency f5, and when the output AC current Io is supplied from the measurement AC current source PM, the source terminal Hc By synchronously detecting the alternating current voltage Vd3 generated in the detection voltage Vd3 with a synchronization signal Sf5 having the same frequency as the detected voltage Vd3, a direct current voltage V5 whose voltage value changes in accordance with the voltage value of the detected voltage Vd3 is output.
  • the synchronous detection circuit SD5 is configured using a multiplier, for example, and multiplies the detection voltage Vd3 and the synchronization signal Sf5 output from the AC current source SS2 (in other words, the detection voltage
  • the voltage value changes according to the voltage value (for example, amplitude) of the AC voltage based on the output AC current Io of frequency f5 among the AC voltages that constitute the detected voltage Vd3.
  • a voltage V5 including a DC voltage is output.
  • the low-pass filter LPF5 is configured as a low-pass filter, receives the voltage V5 output from the synchronous detection circuit SD5, and removes and smooths the alternating current component, thereby generating the detected voltage Vd3 at the frequency f5.
  • a voltage V5 as a DC voltage whose voltage value changes according to the voltage value of is output. That is, this synchronous detection circuit (synchronous detection circuit SD5 and low-pass filter LPF5) detects the magnitude of the detection voltage Vd3 corresponding to the frequency f5 of the output AC current Io.
  • the comparator COM4 constitutes a "processing section" together with the comparators COM1 to COM3, COM5 and the processing section CONT.
  • the comparator COM4 is composed of, for example, an operational amplifier, and a predetermined threshold voltage Vth4 is set to the inverting input terminal by the processing unit CONT, and is output from the low-pass filter LPF4 to the non-inverting input terminal.
  • a high (high voltage) determination signal S4 is output.
  • the voltage V4 is a voltage generated between the source terminal Hc and the ground G2 based on the output AC current Io of the frequency f4 (in other words, the voltage V4 is the voltage included in the detected voltage Vd3).
  • the voltage value is determined by the internal resistance Rx of the battery BAT (resistance value is Rx), contact resistance RHC (resistance value is RHC), and The value ( ⁇ RHC+Rx+RLC) is proportional to the series combined resistance (RHC+Rx+RLC) with the contact resistance RLC (resistance value is RLC).
  • the comparator COM5 is composed of an operational amplifier, a predetermined threshold voltage Vth5 is set to the inverting input terminal by the processing unit CONT, and is output from the low-pass filter LPF5 and input to the non-inverting input terminal.
  • a high (high voltage) determination signal S5 is output.
  • the voltage V5 is the voltage generated between the source terminal Hc and the ground G2 based on the output AC current Io of the frequency f5 (in other words, the voltage V5 is the voltage included in the detection voltage Vd3) that is generated between the source terminal Hc and the ground G2 based on the output AC current Io of the frequency f5
  • the voltage value is a value proportional to the series combined resistance (RHC+Rx+RLC) of internal resistance Rx of battery BAT, contact resistance RHC, and contact resistance RLC. ⁇ RHC+Rx+RLC). Further, when contact resistance (RHC+RLC) ⁇ internal resistance (Rx), voltage V5 becomes a voltage whose voltage value indicates the magnitude of contact resistance (RHC+RLC).
  • the comparator COM5 can reduce the contact resistance (RHP+RLP) between the source terminal Hc and the ground G2.
  • the contact resistance (RHP+RLP) is a small resistance value that is less than or equal to the maximum allowable resistance value (that is, when the contact is good)
  • the comparator COM5 outputs a low (low voltage) determination signal S5. do.
  • the measuring unit MU is configured to include a synchronous detection circuit SDR, a low-pass filter LPFR, and an A/D converter AD1.
  • the processing unit CONT outputs the threshold voltage Vth4 to the synchronous detection circuit SD4 and the threshold voltage Vth5 to the synchronous detection circuit SD5, and also outputs the threshold voltage Vth5 to the synchronous detection circuit SD5. It inputs determination signals S4 and S5 from A/D converter AD1, and also inputs voltage signal SR, which will be described later, from A/D converter AD1.
  • the processing unit CONT determines whether or not the contact points to be determined (in this example, between the source terminals Hc and Lc and between the sense terminals Hp and Lp) are determined based on the determination signals S1 to S5. In addition to executing the determination process, it also functions as a measurement unit that measures (calculates) the internal resistance Rx of the battery BAT, and measures the internal resistance Rx (an example of impedance) of the battery BAT as the measurement target based on the voltage signal SR. do.
  • the synchronous detection circuit SDR is configured using, for example, a multiplier, and uses a detection voltage Vd2 of the AC voltage detected by the first amplifier A1 and outputted via the filter FIL1 and a synchronization signal outputted from the AC current source SS2.
  • Sf4 (in other words, by synchronously detecting the detection voltage Vd2 output from the filter FIL1 with the synchronization signal Sf4), the output alternating current of frequency f4 of the alternating current voltage that constitutes the detection voltage Vd2 is obtained.
  • a voltage VR including a DC voltage whose voltage value changes depending on the voltage value (for example, amplitude) of the AC voltage based on Io is output.
  • the low-pass filter LPFR is configured as a low-pass filter, receives the voltage VR output from the synchronous detection circuit SDR, removes the alternating current component, and smoothes the detected voltage Vd2 at the frequency f4. It outputs a voltage VR as a DC voltage whose voltage value changes according to the voltage value of. That is, this synchronous detection circuit (synchronous detection circuit SDR and low-pass filter LPFR) detects the magnitude of detection voltage Vd2 corresponding to frequency f4 of output AC current Io.
  • the A/D converter AD1 A/D converts the voltage VR output from the low-pass filter LPFR, and outputs a voltage signal SR indicating a voltage value proportional to the magnitude of the internal resistance Rx of the battery BAT to the processing unit CONT. .
  • the output unit OUT displays whether the contact is good or bad, with the contact point between the source terminal Hc and the source terminal Lc as a contact point to be determined. Furthermore, when display data Sd including data for displaying the contact resistance (RHC+RLC) and the internal resistance Rx of the battery BAT is input, the resistance values of the contact resistance (RHP+RLP) and the internal resistance Rx are displayed.
  • the output section OUT is configured with an external interface circuit
  • the output section OUT is connected to an external device via a transmission line via the external interface circuit to determine the quality of the contact at the contact point to be determined, the contact resistance (RHC+RLC), (RHP+RLP), and the like.
  • the resistance value of the internal resistance Rx is output, and when configured with a medium interface circuit, the storage medium connected to this medium interface circuit is informed of the quality of contact at the contact point to be determined, contact resistance (RHC + RLC), (RHP + RLP). ) and the resistance value of the internal resistance Rx are stored.
  • the source terminal Hc and the source terminal Lc are respectively connected to the positive terminal T1 and the negative terminal T2 of the battery BAT via two measurement cables (not shown), and the sense terminal Hp and the sense terminal Lp are It is assumed that the two measurement cables are connected to the positive terminal T1 and the negative terminal T2 of the battery BAT, respectively.
  • the contact resistance between the source terminal Hc and the positive terminal T1 of the battery BAT and the wiring resistance of the measurement cable is defined as the contact resistance RHC, and the contact resistance between the source terminal Lc and the negative terminal T2 of the battery BAT and the wiring resistance of the measurement cable. Let the resistance be contact resistance RLC. Furthermore, since the wiring resistance of the measurement cable is small, it will be ignored in the description of this example.
  • the processing unit CONT When measuring impedance, the processing unit CONT outputs a start signal to the measurement AC current source PM and the AC current source SS1, and also outputs the threshold voltages Vth1 to Vth5 corresponding to the comparators COM1 to COM5. Output.
  • the measurement AC current source PM outputs the output AC current Io, thereby connecting the source terminal Hc and the positive terminal T1 of the battery BAT, and the connection between the source terminal Lc and the negative terminal T2 of the battery BAT.
  • the supply of an output alternating current Io which is a combination of alternating currents of frequencies f4 and f5, is started to a current path including the contact point to be determined between.
  • the output AC current Io flows through a current path including the output terminal of the operational amplifier OP2, the capacitor C4, the source terminal Hc, the battery BAT, the source terminal Lc, the grounding resistor R5, and the ground G2.
  • the AC current source SS2 outputs a synchronizing signal Sf4 to the synchronous detection circuits SD4 and SDR, and also outputs a synchronous signal Sf5 to the synchronous detection circuit SD5.
  • the output AC current Io is supplied between the source terminal Hc and the source terminal Lc, so that the output AC current Io is supplied between the source terminal Hc and the positive terminal T1 of the battery BAT, and between the negative terminal T2 of the battery BAT and the source terminal Lc.
  • An alternating current voltage is generated due to the output alternating current Io of frequencies f4 and f5 flowing through the contact point to be determined between the points.
  • the generated AC voltage is input as the detection voltage Vd3 to the synchronous detection circuits SD4 and SD5 via the capacitor C3.
  • the synchronous detection circuit SD4 synchronously detects the input detection voltage Vd3 using the synchronous signal Sf4 outputted from the AC current source SS2, and converts the detected voltage Vd3 into an output AC current Io with a frequency f4 of the AC voltages forming the detection voltage Vd3.
  • a voltage V4 whose voltage value changes according to the voltage value (for example, amplitude) of the base AC voltage is output.
  • the low-pass filter LPF4 inputs the voltage V4 output from the synchronous detection circuit SD4, removes the AC component and smoothes it, and outputs the DC voltage V4 to the non-inverting terminal of the comparator COM4. .
  • the synchronous detection circuit SD5 synchronously detects the input detection voltage Vd3 using the synchronous signal Sf5 output from the AC current source SS2, and converts it into an output AC current Io of frequency f5 of the AC voltage forming the detection voltage Vd3.
  • a voltage V5 whose voltage value changes depending on the voltage value (for example, amplitude) of the base AC voltage is output.
  • the low-pass filter LPF5 inputs the voltage V5 output from the synchronous detection circuit SD4, removes the AC component and smoothes it, and outputs the DC voltage V2 to the non-inverting terminal of the comparator COM5. .
  • the comparator COM4 compares the voltage V4 input to the non-inverting terminal with the threshold voltage Vth4 input to the inverting terminal, so that the voltage V4 becomes the voltage value of the threshold voltage Vth4.
  • a high (high voltage) determination signal S4 is output, and when the voltage V4 is equal to or lower than the threshold voltage Vth4, a low (low voltage) determination signal S4 is output to the processing unit CONT.
  • the comparator COM5 compares the voltage V5 input to the non-inverting terminal and the threshold voltage Vth5 input to the inverting terminal as part of the pass/fail determination process, so that the voltage V5 is equal to or lower than the threshold voltage Vth5.
  • a high (high voltage) determination signal S5 is output, and when the voltage V5 is less than or equal to the voltage value of the threshold voltage Vth5, a low (low voltage) determination signal S5 is output to the processing unit CONT. do.
  • the processing unit CONT executes the above-described quality determination process based on the input determination signals S1 to S3. Specifically, the processing unit CONT performs a pass/fail determination process based on the results of comparison between the voltages V1 to V3 and the threshold voltages Vth1 to Vth3 by the comparators COM1 to COM3 (judgment processing that is a part of the pass/fail determination process). As a process, the quality of the contact resistance of the contact points to be determined between the sense terminal Hp and the positive terminal T1 of the battery BAT and between the source terminal Hc and the negative terminal T2 of the battery BAT is finally determined.
  • the processing unit CONT executes the quality determination process for each of the different frequencies f4 and f5 based on the input determination signals S4 and S5. Specifically, based on the results of the comparison between the voltages V4, V5 and the threshold voltages Vth4, Vth5 by the comparators COM4, COM5 (determination processing which is a part of the pass/fail determination process), the source terminal is The quality of the contact resistance at the contact points to be determined between Hc and the positive terminal T1 of the battery BAT and between the source terminal Lc and the negative terminal T2 of the battery BAT is finally determined.
  • the processing unit CONT performs more than half of the multiple (twice in this example) determination processing performed by the comparators COM4 and COM5 performed at different frequencies f4 and f5 as pass/fail determination processing.
  • the contact resistance of the contact point to be judged is a small resistance value (i.e., good ), the contact resistance of the contact point to be determined is finally determined to be good, and less than half (in this example, 1
  • the contact resistance of the contact point to be judged is a small resistance value less than or equal to a predefined resistance value (resistance value corresponding to threshold voltages Vth4 and Vth5), the contact resistance of the contact point to be judged is finally determined. Determined as defective.
  • the impedance measuring device 100 can accurately perform the contact check.
  • the processing unit CONT outputs the final judgment result of the pass/fail judgment process to the output unit OUT as display data Sd.
  • the output unit OUT determines whether the contact resistance (RHC+RLC, RHP+RLP) of the contact point to be determined is smaller than the maximum resistance value allowed, that is, the contact point to be determined, based on the display data Sd. Displays whether the contact resistance is good or bad.
  • the processing unit CONT converts only the determination results of the determination processes performed multiple times (three times in this example) by the comparators COM1 to COM3 and multiple times (two times in this example) by the comparators COM4 and COM5 into the display data Sd. It is also possible to adopt a configuration in which the information is included and output to the output unit OUT. When this configuration is adopted, the measurer makes the determination based on the determination result of the determination process.
  • the processing unit CONT automatically executes an impedance measurement process of the internal resistance Rx of the battery BAT.
  • an AC voltage is generated due to the output AC current Io flowing inside the battery BAT.
  • the generated AC voltage is input as the detection voltage Vd2 to the non-inverting input terminal of the operational amplifier OP1 via the capacitor C2.
  • the first amplifier A1 amplifies the input detection voltage Vd2 by a specified amplification factor and outputs it to the filter FIL1.
  • the filter FIL1 inputs the detection voltage Vd2 output from the first amplifier A1, and removes the frequency component (noise component) outside the passband included in the detection voltage Vd2, and adjusts the detection voltage Vd2 to the detection voltage Vd2.
  • the alternating voltage that is the frequency components of the included frequencies f1, f2, f3, and f4 is passed as the detection voltage Vd2.
  • the detection voltage Vd2 which is the frequency component of frequencies f1, f2, f3, and f4 that has passed through the filter FIL1 is input to the synchronous detection circuits SD1 to SD3 and SDR.
  • the synchronous detection circuit SDR synchronously detects the input detection voltage Vd2 using the synchronization signal Sf4 output from the AC current source SS2, and outputs an AC current having a frequency f4 of the AC voltage that constitutes the detection voltage Vd2.
  • a voltage VR whose voltage value changes according to the voltage value (for example, amplitude) of the AC voltage based on Io is output.
  • the low-pass filter LPFR receives the voltage VR output from the synchronous detection circuit SDR, removes the AC component and smoothes it, and outputs the DC voltage VR to the A/D converter AD1.
  • the A/D converter AD1 A/D converts the voltage VR output from the low-pass filter LPFR and outputs the voltage signal SR to the processing unit CONT.
  • the voltage VR is a voltage generated between the sense terminal Hp and the sense terminal Lp based on the output AC current Io of the frequency f4 among the voltages included in the detection voltage Vd2 (that is, the frequency f4 of the output AC current Io).
  • the voltage value is a value ( ⁇ Rx) that is proportional to the internal resistance Rx of the battery BAT. Therefore, the voltage signal SR is a measured value that is proportional to the internal resistance Rx of the battery BAT.
  • the processing unit CONT calculates the internal resistance Rx of the battery BAT by dividing the measured value indicated by the voltage signal SR by the known current value of the output AC current Io. Thereafter, the processing unit CONT displays the internal resistance Rx of the battery BAT on the output unit OUT by outputting the display data Sd.
  • the processing unit CONT executes the pass/fail judgment process for each frequency f1, f2, f3, and also performs the process for determining pass/fail for each frequency f4, f5. Execute the process for determining pass/fail.
  • frequencies f1 and f5 are generated.
  • the impedance measurement device 100 since the contact check is not affected by the frequencies f2, f3, f4), the impedance measurement device 100 (processing unit CONT) can perform the contact check accurately, and as a result, the impedance measurement is sufficiently reliable. can be increased to
  • this impedance measuring device 100 since different frequencies and the same number of synchronous detection circuits (synchronous detection circuits SD1 to SD3 and low-pass filters LPF1 to LPF3) are used, processing is performed in the same way as the contact resistance measuring device 1.
  • the quality determination process for each different frequency by the section CONT can be executed extremely quickly, and as a result, the impedance measurement time can be sufficiently shortened.
  • the AC current source SS2 also functions as a first AC current source, and outputs the output AC current Io as the measurement AC current to a plurality of contact determination ACs having different frequencies f4 and f5.
  • One of the output alternating current Io as a current is supplied to a current path including each contact point between the source terminal Hc and the positive terminal T1 which is one end of the battery BAT as the measurement target and the negative terminal T2 which is the other end. do. Therefore, according to this impedance measurement device 100, since the second AC current source also functions as the first AC current source that supplies the AC current for contact determination, it is not necessary to provide two first AC current sources. As a result, the impedance measuring device 100 can be configured easily and at low cost.
  • this impedance measurement device 100 when the processing unit CONT finally determines that the contact resistance of the contact point to be determined is good, the battery measured by the measurement unit (measuring unit MU and processing unit CONT) The internal resistance Rx of BAT is output to the output section OUT. Therefore, according to this impedance measuring device, the reliability of impedance measurement can be sufficiently improved.
  • an impedance measuring device 100A as another impedance measuring device will be described with reference to FIG. 3. Note that the same components as those of the impedance measuring device 100 are given the same reference numerals and redundant explanations will be omitted.
  • the impedance measurement device 100A is configured to include a synchronous detection unit SDU3 in place of the synchronous detection unit SDU2 in the impedance measurement device 100, and the comparator COM5 is omitted.
  • the synchronous detection unit SDU3 includes a switch SW1, a synchronous detection circuit SD4, and a low-pass filter LPF4.
  • the processing unit CONT sequentially performs switching control of the switch SW1 and output switching control of the threshold voltages Vth4 and Vth5 for the comparator COM4 in conjunction with the switching control of the switch SW1.
  • the switch SW1 is configured with a COM (common) contact, an a contact, and a b contact, and can connect either the COM contact and the a contact or the COM contact and the b contact according to the switching control of the processing unit CONT. Switch to one side.
  • the synchronizing signal Sf4 from the AC current source SS2 is input to the a contact
  • the synchronizing signal Sf5 from the alternating current source SS2 is input to the b contact.
  • the COM contact of the switch SW1 is connected to the input part of the synchronization signal of the synchronous detection circuit SD4. Therefore, the switch SW1 outputs either the synchronizing signal Sf4 or the synchronizing signal Sf5 to the synchronous detection circuit SD4 according to the switching control of the processing unit CONT.
  • the comparator COM4 sequentially synchronously detects the detection voltage Vd3 with the different frequencies f4 and f5 of the detection voltage Vd3 and the synchronization signals Sf4 and Sf5 of the same frequencies f4 and f5, respectively, thereby generating the detection voltages corresponding to the different frequencies f4 and f5.
  • DC voltages V4 and V5 whose voltage values change depending on the voltage value of Vd3 are sequentially output.
  • the comparator COM4 makes the voltage V4 output from the low-pass filter LPF4 and input to the non-inverting input terminal equal to the threshold voltage Vth4.
  • a high (high voltage) determination signal S4 is output.
  • the threshold voltage Vth5 is output from the processing unit CONT to the inverting terminal
  • the voltage V5 output from the low-pass filter LPF4 and input to the non-inverting input terminal exceeds the voltage value of the threshold voltage Vth5
  • a high (high voltage) determination signal S4 is output.
  • connection control A for connecting the COM contact and the a contact for the switch SW1
  • connection control A sets the threshold voltage to the comparator COM4.
  • Outputs Vth4 In this case, the synchronization signal Sf4 output from the AC current source SS2 is output to the synchronous detection circuit SD4 via the a contact and the COM contact of the switch SW1.
  • the synchronous detection circuit SD4 synchronously detects the input detection voltage Vd3 using the synchronous signal Sf4, and generates an AC voltage based on the output AC current Io of frequency f4 among the AC voltages forming the detection voltage Vd3. A voltage V4 whose voltage value changes depending on the value (for example, amplitude) is output. Thereafter, the low-pass filter LPF4 inputs the voltage V4 output from the synchronous detection circuit SD4, removes the AC component and smoothes it, and outputs the DC voltage V4 to the non-inverting terminal of the comparator COM4. .
  • the comparator COM4 compares the voltage V4 input to the non-inverting terminal with the threshold voltage Vth4 input to the inverting terminal, so that the voltage V4 becomes the voltage value of the threshold voltage Vth4.
  • a high (high voltage) determination signal S4 is output, and when the voltage V4 is equal to or lower than the threshold voltage Vth4, a low (low voltage) determination signal S4 is output to the processing unit CONT.
  • connection control B for connecting the COM contact and the b contact for the switch SW1 after the execution of the connection control A
  • the processing unit CONT controls the comparator COM4.
  • a threshold voltage Vth5 is output.
  • the synchronizing signal Sf5 output from the AC current source SS2 is output to the synchronous detection circuit SD4 via the b contact and the COM contact of the switch SW1.
  • the synchronous detection circuit SD4 synchronously detects the input detection voltage Vd3 using the synchronous signal Sf5, and generates an AC voltage based on the output AC current Io of frequency f5 among the AC voltages forming the detection voltage Vd3.
  • a voltage V5 whose voltage value changes depending on the value (for example, amplitude) is output.
  • the low-pass filter LPF4 inputs the voltage V5 output from the synchronous detection circuit SD4, removes the AC component and smoothes it, and outputs the DC voltage V5 to the non-inverting terminal of the comparator COM4.
  • the comparator COM4 compares the voltage V4 input to the non-inverting terminal with the threshold voltage Vth5 input to the inverting terminal, so that the voltage V5 becomes the voltage value of the threshold voltage Vth5.
  • a high (high voltage) determination signal S5 is output, and when the voltage V5 is equal to or lower than the threshold voltage Vth5, a low (low voltage) determination signal S4 is output to the processing unit CONT.
  • the processing unit CONT executes the quality determination process for each of the different frequencies f4 and f5 based on the input determination signals S4 and S5. Specifically, the processing unit CONT uses the result of the comparison between the voltage V4 and the threshold voltage Vth4 by the comparator COM4 when the connection control A is executed (determination processing that is a part of the pass/fail determination processing), and the connection control Based on the result of the comparison between the voltage V5 by the comparator COM4 and the threshold voltage Vth5 (judgment process which is a part of the process in the pass/fail judgment process) when B is executed, the above-described pass/fail judgment process by the impedance measuring device 100 is performed.
  • the quality of the contact resistance of the contact points to be determined between the source terminal Hc and the positive terminal T1 of the battery BAT and between the source terminal Lc and the negative terminal T2 of the battery BAT is determined as a final test. Determine accurately.
  • the processing unit CONT outputs the final judgment result of the pass/fail judgment process to the output unit OUT as display data Sd.
  • the output unit OUT determines whether the contact resistance (RHC+RLC, RHP+RLP) of the contact point to be determined is smaller than the maximum resistance value allowed, that is, the contact point to be determined, based on the display data Sd. Displays whether the contact resistance is good or bad.
  • the processing unit CONT performs an impedance measurement process of the internal resistance Rx of the battery BAT and display data Sd in the same way as the impedance measuring device 100. Output control is performed to output the output to the output section OUT.
  • the processing unit CONT executes the pass/fail determination process for each of the frequencies f1, f2, and 3, and also performs the pass/fail determination process for each of the frequencies f4 and f5. Execute judgment processing.
  • the processing unit CONT executes the pass/fail determination process for each of the frequencies f1, f2, and 3, and also performs the pass/fail determination process for each of the frequencies f4 and f5. Execute judgment processing.
  • the impedance measurement device 100A processing unit CONT
  • the impedance measurement device 100A can perform the contact check accurately, and as a result, the impedance measurement is sufficiently reliable. can be increased to
  • a synchronous detection section SD3 is configured using one switch SW1 and one synchronous detection circuit composed of a synchronous detection circuit SD4 and an LPF,
  • the synchronous detection unit SD3 sequentially synchronously detects the detection voltage Vd3 with the synchronous signals Sf4 and Sf5 having the same frequencies as the different frequencies f4 and f5 of the detection voltage Vd3, thereby detecting the detection voltage Vd3 corresponding to the different frequencies f4 and f5.
  • Voltages V4 and V5 whose voltage values change according to the respective values are sequentially outputted, and the processing unit CONT executes the quality determination process for each of the different frequencies f4 and f5.
  • the synchronous detection section SDU3 can be constructed easily and at low cost.
  • the AC current source SS2 synthesizes and outputs the output AC currents Io of different frequencies f4 and f5, but the configuration is not limited to this.
  • a configuration can be adopted in which the output AC current Io of frequency f4 and the output AC current Io of frequency f5 are sequentially output without being combined, in synchronization with the switching control of SW1.
  • the AC current source SS2 that outputs the output AC current Io of frequency f4 that serves both as the AC current for measurement and the AC current for contact determination has been described as an example.
  • the frequency of the current and the frequency of the measurement alternating current can also be set to different frequencies.
  • the alternating current source SS2 (the first alternating current signal power source and the second alternating current signal power source) can be configured more simply and inexpensively.
  • both current paths including each contact point with the negative electrode terminal T2 are determined as contact points to be determined, the present invention is not limited thereto.
  • the contact resistance of the contact point to be determined is finally determined to be good;
  • the accuracy of the contact check decreases, for example, when performing the pass/fail judgment process an even number of times, if it is judged to be good in more than half of the even number of judgment processes, the processing unit CONT will check the contact to be judged. The contact resistance at the location may be finally determined to be good.
  • the processing unit CONT may finally determine that the contact resistance of the contact point to be determined is good. .
  • the application of the contact resistance measuring device is not limited to impedance measuring devices.
  • measuring devices such as ammeters, voltmeters, wattmeters, and ohmmeters that require pass/fail judgment processing for the contact points to be judged when contacting objects with terminals or probes, and measuring devices that supply current and voltage.
  • the contact resistance measuring device can be widely applied to power devices that apply voltage.
  • the measurement target is not limited to the battery BAT, but can be any object having an internal resistance Rx.
  • the filter FIL1, the synchronous detection units SDU1, SUD2, SUD3, the comparators COM1 to COM5, the low-pass filter LPFR, and the A/D converter AD1 are configured separately from the processing unit CONT. Some or all of the functions of these components can also be performed digitally.
  • a contact resistance measuring device equipped with a processing unit that executes a process for determining the quality of a contact point to be determined
  • a plurality of alternating currents for contact determination having different frequencies are passed through a current path including the contact point to be determined.
  • the contact check can be performed accurately by supplying the signal to the transmitter and having the processing section execute the pass/fail determination process for each different frequency.
  • an impedance measuring device including such a contact resistance measuring device can sufficiently improve the reliability of impedance measurement. Thereby, the present invention can be widely applied to such contact resistance measuring devices, impedance measuring devices that measure impedance, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

正確なコンタクトチェックを行い得る接触抵抗測定装置を提供することを主目的とする。 異なる周波数f1~f3に規定された複数の判定用電流Ijを判定対象接触箇所を含む電流経路に供給する交流電流源SS1と、交流電流源SS1から判定用電流Ijが供給されたときに判定用電流Ijの周波数に対応すると共に判定対象接触箇所に生じた検出電圧Vd1を検出電圧Vd1の周波数と同じ周波数f1~f3の同期信号Sf1~Sf3で同期検波することにより、異なる周波数f1~f3に対応する各検出電圧Vd1の電圧値に応じて電圧値がそれぞれ変化する電圧V1~V3を出力する同期検波部SDU1と、異なる周波数f1~f3毎に判定対象接触箇所についての良否判定用処理を実行する処理部CONTとを備えて構成した。

Description

接触抵抗測定装置およびインピーダンス測定装置
 本発明は、判定対象接触箇所を含む電流経路に接触判定用交流電流を供給して判定対象接触箇所に生じた交流電圧をその交流電圧の周波数と同じ周波数の同期信号で同期検波して得られた直流電圧に基づいて判定対象接触箇所についての良否判定用処理を実行する接触抵抗測定装置、およびその接触抵抗測定装置を備えて測定対象のインピーダンスを測定するインピーダンス測定装置に関するものである。
 例えば、この種の接触抵抗測定装置を備えたインピーダンス測定装置として下記の特許文献1に開示されたインピーダンス測定装置が知られている。このインピーダンス測定装置は、Hi側とLo側の信号供給用の各ソース端子を介して測定対象(被測定試料)に交流の測定信号を供給する測定用信号源と、この測定信号の供給によって測定対象に生じる電圧をHi側とLo側の信号検出用の各センス端子を介して測定する測定部とを備えている。また、このインピーダンス測定装置では、測定部は、各センス端子の接触抵抗を検出するために、Hi側のセンス端子とLo側のセンス端子との間に交流定電流を供給する断線検出用交流定電流源と、第1および第2の2つのロックインアンプとを備えている。
 このインピーダンス測定装置では、測定用信号源から供給される交流定電流の周波数f11と、断線検出用交流定電流源から供給される交流定電流の周波数f12とを異なる周波数として、第1ロックインアンプは周波数f11で同期検波を行い、第2ロックインアンプは周波数f12で同期検波を行う。これにより、第1ロックインアンプからは、測定用の交流定電流が流れることによって測定対象に生じる電圧Vaが出力され、第2ロックインアンプからは、断線検出用の交流定電流が流れることによって、Hi側およびLo側のセンス端子間の抵抗によって生じる電圧Vbが出力される。
 この場合、Hi側のソース端子の接触抵抗をRC1とし、Lo側のソース端子の接触抵抗をRC2とし、Hi側のセンス端子の接触抵抗をRC3とし、Lo側のソース端子の接触抵抗をRC4とし、測定対象のインピーダンスをRxとすると、Hi側およびLo側のセンス端子間の抵抗は、抵抗(RC3+Rx+RC4)と交流定電流源の出力抵抗R01との合成抵抗となる。したがって、出力抵抗R01≫抵抗(RC3+Rx+RC4)で、かつ接触抵抗(RC3+RC4)≫インピーダンスRxのときには、上記電圧VbからHi側およびLo側のセンス端子間の接触抵抗(RC3+RC4)を検出することができ、これにより、Hi側およびLo側のセンス端子のコンタクトチェックが可能となっている。
特許第4695920号公報(第7頁、第4図)
 ところが、上記のインピーダンス測定装置には、以下の改善すべき課題が存在している。具体的には、上記のインピーダンス測定装置では、第2ロックインアンプを用いてHi側およびLo側のセンス端子間の接触抵抗を検出している。この場合、第2ロックインアンプは、断線検出用交流定電流源の交流定電流の周波数f12で同期検波を行っている。したがって、断線検出用交流定電流源の交流定電流の周波数f12と同じかまたは近傍の周波数のノイズが周囲の環境において発生しているときには、抵抗(RC3+Rx+RC4)の検出に誤差が含まれることになり、Hi側およびLo側のセンス端子間の接触抵抗を誤って検出することになる。その結果、上記のインピーダンス測定装置には、コンタクトチェックエラーとなって、測定不能な状態になる。一方、コンタクトチェックの設定を解除することによって強制的に測定可能な状態とすることは可能である。しかしながら、このような場合には、インピーダンス測定装置によるインピーダンス測定の信頼性が低下することになる。このため、上記のインピーダンス測定装置には、コンタクトチェックの正確性を向上するべきとの改善すべき課題が存在する。
 本発明は、このような課題に鑑みてなされたものであり、正確なコンタクトチェックを行い得る接触抵抗測定装置、およびインピーダンス測定の信頼性を高め得るインピーダンス測定装置を提供することを主目的とする。
 上記目的を達成すべく本発明に係る接触抵抗測定装置は、判定対象接触箇所を含む電流経路に接触判定用交流電流を供給する第1交流電流源と、前記第1交流電流源から前記接触判定用交流電流が供給されたときに当該接触判定用交流電流の周波数に対応すると共に前記判定対象接触箇所に生じた交流電圧を当該交流電圧の周波数と同じ周波数の同期信号で同期検波することにより、当該交流電圧の電圧値に応じて電圧値が変化する直流電圧を出力する同期検波部と、前記同期検波部から出力された前記直流電圧に基づいて前記判定対象接触箇所についての良否判定用処理を実行する処理部とを備えている接触抵抗測定装置であって、前記第1交流電流源は、異なる周波数に規定された複数の前記接触判定用交流電流を前記電流経路に供給可能に構成され、前記同期検波部は、前記複数の接触判定用交流電流が前記電流経路に供給されたときに前記判定対象接触箇所に生じた各前記交流電圧を当該各交流電圧の前記異なる周波数とそれぞれ同じ周波数の前記同期信号でそれぞれ同期検波することにより、当該異なる周波数に対応する当該各交流電圧の電圧値に応じて電圧値がそれぞれ変化する前記直流電圧を出力し、前記処理部は、前記異なる周波数毎に前記良否判定用処理を実行する。
 したがって、本発明に係る接触抵抗測定装置によれば、接触抵抗測定装置の周囲の環境において異なる周波数のうちの1つの周波数と同じかまたは近傍の周波数のノイズが発生しているときであっても、他の周波数によるコンタクトチェックに影響が出ないため、接触抵抗測定装置は、コンタクトチェックを正確に行うことができる。
 また、本発明に係る接触抵抗測定装置は、前記第1交流電流源は、前記周波数が異なる複数の接触判定用交流電流を合成して前記電流経路に供給可能に構成され、前記同期検波部は、前記異なる周波数に一対一で対応して設けられた複数の同期検波回路を備えて構成され、前記複数の同期検波回路の各々は、前記異なる周波数に一対一で対応する周波数の前記交流電圧を当該交流電圧の周波数と同じ周波数の前記同期信号で同期検波することにより、当該周波数に対応する当該交流電圧の電圧値に応じて電圧値が変化する前記直流電圧をそれぞれ出力し、前記処理部は、前記異なる周波数毎に前記良否判定用処理を実行する。したがって、この接触抵抗測定装置によれば、各同期検波回路から直流電圧が同時に出力される結果、異なる周波数毎に良否判定用処理を同時に実行できるため、判定対象接触箇所についてのコンタクトチェックを瞬時に(短時間で)行うことができる。
 また、本発明に係る接触抵抗測定装置は、前記同期検波部は、前記各交流電圧を当該各交流電圧の前記異なる周波数とそれぞれ同じ周波数の同期信号で順次同期検波することにより、当該異なる周波数に対応する当該各交流電圧の電圧値に応じて電圧値がそれぞれ変化する直流電圧を順次出力し、前記処理部は、前記異なる周波数毎に前記良否判定用処理を実行する。したがって、この接触抵抗測定装置によれば、異なる周波数に一対一で対応して設けられた複数の同期検波回路を備えて同期検波部を構成するのと比較して、同期検波部を簡易に構成できると共に安価に構成することができる。
 また、本発明に係る接触抵抗測定装置は、前記処理部は、前記良否判定用処理として、前記判定対象接触箇所の接触抵抗が予め規定された抵抗値よりも小さいときに当該判定対象接触箇所の接触抵抗が良好とする判定処理を前記異なる周波数毎に実行し、当該実行した判定処理の半数を超える回数において良好と判定したときに、当該判定対象接触箇所の接触抵抗を最終的に良好と判定する。したがって、この接触抵抗測定装置によれば、接触抵抗測定装置の周囲の環境において異なる周波数のうちの1つの周波数と同じかまたは近傍の周波数のノイズが発生しているときであっても、他の周波数によるコンタクトチェックに影響が出ないため、接触抵抗測定装置は、コンタクトチェックを正確に行うことができる。
 また、本発明に係る接触抵抗測定装置は、前記処理部は、前記良否判定用処理として、前記判定対象接触箇所の接触抵抗が予め規定された抵抗値よりも小さいときに当該判定対象接触箇所の接触抵抗が良好とする判定処理を前記異なる周波数毎に実行し、当該実行した判定処理のすべてにおいて不良と判定したときに、当該判定対象接触箇所の接触抵抗を最終的に不良と判定する。したがって、この接触抵抗測定装置によれば、接触抵抗測定装置の周囲の環境において異なる周波数のすべてと同じかまたは近傍の周波数のノイズが発生していない限り、接触抵抗を最終的に良好と判定することになるため、接触抵抗測定装置は、判定対象接触箇所の接触抵抗を不良と判定するコンタクトチェックエラーの発生を低減することができる。
 また、本発明に係るインピーダンス測定装置は、Hi側およびLo側の各ソース端子に一端および他端がそれぞれ接続される測定対象に測定用交流電流を供給する第2交流電流源と、前記測定用交流電流が供給されたときに前記測定対象の前記一端および前記他端の間に生じる交流電圧を、当該一端および当該他端にそれぞれ接続されたHi側およびLo側の信号検出用の各センス端子を介して測定すると共に、当該測定した交流電圧の電圧値と前記測定用交流電流の電流値とに基づいて前記測定対象のインピーダンスを測定する測定部とを備えているインピーダンス測定装置であって、上記いずれかの接触抵抗測定装置を備え、前記第1交流電流源は、前記各ソース端子と前記測定対象の前記一端および他端との各接触箇所を含む前記電流経路、並びに前記各センス端子と前記測定対象の前記一端および他端との各接触箇所を含む前記電流経路の少なくとも一方の当該電流経路に前記接触判定用交流電流を供給し、前記処理部は、前記少なくとも一方の電流経路における前記各接触箇所を前記判定対象接触箇所とする前記良否判定用処理を前記異なる周波数毎に実行する。したがって、このインピーダンス測定装置によれば、インピーダンス測定装置の周囲の環境において異なる周波数のうちの1つと同じかまたは近傍の周波数のノイズが発生しているときであっても、他の周波数によるコンタクトチェックに影響が出ないため、コンタクトチェックを正確に行うことができる結果、インピーダンス測定の信頼性を十分に高めることができる。
 また、本発明に係るインピーダンス測定装置は、前記第2交流電流源は、前記第1交流電流源としても機能し、前記測定用交流電流を前記周波数が異なる複数の接触判定用交流電流のうちの1つとして、前記各ソース端子と前記測定対象の前記一端および他端との各接触箇所を含む前記電流経路に供給する。したがって、このインピーダンス測定装置によれば、第2交流電流源が接触判定用交流電流を供給する第1交流電流源としての機能を兼用するため、第1交流電流源を2つ設ける必要がなくなる結果、インピーダンス測定装置を簡易に構成できると共に安価に構成することができる。
 また、本発明に係るインピーダンス測定装置は、前記処理部は、前記判定対象接触箇所の接触抵抗を最終的に良好と判定したときに、前記測定部によって測定された前記測定対象のインピーダンスを出力する。したがって、このインピーダンス測定装置によれば、インピーダンス測定の信頼性を十分に高めることができる。
 本発明に係る接触抵抗測定装置によれば、接触抵抗測定装置の周囲の環境において異なる周波数のうちの1つの周波数と同じかまたは近傍の周波数のノイズが発生しているときであっても、他の周波数によるコンタクトチェックに影響が出ないため、接触抵抗測定装置は、コンタクトチェックを正確に行うことができる。
接触抵抗測定装置1の構成を示す構成図である。 インピーダンス測定装置100の構成を示す構成図である。 インピーダンス測定装置100Aの構成を示す構成図である。
 以下、接触抵抗測定装置およびインピーダンス測定装置の実施の形態について、添付図面を参照して説明する。
 最初に、接触抵抗測定装置1について、図1を参照して説明する。
 接触抵抗測定装置1は、判定対象接触箇所における接触抵抗の良否を判定可能に構成されており、一対の端子(Hi(ハイ)側のセンス端子Hp(信号検出用のセンス端子)およびLo(ロー)側のセンス端子Lp(信号検出用のセンス端子)ともいう))、交流電流源SS1、コンデンサC1,C2、演算増幅演算回路A1、フィルターFIL1、同期検波部SDU1、コンパレータCOM1~COM3、処理部CONTおよび出力部OUTを備えている。この場合、本例では、例えば、センス端子Hpおよびセンス端子Lpを二次電池である電池BATの一端である正極端子T1および他端である負極端子T2にそれぞれ接続する際におけるセンス端子Hpと正極端子T1との間の接触箇所、並びにセンス端子Lpと負極端子T2との間の接触箇所を判定対象接触箇所として、その各判定対象接触箇所におけるそれぞれの接触抵抗RHP,RLPの良否(予め規定された抵抗値よりも小さいか否か)を判定する。
 交流電流源SS1は、第1交流電流源として機能して、処理部CONTから開始信号が出力されたときに、接触判定用交流電圧Vjを出力して、判定対象接触箇所を含む電流経路に接触判定用の交流定電流である判定用電流Ijの供給を開始し、処理部CONTから停止信号が出力されたときに、接触判定用交流電圧Vjの出力を停止して、判定用電流Ijの供給を停止する。この場合、交流電流源SS1は、異なる周波数に規定された複数の交流電流(接触判定用交流電流:一例として、一定の振幅(既知)で、かつ一定の周波数で互いに異なる3つの周波数f1,f2,f3の交流電流)を合成して判定用電流Ijとして供給可能に構成されている。ただし、判定用電流Ijとしては、周波数が異なる2つの交流電流であっても良いし、周波数が異なる4つ以上の交流電流であっても良い。また、本例では、交流電流源SS1から供給された判定用電流Ijは、カップリング用のコンデンサC1、センス端子Hp、センス端子Hpと正極端子T1との接触箇所(判定対象接触箇所:接触抵抗RHP)、電池BAT、負極端子T2とセンス端子Lpとの接触箇所(判定対象接触箇所:接触抵抗RLP)およびセンス端子Lpを介して交流電流源SS1に戻る電流経路に供給される。また、交流電流源SS1は、後述する同期検波回路SD1~SD3に対して、同期検波用の同期信号として、判定用電流Ijの周波数と同じ周波数f1,f2,f3の同期信号Sf1~Sf3を出力する。
 第1増幅器A1は、交流電圧検出部として機能し、非反転入力端子が入力抵抗R1を介してグランドG1に接続されると共にカップリング用のコンデンサC2を介してセンス端子Hpに接続され、反転入力端子が入力抵抗R2を介してグランドG1に接続され、かつ出力端子と反転入力端子との間に帰還抵抗R3が接続されて、非反転増幅器として機能する演算増幅器OP1を備えて構成されている。この構成により、第1増幅器A1は、交流電流源SS1から判定用電流Ijが供給されたときに、判定用電流Ijの周波数f1,f2,f3に対応すると共に判定対象接触箇所(センス端子Hpおよびセンス端子Lpの間)に生じた交流電圧をコンデンサC2を介して入力すると共に検出電圧Vd1(交流電圧)として検出して、検出電圧Vd1を規定の増幅率で増幅して出力する。
 フィルターFIL1は、第1増幅器A1から出力された検出電圧Vd1に含まれている周波数f1の周波数成分である交流電圧、周波数f2の周波数成分である交流電圧および周波数f3の周波数成分である交流電圧を主として通過させる狭帯域通過型フィルタとして構成されている。この構成により、フィルターFIL1は、第1増幅器A1から出力される検出電圧Vd1を入力すると共に、この検出電圧Vd1に含まれている通過帯域外の周波数成分(ノイズ成分)を除去して検出電圧Vd1を出力する。
 同期検波部SDU1は、異なる周波数f1,f2,f3に一対一で対応して設けられた複数(本例では3つ)の同期検波回路SD1~SD3と、各同期検波回路SD1~SD3の後段にそれぞれ配置されたローパスフィルターLPF1~LPF3とを備えて構成されている。ここで、同期検波回路SD1およびローパスフィルターLPF1は、周波数f1に一対一で対応して設けられた同期検波回路として機能して、第1増幅器A1によって検出された検出電圧Vd1をその検出電圧Vd1の周波数と同じ周波数の同期信号Sf1で同期検波することにより、検出電圧Vd1の電圧値に応じて電圧値が変化する直流電圧の電圧V1を出力する。具体的には、同期検波回路SD1は、一例として乗算器を用いて構成されて、フィルターFIL1から出力された検出電圧Vd1と交流電流源SS1から出力された同期信号Sf1とを互いに乗算することにより(言い換えれば、フィルターFIL1から出力された検出電圧Vd1を同期信号Sf1で同期検波することにより)、検出電圧Vd1を構成する交流電圧のうちの周波数f1の判定用電流Ijに基づく交流電圧の電圧値(例えば、振幅)に応じて電圧値が変化する直流電圧を含む電圧V1を出力する。また、ローパスフィルターLPF1は、低域通過型フィルタとして構成されて、同期検波回路SD1から出力される電圧V1を入力して、交流成分を除去して平滑化することにより、周波数f1の検出電圧Vd1の電圧値に応じて電圧値が変化する直流電圧としての電圧V1を出力する。つまり、この同期検波回路(同期検波回路SD1およびローパスフィルターLPF1)は、判定用電流Ijの周波数f1に対応する検出電圧Vd1の大きさを検出する。
 同期検波回路SD2およびローパスフィルターLPF2は、周波数f2に一対一で対応して設けられた同期検波回路として機能して、第1増幅器A1によって検出された検出電圧Vd1をその検出電圧Vd1の周波数と同じ周波数の同期信号Sf2で同期検波することにより、検出電圧Vd1の電圧値に応じて電圧値が変化する直流電圧の電圧V2を出力する。具体的には、同期検波回路SD2は、一例として乗算器を用いて構成されて、フィルターFIL1から出力された検出電圧Vd1と交流電流源SS1から出力された同期信号Sf2とを互いに乗算することにより(言い換えれば、フィルターFIL1から出力された検出電圧Vd1を同期信号Sf2で同期検波することにより)、検出電圧Vd1を構成する交流電圧のうちの周波数f2の判定用電流Ijに基づく交流電圧の電圧値(例えば、振幅)に応じて電圧値が変化する直流電圧を含む電圧V2を出力する。また、ローパスフィルターLPF2は、低域通過型フィルタとして構成されて、同期検波回路SD2から出力される電圧V2を入力して、交流成分を除去して平滑化することにより、周波数f2の検出電圧Vd1の電圧値に応じて電圧値が変化する直流電圧としての電圧V2を出力する。つまり、この同期検波回路(同期検波回路SD2およびローパスフィルターLPF2)は、判定用電流Ijの周波数f2に対応する検出電圧Vd1の大きさを検出する。
 同期検波回路SD3およびローパスフィルターLPF3は、周波数f3に一対一で対応して設けられた同期検波回路として機能して、第1増幅器A1によって検出された検出電圧Vd1をその検出電圧Vd1の周波数と同じ周波数の同期信号Sf3で同期検波することにより、検出電圧Vd1の電圧値に応じて電圧値が変化する直流電圧の電圧V3を出力する。具体的には、同期検波回路SD3は、一例として乗算器を用いて構成されて、フィルターFIL1から出力された検出電圧Vd1と交流電流源SS1から出力された同期信号Sf3とを互いに乗算することにより(言い換えれば、フィルターFIL1から出力された検出電圧Vd1を同期信号Sf3で同期検波することにより)、検出電圧Vd1を構成する交流電圧のうちの周波数f3の判定用電流Ijに基づく交流電圧の電圧値(例えば、振幅)に応じて電圧値が変化する直流電圧を含む電圧V3を出力する。また、ローパスフィルターLPF3は、低域通過型フィルタとして構成されて、同期検波回路SD3から出力される電圧V3を入力して、交流成分を除去して平滑化することにより、周波数f3の検出電圧Vd1の電圧値に応じて電圧値が変化する直流電圧としての電圧V3を出力する。つまり、この同期検波回路(同期検波回路SD3およびローパスフィルターLPF3)は、判定用電流Ijの周波数f3に対応する検出電圧Vd1の大きさを検出する。
 コンパレータCOM1は、他のコンパレータCOM2,3および処理部CONTと共に「処理部」を構成する。この場合、コンパレータCOM1は、一例として、演算増幅器で構成されて、予め規定された電圧の閾値電圧Vth1が処理部CONTによって反転入力端子に設定されており、ローパスフィルターLPF1から出力されて非反転入力端子に入力された電圧V1が閾値電圧Vth1の電圧値を超えたときに、ハイ(高電圧)の判定信号S1を出力する。この場合、電圧V1は、検出電圧Vd1に含まれる電圧のうちの、周波数f1の判定用電流Ijに基づいてセンス端子Hpおよびセンス端子Lpの間に生じる電圧(つまり、判定用電流Ijの周波数f1に対応する交流電圧の大きさ)を検出したものであることから、その電圧値は、電池BATの内部抵抗Rx(抵抗値をRxとする)と、接触抵抗RHP(抵抗値をRHPとする)および接触抵抗RLP(抵抗値をRLPとする)との直列合成抵抗(RHP+Rx+RLP)に比例する値(∝RHP+Rx+RLP)となっている。また、接触抵抗(RHP+RLP)≫内部抵抗(Rx)のときには、電圧V1は、その電圧値が接触抵抗(RHP+RLP)の大きさを示す電圧となる。したがって、閾値電圧Vth1を接触抵抗(RHP+RLP)に許容される最大抵抗値に対応する電圧値に規定しておくことにより、コンパレータCOM1は、センス端子Hpおよびセンス端子Lpの間の接触抵抗(RHP+RLP)が許容される最大抵抗値を超える大きい抵抗値であるとき(つまり、接触が不良のとき)には、ハイの判定信号S1を出力する。逆に、コンパレータCOM1は、接触抵抗(RHP+RLP)が許容される最大抵抗値以下の小さい抵抗値であるとき(つまり、接触が良好のとき)には、ロー(低電圧)の判定信号S1を出力する。
 コンパレータCOM2は、一例として、演算増幅器で構成されて、予め規定された電圧の閾値電圧Vth2が処理部CONTによって反転入力端子に設定されており、ローパスフィルターLPF2から出力されて非反転入力端子に入力された電圧V2が閾値電圧Vth2の電圧値を超えたときに、ハイ(高電圧)の判定信号S2を出力する。この場合、電圧V2は、検出電圧Vd1に含まれる電圧のうちの、周波数f2の判定用電流Ijに基づいてセンス端子Hpおよびセンス端子Lpの間に生じる電圧(つまり、判定用電流Ijの周波数f2に対応する交流電圧の大きさ)を検出したものであることから、その電圧値は、電池BATの内部抵抗Rxと、接触抵抗RHPおよび接触抵抗RLPとの直列合成抵抗(RHP+Rx+RLP)に比例する値(∝RHP+Rx+RLP)となっている。また、接触抵抗(RHP+RLP)≫内部抵抗(Rx)のときには、電圧V2は、その電圧値が接触抵抗(RHP+RLP)の大きさを示す電圧となる。したがって、閾値電圧Vth2を接触抵抗(RHP+RLP)に許容される最大抵抗値に対応する電圧値に規定しておくことにより、コンパレータCOM2は、センス端子Hpおよびセンス端子Lpの間の接触抵抗(RHP+RLP)が許容される最大抵抗値を超える大きい抵抗値であるとき(つまり、接触が不良のとき)には、ハイの判定信号S2を出力する。逆に、コンパレータCOM2は、接触抵抗(RHP+RLP)が許容される最大抵抗値以下の小さい抵抗値であるとき(つまり、接触が良好のとき)には、ロー(低電圧)の判定信号S2を出力する。
 コンパレータCOM3は、一例として、演算増幅器で構成されて、予め規定された電圧の閾値電圧Vth3が処理部CONTによって反転入力端子に設定されており、ローパスフィルターLPF3から出力されて非反転入力端子に入力された電圧V3が閾値電圧Vth3の電圧値を超えたときに、ハイ(高電圧)の判定信号S3を出力する。この場合、電圧V3は、検出電圧Vd1に含まれる電圧のうちの、周波数f3の判定用電流Ijに基づいてセンス端子Hpおよびセンス端子Lpの間に生じる電圧(つまり、判定用電流Ijの周波数f3に対応する交流電圧の大きさ)を検出したものであることから、その電圧値は、電池BATの内部抵抗Rxと、接触抵抗RHPおよび接触抵抗RLPとの直列合成抵抗(RHP+Rx+RLP)に比例する値(∝RHP+Rx+RLP)となっている。また、接触抵抗(RHP+RLP)≫内部抵抗(Rx)のときには、電圧V3は、その電圧値が接触抵抗(RHP+RLP)の大きさを示す電圧となる。したがって、閾値電圧Vth3を接触抵抗(RHP+RLP)に許容される最大抵抗値に対応する電圧値に規定しておくことにより、コンパレータCOM3は、センス端子Hpおよびセンス端子Lpの間の接触抵抗(RHP+RLP)が許容される最大抵抗値を超える大きい抵抗値であるとき(つまり、接触が不良のとき)には、ハイの判定信号S3を出力する。逆に、コンパレータCOM3は、接触抵抗(RHP+RLP)が許容される最大抵抗値以下の小さい抵抗値であるとき(つまり、接触が良好のとき)には、ロー(低電圧)の判定信号S3を出力する。なお、コンパレータCOM1~COM3による電圧V1~V3と閾値電圧Vth1~Vth3との上記の比較処理が、「同期検波部から出力された直流電圧(本例では、電圧V1~V3)に基づいて判定対象接触箇所について異なる周波数毎に実行される良否判定用処理の一部」に相当する。
 処理部CONTは、例えば、CPUで構成されて、コンパレータCOM1~COM3と共に「処理部」として機能し、第1増幅器A1によって検出された交流電圧の検出電圧Vd1(本例では、周波数f1,f2,f3の検出電圧Vd1)の電圧値に応じて電圧値が変化する直流電圧の電圧V1~V3に基づいて判定対象接触箇所(本例では、センス端子Hpおよびセンス端子Lp間の接触抵抗(RHP+RLP))についての良否判定用処理を、異なる周波数f1,f2,f3毎に実行する。具体的には、処理部CONTは、コンパレータCOM1~COM3から出力される判定信号S1~S3に基づいて、判定対象接触箇所の接触抵抗(RHP+RLP)が許容される最大抵抗値以下の小さい抵抗値であるか否か(つまり、判定対象接触箇所の接触の良否)を判定する。また、処理部CONTは、良否判定用処理の処理結果を表す表示用データSdを出力部OUTに出力する。また、処理部CONTは、上記した閾値電圧Vth1~Vth3を対応するコンパレータCOM1~COM3に出力する。
 なお、コンパレータCOM1~COM3に関しては、処理部CONTの内部回路を用いて構成しても良く、その構成を採用する場合には、ローパスフィルターLPF1~LPF3の後段のコンパレータCOM1~COM3の配設を省くと共にローパスフィルターLPF1~LPF3から出力される電圧V1~V3を処理部CONTに直接入力する構成とする。また、本例では、コンパレータCOM1~COM3を用いて判定信号S1~S3を生成しているが、ローパスフィルターLPF1~LPF3から出力される電圧V1~V3を処理部CONTに直接入力して、処理部CONT内部のA/Dコンバータを含む演算回路が電圧V1~V3の電圧値を演算して、判定対象接触箇所の接触抵抗(RHP+RLP)が許容される最大抵抗値以下の小さい抵抗値であるか否か(つまり、判定対象接触箇所の接触の良否)を判定する構成を採用することもできる。この場合、処理部CONTは、接触抵抗(RHP+RLP)≫内部抵抗(Rx)のときには、電圧V1~V3の電圧値を判定用電流Ijの既知の電流値で除算することにより、接触抵抗(RHP+RLP)を演算する。また、処理部CONTは、接触抵抗(RHP+RLP)を演算(測定)したときには、表示用データSdに接触抵抗(RHP+RLP)を表示するためのデータを含めて出力部OUTに出力することによって接触抵抗(RHP+RLP)を表示させることもできる。なお、処理部CONTは、接触抵抗(RHP+RLP)の演算および出力部OUTに対する表示用データSdの出力だけを行い、判定対象接触箇所の接触の良否を判定しない構成、つまり、出力部OUTに表示させた接触抵抗(RHP+RLP)に基づき、判定対象接触箇所の接触の良否の判定を測定者に委ねる構成を採用することもできる。この場合、接触抵抗(RHP+RLP)の演算および出力部OUTへの表示用データSdの出力が、良否判定用処理に相当する。
 出力部OUTは、一例として、表示装置で構成されて、処理部CONTから出力される表示用データSdを入力して、判定対象接触箇所の接触の良否を表示する。また、出力部OUTは、接触抵抗(RHP+RLP)を表示するためのデータを含む表示用データSdを入力したときには、接触抵抗(RHP+RLP)の抵抗値を表示する。なお、出力部OUTは、表示装置に代えて種々のインターフェース回路で構成することもでき、外部インターフェース回路で構成したときには、外部インターフェース回路を介して伝送路で接続された外部装置に判定対象接触箇所の接触の良否や接触抵抗(RHP+RLP)の抵抗値を出力し、また媒体用インターフェース回路で構成されたときには、この媒体用インターフェース回路に接続された記憶媒体に判定対象接触箇所の接触の良否や接触抵抗(RHP+RLP)の抵抗値を記憶させる。
 次に、接触抵抗測定装置1の動作について、図1を参照して説明する。なお、センス端子Hpおよびセンス端子Lpは、不図示の2本の測定ケーブルを介して電池BATの正極端子T1および負極端子T2にそれぞれ接続されているものとする。また、センス端子HpおよびB電池BATの正極端子T1の間の接触抵抗と測定ケーブルの配線抵抗とを接触抵抗RHPとし、センス端子Lpおよび電池BATの負極端子T2の間の接触抵抗と測定ケーブルの配線抵抗とを接触抵抗RLPとする。また、測定ケーブルの配線抵抗については、小さな抵抗のため、本例の説明においては無視するものとする。
 判定対象接触箇所についての良否判定用処理を実行する際には、処理部CONTが、開始信号を交流電流源SS1に出力すると共にコンパレータCOM1~COM3に対応する閾値電圧Vth1~Vth3を出力する。この際には、交流電流源SS1は、接触判定用交流電圧Vjを出力することにより、コンデンサC1を介して、判定対象接触箇所を含む上記の電流経路に周波数f1,f2,f3の交流電流を合成した判定用電流Ijの供給を開始すると共に同期検波回路SD1~SD3に同期信号Sf1~Sf3を出力する。この結果、センス端子Hpおよびセンス端子Lpの間に判定用電流Ijが供給されることにより、センス端子Hpと電池BATの正極端子T1との間、および電池BATの負極端子T2とセンス端子Lpとの間の判定対象接触箇所に周波数f1,f2,f3の判定用電流Ijが流れることに起因する交流電圧が発生する。この場合、発生した交流電圧は、検出電圧Vd1として、コンデンサC2を介して演算増幅器OP1の非反転入力端子に入力する。次いで、第1増幅器A1が、入力した検出電圧Vd1を規定の増幅率で増幅してフィルターFIL1に出力する。
 次いで、フィルターFIL1は、第1増幅器A1から出力される検出電圧Vd1を入力すると共に、この検出電圧Vd1に含まれている通過帯域外の周波数成分(ノイズ成分)を除去しつつ、検出電圧Vd1に含まれている周波数f1,f2,f3の周波数成分である交流電圧を検出電圧Vd1として通過させる。この後、フィルターFIL1を通過した周波数f1,f2,f3の周波数成分である検出電圧Vd1は、同期検波回路SD1~SD3に入力される。
 次いで、同期検波回路SD1は、入力した検出電圧Vd1を交流電流源SS1から出力された同期信号Sf1で同期検波して、検出電圧Vd1を構成する交流電圧のうちの周波数f1の判定用電流Ijに基づく交流電圧の電圧値(例えば、振幅)に応じて電圧値が変化する電圧V1を出力する。この後、ローパスフィルターLPF1は、同期検波回路SD1から出力される電圧V1を入力して、交流成分を除去して平滑化することにより、直流電圧の電圧V1をコンパレータCOM1の非反転端子に出力する。また、同期検波回路SD2は、入力した検出電圧Vd1を交流電流源SS1から出力された同期信号Sf2で同期検波して、検出電圧Vd1を構成する交流電圧のうちの周波数f2の判定用電流Ijに基づく交流電圧の電圧値(例えば、振幅)に応じて電圧値が変化する電圧V2を出力する。この後、ローパスフィルターLPF2は、同期検波回路SD2から出力される電圧V2を入力して、交流成分を除去して平滑化することにより、直流電圧の電圧V2をコンパレータCOM2の非反転端子に出力する。また、同期検波回路SD3は、入力した検出電圧Vd1を交流電流源SS1から出力された同期信号Sf3で同期検波して、検出電圧Vd1を構成する交流電圧のうちの周波数f3の判定用電流Ijに基づく交流電圧の電圧値(例えば、振幅)に応じて電圧値が変化する電圧V3を出力する。この後、ローパスフィルターLPF3は、同期検波回路SD3から出力される電圧V3を入力して、交流成分を除去して平滑化することにより、直流電圧の電圧V3をコンパレータCOM3の非反転端子に出力する。
 次いで、コンパレータCOM1は、良否判定処理の一部として、非反転端子に入力した電圧V1と、反転端子に入力されている閾値電圧Vth1とを比較することにより、電圧V1が閾値電圧Vth1の電圧値を超えたときに、ハイ(高電圧)の判定信号S1を出力し、電圧V1が閾値電圧Vth1の電圧値以下のときに、ロー(低電圧)の判定信号S1を処理部CONTに出力する。この場合、接触抵抗測定装置1の周囲の環境において周波数f1と同じかまたは近傍の周波数のノイズが発生しているときには、電圧V1の電圧値が上がるため、電圧V1が閾値電圧Vth1の電圧値を超える結果、コンパレータCOM1は、接触抵抗が不良を意味するハイ(高電圧)の判定信号S1を出力する。同様にして、コンパレータCOM2は、良否判定処理の一部として、非反転端子に入力した電圧V2と、反転端子に入力されている閾値電圧Vth2とを比較することにより、電圧V2が閾値電圧Vth2の電圧値を超えたときに、ハイ(高電圧)の判定信号S2を出力し、電圧V2が閾値電圧Vth2の電圧値以下のときに、ロー(低電圧)の判定信号S2を処理部CONTに出力する。この場合、接触抵抗測定装置1の周囲の環境において周波数f2と同じかまたは近傍の周波数のノイズが発生しているときには、電圧V2の電圧値が上がるため、電圧V2が閾値電圧Vth2の電圧値を超える結果、コンパレータCOM2は、接触抵抗が不良を意味するハイ(高電圧)の判定信号S2を出力する。同様にして、コンパレータCOM3は、良否判定処理の一部として、非反転端子に入力した電圧V3と、反転端子に入力されている閾値電圧Vth3とを比較することにより、電圧V3が閾値電圧Vth3の電圧値を超えたときに、ハイ(高電圧)の判定信号S3を出力し、電圧V1が閾値電圧Vth1の電圧値以下のときに、ロー(低電圧)の判定信号S3を処理部CONTに出力する。この場合、接触抵抗測定装置1の周囲の環境において周波数f3と同じかまたは近傍の周波数のノイズが発生しているときには、電圧V3の電圧値が上がるため、電圧V3が閾値電圧Vth3の電圧値を超える結果、コンパレータCOM3は、接触抵抗が不良を意味するハイ(高電圧)の判定信号S3を出力する。
 次に、処理部CONTは、入力した判定信号S1~S3に基づいて、異なる周波数f1,f2,f3毎に良否判定用処理を実行する。具体的には、処理部CONTは、コンパレータCOM1~COM3によって行われる電圧V1,V2,V3と閾値電圧Vth1,Vth2,Vth3との比較(良否判定処理における一部の処理である判定処理)の結果に基づき、良否判定用処理として、判定対象接触箇所の接触抵抗の良否を最終的に判定する。より具体的には、処理部CONTは、良否判定用処理として、異なる周波数f1,f2,f3毎にコンパレータCOM1~COM3によって実行された複数回(この例では3回)の判定処理の半数を超える回数(この例では2回以上)において判定対象接触箇所の接触抵抗が予め規定された抵抗値(閾値電圧Vth1~Vth3に対応する抵抗値)以下の小さい抵抗値のときに、つまり、良好と判定してローの判定信号S1~S3のうちの2つ以上が出力されたときに、判定対象接触箇所の接触抵抗を最終的に良好と判定する。一方、処理部CONTは、コンパレータCOM1~COM3による複数回(この例では3回)の判定処理の半数未満(この例では2回未満)において判定対象接触箇所の接触抵抗が予め規定された抵抗値(閾値電圧Vth1~Vth3に対応する抵抗値)以下の小さい抵抗値のときに、つまり、良好と判定してローの判定信号S1~S3のうちの2つ未満が出力されたときに、判定対象接触箇所の接触抵抗を最終的に不良と判定する。このように良否判定用処理を実行することにより、接触抵抗測定装置1の周囲の環境において1つの周波数(例えば、周波数f1)と同じかまたは近傍の周波数のノイズが発生しているときであっても、他の周波数(この例では、周波数f2,f3)によるコンタクトチェックに影響が出ないため、接触抵抗測定装置1(処理部CONT)は、コンタクトチェックを正確に行うことができる。
 なお、処理部CONTの良否判定用処理として、以下の処理を実行することもできる。具体的には、処理部CONTが、良否判定用処理として、異なる周波数f1,f2,f3毎に実行したコンパレータCOM1~COM3による複数回(この例では3回)の判定処理のすべて(この例では3回)において判定対象接触箇所の接触抵抗が予め規定された抵抗値(閾値電圧Vth1~Vth3)を超える大きな抵抗値のときに(つまり、不良と判定したときに)、判定対象接触箇所の接触抵抗を最終的に不良と判定し、コンパレータCOM1~COM3による複数回(この例では3回)の判定処理の少なくとも1回において判定対象接触箇所の接触抵抗が予め規定された抵抗値(閾値電圧Vth1~Vth3)以下の小さい抵抗値のときに、判定対象接触箇所の接触抵抗を最終的に良好と判定する。このように良否判定用処理を実行することにより、接触抵抗測定装置1の周囲の環境において3つの周波数f1,f2,f3のすべてと同じかまたは近傍の周波数のノイズが発生していない限り、接触抵抗を最終的に良好と判定することになるため、接触抵抗測定装置1(処理部CONT)は、判定対象接触箇所の接触抵抗を不良と判定するコンタクトチェックエラーの発生を低減することができる。
 この後、処理部CONTは、良否判定用処理の最終的な判定結果を表示用データSdとして出力部OUTに出力する。次いで、出力部OUTは、表示用データSdに基づき、判定対象接触箇所の接触抵抗(RHP+RLP)が許容される最大抵抗値よりも小さい抵抗値であるか否か、つまり判定対象接触箇所の接触抵抗の良否を表示する。この場合、判定対象接触箇所の接触抵抗が不良と表示するときには、警告表示を併せて表示させることもできる。また、出力部OUTに音声出力部を設けて警告音を出力させる構成を採用しても良い。
 なお、処理部CONTが、コンパレータCOM1~COM3による複数回(この例では3回)の判定処理の判定結果のみを表示用データSdに含めて出力部OUTに出力する構成を採用することもできる。この構成を採用した場合には、測定者が、判定処理の判定結果に基づいて判定することになる。
 このように、この接触抵抗測定装置1によれば、交流電流源SS1が、異なる周波数に規定された複数の判定用電流Ijを電流経路に供給し、同期検波回路SD1~SD3およびローパスフィルターLPF1~LPF3が、複数の判定用電流Ijが上記の電流経路に供給されたときに判定対象接触箇所に生じた異なる周波数f1,f2,3にそれぞれ対応する各検出電圧Vd1(検出電圧Vd1のうちの周波数f1,f2,3にそれぞれ対応する交流電圧)を、周波数f1,f2,3とそれぞれ同じ周波数の同期信号Sf1~Sf3でそれぞれ同期検波することにより、周波数f1,f2,3に対応する検出電圧Vd1の電圧値に応じて電圧値がそれぞれ変化する電圧V1~V3を出力し、処理部CONTが、周波数f1,f2,3毎に良否判定用処理を実行する。これにより、接触抵抗測定装置1の周囲の環境において異なる周波数のうちの1つの周波数(例えば、周波数f1)と同じかまたは近傍の周波数のノイズが発生しているときであっても、他の周波数(この例では、周波数f2,f3)によるコンタクトチェックに影響が出ないため、接触抵抗測定装置1(処理部CONT)は、コンタクトチェックを正確に行うことができる。
 また、この接触抵抗測定装置1によれば、交流電流源SS1が、周波数が異なる複数の接触判定用交流電流(周波数f1,f2,f3の判定用電流Ij)を合成して電流経路に供給し、異なる周波数f1,f2,f3に一対一で対応して設けられた複数の同期検波回路(同期検波回路SD1~SD3およびローパスフィルターLPF1~LPF3)の各々が、異なる周波数f1,f2,f3に一対一で対応する周波数(周波数f1,f2,f3のいずれか)の検出電圧Vd1をその検出電圧Vd1の周波数と同じ周波数(周波数f1,f2,f3のいずれか)の同期信号(同期信号Sf1~Sf3のうちの対応するいずれか)で同期検波することにより、その周波数(周波数f1,f2,f3のいずれか)に対応する検出電圧Vd1の電圧値に応じて電圧値が変化する直流電圧(電圧V1~V3のいずれか)をそれぞれ出力し、処理部CONTが、異なる周波数f1,f2,f3毎に良否判定用処理を実行する。したがって、この接触抵抗測定装置1によれば、各同期検波回路(SD1~SD3およびローパスフィルターLPF1~LPF3)から直流電圧である電圧V1~V3が同時に出力される結果、異なる周波数f1,f2,f3毎に良否判定用処理を同時に実行できるため、判定対象接触箇所についてのコンタクトチェックを瞬時に(短時間で)行うことができる。
 また、この接触抵抗測定装置1によれば、処理部(コンパレータCOM1~COM3および処理部CONT)が、良否判定用処理として、判定対象接触箇所(センス端子Hpおよびセンス端子Lpの間)の接触抵抗(RHP+RLP)が予め規定された抵抗値よりも小さいときに判定対象接触箇所の接触抵抗が良好とする判定処理を異なる周波数f1,f2,f3毎に実行し、実行した判定処理の半数を超える回数において良好と判定したときに、判定対象接触箇所の接触抵抗(RHP+RLP)を最終的に良好と判定する。したがって、この接触抵抗測定装置1によれば、接触抵抗測定装置1の周囲の環境において1つの周波数(例えば、周波数f1)と同じかまたは近傍の周波数のノイズが発生しているときであっても、他の周波数(この例では、周波数f2,f3)によるコンタクトチェックに影響が出ないため、接触抵抗測定装置1(処理部CONT)は、コンタクトチェックを正確に行うことができる。
 また、この接触抵抗測定装置1によれば、処理部(コンパレータCOM1~COM3および処理部CONT)が、良否判定用処理として、判定対象接触箇所(センス端子Hpおよびセンス端子Lpの間)の接触抵抗(RHP+RLP)が予め規定された抵抗値よりも小さいときに判定対象接触箇所の接触抵抗が良好とする判定処理を異なる周波数f1,f2,f3毎に実行し、実行した判定処理のすべてにおいて不良と判定したときに、判定対象接触箇所の接触抵抗(RHP+RLP)を最終的に不良と判定する。したがって、この接触抵抗測定装置1によれば、接触抵抗測定装置1の周囲の環境において異なる周波数f1,f2,f3のすべてと同じかまたは近傍の周波数のノイズが発生していない限り、接触抵抗を最終的に良好と判定することになるため、接触抵抗測定装置1は、判定対象接触箇所の接触抵抗を不良と判定するコンタクトチェックエラーの発生を低減することができる。
 次に、上記の接触抵抗測定装置1を備えて、測定対象のインピーダンスを測定するインピーダンス測定装置について、図2を参照して説明する。なお、上記した接触抵抗測定装置1と同じ機能を有する構成要素には同一の符号を付して重複した説明を省略する。
 インピーダンス測定装置100は、Hi側のソース端子Hc(測定用交流信号供給用のソース端子)、Lo側のソース端子Lc(測定用交流信号供給用のソース端子)、測定用交流電流源PM、コンデンサC3、同期検波部SDU2、コンパレータCOM4,COM5および測定部MUを備えて、測定対象の一例としての電池BATの正極端子T1(一方の電極)にHi側のソース端子HcおよびHi側のセンス端子Hpが接続され(例えば、不図示の測定ケーブルを介して接続され)、電池BATの負極端子T2(他方の電極)にLo側のソース端子LcおよびLo側のセンス端子Lpが接続された(例えば、不図示の測定ケーブルを介して接続された)状態において、インピーダンスの一例としての電池BATの内部抵抗Rxを測定可能に構成されている。
 測定用交流電流源PMは、第1交流電流源および第2交流電流源として機能して、Hi側とLo側の各ソース端子Hc,Lc間に接続される電池BATに出力交流電流Ioを供給する。一例として、測定用交流電流源PMは、交流電流源SS2、演算増幅器OP2、帰還抵抗4、接地抵抗5およびカップリング用のコンデンサC4を備えている。また、測定用交流電流源PMは、測定用交流電流源PM用の不図示の電源系から供給される直流電圧(グランドG1とは電位が異なるグランドG2の電位を基準とする直流電圧(直流正電圧および直流負電圧))に基づいて動作する。
 交流電流源SS2は、処理部CONTから測定開始信号が出力されたときに、交流電圧Voを出力して、電池BATを含む電流経路に測定用および接触判定用の交流定電流である出力交流電流Ioの供給を開始し、処理部CONTから測定停止信号が出力されたときに、交流電圧Voの出力を停止して、出力交流電流Ioの供給を停止する。この場合、交流電流源SS1は、周波数が異なる複数の交流電流(一例として、一定の振幅(既知)で、かつ一定の周波数で互いに異なる2つの周波数f4,f5の交流電流)を合成して出力交流電流Ioとして供給可能に構成されている。なお、周波数f4の交流電流は測定用交流電流および接触判定用交流電流として用いられ、周波数f5の交流電流は接触判定用交流電流として用いられる。また、周波数f4,f5は、上記の周波数f1,f2,f3とは異なる周波数に規定されている。また、交流電流源SS2は、後述する同期検波回路SD4,SD5に対して、同期検波用の同期信号として、出力交流電流Ioの周波数と同じ周波数f4,f5の同期信号Sf4,Sf5を出力すると共に後述する同期検波回路SDRに対して、同期検波用の同期信号として、周波数f4の同期信号Sf4を出力する。なお、交流電流源SS2は、周波数f4,f5の2つの出力交流電流Ioに限らず、周波数f1,f2,f3とは異なり、かつ周波数が互いに異なる3つ以上の交流電流を合成して出力交流電流Ioとして供給可能に構成しても良い。
 演算増幅器OP2は、出力端子と反転入力端子との間に帰還抵抗R4が接続されると共に、反転入力端子が接地抵抗R5を介してグランドG2に接続されて、非反転入力端子に入力された交流電圧Voを増幅して出力する。また、演算増幅器OP2は、出力端子がコンデンサC4を介してソース端子Hcに接続され、かつ反転入力端子がソース端子Lcに接続されている。この構成により、演算増幅器OP2は、交流電圧Voの電圧値を接地抵抗5の抵抗値で除算して得られる既知の電流値の交流定電流を出力交流電流Ioとして、ソース端子Hc,Lc間に接続される電池BATに供給可能となっている。また、測定用交流電流源PM用の上記の直流電圧(作動用の直流正電圧および直流負電圧)の基準となるグランドG2は、測定部MU用の直流電圧(作動用の直流正電圧および直流負電圧)の基準となるグランドG1とは電気的に分離されていることから、出力交流電流Ioは、図2に示すように、演算増幅器OP2の出力端子から、コンデンサC4、ソース端子Hc、電池BAT、ソース端子Lcおよび接地抵抗5を介してグランドG2に至る経路にのみ流れる。なお、本例の電池BATは、直流起電力を発生させるバッテリであることから、この直流起電力が演算増幅器OP2の出力端子に印加される事態を回避するために、コンデンサC4が設けられている。したがって、測定対象が直流起電力を発生させないものであるときには、コンデンサC4を設けることなく、演算増幅器OP2の出力端子をソース端子Hcに直接接続する構成を採用することもできる。
 同期検波部SDU2は、異なる周波数f4,f5に一対一で対応して設けられた複数(本例では2つ)の同期検波回路SD4,SD5と、各同期検波回路SD4,SD5の後段にそれぞれ配置されたローパスフィルターLPF4,LPF5とを備えて構成されている。ここで、同期検波回路SD4およびローパスフィルターLPF4は、周波数f4に一対一で対応して設けられた同期検波回路として機能して、測定用交流電流源PMから出力交流電流Ioが供給されたときにソース端子Hcに発生する交流電圧Vd3をその検出電圧Vd3の周波数と同じ周波数の同期信号Sf4で同期検波することにより、検出電圧Vd3の電圧値に応じて電圧値が変化する直流電圧の電圧V4を出力する。具体的には、同期検波回路SD4は、一例として乗算器を用いて構成されて、検出電圧Vd3と交流電流源SS2から出力された同期信号Sf4とを互いに乗算することにより(言い換えれば、検出電圧Vd3を同期信号Sf4で同期検波することにより)、検出電圧Vd3を構成する交流電圧のうちの周波数f4の出力交流電流Ioに基づく交流電圧の電圧値(例えば、振幅)に応じて電圧値が変化する直流電圧を含む電圧V4を出力する。また、ローパスフィルターLPF4は、低域通過型フィルタとして構成されて、同期検波回路SD4から出力される電圧V4を入力して、交流成分を除去して平滑化することにより、周波数f4の検出電圧Vd3の電圧値に応じて電圧値が変化する直流電圧としての電圧V4を出力する。つまり、この同期検波回路(同期検波回路SD4およびローパスフィルターLPF4)は、出力交流電流Ioの周波数f4に対応する検出電圧Vd3の大きさを検出する。
 同期検波回路SD5およびローパスフィルターLPF5は、周波数f5に一対一で対応して設けられた同期検波回路として機能して、測定用交流電流源PMから出力交流電流Ioが供給されたときにソース端子Hcに発生する交流電圧Vd3をその検出電圧Vd3の周波数と同じ周波数の同期信号Sf5で同期検波することにより、検出電圧Vd3の電圧値に応じて電圧値が変化する直流電圧の電圧V5を出力する。具体的には、同期検波回路SD5は、一例として乗算器を用いて構成されて、検出電圧Vd3と交流電流源SS2から出力された同期信号Sf5とを互いに乗算することにより(言い換えれば、検出電圧Vd3を同期信号Sf5で同期検波することにより)、検出電圧Vd3を構成する交流電圧のうちの周波数f5の出力交流電流Ioに基づく交流電圧の電圧値(例えば、振幅)に応じて電圧値が変化する直流電圧を含む電圧V5を出力する。また、ローパスフィルターLPF5は、低域通過型フィルタとして構成されて、同期検波回路SD5から出力される電圧V5を入力して、交流成分を除去して平滑化することにより、周波数f5の検出電圧Vd3の電圧値に応じて電圧値が変化する直流電圧としての電圧V5を出力する。つまり、この同期検波回路(同期検波回路SD5およびローパスフィルターLPF5)は、出力交流電流Ioの周波数f5に対応する検出電圧Vd3の大きさを検出する。
 コンパレータCOM4は、コンパレータCOM1~COM3,COM5および処理部CONTと共に「処理部」を構成する。この場合、コンパレータCOM4は、一例として、演算増幅器で構成されて、予め規定された電圧の閾値電圧Vth4が処理部CONTによって反転入力端子に設定されており、ローパスフィルターLPF4から出力されて非反転入力端子に入力された電圧V4が閾値電圧Vth4の電圧値を超えたときに、ハイ(高電圧)の判定信号S4を出力する。この場合、電圧V4は、検出電圧Vd3に含まれる電圧のうちの、周波数f4の出力交流電流Ioに基づいてソース端子HcおよびグランドG2の間に生じる電圧(つまり、出力交流電流Ioの周波数f4に対応する交流電圧の大きさ)を検出したものであることから、その電圧値は、電池BATの内部抵抗Rx(抵抗値をRxとする)と、接触抵抗RHC(抵抗値をRHCとする)および接触抵抗RLC(抵抗値をRLCとする)との直列合成抵抗(RHC+Rx+RLC)に比例する値(∝RHC+Rx+RLC)となっている。また、接触抵抗(RHC+RLC)≫内部抵抗(Rx)のときには、電圧V4は、その電圧値が接触抵抗(RHC+RLC)の大きさを示す電圧となる。したがって、閾値電圧Vth4を接触抵抗(RHC+RLC)に許容される最大抵抗値に対応する電圧値に規定しておくことにより、コンパレータCOM4は、ソース端子HcおよびグランドG2の間の接触抵抗(RHP+RLP)が許容される最大抵抗値を超えるような大きい抵抗値であるとき(つまり、接触が不良のとき)には、ハイの判定信号S4を出力する。逆に、コンパレータCOM4は、接触抵抗(RHP+RLP)が許容される最大抵抗値以下の小さい抵抗値であるとき(つまり、接触が良好のとき)には、ロー(低電圧)の判定信号S4を出力する。
 コンパレータCOM5は、一例として、演算増幅器で構成されて、予め規定された電圧の閾値電圧Vth5が処理部CONTによって反転入力端子に設定されており、ローパスフィルターLPF5から出力されて非反転入力端子に入力された電圧V5が閾値電圧Vth5の電圧値を超えたときに、ハイ(高電圧)の判定信号S5を出力する。この場合、電圧V5は、検出電圧Vd3に含まれる電圧のうちの、周波数f5の出力交流電流Ioに基づいてソース端子HcおよびグランドG2の間に生じる電圧(つまり、出力交流電流Ioの周波数f5に対応する交流電圧の大きさ)を検出したものであることから、その電圧値は、電池BATの内部抵抗Rxと、接触抵抗RHCおよび接触抵抗RLCとの直列合成抵抗(RHC+Rx+RLC)に比例する値(∝RHC+Rx+RLC)となっている。また、接触抵抗(RHC+RLC)≫内部抵抗(Rx)のときには、電圧V5は、その電圧値が接触抵抗(RHC+RLC)の大きさを示す電圧となる。したがって、閾値電圧Vth5を接触抵抗(RHC+RLC)に許容される最大抵抗値に対応する電圧値に規定しておくことにより、コンパレータCOM5は、ソース端子HcおよびグランドG2の間の接触抵抗(RHP+RLP)が許容される最大抵抗値を超えるような大きい抵抗値であるとき(つまり、接触が不良のとき)には、ハイの判定信号S5を出力する。逆に、コンパレータCOM5は、接触抵抗(RHP+RLP)が許容される最大抵抗値以下の小さい抵抗値であるとき(つまり、接触が良好のとき)には、ロー(低電圧)の判定信号S5を出力する。なお、通常は、帰還抵抗R4の抵抗値R4≫接触抵抗(RHP+RLP)のため、抵抗値R4の存在に関しては無視した。また、接触抵抗(RHP+RLP)が許容される最大抵抗値を超えるような大きい抵抗値であるときには、接触抵抗(RHC+RLC)≫接地抵抗R5の抵抗値R5のため、抵抗値R5の存在に関しては無視した。
 測定部MUは、上記した接触抵抗測定装置1の構成に加えて、同期検波回路SDR、ローパスフィルターLPFRおよびA/DコンバータAD1を備えて構成されている。また、処理部CONTは、接触抵抗測定装置1における上記した機能に加えて、同期検波回路SD4に閾値電圧Vth4を出力すると共に同期検波回路SD5に閾値電圧Vth5を出力し、かつ、コンパレータCOM4,COM5から判定信号S4,S5を入力すると共にA/DコンバータAD1から後述する電圧信号SRを入力する。また、処理部CONTは、判定信号S1~S5に基づいて、判定対象接触箇所(本例では、ソース端子Hcとソース端子Lcとの間、およびセンス端子Hpとセンス端子Lpとの間)に対する良否判定処理を実行すると共に、電池BATの内部抵抗Rxを測定(演算)する測定部としても機能し、電圧信号SRに基づいて、測定対象としての電池BATの内部抵抗Rx(インピーダンスの一例)を測定する。
 同期検波回路SDRは、一例として乗算器を用いて構成されて、第1増幅器A1によって検出されてフィルターFIL1を介して出力された交流電圧の検出電圧Vd2と交流電流源SS2から出力された同期信号Sf4とを互いに乗算することにより(言い換えれば、フィルターFIL1から出力された検出電圧Vd2を同期信号Sf4で同期検波することにより)、検出電圧Vd2を構成する交流電圧のうちの周波数f4の出力交流電流Ioに基づく交流電圧の電圧値(例えば、振幅)に応じて電圧値が変化する直流電圧を含む電圧VRを出力する。また、ローパスフィルターLPFRは、低域通過型フィルタとして構成されて、同期検波回路SDRから出力される電圧VRを入力して、交流成分を除去して平滑化することにより、周波数f4の検出電圧Vd2の電圧値に応じて電圧値が変化する直流電圧としての電圧VRを出力する。つまり、この同期検波回路(同期検波回路SDRおよびローパスフィルターLPFR)は、出力交流電流Ioの周波数f4に対応する検出電圧Vd2の大きさを検出する。
 A/DコンバータAD1は、ローパスフィルターLPFRから出力された電圧VRをA/D変換して、電池BATの内部抵抗Rxの大きさに比例する電圧値を示す電圧信号SRを処理部CONTに出力する。
 出力部OUTは、上記した機能に加えて、ソース端子Hcとソース端子Lcとの間を判定対象接触箇所として、接触の良否を表示する。また、接触抵抗(RHC+RLC)や電池BATの内部抵抗Rxを表示するためのデータを含む表示用データSdを入力したときには、接触抵抗(RHP+RLP)や内部抵抗Rxの抵抗値を表示する。また、出力部OUTは、外部インターフェース回路で構成したときには、外部インターフェース回路を介して伝送路で接続された外部装置に判定対象接触箇所の接触の良否や、接触抵抗(RHC+RLC),(RHP+RLP)および内部抵抗Rxの抵抗値を出力し、また媒体用インターフェース回路で構成されたときには、この媒体用インターフェース回路に接続された記憶媒体に判定対象接触箇所の接触の良否や接触抵抗(RHC+RLC),(RHP+RLP)および内部抵抗Rxの抵抗値を記憶させる。
 次に、インピーダンス測定装置100の動作について説明する。なお、上記した接触抵抗測定装置1と同じ動作については、重複した説明を省略する。また、ソース端子Hcおよびソース端子Lcは、不図示の2本の測定ケーブルを介して電池BATの正極端子T1および負極端子T2にそれぞれ接続されており、センス端子Hpおよびセンス端子Lpは、不図示の2本の測定ケーブルを介して電池BATの正極端子T1および負極端子T2にそれぞれ接続されているものとする。また、ソース端子Hcおよび電池BATの正極端子T1の間の接触抵抗と測定ケーブルの配線抵抗とを接触抵抗RHCとし、ソース端子Lcおよび電池BATの負極端子T2の間の接触抵抗と測定ケーブルの配線抵抗とを接触抵抗RLCとする。また、測定ケーブルの配線抵抗については、小さな抵抗のため、本例の説明においては無視するものとする。
 インピーダンス測定の際には、処理部CONTが、開始信号を測定用交流電流源PMおよび交流電流源SS1に出力する、また、処理部CONTは、コンパレータCOM1~COM5に対応する閾値電圧Vth1~Vth5を出力する。この際には、測定用交流電流源PMは、出力交流電流Ioを出力することにより、ソース端子Hcと電池BATの正極端子T1との間、およびソース端子Lcと電池BATの負極端子T2との間の判定対象接触箇所を含む電流経路に周波数f4,f5の交流電流を合成した出力交流電流Ioの供給を開始する。この際には、出力交流電流Ioは、演算増幅器OP2の出力端子、コンデンサC4、ソース端子Hc、電池BAT、ソース端子Lc、接地抵抗R5およびグランドG2からなる電流経路を流れる。また、交流電流源SS2は、同期検波回路SD4,SDRに同期信号Sf4を出力すると共に同期検波回路SD5に同期信号Sf5を出力する。この結果、ソース端子Hcおよびソース端子Lcの間に出力交流電流Ioが供給されることにより、ソース端子Hcと電池BATの正極端子T1との間、および電池BATの負極端子T2とソース端子Lcとの間の判定対象接触箇所に周波数f4,f5の出力交流電流Ioが流れることに起因する交流電圧が発生する。この場合、発生した交流電圧は、検出電圧Vd3として、コンデンサC3を介して同期検波回路SD4,SD5に入力する。
 次いで、同期検波回路SD4は、入力した検出電圧Vd3を交流電流源SS2から出力された同期信号Sf4で同期検波して、検出電圧Vd3を構成する交流電圧のうちの周波数f4の出力交流電流Ioに基づく交流電圧の電圧値(例えば、振幅)に応じて電圧値が変化する電圧V4を出力する。この後、ローパスフィルターLPF4は、同期検波回路SD4から出力される電圧V4を入力して、交流成分を除去して平滑化することにより、直流電圧の電圧V4をコンパレータCOM4の非反転端子に出力する。また、同期検波回路SD5は、入力した検出電圧Vd3を交流電流源SS2から出力された同期信号Sf5で同期検波して、検出電圧Vd3を構成する交流電圧のうちの周波数f5の出力交流電流Ioに基づく交流電圧の電圧値(例えば、振幅)に応じて電圧値が変化する電圧V5を出力する。この後、ローパスフィルターLPF5は、同期検波回路SD4から出力される電圧V5を入力して、交流成分を除去して平滑化することにより、直流電圧の電圧V2をコンパレータCOM5の非反転端子に出力する。
 次いで、コンパレータCOM4は、良否判定処理の一部として、非反転端子に入力した電圧V4と、反転端子に入力されている閾値電圧Vth4とを比較することにより、電圧V4が閾値電圧Vth4の電圧値を超えたときに、ハイ(高電圧)の判定信号S4を出力し、電圧V4が閾値電圧Vth4の電圧値以下のときに、ロー(低電圧)の判定信号S4を処理部CONTに出力する。同様にして、コンパレータCOM5は、良否判定処理の一部として、非反転端子に入力した電圧V5と、反転端子に入力されている閾値電圧Vth5とを比較することにより、電圧V5が閾値電圧Vth5の電圧値を超えたときに、ハイ(高電圧)の判定信号S5を出力し、電圧V5が閾値電圧Vth5の電圧値以下のときに、ロー(低電圧)の判定信号S5を処理部CONTに出力する。
 次に、処理部CONTは、入力した判定信号S1~S3に基づく上記した良否判定用処理を実行する。具体的には、処理部CONTは、コンパレータCOM1~COM3による電圧V1~V3と閾値電圧Vth1~Vth3との比較(良否判定処理における一部の処理である判定処理)の結果に基づき、良否判定用処理として、センス端子Hpと電池BATの正極端子T1との間、およびソース端子Hcと電池BATの負極端子T2との間の判定対象接触箇所の接触抵抗の良否を最終的に判定する。
 また、処理部CONTは、入力した判定信号S4,S5に基づいて、異なる周波数f4,f5毎に良否判定用処理を実行する。具体的には、コンパレータCOM4,COM5による電圧V4,V5と閾値電圧Vth4,Vth5との比較(良否判定処理における一部の処理である判定処理)の結果に基づき、良否判定用処理として、ソース端子Hcと電池BATの正極端子T1との間、およびソース端子Lcと電池BATの負極端子T2との間の判定対象接触箇所の接触抵抗の良否を最終的に判定する。より具体的には、処理部CONTは、良否判定用処理として、異なる周波数f4,f5毎に実行したコンパレータCOM4,COM5によって実行された複数回(この例では2回)の判定処理の半数を超える回数(この例では、すべての回数でもある2回)において判定対象接触箇所の接触抵抗が予め規定された抵抗値(閾値電圧Vth4,Vth5に対応する抵抗値)以下の小さい抵抗値(つまり、良好と判定したとき)のときに、判定対象接触箇所の接触抵抗を最終的に良好と判定し、コンパレータCOM4,COM5による複数回(この例では2回)の判定処理の半数以下(この例では1回以下)において判定対象接触箇所の接触抵抗が予め規定された抵抗値(閾値電圧Vth4,Vth5に対応する抵抗値)以下の小さい抵抗値のときに、判定対象接触箇所の接触抵抗を最終的に不良と判定する。このように良否判定用処理を実行することにより、接触抵抗測定装置1の周囲の環境において複数の周波数(例えば、周波数f5)と同じかまたは近傍の周波数のノイズが発生しているときであっても、他の周波数(この例では、周波数f4)によるコンタクトチェックに影響が出ないため、インピーダンス測定装置100(処理部CONT)は、コンタクトチェックを正確に行うことができる。
 この後、処理部CONTは、良否判定用処理の最終的な判定結果を表示用データSdとして出力部OUTに出力する。次いで、出力部OUTは、表示用データSdに基づき、判定対象接触箇所の接触抵抗(RHC+RLC,RHP+RLP)が許容される最大抵抗値よりも小さい抵抗値であるか否か、つまり判定対象接触箇所の接触抵抗の良否を表示する。
 なお、処理部CONTが、コンパレータCOM1~COM3による複数回(この例では3回)、およびコンパレータCOM4,COM5による複数回(この例では2回)の判定処理の判定結果のみを表示用データSdに含めて出力部OUTに出力する構成を採用することもできる。この構成を採用した場合には、測定者が、判定処理の判定結果に基づいて判定することになる。
 次に、判定対象接触箇所の接触抵抗の抵抗値が良好であったときには、処理部CONTは、電池BATの内部抵抗Rxのインピーダンス測定処理を自動的に実行する。この場合、出力交流電流Ioが電池BATの内部を流れることに起因する交流電圧が発生する。この際に、発生した交流電圧は、検出電圧Vd2として、コンデンサC2を介して演算増幅器OP1の非反転入力端子に入力する。次いで、第1増幅器A1が、入力した検出電圧Vd2を規定の増幅率で増幅してフィルターFIL1に出力する。次いで、フィルターFIL1は、第1増幅器A1から出力される検出電圧Vd2を入力すると共に、この検出電圧Vd2に含まれている通過帯域外の周波数成分(ノイズ成分)を除去しつつ、検出電圧Vd2に含まれている周波数f1,f2,f3,f4の周波数成分である交流電圧を検出電圧Vd2として通過させる。この後、フィルターFIL1を通過した周波数f1,f2,f3,f4の周波数成分である検出電圧Vd2は、同期検波回路SD1~SD3,SDRに入力される。
 この際に、同期検波回路SDRは、入力した検出電圧Vd2を交流電流源SS2から出力された同期信号Sf4で同期検波して、検出電圧Vd2を構成する交流電圧のうちの周波数f4の出力交流電流Ioに基づく交流電圧の電圧値(例えば、振幅)に応じて電圧値が変化する電圧VRを出力する。この後、ローパスフィルターLPFRは、同期検波回路SDRから出力される電圧VRを入力して、交流成分を除去して平滑化することにより、直流電圧の電圧VRをA/DコンバータAD1に出力する。次いで、A/DコンバータAD1は、ローパスフィルターLPFRから出力された電圧VRをA/D変換して電圧信号SRを処理部CONTに出力する。この場合、電圧VRは、検出電圧Vd2に含まれる電圧のうちの、周波数f4の出力交流電流Ioに基づいてセンス端子Hpおよびセンス端子Lpの間に生じる電圧(つまり、出力交流電流Ioの周波数f4に対応する交流電圧の大きさ)を検出したものであることから、その電圧値は、電池BATの内部抵抗Rxに比例する値(∝Rx)となっている。したがって、電圧信号SRは、電池BATの内部抵抗Rxに比例する値を示す測定値となっている。
 次いで、処理部CONTは、電圧信号SRで示される測定値を出力交流電流Ioの既知の電流値で除算して電池BATの内部抵抗Rxを算出する。この後、処理部CONTは、表示用データSdを出力することにより、電池BATの内部抵抗Rxを出力部OUTに表示させる。
 このように、このインピーダンス測定装置100によれば、接触抵抗測定装置1と同様にして、処理部CONTが、周波数f1,f2,f3毎に良否判定用処理を実行すると共に周波数f4,f5毎に良否判定用処理を実行する。これにより、インピーダンス測定装置100の周囲の環境において1つまたは複数の周波数(例えば、周波数f1,f5)と同じかまたは近傍の周波数のノイズが発生しているときであっても、他の周波数(この例では、周波数f2,f3,f4)によるコンタクトチェックに影響が出ないため、インピーダンス測定装置100(処理部CONT)は、コンタクトチェックを正確に行うことができる結果、インピーダンス測定の信頼性を十分に高めることができる。
 また、このインピーダンス測定装置100によれば、異なる周波数と同数の同期検波回路(同期検波回路SD1~SD3およびローパスフィルターLPF1~LPF3)を用いているため、接触抵抗測定装置1と同様にして、処理部CONTによる異なる周波数毎の良否判定用処理を極めて迅速に実行することができ、その結果として、インピーダンスの測定時間を十分に短縮することができる。
 また、このインピーダンス測定装置100によれば、交流電流源SS2は、第1交流電流源としても機能し、測定用交流電流としての出力交流電流Ioを周波数f4,f5が異なる複数の接触判定用交流電流としての出力交流電流Ioのうちの1つとして、ソース端子Hcと測定対象としての電池BATの一端である正極端子T1および他端である負極端子T2との各接触箇所を含む電流経路に供給する。したがって、このインピーダンス測定装置100によれば、第2交流電流源が接触判定用交流電流を供給する第1交流電流源としての機能を兼用するため、第1交流電流源を2つ設ける必要がなくなる結果、インピーダンス測定装置100を簡易に構成できると共に安価に構成することができる。
 また、このインピーダンス測定装置100によれば、処理部CONTが、判定対象接触箇所の接触抵抗を最終的に良好と判定したときに、測定部(測定部MUおよび処理部CONT)によって測定された電池BATの内部抵抗Rxを出力部OUTに出力する。したがって、このインピーダンス測定装置によれば、インピーダンス測定の信頼性を十分に高めることができる。
 続いて、他のインピーダンス測定装置としてのインピーダンス測定装置100Aについて、図3を参照して説明する。なお、インピーダンス測定装置100と同一の構成については同一の符号を付して重複する説明を省略する。
 インピーダンス測定装置100Aは、インピーダンス測定装置100における同期検波部SDU2に代えて、同期検波部SDU3を備えて構成されると共に、コンパレータCOM5の配設を省略している。この場合、同期検波部SDU3は、スイッチSW1、同期検波回路SD4およびローパスフィルターLPF4を備えて構成されている。また、このインピーダンス測定装置100Aでは、処理部CONTが、スイッチSW1の切替制御と、スイッチSW1の切替制御と連動してコンパレータCOM4に対する閾値電圧Vth4,Vth5の出力切替制御とを順次実行する。
 スイッチSW1は、COM(コモン)接点、a接点およびb接点を備えて構成され、処理部CONTの切替制御に従い、COM接点とa接点との接続、およびCOM接点とb接点との接続をいずれか一方に切り替える。この場合、交流電流源SS2からの同期信号Sf4がa接点に入力されると共に交流電流源SS2からの同期信号Sf5がb接点に入力される。また、スイッチSW1のCOM接点は、同期検波回路SD4の同期信号の入力部に接続されている。したがって、スイッチSW1は、処理部CONTの切替制御に従い、同期検波回路SD4に対して同期信号Sf4および同期信号Sf5のいずれか一方を出力する。
 また、コンパレータCOM4は、検出電圧Vd3を検出電圧Vd3の異なる周波数f4,f5とそれぞれ同じ周波数f4,f5の同期信号Sf4,Sf5で順次同期検波することにより、異なる周波数f4,f5に対応する検出電圧Vd3の電圧値に応じて電圧値がそれぞれ変化する直流電圧の電圧V4,V5を順次出力する。具体的には、コンパレータCOM4は、処理部CONTから閾値電圧Vth4が反転端子に出力された際には、ローパスフィルターLPF4から出力されて非反転入力端子に入力された電圧V4が閾値電圧Vth4の電圧値を超えたときに、ハイ(高電圧)の判定信号S4を出力する。一方、処理部CONTから閾値電圧Vth5が反転端子に出力された際には、ローパスフィルターLPF4から出力されて非反転入力端子に入力された電圧V5が閾値電圧Vth5の電圧値を超えたときに、ハイ(高電圧)の判定信号S4を出力する。
 次に、インピーダンス測定装置100Aの動作について説明する。なお、上記した接触抵抗測定装置1およびインピーダンス測定装置100と同じ動作については、重複した説明を省略する。
 このインピーダンス測定装置100Aでは、判定対象接触箇所についての良否判定用処理を実行する際に、処理部CONTは、スイッチSW1に対して切替制御を実行すると共に、この切替制御と連動してコンパレータCOM4に対する閾値電圧Vth4,Vth5の出力切替制御を実行する。具体的には、処理部CONTは、スイッチSW1に対してCOM接点とa接点とを接続する接続制御(以下、「接続制御A」ともいう」)を実行するときには、コンパレータCOM4に対して閾値電圧Vth4を出力する。この場合、交流電流源SS2から出力された同期信号Sf4が、スイッチSW1のa接点およびCOM接点を介して、同期検波回路SD4に出力される。この際には、同期検波回路SD4は、入力した検出電圧Vd3を同期信号Sf4で同期検波して、検出電圧Vd3を構成する交流電圧のうちの周波数f4の出力交流電流Ioに基づく交流電圧の電圧値(例えば、振幅)に応じて電圧値が変化する電圧V4を出力する。この後、ローパスフィルターLPF4は、同期検波回路SD4から出力される電圧V4を入力して、交流成分を除去して平滑化することにより、直流電圧の電圧V4をコンパレータCOM4の非反転端子に出力する。次いで、コンパレータCOM4は、良否判定処理の一部として、非反転端子に入力した電圧V4と、反転端子に入力されている閾値電圧Vth4とを比較することにより、電圧V4が閾値電圧Vth4の電圧値を超えたときに、ハイ(高電圧)の判定信号S4を出力し、電圧V4が閾値電圧Vth4の電圧値以下のときに、ロー(低電圧)の判定信号S4を処理部CONTに出力する。
 一方、処理部CONTは、スイッチSW1に対してCOM接点とb接点とを接続する接続制御(以下、「接続制御B」ともいう」)を接続制御Aの実行後に順次実行するときには、コンパレータCOM4に対して閾値電圧Vth5を出力する。この場合、交流電流源SS2から出力された同期信号Sf5は、スイッチSW1のb接点およびCOM接点を介して、同期検波回路SD4に出力される。この際には、同期検波回路SD4は、入力した検出電圧Vd3を同期信号Sf5で同期検波して、検出電圧Vd3を構成する交流電圧のうちの周波数f5の出力交流電流Ioに基づく交流電圧の電圧値(例えば、振幅)に応じて電圧値が変化する電圧V5を出力する。この後、ローパスフィルターLPF4は、同期検波回路SD4から出力される電圧V5を入力して、交流成分を除去して平滑化することにより、直流電圧の電圧V5をコンパレータCOM4の非反転端子に出力する。次いで、コンパレータCOM4は、良否判定処理の一部として、非反転端子に入力した電圧V4と、反転端子に入力されている閾値電圧Vth5とを比較することにより、電圧V5が閾値電圧Vth5の電圧値を超えたときに、ハイ(高電圧)の判定信号S5を出力し、電圧V5が閾値電圧Vth5の電圧値以下のときに、ロー(低電圧)の判定信号S4を処理部CONTに出力する。
 次いで、処理部CONTは、入力した判定信号S4,S5に基づいて、異なる周波数f4,f5毎に良否判定用処理を実行する。具体的には、処理部CONTは、接続制御Aを実行したときのコンパレータCOM4による電圧V4と閾値電圧Vth4との比較(良否判定処理における一部の処理である判定処理)の結果と、接続制御Bを実行したときのコンパレータCOM4による電圧V5と閾値電圧Vth5との比較(良否判定処理における一部の処理である判定処理)の結果とに基づき、上記したインピーダンス測定装置100による良否判定用処理と同様にして、良否判定用処理として、ソース端子Hcと電池BATの正極端子T1との間、およびソース端子Lcと電池BATの負極端子T2との間の判定対象接触箇所の接触抵抗の良否を最終的に判定する。
 この後、処理部CONTは、良否判定用処理の最終的な判定結果を表示用データSdとして出力部OUTに出力する。次いで、出力部OUTは、表示用データSdに基づき、判定対象接触箇所の接触抵抗(RHC+RLC,RHP+RLP)が許容される最大抵抗値よりも小さい抵抗値であるか否か、つまり判定対象接触箇所の接触抵抗の良否を表示する。
 次に、判定対象接触箇所の接触抵抗の抵抗値が良好であったときには、処理部CONTは、インピーダンス測定装置100と同様にして、電池BATの内部抵抗Rxのインピーダンス測定処理、および表示用データSdを出力部OUTに出力する出力制御を実行する。
 このように、このインピーダンス測定装置100Aによれば、インピーダンス測定装置100と同様にして、処理部CONTが、周波数f1,f2,3毎に良否判定用処理を実行すると共に周波数f4,f5毎に良否判定用処理を実行する。これにより、インピーダンス測定装置100Aの周囲の環境において1つまたは複数の周波数(例えば、周波数f1,f5)と同じかまたは近傍の周波数のノイズが発生しているときであっても、他の周波数(この例では、周波数f2,f3,f4)によるコンタクトチェックに影響が出ないため、インピーダンス測定装置100A(処理部CONT)は、コンタクトチェックを正確に行うことができる結果、インピーダンス測定の信頼性を十分に高めることができる。
 また、このインピーダンス測定装置100A(接触抵抗測定装置1)では、1つのスイッチSW1と、同期検波回路SD4およびLPFで構成される1つの同期検波回路とを用いて同期検波部SD3を構成して、同期検波部SD3が、検出電圧Vd3を検出電圧Vd3の異なる周波数f4,f5とそれぞれ同じ周波数の同期信号Sf4,Sf5で順次同期検波することにより、異なる周波数f4,f5に対応する検出電圧Vd3の電圧値に応じて電圧値がそれぞれ変化する電圧V4,V5を順次出力し、処理部CONTが、異なる周波数f4,f5毎に良否判定用処理を実行する。したがって、このインピーダンス測定装置100Aによれば、異なる周波数f4,f5に一対一で対応して設けられた複数の同期検波回路を備えて同期検波部を構成するのと比較して、同期検波部SDU3を簡易に構成できると共に安価に構成することができる。
 なお、インピーダンス測定装置100,100Aにおいて、交流電流源SS2は異なる周波数f4,f5の出力交流電流Ioを合成して出力しているが、この構成に限らず、処理部CONTの切替制御に従い、スイッチSW1の切替制御に同期して、周波数f4の出力交流電流Ioおよび周波数f5の出力交流電流Ioを合成することなく順次出力する構成を採用することができる。また、インピーダンス測定装置100,100Aにおいて、測定用交流電流および接触判定用交流電流を兼用する周波数f4の出力交流電流Ioを出力する交流電流源SS2を例に挙げて説明したが、接触判定用交流電流の周波数と、測定用交流電流の周波数とを互いに異なる周波数とすることもできる。ただし、測定用交流電流および接触判定用交流電流を兼用させた構成によれば、交流電流源SS2(第1交流信号電源および第2交流信号電源)をより簡易かつ安価に構成することができる。
 また、インピーダンス測定装置100,100Aでは、ソース端子Hc,Lcと電池BATの正極端子T1および負極端子T2との各接触箇所を含む電流経路、並びにセンス端子Hp,Lpと電池BATの正極端子T1および負極端子T2との各接触箇所を含む電流経路の双方を判定対象接触箇所としているが、これに限定されない。インピーダンス測定装置として、コンタクトチェックの精度は低下するものの、どちらか一方の電流経路における各接触箇所を判定対象接触箇所として良否判定用処理を実行する構成を採用することもできる。
 また、良否判定用処理として、処理部CONTが、3回の判定処理の半数を超える回数において良好と判定したときに、その判定対象接触箇所の接触抵抗を最終的に良好と判定する例や、判定処理のすべてにおいて不良と判定したときに、その判定対象接触箇所の接触抵抗を最終的に不良と判定する例について説明したが、これに限らない。コンタクトチェックの精度は低下するものの、例えば、偶数回の良否判定用処理を実行するときには、偶数回の判定処理の半数以上の回数において良好と判定したときに、処理部CONTが、その判定対象接触箇所の接触抵抗を最終的に良好と判定しても良い。また、複数回の判定処理のうちの予め規定した1回以上の回数において良好と判定したときに、処理部CONTが、その判定対象接触箇所の接触抵抗を最終的に良好と判定しても良い。このように判定することにより、接触抵抗測定装置1の周囲の環境において広い周波数領域においてノイズが発生しているときであっても、コンタクトチェックが可能となる。
 また、接触抵抗測定装置については、インピーダンス測定装置への適用に限られない。例えば、端子やプローブなどで接触対象を接触させる際の判定対象接触箇所についての良否判定処理を必要とする電流計、電圧計、電力計および抵抗計などの計測装置や、電流の供給や電圧の印加を行う電力装置などに広く接触抵抗測定装置を適用することができる。また、インピーダンス測定装置についても、測定対象は電池BATに限らず、内部抵抗Rxを有するすべてを測定対象とすることができる。
 また、フィルターFIL1、同期検波部SDU1,SUD2,SUD3、コンパレータCOM1~COM5、ローパスフィルターLPFRおよびA/DコンバータAD1を処理部CONTとは別体に構成した例について説明したが、処理部CONTが、これらの構成要素の一部または全部の機能をディジタル処理で実行することもできる。
 本願発明によれば、判定対象接触箇所についての良否判定用処理を実行する処理部を備えている接触抵抗測定装置において、周波数が異なる複数の接触判定用交流電流を判定対象接触箇所を含む電流経路に供給して、処理部が異なる周波数毎に良否判定用処理を実行することにより、コンタクトチェックを正確に行うことができる。また、そのような接触抵抗測定装置を備えたインピーダンス測定装置は、インピーダンス測定の信頼性を十分に高めることができる。これにより、本願発明は、このような接触抵抗測定装置や、インピーダンス測定を行うインピーダンス測定装置などに広く適用することができる。
     1 接触抵抗測定装置
   100,100A インピーダンス測定装置
    A1 第1増幅器
    A2 第2増幅器
   AD1 A/D変換回路
   BAT 電池
  COM1~COM5 コンパレータ
  CONT 処理部
  FIL1 フィルター
    Hc,Lc ソース端子
    Hp,Lp センス端子
    Ij 判定用電流
    Io 出力交流電流
  LPF1~LPF5,LPFR ローパスフィルター
   OUT 出力部
   RHC,RLC,RHP,RLP 接触抵抗
    Rx 内部抵抗
    S1~S5 判定信号
   SD1~SD5 同期検波回路
   Sf1~Sf5 同期信号
   SS1,SS2 交流電流源
  V1~V5 電圧
   Vd1~Vd3 検出電圧
 Vth1~Vth5 閾値電圧
    T1 正極端子
    T2 負極端子

Claims (9)

  1.  判定対象接触箇所を含む電流経路に接触判定用交流電流を供給する第1交流電流源と、
     前記第1交流電流源から前記接触判定用交流電流が供給されたときに当該接触判定用交流電流の周波数に対応すると共に前記判定対象接触箇所に生じた交流電圧を当該交流電圧の周波数と同じ周波数の同期信号で同期検波することにより、当該交流電圧の電圧値に応じて電圧値が変化する直流電圧を出力する同期検波部と、
     前記同期検波部から出力された前記直流電圧に基づいて前記判定対象接触箇所についての良否判定用処理を実行する処理部とを備えている接触抵抗測定装置であって、
     前記第1交流電流源は、異なる周波数に規定された複数の前記接触判定用交流電流を前記電流経路に供給可能に構成され、
     前記同期検波部は、前記複数の接触判定用交流電流が前記電流経路に供給されたときに前記判定対象接触箇所に生じた各前記交流電圧を当該各交流電圧の前記異なる周波数とそれぞれ同じ周波数の前記同期信号でそれぞれ同期検波することにより、当該異なる周波数に対応する当該各交流電圧の電圧値に応じて電圧値がそれぞれ変化する前記直流電圧を出力し、
     前記処理部は、前記異なる周波数毎に前記良否判定用処理を実行する接触抵抗測定装置。
  2.  前記第1交流電流源は、前記周波数が異なる複数の接触判定用交流電流を合成して前記電流経路に供給可能に構成され、
     前記同期検波部は、前記異なる周波数に一対一で対応して設けられた複数の同期検波回路を備えて構成され、
     前記複数の同期検波回路の各々は、前記異なる周波数に一対一で対応する周波数の前記交流電圧を当該交流電圧の周波数と同じ周波数の前記同期信号で同期検波することにより、当該周波数に対応する当該交流電圧の電圧値に応じて電圧値が変化する前記直流電圧をそれぞれ出力し、
     前記処理部は、前記異なる周波数毎に前記良否判定用処理を実行する請求項1記載の接触抵抗測定装置。
  3.  前記同期検波部は、前記各交流電圧を当該各交流電圧の前記異なる周波数とそれぞれ同じ周波数の同期信号で順次同期検波することにより、当該異なる周波数に対応する当該各交流電圧の電圧値に応じて電圧値がそれぞれ変化する直流電圧を順次出力し、
     前記処理部は、前記異なる周波数毎に前記良否判定用処理を実行する請求項1記載の接触抵抗測定装置。
  4.  前記処理部は、前記良否判定用処理として、前記判定対象接触箇所の接触抵抗が予め規定された抵抗値よりも小さいときに当該判定対象接触箇所の接触抵抗が良好とする判定処理を前記異なる周波数毎に実行し、当該実行した判定処理の半数を超える回数において良好と判定したときに、当該判定対象接触箇所の接触抵抗を最終的に良好と判定する請求項1記載の接触抵抗測定装置。
  5.  前記処理部は、前記良否判定用処理として、前記判定対象接触箇所の接触抵抗が予め規定された抵抗値よりも小さいときに当該判定対象接触箇所の接触抵抗が良好とする判定処理を前記異なる周波数毎に実行し、当該実行した判定処理のすべてにおいて不良と判定したときに、当該判定対象接触箇所の接触抵抗を最終的に不良と判定する請求項1記載の接触抵抗測定装置。
  6.  Hi側およびLo側の各ソース端子に一端および他端がそれぞれ接続される測定対象に測定用交流電流を供給する第2交流電流源と、前記測定用交流電流が供給されたときに前記測定対象の前記一端および前記他端の間に生じる交流電圧を、当該一端および当該他端にそれぞれ接続されたHi側およびLo側の信号検出用の各センス端子を介して測定すると共に、当該測定した交流電圧の電圧値と前記測定用交流電流の電流値とに基づいて前記測定対象のインピーダンスを測定する測定部とを備えているインピーダンス測定装置であって、
     請求項1から5のいずれかに記載の前記接触抵抗測定装置を備え、
     前記第1交流電流源は、前記各ソース端子と前記測定対象の前記一端および他端との各接触箇所を含む前記電流経路、並びに前記各センス端子と前記測定対象の前記一端および他端との各接触箇所を含む前記電流経路の少なくとも一方の当該電流経路に前記接触判定用交流電流を供給し、
     前記処理部は、前記少なくとも一方の電流経路における前記各接触箇所を前記判定対象接触箇所とする前記良否判定用処理を前記異なる周波数毎に実行するインピーダンス測定装置。
  7.  前記第2交流電流源は、前記第1交流電流源としても機能し、前記測定用交流電流を前記周波数が異なる複数の接触判定用交流電流のうちの1つとして、前記各ソース端子と前記測定対象の前記一端および他端との各接触箇所を含む前記電流経路に供給する請求項6記載のインピーダンス測定装置。
  8.  前記接触抵抗測定装置として請求項4記載の接触抵抗測定装置を備え、
     前記処理部は、前記判定対象接触箇所の接触抵抗を最終的に良好と判定したときに、前記測定部によって測定された前記測定対象のインピーダンスを出力する請求項6記載のインピーダンス測定装置。
  9.  前記接触抵抗測定装置として請求項5記載の接触抵抗測定装置を備え、
     前記処理部は、前記判定対象接触箇所の接触抵抗を最終的に良好と判定したときに、前記測定部によって測定された前記測定対象のインピーダンスを出力する請求項6記載のインピーダンス測定装置。
PCT/JP2023/012872 2022-04-27 2023-03-29 接触抵抗測定装置およびインピーダンス測定装置 WO2023210250A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022072944A JP2023162550A (ja) 2022-04-27 2022-04-27 接触抵抗測定装置およびインピーダンス測定装置
JP2022-072944 2022-04-27

Publications (1)

Publication Number Publication Date
WO2023210250A1 true WO2023210250A1 (ja) 2023-11-02

Family

ID=88518618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012872 WO2023210250A1 (ja) 2022-04-27 2023-03-29 接触抵抗測定装置およびインピーダンス測定装置

Country Status (2)

Country Link
JP (1) JP2023162550A (ja)
WO (1) WO2023210250A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05249157A (ja) * 1992-03-09 1993-09-28 Fujitsu Denso Ltd 測定プローブの接触検出装置
JPH11295363A (ja) * 1998-04-13 1999-10-29 Hioki Ee Corp インピーダンス測定装置
JP4695920B2 (ja) * 2005-05-19 2011-06-08 日置電機株式会社 インピーダンス測定装置
JP2017083379A (ja) * 2015-10-30 2017-05-18 日置電機株式会社 インピーダンス測定装置およびインピーダンス測定方法
WO2020095471A1 (ja) * 2018-11-06 2020-05-14 日置電機株式会社 インピーダンス測定装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05249157A (ja) * 1992-03-09 1993-09-28 Fujitsu Denso Ltd 測定プローブの接触検出装置
JPH11295363A (ja) * 1998-04-13 1999-10-29 Hioki Ee Corp インピーダンス測定装置
JP4695920B2 (ja) * 2005-05-19 2011-06-08 日置電機株式会社 インピーダンス測定装置
JP2017083379A (ja) * 2015-10-30 2017-05-18 日置電機株式会社 インピーダンス測定装置およびインピーダンス測定方法
WO2020095471A1 (ja) * 2018-11-06 2020-05-14 日置電機株式会社 インピーダンス測定装置

Also Published As

Publication number Publication date
JP2023162550A (ja) 2023-11-09

Similar Documents

Publication Publication Date Title
JP4695920B2 (ja) インピーダンス測定装置
US6421624B1 (en) Multi-port device analysis apparatus and method and calibration method thereof
US8988063B2 (en) System and method for current measurement in the presence of high common mode voltages
WO2008026483A1 (fr) Dispositif, procédé, programme d'identification de facteurs d'erreur, support d'enregistrement, dispositif de correction de sortie comprenant ce dispositif, et dispositif de mesure du coefficient de réflexion
WO2020095471A1 (ja) インピーダンス測定装置
JP2004170314A (ja) 試験装置、試験方法、及び電流測定器
KR102462925B1 (ko) 보호 계전 장치의 특성 시험 시스템
WO2023210250A1 (ja) 接触抵抗測定装置およびインピーダンス測定装置
JP2006215036A (ja) アナログ半導体装置をテストするデジタルテスト装置
JP4625453B2 (ja) 精度を高めた測定回路
AU2014204547A1 (en) Identifying defective electrical cables
JP4720696B2 (ja) 信号測定装置
WO2024219311A1 (ja) インピーダンス測定装置およびインピーダンス測定方法
JP4942621B2 (ja) インピーダンス測定装置、及び検出方法
KR102131215B1 (ko) Ac 스트레인 게이지 앰프의 주파수 응답특성 시험장치
JP2002098729A (ja) 漏洩電流探査装置
JP4924231B2 (ja) 半導体試験装置
JP2023147461A (ja) 測定回路及びこれを用いる測定システム
WO2009081522A1 (ja) 試験装置および測定装置
JP3791743B2 (ja) ピーク・ピーク電圧測定装置の校正方法及びこの校正方法を用いるピーク・ピーク電圧測定装置
US11852662B2 (en) Open-wire detection for analog differential inputs using an alternating current (AC) bias
US11277701B2 (en) Microphone
JP2016065758A (ja) 絶縁状態測定装置
JP2008096354A (ja) 半導体試験装置
JPH1062463A (ja) 生体信号測定用電極の接触抵抗測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795997

Country of ref document: EP

Kind code of ref document: A1