WO2023207314A1 - 电子雾化装置及其储液雾化组件 - Google Patents

电子雾化装置及其储液雾化组件 Download PDF

Info

Publication number
WO2023207314A1
WO2023207314A1 PCT/CN2023/078888 CN2023078888W WO2023207314A1 WO 2023207314 A1 WO2023207314 A1 WO 2023207314A1 CN 2023078888 W CN2023078888 W CN 2023078888W WO 2023207314 A1 WO2023207314 A1 WO 2023207314A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid storage
liquid
channel
atomization
atomization assembly
Prior art date
Application number
PCT/CN2023/078888
Other languages
English (en)
French (fr)
Inventor
高椋
任三兵
林作飘
刘成川
雷桂林
Original Assignee
海南摩尔兄弟科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海南摩尔兄弟科技有限公司 filed Critical 海南摩尔兄弟科技有限公司
Publication of WO2023207314A1 publication Critical patent/WO2023207314A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/02Sprayers or atomisers specially adapted for therapeutic purposes operated by air or other gas pressure applied to the liquid or other product to be sprayed or atomised

Definitions

  • the present invention relates to the field of atomization, and more specifically, to an electronic atomization device and a liquid storage atomization assembly thereof.
  • An existing electronic atomization device atomizes a liquid substrate in an air flow channel to generate liquid particles for users to smoke or inhale.
  • the liquid particles or condensate tend to fall back under the action of gravity, and then flow back into the air flow channel to block the air flow channel.
  • the technical problem to be solved by the present invention is to provide an improved liquid storage atomization assembly and an electronic atomization device having the liquid storage atomization assembly in view of the above-mentioned defects of the prior art.
  • the technical solution adopted by the present invention to solve the technical problem is to construct a liquid storage atomization assembly, and an air flow channel for atomizing a liquid substrate to generate liquid particles is formed in the liquid storage atomization assembly.
  • the chemical assembly has a receiving surface for receiving the falling condensate, and the receiving surface is provided with at least one liquid storage tank.
  • the width of each liquid storage tank is less than or equal to 0.6 mm.
  • the at least one liquid storage tank includes a plurality of first liquid storage sub-tanks extending in a radial direction of the receiving surface and a plurality of second liquid storage sub-tanks extending in a circumferential direction of the receiving surface. groove.
  • each first liquid storage sub-tank interconnects several second liquid storage sub-tanks.
  • a plurality of the second liquid storage sub-tanks are coaxially arranged with the air flow channel.
  • a cavity connected to one end of the air flow channel is also formed in the liquid storage atomization assembly, and the end surface of the cavity close to one end of the air flow channel forms the receiving surface.
  • a liquid recovery channel connecting the at least one liquid storage tank and the air flow channel is also formed in the liquid storage atomization assembly.
  • the liquid recovery channel is a capillary channel.
  • the cross-sectional area of the liquid recovery channel is less than or equal to 0.126mm2.
  • the liquid storage atomization component is formed with a liquid storage chamber for storing a liquid substrate, an airflow channel for circulating high-speed airflow, and a liquid supply chamber that connects the airflow channel with the liquid storage chamber.
  • a liquid storage chamber for storing a liquid substrate
  • an airflow channel for circulating high-speed airflow
  • a liquid supply chamber that connects the airflow channel with the liquid storage chamber.
  • the liquid substrate entering the air flow channel from the liquid supply channel is atomized into liquid particles by the high-speed air flow circulating in the air flow channel and ejected along with the high-speed air flow.
  • the liquid storage atomization assembly includes a liquid storage shell and a nozzle longitudinally disposed in the liquid storage shell, the liquid storage cavity is formed in the liquid storage shell, and the air flow channel forms in the nozzle;
  • the liquid supply channel includes a liquid inlet channel formed in the nozzle, and the liquid recovery channel includes a suction back channel formed in the nozzle.
  • the receiving surface is formed on the liquid storage shell.
  • the extending directions of the liquid inlet channel and the back-suction channel are perpendicular to the extending direction of the air flow channel.
  • the suction back channel and the liquid inlet channel are arranged rotationally symmetrically with respect to the central axis of the nozzle.
  • the suction back channel and the liquid inlet channel are respectively located on opposite circumferential sides of the nozzle.
  • the air flow channel includes an air supply channel and an atomization chamber.
  • the atomization chamber is connected to the air supply channel and the liquid inlet channel respectively.
  • the atomization chamber is close to the air supply channel.
  • An atomization surface is formed at one end of the channel.
  • the atomization surface is provided with an atomization port that connects the air supply channel and the atomization chamber.
  • the liquid matrix flowing into the atomization chamber can form an atomization surface on the atomization surface. Liquid film, which can be cut by the high-speed airflow to form liquid particles.
  • one end of the back suction channel connected to the air flow channel has a back suction port, and the vertical distance between the center of the back suction port and the atomization surface is 0.3 mm to 0.8 mm.
  • the at least one reservoir has capillary forces.
  • the receiving surface surrounds the airflow channel.
  • the present invention also provides an electronic atomization device, including the liquid storage atomization assembly as described in any one of the above.
  • Implementing the present invention has at least the following beneficial effects: By arranging a liquid storage tank on the receiving surface, the present invention collects and stores a certain amount of condensate through the liquid storage tank, thereby preventing the condensate received on the receiving surface from flowing back to the air flow channel and blocking the air flow channel.
  • Figure 1 is a schematic three-dimensional structural diagram of an electronic atomization device in some embodiments of the present invention.
  • Figure 2 is a schematic longitudinal cross-sectional structural diagram of the electronic atomization device shown in Figure 1;
  • Figure 3 is a longitudinal sectional view of the liquid storage atomization assembly in Figure 2;
  • Figure 4 shows the stress situation of the liquid matrix in the liquid inlet channel when suction is stopped
  • Figure 5 is a longitudinal cross-sectional view of the liquid storage atomization assembly shown in Figure 3 from another angle;
  • Figure 6 is a schematic diagram of the exploded structure of the liquid storage atomization assembly shown in Figure 3;
  • Figure 7 is a schematic structural diagram of the longitudinal section of the nozzle in Figure 3.
  • FIG. 8 is a dimensional drawing of the nozzle shown in FIG. 7 .
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • connection In the present invention, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated into one; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interactive relationship between two elements, unless otherwise specified restrictions. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood according to specific circumstances.
  • a first feature being “on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediate medium. touch.
  • a first feature being “above” a second feature can mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is at a higher level than the second feature.
  • the first feature being “below” the second feature may mean that the first feature is directly below or diagonally below the second feature, or it may simply mean that the first feature is less horizontally than the second feature.
  • FIGS 1-3 show an electronic atomization device 100 in some embodiments of the present invention.
  • the electronic atomization device 100 can be used to atomize a liquid substrate to generate an aerosol, which can be smoked or inhaled by the user.
  • it may be substantially cylindrical. It is understandable that in other embodiments, the electronic atomization device 100 may also be in other shapes such as an elliptical column, a flat column, a square column, or the like.
  • the liquid substrate may include e-liquid or medicinal liquid.
  • the electronic atomization device 100 may include a housing 10 and a control module 20 , a power supply 30 , an air source 40 and a liquid storage atomization assembly 60 housed in the housing 10 .
  • the control module 20 is electrically connected to the air source 40 for receiving instructions. The instructions can be triggered by the user or automatically triggered after the electronic atomization device 100 meets certain conditions.
  • the control module 20 then controls the operation of the air source 40 according to the instructions.
  • the power supply 30 is electrically connected to the control module 20 and the air source 40 respectively, and is used to provide electric energy to the control module 20 and the air source 40 .
  • the liquid storage atomization assembly 60 includes a liquid storage case 61 and a nozzle 62 at least partially accommodated in the liquid storage case 61 .
  • a liquid storage chamber 610 for storing liquid substrate is formed in the liquid storage shell 61
  • an air flow channel 622 is formed in the nozzle 62
  • a liquid supply connecting the liquid storage cavity 610 and the air flow channel 622 is also formed in the liquid storage atomization assembly 60.
  • Channel 611 so that the liquid matrix in the liquid storage chamber 610 can flow to the air flow channel 622 through the liquid supply channel 611.
  • the air source 40 is connected to the air flow channel 622 and is used to provide high-speed air flow in the air flow channel 622. It can usually be an air pump.
  • the liquid substrate entering the air flow channel 622 from the liquid supply channel 611 can be atomized by the high-speed air flow circulating in the air flow channel 622 to form fine liquid particles.
  • the air flow channel 622 can also be atomized in other ways.
  • a bubble atomization nozzle can also be provided in the air flow channel 622 to generate liquid particles in the form of bubble atomization.
  • the liquid supply channel 611 includes a liquid inlet channel 621 connected with the air flow channel 622 and a main channel 612 connected with the liquid inlet channel 621 and the liquid storage chamber 610 .
  • the liquid inlet channel 621 may be a capillary channel, that is, the liquid matrix can generate capillary force in the liquid inlet channel 621.
  • the cross-sectional area of the liquid inlet channel 621 may be less than 0.08mm2.
  • the negative pressure generated by the high-speed air flow in the liquid supply channel 611 disappears, and the power for the liquid matrix in the liquid supply channel 611 to flow toward the nozzle 62 disappears, while the liquid storage chamber 610 There is a negative pressure in the liquid storage chamber 610, and the negative pressure in the liquid storage chamber 610 will suck back the liquid matrix in the liquid channel 621, thus causing the liquid supply to be delayed during the next suction.
  • the liquid inlet channel 621 close to the liquid inlet channel 621 of the air flow channel 622 as a capillary channel, and ensuring that the liquid inlet channel 621 has a set of key dimensions (for example, channel cross-sectional area and channel length), the liquid inlet channel 621 can be utilized
  • the capillary force is used to reduce the backflow, so as to achieve a stable liquid supply that starts and stops, and prevents the liquid substrate from flowing back to the liquid storage chamber 610 when the air source 40 stops working, causing a delay in liquid supply during the next suction.
  • Figure 4 shows the stress situation of the liquid matrix 200 in the liquid inlet channel 621 after the suction is stopped and the air source 40 stops working. After the air source 40 stops working, the power of the liquid substrate in the liquid inlet channel 621 to flow toward the nozzle 62 disappears.
  • the force on the liquid substrate 200 in the liquid inlet channel 621 on the gas-liquid interface 201 and the liquid surface movement are: :
  • the liquid level will continue to move toward the liquid storage chamber 610 until enough liquid matrix flows back to the liquid storage chamber 610, so that ⁇ P is reduced to balance with ⁇ P gross due to the rise of the liquid level in the liquid storage chamber 610.
  • the liquid level movement will stop, and a relatively large cavity will be formed in the liquid supply channel 611 at this time, resulting in a long delay when the air source 40 is started next time;
  • ⁇ P the negative pressure in the liquid storage chamber 610 - the gravity of the liquid matrix in the liquid storage chamber 610
  • ⁇ P the capillary force in the liquid inlet channel 621.
  • the cross-sectional area of the liquid inlet channel 621 is 0.07mm2 (or the hole diameter is 0.3mm), and the channel length is ⁇ 2mm.
  • the cross-sectional area of the liquid inlet channel 621 can be 0.05mm2, and the channel length is ⁇ 1mm, which can also achieve stable liquid supply that starts and stops.
  • the hydraulic diameter of the liquid inlet channel 621 is less than or equal to 0.3 mm, and stable liquid supply that starts and stops can also be achieved.
  • the liquid supply channel 611 can also be used to control the flow rate of liquid supply to the air flow channel 622, to achieve quantitative liquid supply to the air flow channel 622, and to ensure that the flow rate of liquid supply to the air flow channel 622 reaches design value.
  • the size of the liquid supply channel 611 can be designed according to the flow demand, that is, the liquid supply channel 611 can generate resistance that matches the liquid supply power under the designed flow rate.
  • the negative pressure generated in the air flow channel 622 is the liquid supply power
  • the liquid supply resistance includes the resistance along the liquid supply channel 611 and the negative pressure in the liquid storage chamber 610 .
  • the greater the viscosity of the liquid substrate the greater the resistance when the liquid substrate flows in the liquid supply channel 611; the longer the length of the liquid supply channel 611, the greater the resistance in the liquid supply channel 611; The larger the cross-sectional area of the channel 611, the smaller the resistance in the liquid supply channel 611; the more tortuous the liquid supply channel 611 is, the greater the resistance in the liquid supply channel 611.
  • the viscosity of the liquid matrix is 20cp ⁇ 250cp; the overall length of the liquid supply channel 611 is 6mm ⁇ 15mm.
  • Both the liquid inlet channel 621 and the main channel 612 are linear channels extending laterally, and the central axes of the liquid inlet channel 621 and the main channel 612 coincide with each other.
  • the main channel 612 is a weak capillary force channel, that is, the liquid matrix can generate weak capillary force in the main channel 612 .
  • the cross-sectional area of the main channel 612 is larger than the cross-sectional area of the liquid inlet channel 621. In some embodiments, the cross-sectional area of the main channel 612 may range from 0.09 mm2 to 0.16 mm2. In other embodiments, the main channel 612 may also be a non-linear extending channel, such as an S-shape or a square wave shape.
  • the liquid inlet channel 621 is formed in the nozzle 62
  • the main channel 612 is formed in the liquid storage shell 61 .
  • the nozzle 62 generally has a cylindrical shape, which can be longitudinally inserted into the liquid storage case 61 and can be disposed coaxially with the liquid storage case 61 .
  • the airflow channel 622 runs through the nozzle 62 longitudinally and may be coaxially disposed with the nozzle 62 .
  • the liquid inlet channel 621 extends laterally inward from one side of the nozzle 62 to communicate with the air flow channel 622 .
  • the extending direction of the liquid inlet channel 621 is perpendicular to the extending direction of the air flow channel 622 .
  • the shape of the nozzle 62 may also be in other shapes such as an ellipse or a square.
  • the liquid inlet channel 621 can also be partially formed in the nozzle 62 and partially formed in the liquid storage shell 61; or, the main channel 612 can also be partially formed in the nozzle 62 and partially formed in the liquid storage shell.
  • the air flow channel 622 may include an air supply channel 623 and an atomization chamber 625.
  • the atomization chamber 625 is connected to the air source 40 through the air supply channel 623, and is connected to the liquid storage chamber 610 through the liquid inlet channel 621.
  • An atomization surface 6250 is formed on an end surface of the atomization chamber 625 close to the air supply channel 623, and an atomization port 6251 is also formed on the atomization surface 6250.
  • the high-speed airflow from the air supply channel 623 is sprayed into the atomization chamber 625 through the atomization port 6251 and flows at high speed in the atomization chamber 625.
  • the high-speed airflow generates a negative pressure in the liquid inlet channel 621 due to Bernoulli's equation.
  • This negative pressure The pressure is transmitted to the liquid storage chamber 610 and the liquid matrix in the liquid storage chamber 610 is sucked out to the atomization chamber 625 to form a liquid film on the atomization surface 6250.
  • the liquid film moves to the edge of the hole wall of the atomization port 6251 and meets the high-speed airflow, and is cut and atomized by the high-speed airflow into fine liquid particles.
  • the liquid particles are then taken away from the atomization port 6251 by the airflow. Then it is sprayed out with the airflow to complete the atomization process.
  • the liquid matrix is atomized in the atomization chamber 625 in a non-phase change atomization mode.
  • SMD total volume of liquid particles/total surface area of liquid particles, which represents the average particle size of liquid particles.
  • the atomization chamber 625 is a straight cylindrical channel, and its hole wall is perpendicular to the atomization surface 6250.
  • the atomization chamber 625 is a right cylindrical channel
  • the atomization surface 6250 is in the shape of concentric rings
  • the inner wall surface of the atomization surface 6250 defines the atomization port 6251.
  • the cross-section of the atomization chamber 625, the atomization surface 6250, or the atomization port 6251 may also be an ellipse, a rectangle, or other non-circular shapes.
  • Parameters such as the size and shape of the atomization port 6251 and the atomization chamber 625 can affect the negative pressure in the atomization chamber 625 and the particle size of the generated liquid particles, and can make the flow rate more stable.
  • the aperture D of the atomization port 6251, the aperture W1 of the atomization chamber 625, and the length H of the atomization chamber 625 can be set to appropriate sizes as needed.
  • the aperture D of the atomization port 6251 is related to the airflow speed (m/s) coming out of the atomization port 6251, which can affect the particle size of the generated liquid particles.
  • the aperture D of the atomization port 6251 may range from 0.2mm to 0.4mm, preferably from 0.22mm to 0.35mm.
  • the aperture W1 of the atomization chamber 625 will affect the airflow velocity in the atomization chamber 625, thereby affecting the negative pressure in the atomization chamber 625 and the liquid inlet channel 621. This negative pressure can cause the liquid substrate to be sucked from the liquid inlet channel 621 to the atomization chamber 625 .
  • the aperture W1 of the atomization chamber 625 may range from 0.7 mm to 1.3 mm.
  • the length H of the atomization chamber 625 may be 0.8mm ⁇ 3.0mm.
  • the atomization port 6251 or the atomization chamber 625 may also have a non-circular cross-section; when the atomization port 6251 or the atomization chamber 625 has a non-circular cross-section, the aperture of the atomization port 6251 D or the aperture W1 of the atomization chamber 625 is its equivalent diameter respectively.
  • equivalent diameter means that the diameter of a circular hole with the same hydraulic radius is defined as the equivalent diameter of a non-circular hole.
  • the range of D is 0.22mm ⁇ 0.35mm
  • the range of H is 1.5mm ⁇ 3.0mm
  • the range of W1 is 0.7mm ⁇ 1.3mm.
  • the value ranges of D, H, and W1 can be This gives the nozzle 62 advantages in the manufacturing process.
  • One end of the liquid inlet channel 621 connected to the atomization chamber 625 has a liquid supply port 6210.
  • the distance L between the liquid supply port 6210 and the atomization surface 6250 is the key to ensuring the formation of the liquid film.
  • the distance L between the liquid supply port 6210 and the atomization surface 6250 is the vertical distance between the center of the liquid supply port 6210 and the atomization surface 6250.
  • the distance L between the liquid supply port 6210 and the atomization surface 6250 may range from 0.3 mm to 0.8 mm.
  • L is 0.35 mm to 0.6 mm.
  • the air flow channel 622 also includes an expansion channel 626, which is connected to an end of the atomization chamber 625 away from the air supply channel 623, and is used to diffuse the liquid particles generated after atomization in the atomization chamber 625 in the form of a jet. Spray out to increase the spray area of liquid particles.
  • the cross-sectional area of the expansion channel 626 gradually increases from an end close to the atomization chamber 625 to an end far away from the atomization chamber 625 .
  • the expansion channel 626 is a conical channel that extends longitudinally and has a hole diameter that gradually increases from bottom to top.
  • the atomization angle ⁇ of the expansion channel 626 (that is, the expansion angle of the expansion channel 626) must have a suitable range to ensure that the ejected liquid particles have a suitable injection range.
  • the atomization angle ⁇ of the expansion channel 626 may be 30 0 ⁇ 70 0 .
  • the expansion channel 626 and the atomization chamber 625 can also be connected in a streamlined and smooth manner, for example, through rounding.
  • the expansion channel 626 may also have an elliptical cone shape, a pyramid shape, or other shapes.
  • the air supply channel 623 may include an acceleration section 6231, which has a constricted shape, and its cross-sectional area gradually decreases from an end far away from the atomization chamber 625 to an end close to the atomization chamber 625, so that the air supply channel 623 can be The air flow from the air source 40 is accelerated and then sprayed to the atomization chamber 625 .
  • the accelerating section 6231 is a conical channel extending longitudinally and the aperture gradually decreases from bottom to top.
  • the aperture of the upper end of the accelerating section 6231 is smaller than the aperture of the atomization chamber 625, so that the aperture of the accelerating section 6231 and the atomization chamber 625
  • the junction forms a circular atomization surface 6250. It is understood that in other embodiments, the accelerating section 6231 may also be an elliptical cone shape or a pyramid shape or other contracted shapes.
  • the air supply channel 623 also includes a communication section 6232 that communicates with the acceleration section 6231.
  • the acceleration section 6231 is connected to the air source 40 through the communication section 6232.
  • the communication section 6232 may be a straight cylindrical channel extending longitudinally. The upper end of the communication section 6232 is connected with the accelerating section 6231, and the aperture of the communication section 6232 is consistent with the aperture of the lower end of the accelerating section 6231.
  • the cross-section of the communication section 6232 may also be an ellipse, a rectangle, or other non-circular shapes. It can be understood that in other embodiments, the air supply channel 623 formed in the nozzle 62 may also include only the acceleration section 6231; or, when the air flow rate is sufficient, the air supply channel 623 may also only include the communication section 6232.
  • the liquid storage shell 61 may include a liquid storage body 613 and a liquid storage base 614 that cooperate with each other.
  • the liquid storage chamber 610 and the main channel 612 are both formed in the liquid storage body 613 .
  • the bottom surface of the liquid storage body 613 is concave to form an annular liquid storage chamber 610
  • the side wall surface of the liquid storage chamber 610 close to the nozzle 62 extends transversely toward the nozzle 62 to form a main channel 612 .
  • the liquid storage chamber 610 and/or the main channel 612 may also be formed in the liquid storage seat 614, or may be partially formed in the liquid storage body 613 and partially in the liquid storage seat 614. .
  • a liquid injection channel 615 connected to the liquid storage chamber 610 may be formed on the liquid storage shell 61 so that liquid can be injected into the liquid storage chamber 610 again after the liquid matrix in the liquid storage chamber 610 is used up.
  • the liquid injection channel 615 is formed in the liquid storage body 613 and extends longitudinally, and the lower end of the liquid injection channel 615 is connected with the liquid storage chamber 610 .
  • the liquid storage shell 61 has a receiving surface 6131.
  • the receiving surface 6131 can be located at the periphery of the air flow channel 622 and can receive the falling liquid particles or condensate.
  • the condensate includes liquid particles that are cold or touch the wall during the outflow process. of condensate.
  • At least one liquid storage tank 6132 may also be formed on the receiving surface 6131. In some embodiments, the at least one liquid storage tank 6132 has capillary force.
  • One end of the air flow channel 622 has an ejection port 6260, and the liquid particles generated after atomization in the air flow channel 622 are ejected through the ejection port 6260.
  • the at least one liquid storage tank 6132 can surround the spout 6260 and can be coaxially arranged with the spout 6260. It can collect and store a certain amount of liquid substrate through capillary force to prevent the liquid substrate accumulated on the receiving surface 6131 from flowing back to the The air flow channel 622 is blocked thereby blocking the air flow channel 622 .
  • a receiving hole 6136 and a cavity 6130 connected with the receiving hole 6136 are formed in the liquid storage shell 61 .
  • the receiving hole 6136 and the cavity 6130 can extend longitudinally and can be connected with the liquid storage shell 61 Coaxial setup.
  • the receiving hole 6136 is used to receive the nozzle 62, which can extend upward longitudinally from the lower end surface of the liquid storage case 61.
  • the cavity 6130 can extend longitudinally downward from the upper end surface of the liquid storage shell 61 to communicate with the receiving hole 6136 .
  • the cross-sectional area of the cavity 6130 can be larger than the cross-sectional area of the receiving hole 6136, so that an end surface of the cavity 6130 close to the receiving hole 6136 forms a receiving surface 6131.
  • the groove width of the liquid reservoir 6132 may be less than or equal to 0.6 mm.
  • the upper end surface of the nozzle 62 can be higher than its peripheral receiving surface 6131 to prevent condensate from the receiving surface 6131 from entering the nozzle 62 and blocking the air passage. It can be understood that in other embodiments, the liquid storage case 61 may not be provided with the cavity 6130 , and the receiving surface 6131 may also be formed on the upper end surface of the liquid storage case 61 .
  • the at least one liquid storage tank 6132 may include a plurality of first liquid storage sub-tanks 6133 and a plurality of annular second liquid storage sub-tanks 6134.
  • Each first liquid storage sub-tank 6133 can extend along the radial direction of the receiving surface 6131, and one end of the first liquid storage sub-tank 6133 away from the center of the receiving surface 6131 can be connected with an outermost second liquid storage sub-tank 6134.
  • one end of the first liquid storage sub-tank 6133 close to the center of the receiving surface 6131 can be connected with a second liquid storage sub-tank 6134 in the innermost ring.
  • the receiving surface 6131 can also be designed to have a central convex shape, for example, it can be a spherical arc surface or a conical surface.
  • the height of the receiving surface 6131 gradually decreases from the center to the periphery, which is beneficial to the near center of the receiving surface 6131.
  • the condensate flows and spreads to the periphery to prevent the condensate near the center of the receiving surface from being blown away without being atomized.
  • the receiving surface 6131 can also be inclined toward the nozzle 62, that is, the height of the receiving surface 6131 gradually decreases from the periphery to the center, and the upper end surface of the nozzle 62 can also be lower than or flush with its peripheral receiving surface 6131. This allows the condensate accumulated on the receiving surface 6131 to flow back to the nozzle 62 for re-atomization.
  • a liquid conduction channel 6135 connecting the at least one liquid storage tank 6132 with the atomization chamber 625 can be formed in the liquid storage shell 61 so that the negative pressure in the atomization cavity 625 can push the liquid in the liquid storage tank 6132 The stored condensate is sucked back into the atomization chamber 625 and atomized again.
  • a back-suction channel 624 is also formed in the nozzle 62 to connect the liquid guide channel 6135 with the atomization chamber 625.
  • the back-suction channel 624 is connected with the liquid guide channel 6135 to form a connection between the at least one liquid storage tank 6132 and the atomization chamber 625.
  • the atomization chamber 625 is connected to the liquid recovery channel 616 .
  • the liquid guide channel 6135 and the back-suction channel 624 can also be capillary channels.
  • the aperture or equivalent diameter of the liquid guide channel 6135 and the back-suction channel 624 can be less than or equal to 0.4 mm.
  • the cross-sectional area of the liquid guide channel 6135 and the back-suction channel 624 can be less than or equal to 0.4 mm. Equal to 0.126mm2.
  • One end of the back suction channel 624 connected to the atomization chamber 625 has a back suction port 6240, and the vertical distance between the center of the back suction port 6240 and the atomization surface 6250 can be 0.3mm ⁇ 0.8mm.
  • the suction channel 624 and the liquid inlet channel 621 are arranged rotationally symmetrically with respect to the central axis of the nozzle 62, so that the installation direction does not need to be considered when assembling the nozzle 62.
  • the back-suction channel 624 and the liquid inlet channel 621 can also be located on two opposite sides of the nozzle 62 in the circumferential direction, thereby reducing the impact of pulsation and making the instantaneous flow rate more stable.
  • the suction channel 624 and the liquid inlet channel 621 may not be rotationally symmetrical with respect to the central axis of the nozzle 62.
  • the suction channel 624 and the liquid inlet channel 621 may also have different sizes.
  • the suction passage 624 and the liquid inlet passage 621 may also be provided at different axial heights of the nozzle 62 .
  • the liquid storage shell 61 can also be formed with a ventilation channel 6140 that connects the liquid storage chamber 610 with the outside world.
  • the ventilation channel 6140 can be used to restore the pressure in the liquid storage chamber 610 by utilizing the negative pressure area of the nozzle 62 and the ventilation channel 6140 .
  • the air channel 6140 cooperates to realize automatic and stable liquid supply to the nozzle 62, thereby solving the problem of unable to stably supply liquid due to excessive negative pressure in the liquid storage chamber 610.
  • the reduction of the liquid matrix in the liquid storage chamber 610 will cause the air pressure to decrease.
  • the controllable negative pressure range of the liquid storage chamber 610 is -200Pa ⁇ -700Pa. It is understood that in other embodiments, other automatic or non-automatic liquid supply methods can also be used to achieve quantitative and stable liquid supply to the nozzle 62 , for example, a small liquid supply pump (such as a diaphragm pump or a peristaltic pump, etc.) can be used.
  • a small liquid supply pump such as a diaphragm pump or a peristaltic pump, etc.
  • the liquid storage chamber 610 is pressurized to maintain the stability of the liquid supply and realize a quantitative and stable liquid supply to the nozzle 62; alternatively, the wall of the liquid storage chamber 610 can also be set to be flexible and have no air inside. To solve the problem that the negative pressure of the liquid storage chamber 610 is too large and cannot supply liquid.
  • the ventilation channel 6140 may include a ventilation groove 6142 formed on the outer surface of the liquid storage case 61 and a ventilation hole 6141 formed in the liquid storage case 61 .
  • the ventilation holes 6141 are respectively connected to the liquid storage chamber 610 and the ventilation groove 6142, and are connected to the outside world through the ventilation groove 6142.
  • the ventilation groove 6142 can adopt a direct liquid ventilation structure and can be formed on the outer surface of the liquid reservoir 614 .
  • the ventilation groove 6142 may include a plurality of rotation grooves 6143 and a plurality of communication grooves 6144 connecting the plurality of rotation grooves 6143.
  • Each rotating groove 6143 can be annular and extend along the circumferential direction of the liquid reservoir 614.
  • each rotating groove 6143 can range from 0.04mm2 to 0.16mm2, and the total length of the plurality of rotating grooves 6143 can range from 3mm to 3mm. 12mm.
  • Each communication groove 6144 extends along the axial direction of the liquid reservoir 614. The upper end of each communication groove 6144 is connected to the uppermost rotation groove 6143, and the lower end is connected to the lowermost rotation groove 6143.
  • There may also be multiple communication grooves 6144 and the plurality of communication grooves 6144 may be evenly spaced along the circumferential direction of the liquid reservoir 614 .
  • the liquid storage atomization assembly 60 may further include a fixed cover 63 .
  • the fixed cover 63 is in the shape of a cylinder with an open upper end.
  • the fixing member 64 is sleeved on the liquid storage body 613 and the liquid storage seat 614 and can be interlocked and fixed with the liquid storage body 613 to connect the liquid storage body 613 and the liquid storage seat 614 to each other.
  • the fixed cover 63 can be made of metal. The thermal expansion and contraction deformation of the metal material when the temperature changes is small, making the connection and fixation between the various components in the liquid storage atomization assembly 60 more stable and reliable.
  • a vent 630 can also be provided on the side wall of the fixed cover 63 , and a vent groove 6145 is formed on the outer surface of the liquid storage seat 614 to connect the plurality of rotation grooves 6143 with the vent 630 .
  • the vent 630 can be opened at the bottom of the side wall of the fixed cover 63 , and the vent groove 6145 can extend longitudinally upward from the bottom surface of the side wall of the liquid storage seat 614 to communicate with the bottom rotation groove 6143 .
  • the ventilation hole 6141 can extend laterally inward from one of the rotating grooves 6143 to communicate with the liquid storage chamber 610 .
  • the ventilation hole 6141 extends laterally inward from the uppermost rotating groove 6143 to communicate with the liquid storage chamber 610 .
  • the electronic atomization device 100 further includes a heating element 80 contained in the housing 10 .
  • the heating element 80 is electrically connected to the power supply 30 and can generate heat after being powered on.
  • the structure and heating form of the heating element 80 are not limited. For example, it can be a heating net, a heating sheet, a heating wire or a heating film.
  • the heating form can be resistance conduction heating, infrared radiation heating, electromagnetic induction heating or composite heating. Heated form.
  • An output channel 70 is also formed in the housing 10 , and the heating element 80 can be disposed in the output channel 70 and located above the nozzle 62 .
  • the liquid particles ejected from the nozzle 62 upwardly impact the heating element 80 and are heated by the heating element 80 to generate an aerosol.
  • the aerosol is then carried out of the output channel 70 by the air flow for the user to suck or inhale.
  • the nozzle 62 is used to atomize the continuously flowing liquid matrix into liquid particles and then evaporated by the heating element 80. Since the surface area of the fine liquid particles formed after atomization by the nozzle 62 is greatly expanded, it is easier to Heating and evaporation can, on the one hand, improve the conversion efficiency of heat and aerosol, and on the other hand, reduce the temperature of the evaporation process of the heating element 80 to achieve low-temperature atomization.
  • the liquid matrix mainly completes the physical change process, thus overcoming the problem of thermal cracking and deterioration of the liquid matrix caused by the necessity of high-temperature atomization under traditional porous ceramics or porous cotton conditions, not to mention the Burning, carbon deposition, heavy metal volatilization and other phenomena will occur, so that the unique ingredients and flavor and fragrance systems of different liquid bases can be maintained, and ultimately the inhaler can feel the unique taste corresponding to the original liquid base.
  • the heating element 80 is not in contact with the liquid storage chamber 610, and the heating element 80 does not need to be immersed in the liquid matrix for a long time, which reduces the contamination of the liquid matrix by the heating element 80, thereby reducing impurity gases in the aerosol generated after atomization.
  • the liquid particles ejected from the nozzle 62 can also hit the heating element 80 downward, that is, the heating element 80 can also be disposed below the nozzle 62; or, the liquid ejected from the nozzle 62 The particles may also impact the heating element 80 laterally, that is, the heating element 80 and the nozzle 62 are at or approximately at the same level.
  • the electronic atomization device 100 may not be provided with the heating element 80 , that is, the liquid particles atomized by the nozzle 62 may be directly output through the output channel 70 and sucked or inhaled by the user.
  • the housing 10 may also be provided with a bracket assembly 11, which divides the housing 10 into a first receiving space 121 located at the upper part and a second receiving space 122 located at the lower part.
  • the control module 20 , the power supply 30 , and the air source 40 can all be accommodated in the second accommodation space 122 .
  • the liquid storage atomization assembly 60 can be received in the first receiving space 121 and supported on the bracket assembly 11 .
  • the electronic atomization device 100 may further include an airflow sensing element 50 disposed in the housing 10 and electrically connected to the control module 20 .
  • the airflow sensing element 50 can be accommodated at the bottom of the bracket assembly 11 and can sense changes in the airflow when the user inhales. It can usually be a negative pressure sensor, such as a microphone. The user's suction action creates negative pressure, and the airflow sensing element 50 senses the negative pressure to generate a suction signal.
  • the suction signal can be transmitted to the control module 20 to control the operation of the air source 40 and/
  • the electronic atomization device 100 may further include a dust cover 90 detachably disposed on the upper end of the housing 10 .
  • the dust cover 90 can be placed on the upper end of the housing 10 to prevent dust and other impurities from entering the output channel 70 .

Abstract

本发明涉及一种电子雾化装置及其储液雾化组件,所述储液雾化组件内形成有用于雾化液态基质以生成液体颗粒的气流通道,所述储液雾化组件具有用于承接回落的冷凝液的承接面,所述承接面设置有至少一个储液槽。本发明通过储液槽收集并存储一定量的冷凝液,防止承接面上承接的冷凝液回流至气流通道而堵塞气流通道。

Description

电子雾化装置及其储液雾化组件 技术领域
本发明涉及雾化领域,更具体地说,涉及一种电子雾化装置及其储液雾化组件。
背景技术
现有的一种电子雾化装置采用在气流通道内将液态基质雾化以生成液体颗粒,以供用户吸食或吸入。然而,该液体颗粒或者冷凝液容易在重力的作用下回落,并进而回流至气流通道内而堵塞气流通道。
发明内容
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种改进的储液雾化组件及具有该储液雾化组件的电子雾化装置。
本发明解决其技术问题所采用的技术方案是:构造一种储液雾化组件,所述储液雾化组件内形成有用于雾化液态基质以生成液体颗粒的气流通道,所述储液雾化组件具有用于承接回落的冷凝液的承接面,所述承接面设置有至少一个储液槽。
在一些实施例中,每一所述储液槽的槽宽小于等于0.6mm。
在一些实施例中,所述至少一个储液槽包括若干个沿所述承接面的径向延伸的第一储液子槽以及若干个沿所述承接面的周向延伸的第二储液子槽。
在一些实施例中,每一所述第一储液子槽均将若干个所述第二储液子槽之间相互连通。
在一些实施例中,若干个所述第二储液子槽与所述气流通道同轴设置。
在一些实施例中,所述储液雾化组件内还形成有与所述气流通道的一端相连通的容腔,所述容腔靠近所述气流通道的一端端面形成所述承接面。
在一些实施例中,所述储液雾化组件内还形成有将所述至少一个储液槽与所述气流通道相连通的液体回收通道。
在一些实施例中,所述液体回收通道为毛细通道。
在一些实施例中,所述液体回收通道的截面积小于等于0.126mm²。
在一些实施例中,所述储液雾化组件内形成有用于存储液态基质的储液腔、用于流通高速气流的气流通道以及将所述气流通道与所述储液腔相连通的供液通道,从所述供液通道进入到所述气流通道的液态基质受所述气流通道中流通的高速气流作用而雾化成液体颗粒并随所述高速气流喷出。
在一些实施例中,所述储液雾化组件包括储液壳以及沿纵向设置于所述储液壳中的喷嘴,所述储液腔形成于所述储液壳内,所述气流通道形成于所述喷嘴内;
所述供液通道包括形成于所述喷嘴内的进液通道,所述液体回收通道包括形成于所述喷嘴内的回吸通道。
在一些实施例中,所述承接面形成于所述储液壳上。
在一些实施例中,所述进液通道、所述回吸通道的延伸方向均与所述气流通道的延伸方向垂直。
在一些实施例中,所述回吸通道与所述进液通道相对于所述喷嘴的中轴线呈旋转对称设置。
在一些实施例中,所述回吸通道与所述进液通道分别位于所述喷嘴的周向两相对侧。
在一些实施例中,所述气流通道包括供气通道和雾化腔,所述雾化腔分别与所述供气通道和所述进液通道相连通,所述雾化腔靠近所述供气通道的一端形成有雾化面,所述雾化面设置有连通所述供气通道和所述雾化腔的雾化口,流入所述雾化腔的液态基质能够在所述雾化面形成液膜,所述液膜能够被所述高速气流切割而形成液体颗粒。
在一些实施例中,所述回吸通道与所述气流通道相连通的一端具有回吸口,所述回吸口的中心与所述雾化面之间的垂直距离为0.3mm~0.8mm。
在一些实施例中,所述至少一个储液槽具有毛细作用力。
在一些实施例中,所述承接面环绕于所述气流通道外。
本发明还提供一种电子雾化装置,包括如上述任一项所述的储液雾化组件。
实施本发明至少具有以下有益效果:本发明通过在承接面设置储液槽,通过储液槽收集并存储一定量的冷凝液,防止承接面上承接的冷凝液回流至气流通道而堵塞气流通道。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明一些实施例中电子雾化装置的立体结构示意图;
图2是图1所示电子雾化装置的纵向剖面结构示意图;
图3是图2中储液雾化组件的纵向剖视图;
图4示出了在停止抽吸时液态基质在进液通道内的受力情况;
图5是图3所示储液雾化组件的另一角度的纵向剖视图;
图6是图3所示储液雾化组件的分解结构示意图;
图7是图3中喷嘴的纵向剖面结构示意图;
图8是图7所示喷嘴的尺寸标注图。
实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。
在本发明的描述中,需要理解的是,术语“纵向”、“横向”、“上”、“下”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系或者是本发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个、三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“上方”可以是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“下方”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
图1-3示出了本发明一些实施例中的电子雾化装置100,该电子雾化装置100可用于雾化液态基质以生成气溶胶,该气溶胶可供用户吸食或者吸入,其在本实施例中可大致呈圆柱状。可以理解地,在其他实施例中,该电子雾化装置100也可呈椭圆柱状、扁平柱状或方形柱状等其他形状。该液态基质可以包括烟油或药液等。
该电子雾化装置100可包括外壳10以及收容于外壳10中的控制模块20、电源30、气源40和储液雾化组件60。控制模块20与气源40电连接,用于接收指令,该指令可由用户触发或者在电子雾化装置100满足一定条件后自动触发,控制模块20再根据该指令控制气源40的工作。电源30分别与控制模块20、气源40电连接,用于向控制模块20、气源40提供电能。
储液雾化组件60内形成有用于雾化液态基质以生成液体颗粒的气流通道622。具体地,在本实施例中,储液雾化组件60包括储液壳61以及至少部分收容于储液壳61中的喷嘴62。其中,储液壳61内形成有用于存储液态基质的储液腔610,喷嘴62内形成有气流通道622,储液雾化组件60内还形成有连通储液腔610和气流通道622的供液通道611,以使储液腔610内的液态基质能够经由供液通道611流到气流通道622。气源40与气流通道622连接,用于提供高速气流在气流通道622中流通,其通常可以为气泵。从供液通道611进入到气流通道622的液态基质能够受气流通道622中流通的高速气流作用而产生雾化,形成细小的液体颗粒。可以理解地,在其他实施例中,气流通道622也可采用其他方式进行雾化,例如,也可在气流通道622内设置气泡雾化喷嘴,通过气泡雾化的形式生成液体颗粒。
供液通道611包括与气流通道622相连通的进液通道621以及连通进液通道621和储液腔610的主通道612。该进液通道621可以为毛细通道,即液态基质在进液通道621内能够产生毛细力。在一些实施例中,进液通道621的截面积可小于0.08mm²。
由于在抽吸结束后,气源40停止工作,由高速气流在供液通道611内产生的负压消失,供液通道611内的液态基质向喷嘴62方向流动的动力消失,而储液腔610内存在负压,该储液腔610内的负压会回吸进液通道621内的液态基质,从而造成下一次抽吸时供液不及时。因此,通过将供液通道611靠近气流通道622的进液通道621设计为毛细通道,并保证进液通道621具有一套关键尺寸(例如,通道截面积和通道长度),利用进液通道621内的毛细力来减少回流,以实现即起即停的稳定供液,防止气源40停止工作时液态基质回流至储液腔610而造成下一次抽吸时供液延迟。
图4示出了在停止抽吸、气源40停止工作后,液态基质200在进液通道621内的受力情况。气源40停止工作后,进液通道621内的液态基质向喷嘴62方向流动的动力消失,进液通道621内的液态基质200在气液交界面201上的受力情况以及液面运动情况为:
若ΔP =ΔP,则液面经过短暂的向储液腔610方向运动后停止,在下一次气源40启动时有短时延迟;
若ΔP <ΔP,则液面会持续向储液腔610方向运动,直到有足够的液态基质回流到储液腔610,使得ΔP因储液腔610液面回升而降低至与ΔP 平衡,液面运动才会停止,此时会在供液通道611内形成相对很大的空腔,造成在下一次气源40启动时会有较长时间延迟;
若ΔP >ΔP,则液面不会回流,可在下一次气源40启动时即时雾化。
其中,ΔP=储液腔610内的负压-储液腔610内液态基质的重力,ΔP =进液通道621内的毛细力。
在一些实施例中,进液通道621的截面积为0.07mm²(或孔径0.3mm),通道长度≥2mm,气源40停止工作时进液通道621内的液态基质不会因储液腔610内的负压向储液腔610回流,可达到即时启动的效果。在另一些实施例中,进液通道621的截面积可以为0.05mm²,通道长度≥1mm,也可实现即起即停的稳定供液。在另一些实施例中,进液通道621的水力直径小于等于0.3mm,也可实现即起即停的稳定供液。通常,进液通道621的截面积越小,需要达到即时启动的效果所需的进液通道621的通道长度越小。
此外,再如图3及图5-8所示,供液通道611还可用于控制供液至气流通道622的流量,实现气流通道622的定量供液,保证供液至气流通道622的流量达到设计值。通常,可按照流量需求匹配设计供液通道611的尺寸,即在设计流量下供液通道611能产生匹配供液动力的阻力。具体地,气流通道622内产生的负压为供液动力,而供液阻力则包括供液通道611的沿程阻力以及储液腔610内的负压。通过计算设计流量下供液通道611所需的沿程阻力,设计供液通道611的具体直径与长度。
通常来说,液态基质的粘度越大,则液态基质在供液通道611中流通时的阻力越大;供液通道611的长度越越长,则供液通道611内的阻力越大;供液通道611的截面积越大,供液通道611内的阻力越小;供液通道611的曲折程度越多,供液通道611内的阻力越大。在一些实施例中,液态基质的粘度为20cp~250cp;供液通道611的整体长度为6mm~15mm。进液通道621、主通道612均为沿横向延伸的直线形通道,且进液通道621、主通道612的中轴线重合。主通道612为弱毛细力通道,即液态基质在主通道612内能够产生弱毛细力。主通道612的截面积大于进液通道621的截面积,在一些实施例中,主通道612的截面积范围可以为0.09 mm²~0.16mm²。在其他实施例中,主通道612也可以为非直线形延伸的通道,例如S形或方波形等。
在本实施例中,进液通道621形成于喷嘴62内,主通道612形成于储液壳61内。喷嘴62大致具有圆柱状外形,其可沿纵向穿设于储液壳61中并可与储液壳61同轴设置。气流通道622沿纵向贯穿喷嘴62并可与喷嘴62同轴设置。进液通道621由喷嘴62的一侧侧面沿横向向内延伸至与气流通道622相连通,进液通道621的延伸方向与气流通道622的延伸方向垂直。可以理解地,在其他实施例中,喷嘴62的外形也可呈椭圆形或方形等其他形状。在另一些实施例中,进液通道621也可部分形成于喷嘴62内,部分形成于储液壳61内;或者,也可以是主通道612部分形成于喷嘴62内,部分形成于储液壳61内。
气流通道622可包括供气通道623和雾化腔625。雾化腔625通过供气通道623与气源40连接,并通过进液通道621与储液腔610相连通。雾化腔625靠近供气通道623的一端端面形成雾化面6250,雾化面6250上还形成有雾化口6251。来自供气通道623的高速气流经由雾化口6251喷出到雾化腔625内并在雾化腔625中高速流动,高速气流由伯努利方程在进液通道621内产生负压,此负压传导至储液腔610将储液腔610内的液态基质吸出至雾化腔625,在雾化面6250上形成液膜。随着供液过程的持续进行,液膜运动到雾化口6251的孔壁边缘与高速气流相遇,被高速气流切割雾化成细小的液体颗粒,该液体颗粒再被气流带离雾化口6251,之后随气流喷出完成雾化过程。该液态基质在雾化腔625内的雾化方式为非相变的雾化方式,雾化腔625雾化后形成的液体颗粒的粒径分布可达到SMD=30μm范围内。其中,SMD=液体颗粒总体积/液体颗粒总表面积,表示了液体颗粒的平均粒径。
雾化腔625为直柱状通道,其孔壁面与雾化面6250垂直。在本实施例中,雾化腔625为直圆柱形通道,雾化面6250为同心圆环状,雾化面6250的内壁面界定出雾化口6251。在其他实施例中,雾化腔625、雾化面6250或雾化口6251的横截面也可以是椭圆形或矩形等其他非圆形状。
雾化口6251、雾化腔625的尺寸和形状等参数能够影响雾化腔625内负压的大小以及生成的液体颗粒的粒径大小,并可使流量更稳定。在一些实施例中,雾化口6251的孔径D、雾化腔625的孔径W1、雾化腔625的长度H可根据需要设置合适的尺寸。
具体地,雾化口6251的孔径D与从雾化口6251出来的气流速度(m/s)相关,其能够影响生成的液体颗粒的粒径大小。在一些实施例中,雾化口6251的孔径D的范围可以为0.2mm~0.4mm ,优选为0.22mm~0.35mm。
雾化腔625的孔径W1会影响雾化腔625中的气流流速大小,从而影响雾化腔625、进液通道621内的负压大小。该负压可使液态基质从进液通道621吸至雾化腔625。在一些实施例中,雾化腔625的孔径W1的范围可以为0.7mm~1.3mm。雾化腔625的长度H可以为0.8mm~3.0mm。可以理解地,在其他实施例中,雾化口6251或雾化腔625也可具有非圆横截面;当雾化口6251或雾化腔625具有非圆横截面时,雾化口6251的孔径D或雾化腔625的孔径W1分别为其当量直径。术语“当量直径”是指,把水力半径相等的圆孔的直径定义为非圆孔的当量直径。
进一步地,在一些实施例中,D的范围为0.22mm~0.35mm,H的范围为1.5mm~3.0mm,W1的范围为0.7mm~1.3mm,该D、H、W1的取值范围能够使喷嘴62在制造工艺上得到优势。
进液通道621与雾化腔625相连通的一端具有一供液口6210,该供液口6210与雾化面6250之间的距离L是保证液膜形成的关键。在本实施例中,供液口6210与雾化面6250之间的距离L为供液口6210的中心与雾化面6250之间的垂直距离。在一些实施例中,供液口6210与雾化面6250之间的距离L的范围可以为0.3mm~0.8mm,较佳地,L为0.35mm~0.6mm。
进一步地,气流通道622还包括扩张通道626,该扩张通道626与雾化腔625远离供气通道623的一端连通,用于将雾化腔625内雾化后生成的液体颗粒以射流的形式扩散喷出,增大液体颗粒的喷射面积。扩张通道626的横截面积由靠近雾化腔625的一端到远离所述雾化腔625的一端逐渐增大。具体地,在本实施例中,扩张通道626为沿纵向延伸且孔径由下往上逐渐增大的圆锥形通道。扩张通道626的雾化角α(即扩张通道626的扩张角)须具有合适的范围,以保证喷射出的液体颗粒具有合适的喷射范围。在一些实施例中,扩张通道626的雾化角α可以为30 0~70 0。进一步地,扩张通道626与雾化腔625之间还可采用流线型平滑连接,例如通过倒圆角的方式相切。在其他实施例中,扩张通道626也可以为椭圆锥形状或金字塔形状等其他形状。
供气通道623在一些实施例中可包括加速段6231,该加速段6231呈收缩形状,其横截面积从远离雾化腔625的一端到靠近雾化腔625的一端逐渐减小,从而能够将来自气源40的气流加速后喷出至雾化腔625。在本实施例中,加速段6231为沿纵向延伸且孔径由下往上逐渐减小的圆锥形通道,加速段6231的上端孔径小于雾化腔625的孔径,使得加速段6231和雾化腔625的交接处形成圆环形的雾化面6250。可以理解地,在其他实施例中,加速段6231也可以为椭圆锥形状或金字塔形状等其他收缩形状。
进一步地,供气通道623还包括与加速段6231连通的连通段6232,加速段6231通过连通段6232与气源40连接。连通段6232可以为沿纵向延伸的直圆柱形通道,连通段6232的上端与加速段6231相连通,连通段6232的孔径与加速段6231的下端孔径一致。在其他实施例中,连通段6232的横截面也可以是椭圆形或矩形等其他非圆形状。可以理解地,在其他实施例中,喷嘴62内形成的供气通道623也可仅包括加速段6231;或者,当气流流速足够时,供气通道623也可仅包括连通段6232。
储液壳61可包括相互配合的储液主体613和储液座614。在本实施例中,储液腔610、主通道612均形成于储液主体613内。具体地,储液主体613的底面上凹形成圆环状的储液腔610,储液腔610靠近喷嘴62的一侧腔壁面沿横向向喷嘴62延伸形成主通道612。可以理解地,在其他实施例中,储液腔610和/或主通道612也可形成于储液座614内,或者也可部分形成于储液主体613内、部分形成于储液座614内。
进一步地,储液壳61上还可形成有与储液腔610相连通的注液通道615,以在储液腔610内的液态基质用完后能够再次向储液腔610内注液。在本实施例中,注液通道615形成于储液主体613内且沿纵向延伸,注液通道615的下端与储液腔610相连通。
储液壳61具有一承接面6131,该承接面6131可位于气流通道622的外围,其能够承接回落的液体颗粒或者冷凝液,该冷凝液包括液体颗粒在流出过程中遇冷或者触碰壁面形成的冷凝液。承接面6131上还可形成有至少一个储液槽6132,在一些实施例中,该至少一个储液槽6132具有毛细作用力。气流通道622的一端具有喷出口6260,气流通道622内雾化后生成的液体颗粒经由喷出口6260喷出。该至少一个储液槽6132可环绕于喷出口6260外并可与喷出口6260同轴设置,其能够通过毛细作用力收集并存储一定量的液态基质,防止承接面6131上积蓄的液态基质回流至气流通道622,从而堵塞气流通道622。
具体地,在本实施例中,储液壳61内形成有收容孔6136以及与收容孔6136相连通的容腔6130,该收容孔6136和容腔6130可沿纵向延伸并可与储液壳61同轴设置。收容孔6136用于收容喷嘴62,其可由储液壳61的下端面沿纵向向上延伸。该容腔6130可由储液壳61的上端面沿纵向向下延伸至与收容孔6136相连通。容腔6130的横截面积可大于收容孔6136的横截面积,使得容腔6130靠近收容孔6136的一端端面形成承接面6131。在一些实施例中,储液槽6132的槽宽可小于等于0.6mm。喷嘴62的上端面可高出其周圈的承接面6131,避免承接面6131的冷凝液进入喷嘴62堵塞气道。可以理解地,在其他实施例中,储液壳61也可不设置有容腔6130,承接面6131也可形成于储液壳61的上端面。
在本实施例中,该至少一个储液槽6132可包括若干个第一储液子槽6133以及若干个环状的第二储液子槽6134。每一第一储液子槽6133均可沿承接面6131的径向延伸,第一储液子槽6133远离承接面6131中心的一端可与最外圈的一个第二储液子槽6134相连通,第一储液子槽6133靠近承接面6131中心的一端可与最内圈的一个第二储液子槽6134相连通。进一步地,承接面6131还可设计为中心凸起的形状,例如,其可以为球形弧面或锥形面,承接面6131的高度由中心向外围逐渐降低,有利于承接面6131中心处附近的冷凝液向外围流动扩散,避免承接面6131中心处附近的冷凝液未经雾化而直接被吹走。在另一些实施例中,承接面6131也可向喷嘴62倾斜,即承接面6131的高度由外围向中心逐渐降低,喷嘴62的上端面也可低于或齐平其周圈的承接面6131,使得承接面6131上积蓄的冷凝液能够流回至喷嘴62重新雾化。
进一步地,储液壳61内还可形成有将该至少一个储液槽6132与雾化腔625相连通的导液通道6135,以使雾化腔625内的负压能够将储液槽6132内存储的冷凝液回吸至雾化腔625再次雾化。相应地,喷嘴62内还形成有将导液通道6135与雾化腔625相连通的回吸通道624,该回吸通道624与导液通道6135连通形成用于将该至少一个储液槽6132与雾化腔625相连通的液体回收通道616。导液通道6135、回吸通道624也可以为毛细通道,导液通道6135、回吸通道624的孔径或当量直径可小于等于0.4mm,或者,导液通道6135、回吸通道624的截面积小于等于0.126mm²。回吸通道624与雾化腔625相连通的一端具有一回吸口6240,该回吸口6240的中心与雾化面6250之间的垂直距离可以为0.3mm~0.8mm。进一步地,在本实施例中,回吸通道624、进液通道621相对于喷嘴62的中轴线呈旋转对称设置,从而在组装喷嘴62时可无需考虑安装方向。此外,回吸通道624、进液通道621还可位于喷嘴62的周向两相对侧,从而还能降低脉动带来的影响,使得瞬时流量更加稳定。可以理解地,在其他实施例中,回吸通道624、进液通道621也可相对于喷嘴62的中轴线不呈旋转对称设置,例如,回吸通道624、进液通道621也可具有不同尺寸,和/或,回吸通道624、进液通道621也可设置于喷嘴62的不同轴向高度上。
此外,储液壳61还可形成有将储液腔610与外界相连通的换气通道6140,该换气通道6140可用于恢复储液腔610内的压力,利用喷嘴62的负压区和换气通道6140相配合,实现向喷嘴62的自动稳定供液,解决因储液腔610内负压过大而不能稳定供液的问题。在抽吸过程中,储液腔610内液态基质减少会带来气压降低,降低至极限换气负压会由换气通道6140换气泡进入储液腔610,恢复储液腔610负压。通常,可控制储液腔610的负压范围为-200Pa ~ -700Pa。可以理解地,在其他实施例中,也可采用其他自动或非自动的供液方式实现对喷嘴62的定量稳定供液,例如,可通过采用小型供液泵(例如隔膜泵或蠕动泵等)对储液腔610进行加压,保持维持供液的稳定性,实现对喷嘴62的定量稳定供液;或者,也可将储液腔610的腔壁设置成柔性且内部没有空气的腔壁,来解决储液腔610负压过大不能供液的问题。
换气通道6140可包括形成于储液壳61外表面的换气槽6142以及形成于储液壳61内的换气孔6141。该换气孔6141分别连通储液腔610和换气槽6142,并经由换气槽6142与外界相连通。在本实施例中,该换气槽6142可采用直液式换气结构并可形成于储液座614的外表面。具体地,该换气槽6142可包括若干个旋转槽6143以及连通该若干个旋转槽6143的若干个连通槽6144。每一旋转槽6143均可呈环形并沿储液座614的周向延伸,每一旋转槽6143的截面积范围可以为0.04mm²~0.16mm²,该若干个旋转槽6143的总长度可以为3mm~12mm。旋转槽6143可以有多个,该多个旋转槽6143可沿储液座614的轴向均匀间隔排布。每一连通槽6144均沿储液座614的轴向延伸,每一连通槽6144的上端与位于最上方的一个旋转槽6143相连通,下端与位于最下方的一个旋转槽6143相连通。连通槽6144也可以有多个,多个连通槽6144可沿储液座614的周向均匀间隔排布。
在一些实施例中,该储液雾化组件60还可包括固定盖63。固定盖63呈上端开口的筒状,固定件64套设于储液主体613和储液座614外并可与储液主体613相互扣合固定,以将储液主体613和储液座614相互固定。进一步地,固定盖63可以为金属材质,金属材质在温度变化时而产生的热胀冷缩形变较小,使得储液雾化组件60内各个部件之间的连接固定更加稳定可靠。
固定盖63的侧壁上还可开设有通气口630,储液座614的外表面还形成有将该若干个旋转槽6143与通气口630相连通的通气槽6145。具体地,通气口630可开设于固定盖63的侧壁底部,通气槽6145可由储液座614的侧壁底面沿纵向向上延伸至与位于最下方的一个旋转槽6143相连通。
换气孔6141可由其中一个旋转槽6143沿横向向内延伸至与储液腔610相连通。在本实施例中,换气孔6141由位于最上方的一个旋转槽6143沿横向向内延伸至与储液腔610相连通。
进一步地,再如图2所示,该电子雾化装置100还包括收容于外壳10中的发热件80。该发热件80与电源30电连接,其能够在通电后发热。发热件80的结构和加热形式不受限制,例如其可以为发热网、发热片、发热丝或发热膜等结构,其加热形式可以为电阻传导加热、红外辐射加热、电磁感应加热或者复合加热等加热形式。外壳10内还形成有输出通道70,发热件80可设置于输出通道70中并位于喷嘴62的上方。由喷嘴62喷出的液体颗粒向上撞击发热件80,经过发热件80加热后生成气溶胶,该气溶胶再由气流带出输出通道70,以供用户吸食或者吸入。
本实施例通过采用喷嘴62将连续流动的液态基质雾化成液体颗粒后再由发热件80蒸发的方式,由于喷嘴62雾化后形成的细小液体颗粒的表面积得到了极大的扩展,从而更容易加热蒸发,一方面可提高热量及气溶胶的转化效率,另一方面可降低发热件80蒸发过程的温度,实现低温雾化。在较低的加热雾化温度下,液态基质主要完成物理变化过程,从而克服了传统的多孔陶瓷或者多孔棉条件下因必须采用高温方式雾化而导致的液态基质热裂解变质的问题,更不会发生烧焦、积碳和重金属挥发等现象,从而能够保持不同液态基质所特有的成分和香精香料体系,最终使吸入者感受到与原始液态基质相对应的特有的口感。此外,发热件80与储液腔610不接触,发热件80不用长期浸泡在液态基质中,减少了发热件80对液态基质的污染,从而减少了雾化后生成的气溶胶中的杂质气体。
可以理解地,在其他实施例中,由喷嘴62喷出的液体颗粒也可向下撞击发热件80,即,发热件80也可设置于喷嘴62的下方;或者,由喷嘴62喷出的液体颗粒也可横向撞击发热件80,即,发热件80与喷嘴62处于或大致处于同一水平高度上。在另一些实施例中,该电子雾化装置100中也可以不设置有发热件80,即,喷嘴62雾化后的液体颗粒可直接经输出通道70输出,被用户吸食或者吸入。
进一步地,外壳10中还可设置有支架组件11,该支架组件11将外壳10内分隔成位于上部的第一收容空间121以及位于下部的第二收容空间122。控制模块20、电源30、气源40均可收容于该第二收容空间122中。储液雾化组件60可收容于第一收容空间121中并可支撑于支架组件11上。进一步地,该电子雾化装置100还可包括设置于外壳10中并与控制模块20电连接的气流感应元件50。该气流感应元件50可收容于支架组件11的底部,其能够感应用户抽吸时的气流变化,其通常可以为负压传感器,例如咪头。用户抽吸动作制造负压,气流感应元件50感应负压而产生抽吸信号,该抽吸信号可传递至控制模块20以控制气源40和/或发热件80的工作。
进一步地,该电子雾化装置100还可包括可拆卸地罩设于外壳10上端的防尘罩90。在不需要使用电子雾化装置100时,可将防尘罩90罩设于外壳10的上端,防止灰尘等杂质进入输出通道70。
可以理解地,上述各技术特征可以任意组合使用而不受限制。
以上实施例仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制;应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,可以对上述技术特点进行自由组合,还可以做出若干变形和改进,这些都属于本发明的保护范围;因此,凡跟本发明权利要求范围所做的等同变换与修饰,均应属于本发明权利要求的涵盖范围。 

Claims (20)

  1.  一种储液雾化组件,其特征在于,所述储液雾化组件(60)内形成有用于雾化液态基质以生成液体颗粒的气流通道(622),所述储液雾化组件(60)具有用于承接回落的冷凝液的承接面(6131),所述承接面(6131)设置有至少一个储液槽(6132)。
  2.  根据权利要求1所述的储液雾化组件,其特征在于,每一所述储液槽(6132)的槽宽小于等于0.6mm。
  3.  根据权利要求1所述的储液雾化组件,其特征在于,所述至少一个储液槽(6132)包括若干个沿所述承接面(6131)的径向延伸的第一储液子槽(6133)以及若干个沿所述承接面(6131)的周向延伸的第二储液子槽(6134)。
  4.  根据权利要求3所述的储液雾化组件,其特征在于,每一所述第一储液子槽(6133)均将若干个所述第二储液子槽(6134)之间相互连通。
  5.  根据权利要求3所述的储液雾化组件,其特征在于,若干个所述第二储液子槽(6134)与所述气流通道(622)同轴设置。
  6.  根据权利要求1所述的储液雾化组件,其特征在于,所述储液雾化组件(60)内还形成有与所述气流通道(622)的一端相连通的容腔(6130),所述容腔(6130)靠近所述气流通道(622)的一端端面形成所述承接面(6131)。
  7.  根据权利要求1所述的储液雾化组件,其特征在于,所述储液雾化组件(60)内还形成有将所述至少一个储液槽(6132)与所述气流通道(622)相连通的液体回收通道(616)。
  8.  根据权利要求7所述的储液雾化组件,其特征在于,所述液体回收通道(616)为毛细通道。
  9.  根据权利要求7所述的储液雾化组件,其特征在于,所述液体回收通道(616)的截面积小于等于0.126mm²。
  10.  根据权利要求7所述的储液雾化组件,其特征在于,所述储液雾化组件(60)内形成有用于存储液态基质的储液腔(610)以及将所述气流通道(622)与所述储液腔(610)相连通的供液通道(611),从所述供液通道(611)进入到所述气流通道(622)的液态基质受所述气流通道(622)中流通的高速气流作用而雾化成液体颗粒并随所述高速气流喷出。
  11.  根据权利要求10所述的储液雾化组件,其特征在于,所述储液雾化组件(60)包括储液壳(61)以及沿纵向设置于所述储液壳(61)中的喷嘴(62),所述储液腔(610)形成于所述储液壳(61)内,所述气流通道(622)形成于所述喷嘴(62)内;
    所述供液通道(611)包括形成于所述喷嘴(62)内的进液通道(621),所述液体回收通道(616)包括形成于所述喷嘴(62)内的回吸通道(624)。
  12.  根据权利要求11所述的储液雾化组件,其特征在于,所述承接面(6131)形成于所述储液壳(61)上。
  13.  根据权利要求11所述的储液雾化组件,其特征在于,所述进液通道(621)、所述回吸通道(624)的延伸方向均与所述气流通道(622)的延伸方向垂直。
  14.  根据权利要求11所述的储液雾化组件,其特征在于,所述回吸通道(624)与所述进液通道(621)相对于所述喷嘴(62)的中轴线呈旋转对称设置。
  15.  根据权利要求11所述的储液雾化组件,其特征在于,所述回吸通道(624)与所述进液通道(621)分别位于所述喷嘴(62)的周向两相对侧。
  16.  根据权利要求11所述的储液雾化组件,其特征在于,所述气流通道(622)包括供气通道(623)和雾化腔(625),所述雾化腔(625)分别与所述供气通道(623)和所述进液通道(621)相连通,所述雾化腔(625)靠近所述供气通道(623)的一端形成有雾化面(6250),所述雾化面(6250)设置有连通所述供气通道(623)和所述雾化腔(625)的雾化口(6251),流入所述雾化腔(625)的液态基质能够在所述雾化面(6250)形成液膜,所述液膜能够被所述高速气流切割而形成液体颗粒。
  17.  根据权利要求16所述的储液雾化组件,其特征在于,所述回吸通道(624)与所述气流通道(622)相连通的一端具有回吸口(6240),所述回吸口(6240)的中心与所述雾化面(6250)之间的垂直距离为0.3mm~0.8mm。
  18.  根据权利要求1-17任一项所述的储液雾化组件,其特征在于,所述承接面(6131)环绕于所述气流通道(622)外。
  19.  根据权利要求1-17任一项所述的储液雾化组件,其特征在于,所述至少一个储液槽(6132)具有毛细作用力。
  20.  一种电子雾化装置,其特征在于,包括如权利要求1-19任一项所述的储液雾化组件。
PCT/CN2023/078888 2022-04-29 2023-02-28 电子雾化装置及其储液雾化组件 WO2023207314A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210467405.0 2022-04-29
CN202210467405.0A CN116998781A (zh) 2022-04-29 2022-04-29 电子雾化装置及其储液雾化组件

Publications (1)

Publication Number Publication Date
WO2023207314A1 true WO2023207314A1 (zh) 2023-11-02

Family

ID=88517238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/078888 WO2023207314A1 (zh) 2022-04-29 2023-02-28 电子雾化装置及其储液雾化组件

Country Status (2)

Country Link
CN (1) CN116998781A (zh)
WO (1) WO2023207314A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109646283A (zh) * 2018-12-28 2019-04-19 苏州雾联医疗科技有限公司 一种具有隔离和回收功能的雾化洗鼻器
CN110638102A (zh) * 2019-09-30 2020-01-03 深圳麦克韦尔科技有限公司 一种雾化器及电子雾化装置
CN110638101A (zh) * 2019-09-30 2020-01-03 深圳麦克韦尔科技有限公司 一种雾化器及电子雾化装置
CN111134367A (zh) * 2019-12-30 2020-05-12 苏州雾联医疗科技有限公司 一种可加热的手持压缩雾化器
WO2021089485A1 (en) * 2019-11-05 2021-05-14 Jt International Sa Inhaler

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109646283A (zh) * 2018-12-28 2019-04-19 苏州雾联医疗科技有限公司 一种具有隔离和回收功能的雾化洗鼻器
CN110638102A (zh) * 2019-09-30 2020-01-03 深圳麦克韦尔科技有限公司 一种雾化器及电子雾化装置
CN110638101A (zh) * 2019-09-30 2020-01-03 深圳麦克韦尔科技有限公司 一种雾化器及电子雾化装置
WO2021089485A1 (en) * 2019-11-05 2021-05-14 Jt International Sa Inhaler
CN111134367A (zh) * 2019-12-30 2020-05-12 苏州雾联医疗科技有限公司 一种可加热的手持压缩雾化器

Also Published As

Publication number Publication date
CN116998781A (zh) 2023-11-07

Similar Documents

Publication Publication Date Title
AU2017346137B2 (en) Atomizer and electronic cigarette thereof
WO2023130767A1 (zh) 电子雾化装置及其雾化器
WO2023207314A1 (zh) 电子雾化装置及其储液雾化组件
WO2023207366A1 (zh) 电子雾化装置及其储液雾化组件
WO2023207368A1 (zh) 电子雾化装置及其储液雾化组件和喷嘴
WO2023207292A1 (zh) 电子雾化装置及其储液雾化组件
WO2023241100A1 (zh) 电子雾化装置
CN216723117U (zh) 雾化器和气溶胶产生装置
WO2023207320A1 (zh) 电子雾化装置
WO2023207313A1 (zh) 电子雾化装置及其喷嘴雾化组件
WO2023207312A1 (zh) 喷嘴组件及电子雾化装置
WO2023207323A1 (zh) 电子雾化装置
WO2023206597A1 (zh) 电子雾化装置
WO2023207322A1 (zh) 电子雾化装置及其储液雾化组件
WO2023241101A1 (zh) 电子雾化装置
WO2023102742A1 (zh) 雾化芯及其电子雾化装置
CN116998766A (zh) 电子雾化装置及其储液雾化组件
CN219069464U (zh) 雾化器及气溶胶生成装置
WO2023241131A1 (zh) 电子雾化装置
WO2024037033A1 (zh) 电子雾化装置及雾化器
CN116998777A (zh) 支架及电子雾化装置
CN116998784A (zh) 电子雾化装置
WO2023035912A1 (zh) 雾化器及电子雾化装置
JP3234724U (ja) 液体噴霧装置
CN219803361U (zh) 气溶胶生成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23794750

Country of ref document: EP

Kind code of ref document: A1