WO2023241100A1 - 电子雾化装置 - Google Patents

电子雾化装置 Download PDF

Info

Publication number
WO2023241100A1
WO2023241100A1 PCT/CN2023/078891 CN2023078891W WO2023241100A1 WO 2023241100 A1 WO2023241100 A1 WO 2023241100A1 CN 2023078891 W CN2023078891 W CN 2023078891W WO 2023241100 A1 WO2023241100 A1 WO 2023241100A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
liquid
nozzle
atomization
spiral
Prior art date
Application number
PCT/CN2023/078891
Other languages
English (en)
French (fr)
Inventor
胡肖琬玥
任三兵
雷桂林
张梓均
姚雪刚
Original Assignee
海南摩尔兄弟科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海南摩尔兄弟科技有限公司 filed Critical 海南摩尔兄弟科技有限公司
Publication of WO2023241100A1 publication Critical patent/WO2023241100A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means

Definitions

  • the present invention relates to the field of atomization, and in particular to electronic atomization devices.
  • the relevant vent pipe 70a has a hollow structure with a right cylindrical hollow channel 71a inside; the relevant heating component 80a is accommodated in the relevant vent pipe 70a, which is flat. network structure.
  • the mist flows from one end of the ventilation tube 70a, is heated by the heating component 80a, and then flows out from the other end of the ventilation tube 70a.
  • the relevant heating component 80a is provided with a mesh for passing mist, to prevent the liquid particles from passing through the mesh before being completely heated and atomized, the area of the mesh is often designed to be relatively small, resulting in insufficient area for the mist to pass. Most of the liquid particles will be blocked and rebound, or adhere to the inner wall of the relevant vent pipe 70a along with the air flow, making it difficult to be heated and atomized by the relevant heating component 80a before flowing out.
  • the present invention provides an electronic atomization device.
  • the technical solution adopted by the present invention to solve the technical problem is to construct an electronic atomization device, which includes a breather tube, a heating component and a liquid storage atomization component;
  • the liquid storage atomization component includes a liquid storage chamber for storing a liquid substrate;
  • a nozzle connected to the liquid storage chamber; the nozzle is arranged toward the inlet end of the vent pipe, used to atomize the liquid substrate and spray it into the vent pipe;
  • the heating component is contained in the vent pipe and is arranged opposite the nozzle to atomize the mist sprayed by the nozzle again;
  • the heating component includes a spiral heating element in a tower-like spiral structure; the spiral heating element includes a plurality of spiral turns extending in an axial direction; and a first gap is left between any two adjacent spiral turns for the passage of mist. .
  • the circumference of the plurality of spiral turns gradually decreases as the distance between itself and the nozzle increases.
  • the number of circumferences of the plurality of spiral turns is in an arithmetic sequence.
  • the spiral coil has a plate-like structure.
  • the width direction W2 of one side of each spiral turn in its axial cross-section is arranged at an angle with its own axial connection.
  • the included angle is an included angle ⁇ , and the included angle ⁇ ranges from 15° to 55°.
  • the range of the included angle ⁇ is 20° ⁇ 30°.
  • the projections of any two adjacent spiral turns in the axial direction are staggered with each other.
  • the number of the plurality of spiral turns is 15 to 20.
  • the vent pipe includes a first expansion channel whose inner diameter gradually increases outward from the inlet end, and an air outlet channel connected with the first expansion channel; the mist sprayed from the nozzle passes through the expansion channel. The channel flows to the air outlet channel.
  • the nozzle includes an atomizing part for atomizing the liquid substrate; the atomizing part includes a second expansion channel for diffusing the mist;
  • the first expansion channel and the second expansion channel are connected smoothly in a streamlined manner.
  • the air outlet channel and the first expansion channel are streamlined and smoothly connected.
  • the maximum inner diameter of the expansion channel is equal to the inner diameter of the air outlet channel.
  • the breather tube further includes an air supply hole for transporting gas into the interior of the breather tube; the air supply hole is provided on a side wall of the breather tube.
  • the breather tube includes at least two air supplement holes, and the at least two air supplement holes are arranged at equal intervals along the circumference of the breather tube.
  • the air supply hole extends from an outer wall of the vent tube in a direction away from the nozzle, and is arranged obliquely with respect to the axis of the vent tube.
  • the axis of the air supply hole and the axis of the vent pipe are connected at an included angle ⁇ , and the included angle ⁇ is 120° to 150°.
  • the vent tube further includes an air supply hole for transporting gas into the interior of the vent tube;
  • the air supply hole is provided at a connection junction between the first expansion channel and the air outlet channel in the ventilator.
  • the second expansion channel is provided with an ejection port facing the vent pipe;
  • the spiral heating element and the ventilation tube are arranged coaxially.
  • the present invention uses a spiral heating element with a tower spiral structure as the heating component, which can play a diversion role and increase the probability that the liquid particles pass through the heating component with the air flow. , Reduce the accumulation of liquid particles on the inner wall of the vent tube and increase the amount of atomization.
  • Figure 1 is a schematic structural diagram of a relevant heating component located in a relevant vent pipe in an electronic atomization device of the related art
  • Figure 2 is a flow field simulation distribution diagram based on the structure of Figure 1, simulating the mist sprayed from the nozzle entering the relevant vent pipe and being heated and evaporated by the relevant heating component;
  • Figure 3 is a schematic three-dimensional structural diagram of the electronic atomization device in the first embodiment of the present invention.
  • Figure 4 is a schematic structural diagram of the longitudinal section of the electronic atomization device shown in Figure 3;
  • Figure 5 is a schematic longitudinal cross-sectional structural view of the liquid storage atomization assembly of the electronic atomization device in Figure 4;
  • Figure 6 is a schematic cross-sectional exploded structural view of the liquid storage atomization assembly shown in Figure 5;
  • Figure 7 is a schematic structural diagram of the longitudinal section of the nozzle in Figure 6;
  • Figure 8 is a schematic structural diagram of the longitudinal section of the breather pipe and the liquid storage atomization assembly in Figure 4;
  • Figure 9 is a flow field simulation distribution diagram based on the structure of Figure 8, simulating the mist sprayed from the nozzle entering the ventilator and being heated and evaporated by the heating component;
  • Figure 10 is a schematic structural diagram of the heating assembly in some embodiments of the present invention.
  • Figure 11 is a schematic structural view of the heating assembly shown in Figure 10 from a bird's eye view;
  • Figure 12 is a schematic structural diagram of the heating assembly shown in Figure 10 from a side view
  • FIG. 13 is a schematic longitudinal cross-sectional structural view of the heating assembly shown in FIG. 10 .
  • FIGS 3 to 13 show the electronic atomization device 100 in the first embodiment of the present invention.
  • the electronic atomization device 100 can be used to atomize a liquid substrate to generate an aerosol.
  • the aerosol can be smoked or inhaled by the user.
  • it can be substantially cylindrical.
  • the electronic atomization device 100 may also be in other shapes such as an elliptical column, a flat column, a square column, or the like.
  • the liquid substrate may include e-liquid or medicinal liquid.
  • the electronic atomization device 100 may include a housing 10 and a control module 20 contained in the housing 10 , a power supply 30 , an air source 40 , a liquid storage atomization component 60 and a heating component 80 .
  • the control module 20 is electrically connected to the gas source 40 and the heating component 80 respectively, and is used to receive the user's instruction. The instruction can be triggered by the user or automatically triggered after the electronic atomization device 100 meets certain conditions.
  • the control module 20 then controls the gas according to the instruction.
  • Source 40 and heating component 80 work.
  • the control module 20 may include an air source control module and a heating control module to control the air source 40 and the heating assembly 80 respectively.
  • the power supply 30 is electrically connected to the control module 20 , the air source 40 , and the heating assembly 80 respectively, and is used to provide electric energy to the control module 20 , the air source 40 , and the heating assembly 80 .
  • the liquid storage atomization assembly 60 includes a liquid storage assembly 61 and a nozzle 62.
  • the liquid storage assembly 61 is formed with a liquid storage chamber 610 for storing a liquid substrate, and the nozzle 62 is formed with an air flow channel 627 connected with the liquid storage chamber 610. , the liquid matrix can be atomized into liquid particles in the air flow channel 627.
  • the air source 40 is connected with the nozzle 62 and is used to provide a certain amount of high-pressure air to the nozzle 62.
  • the high-speed air flow can be provided through an axial flow pump, or the high-speed air flow can be provided by releasing compressed gas.
  • the high-pressure air can assist the nozzle 62 in atomizing the liquid matrix from the liquid storage chamber 610 into fine liquid particles.
  • the liquid particles ejected from the nozzle 62 collide with the heating component 80 and are heated by the heating component 80 to generate an aerosol that is carried out by the air flow for the user to suck or inhale.
  • the liquid substrate can also be atomized into fine liquid particle groups through other methods, such as high-pressure nozzles, which are not limited here.
  • the fine liquid particles are further heated and atomized by the heating component 80 .
  • the liquid matrix is atomized into liquid particles and then evaporated by the heating component 80. Since the surface area of the fine liquid particles formed after atomization is greatly expanded, it is easier to heat and evaporate. On the one hand, it can increase the heat and gas The conversion efficiency of the sol, on the other hand, can reduce the temperature of the evaporation process of the heating component 80 and achieve low-temperature atomization.
  • the liquid matrix only completes the physical change process, thus overcoming the problem of thermal cracking and deterioration of the liquid matrix caused by the need for high-temperature atomization under traditional porous ceramics or porous cotton conditions, not to mention the Burning, carbon deposition, heavy metal volatilization and other phenomena will occur, so that the unique ingredients and flavor and fragrance systems of different liquid bases can be maintained, and ultimately the inhaler can feel the unique taste corresponding to the original liquid base.
  • the heating component 80 is not in contact with the liquid storage chamber 610, and the heating component 80 does not need to be immersed in the liquid matrix for a long time, which reduces the contamination of the liquid matrix by the heating component 80, thereby reducing impurity gases in the aerosol generated after atomization.
  • the housing 10 may include a lower housing 12 and an upper housing 11 longitudinally coupled to an upper end of the lower housing 12 .
  • the lower shell 12 may be in the shape of a cylinder with openings at both ends.
  • the shell 10 further includes a base 13 longitudinally covering the opening at the lower end of the lower shell 12 . It is understood that in other embodiments, the base 13 can also be integrally formed with the lower shell 12 .
  • the atomization device may further include a vent tube 70 disposed longitudinally in the upper housing 11 .
  • the vent tube 70 has a hollow tubular structure and can be used as an atomization chamber for heating and atomizing liquid particles.
  • the vent pipe 70 has two open ends, the open end close to the nozzle 62 can be used as an inlet end, and the open end far away from the nozzle 62 can be used as an outlet end; wherein, the ejection outlet 6210 of the nozzle 62 is provided at the inlet end of the vent pipe 70 or Its periphery can also be regarded as being arranged upstream of the vent pipe 70 to spray liquid particles into the vent pipe 70; the heating component 80 can be accommodated in the vent pipe 70 and arranged opposite to the ejection port 6210; the liquid particles are The aerosol formed after being atomized again by the heating component 80 is output from the outlet end of the ventilation tube 70 .
  • the heating component 80, the vent pipe 70, and the housing 10 can all be arranged coaxially.
  • the inner wall surface of the vent pipe 70 defines a first expansion channel 72 connected with the nozzle 62 and an air outlet channel 71 connected with the first expansion channel 72 .
  • the first expansion channel 72 is located above the nozzle 62 ; the air outlet channel 71 is located above the first expansion channel 72 .
  • the first expansion channel 72 , the air outlet channel 71 and the nozzle 62 are coaxially arranged.
  • the first expansion channel 72 is formed obliquely outward from the inlet end of the breather tube 70 to reduce the generation of vortex flow inside the breather tube 70 , which can effectively avoid or reduce the vortex flow. It can also be understood that the inner diameter of the first expansion channel 72 gradually increases outward from the inlet end of the vent pipe 70 .
  • the first expansion channel 72 is a truncated cone-shaped channel extending longitudinally and with a hole diameter gradually increasing from bottom to bottom, and is connected to the upper end of the second expansion channel 6213 of the nozzle 62; wherein the first expansion channel 72 is adjacent to The opening of the nozzle 62 serves as the inlet end of the vent pipe 70 .
  • the inclination angle of the inner wall of the first expansion channel 72 is adapted to the inclination angle of the inner wall of the second expansion channel 6213, so that there is a streamlined and smooth connection between the first expansion channel 72 and the second expansion channel 6213.
  • the generation of vortices inside the breather tube 70 can be further reduced.
  • the lower end of the air outlet channel 71 is connected with the first expansion channel 72.
  • the air outlet channel 71 and the first expansion channel 72 are streamlined and smoothly connected; the upper end of the air outlet channel 71 is connected with the suction nozzle 15 in the housing 10; the heating assembly 80 Contained in the air outlet channel 71.
  • the air outlet channel 71 is a right cylindrical channel extending along the axial direction of the vent pipe 70 ; the inner diameter of the air outlet channel 71 is equal to the maximum inner diameter of the first expansion channel 72 .
  • the vent tube 70 may also include an air supply hole 73 provided on its side wall for transporting gas into the interior of the vent tube 70 to optimize the flow field distribution. It can be understood that when the liquid particles flow into the vent tube 70 , the gas supplied through the air supply hole 73 can assist the liquid particles to pass through the heating component 80 to prevent the liquid particles from being blocked by the heating component 80 and rebounding in the vent tube 70 The area between the inlet end and the heating element 80 forms a vortex.
  • the air supply hole 73 is formed through the side wall of the ventilation tube 70 , and the number thereof can be one or more, depending on the amount of gas that needs to be supplied into the ventilation tube 70 .
  • each air supply hole 73 is provided inclined upward from the outer wall of the breather tube 70 , that is, the air supply holes 73 extend from the outer wall of the breather tube 70 to its outlet end, and are relative to the outer wall of the breather tube 70 .
  • the axis of the vent pipe 70 is inclined.
  • the axis of the air supply hole 73 is connected to the axis of the vent pipe 70 at an included angle ⁇ , and the included angle ⁇ is preferably 120° to 150°.
  • the air supply holes 73 can be arranged at equal intervals along the circumference of the vent tube 70 , preferably at the connection junction between the first expansion channel 72 and the air outlet channel 71 .
  • the gas supplied through the air supply hole 73 can be air, and the power for the air supply can come from the air flow inside the electronic atomization device 100 when the user inhales, or it can be a combination between the air supply hole 73 and the air source 40
  • the air source 40 supplies air to the inside of the ventilation tube 70 through the air supply hole 73 .
  • the lower shell 12 may be provided with a bracket assembly 14, which divides the lower shell 12 into a first receiving space 121 located at the upper part and a second receiving space 122 located at the lower part.
  • the control module 20 , the power supply 30 , and the air source 40 can all be accommodated in the second accommodation space 122 .
  • the control module 20 may include a circuit board and a control circuit formed on the circuit board, the power supply 30 may include a battery, and the air source 40 may include an air pump.
  • the liquid storage atomization assembly 60 can be received in the first receiving space 121 and supported on the bracket assembly 14 .
  • the atomization device may further include an airflow sensing element 50 , and the airflow sensing element 50 may be installed at the bottom of the bracket assembly 14 .
  • the airflow sensing element 50 is electrically connected to the control module 20 and is used to sense changes in the airflow when the user inhales and transmit signals to the control module 20 .
  • the control module 20 detects that the user has a suction action, it sends a signal to the air source 40 to start the air source 40 to start supplying air, and sends a signal to the heating component 80 to start the heating component 80 to start heating.
  • the airflow sensing element 50 may be a negative pressure sensor, such as a microphone.
  • the housing 10 may further include a suction nozzle 15 disposed on the top of the upper housing 11 , through which the user can inhale the aerosol.
  • the suction nozzle 15 is in the shape of a hollow tube, and its inner wall defines an inhalation channel 150 for outputting aerosol that is connected with the air outlet channel 71 .
  • the lower end of the suction nozzle 15 can be embedded in the breather tube 70 , and the outer wall surface of the lower end of the suction nozzle 15 is sealingly matched with the inner wall surface of the upper end of the breather tube 70 .
  • An air suction port 1501 is formed on the upper end of the suction nozzle 15 , and the air suction port 1501 is connected with the upper end of the air suction channel 150 .
  • the suction nozzle 15 and the upper shell 11 are formed separately and then assembled together; in other embodiments, the suction nozzle 15 and the upper shell 11 can also be integrally formed.
  • the atomization device may further include a dust cover 90 that is detachably disposed outside the upper shell 11 .
  • the dust cover 90 can be placed outside the upper shell 11 to prevent dust and other impurities from entering the suction channel 150 .
  • an air flow channel 627 and a liquid inlet channel 622 are formed in the nozzle 62.
  • the air flow channel 627 is used to circulate high-speed air flow
  • the liquid inlet channel 622 is used to input a liquid substrate into the air flow channel 627.
  • the liquid substrate entering the air flow channel 627 from the liquid inlet channel 622 is affected by the high-speed air flow circulating in the air flow channel 627.
  • Atomization It is understood that in other embodiments, the air flow channel 627 can also be atomized in other ways. For example, a bubble nozzle can also be provided in the air flow channel 627 to generate liquid particles in the form of bubble atomization.
  • the air flow channel 627 includes an air supply channel 620 and an atomization channel 621 connected with the air supply channel 620.
  • the liquid inlet channel 622 connects the liquid storage chamber 610 and the atomization channel 621
  • the air supply channel 620 connects the air source 40 and the atomization channel 621
  • the atomization channel 621 forms an atomization surface 6211 close to the end surface of the air supply channel 620.
  • the chemical channel 621 has an ejection port 6210 at one end away from the air supply channel 620 .
  • the liquid substrate flowing into the atomization channel 621 from the liquid inlet channel 622 can form a liquid film on the atomization surface 6211, and the liquid film can be cut and atomized into fine liquid particles by the high-speed air flow from the air supply channel 620, and the liquid particles can then be cut and atomized into fine liquid particles. It is output from the atomization channel 621 and ejected through the ejection port 6210.
  • An atomization port 6203 is also formed on the atomization surface 6211, and the high-speed airflow from the air supply channel 620 is sprayed into the atomization channel 621 through the atomization port 6203.
  • the atomization surface 6211 is in the shape of concentric rings, and the inner wall surface of the atomization surface 6211 defines the atomization port 6203.
  • the atomization surface 6211 or the atomization port 6203 may also have other shapes such as an ellipse or a rectangle.
  • the atomization channel 621 includes an atomization chamber 6212.
  • the atomization chamber 6212 is connected with the liquid inlet channel 622 and the contraction channel 6202 in the air supply channel 620 respectively.
  • the bottom surface of the atomization chamber 6212 forms an atomization surface 6211.
  • the high-speed airflow ejected from the atomization port 6203 flows at high speed in the atomization chamber 6212.
  • the high-speed airflow generates negative pressure in the liquid inlet channel 622 according to Bernoulli's equation. This negative pressure is transmitted to the liquid storage chamber 610 to suck the liquid matrix into In the atomization chamber 6212, a liquid film is formed near the atomization port 6203.
  • the liquid film is cut and atomized by the high-speed airflow and then taken away from the atomization port 6203, and then ejected with the airflow.
  • SMD total volume of liquid particles/total surface area of liquid particles, which represents the average particle size of liquid particles.
  • the atomization channel 621 in this embodiment adopts an internal air and external liquid structure for atomization.
  • the nozzle 62 can also use an external air-in-liquid structure for atomization.
  • the liquid substrate is first atomized through a pressure nozzle, and then atomized twice through a pneumatic cyclone, or through a pneumatic cyclone.
  • the cutting liquid film is directly atomized.
  • the nozzle 62 can also be a pneumatic ultrasonic nozzle, which adds a gas resonance cavity on the basis of maintaining the internal gas and external liquid structure.
  • the air supply channel 620, the atomization port 6203, and the atomization channel 621 are all coaxially arranged with the nozzle 62
  • the atomization chamber 6212 is a right cylindrical channel extending longitudinally
  • the liquid inlet channel 622 is Extend laterally and perpendicular to the atomization chamber 6212.
  • the size, shape and other parameters of the atomization port 6203 and the atomization chamber 6212 can affect the negative pressure in the atomization chamber 6212 and the particle size of the generated liquid particles, making the flow rate more stable.
  • the aperture D of the atomization port 6203, the aperture W1 of the atomization chamber 6212, and/or the length H of the atomization chamber 6212 can be set to appropriate sizes as needed.
  • the aperture D of the atomization port 6203 is related to the airflow velocity (m/s) coming out of the atomization port 6203, thereby affecting the particle size of the generated liquid particles.
  • the aperture D of the atomization port 6203 may range from 0.2mm to 0.4mm, preferably from 0.22mm to 0.35mm.
  • the aperture W1 of the atomization chamber 6212 will affect the air flow rate in the atomization chamber 6212, thereby affecting the negative pressure in the atomization chamber 6212 and the liquid inlet channel 622. This negative pressure can cause the liquid matrix to be sucked from the liquid inlet channel 622 to the atomization chamber 6212.
  • the aperture W1 of the atomization chamber 6212 may range from 0.7 mm to 1.3 mm.
  • the length H of the atomization chamber 6212 may be 0.8mm ⁇ 3.0mm. It can be understood that in other embodiments, the atomization chamber 6212 may also have an elliptical, rectangular or other non-circular cross-section; when the atomization chamber 6212 has a non-circular cross-section, the aperture D of the atomization port 6203 or The aperture W1 of the atomization chamber 6212 is its equivalent diameter respectively.
  • equivalent diameter means that the diameter of a circular hole with the same hydraulic radius is defined as the equivalent diameter of a non-circular hole.
  • D ranges from 0.22mm to 0.35mm
  • H ranges from 1.5mm to 3.0mm
  • W1 ranges from 0.7mm to 1.3mm, which can give the nozzle 62 advantages in the manufacturing process.
  • One end of the liquid inlet channel 622 connected to the atomization chamber 6212 has a liquid inlet 6220.
  • the distance L between the liquid inlet 6220 and the atomization surface 6211 is the key to ensuring the formation of the liquid film.
  • the distance L between the liquid inlet 6220 and the atomization surface 6211 is the vertical distance between the center of the liquid inlet 6220 and the atomization surface 6211.
  • the distance L between the liquid inlet 6220 and the atomization surface 6211 may range from 0.3 mm to 0.8 mm.
  • L is 0.35 mm to 0.6 mm.
  • the atomization channel 621 also includes a second expansion channel 6213.
  • the second expansion channel 6213 is connected with the upper end of the atomization chamber 6212 (the end away from the atomization surface 6211), and is used to expand the atomization chamber 6212.
  • the liquid particles generated after atomization are diffused and ejected in the form of jets, increasing the spray area of the liquid particles.
  • the second expansion channel 6213 is a conical channel extending longitudinally and with a hole diameter gradually increasing from bottom to top.
  • the atomization angle ⁇ of the second expansion channel 6213 (that is, the expansion angle of the second expansion channel 6213) must have a suitable range to ensure that the heating component 80 has a sufficient liquid supply area and to ensure that the heating component 80 does not generate local high temperatures.
  • the atomization angle ⁇ of the second expansion channel 6213 may be 30° ⁇ 70°.
  • the second expansion channel 6213 may also be in an elliptical cone shape, a pyramid shape, or other shapes.
  • the air supply channel 620 may include a communication channel 6201 and a contraction channel 6202.
  • the communication channel 6201 is used to communicate with the air source 40, and it can be a straight channel.
  • the contraction channel 6202 communicates with the communication channel 6201 and the atomization channel 621, and its cross-sectional area gradually decreases from the end far away from the atomization channel 621 to the end close to the atomization channel 621, and is used to accelerate the air flow from the air source 40.
  • the connecting channel 6201 is a straight cylindrical channel
  • the shrinking channel 6202 is a conical channel extending longitudinally and with an aperture gradually decreasing from bottom to top. The aperture of the lower end of the shrinking channel 6202 is consistent with the aperture of the connecting channel 6201.
  • the aperture of the upper end of the contraction channel 6202 is consistent with the aperture of the atomization port 6203 of the atomization chamber 6212. It is understood that in other embodiments, the contraction channel 6202 can also be in other shapes such as an elliptical cone shape or a pyramid shape, and the cross section of the communication channel 6201 can be in an elliptical, rectangular or other non-circular shape. In other embodiments, the air supply channel 620 may also include only the constriction channel 6202; or, when the air flow rate is sufficient, the air supply channel 620 may only include the communication channel 6201.
  • the nozzle 62 is at least partially accommodated in the liquid storage assembly 61.
  • the liquid storage assembly 61 is formed with a liquid storage cavity 610 and a lower liquid channel connecting the liquid storage cavity 610 with the liquid inlet channel 622. 613.
  • the liquid inlet channel 622 and the lower liquid channel 613 together form a liquid supply channel 63 that connects the liquid storage chamber 610 and the atomization channel 621 .
  • the liquid supply channel 63 can be used to control the flow rate of liquid supplied to the atomization channel 621 to achieve quantitative liquid supply to the atomization channel 621 .
  • the size of the liquid supply channel 63 can be designed according to the flow demand, that is, the liquid supply channel 63 can generate resistance that matches the liquid supply power under the designed flow rate.
  • the negative pressure generated in the atomization chamber 6212 is the liquid supply power
  • the liquid supply resistance includes the resistance along the liquid supply channel 63 and the negative pressure in the liquid storage chamber 610 .
  • the liquid supply channel 63 may include a main body section 632 and a liquid supply end section 631 that are connected in sequence.
  • the liquid supply end section 631 is close to the atomization channel 621 and connected with the atomization channel 621 , and the main body section 632 is far away from the atomization channel 621 and connected with the liquid storage chamber 610 .
  • the main body section 632 can be a weak capillary force channel extending laterally, that is, weak capillary force can be generated in the main body section 632;
  • the liquid supply end section 631 can be a capillary channel extending laterally, that is, the liquid supply end section 631 Capillary force can be generated inside.
  • a small liquid supply pump (such as a diaphragm pump or a peristaltic pump, etc.) can be used. ) to pressurize the liquid storage chamber 610 to maintain the stability of the liquid supply, so as to achieve quantitative liquid supply to the atomization channel 621.
  • the liquid supply end section 631 of the liquid supply channel 63 close to the atomization channel 621 as a capillary channel, it is ensured that the liquid supply end section 631 has a set of key dimensions (for example, channel cross-sectional area and channel length).
  • the capillary force in section 631 is used to reduce backflow, so as to prevent the liquid substrate from flowing back to the liquid storage chamber 610 when the air source 40 stops working, causing a delay in liquid supply during the next suction, and achieving a stable liquid supply that starts and stops.
  • the liquid supply end section 631 of the liquid supply channel 63 can be formed only in the nozzle 62 , or can be formed in both the nozzle 62 and the liquid storage assembly 61 .
  • the entire liquid inlet channel 622 forms the liquid supply end section 631 of the liquid supply channel 63 .
  • the liquid inlet channel 622 can also be a stepped channel, and the portion of the liquid inlet channel 622 close to the atomization channel 621 forms the final liquid supply section 631 of the liquid supply channel 63 .
  • the cross-sectional area of the final liquid supply section 631 is 0.07mm2 (or aperture 0.3mm), and its channel length is ⁇ 2mm.
  • the cross-sectional area of the final liquid supply section 631 can be 0.05mm2, and its channel length is ⁇ 1mm, which can also achieve the effect of instant start-up.
  • the hydraulic diameter of the liquid inlet channel 51 is less than or equal to 0.3 mm, and stable liquid supply that starts and stops can also be achieved. Generally speaking, the smaller the cross-sectional area of the final liquid supply section 631 is, the smaller the channel length of the final liquid supply section 631 is required to achieve the effect of instant start.
  • the nozzle 62 can be longitudinally disposed in the liquid storage component 61 and can be coaxially arranged with the liquid storage component 61 .
  • a nozzle hole 6141 for the nozzle 62 to penetrate is formed longitudinally in the liquid storage assembly 61 .
  • the nozzle 62 can also be provided with a sealing ring 628.
  • the sealing ring 628 is sealingly fitted between the outer wall surface of the nozzle 62 and the cavity wall surface of the nozzle hole 6141 to prevent liquid leakage.
  • the sealing ring 628 can be made of elastic material such as silicone, and can be an O-shaped sealing ring. In this embodiment, there are two sealing rings 628 , and the two sealing rings 628 are respectively disposed on the upper and lower sides of the liquid inlet channel 622 to prevent the liquid substrate from leaking from the upper and lower sides of the liquid inlet channel 622 .
  • the liquid storage component 61 has a receiving surface 6143.
  • the receiving surface 6143 can be located at the periphery of the air flow channel 627 and can receive the falling liquid particles or condensate.
  • the condensate includes liquid particles that are cold or touch the wall during the outflow process. of condensate.
  • At least one liquid storage tank 6144 may also be formed on the receiving surface 6143.
  • the at least one liquid storage tank 6144 has capillary force.
  • the at least one liquid storage tank 6144 can surround the spout 6210 at the upper end of the air flow channel 627 and can be disposed coaxially with the spout 6210. It can collect and store a certain amount of liquid substrate through capillary force to prevent accumulation on the receiving surface 6143. The liquid substrate flows back to the air flow channel 627, thereby blocking the air flow channel 627.
  • the top surface of the liquid storage component 61 can also be recessed to form a cavity 6142 connected to the nozzle hole 6141, and the lower end of the vent tube 70 can be embedded in the cavity 6142 and connected with the expansion channel. 6213 is connected.
  • a seal 146 may also be provided between the outer wall surface of the lower end of the ventilation tube 70 and the hole wall of the cavity 6142 .
  • the seal 146 can be made of elastic materials such as silicone to improve the sealing performance between the outer wall surface of the lower end of the vent pipe 70 and the hole wall of the cavity 6142, and has a certain heat insulation effect.
  • the cavity 6142 and the nozzle hole 6141 can be coaxially arranged, and the cross-sectional area of the cavity 6142 can be larger than the cross-sectional area of the nozzle hole 6141, so that an end surface of the cavity 6142 close to the nozzle hole 6141 forms an annular receiving surface 6143.
  • the width of the liquid reservoir 6144 may be less than or equal to 0.6 mm. It can be understood that in other embodiments, the liquid storage component 61 may not be provided with the cavity 6142 , and the receiving surface 6143 may also be formed on the upper end surface of the liquid storage component 61 .
  • a liquid guide channel 618 connecting the at least one liquid storage tank 6144 to the atomization chamber 6212 can also be formed in the liquid storage assembly 61, so that the negative pressure in the atomization cavity 6212 can condense the condensed water stored in the liquid storage tank 6144. The liquid is sucked back into the atomization chamber 6212 and atomized again.
  • a back-suction channel 623 is also formed in the nozzle 62 to connect the liquid guide channel 618 and the atomization chamber 6212. The back-suction channel 623 is connected with the liquid guide channel 618 to form a connection between the at least one liquid storage tank 6144 and the atomization chamber 6212.
  • the atomization chamber 6212 is connected to the liquid recovery channel 6216.
  • the aperture or equivalent diameter of the liquid guide channel 618 and the suction back channel 623 can be less than or equal to 0.4mm, or the cross-sectional area of the liquid guide channel 618 and the backsuction channel 623 can be less than or equal to 0.126mm2.
  • One end of the back suction channel 623 connected to the atomization chamber 6212 has a back suction port 6230, and the vertical distance between the center of the back suction port 6230 and the atomization surface 6211 may be 0.3 ⁇ 0.8 mm.
  • the suction channel 623 and the liquid inlet channel 622 are arranged rotationally symmetrically with respect to the central axis of the nozzle 62, so that the installation direction does not need to be considered when assembling the nozzle 62.
  • the upper end surface of the nozzle 62 can be higher than the receiving surface 6143 of its circumference to prevent the condensate on the receiving surface 6143 from entering the expansion channel 6213 and being blown out.
  • the back-suction channel 623 and the liquid inlet channel 622 can also be located on two opposite sides of the nozzle 62 in the circumferential direction, thereby reducing the impact of flow pulsation and making the instantaneous flow rate more stable.
  • the suction channel 623 and the liquid inlet channel 622 may not be rotationally symmetrical with respect to the central axis of the nozzle 62.
  • the suction channel 623 and the liquid inlet channel 622 may also have different sizes.
  • the suction channel 623 and the liquid inlet channel 622 can also be provided at different axial heights of the nozzle 62 .
  • the at least one liquid storage tank 6144 may include a plurality of first liquid storage sub-tanks 6145 and a plurality of annular second liquid storage sub-tanks 6146.
  • the first liquid storage sub-tank 6145 can extend along the radial direction of the receiving surface 6143, and one end of the first liquid storage sub-tank 6145 away from the center of the receiving surface 6143 can be connected with a second liquid storage sub-tank 6146 in the outermost ring.
  • One end of the liquid storage sub-tank 6145 close to the center of the receiving surface 6143 can be connected with a second liquid storage sub-tank 6146 in the innermost ring.
  • the second liquid storage sub-tank 6146 may extend along the circumferential direction of the receiving surface 6143, and may be coaxially disposed with the receiving surface 6143 and the air flow channel 627.
  • the receiving surface 6143 can also be designed with a central convex shape, for example, it can be a spherical arc surface or a tapered surface, which is conducive to the flow and diffusion of condensate near the center of the receiving surface 6143 to the periphery, and avoids the center of the receiving surface 6143 The condensate in the vicinity is blown away without being atomized.
  • the receiving surface 6143 can also be inclined toward the nozzle 62 so that the condensate accumulated on the receiving surface 6143 can flow back to the nozzle 62 for re-atomization.
  • the liquid storage assembly 61 may include a liquid storage body 611 and a liquid storage base 612 that cooperate with each other.
  • the liquid storage assembly 61 is installed on the bracket assembly 14 via the liquid storage base 612 .
  • the liquid storage chamber 610 and the lower liquid channel 613 are both formed in the liquid storage body 613 .
  • an annular liquid storage chamber 610 is concavely formed on the bottom surface of the liquid storage body 611 .
  • the liquid storage chamber 610 can surround the periphery of the air flow channel 627 and can be coaxially arranged with the air flow channel 627 .
  • a side wall of the liquid storage chamber 610 close to the nozzle 62 extends transversely toward the nozzle 62 to form a lower liquid channel 613 .
  • the liquid storage chamber 610 and/or the lower liquid channel 613 may also be formed in the liquid storage seat 612, or may be partially formed in the liquid storage body 611 and partially formed in the liquid storage seat 612. Inside.
  • a liquid injection channel 615 connected to the liquid storage chamber 610 may be formed on the liquid storage body 611 so that liquid can be injected into the liquid storage chamber 610 again after the liquid matrix in the liquid storage chamber 610 is used up.
  • the liquid injection channel 615 extends longitudinally, and the lower end of the liquid injection channel 615 is connected with the liquid storage chamber 610 .
  • the liquid storage atomization assembly 60 may also include a fixed cover 64 .
  • the fixed cover 64 is in the shape of a cylinder with an open upper end.
  • the fixing member 64 is sleeved on the liquid storage body 611 and the liquid storage seat 612 and can be interlocked and fixed with the liquid storage body 611 to connect the liquid storage body 611 and the liquid storage seat 612 to each other.
  • the fixed cover 64 can be made of metal. The thermal expansion and contraction deformation of the metal material when the temperature changes is small, making the connection and fixation between the various components in the liquid storage atomization assembly 60 more stable and reliable.
  • the heating component 80 is received in the vent pipe 70 and located above the nozzle 62 , and is opposite to the discharge port 6210 of the nozzle 62 ; preferably, it is coaxially arranged with the nozzle 62 .
  • the heating component 80 can be heated by resistance conduction heating, infrared radiation heating, electromagnetic induction heating or composite heating.
  • the heating component 80 includes a spiral heating element 81 with a tower spiral structure. It generates heat after being energized and can re-atomize the mist sprayed from the nozzle 62. The average particle size of the re-atomized mist will be smaller than the mist ejected from the nozzle 62.
  • the spiral heating element 81 has a first gap 82 for the mist to pass through.
  • the mist after being atomized again will flow to the suction channel 150 through the first gap 82 with the air flow, and will eventually be sucked or inhaled by the user.
  • the present invention optimizes the structure of the heating component and uses the spiral heating element 81 with a tower spiral structure as the heating component, which can not only play a diversion role, but also increase the amount of liquid particles that follow the air flow.
  • the probability of passing through the middle of the heating component reduces the accumulation of liquid particles on the inner wall of the vent pipe 70 and increases the amount of atomization.
  • the spiral heating element 81 rotates axially along the same straight line, and gradually contracts in the radial direction during the rotation process.
  • the spiral heating element 81 is spirally formed along the axial direction of the vent pipe 70 , and its top corner is disposed toward the suction nozzle 15 .
  • the overall shape of the spiral heating element 81 is generally conical, and the shape of its axial cross-section is triangular. In other embodiments, the overall shape of the spiral heating element 81 is generally a truncated cone, and the shape of its axial cross-section is a trapezoid.
  • the spiral heating element 81 is made of electrically and thermally conductive metal material; in some embodiments, it includes a spiral heating plate, which is axially spirally formed from a plate-shaped body. In other embodiments, the spiral heating element 81 includes a spiral heating piece, which is axially spirally formed from a sheet body.
  • the spiral heating element 81 has a first conductive end 812 and a second conductive end 813 , and the first conductive end 812 and the second conductive end 813 are electrically connected to the two poles of the power supply 30 respectively.
  • the first conductive end 812 and the second conductive end 813 are respectively located at the top and bottom of the spiral heating element 81 .
  • the spiral heating element 81 includes a plurality of spiral turns 811 extending in an axial direction.
  • each spiral turn 811 is formed by axial rotational movement, with a starting end located at the starting point of the rotation, and a tail end located at the end point of the rotation.
  • the length of each spiral turn 811 gradually decreases as the distance between itself and the nozzle 62 increases; preferably, the number of circumferences of each spiral turn 811 is in an arithmetic sequence.
  • each spiral turn 811 is located above the head end thereof, so that each spiral turn 811 has a three-dimensional structure.
  • Two adjacent spiral turns 811 are connected end to end. Since the starting end and the tail end of each spiral turn 811 are located at different axial heights relative to the vent tube 70 , there is a gap between the two adjacent spiral turns 811 .
  • a certain spacing forms the above-mentioned first gap 82 for the passage of mist.
  • the connection between the plurality of spiral turns 811 may be integrally formed, or may be sequentially connected by bonding, welding, etc.
  • each spiral turn 811 has a plate-like structure and is arranged obliquely to the axis of the vent tube 70 .
  • the plane of each spiral turn 811 is set at an angle ⁇ with the axial cross-section parallel to the central axis of the vent pipe (70), that is, the width direction W2 of each spiral turn 811 is located on the same side in its axial cross-section.
  • the axes of the ventilation tube 70 are connected at an included angle ⁇ , and the included angle ⁇ ranges from 15° to 55°; more preferably, the included angle ⁇ is 20° to 30°. It can be understood that a suitable included angle ⁇ can not only ensure that the spiral heating element 81 acts on all liquid particle groups, but also allow the air flow to pass more smoothly.
  • two corresponding projections of any two adjacent spiral turns 811 on the same plane are interlaced with each other.
  • the spiral turn 811 with a relatively larger outer diameter is located on the outer periphery of the spiral turn 811 with a relatively smaller outer diameter, and is adjacent to the spiral turn 811 with a relatively smaller outer diameter.
  • a certain spacing is maintained between the spiral turns 811, and this spacing is the first gap 82; viewed from the axial projection of the spiral heating element 81, the two corresponding projections of two adjacent spiral turns 811 on the same plane partially overlap. , can cause the liquid particle groups to collide with the corresponding spiral turns 811 when passing through the plurality of first slits 82 respectively, thereby increasing the probability of the spiral heating element 81 capturing the liquid particle groups.
  • the number of spiral turns 811 is preferably between 15 and 20. It can be understood that when the number of spiral turns 811 is too large, the first gap 82 between the spiral turns 811 will be too dense, affecting the flow resistance of the airflow; and when the number of spiral turns 811 is too small, the first gap 82 between the spiral turns 811 will be too dense. The first gap 82 will be too sparse, which will cause the mist sprayed from the nozzle 62 to pass through the first gap 82 without being completely heated and atomized, which is not conducive to further reducing the particle size of the mist.
  • the flow distance X between the axial center point of the overall structure of the spiral heating element 81 and the ejection port 6210 in the axial direction of the vent pipe 70 ranges from 3 to 7 mm. It can be understood that if the flow spacing
  • the present invention sets an outwardly inclined first expansion channel 72 at the inlet end of the vent pipe 70; at the same time, a spiral heating element 81 with a tower spiral structure is used as the heating component, which not only leaves enough space for heating.
  • the first gap 82 through which the mist passes has a relatively sealed structure in the axial projection of the spiral heating element 81; so that while effectively avoiding or reducing the occurrence of backflow, it can also increase the number of liquid particles that are heated by the airflow.
  • the probability of components passing through reduces the accumulation of liquid particles on the inner wall of the vent tube and increases the amount of atomization. It can be seen from Figure 9 that the mist passing through the spiral heating element 81 is relatively increased.

Landscapes

  • Nozzles (AREA)

Abstract

电子雾化装置(100),其包括通气管(70)、加热组件(80)和储液雾化组件(60);储液雾化组件(60)包括用于存储液态基质的储液腔(610)以及与储液腔(610)连通的喷嘴(62);喷嘴(62)朝向通气管(70)的入口端设置,用于将液态基质雾化,且将其喷向通气管(70)内;加热组件(80)收容于通气管(70)内,与喷嘴(62)相对设置,以将喷嘴(62)喷出的雾气再次雾化;加热组件(80)包括呈塔式螺旋结构的螺旋发热体(81);螺旋发热体(81)包括轴向回旋延伸的多个螺旋圈(811);任意相邻的两个螺旋圈(811)之间留有供雾气通过的第一缝隙(82);可以起到导流作用,增大液体颗粒群随气流从加热组件(80)通过的概率,减少液体颗粒群在通气管(70)内壁面上积聚,提升雾化量。

Description

电子雾化装置 技术领域
本发明涉及雾化领域,尤其涉及电子雾化装置。
背景技术
在相关技术中,如图1-图2所示,相关通气管70a呈中空结构,其内设有呈直圆柱形的中空通道71a;相关加热组件80a收容于相关通气管70a中,其呈平面的网状结构。雾气从通气管70a的一端流入经过加热组件80a的加热后从通气管70a的另一端流出。
虽然相关加热组件80a设有用于通过雾气的网孔,但是由于防止液体颗粒群未完全加热雾化后便可以通过网孔,往往网孔的面积会设计得比较小,造成雾气通过的面积不足,大部分的液体颗粒群会被阻挡反弹,或者随着气流黏附于相关通气管70a的内壁面,难以经由相关加热组件80a加热雾化后流出。
发明内容
本发明针对上述缺陷,提供一种电子雾化装置。
本发明解决其技术问题所采用的技术方案是:构造一种电子雾化装置,包括通气管、加热组件和储液雾化组件;储液雾化组件包括用于存储液态基质的储液腔以及与储液腔连通的喷嘴;喷嘴朝向通气管的入口端设置,用于将液态基质雾化,且将其喷向通气管内;
所述加热组件收容于所述通气管内,与所述喷嘴相对设置,以将所述喷嘴喷出的雾气再次雾化;
所述加热组件包括呈塔式螺旋结构的螺旋发热体;所述螺旋发热体包括轴向回旋延伸的多个螺旋圈;任意相邻的两个螺旋圈之间留有供雾气通过的第一缝隙。
优选地,所述多个螺旋圈的周长随着自身与所述喷嘴之间的距离增加而逐渐减小。
优选地,所述多个螺旋圈的周长数呈等差数列。
优选地,所述螺旋圈呈板状结构。
优选地,每个所述螺旋圈在其轴截面中一侧的宽度方向W2与自身轴向连接呈夹角设置。
优选地,所述夹角为夹角θ,所述夹角θ的范围区间为15°~55°。
优选地,所述夹角θ的范围区间为20°~30°。
优选地,任意相邻的两个所述螺旋圈各自在轴向上的投影相互交错。
优选地,所述多个螺旋圈的数量为15~20个。
优选地,所述通气管包括自其所述入口端内径逐渐向外增大的第一扩张通道、以及与所述第一扩张通道连通的出气通道;所述喷嘴喷出的雾气从所述扩张通道流向所述出气通道。
优选地,所述喷嘴包括用于将液态基质雾化的雾化部;所述雾化部包括用于将雾气扩散喷出的第二扩张通道;
所述第一扩张通道与所述第二扩张通道之间呈流线型平滑连接。
优选地,所述出气通道与第一扩张通道之间为流线型平滑连接。
优选地,所述扩张通道的最大内径与所述出气通道的内径相等。
优选地,所述通气管还包括用于输送气体进入通气管内部的补气孔;所述补气孔设于所述通气管的侧壁。
优选地,所述通气管包括至少两个所述补气孔,所述至少两个所述补气孔沿通气管周向等距间隔排布。
优选地,所述补气孔自所述通气管的外侧壁向远离所述喷嘴方向延伸,且相对于所述通气管的轴线倾斜设置。
优选地,所述补气孔的轴线与所述通气管的轴线连接呈夹角β设置,所述夹角β为120°~150°。
优选地,所述通气管还包括用于输送气体进入通气管内部的补气孔;
所述补气孔设于所述通气管中所述第一扩张通道与所述出气通道的连接交界处。
优选地,所述第二扩张通道设有朝向所述通气管的喷出口;
所述螺旋发热体整体结构的轴向中心点与所述喷出口在所述通气管轴线方向上留有流动间距X,所述流动间距X的范围区间为3~7mm。
优选地,所述螺旋发热体与所述通气管共轴设置。
实施本发明具有以下有益效果:本发明通过优化加热组件的结构,采用塔式螺旋结构的螺旋发热体作为加热组件,可以起到导流作用,增大液体颗粒群随气流从加热组件通过的概率,减少液体颗粒群在通气管内壁面上积聚,提升雾化量。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是相关技术的电子雾化装置中相关加热组件设于相关通气管的结构示意图;
图2是根据图1的结构,模拟从喷嘴喷出的雾气进入相关通气管内且经相关加热组件加热蒸发的流场仿真分布图;
图3是本发明第一实施例中电子雾化装置的立体结构示意图;
图4是图3所示电子雾化装置的纵向剖面结构示意图;
图5是图4中电子雾化装置的储液雾化组件的纵向剖面结构示意图;
图6是图5所示储液雾化组件的剖面分解结构示意图;
图7是图6中喷嘴的纵向剖面结构示意图;
图8是图4中通气管与储液雾化组件的纵向剖面结构示意图;
图9是根据图8的结构,模拟从喷嘴喷出的雾气进入通气管内且经加热组件加热蒸发的流场仿真分布图;
图10是本发明中加热组件在一些实施例中的结构示意图;
图11是图10所示的加热组件从在俯视角度下的结构示意图;
图12是图10所示的加热组件从在侧视角度下的结构示意图;
图13是图10所示的加热组件的纵向剖面结构示意图。
实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。以下描述中,需要理解的是,“前”、“后”、“上”、“下”、“左”、“右”、“纵”、“横”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“头”、“尾”等指示的方位或位置关系为基于附图所示的方位或位置关系、以特定的方位构造和操作,仅是为了便于描述本技术方案,而不是指示所指的装置或元件必须具有特定的方位,因此不能理解为对本发明的限制。
还需要说明的是,除非另有明确的规定和限定,“安装”、“相连”、“连接”、“固定”、“设置”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。当一个元件被称为在另一元件“上”或“下”时,该元件能够“直接地”或“间接地”位于另一元件之上,或者也可能存在一个或更多个居间元件。术语“第一”、“第二”、“第三”等仅是为了便于描述本技术方案,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量,由此,限定有“第一”、“第二”、“第三”等的特征可以明示或者隐含地包括一个或者更多个该特征。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本发明实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本发明。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本发明的描述。
图3-图13示出了本发明第一实施例中的电子雾化装置100,该电子雾化装置100可用于雾化液态基质以生成气溶胶,该气溶胶可供用户吸食或者吸食,其在本实施例中可大致呈圆柱状。可以理解地,在其他实施例中,该电子雾化装置100也可呈椭圆柱状、扁平柱状或方形柱状等其他形状。该液态基质可以包括烟油或药液等。
该电子雾化装置100可包括外壳10以及收容于外壳10中的控制模块20、电源30、气源40、储液雾化组件60和加热组件80。控制模块20分别与气源40、加热组件80电连接,用于接收用户的指令,该指令可由用户触发或者在电子雾化装置100满足一定条件后自动触发,控制模块20再根据该指令控制气源40、加热组件80的工作。控制模块20可以包括气源控制模块和加热控制模块分别对气源40和加热组件80进行控制。电源30分别与控制模块20、气源40、加热组件80电连接,用于向控制模块20、气源40、加热组件80提供电能。储液雾化组件60包括储液组件61以及喷嘴62,其中,储液组件61内形成有用于存储液态基质的储液腔610,喷嘴62内形成有与储液腔610相连通的气流通道627,液态基质能够在气流通道627内雾化成液体颗粒。气源40与喷嘴62相连通,用于为喷嘴62提供定量的高压空气,例如,可以通过轴流泵实现提供高速气流,也可以通过释放压缩气体实现提供高速气流。该高压空气可辅助喷嘴62将来自储液腔610的液态基质雾化成细小的液体颗粒。喷嘴62喷出的液体颗粒撞击加热组件80,经过加热组件80加热后生成气溶胶由气流带出以供用户吸食或者吸入。
在一些实施例中,也可以通过其他的方式将液态基质雾化成细小的液体颗粒群,如高压喷嘴等,在此不作限制。将细小的液体颗粒群再通过加热组件80进一步的加热雾化。
本发明通过液态基质雾化成液体颗粒后再由加热组件80蒸发的方式,由于雾化后形成的细小液体颗粒的表面积得到了极大的扩展,从而更容易加热蒸发,一方面可提高热量及气溶胶的转化效率,另一方面可降低加热组件80蒸发过程的温度,实现低温雾化。在较低的加热雾化温度下,液态基质只完成物理变化过程,从而克服了传统的多孔陶瓷或者多孔棉条件下因必须采用高温方式雾化而导致的液态基质热裂解变质的问题,更不会发生烧焦、积碳和重金属挥发等现象,从而能够保持不同液态基质所特有的成分和香精香料体系,最终使吸入者感受到与原始液态基质相对应的特有的口感。此外,加热组件80与储液腔610不接触,加热组件80不用长期浸泡在液态基质中,减少了加热组件80对液态基质的污染,从而减少了雾化后生成的气溶胶中的杂质气体。
在一些实施例中,外壳10可包括下壳12以及沿纵向配合于下壳12上端的上壳11。具体地,在本实施例中,下壳12可呈两端开口的圆筒状,该外壳10还包括沿纵向封盖于下壳12下端开口处的底座13。可以理解地,在其他实施例中,该底座13也可与下壳12一体成型。在另一些实施例中,该雾化装置还可包括沿纵向设置于上壳11中的通气管70,通气管70呈中空的管状结构,可作为液体颗粒群加热雾化的雾化腔。通气管70具有两个开口端,将靠近喷嘴62的开口端可作为入口端,且将远离喷嘴62的开口端作为出口端;其中,喷嘴62的喷出口6210设置在通气管70的入口端或其周边处,也可看作设置在通气管70的上游,以向通气管70内喷入液体颗粒群;加热组件80可收容于通气管70中,与喷出口6210相对设置;液体颗粒群经加热组件80再次雾化后形成的气溶胶从通气管70的出口端输出。可选地,加热组件80、通气管70、外壳10均可同轴设置。
在一些实施例中,通气管70的内壁面界定出与喷嘴62相连通的第一扩张通道72、以及与第一扩张通道72连通的出气通道71。在本实施例中,第一扩张通道72位于喷嘴62的上方;出气通道71位于第一扩张通道72的上方。第一扩张通道72、出气通道71与喷嘴62同轴设置。
第一扩张通道72自通气管70的入口端向外倾斜成形,用于减少通气管70内部的涡流产生,用于减少通气管70内部的涡流产生,可有效避免或减小涡流。也可以理解,第一扩张通道72自通气管70的入口端内径逐渐向外增大。在本实施例中,第一扩张通道72为沿纵向延伸且孔径由下往下逐渐增大的圆台形通道,连通于喷嘴62的第二扩张通道6213的上端;其中第一扩张通道72中靠近喷嘴62的开口作为上述通气管70的入口端。在一些实施例中,第一扩张通道72内壁的倾斜角度与第二扩张通道6213的内壁的倾斜角度相适配,以使得第一扩张通道72与第二扩张通道6213之间为流线型平滑连接,可进一步减少通气管70内部的涡流产生。
出气通道71的下端与第一扩张通道72相连通,优选出气通道71与第一扩张通道72之间为流线型平滑连接;出气通道71的上端与外壳10中的吸嘴15相连通;加热组件80收容于出气通道71中。在本实施例中,出气通道71为沿通气管70轴向延伸的直圆柱形通道;出气通道71的内径与第一扩张通道72的最大内径相等。
在一些实施例中,通气管70还可包括设于其侧壁上的补气孔73,用于输送气体进入通气管70内部,以优化流场分布。可以理解地,在液体颗粒群流入通气管70内部时,由补气孔73补入的气体可辅助液体颗粒群通过加热组件80,避免液体颗粒群被加热组件80阻挡反弹后,在通气管70内位于入口端与加热组件80之间的区域形成涡流。具体地,补气孔73贯穿通气管70的侧壁成形,其数量可以设置一个或多个,根据需要向通气管70内部补入的气体量而定。在本实施例中,补气孔73至少设置两个,其中每个补气孔73自通气管70外侧壁向上倾斜贯穿设置,即补气孔73自通气管70外侧壁向其出口端延伸,且相对于通气管70的轴线倾斜设置。补气孔73的轴线与通气管70轴线连接呈夹角β设置,夹角β优选为120°~150°。可选地,补气孔73可沿通气管70周向等距间隔排布,优选设置在第一扩张通道72与出气通道71的连接交界处。
可选地,由补气孔73补入的气体可以是空气,其空气补入的动力可来源于用户抽吸时带动电子雾化装置100内部的空气流动,也可以是补气孔73与气源40相连通,由气源40通过补气孔73向通气管70内部通入空气。
在一些实施例中,下壳12中可设置有支架组件14 ,该支架组件14 将下壳12内分隔成位于上部的第一收容空间121以及位于下部的第二收容空间122。控制模块20、电源30、气源40均可收容于该第二收容空间122中。其中,该控制模块20可包括电路板以及形成于该电路板上的控制电路,该电源30可包括电池,该气源40可包括气泵。储液雾化组件60可收容于第一收容空间121中并可支撑于支架组件14 上。在一些实施例中,该雾化装置还可包括气流感应元件50,该气流感应元件50可安装于支架组件14 的底部。气流感应元件50与控制模块20电连接,用于感应用户抽吸时的气流变化并传递信号至控制模块20。控制模块20在检测到用户有抽吸动作时,发送信号至气源40以启动气源40开始供气,并发送信号至加热组件80以启动加热组件80开始加热。在一些实施例中,气流感应元件50可与为负压传感器,例如咪头。
在一些实施例中,外壳10还可包括设置于上壳11顶部的吸嘴15,用户可通过吸嘴15吸食气溶胶。该吸嘴15呈中空管状,其内壁面界定出与出气通道71相连通的用于输出气溶胶的吸气通道150。吸嘴15的下端可嵌置于通气管70中,吸嘴15的下端外壁面与通气管70的上端内壁面密封配合。吸嘴15的上端形成有吸气口1501,该吸气口1501与吸气通道150的上端相连通。在本实施例中,吸嘴15与上壳11分别成型后再组装在一起;在其他实施例中,吸嘴15与上壳11也可一体成型。
在一些实施例中,在一些实施例中出气,该雾化装置还可包括可拆卸地罩设于上壳11外的防尘罩90。在不需要使用雾化装置时,可将防尘罩90罩设于上壳11外,防止灰尘等杂质进入吸气通道150。
如图3-6所示,喷嘴62内形成有气流通道627和进液通道622。该气流通道627用于流通高速气流,该进液通道622用于向气流通道627输入液态基质,从进液通道622进入到气流通道627的液态基质受气流通道627中流通的高速气流的作用而雾化。可以理解地,在其他实施例中,气流通道627也可采用其他方式进行雾化,例如,也可在气流通道627内设置气泡喷嘴,通过气泡雾化的形式生成液体颗粒。
在一些实施例中,气流通道627包括供气通道620以及与供气通道620相连通的雾化通道621。其中,进液通道622连通储液腔610与雾化通道621,供气通道620连通气源40与雾化通道621,雾化通道621靠近供气通道620的一端端面形成雾化面6211,雾化通道621远离供气通道620的一端具有喷出口6210。从进液通道622流入到雾化通道621中的液态基质能够在雾化面6211形成液膜,该液膜能够被来自供气通道620的高速气流切割雾化成细小的液体颗粒,该液体颗粒再由雾化通道621输出并经由喷出口6210喷出。
雾化面6211上还形成有雾化口6203,来自供气通道620的高速气流经由雾化口6203喷出到雾化通道621内。具体地,在本实施方式中,雾化面6211为同心圆环状,雾化面6211的内壁面界定出雾化口6203。在其他实施例中,雾化面6211或雾化口6203也可具有椭圆形或矩形等其他形状。
雾化通道621包括雾化腔6212,雾化腔6212分别与进液通道622、和供气通道620中的收缩通道6202相连通,雾化腔6212的底面形成雾化面6211。由雾化口6203喷出的高速气流在雾化腔6212中高速流动,高速气流由伯努利方程在进液通道622内产生负压,此负压传导至储液腔610将液态基质吸出至雾化腔6212,在雾化口6203附近形成液膜,该液膜被高速气流切割雾化后带离雾化口6203,之后随气流喷出。液态基质在雾化腔6212内的雾化过程为非相变的方式,雾化腔6212内雾化后形成的液体颗粒的粒径分布可达到SMD=30μm范围内。其中,SMD=液体颗粒总体积/液体颗粒总表面积,表示了液体颗粒的平均粒径。
需要说明的是,本实施例中的雾化通道621采用的是内气外液式结构进行雾化。在其他实施例中,喷嘴62也可采用外气内液式结构进行雾化,例如,通过压力喷嘴实现液态基质的初次雾化、再通过气动旋流二次雾化,或者,通过气动旋流切割液膜直接雾化。在另一些实施例中,喷嘴62也可以为气动超声式喷嘴,在维持内气外液式结构的基础上,增加气体共振腔。
具体地,在本实施例中,供气通道620、雾化口6203、雾化通道621均与喷嘴62同轴设置,雾化腔6212为沿纵向延伸的直圆柱形通道,进液通道622沿横向延伸并与雾化腔6212垂直。雾化口6203、雾化腔6212的尺寸、形状等参数能够影响雾化腔6212内负压的大小以及生成的液体颗粒的粒径大小,使流量更稳定。在一些实施例中,雾化口6203的孔径D、雾化腔6212的孔径W1和/或雾化腔6212的长度H可根据需要设置合适的尺寸。
具体地,雾化口6203的孔径D与从雾化口6203出来的气流速度(m/s)相关,从而影响生成的液体颗粒的粒径大小。在一些实施例中,雾化口6203的孔径D的范围可以为0.2mm~0.4mm ,优选为0.22mm~0.35mm。
雾化腔6212的孔径W1会影响雾化腔6212中的气流流速大小,从而影响雾化腔6212、进液通道622内的负压大小。该负压可使液态基质从进液通道622吸至雾化腔6212。在一些实施例中,雾化腔6212的孔径W1的范围可以为0.7mm~1.3mm。
在一些实施例中,雾化腔6212的长度H可以为0.8mm~3.0mm。可以理解地,在其他实施例中,雾化腔6212也可具有椭圆形或矩形等其他非圆形状的横截面;当雾化腔6212具有非圆横截面时,雾化口6203的孔径D或雾化腔6212的孔径W1分别为其当量直径。术语“当量直径”是指,把水力半径相等的圆孔的直径定义为非圆孔的当量直径。
在一些实施例中,D的范围为0.22mm~0.35mm,H的范围为1.5mm~3.0mm,W1的范围为0.7mm~1.3mm,能够使喷嘴62在制造工艺上得到优势。
进液通道622与雾化腔6212相连通的一端具有一进液口6220,该进液口6220与雾化面6211之间的距离L是保证液膜形成的关键。在本实施例中,进液口6220与雾化面6211之间的距离L为进液口6220的中心与雾化面6211之间的垂直距离。在一些实施例中,进液口6220与雾化面6211之间的距离L的范围可以为0.3mm~0.8mm,较佳地,L为0.35mm~0.6mm。
在一些实施例中,雾化通道621还包括第二扩张通道6213,第二扩张通道6213与雾化腔6212的上端(远离雾化面6211的一端)相连通,用于将雾化腔6212内雾化后生成的液体颗粒以射流的形式扩散喷出,增大液体颗粒的喷射面积。在本实施例中,第二扩张通道6213为沿纵向延伸且孔径由下往上逐渐增大的圆锥形通道。第二扩张通道6213的雾化角α(即第二扩张通道6213的扩张角)须具有合适的范围,以保证加热组件80具有充分的供液面积,确保加热组件80不会产生局部高温现象。在一些实施例中,第二扩张通道6213的雾化角α可以为30°~70°。在其他实施例中,第二扩张通道6213也可以为椭圆锥形状或金字塔形状等其他形状。
供气通道620可包括连通通道6201和收缩通道6202。连通通道6201用于与气源40相连通,其可以为直通道。收缩通道6202连通连通通道6201与雾化通道621,其横截面面积从远离雾化通道621的一端向靠近雾化通道621的一端逐渐减小,用于将来自气源40的气流加速。在本实施例中,连通通道6201为直圆柱状通道,收缩通道6202为沿纵向延伸且孔径由下往上逐渐减小的圆锥形通道,收缩通道6202的下端孔径与连通通道6201的孔径一致,收缩通道6202的上端孔径与雾化腔6212的雾化口6203的孔径一致。可以理解地,在其他实施例中,收缩通道6202也可以为椭圆锥形状或金字塔形状等其他形状,连通通道6201的横截面可以是椭圆形或矩形等其他非圆形状。在另一些实施例中,供气通道620也可仅包括收缩通道6202;或者,当气流流速足够时,供气通道620也可仅包括连通通道6201。
再如图3、图5所示,喷嘴62至少部分收容于储液组件61中,储液组件61内形成有储液腔610以及将储液腔610与进液通道622相连通的下液通道613。进液通道622、下液通道613共同形成连通储液腔610与雾化通道621的供液通道63。
供液通道63可用于控制供液至雾化通道621的流量,实现雾化通道621的定量供液。通常,可按照流量需求匹配设计供液通道63的尺寸,即在设计流量下供液通道63能产生匹配供液动力的阻力。具体地,雾化腔6212内产生的负压为供液动力,而供液阻力则包括供液通道63的沿程阻力以及储液腔610内的负压。通过计算设计流量下供液通道63所需的沿程阻力,设计供液通道63的具体直径与长度。供液通道63可包括依次连通的主体段632以及供液末段631。该供液末段631靠近雾化通道621并与雾化通道621相连通,该主体段632远离雾化通道621并与储液腔610相连通。在本实施例中,主体段632可以为沿横向延伸的弱毛细力通道,即主体段632内能够产生弱毛细力;供液末段631为沿横向延伸的毛细通道,即供液末段631内能够产生毛细力。可以理解地,在其他实施例中,也可采用其他自动或非自动的供液方式实现对雾化通道621的定量供液,例如,可通过采用小型供液泵(例如隔膜泵或蠕动泵等)对储液腔610进行加压,保持维持供液的稳定性,来实现对雾化通道621的定量供液。
抽吸结束后,由于储液腔610内存在负压,该负压会回吸供液末段631内的液态基质,从而造成下一次抽吸时供液不及时。因此,通过将供液通道63靠近雾化通道621的供液末段631设计为毛细通道,保证供液末段631具有一套关键尺寸(例如,通道截面积和通道长度),利用供液末段631内的毛细力来减少回流,以防止气源40停止工作时液态基质回流至储液腔610而造成下一次抽吸时供液延迟,实现即起即停的稳定供液。
再如图3、图5所示,供液通道63的供液末段631可仅形成在喷嘴62内,也可同时形成在喷嘴62和储液组件61内。在本实施例中,进液通道622的整体形成供液通道63的供液末段631。可以理解地,在其他实施例中,进液通道622也可以为阶梯型通道,进液通道622靠近雾化通道621的部分形成供液通道63的供液末段631。在一些实施例中,供液末段631截面积为0.07mm²(或孔径0.3mm),其通道长度≥2mm,气源40停止工作时供液末段631内的液态基质不会因储液腔610内的负压向储液腔610回流,防止下一次气源40启动时还需要等待液态基质填充供液末段631造成的雾化过程延迟,达到即时启动的效果。在另一些实施例中,供液末段631的截面积可以为0.05mm²,其通道长度≥1mm,也可达到即时启动的效果。在另一些实施例中,进液通道51的水力直径小于等于0.3mm,也可实现即起即停的稳定供液。通常来说,供液末段631的截面积越小,需要达到即时启动的效果所需的供液末段631的通道长度越小。
喷嘴62可沿纵向穿设于储液组件61中并可与储液组件61同轴设置。储液组件61内沿纵向形成有用于供喷嘴62穿设的喷嘴孔6141。喷嘴62外还可套设有密封圈628,密封圈628密封地配合于喷嘴62的外壁面和喷嘴孔6141的腔壁面之间,以防止漏液。密封圈628可采用硅胶等弹性材料制成,其可以为O形密封圈。在本实施例中,密封圈628有两个,两个密封圈628分别设置于进液通道622的上下两侧,防止液态基质从进液通道622的上下两侧泄露。
储液组件61具有一承接面6143,该承接面6143可位于气流通道627的外围,其能够承接回落的液体颗粒或者冷凝液,该冷凝液包括液体颗粒在流出过程中遇冷或者触碰壁面形成的冷凝液。承接面6143上还可形成有至少一个储液槽6144,在一些实施例中,该至少一个储液槽6144具有毛细作用力。该至少一个储液槽6144可环绕于气流通道627上端的喷出口6210外并可与喷出口6210同轴设置,其能够通过毛细作用力收集并存储一定量的液态基质,防止承接面6143上积蓄的液态基质回流至气流通道627,从而堵塞气流通道627。
具体地,在本实施例中,储液组件61的顶面还可下凹形成有与喷嘴孔6141相连通的容腔6142,通气管70的下端可嵌置于容腔6142中并与扩张通道6213相连通。通气管70的下端外壁面与容腔6142的孔壁之间还可设置有密封件146。密封件146可采用硅胶等弹性材料制成,以提高通气管70的下端外壁面与容腔6142的孔壁之间的密封性能,并具有一定的隔热作用。容腔6142、喷嘴孔6141可同轴设置,容腔6142的横截面积可大于喷嘴孔6141的横截面积,使得容腔6142靠近喷嘴孔6141的一端端面形成环状的承接面6143。在一些实施例中,储液槽6144的槽宽可小于等于0.6mm。可以理解地,在其他实施例中,储液组件61内也可不设置有容腔6142,承接面6143也可形成于储液组件61的上端面。
储液组件61内还可形成有将该至少一个储液槽6144与雾化腔6212相连通的导液通道618,以使雾化腔6212内的负压能够将储液槽6144内存储的冷凝液回吸至雾化腔6212再次雾化。相应地,喷嘴62内还形成有将导液通道618与雾化腔6212相连通的回吸通道623,该回吸通道623与导液通道618连通形成用于将该至少一个储液槽6144与雾化腔6212相连通的液体回收通道6216。导液通道618、回吸通道623的孔径或当量直径可小于等于0.4mm,或者,导液通道618、回吸通道623的截面积小于等于0.126mm²。回吸通道623与雾化腔6212相连通的一端具有一回吸口6230,该回吸口6230的中心与雾化面6211之间的垂直距离可以为0.3~0.8mm。进一步地,在本实施例中,回吸通道623、进液通道622相对于喷嘴62的中轴线呈旋转对称设置,从而在组装喷嘴62时可无需考虑安装方向。喷嘴62安装至喷嘴孔6141中后,喷嘴62的上端面可高出其周圈的承接面6143,避免承接面6143的冷凝液进入扩张通道6213而被吹出。此外,回吸通道623、进液通道622还可位于喷嘴62的周向两相对侧,从而还能降低流量脉动带来的影响,使得瞬时流量更加稳定。可以理解地,在其他实施例中,回吸通道623、进液通道622也可相对于喷嘴62的中轴线不呈旋转对称设置,例如,回吸通道623、进液通道622也可具有不同尺寸,和/或,回吸通道623、进液通道622也可设置于喷嘴62的不同轴向高度上。
在一些实施例中,该至少一个储液槽6144可包括若干个第一储液子槽6145以及若干个环状的第二储液子槽6146。第一储液子槽6145可沿承接面6143的径向延伸,第一储液子槽6145远离承接面6143中心的一端可与最外圈的一个第二储液子槽6146相连通,第一储液子槽6145靠近承接面6143中心的一端可与最内圈的一个第二储液子槽6146相连通。第二储液子槽6146可沿承接面6143的周向延伸,其可与承接面6143、气流通道627同轴设置。进一步地,承接面6143还可设计为中心凸起的形状,例如,其可以为球形弧面或锥形面,有利于承接面6143中心处附近的冷凝液向外围流动扩散,避免承接面6143中心处附近的冷凝液未经雾化而直接被吹走。在另一些实施例中,承接面6143也可向喷嘴62倾斜,使得承接面6143上积蓄的冷凝液能够流回至喷嘴62重新雾化。
储液组件61可包括相互配合的储液主体611和储液座612,储液组件61经由储液座612安装于支架组件14上。在本实施例中,储液腔610、下液通道613均形成于储液主体613内。具体地,储液主体611的底面上凹形成圆环状的储液腔610,该储液腔610可环绕于气流通道627的外围并可与气流通道627同轴设置。储液腔610靠近喷嘴62的一侧腔壁面沿横向向喷嘴62延伸形成下液通道613。可以理解地,在其他实施例中,储液腔610和/或下液通道613也可形成于储液座612内,或者也可部分形成于储液主体611内、部分形成于储液座612内。
进一步地,储液主体611上还可形成有与储液腔610相连通的注液通道615,以在储液腔610内的液态基质用完后能够再次向储液腔610内注液。在本实施例中,注液通道615沿纵向延伸,注液通道615的下端与储液腔610相连通。
进一步地,该储液雾化组件60还可包括固定盖64。固定盖64呈上端开口的筒状,固定件64套设于储液主体611和储液座612外并可与储液主体611相互扣合固定,以将储液主体611和储液座612相互固定。进一步地,固定盖64可以为金属材质,金属材质在温度变化时而产生的热胀冷缩形变较小,使得储液雾化组件60内各个部件之间的连接固定更加稳定可靠。
如图8-图13所示,加热组件80收容于通气管70中并位于喷嘴62的上方,且与喷嘴62的喷出口6210相对设置;优选与喷嘴62同轴设置。加热组件80可采用电阻传导加热、红外辐射加热、电磁感应加热或者复合加热等方式进行加热。在本实施例中,加热组件80包括塔式螺旋结构的螺旋发热体81,其在通电后发热,能够对从喷嘴62喷出的雾气再次雾化,再次雾化后的雾气的平均粒径会小于从喷嘴62喷出的雾气。同时,螺旋发热体81留有用于供雾气通过的第一缝隙82,再次雾化后的雾气会随着气流经第一缝隙82流向吸气通道150,最终被用户所吸食或吸入。
可以理解地,相较于相关技术,本发明通过优化加热组件的结构,采用塔式螺旋结构的螺旋发热体81作为加热组件,不仅可以起到导流作用,还可以增大液体颗粒群随气流从加热组件中部通过的概率,减少液体颗粒群在通气管70内壁面上积聚,提升雾化量。
进一步地,螺旋发热体81沿同一直线轴向回旋、且在回旋过程中逐渐径向收缩成形。在本实施例中,螺旋发热体81沿通气管70的轴向回旋成形,其顶角朝向吸嘴15设置。
在一些实施例中,螺旋发热体81的整体形状大致呈圆锥形,其轴截面的形状呈三角形。在另一些实施例中,螺旋发热体81的整体形状大致呈圆台形,其轴截面的形状呈梯形。
螺旋发热体81由导电导热的金属材质制成;其在一些实施例中包括螺旋发热板,是由板状体轴向螺旋成形。在另一些实施例中,螺旋发热体81包括螺旋发热片,是由片状体轴向螺旋成形。
在一些实施例中,该螺旋发热体81具有第一导电端812和第二导电端813,该第一导电端812和第二导电端813分别与电源30的两极电性连接。在本实施例中,第一导电端812和第二导电端813分别位于螺旋发热体81的顶部以及底部。
进一步地,螺旋发热体81包括轴向回旋延伸的多个螺旋圈811。具体地,每个螺旋圈811轴向回旋运动一周成形,具有位于回旋始点的始端、以及位于回旋终点的尾端。各个螺旋圈811的长度随着自身与喷嘴62之间的距离增加而逐渐减小;优选各个螺旋圈811的周长数呈等差数列。
其中,每个螺旋圈811的尾端位于其首端的上方,使得每个螺旋圈811呈立体结构。相邻的两个螺旋圈811首尾相接,由于每个螺旋圈811的始端和尾端相对于通气管70,位于不同的轴向高度,使得在相邻的两个螺旋圈811之间留有一定的间距,该间距形成上述供雾气通过的第一缝隙82。可选地,多个螺旋圈811之间的连接可以是一体成型,也可以是通过粘接、焊接等方式依次接驳而成。
在一些实施例中,如图13所示,每个螺旋圈811呈板状结构,且倾斜于通气管70的轴线设置。具体地,每个螺旋圈811所在平面与平行于所述通气管(70)中轴线的轴截面呈夹角θ设置,即每个螺旋圈811在其轴截面中位于同一侧的宽度方向W2与通气管70的轴线连接呈夹角θ设置,夹角θ的取值范围区间为15°~55°;更优选的,夹角θ为20°~30°。可以理解地,合适的夹角α不仅可以确保螺旋发热体81作用于所有液体颗粒群,还可以使得气流更顺畅地通过。
在该实施例中,任意相邻的两个螺旋圈811在同一平面上的两个对应投影相互交错。可以理解地,如图13所示,相邻的两个螺旋圈811中,外径相对更大的螺旋圈811位于外径相对更小的螺旋圈811的外周,且与外径相对更小的螺旋圈811之间保持一定的间距,该间距即为第一缝隙82;从螺旋发热体81的轴向投影上看,相邻的两个螺旋圈811在同一平面上的两个对应投影部分重叠,可以使得液体颗粒群分别从多个第一缝隙82通过时会与对应的螺旋圈811发生碰撞,从而提高螺旋发热体81捕获液体颗粒群的几率。
在一些实施例中,在螺旋发热体81中,螺旋圈811的数量优选在15~20个之间。可以理解地,当螺旋圈811的数量过多时,螺旋圈811之间的第一缝隙82会过于稠密,影响气流的流动阻力;而当螺旋圈811的数量过少时,螺旋圈811之间的第一缝隙82会过于稀疏,会使得喷嘴62喷出的雾气在未经完全加热雾化的状态下就已经穿过第一缝隙82,不利于进一步减少雾气的粒径。
在一些实施例中,如图8所示,螺旋发热体81整体结构的轴向中心点与喷出口6210在通气管70轴线方向上的流动间距X的范围区间在3~7mm之间。可以理解地,流动间距X在该范围区间内,可以缩短螺旋发热体81与通气管70的内壁面之间的距离,降低液体颗粒群黏附在通气管70的内壁的概率。
综上,如图2所示,在相关技术中,由于相关加热组件80a提供雾气通过的网孔面积过于小,喷入相关通气管70a内部的液体颗粒群会随着气流接触相关加热组件80a时,大部分的液体颗粒群会被阻挡反弹,在相关通气管70a内位于入口端与相关加热组件80a之间的区域形成涡流,导致相关通气管70a靠近入口端的内壁面黏附有由液体颗粒群积聚形成的液体。从图2可见穿过相关加热组件80a的雾气相对较少。
而如图9所示,本发明通过在通气管70的入口端设置向外倾斜的第一扩张通道72;同时,采用呈塔式螺旋结构的螺旋发热体81作为加热组件,不仅留有足够令雾气通过的第一缝隙82,而且还在螺旋发热体81的轴向投影上相对呈密封结构;使得在有效避免或减少回流现象的发生的同时,还可以提高增大液体颗粒群随气流从加热组件通过的概率,减少液体颗粒群在通气管内壁面上积聚,提升雾化量。从图9可见,穿过螺旋发热体81的雾气相对增加许多。
可以理解的,以上实施例仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制;应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,可以对上述技术特点进行自由组合,还可以做出若干变形和改进,这些都属于本发明的保护范围;因此,凡跟本发明权利要求范围所做的等同变换与修饰,均应属于本发明权利要求的涵盖范围。

Claims (10)

  1. 一种电子雾化装置,其特征在于,包括通气管(70)、加热组件(80)和储液雾化组件(60);储液雾化组件(60)包括用于存储液态基质的储液腔(610)以及与储液腔(610)连通的喷嘴(62);所述喷嘴(62)朝向通气管(70)的入口端设置,用于将液态基质雾化,且将其喷向通气管(70)内;
    所述加热组件(80)收容于所述通气管(70)内,与所述喷嘴(62)相对设置,以将所述喷嘴(62)喷出的雾气再次雾化;
    所述加热组件(80)包括呈塔式螺旋结构的螺旋发热体(81);所述螺旋发热体(81)包括轴向回旋延伸的多个螺旋圈(811);任意相邻的两个螺旋圈(811)之间留有供雾气通过的第一缝隙(82)。
  2. 根据权利要求1所述的电子雾化装置,其特征在于,所述多个螺旋圈(811)的周长随着自身与所述喷嘴(62)之间的距离增加而逐渐减小。
  3. 根据权利要求1所述的电子雾化装置,其特征在于,所述螺旋圈(811)呈板状结构。
  4. 根据权利要求1所述的电子雾化装置,其特征在于,每个所述螺旋圈(811)所在平面与平行于所述通气管(70)中轴线的轴截面呈夹角θ设置;
    所述夹角θ的范围区间为15°~55°。
  5. 根据权利要求1所述的电子雾化装置,其特征在于,任意相邻的两个所述螺旋圈(811)各自在轴向上的投影相互交错。
  6. 根据权利要求1所述的电子雾化装置,其特征在于,所述通气管(70)包括自其所述入口端内径逐渐向外增大的第一扩张通道(72)、以及与所述第一扩张通道(72)连通的出气通道(71);所述喷嘴(62)喷出的雾气从所述扩张通道(72)流向所述出气通道(71)。
  7. 根据权利要求1所述的电子雾化装置,其特征在于,所述通气管(70)还包括用于输送气体进入通气管(70)内部的补气孔(73);所述补气孔(73)设于所述通气管(70)的侧壁。
  8. 根据权利要求7所述的电子雾化装置,其特征在于,所述通气管(70)包括至少两个所述补气孔(73),所述至少两个所述补气孔(73)沿通气管(70)周向等距间隔排布。
  9. 根据权利要求7所述的电子雾化装置,其特征在于,所述补气孔(73)自所述通气管(70)的外侧壁向远离所述喷嘴(62)方向延伸,且相对于所述通气管(70)的轴线倾斜设置。
  10. 根据权利要求7所述的电子雾化装置,其特征在于,所述补气孔(73)的轴线与所述通气管(70)的轴线连接呈夹角β设置,所述夹角β为120°~150°。
PCT/CN2023/078891 2022-06-14 2023-02-28 电子雾化装置 WO2023241100A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210669231.6 2022-06-14
CN202210669231.6A CN117256950A (zh) 2022-06-14 2022-06-14 电子雾化装置

Publications (1)

Publication Number Publication Date
WO2023241100A1 true WO2023241100A1 (zh) 2023-12-21

Family

ID=89193111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/078891 WO2023241100A1 (zh) 2022-06-14 2023-02-28 电子雾化装置

Country Status (2)

Country Link
CN (1) CN117256950A (zh)
WO (1) WO2023241100A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104824853A (zh) * 2015-04-22 2015-08-12 卓尔悦(常州)电子科技有限公司 雾化器及其气溶胶发生装置
CN105011379A (zh) * 2015-08-11 2015-11-04 深圳市新宜康科技有限公司 电子烟装置
US20170280775A1 (en) * 2016-03-31 2017-10-05 Laurent Manca Atomizing assembly for use in an aerosol-generating system
CN209031254U (zh) * 2018-08-21 2019-06-28 常州市派腾电子技术服务有限公司 电子烟
CN111031820A (zh) * 2017-08-09 2020-04-17 菲利普莫里斯生产公司 具有带圆锥形感应线圈的感应加热器的气溶胶生成装置
CN111854020A (zh) * 2020-07-15 2020-10-30 浙江启尔机电技术有限公司 一种红外辐射加湿装置及其加湿方法
CN212036005U (zh) * 2020-01-13 2020-12-01 深圳东灏兴科技有限公司 一次性电子烟
CN112690499A (zh) * 2020-12-22 2021-04-23 深圳市兆威机电股份有限公司 一种电子烟

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104824853A (zh) * 2015-04-22 2015-08-12 卓尔悦(常州)电子科技有限公司 雾化器及其气溶胶发生装置
CN105011379A (zh) * 2015-08-11 2015-11-04 深圳市新宜康科技有限公司 电子烟装置
US20170280775A1 (en) * 2016-03-31 2017-10-05 Laurent Manca Atomizing assembly for use in an aerosol-generating system
CN111031820A (zh) * 2017-08-09 2020-04-17 菲利普莫里斯生产公司 具有带圆锥形感应线圈的感应加热器的气溶胶生成装置
CN209031254U (zh) * 2018-08-21 2019-06-28 常州市派腾电子技术服务有限公司 电子烟
CN212036005U (zh) * 2020-01-13 2020-12-01 深圳东灏兴科技有限公司 一次性电子烟
CN111854020A (zh) * 2020-07-15 2020-10-30 浙江启尔机电技术有限公司 一种红外辐射加湿装置及其加湿方法
CN112690499A (zh) * 2020-12-22 2021-04-23 深圳市兆威机电股份有限公司 一种电子烟

Also Published As

Publication number Publication date
CN117256950A (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
AU2017346137B2 (en) Atomizer and electronic cigarette thereof
WO2018161254A1 (zh) 电子烟防漏液装置
WO2023241100A1 (zh) 电子雾化装置
WO2023241101A1 (zh) 电子雾化装置
CN111671160A (zh) 一种防止烟油冷凝水倒流装置及电子烟
WO2023241131A1 (zh) 电子雾化装置
CN217446690U (zh) 雾化器及气溶胶发生装置
CN217885111U (zh) 雾化装置及气溶胶发生装置
WO2023207314A1 (zh) 电子雾化装置及其储液雾化组件
WO2023207292A1 (zh) 电子雾化装置及其储液雾化组件
WO2023207368A1 (zh) 电子雾化装置及其储液雾化组件和喷嘴
WO2023207366A1 (zh) 电子雾化装置及其储液雾化组件
WO2023207322A1 (zh) 电子雾化装置及其储液雾化组件
WO2023207313A1 (zh) 电子雾化装置及其喷嘴雾化组件
WO2023206597A1 (zh) 电子雾化装置
WO2023207320A1 (zh) 电子雾化装置
WO2023207312A1 (zh) 喷嘴组件及电子雾化装置
WO2023207323A1 (zh) 电子雾化装置
CN219069464U (zh) 雾化器及气溶胶生成装置
WO2023241099A1 (zh) 电子雾化装置及其加热组件
WO2024139078A1 (zh) 雾化器及气溶胶生成装置
CN218354603U (zh) 雾化器及雾化装置
CN116998784A (zh) 电子雾化装置
WO2023241129A1 (zh) 电子雾化装置及其雾化装置
WO2024119875A1 (zh) 电子雾化装置及其雾化器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23822672

Country of ref document: EP

Kind code of ref document: A1