WO2023241099A1 - 电子雾化装置及其加热组件 - Google Patents

电子雾化装置及其加热组件 Download PDF

Info

Publication number
WO2023241099A1
WO2023241099A1 PCT/CN2023/078890 CN2023078890W WO2023241099A1 WO 2023241099 A1 WO2023241099 A1 WO 2023241099A1 CN 2023078890 W CN2023078890 W CN 2023078890W WO 2023241099 A1 WO2023241099 A1 WO 2023241099A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
atomization device
electronic atomization
liquid
component
Prior art date
Application number
PCT/CN2023/078890
Other languages
English (en)
French (fr)
Inventor
张梓均
王洪钊
任三兵
雷桂林
姚雪刚
Original Assignee
海南摩尔兄弟科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海南摩尔兄弟科技有限公司 filed Critical 海南摩尔兄弟科技有限公司
Publication of WO2023241099A1 publication Critical patent/WO2023241099A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps

Definitions

  • the present invention relates to the field of atomization, and in particular, to an electronic atomization device and a heating component thereof.
  • the technical problem to be solved by the present invention is that the planar structure of the heating component of the electronic atomization device in the related art will cause the mist to form a liquid film on the surface of the heating component and rebound when it hits the heating component, resulting in low atomization efficiency.
  • the atomization amount attenuates and affects the user's taste.
  • the technical solution adopted by the present invention to solve the technical problem is to construct an electronic atomization device, which includes a spray component for spraying mist and a heating component.
  • the spray component includes a spray port, and the heating component includes at least one heating component.
  • Body to heat and atomize the mist ejected by the spray component;
  • the heating circuit has a plurality of meshes; the shape of the meshes includes polygon, trapezoid, circle, oval or a combination of at least one of them.
  • the heating element further includes a first electrode connection part and a second electrode connection part connected to both ends of the heating circuit to energize the heating circuit.
  • the heating circuit is flat or curved.
  • the heating circuit is in a bent planar shape.
  • the heating circuit is spherical.
  • the heating circuit includes a heating trunk and a mesh provided on the heating trunk;
  • Two adjacent heating elements are arranged in a staggered manner, and among the two adjacent heating elements, the projection of the heating trunk of the heating element relatively adjacent to the atomization port falls on the heating element relatively far away from the atomization port. on the corresponding mesh.
  • misalignment distance X between the two adjacent heating elements is greater than 0 mm and less than the length value of the mesh in the length direction L of the heating circuit.
  • the heating component further includes a liquid conductor, which is disposed on the surface of the at least one heating element opposite to the spray port and covers at least part of the mesh of the at least one heating element.
  • the liquid-conducting medium includes porous media.
  • the heating circuit has at least one bending portion, so that the heating circuit portions located on both sides of the corresponding bending portion are arranged at an included angle ⁇ .
  • the opening at the included angle ⁇ is arranged opposite to the spray port.
  • each heating element includes a mesh-shaped heating circuit, and the heating circuit is arranged opposite to the spray port.
  • the heating circuit is in a bent planar shape; the heating circuit has at least one bending portion, so that the heating circuit portions located on both sides of the corresponding bending portion are arranged at an included angle ⁇ ; the included angle ⁇ is The opening is arranged opposite to the spray port.
  • the range of the included angle ⁇ is [60, 120], and the unit is °.
  • the at least one heating element includes at least two heating elements, and the at least two heating elements are arranged in parallel and spaced apart; each of the heating circuits includes a heating trunk and a mesh provided on the heating trunk;
  • two adjacent heating elements are arranged in a staggered manner, and among the two adjacent heating elements, the projection of the heating trunk of the heating element relatively adjacent to the atomization port falls on a position relatively far away from the atomization port. on the corresponding mesh of the heating element.
  • the corresponding mesh holes between two adjacent heating elements are staggered in the length direction L of the heating circuit;
  • the heating component further includes a liquid conductor, which is disposed on the surface of the at least one heating element opposite to the spray port and covers at least part of the mesh of the at least one heating element;
  • the liquid-conducting medium includes porous media.
  • the liquid-conducting material covers all meshes of the at least one heating element.
  • the heating power of the at least two heating elements gradually becomes smaller as the distance between itself and the starting point of the first average particle diameter mist flow increases.
  • the present invention also constructs a heating component for heating and evaporating mist; the heating component includes at least one heating element, each of the heating elements includes a mesh-shaped heating circuit, and the heating circuit is arranged on the side of the mist. on the flow trajectory.
  • the heating circuit is in a bent planar shape; the heating circuit has at least one bending portion, so that the heating circuit portions located on both sides of the corresponding bending portion are arranged at an included angle ⁇ ; the included angle ⁇ is The facing direction is set along the flow direction of the mist.
  • the range of the included angle ⁇ is [60, 120], and the unit is °.
  • the range of the included angle ⁇ is [60, 90], and the unit is °.
  • the heating circuit is in a spherical shape; the heating circuit is recessed along the flow direction of the mist to form a smooth spherical surface.
  • the at least one heating body includes at least two heating bodies, and the at least two heating bodies are arranged in parallel and spaced apart;
  • the corresponding mesh holes between two adjacent heating elements are staggered in the length direction L of the heating circuit; and the offset distance X between the two adjacent heating elements is greater than 0 mm. , and is smaller than the length value of the mesh in the length direction L of the heating circuit.
  • the heating component further includes a liquid conductor, which is disposed on a surface of the at least one heating body away from the starting point of the mist flow and covers at least part of the mesh of the at least one heating body;
  • the liquid-conducting medium includes porous media.
  • the liquid-conducting material covers all meshes of the at least one heating element.
  • the heating power of the at least two heating elements gradually becomes smaller as the distance between itself and the starting point of the mist flow increases.
  • Implementing the present invention has the following beneficial effects: by arranging a heating element including a mesh heating circuit, the thickness of the liquid film formed on the surface of the heating element can be reduced and the atomization efficiency can be improved; the rebound of mist when hitting the heating element can also be suppressed. Reduce the loss of mist and increase the amount of atomization; in addition, it can also inhibit the occurrence of explosive liquid, reduce the generation of large droplets, and ensure the user's eating taste.
  • Figure 1 is a schematic three-dimensional structural diagram of the electronic atomization device in Embodiment 1 of the present invention.
  • Figure 2 is a schematic longitudinal cross-sectional structural diagram of the electronic atomization device shown in Figure 1;
  • Figure 3 is a schematic longitudinal cross-sectional structural view of the liquid storage atomization assembly of the electronic atomization device in Figure 2;
  • Figure 4 is a schematic structural diagram of the heating component of the electronic atomization device installed in the ventilation pipe in Embodiment 1-2 of the present invention
  • Figure 5 is a schematic structural diagram of the heating component of the electronic atomization device located in the ventilation pipe in Embodiments 1-3 of the present invention.
  • Figure 6 is a schematic structural diagram of the heating component of the electronic atomization device installed in the ventilation pipe in Embodiments 1-4 of the present invention.
  • Figure 8 is a schematic structural diagram of the heating assembly in Embodiment 1-1 of the present invention.
  • Figure 9 is a schematic structural diagram of the heating assembly in Embodiment 1-2 of the present invention.
  • Figure 10 is a schematic structural diagram of the heating assembly in Embodiments 1-3 of the present invention.
  • Figure 11 is a schematic structural diagram of Figure 9 from an upward perspective
  • Figure 12 is a schematic structural diagram of the heating assembly in Embodiments 1-4 of the present invention.
  • Figure 13 is a schematic structural diagram of Figure 12 from a frontal perspective
  • Figure 14 is a schematic structural diagram of the heating assembly in Embodiments 1-5 of the present invention.
  • Figures 1 to 14 show an electronic atomization device in the first embodiment of the present invention.
  • the electronic atomization device can be used to atomize a liquid substrate to generate an aerosol.
  • the aerosol can be smoked or inhaled by the user.
  • it may be substantially cylindrical. It is understandable that in other embodiments, the electronic atomization device can also be in other shapes such as elliptical column, flat column, square column, etc.
  • the liquid substrate may include e-liquid or medicinal liquid.
  • the liquid storage atomization assembly 60 includes a liquid storage chamber 610 for storing a liquid substrate and a nozzle 620 connected with the liquid storage chamber 610 .
  • the air source 40 is connected with the nozzle 620 and is used to provide a certain amount of high-pressure air to the nozzle 620.
  • the high-speed air flow can be provided through an axial flow pump or the high-speed air flow can be provided by releasing compressed gas.
  • the high-speed airflow can assist the nozzle 62 to atomize the liquid matrix from the liquid storage chamber 610 into fine liquid particles.
  • the liquid particles ejected from the nozzle 620 collide with the heating component 80 and are heated by the heating component 80 to generate an aerosol that is carried out by the air flow for the user to suck or inhale.
  • the liquid substrate can also be atomized into fine liquid particle groups through other methods, such as high-pressure nozzles, which are not limited here.
  • the fine liquid particles are further heated and atomized by the heating component 80 .
  • the liquid substrate is atomized into a group of liquid particles and then evaporated by the heating component 80. Since the surface area of the group of fine liquid particles formed after atomization is greatly expanded, it is easier to heat and evaporate. On the one hand, it can improve The conversion efficiency of heat and aerosol can, on the other hand, reduce the temperature of the evaporation process of the heating component 80 and achieve low-temperature atomization.
  • the main physical change process of the liquid matrix overcomes the problem of thermal cracking and deterioration of the liquid matrix caused by the need for high-temperature atomization under traditional porous ceramics or porous cotton conditions, let alone Phenomenons such as scorching, carbon deposition and heavy metal volatilization occur, so that the unique ingredients and flavor and fragrance systems of different liquid bases can be maintained, and ultimately the inhaler can feel the unique taste corresponding to the original liquid base.
  • the heating component 80 is not in contact with the liquid storage chamber 610, and the heating component 80 does not need to be immersed in the liquid matrix for a long time, which reduces the contamination of the liquid matrix by the heating component 80, thereby reducing impurity gases in the aerosol generated after atomization.
  • the lower shell 12 may be provided with a bracket assembly 14, which divides the lower shell 12 into a first receiving space 121 located at the upper part and a second receiving space 122 located at the lower part.
  • the control module 20 , the power supply 30 , and the air source 40 can all be accommodated in the second accommodation space 122 .
  • the control module 20 may include a circuit board and a control circuit formed on the circuit board
  • the power supply 30 may include a battery
  • the air source 40 may include an air pump.
  • the liquid storage atomization assembly 60 can be received in the first receiving space 121 and supported on the bracket assembly 14 .
  • the electronic atomization device may further include an airflow sensing element 50 , and the airflow sensing element 50 may be installed at the bottom of the bracket assembly 14 .
  • the airflow sensing element 50 is electrically connected to the control module 20 and is used to sense changes in the airflow when the user inhales and transmit signals to the control module 20 .
  • the control module 20 detects that the user has a suction action, it sends a signal to the air source 40 to start the air source 40 to start supplying air, and sends a signal to the heating component 80 to start the heating component 80 to start heating.
  • the airflow sensing element 50 may be a negative pressure sensor, such as a microphone.
  • the housing 10 may further include a suction nozzle 15 disposed on the top of the upper housing 11 , through which the user can inhale the aerosol.
  • the suction nozzle 15 is in the shape of a hollow tube, and its inner wall defines an inhalation channel 150 for outputting aerosol that is connected with the air outlet channel 71 .
  • the lower end of the suction nozzle 15 can be embedded in the breather tube 70 , and the outer wall surface of the lower end of the suction nozzle 15 is sealingly matched with the inner wall surface of the upper end of the breather tube 70 .
  • the suction nozzle 15 and the upper shell 11 are formed separately and then assembled together; in other embodiments, the suction nozzle 15 and the upper shell 11 can also be integrally formed.
  • the heating element 81 generates heat after being energized, and can heat and atomize the mist with the first average particle diameter sprayed from the spray port 621 to be smaller than the first average particle diameter.
  • the second average particle size is to atomize the above-mentioned liquid particle group into an aerosol.
  • the heating assembly 80 includes at least two heating elements 81 .
  • two adjacent heating elements 81 are arranged in parallel and spaced apart, and the distance between any two adjacent heating elements 81 is preferably the same. In other embodiments, two adjacent heating elements 81 are arranged symmetrically or staggeredly.
  • Each heating element 81 includes a mesh-shaped heating circuit 811 , and the heating circuit 811 is arranged opposite to the spray port 621 .
  • the heating circuit 811 can completely receive the liquid particles sprayed from the spray port 621. The liquid particles form aerosols after being heated and atomized, and flow to the inhalation channel 150 through the mesh 812 on the heating circuit 811, and are finally sucked by the user.
  • the heating circuit 811 includes a heating trunk 8110 and a plurality of mesh holes 812 provided on the heating trunk 8110.
  • the mesh holes 812 are arranged regularly.
  • the shape of the mesh 812 includes a polygon, a trapezoid, a circle, an ellipse, or a combination of at least one of them.
  • the heating trunk 8110 includes at least one heating main part 8111; specifically, the heating main part 8111 includes a plurality of heating units connected according to a preset rule; in this embodiment, the preset rule is to connect sequentially along the same straight line.
  • the linear direction is the length direction L of the heating circuit 811.
  • the heating units located at the starting end are also respectively connected to the corresponding first electrode connection portion 814 and the second electrode connection portion 815 .
  • the multiple heating units have the same wall thickness.
  • the heating unit has a hollow closed pattern structure, and the hollow part thereof forms the first hollow unit 8121.
  • a closed shape can be a polygon, trapezoid, circle or ellipse.
  • the shape of the first hollow unit 8121 is the same as the shape of the heating unit.
  • each heating unit may be made of metal material, such as iron or copper.
  • the heating trunk 8110 includes at least two heating main parts 8111 and a connecting part 8112 connected between adjacent heating main parts 8111.
  • Two adjacent heating main parts 8111 are located on the same plane, arranged in parallel and spaced apart, and are connected through a connecting part 8112.
  • the connecting portion 8112 also has the function of conducting electricity and generating heat.
  • the corresponding connecting part 8112 is provided at the position where the distance between the two opposite heating units is the shortest.
  • second hollow unit 8122 may be the same as or different from the shape of the first hollow unit 8121; in some embodiments, by adjusting the axial length of the connecting part 8112, the first hollow unit 8121 and the second hollow unit 8122 may be have the same shape.
  • the heating element 81 further includes a first electrode connection part 814 and a second electrode connection part 815 connected to the heating circuit 811 .
  • the first electrode connection part 814 and the second electrode connection part 815 are respectively connected to the two poles of the power supply 30 .
  • the first electrode connection part 814 and the second electrode connection part 815 are both in a sheet-like structure and are respectively located at both ends of the heating circuit 811 , preferably at both ends in the length direction L of the heating circuit 811 . All heating main parts 8111 in the heating circuit 811 are connected in parallel between the first electrode connection part 814 and the second electrode connection part 815 .
  • the heating body 81 also includes a plurality of heat dissipation parts 813 connected to the heating trunk 8110 in the heating circuit 811; the heat dissipation parts 813 can disperse the heat at higher heat locations on the heating circuit 811 through the heat dissipation parts, so that The overall heat of the heating mechanism is relatively balanced.
  • a plurality of heat dissipation portions 813 are respectively extended outwardly on both sides of the length direction L of the heating circuit 811 .
  • a plurality of heating units respectively extend outward along its outermost wall surface, forming a plurality of heat dissipation portions 813 accordingly.
  • the heat dissipation part 813 is rod-shaped, strip-shaped, or plate-shaped, and its shape is a straight line, a curve, or a combination of at least one of them.
  • the heat dissipation portion 813 and the plurality of heating units have the same wall thickness.
  • the heating assembly 80 also includes a liquid conductor 82 .
  • the liquid-conducting medium 82 is a porous medium, which is used to absorb the uncaptured liquid particles that pass through the mesh heating circuit 811, prevent the liquid particles from directly passing through the heating element 81, and reduce the number of liquid particles with the first average particle size. The probability of aerosol mixing; at the same time, the liquid absorbed by the conductive liquid 82 can be heated and atomized by the heating circuit 811 again.
  • the liquid-conducting liquid 82 is disposed on the surface of the at least one heating element 81 opposite to the spray port 621 and covers at least part of the mesh 812 of the at least one heating element 81 .
  • the liquid-conducting liquid 82 is disposed on the surface of the at least one heating element 81 opposite to the spray port 621 and covers at least part of the mesh 812 of the at least one heating element 81 .
  • the liquid-conducting liquid 82 covers all mesh holes 812 of at least one mesh heating element 81 .
  • the liquid-conducting medium 82 is a porous medium, and the liquid-conducting liquid 82 is provided with a plurality of capillary pores with capillary force, has a certain liquid absorption capacity, and can absorb uncaptured liquid particles that pass through the mesh heating circuit 811.
  • the aerosol particles are absorbed by the aerosol to prevent the liquid particles from passing directly through the heating element 81 and reduce the probability of mixing the liquid particles with the first average particle size with the aerosol.
  • the porous medium can remain moist.
  • the heating circuit 811 can atomize the liquid on the surface of the porous medium to form an aerosol.
  • the aerosol flows through the mesh 812 on the heating circuit 811 and the capillary pores of the porous medium.
  • the inhalation channel 150 is finally inhaled by the user.
  • the heating component 80 includes at least one heating element, and the heating circuit 811 of the heating element has a honeycomb planar structure, which can also be regarded as a mesh structure; multiple meshes
  • the shapes of the holes 812 are generally the same, being hexagonal.
  • the first electrode connection part 814 and the second electrode connection part 815 are respectively connected to both ends of the heating circuit 811 in the length direction L; at the same time, a plurality of evenly distributed heat dissipation parts 813 are provided on both sides of the heating circuit 811 in the length direction L.
  • the axial direction of the nozzle 620 is perpendicular to the plane of the heating circuit 811 .
  • the size of the mesh 812 can be adjusted to reduce the accumulation of liquid particles. It can be understood that by adjusting the area size of the mesh 812, the passage rate of the liquid particle group, the atomization rate, and the heating efficiency of the heating circuit 811 can be effectively controlled. For example, when it is necessary to reduce the passage rate of the liquid particle group, the area of the mesh 812 can be reduced; when it is necessary to increase the atomization rate of the liquid particle group or the heating efficiency of the heating circuit 811, the area of the mesh 812 can be increased, thereby Reduce the occupancy ratio of the heating units in the heating circuit 811 to increase the heat flow density.
  • Embodiment 1-1 can heat and atomize the liquid particle group, some of the liquid particle group will directly pass through the mesh 812, so that the heating effect of this part of the liquid particle group will not be achieved. Reach the best. Therefore, in Embodiment 1-2, by arranging two staggered heating elements 81 , part of the liquid particles passing through the first heating element 81 can be captured by the second heating element 81 , and the second heating element 81 can be used for the second time. Heating atomization, so that all liquid particle groups can get better heating atomization effect.
  • the heating unit of the latter heating body 81 is arranged opposite to the mesh 812 of the previous heating body 81 .
  • the former heating element 81 refers to the heating element 81 relatively adjacent to the atomization port 621 among the two adjacent heating elements 81
  • the latter heating element 81 refers to the heating element 81 among the two adjacent heating elements 81 relatively far away from the mist.
  • Another heating element 81 of the inlet 621 By adjusting the relative positions of the corresponding heating units and the mesh 812 in two adjacent heating bodies 81 , the probability of the heating unit capturing the liquid particle group can be increased. In other embodiments, as shown in FIG.
  • the heating assembly 80 includes at least two heating bodies 81
  • the mist with the first average particle size ejected from the nozzle 62 passes through the plurality of heating bodies 81 in sequence
  • the mist with the first average particle size will heat the mist.
  • the volume of the mist with the first average particle size will gradually decrease into the mist with the second average particle size.
  • the heating assembly 80 includes at least two heating bodies 81
  • the heating power of the heating body 81 increases with the distance from the spray port 621 And gradually become smaller.
  • the ejection angle of the liquid particles when they hit the heating circuit 811 can be adjusted, increasing the heat exchange between the liquid particles and the heating surface of the heating circuit 811, and improving the ability of the liquid particles to be captured by the heating surface of the heating circuit 811. probability, as well as improving atomization volume and atomization efficiency.
  • the pore size of the capillary pores of the porous medium can be adjusted according to the demand for liquid absorption capacity, the heating efficiency of the heating circuit 811 and the atomization rate of the liquid particle group.

Landscapes

  • Special Spraying Apparatus (AREA)

Abstract

本发明涉及电子雾化装置及其加热组件,其中电子雾化装置包括用于喷出的喷雾组件和加热组件,喷雾组件包括喷雾口,加热组件包括至少一个发热体,以对喷雾组件喷出的雾气进行加热雾化;其中,每个发热体包括呈网状的发热线路,发热线路与喷雾口相对设置;本发明可减少发热体表面形成液膜的厚度,提高雾化效率;还可抑制雾气在撞击发热体时的回弹,减少雾气的损失,提高雾化量;此外,还可以抑制炸液的发生,减少粒径大的液滴产生,确保用户的食用口感。

Description

电子雾化装置及其加热组件 技术领域
本发明涉及雾化领域,尤其涉及一种电子雾化装置及其加热组件。
背景技术
电子雾化装置加热的主要方式是利用加热组件进行加热,但加热方式存在多种问题。加热组件至少存在以下缺陷:加热组件在加热液膜时容易形成炸液,炸液产生的大的液滴会随着气流被带走,影响用户的口感。
发明内容
本发明要解决的技术问题在于,相关技术中电子雾化装置的加热组件的平面结构会使得雾气在加热组件的表面形成液膜和在撞击加热组件上时产生回弹,导致雾化效率低、雾化量衰减以及影响用户的口感,提供一种电子雾化装置及其加热组件。
本发明解决其技术问题所采用的技术方案是:构造一种电子雾化装置,包括用于喷出雾气的喷雾组件和加热组件,所述喷雾组件包括喷雾口,所述加热组件包括至少一个发热体,以对所述喷雾组件喷出的雾气进行加热雾化;  
其中,每个所述发热体包括呈网状的发热线路,所述发热线路与所述喷雾口相对设置。
优选地,所述发热线路具有多个网孔;所述网孔的形状包括多边形、梯形、圆形、椭圆形或它们中至少一种的组合。
优选地,所述发热体还包括连接于所述发热线路两端的第一电极连接部和第二电极连接部,以为所述发热线路通电。
优选地,所述发热线路呈平面型或者弧面型。
优选地,所述发热线路呈折弯的平面型。
优选地,所述发热线路呈球面型。
优选地,所述至少一个发热体包括至少两个发热体,所述至少两个发热体平行间隔布置。
优选地,所述发热线路包括发热主干、以及设于所述发热主干上的网孔;
相邻的两个发热体交错布置,且在所述相邻的两个发热体中,相对邻近所述雾化口的发热体的发热主干的投影落于相对远离所述雾化口的发热体的对应网孔上。
优选地,所述相邻的两个所述发热体在所述发热线路的长度方向L上交错布置;
且所述相邻的两个所述发热体之间的错位距离X大于0mm,且小于所述网孔在所述发热线路长度方向L上的长度值。
优选地,所述加热组件还包括导液体,所述导液体设置于所述至少一个发热体与所述喷雾口相背的表面,且覆盖所述至少一个发热体的至少部分网孔。
优选地,所述导液体覆盖所述至少一个发热体的全部网孔。
优选地,所述导液体包括多孔介质。
优选地,所述至少两个发热体的发热功率随着其自身与喷雾口之间的距离增大而逐渐变小。
优选地,所述发热线路具有至少一处折弯部,使得位于对应折弯部两侧的发热线路部分呈夹角α设置。
优选地,所述夹角α的范围区间为[60,120],单位为°。
优选地,所述夹角α的范围区间为[60,90],单位为°。
优选地,所述夹角α的开口与所述喷雾口相对设置。
优选地,所述发热线路沿远离所述喷雾口的方向凹陷。
本发明还构造一种电子雾化装置,包括用于喷出第一平均粒径雾气的喷雾组件和加热组件,所述喷雾组件包括喷雾口,所述加热组件包括至少一个发热体,以对所述第一平均粒径喷雾组件喷出的雾气进行加热雾化,形成第二平均粒径雾气,所述第二平均粒径小于所述第一平均粒径;
其中,每个所述发热体包括呈网状的发热线路,所述发热线路与所述喷雾口相对设置。
优选地,所述发热线路呈折弯的平面型;所述发热线路具有至少一处折弯部,使得位于对应折弯部两侧的发热线路部分呈夹角α设置;所述夹角α的开口与所述喷雾口相对设置。
优选地,所述夹角α的范围区间为[60,120],单位为°。
优选地,所述夹角α的范围区间为[60,90],单位为°。
优选地,所述发热线路呈球面型;所述发热线路沿远离所述喷雾口的方向凹陷,且形成平滑的球面。
优选地,所述至少一个发热体包括至少两个发热体,所述至少两个发热体平行间隔布置;每个所述发热线路包括发热主干、以及设于所述发热主干上的网孔;
其中,相邻的两个发热体交错排布,且在所述相邻的两个发热体中,相对邻近所述雾化口的发热体的发热主干的投影落于相对远离所述雾化口的发热体的对应网孔上。
优选地,相邻的两个所述发热体之间对应的网孔在所述发热线路的长度方向L上交错布置;
且所述相邻的两个所述发热体之间的错位距离X大于0mm,且小于所述网孔在所述发热线路长度方向L上的长度值。
优选地,所述加热组件还包括导液体,所述导液体设置于所述至少一个发热体与所述喷雾口相背的表面,且覆盖所述至少一个发热体的至少部分网孔;
其中,所述导液体包括多孔介质。
优选地,所述导液体覆盖所述至少一个发热体的全部网孔。
优选地,所述至少两个发热体的发热功率随着其自身与所述第一平均粒径雾气流动的始发点之间距离增大而逐渐变小。
本发明还构造一种加热组件,用于对雾气进行加热蒸发;该加热组件包括至少一个发热体,每个所述发热体包括呈网状的发热线路,所述发热线路设于所述雾气的流动轨迹上。
优选地,所述发热线路呈折弯的平面型;所述发热线路具有至少一处折弯部,使得位于对应折弯部两侧的发热线路部分呈夹角α设置;所述夹角α的朝向方向沿所述雾气的流动方向设置。
优选地,所述夹角α的范围区间为[60,120],单位为°。
优选地,所述夹角α的范围区间为[60,90],单位为°。
优选地,所述发热线路呈球面型;所述发热线路沿所述雾气的流动方向凹陷,以形成平滑的球面。
优选地,所述至少一个发热体包括至少两个发热体,所述至少两个发热体平行间隔布置;
其中,相邻的两个所述发热体之间对应的网孔在所述发热线路的长度方向L上交错布置;且所述相邻的两个所述发热体之间的错位距离X大于0mm,且小于所述网孔在所述发热线路长度方向L上的长度值。
优选地,所述加热组件还包括导液体,所述导液体设置于所述至少一个发热体中远离所述雾气流动始发点的表面,且覆盖所述至少一个发热体的至少部分网孔;其中,所述导液体包括多孔介质。
优选地,所述导液体覆盖所述至少一个发热体的全部网孔。
优选地,所述至少两个发热体的发热功率随着其自身与所述雾气流动的始发点之间距离增大而逐渐变小。
实施本发明具有以下有益效果:通过设置包含有呈网状发热线路的发热体,可减少发热体表面形成液膜的厚度,提高雾化效率;还可抑制雾气在撞击发热体时的回弹,减少雾气的损失,提高雾化量;此外,还可以抑制炸液的发生,减少粒径大的液滴产生,确保用户的食用口感。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明实施例1中电子雾化装置的立体结构示意图;
图2是图1所示电子雾化装置的纵向剖面结构示意图;
图3是图2中电子雾化装置的储液雾化组件的纵向剖面结构示意图;
图4是本发明实施例1-2中电子雾化装置的加热组件设于通气管的结构示意图;
图5是本发明实施例1-3中电子雾化装置的加热组件设于通气管的结构示意图;
图6是本发明实施例1-4中电子雾化装置的加热组件设于通气管的结构示意图;
图7是本发明实施例1-5中电子雾化装置的加热组件设于通气管的结构示意图;
图8是本发明实施例1-1中加热组件的结构示意图;
图9是本发明实施例1-2中加热组件的结构示意图;
图10是本发明实施例1-3中加热组件的结构示意图;
图11是图9在仰视角度下的结构示意图;
图12是本发明实施例1-4中加热组件的结构示意图;
图13是图12在正视角度下的结构示意图;
图14是本发明实施例1-5中加热组件的结构示意图。
实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。以下描述中,需要理解的是,“前”、“后”、“上”、“下”、“左”、“右”、“纵”、“横”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“头”、“尾”等指示的方位或位置关系为基于附图所示的方位或位置关系、以特定的方位构造和操作,仅是为了便于描述本技术方案,而不是指示所指的装置或元件必须具有特定的方位,因此不能理解为对本发明的限制。
还需要说明的是,除非另有明确的规定和限定,“安装”、“相连”、“连接”、“固定”、“设置”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。当一个元件被称为在另一元件“上”或“下”时,该元件能够“直接地”或“间接地”位于另一元件之上,或者也可能存在一个或更多个居间元件。术语“第一”、“第二”、“第三”等仅是为了便于描述本技术方案,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量,由此,限定有“第一”、“第二”、“第三”等的特征可以明示或者隐含地包括一个或者更多个该特征。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本发明实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本发明。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本发明的描述。
图1-图14示出了本发明第一实施例中的电子雾化装置,该电子雾化装置可用于雾化液态基质以生成气溶胶,该气溶胶可供用户吸食或者吸入,其在本实施例中可大致呈圆柱状。可以理解地,在其他实施例中,该电子雾化装置也可呈椭圆柱状、扁平柱状或方形柱状等其他形状。该液态基质可以包括烟油或药液等。
该电子雾化装置可包括外壳10以及收容于外壳10中的控制模块20、电源30、气源40、储液雾化组件60和加热组件80。控制模块20分别与气源40、加热组件80电连接,用于接收指令,该指令可由用户触发或者在电子雾化装置满足一定条件后自动触发,控制模块20根据该指令控制气源40、加热组件80的工作。电源30分别与控制模块20、气源40、加热组件80电连接,用于向控制模块20、气源40、加热组件80提供电能。储液雾化组件60包括用于存储液态基质的储液腔610以及与该储液腔610相连通的喷嘴620。气源40与喷嘴620相连通,用于为喷嘴620提供定量的高压空气,例如,可以通过轴流泵实现提供高速气流,也可以通过释放压缩气体实现提供高速气流。该高速气流可辅助喷嘴62将来自储液腔610的液态基质雾化成细小的液体颗粒。喷嘴620喷出的液体颗粒群撞击加热组件80,经过加热组件80加热后生成气溶胶由气流带出以供用户吸食或者吸入。
在一些实施例中,也可以通过其他的方式将液态基质雾化成细小的液体颗粒群,如高压喷嘴等,在此不作限制。将细小的液体颗粒群再通过加热组件80进一步的加热雾化。
本发明通过将液态基质雾化成液体颗粒群后再由加热组件80蒸发的方式,由于雾化后形成的细小液体颗粒群的表面积得到了极大的扩展,从而更容易加热蒸发,一方面可提高热量及气溶胶的转化效率,另一方面可降低加热组件80蒸发过程的温度,实现低温雾化。在较低的加热雾化温度下,液态基质主要物理变化过程,从而克服了传统的多孔陶瓷或者多孔棉条件下因必须采用高温方式雾化而导致的液态基质热裂解变质的问题,更不会发生烧焦、积碳和重金属挥发等现象,从而能够保持不同液态基质所特有的成分和香精香料体系,最终使吸入者感受到与原始液态基质相对应的特有的口感。此外,加热组件80与储液腔610不接触,加热组件80不用长期浸泡在液态基质中,减少了加热组件80对液态基质的污染,从而减少了雾化后生成的气溶胶中的杂质气体。
在一些实施例中,外壳10可包括下壳12以及沿纵向配合于下壳12上端的上壳11。具体地,在本实施例中,下壳12可呈两端开口的圆筒状,该外壳10还包括沿纵向封盖于下壳12下端开口处的底座13。可以理解地,在其他实施例中,该底座13也可与下壳12一体成型。进一步地,该电子雾化装置还可包括沿纵向设置于上壳11中的通气管70,通气管70的内壁面界定出与喷嘴620相连通的出气通道71。加热组件80可收容于通气管70中,加热组件80、通气管70、外壳10均可同轴设置。
进一步地,下壳12中可设置有支架组件14,该支架组件14将下壳12内分隔成位于上部的第一收容空间121以及位于下部的第二收容空间122。控制模块20、电源30、气源40均可收容于该第二收容空间122中。其中,该控制模块20可包括电路板以及形成于该电路板上的控制电路,该电源30可包括电池,该气源40可包括气泵。储液雾化组件60可收容于第一收容空间121中并可支撑于支架组件14上。进一步地,该电子雾化装置还可包括气流感应元件50,该气流感应元件50可安装于支架组件14的底部。气流感应元件50控制模块20电连接,用于感应用户抽吸时的气流变化并传递信号至控制模块20。控制模块20在检测到用户有抽吸动作时,发送信号至气源40以启动气源40开始供气,并发送信号至加热组件80以启动加热组件80开始加热。在一些实施例中,气流感应元件50可与为负压传感器,例如咪头。
在一些实施例中,外壳10还可包括设置于上壳11顶部的吸嘴15,用户可通过吸嘴15吸食气溶胶。该吸嘴15呈中空管状,其内壁面界定出与出气通道71相连通的用于输出气溶胶的吸气通道150。吸嘴15的下端可嵌置于通气管70中,吸嘴15的下端外壁面与通气管70的上端内壁面密封配合。在本实施例中,吸嘴15与上壳11分别成型后再组装在一起;在其他实施例中,吸嘴15与上壳11也可一体成型。
进一步地,在一些实施例中,该电子雾化装置还可包括可拆卸地罩设于上壳11外的防尘罩90。在不需要使用电子雾化装置时,可将防尘罩90罩设于上壳11外,防止灰尘等杂质进入吸气通道150。
如图2、图3所示,该储液雾化组件60可包括储液壳61以及至少部分收容于储液壳61的喷雾组件62。在本实施例中,储液壳61内设空腔以作为储液腔610。喷雾组件62包括喷嘴620,喷嘴620具有喷雾口621,可以喷出第一平均粒径雾气;需要说明的是,在一些实施例中,第一平均粒径雾气可以理解为上述的液体颗粒群。
如图2、图4-图14所示,加热组件80收容于通气管70中并位于喷嘴620的上方,且与喷嘴620的喷雾口621相对设置;优选与喷嘴620同轴设置。加热组件80可采用电阻传导加热、红外辐射加热、电磁感应加热或者复合加热等方式进行加热。加热组件80的结构可包括金属发热体(例如发热片、发热网或发热丝),或者也可包括多孔介质以及设置于多孔介质上的发热体(例如发热膜、发热片、发热网或发热丝)。在本实施例中,加热组件80包括至少一个发热体81,该发热体81在通电后发热,能够对从喷雾口621喷出的第一平均粒径雾气加热雾化为小于第一平均粒径的第二平均粒径,即将上述的液体颗粒群雾化为气溶胶。
在一些实施例中,加热组件80包括至少两个发热体81。其中,相邻两个发热体81之间平行间隔排布,任意相邻两个发热体81之间的间距优选相同。在另一些实施例中,相邻的两个发热体81之间对称排布或者交错排布设置。
每个发热体81包括呈网状的发热线路811,发热线路811与喷雾口621相对设置。该发热线路811能够完全接收由喷雾口621喷射过来的液体颗粒群,液体颗粒群在受热雾化后形成气溶胶,通过发热线路811上的网孔812流向吸气通道150,最终被用户吸食。
进一步地,发热线路811在一些实施例中为平面结构;在另一些实施例中,发热线路811为折弯的平面结构;在再一些实施中,发热线路811呈弧面结构,比如球面型。
进一步地,发热线路811包括发热主干8110以及设于发热主干8110上的多个网孔812。在一些实施例中,为了使得雾化效果更加均匀,该些网孔812呈规律排布。可选地,网孔812的形状包括多边形、梯形、圆形、椭圆形或它们中至少一种的组合。
进一步地,发热主干8110包括至少一个发热主部8111;具体地,发热主部8111包括按照预设规律连接的多个发热单元;在本实施例中,预设规律是沿同一直线依次连接,该直线方向为发热线路811的长度方向L。位于始末端的发热单元还各自与对应的第一电极连接部814和第二电极连接部815连接。可选地,多个发热单元的壁厚均相同。
在一些实施例中,发热单元呈空心的闭合图形结构,其空心部分形成第一镂空单元8121。闭合的图形,可以是多边形、梯形、圆形或者椭圆形。在一些实施例中,第一镂空单元8121的形状与发热单元的形状相同。
在一些实施例中,每个发热单元可由金属材料制成,比如铁、铜。
在一些实施例中,发热主干8110包括至少两个发热主部8111、以及连接于相邻发热主部8111之间的连接部8112。相邻的两个发热主部8111位于同一平面,平行且间隔排布,它们两个之间通过连接部8112连接。可以理解地,该连接部8112除了用于作为相邻的两个发热主部8111之间的连接部8112件外,也具有导电发热的功能。在本实施例中,在同一个发热主干8110的相邻两个发热主部8111中,相应的连接部8112设于相对的两个发热单元之间距离最短的位置。更进一步地,相邻的两个连接部8112,与该两个连接部8112相邻的四个发热单元围设形成第二镂空单元8122。第二镂空单元8122的形状可与第一镂空单元8121的形状相同或者不相同;在一些实施例中,通过调整连接部8112的轴向长度,可使得第一镂空单元8121与第二镂空单元8122的形状相同。
可以理解地,网孔812包括上述第一镂空单元8121、第二镂空单元8122。在一些实施例中,网孔812还包括第三镂空单元8123。具体地,第三镂空单元8123是由连接部8112、与其相邻的两个发热单元,以及对应的第一电极连接部814或第二电极连接部815围设成形的。
在一些实施例中,发热体81还包括与发热线路811连接第一电极连接部814和第二电极连接部815,该第一电极连接部814和第二电极连接部815分别与电源30的两极电性连接,在本实施例中,第一电极连接部814和第二电极连接部815均呈片状结构,分别位于发热线路811的两端,优选在发热线路811长度方向L的两端。发热线路811中所有发热主部8111并联连接于第一电极连接部814和第二电极连接部815之间。
在一些实施例中,发热体81还包括与发热线路811中发热主干8110连接的多个散热部813;该散热部813可将发热线路811上热量较高位置的热量通过散热件分散开,使得发热机构整体热量较为平衡。在一些实施例中,多个散热部813在发热线路811长度方向L两侧分别向外延伸成型。在本实施例中,在发热线路811最外侧的发热主部8111中,多个发热单元分别沿其最外侧的壁面向外延伸,相应形成多个散热部813。可选地,散热部813为杆状、条状或板状,其形状为直线、曲线或它们中至少一种的组合。
在一些实施例中,散热部813与多个发热单元的壁厚均相同。
在一些实施例中,加热组件80还包括导液体82。该导液体82为多孔介质,用于将穿过网状的发热线路811的未能捕获的液体颗粒群给吸收掉,防止液体颗粒直接通过发热体81,减少第一平均粒径的液体颗粒与气溶胶混合的几率;同时,被导液体82吸收的液体可再次被发热线路811所加热雾化。具体地,导液体82设置于至少一个发热体81与喷雾口621相背的表面,且覆盖至少一个发热体81的至少部分网孔812。优选导液体82覆盖至少一个网状发热体81的全部网孔812。在一些实施例中,导液体82紧贴于发热体81与喷雾口621相背的表面设置。另外,导液体82可包括多孔体;可选地,多孔体包括导液棉或者多孔陶瓷。
具体地,该导液体82设置于至少一个发热体81与喷雾口621相背的表面,且覆盖至少一个发热体81的至少部分网孔812。优选导液体82覆盖至少一个网状发热体81的全部网孔812。
可以理解地,导液体82为多孔介质,导液体82设有多个具有毛细作用力的毛细孔,具备一定的吸液能力,能够将穿过网状的发热线路811的未能捕获的液体颗粒群给吸收掉,防止液体颗粒直接通过发热体81,减少第一平均粒径的液体颗粒与气溶胶混合的几率。同时,在毛细力的作用下,多孔介质能够保持湿润,发热线路811可将多孔介质表面的液体雾化形成气溶胶,气溶胶穿过发热线路811上的网孔812和多孔介质的毛细孔流向吸气通道150,最终被用户吸食。
为了更进一步说明本发明,以下列举几个具体实施例进行详细说明:
在实施例1-1,如图2、图8所示,加热组件80包括至少一个发热件,该发热件的发热线路811呈蜂窝状的平面结构,也可看作mesh网结构;多个网孔812的形状大致相同,均呈六边形。在发热线路811的长度方向L两端分别连接第一电极连接部814、第二电极连接部815;同时,在发热线路811的长度方向L两侧还设有均匀分布的多条散热部813。在该实施例中,喷嘴620的轴向垂直于发热线路811的平面。
可以理解地,该发热线路811可接收由喷雾口621喷射过来的液体颗粒群,液体颗粒群在受热雾化后形成气溶胶,通过发热线路811上的网孔812流向吸气通道150,进而被用户吸食。同时,由于网孔812的设计,液滴不容易积聚于加热组件80表面,使得加热组件80的表面难以形成液膜,从而减少发热体表面形成液膜的厚度,提高雾化效率;除此之外,还抑制炸液的发生,确保用户的食用口感。
在该实施例中,可通过调整网孔812的大小,以达到减少液体颗粒积聚的作用。可以理解地,通过调整网孔812的面积大小,能够有效控制液体颗粒群的通过率、雾化速率,以及发热线路811的发热效率。譬如,当需要减小液体颗粒群的通过率时,可以减小网孔812的面积;当需要增加液体颗粒群的雾化速率或者发热线路811的发热效率,可以增加网孔812的面积,从而减小发热线路811中发热单元的占有比,以提高热流密度。
在实施例1-2,如图4、图9所示,与实施例中1-1的加热组件80的结构大致相同,区别在于,加热组件80在实施例1-2中包括平行、间隔且交错排布的至少两个发热体81,使得各自的网孔812交错布置。具体地,在相邻的两个发热体81中,该两者之其一发热体81的多个发热单元各自的部分投影,落于该两者之另一发热体81的对应网孔812位置中。
可以理解地,实施例中1-1的加热组件80虽然可以对液体颗粒群进行加热雾化,但是部分液体颗粒群会直接从网孔812中穿过,使得该部分液体颗粒群的加热效果未达到最佳。因此,在实施例1-2,可通过设置交错排布的两个发热体81,穿过第一个发热体81的部分液体颗粒群,可以被第二个发热体81捕获,进行第二次加热雾化,从而使得所有液体颗粒群均得到更好的加热雾化效果。当然,加热组件80还可包括更多个发热体81,其中任意相邻的两个发热体81之间交错排布,使得该两者各自的网孔812交错布置。在通过第一个发热体81的液体颗粒群将被第二个发热体81捕获,通过第二个发热体81的液体颗粒群又将被第三个发热体81捕获,依此类推。
在一些实施例中,相邻两个发热体81中,后一发热体81的发热单元与前一发热体81的网孔812相对设置。需要说明的是,前一发热体81是指相邻两个发热体81中相对邻近雾化口621的一发热体81,而后一发热体81是指相邻两个发热体81中相对远离雾化口621的另一发热体81。通过调整相邻两个发热体81中对应发热单元与网孔812的相对位置,可提高发热单元捕获液体颗粒群的几率。在另一些实施例中,如图9所示,相邻两个发热体81之间在长度方向L上交错排布,该两者之间的错位距离为X,错位距离X大于0mm,且小于网孔812在长度方向L的长度值。在该实施例中,通过调整网孔812的面积大小,能够有效控制液体颗粒群通过其中一个发热线路811的通过率、雾化速率,以及发热线路811的发热效率。譬如,当需要减小液体颗粒群通过其中一个发热线路811的通过率时,可以减小网孔812的面积;当需要增加液体颗粒群的雾化速率或者发热线路811的发热效率,可以增加网孔812的面积,从而减小发热线路811中发热单元的占有比,以提高热流密度。
此外,在加热组件80包括至少两个发热体81的实施例中,从喷嘴62喷出的第一平均粒径雾气依次经过多个发热体81的过程中,第一平均粒径雾气会加热雾化为第二平均粒径雾气,该第一平均粒径雾气的体积会逐渐减小,实际上发热体81越远离喷雾口621的,其所能捕获的液体颗粒的数量越小。因此,为了节省功耗以及避免电子雾化装置的工作温度过高,在加热组件80包括至少两个发热体81时,发热体81的发热功率是随着与喷雾口621之间的距离增大而逐渐变小。
在实施例1-3,与实施例中1-1的加热组件80的结构大致相同,区别在于,如图10、图11所示,加热组件80中发热件的发热线路811呈球面网状结构。具体地,发热线路811沿喷嘴620轴向方向凹陷,形成平滑的球面;使得,发热线路811具有与喷雾口621相对设置的凹面,和与喷雾口621相背设置的凸面。
可以理解地,在发热线路811呈平面时,由喷雾口621喷出的液体颗粒群会因为leindenfrost效应而在发热线路811上产生回弹,导致雾化量衰减。而若将发热线路811改为曲面结构,在液体颗粒群撞击发热线路811时,各个液体颗粒可以从首次抵接凹面上的其中一个点弹到另一个点;举例说明,定义其中一液体颗粒为第一液体颗粒6111,如图11所示,可以看到第一液体颗粒6111随着箭头指示方向依次接触凹面上的两个点。由此可见,在该实施例中,可使得液滴颗粒可获得与发热线路811的发热面接触的二次机会,得到被二次加热的机会,从而减少液体颗粒回弹的几率,抑制液体颗粒回弹现象及提高雾化量。通过调整发热线路811的曲率,可以改变液体颗粒群中各个颗粒的运动轨迹。
在实施例1-4,与实施例中1-1的加热组件80的结构大致相同,区别在于,如图12、图13所示,该发热体81呈折弯后的平面结构,其中,发热件的折点位于其发热线路811上,使得发热线路811形成非平面结构。具体地,发热线路811具有至少一个折弯部816,使得位于对应折弯部816两侧的发热主体部分呈夹角α设置;优选地,夹角α的范围区间为[60,120],单位为°;更优选的是,夹角α的范围区间为[60,90],单位为°。
可以理解地,在发热线路811呈平面时,由喷雾口621喷出的液体颗粒群会因为leindenfrost效应而在发热线路811上产生回弹,导致雾化量衰减。通过设置折弯的网状发热线路811,可改变液体颗粒群撞击发热线路811时的弹射角度,使液体颗粒能够再次被发热线路811的发热面所捕获,增加液体颗粒与发热线路811的发热面的换热量,提高换热效率。同时,通过调整夹角α,可调整液体颗粒群撞击发热线路811时的弹射角度,增加液体颗粒与发热线路811的发热面的换热量,提高液体颗粒被发热线路811的发热面所捕获的几率,以及提高雾化量和雾化效率。
其次,经喷雾口621喷出的液体颗粒群分布并非是均匀的,一般存在特定的分布规律,如正态分布。若采用相关技术中的发热体81,无法根据液体颗粒群分布的规律来调整温度分布,导致雾化效率降低。在该实施例中,可通过改变折弯部816在发热线路811上的位置和/或增加折弯部816的数量,改变发热线路811的温度分布。可以理解地,相对于发热线路811其他位置,位于折弯处的电流密度会增加,发热线路811的发热面的表面温度会相对增加,根据液体颗粒群分布的规律,可调整折弯部816在发热线路811上的位置和/或增加折弯部816的数量,进而改变发热线路811的温度分布,使液体颗粒群的全体均可得到对应最优的加热效果。
在实施例1-5,与实施例中1-1的加热组件80的结构大致相同,区别在于,如图14所示,加热组件80除了包括发热体81,还包括导液体82;具体地,该导液体82紧贴于发热体81与喷雾口621相背的表面设置,且其长度、宽度分别略大于该发热体81的发热线路811对应长度和宽度,使得导液体82完全覆盖该发热体81的所有网孔812。
可以理解地,导液体82为多孔介质,导液体82设有多个具有毛细作用力的毛细孔,具备一定的吸液能力,能够将穿过网状的发热线路811的未能捕获的液体颗粒群给吸收掉,防止液体颗粒直接通过发热体81,减少第一平均粒径的液体颗粒与气溶胶混合的几率。同时,在毛细力的作用下,多孔介质能够保持湿润,发热线路811可将多孔介质表面的液体雾化形成气溶胶,气溶胶穿过发热线路811上的网孔812和多孔介质的毛细孔流向吸气通道150,最终被用户吸食。
其中,多孔介质的毛细孔的孔径可根据吸液能力的需求,和发热线路811的发热效率和液体颗粒群的雾化速率所进行调整。
可以理解地,上述的实施例之间的技术特征可根据实际需要而相互混合使用,以获得相对最优的技术方案。
综上,本发明通过设置包含有呈网状发热线路的发热体,可减少发热体表面形成液膜的厚度,提高雾化效率;还可抑制雾气在撞击发热体时的回弹,减少雾气的损失,提高雾化量;此外,还可以抑制炸液的发生,减少粒径大的液滴产生,确保用户的食用口感。
可以理解的,以上实施例仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制;应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,可以对上述技术特点进行自由组合,还可以做出若干变形和改进,这些都属于本发明的保护范围;因此,凡跟本发明权利要求范围所做的等同变换与修饰,均应属于本发明权利要求的涵盖范围。

Claims (21)

  1. 一种电子雾化装置,其特征在于,包括用于喷出雾气的喷雾组件(62),加热组件(80),所述喷雾组件(62)包括喷雾口(621),所述加热组件(80)包括至少一个发热体(81),以对所述喷雾组件(62)喷出的雾气进行加热雾化;
    其中,每个所述发热体(81)包括呈网状的发热线路(811),所述发热线路(811)与所述喷雾口(621)相对设置。
  2. 根据权利要求1所述的电子雾化装置,其特征在于,所述发热线路(811)具有多个网孔(812);所述网孔(812)的形状包括多边形、梯形、圆形、椭圆形或它们中至少一种的组合。
  3. 根据权利要求1所述的电子雾化装置,其特征在于,所述发热体(81)还包括连接于所述发热线路(811)两端的第一电极连接部(814)和第二电极连接部(815),以为所述发热线路(811)通电。
  4. 根据权利要求1所述的电子雾化装置,其特征在于,所述发热线路(811)呈平面型或者弧面型。
  5. 根据权利要求1所述的电子雾化装置,其特征在于,所述发热线路(811)呈折弯的平面型。
  6.  根据权利要求1所述的电子雾化装置,其特征在于,所述发热线路(811)呈球面型。
  7. 根据权利要求1所述的电子雾化装置,其特征在于,所述至少一个发热体(81)包括至少两个发热体(81),所述至少两个发热体(81)平行间隔布置。
  8. 根据权利要求7所述的电子雾化装置,其特征在于,所述发热线路(811)包括发热主干(8110)、以及设于所述发热主干(8110)上的网孔(812);
    相邻的两个发热体(81)交错布置,且在所述相邻的两个发热体(81)中,相对邻近所述雾化口(621)的发热体(81)的发热主干(8110)的投影落于相对远离所述雾化口(621)的发热体(81)的对应网孔(812)上。
  9.  根据权利要求8所述的电子雾化装置,其特征在于,所述相邻的两个所述发热体(81)在所述发热线路(811)的长度方向L上交错布置;
    且所述相邻的两个所述发热体(81)之间的错位距离X大于0mm,且小于所述网孔(812)在所述发热线路(811)长度方向L上的长度值。
  10. 根据权利要求1所述的电子雾化装置,其特征在于,所述加热组件(80)还包括导液体(82),所述导液体(82)设置于所述至少一个发热体(81)与所述喷雾口(621)相背的表面,且覆盖所述至少一个发热体(81)的至少部分网孔(812)。
  11. 根据权利要求10所述的电子雾化装置,其特征在于,所述导液体(82)覆盖所述至少一个发热体(81)的全部网孔(812)。
  12. 根据权利要求10所述的电子雾化装置,其特征在于,所述导液体(82)包括多孔介质。
  13. 根据权利要求7所述的电子雾化装置,其特征在于,所述至少两个发热体(81)的发热功率随着其自身与喷雾口(621)之间的距离增大而逐渐变小。
  14. 根据权利要求5所述的电子雾化装置,其特征在于,所述发热线路(811)具有至少一处折弯部(816),使得位于对应折弯部(816)两侧的发热线路(811)部分呈夹角α设置。
  15.  根据权利要求14所述的电子雾化装置,其特征在于,所述夹角α的范围区间为[60,120],单位为°。
  16.  根据权利要求15所述的电子雾化装置,其特征在于,所述夹角α的范围区间为[60,90],单位为°。
  17. 根据权利要求16所述的电子雾化装置,其特征在于,所述夹角α的开口与所述喷雾口(621)相对设置。
  18. 根据权利要求6所述的电子雾化装置,其特征在于,所述发热线路(811)沿远离所述喷雾口(621)的方向凹陷。
  19. 根据权利要求1-18任一权利要求所述的电子雾化装置,其特征在于,所述喷雾组件(62)喷出的雾气经过所述加热组件(80)后,平均粒径变小。
  20. 一种电子雾化装置,其特征在于,包括用于喷出第一平均粒径雾气的喷雾组件(62)和加热组件(80),所述喷雾组件(62)包括喷雾口(621),所述加热组件(80)包括至少一个发热体(81),以对所述第一平均粒径喷雾组件(62)喷出的雾气进行加热雾化,形成第二平均粒径雾气,所述第二平均粒径小于所述第一平均粒径;
    其中,每个所述发热体(81)包括呈网状的发热线路(811),所述发热线路(811)与所述喷雾口(621)相对设置。
  21. 一种加热组件,用于对雾气进行加热蒸发;其特征在于,该加热组件包括至少一个发热体(81),每个所述发热体(81)包括呈网状的发热线路(811),所述发热线路(811)设于所述雾气的流动轨迹上。
PCT/CN2023/078890 2022-06-14 2023-02-28 电子雾化装置及其加热组件 WO2023241099A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210669209.1A CN117256946A (zh) 2022-06-14 2022-06-14 电子雾化装置及其加热组件
CN202210669209.1 2022-06-14

Publications (1)

Publication Number Publication Date
WO2023241099A1 true WO2023241099A1 (zh) 2023-12-21

Family

ID=89193113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/078890 WO2023241099A1 (zh) 2022-06-14 2023-02-28 电子雾化装置及其加热组件

Country Status (2)

Country Link
CN (1) CN117256946A (zh)
WO (1) WO2023241099A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105192891A (zh) * 2015-09-28 2015-12-30 深圳市新宜康科技有限公司 电子烟装置
CN207100517U (zh) * 2017-07-11 2018-03-16 常州市派腾电子技术服务有限公司 雾化器及其电子烟
CN108697867A (zh) * 2016-03-31 2018-10-23 菲利普莫里斯生产公司 用于气溶胶生成系统的雾化组合件
US10244795B2 (en) * 2016-03-31 2019-04-02 Altria Client Services Llc Vaporizing assembly comprising sheet heating element and liquid delivery device for an aerosol generating system
CN215270591U (zh) * 2021-02-08 2021-12-24 深圳市吉迩科技有限公司 组合式气溶胶发生装置和电子烟

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105192891A (zh) * 2015-09-28 2015-12-30 深圳市新宜康科技有限公司 电子烟装置
CN108697867A (zh) * 2016-03-31 2018-10-23 菲利普莫里斯生产公司 用于气溶胶生成系统的雾化组合件
US10244795B2 (en) * 2016-03-31 2019-04-02 Altria Client Services Llc Vaporizing assembly comprising sheet heating element and liquid delivery device for an aerosol generating system
CN207100517U (zh) * 2017-07-11 2018-03-16 常州市派腾电子技术服务有限公司 雾化器及其电子烟
CN215270591U (zh) * 2021-02-08 2021-12-24 深圳市吉迩科技有限公司 组合式气溶胶发生装置和电子烟

Also Published As

Publication number Publication date
CN117256946A (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
CN113287787A (zh) 气溶胶生成装置
WO2022179641A2 (zh) 发热体、雾化器及电子雾化装置
US20080099934A1 (en) Nebulization Fan
JP2023029226A (ja) 電子霧化装置
CN217509891U (zh) 雾化底座、雾化器及电子雾化装置
CN115177025A (zh) 发热体、雾化器及电子雾化装置
EP1906106A1 (en) Nebulization fan
WO2023241099A1 (zh) 电子雾化装置及其加热组件
KR102619498B1 (ko) 도장 부스용의 공조 장치
CN219373808U (zh) 电子雾化装置及其雾化器
CN111503797A (zh) 一种闪沸蒸汽加湿器
CN216346867U (zh) 桌面空气处理器
CN212644839U (zh) 一种闪沸蒸汽加湿器
WO2023241131A1 (zh) 电子雾化装置
WO2023241129A1 (zh) 电子雾化装置及其雾化装置
WO2023241100A1 (zh) 电子雾化装置
WO2023207292A1 (zh) 电子雾化装置及其储液雾化组件
WO2023207368A1 (zh) 电子雾化装置及其储液雾化组件和喷嘴
CN216753552U (zh) 复合导液构造雾化器及电子雾化装置
WO2023207321A1 (zh) 雾化喷嘴、储液雾化喷嘴及电子雾化装置
CN220545819U (zh) 电子雾化装置
KR200360039Y1 (ko) 가습기의 가열장치
WO2023207323A1 (zh) 电子雾化装置
CN221301495U (zh) 一种前置喷雾表冷加湿空气处理装置及空气处理设备
CN218474051U (zh) 一种多孔陶瓷导油体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23822671

Country of ref document: EP

Kind code of ref document: A1