WO2023241131A1 - 电子雾化装置 - Google Patents

电子雾化装置 Download PDF

Info

Publication number
WO2023241131A1
WO2023241131A1 PCT/CN2023/080906 CN2023080906W WO2023241131A1 WO 2023241131 A1 WO2023241131 A1 WO 2023241131A1 CN 2023080906 W CN2023080906 W CN 2023080906W WO 2023241131 A1 WO2023241131 A1 WO 2023241131A1
Authority
WO
WIPO (PCT)
Prior art keywords
spiral
nozzle
atomization device
channel
electronic atomization
Prior art date
Application number
PCT/CN2023/080906
Other languages
English (en)
French (fr)
Inventor
朱彬彬
任三兵
雷桂林
范书豪
刘成川
Original Assignee
海南摩尔兄弟科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海南摩尔兄弟科技有限公司 filed Critical 海南摩尔兄弟科技有限公司
Publication of WO2023241131A1 publication Critical patent/WO2023241131A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps

Definitions

  • the present invention relates to the field of atomization, and in particular to electronic atomization devices.
  • the relevant vent pipe 70a has a hollow structure, and a right cylindrical hollow channel 71a is provided inside it; the relevant heating component 80a is contained in the relevant vent pipe 70a, which is in the shape of a planar mesh. structure.
  • the mist flows from one end of the ventilation tube 70a, is heated by the heating component 80a, and then flows out from the other end of the ventilation tube 70a.
  • the relevant heating component 80a is provided with a mesh for passing the mist, in actual applications, a part of the mist is directly discharged through the mesh without being completely atomized along with the air flow, and another part is in contact with the heating component. Then it is blocked and rebounds, or adheres to the inner wall surface of the relevant vent pipe 70a along with the airflow, making it difficult to be heated and atomized by the relevant heating component 80a before flowing out.
  • the present invention provides an electronic atomization device.
  • the technical solution adopted by the present invention to solve the technical problem is to construct an electronic atomization device, which includes a hollow vent tube, a heating component and a nozzle.
  • the nozzle is arranged toward the inlet end of the vent tube for atomizing the liquid substrate. Atomize and spray it into the ventilator;
  • the heating component is contained in the vent pipe and is arranged opposite the nozzle to atomize the mist sprayed by the nozzle again;
  • the heating component includes a spiral heating element in a tower-like spiral structure; the spiral heating element includes a plurality of spiral turns extending in an axial direction; and a first gap is left between any two adjacent spiral turns for the passage of mist. ;
  • the entire spiral heating element is axially spirally formed around the outer surface of the cone.
  • the vertex angle ⁇ of the spiral heating element on its axial cross-section is 30° to 60°.
  • the circumference of the plurality of spiral turns gradually decreases as the distance between itself and the nozzle increases.
  • the number of the plurality of spiral turns is 12 to 18.
  • the spiral heating element includes a spiral heating wire.
  • the diameter of the spiral heating wire is 0.2 ⁇ 0.4mm.
  • the width of the first gap is 0.1 ⁇ 0.4mm.
  • the width of the first gap is 0.2 ⁇ 0.25mm.
  • the vent pipe includes an expansion channel whose inner diameter gradually increases outward from the inlet end, and an air outlet channel connected with the expansion channel; the mist sprayed by the nozzle flows from the expansion channel to the Exhaust channel.
  • the inclined inner wall surface in the expansion channel and its axis are connected at an included angle ⁇ , and the included angle ⁇ is 45° to 70°.
  • the inner wall surface of the expansion channel has a streamlined expansion shape.
  • the maximum inner diameter of the expansion channel is equal to the inner diameter of the air outlet channel.
  • the heating component is disposed in the air outlet channel; wherein the spiral coil with the largest outer diameter among the spiral heating elements is disposed at the junction of the expansion channel and the air outlet channel.
  • the spiral heating element and the ventilation tube are arranged coaxially.
  • the implementation of the present invention has the following beneficial effects:
  • the present invention provides a spiral heating element in a tower spiral structure as a heating component, which is generally in the shape of a sealed disk when viewed in the flow direction of the first average particle diameter mist, which can prevent the mist from facing each other. It flows directly through the first gap; at the same time, the direction of the air flow can be better changed, so that the mist can be heated evenly.
  • Figure 1 is a schematic structural diagram of a relevant heating component located in a relevant vent pipe in an electronic atomization device of the related art
  • Figure 2 is a schematic three-dimensional structural diagram of the electronic atomization device in Embodiment 1 of the present invention.
  • Figure 3 is a schematic longitudinal cross-sectional structural diagram of the electronic atomization device shown in Figure 1;
  • Figure 4 is a schematic longitudinal cross-sectional structural view of the liquid storage atomization component of the electronic atomization device in Figure 2;
  • Figure 5 is a schematic structural diagram of the electronic atomization device of the present invention in which the heating component is installed in the ventilation pipe;
  • Figure 6 is a schematic structural diagram of the heating assembly in some embodiments of the present invention.
  • Figure 7 is a schematic structural view of the heating assembly shown in Figure 5 from a bird's eye view
  • Figure 8 is a schematic structural diagram of the heating assembly shown in Figure 5 from a side perspective
  • Figure 9 is a schematic longitudinal cross-sectional structural view of the heating assembly shown in Figure 8.
  • Figure 10 is a flow field simulation distribution diagram in the present invention where the mist sprayed from the nozzle enters the ventilator and is atomized again by the heating component.
  • FIGS 2 to 10 show the electronic atomization device 100 in the first embodiment of the present invention.
  • the electronic atomization device 100 can be used to atomize a liquid substrate to generate an aerosol, which can be smoked or inhaled by the user.
  • it can be substantially cylindrical. It is understandable that in other embodiments, the electronic atomization device 100 may also be in other shapes such as an elliptical column, a flat column, a square column, or the like.
  • the liquid substrate may include e-liquid or medicinal liquid.
  • the electronic atomization device 100 may include a housing 10 and a control module 20 contained in the housing 10 , a power supply 30 , an air source 40 , a liquid storage atomization component 60 and a heating component 80 .
  • the control module 20 is electrically connected to the air source 40 and the heating component 80 respectively, and is used to receive instructions. The instructions can be triggered by the user or automatically triggered after the electronic atomization device 100 meets certain conditions.
  • the control module 20 then controls the air source 40 according to the instructions. , the work of the heating component 80.
  • the control module 20 may include an air source control module and a heating control module to control the air source 40 and the heating assembly 80 respectively.
  • the power supply 30 is electrically connected to the control module 20 , the air source 40 , and the heating assembly 80 respectively, and is used to provide electric energy to the control module 20 , the air source 40 , and the heating assembly 80 .
  • the liquid storage atomization assembly 60 includes a liquid storage assembly 61 and a nozzle 62.
  • the liquid storage assembly 61 is formed with a liquid storage chamber 610 for storing a liquid substrate, and the nozzle 62 is formed with an air flow channel 627 connected with the liquid storage chamber 610. , the liquid matrix can be atomized into liquid particles in the air flow channel 627.
  • the air source 40 is connected with the nozzle 62 and is used to provide a certain amount of high-pressure air to the nozzle 62.
  • the high-speed air flow can be provided through an axial flow pump, or the high-speed air flow can be provided by releasing compressed gas.
  • the high-pressure air can assist the nozzle 62 to atomize the liquid matrix from the liquid storage chamber 610 into a group of fine liquid particles.
  • the liquid particles ejected from the nozzle 62 collide with the heating component 80 and are heated by the heating component 80 to generate an aerosol that is carried out by the air flow for the user to suck or inhale.
  • the liquid substrate can also be atomized into fine liquid particle groups through other methods, such as high-pressure nozzles, which are not limited here.
  • the fine liquid particles are further heated and atomized by the heating component 80 .
  • the liquid substrate is atomized into a group of liquid particles and then evaporated by the heating component 80. Since the surface area of the group of fine liquid particles formed after atomization by the nozzle 62 is greatly expanded, it is easier to heat and evaporate. On the one hand, The conversion efficiency of heat and aerosol can be improved. On the other hand, the temperature of the evaporation process of the heating component 80 can be reduced to achieve low-temperature atomization.
  • the liquid matrix only completes the physical change process, thus overcoming the problem of thermal cracking and deterioration of the liquid matrix caused by the need for high-temperature atomization under traditional porous ceramics or porous cotton conditions, not to mention the Burning, carbon deposition, heavy metal volatilization and other phenomena will occur, so that the unique ingredients and flavor and fragrance systems of different liquid bases can be maintained, and ultimately the inhaler can feel the unique taste corresponding to the original liquid base.
  • the heating component 80 is not in contact with the liquid storage chamber 610, and the heating component 80 does not need to be immersed in the liquid matrix for a long time, which reduces the contamination of the liquid matrix by the heating component 80, thereby reducing impurity gases in the aerosol generated after atomization.
  • the housing 10 may include a lower housing 12 and an upper housing 11 longitudinally coupled to an upper end of the lower housing 12 .
  • the lower shell 12 may be in the shape of a cylinder with openings at both ends.
  • the shell 10 further includes a base 13 longitudinally covering the opening at the lower end of the lower shell 12 . It is understood that in other embodiments, the base 13 can also be integrally formed with the lower shell 12 .
  • the electronic atomization device 100 may further include a vent tube 70 disposed longitudinally in the upper housing 11 .
  • the vent tube 70 has a hollow structure and can be used as an atomization chamber for heating and atomizing liquid particles.
  • the vent pipe 70 has two open ends, the open end close to the nozzle 62 can be used as an inlet end, and the open end far away from the nozzle 62 can be used as an outlet end.
  • the ejection port 6210 of the nozzle 62 is disposed at the inlet end of the vent pipe 70 or its periphery, which is also regarded as being disposed upstream of the vent pipe 70 , and sprays liquid particles into the vent pipe 70 ;
  • the heating component 80 can be accommodated in the vent pipe 70 , is arranged opposite to the ejection port 6210; the aerosol formed after the liquid particles are atomized again by the heating component 80 is output from the outlet end of the ventilation tube 70.
  • the heating component 80, the vent pipe 70, and the housing 10 can all be arranged coaxially.
  • the inner wall surface of the vent pipe 70 defines an expansion channel 72 connected with the nozzle 62 and an air outlet channel 71 connected with the expansion channel 72.
  • the expansion channel 72 is located above the nozzle 62;
  • the air outlet channel 71 is located above the expansion channel 72 .
  • the first expansion channel 72 , the air outlet channel 71 and the nozzle 62 are coaxially arranged.
  • the expansion channel 72 is formed to be inclined outward from the inlet end of the breather tube 70 to reduce the generation of vortex flow inside the breather tube 70 , which can effectively avoid or reduce the vortex flow. It can also be understood that the inner diameter of the first expansion channel 72 gradually increases outward from the inlet end of the vent pipe 70 . It can be understood that the high-speed airflow and liquid particles flowing into the ventilator 70 from the inlet end of the ventilator 70 can drive the surrounding airflow to produce a backflow phenomenon. When the expansion channel 72 is used as the channel at the inlet end of the ventilator 70, this can be effectively avoided or reduced. The occurrence of backflow phenomenon.
  • the expansion channel 72 is a truncated cone-shaped channel extending longitudinally and with a hole diameter gradually increasing from bottom to bottom.
  • the opening in the first expansion channel 72 close to the nozzle 62 serves as the inlet end of the vent pipe 70 .
  • the inclined wall surface of the expansion channel 72 and its axis are connected at an included angle ⁇ , and the included angle ⁇ is preferably 45° to 70°.
  • the inner wall surface of the expansion channel 72 has a streamlined expansion shape.
  • the inner wall surface of the expansion channel 72 is an arc surface, and the expansion channel 72 and the air outlet channel 71 are streamlined and smoothly connected.
  • the lower end of the air outlet channel 71 is connected to the expansion channel 72.
  • the air outlet channel 71 and the expansion channel 72 are streamlined and smoothly connected.
  • the air outlet channel 71 is a right cylindrical channel extending along the axial direction of the vent pipe 70 and is coaxially arranged with the expansion channel 72 , and the inner diameter of the air outlet channel 71 is equal to the maximum inner diameter of the expansion channel 72 .
  • the heating component 80 is accommodated in the air outlet channel 71 .
  • the bottom of the heating component 80 is located at the junction of the expansion channel 72 and the air outlet channel 71 .
  • the lower shell 12 may be provided with a bracket assembly 14 that divides the lower shell 12 into a first receiving space 121 located at the upper part and a second receiving space 122 located at the lower part.
  • the control module 20 , the power supply 30 , and the air source 40 can all be accommodated in the second accommodation space 122 .
  • the control module 20 may include a circuit board and a control circuit formed on the circuit board, the power supply 30 may include a battery, and the air source 40 may include an air pump.
  • the liquid storage atomization assembly 60 can be received in the first receiving space 121 and supported on the bracket assembly 14.
  • the electronic atomization device 100 may further include an airflow sensing element 50 , and the airflow sensing element 50 may be installed at the bottom of the bracket assembly 14 .
  • the airflow sensing element 50 is electrically connected to the control module 20 and is used to sense changes in the airflow when the user inhales and transmit signals to the control module 20 .
  • the control module 20 detects that the user has a suction action, it sends a signal to the air source 40 to start the air source 40 to start supplying air, and sends a signal to the heating component 80 to start the heating component 80 to start heating.
  • the airflow sensing element 50 may be a negative pressure sensor, such as a microphone.
  • the housing 10 may further include a suction nozzle 15 disposed on the top of the upper housing 11 , through which the user can inhale the aerosol.
  • the suction nozzle 15 is in the shape of a hollow tube, and its inner wall defines an inhalation channel 150 for outputting aerosol that is connected with the air outlet channel 71 .
  • the lower end of the suction nozzle 15 can be embedded in the breather tube 70 , and the outer wall surface of the lower end of the suction nozzle 15 is sealingly matched with the inner wall surface of the upper end of the breather tube 70 .
  • An air suction port 1501 is formed on the upper end of the suction nozzle 15 , and the air suction port 1501 is connected with the upper end of the air suction channel 150 .
  • the suction nozzle 15 and the upper shell 11 are formed separately and then assembled together; in other embodiments, the suction nozzle 15 and the upper shell 11 can also be integrally formed.
  • the electronic atomization device 100 may further include a dust cover 90 detachably provided outside the upper shell 11 .
  • the dust cover 90 can be placed outside the upper shell 11 to prevent dust and other impurities from entering the suction channel 150 .
  • an air flow channel 627 and a liquid inlet channel 622 are formed in the nozzle 62.
  • the air flow channel 627 is used to circulate high-speed air flow
  • the liquid inlet channel 622 is used to input a liquid substrate into the air flow channel 627.
  • the liquid substrate entering the air flow channel 627 from the liquid inlet channel 622 is affected by the high-speed air flow circulating in the air flow channel 627.
  • Atomization It is understood that in other embodiments, the air flow channel 627 can also be atomized in other ways. For example, a bubble nozzle can also be provided in the air flow channel 627 to generate liquid particles in the form of bubble atomization.
  • the air flow channel 627 includes an air supply channel 620 and an atomization channel 621 connected with the air supply channel 620.
  • the liquid inlet channel 622 connects the liquid storage chamber 610 and the atomization channel 621
  • the air supply channel 620 connects the air source 40 and the atomization channel 621
  • the atomization channel 621 forms an atomization surface 6211 close to the end surface of the air supply channel 620.
  • the chemical channel 621 has an ejection port 6210 at one end away from the air supply channel 620 .
  • the liquid substrate flowing into the atomization channel 621 from the liquid inlet channel 622 can form a liquid film on the atomization surface 6211, and the liquid film can be cut and atomized into fine liquid particles by the high-speed air flow from the air supply channel 620, and the liquid particles can then be cut and atomized into fine liquid particles. It is output from the atomization channel 621 and ejected through the ejection port 6210.
  • the heating component 80 is accommodated in the vent pipe 70 and located above the nozzle 62 , and is opposite to the ejection port 6210 of the nozzle 62 ; preferably, it is coaxially arranged with the nozzle 62 .
  • the heating component 80 can be heated by resistance conduction heating, infrared radiation heating, electromagnetic induction heating or composite heating.
  • the heating component 80 includes a spiral heating element 81 in a tower-shaped spiral structure, which generates heat after being energized and can reheat and atomize the mist ejected from the nozzle 6210 to form mist with a relatively smaller particle size. .
  • the spiral heating element 81 leaves a first gap 82 for the mist to pass through. That is, after the spiral heating element 81 atomizes the liquid particles again, the reheated and atomized mist will flow to the suction through the first gap 82 with the air flow.
  • the air channel 150 is eventually sucked or inhaled by the user. It can be understood that, as shown in FIG. 10 , the distribution of the liquid particle group injected through the nozzle 6210 is not uniform, but is similar to a normal distribution; the main air flow and the liquid particle group are mainly distributed in the central area of the vent pipe 70 . If there is no obstruction in the middle area, most of the liquid particles will not be heated evenly.
  • the relevant heating component 80a in the related art since the relevant heating component 80a in the related art has a planar mesh structure, part of the mist is directly discharged through the mesh without being completely atomized along with the airflow, causing an impact on the user's mouth. Therefore, the present invention constructs a heating component 80.
  • the heating component 80 includes a spiral heating element 81 in a tower-shaped spiral structure, which is generally a sealed disc shape when viewed in the direction of flow of the mist, which can prevent the mist from flowing relatively directly.
  • the first gap 82 flows through; at the same time, the tower spiral structure can better change the direction of the air flow and better evenly heat the mist.
  • the spiral heating element 81 rotates along the same straight line, and gradually contracts in the radial direction during the rotation process.
  • the spiral heating element 81 is spirally formed along the axial direction of the vent pipe 70 , and its top corner is disposed toward the suction nozzle 15 .
  • the length of each spiral turn 811 in the spiral heating element 81 gradually decreases as the distance between itself and the nozzle (62) increases.
  • the overall shape of the spiral heating element 81 is generally conical, and the shape of its axial cross-section is triangular. In other embodiments, the overall shape of the spiral heating element 81 is generally a truncated cone, and the shape of its axial cross-section is a trapezoid.
  • the spiral heating element 81 is made of electrically and thermally conductive metal material; in some embodiments it includes a spiral heating wire, which is axially spirally formed by a filament; preferably, the diameter of the spiral heating wire is 0.2 ⁇ 0.4mm. In other embodiments, the spiral heating element 81 includes a spiral heating piece, which is axially spirally formed from a sheet body.
  • the spiral heating element 81 has a first conductive end 812 and a second conductive end 813 , and the first conductive end 812 and the second conductive end 813 are electrically connected to the two poles of the power supply 30 respectively.
  • the first conductive end 812 and the second conductive end 813 are respectively located at the top and bottom of the spiral heating element 81 .
  • the spiral heating element 81 includes a plurality of spiral turns 811 extending convolutedly in the axial direction.
  • each spiral turn 811 is formed by axial rotational movement, with a head end located at the starting point of the rotation, and a tail end located at the end point of the rotation.
  • the tail end of each spiral turn 811 is located above the head end thereof, so that each spiral turn 811 has a three-dimensional structure.
  • the two adjacent spiral circles 811 are connected end to end. Since the head end and the tail end of the spiral circle 811 are located at different axial heights relative to the vent pipe 70, there is a certain gap between the two adjacent spiral circles 811. The distance forms the above-mentioned first gap 82 .
  • connection between the plurality of spiral turns 811 may be integrally formed and wound by one metal wire, or may be formed by two or more metal wires wound around each other. In other embodiments, the connections between the plurality of spiral turns 811 may be sequentially connected by bonding, welding, etc.
  • two corresponding projections of any two adjacent spiral turns 811 on the same plane are closely adjacent to each other. It can be understood that, as shown in FIG. 7 , in the horizontal projection of the spiral heating element 81 , among the two adjacent spiral turns 811 , the spiral turn 811 with a relatively larger outer diameter is located between the spiral turn 811 with a relatively smaller outer diameter.
  • the outer circumference of the spiral ring 811 is in contact with the outer wall of the spiral ring 811 with a relatively smaller outer diameter; the inner diameter of the spiral ring 811 with a relatively larger outer diameter is almost or completely equal to the outer diameter of the spiral ring 811 with a relatively smaller outer diameter.
  • the spiral heating element 81 when the spiral heating element 81 is viewed from the axial extension direction of the vent pipe 70 , the spiral heating element 81 does not have a gap, but when viewed from other directions other than the axial direction of the vent pipe 70 , the spiral heating element 81 has gaps, so that the third When mist with an average particle size flows into the ventilation tube 70, the heating effect of the spiral heating element 81 can be obtained, preventing part of the mist with the first average particle size from flowing relatively directly through the first gap 82 of the spiral heating element 81; at the same time, Since the spiral heating element 81 actually has the first slits 82 , the mist sprayed from the nozzle 62 can still pass through the first slits 82 after being heated and atomized again, and then flow to the suction channel 150 .
  • the number of spiral turns 811 is preferably between 12 and 18. It can be understood that when the number of spiral turns 811 is too large, the first gap 82 between the spiral turns 811 will be too dense, affecting the flow resistance of the airflow; and when the number of spiral turns 811 is too small, the first gap 82 between the spiral turns 811 will be too dense. The first gap 82 will be too sparse, which will cause the mist to pass through the first gap 82 without being completely heated and atomized into mist with a relatively smaller particle size, which is not conducive to the heating and atomization of the mist.
  • the width of the first gap 82 ranges from 0.1 to 0.4 mm, preferably between 0.2 mm and 0.25 mm.
  • the vertex angle ⁇ of the spiral heating element 81 on its axial cross-section is 30° to 60°. It can be understood that if the vertex angle of the spiral heating element 81 is too large, the inner diameter of the spiral ring 811 at the bottom of the spiral heating element 81 is too large, and it is difficult for part of the first average particle size mist to obtain a good heating effect; and if the spiral heating element 81 The vertex angle of the heating element 81 is too small, and there is a certain distance between the outermost side of the spiral heating element 81 and the inner wall of the vent pipe 70 , which will cause part of the first average particle size mist to flow directly from the outer periphery of the spiral heating element 81 .
  • the top of the spiral heating element 81 is located away from the ejection port 6210 , and the spiral turn 811 with the largest outer diameter of the spiral heating element 81 is located at the junction of the expansion channel 72 and the air outlet channel 71 . In this way, the atomization efficiency can be improved and the flow field of the air outlet channel 71 can be improved.
  • the mist ejected from the nozzle 62 enters the expansion channel 72 from the inlet end of the vent pipe 70 , since the expansion channel 72 adopts an inclined design, the occurrence of backflow can be effectively avoided or reduced. Then, the mist hits the spiral heating element 81 and is heated and atomized again. The mist with a smaller particle size formed after being atomized again passes through the first gap 82 of the spiral heating element 81 along with the air flow.

Landscapes

  • Nozzles (AREA)

Abstract

电子雾化装置,包括中空的通气管(70)、加热组件(80)和喷嘴(62),喷嘴(62)朝向通气管(70)的入口端设置,用于将液态基质雾化,且将其喷向通气管(70)内;加热组件(80)收容于通气管(70)内,且与喷嘴(62)相对设置,以将喷嘴(62)喷出的雾气再次雾化;加热组件(80)包括呈塔式螺旋结构的螺旋发热体(81);螺旋发热体(81)包括轴向回旋延伸的多个螺旋圈(811);任意相邻的两个螺旋圈(811)之间留有供雾气通过的第一缝隙(82);其中,任意相邻的两个螺旋圈(811)在同一平面上的两个对应投影相互紧贴;避免雾气相对直接地从第一缝隙(82)流过,同时还可更好地改变气流的方向,使得雾气能够均匀加热。

Description

电子雾化装置 技术领域
本发明涉及雾化领域,尤其涉及电子雾化装置。
背景技术
在相关技术中,如图1所示,相关通气管70a呈中空结构,其内设有呈直圆柱形的中空通道71a;相关加热组件80a收容于相关通气管70a中,其呈平面的网状结构。雾气从通气管70a的一端流入经过加热组件80a的加热后从通气管70a的另一端流出。
虽然相关加热组件80a设有用于通过雾气的网孔,但是在实际应用中,存在一部分的雾气随着气流在未完全雾化的情况下直接穿过网孔排出,且存在另一部分在接触加热组件后被阻挡反弹,或随着气流黏附于相关通气管70a的内壁面,难以经由相关加热组件80a加热雾化后流出。
发明内容
本发明针对上述缺陷,提供一种电子雾化装置。
本发明解决其技术问题所采用的技术方案是:构造一种电子雾化装置,包括中空的通气管、加热组件和喷嘴,所述喷嘴朝向所述通气管的入口端设置,用于将液态基质雾化,且将其喷向所述通气管内;
所述加热组件收容于所述通气管内,且与所述喷嘴相对设置,以将所述喷嘴喷出的雾气再次雾化;
所述加热组件包括呈塔式螺旋结构的螺旋发热体;所述螺旋发热体包括轴向回旋延伸的多个螺旋圈;任意相邻的两个螺旋圈之间留有供雾气通过的第一缝隙;
其中,任意相邻的两个螺旋圈在同一平面上的两个对应投影相互紧贴。
优选地,所述螺旋发热体整体围绕圆锥体的外侧面轴向回旋成型。
优选地,所述螺旋发热体在其轴截面上的顶角β的角度为30°~60°。
优选地,所述多个螺旋圈的周长随着自身与所述喷嘴之间的距离增加而逐渐减小。
优选地,所述多个螺旋圈的数量为12~18个。
优选地,所述螺旋发热体包括螺旋发热丝。
优选地,所述螺旋发热丝的丝径为0.2~0.4mm。
优选地,所述第一缝隙的宽度为0.1~0.4mm。
优选地,所述第一缝隙的宽度为0.2~0.25mm。
优选地,所述通气管包括自其所述入口端内径逐渐向外增大的扩张通道、以及与所述扩张通道连通的出气通道;所述喷嘴喷出的雾气从所述扩张通道流向所述出气通道。
优选地,所述扩张通道中倾斜的内壁面与其轴线之间连接呈夹角α设置,所述夹角α为45°~70°。
优选地,所述扩张通道的内壁面为流线型扩张形状。
优选地,所述扩张通道的最大内径与所述出气通道的内径相等。
优选地,所述加热组件设于所述出气通道;其中,所述螺旋发热体中外径最大的螺旋圈设于所述扩张通道与所述出气通道的交界处。
优选地,所述螺旋发热体与所述通气管共轴设置。
实施本发明具有以下有益效果:本发明通过设置呈塔式螺旋结构的螺旋发热体作为加热组件,其在第一平均粒径雾气的流动方向上看大致呈密封的圆盘型,可避免雾气相对直接地从第一缝隙流过;同时,还可更好地改变气流的方向,进而使得雾气能够均匀加热。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是相关技术的电子雾化装置中相关加热组件设于相关通气管的结构示意图;
图2是本发明实施例1中电子雾化装置的立体结构示意图;
图3是图1所示电子雾化装置的纵向剖面结构示意图;
图4是图2中电子雾化装置的储液雾化组件的纵向剖面结构示意图;
图5是本发明中电子雾化装置的加热组件设于通气管的结构示意图;
图6是本发明中加热组件在一些实施例中的结构示意图;
图7是图5所示的加热组件从在俯视角度下的结构示意图;
图8是图5所示的加热组件从在侧视角度下的结构示意图;
图9是图8所示的加热组件的纵向剖面结构示意图;
图10是本发明中从喷嘴喷出的雾气进入通气管内且经加热组件再次雾化的流场仿真分布图。
实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。以下描述中,需要理解的是,“前”、“后”、“上”、“下”、“左”、“右”、“纵”、“横”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“头”、“尾”等指示的方位或位置关系为基于附图所示的方位或位置关系、以特定的方位构造和操作,仅是为了便于描述本技术方案,而不是指示所指的装置或元件必须具有特定的方位,因此不能理解为对本发明的限制。
还需要说明的是,除非另有明确的规定和限定,“安装”、“相连”、“连接”、“固定”、“设置”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。当一个元件被称为在另一元件“上”或“下”时,该元件能够“直接地”或“间接地”位于另一元件之上,或者也可能存在一个或更多个居间元件。术语“第一”、“第二”、“第三”等仅是为了便于描述本技术方案,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量,由此,限定有“第一”、“第二”、“第三”等的特征可以明示或者隐含地包括一个或者更多个该特征。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本发明实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本发明。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本发明的描述。
图2-图10示出了本发明第一实施例中的电子雾化装置100,该电子雾化装置100可用于雾化液态基质以生成气溶胶,该气溶胶可供用户吸食或者吸入,其在本实施例中可大致呈圆柱状。可以理解地,在其他实施例中,该电子雾化装置100也可呈椭圆柱状、扁平柱状或方形柱状等其他形状。该液态基质可以包括烟油或药液等。
该电子雾化装置100可包括外壳10以及收容于外壳10中的控制模块20、电源30、气源40、储液雾化组件60和加热组件80。控制模块20分别与气源40、加热组件80电连接,用于接收指令,该指令可由用户触发或者在电子雾化装置100满足一定条件后自动触发,控制模块20再根据该指令控制气源40、加热组件80的工作。控制模块20可以包括气源控制模块和加热控制模块分别对气源40和加热组件80进行控制。电源30分别与控制模块20、气源40、加热组件80电连接,用于向控制模块20、气源40、加热组件80提供电能。储液雾化组件60包括储液组件61以及喷嘴62,其中,储液组件61内形成有用于存储液态基质的储液腔610,喷嘴62内形成有与储液腔610相连通的气流通道627,液态基质能够在气流通道627内雾化成液体颗粒。气源40与喷嘴62相连通,用于为喷嘴62提供定量的高压空气,例如,可以通过轴流泵实现提供高速气流,也可以通过释放压缩气体实现提供高速气流。该高压空气可辅助喷嘴62将来自储液腔610的液态基质雾化成细小的液体颗粒群。喷嘴62喷出的液体颗粒群撞击加热组件80,经过加热组件80加热后生成气溶胶由气流带出以供用户吸食或者吸入。
在一些实施例中,也可以通过其他的方式将液态基质雾化成细小的液体颗粒群,如高压喷嘴等,在此不作限制。将细小的液体颗粒群再通过加热组件80进一步的加热雾化。本发明通过将液态基质雾化成液体颗粒群后再由加热组件80蒸发的方式,由于喷嘴62雾化后形成的细小液体颗粒群的表面积得到了极大的扩展,从而更容易加热蒸发,一方面可提高热量及气溶胶的转化效率,另一方面可降低加热组件80蒸发过程的温度,实现低温雾化。在较低的加热雾化温度下,液态基质只完成物理变化过程,从而克服了传统的多孔陶瓷或者多孔棉条件下因必须采用高温方式雾化而导致的液态基质热裂解变质的问题,更不会发生烧焦、积碳和重金属挥发等现象,从而能够保持不同液态基质所特有的成分和香精香料体系,最终使吸入者感受到与原始液态基质相对应的特有的口感。此外,加热组件80与储液腔610不接触,加热组件80不用长期浸泡在液态基质中,减少了加热组件80对液态基质的污染,从而减少了雾化后生成的气溶胶中的杂质气体。
在一些实施例中,外壳10可包括下壳12以及沿纵向配合于下壳12上端的上壳11。具体地,在本实施例中,下壳12可呈两端开口的圆筒状,该外壳10还包括沿纵向封盖于下壳12下端开口处的底座13。可以理解地,在其他实施例中,该底座13也可与下壳12一体成型。在另一些实施例中,该电子雾化装置100还可包括沿纵向设置于上壳11中的通气管70,通气管70呈中空结构,可作为液体颗粒群加热雾化的雾化腔。通气管70具有两个开口端,将靠近喷嘴62的开口端可作为入口端,且将远离喷嘴62的开口端作为和出口端。喷嘴62的喷出口6210设置在通气管70的入口端或其周边处,也看作设置在通气管70的上游,向通气管70内喷入液体颗粒群;加热组件80可收容于通气管70中,与喷出口6210相对设置;液体颗粒群经加热组件80再次雾化后形成的气溶胶从通气管70的出口端输出。可选地,加热组件80、通气管70、外壳10均可同轴设置。
在一些实施例中,通气管70的内壁面界定出与喷嘴62相连通的扩张通道72、以及与扩张通道72连通的出气通道71,在本实施例中,扩张通道72位于喷嘴62的上方;出气通道71位于扩张通道72的上方。优选第一扩张通道72、出气通道71与喷嘴62同轴设置。
扩张通道72自通气管70的入口端向外倾斜设置成形,用于减少通气管70内部的涡流产生,可有效避免或减小涡流。也可以理解,第一扩张通道72自通气管70的其入口端内径逐渐向外增大。可以理解地,高速气流和液体颗粒群从通气管70的入口端流入通气管70内,能够带动周围气流产生回流现象,而当通气管70的入口端的通道采用扩张通道72,可以有效避免或减少回流现象的发生。在一些实施例中,扩张通道72为沿纵向延伸且孔径由下往下逐渐增大的圆台形通道,第一扩张通道72中靠近喷嘴62的开口作为上述通气管70的入口端。扩张通道72的倾斜壁面与其轴线之间连接呈夹角α设置,夹角α优选为45°~70°。在一些实施例中,扩张通道72的内壁面为流线型扩张形状。在本实施例中,扩张通道72的内壁面为圆弧面,且扩张通道72与出气通道71之间为流线型平滑连接。
出气通道71的下端与扩张通道72相连接,优选出气通道71与扩张通道72之间为流线型平滑连。在本实施例中,出气通道71为沿通气管70轴向延伸的直圆柱形通道,与扩张通道72共轴设置,且出气通道71的内径与扩张通道72的最大内径相等。加热组件80收容于出气通道71中。优选地,加热组件80的底部设于扩张通道72与出气通道71的交界处。
在一些实施例中,下壳12中可设置有支架组件14 ,该支架组件14 将下壳12内分隔成位于上部的第一收容空间121以及位于下部的第二收容空间122。控制模块20、电源30、气源40均可收容于该第二收容空间122中。其中,该控制模块20可包括电路板以及形成于该电路板上的控制电路,该电源30可包括电池,该气源40可包括气泵。储液雾化组件60可收容于第一收容空间121中并可支撑于支架组件14 上。在一些实施例中,该电子雾化装置100还可包括气流感应元件50,该气流感应元件50可安装于支架组件14 的底部。气流感应元件50与控制模块20电连接,用于感应用户抽吸时的气流变化并传递信号至控制模块20。控制模块20在检测到用户有抽吸动作时,发送信号至气源40以启动气源40开始供气,并发送信号至加热组件80以启动加热组件80开始加热。在一些实施例中,气流感应元件50可与为负压传感器,例如咪头。
在一些实施例中,外壳10还可包括设置于上壳11顶部的吸嘴15,用户可通过吸嘴15吸食气溶胶。该吸嘴15呈中空管状,其内壁面界定出与出气通道71相连通的用于输出气溶胶的吸气通道150。吸嘴15的下端可嵌置于通气管70中,吸嘴15的下端外壁面与通气管70的上端内壁面密封配合。吸嘴15的上端形成有吸气口1501,该吸气口1501与吸气通道150的上端相连通。在本实施例中,吸嘴15与上壳11分别成型后再组装在一起;在其他实施例中,吸嘴15与上壳11也可一体成型。
在一些实施例中,该电子雾化装置100还可包括可拆卸地罩设于上壳11外的防尘罩90。在不需要使用电子雾化装置100时,可将防尘罩90罩设于上壳11外,防止灰尘等杂质进入吸气通道150。
如图3-4所示,喷嘴62内形成有气流通道627和进液通道622。该气流通道627用于流通高速气流,该进液通道622用于向气流通道627输入液态基质,从进液通道622进入到气流通道627的液态基质受气流通道627中流通的高速气流的作用而雾化。可以理解地,在其他实施例中,气流通道627也可采用其他方式进行雾化,例如,也可在气流通道627内设置气泡喷嘴,通过气泡雾化的形式生成液体颗粒。
在一些实施例中,气流通道627包括供气通道620以及与供气通道620相连通的雾化通道621。其中,进液通道622连通储液腔610与雾化通道621,供气通道620连通气源40与雾化通道621,雾化通道621靠近供气通道620的一端端面形成雾化面6211,雾化通道621远离供气通道620的一端具有喷出口6210。从进液通道622流入到雾化通道621中的液态基质能够在雾化面6211形成液膜,该液膜能够被来自供气通道620的高速气流切割雾化成细小的液体颗粒,该液体颗粒再由雾化通道621输出并经由喷出口6210喷出。
如图3、图5-图10所示,加热组件80收容于通气管70中并位于喷嘴62的上方,且与喷嘴62的喷出口6210相对设置;优选与喷嘴62同轴设置。加热组件80可采用电阻传导加热、红外辐射加热、电磁感应加热或者复合加热等方式进行加热。在本实施例中,加热组件80包括呈塔式螺旋结构的螺旋发热体81,其在通电后发热,能够对从喷出口6210喷出的雾气再次加热雾化,形成相对更小粒径的雾气。同时,螺旋发热体81留有用于供雾气通过的第一缝隙82,即在螺旋发热体81将液体颗粒群再次雾化后,再次加热雾化的雾气会随着气流经第一缝隙82流向吸气通道150,最终被用户所吸食或者吸入。可以理解地,如图10所示,经喷出口6210喷入的液体颗粒群分布并非是均匀的,是呈类似正态分布;主气流和液体颗粒群主要分布在通气管70内的中心区域。若该中部区域没有任何的阻挡,会导致有大部分的液体颗粒群不能被均匀加热。同时,由于相关技术中的相关加热组件80a呈平面的网状结构,存在一部分的雾气随着气流在未完全雾化的情况下直接穿过网孔排出,导致用户的口感受到影响。因此,本发明构造一种加热组件80,该加热组件80包括呈塔式螺旋结构的螺旋发热体81,其在雾气的流动方向上看大致呈密封的圆盘型,可以避免雾气相对直接地从第一缝隙82流过;同时,塔式螺旋结构可以更好地改变气流的方向,更好地对雾气均匀加热。 
进一步地,螺旋发热体81沿同一直线回旋、且在回旋过程中逐渐径向收缩成形。在本实施例中,螺旋发热体81沿通气管70的轴向回旋成形,其顶角朝向吸嘴15设置。螺旋发热体81中各个螺旋圈811的长度随着自身与所述喷嘴(62)之间的距离增加而逐渐减小。
在一些实施例中,螺旋发热体81的整体形状大致呈圆锥形,其轴截面的形状呈三角形。在另一些实施例中,螺旋发热体81的整体形状大致呈圆台形,其轴截面的形状呈梯形。
在一些实施例中,螺旋发热体81由导电导热的金属材质制成;其在一些实施例中包括螺旋发热丝,是由丝状体轴向螺旋成形;优选地,螺旋发热丝的丝径为0.2~0.4mm。在另一些实施例中,螺旋发热体81包括螺旋发热片,是由片状体轴向螺旋成形。
在一些实施例中,该螺旋发热体81具有第一导电端812和第二导电端813,该第一导电端812和第二导电端813分别与电源30的两极电性连接。在本实施例中,第一导电端812和第二导电端813分别位于螺旋发热体81的顶部以及底部。
在一些实施例中,螺旋发热体81包括轴向回旋延伸的多个螺旋圈811。具体地,每个螺旋圈811轴向回旋运动一周成形,具有位于回旋始点的首端、以及位于回旋终点的尾端。其中,每个螺旋圈811的尾端位于其首端的上方,使得每个螺旋圈811呈立体结构。相邻的两个螺旋圈811首尾相接,由于螺旋圈811的首端和尾端相对于通气管70,位于不同的轴向高度,使得在相邻的两个螺旋圈811之间留有一定的间距,该间距形成上述第一缝隙82。在一些实施例中,多个螺旋圈811之间的连接可以是一体成型,由一条金属丝线绕制而成,也可以由两条以上的金属丝线互相缠绕绕制而成。在另一些实施例中,多个螺旋圈811之间的连接可以是通过粘接、焊接等方式依次接驳而成。
在一些实施例中,任意相邻的两个螺旋圈811在同一平面上的两个对应投影相互紧贴。可以理解地,如图7所示,在螺旋发热体81的水平投影上看,相邻的两个螺旋圈811中,外径相对更大的螺旋圈811位于外径相对更小的螺旋圈811的外周,且抵接于外径相对更小的螺旋圈811的外侧壁;外径相对更大的螺旋圈811的内径与外径相对更小的螺旋圈811的外径几乎或完全相等。因此,从通气管70的轴向延伸方向观察螺旋发热体81时,螺旋发热体81不具有缝隙,而从非通气管70轴向的其他方向上看,螺旋发热体81具有缝隙,从而令第一平均粒径雾气在流入通气管70内时,均可获得螺旋发热体81的加热效果,避免部分第一平均粒径雾气相对直接地从螺旋发热体81的第一缝隙82流过;同时,由于螺旋发热体81实际上是具有第一缝隙82,喷嘴62喷出的雾气在再次加热雾化后仍可从该些第一缝隙82中穿过,继而流向吸气通道150。
在一些实施例中,在螺旋发热体81中,螺旋圈811的数量优选在12~18个之间。可以理解地,当螺旋圈811的数量过多时,螺旋圈811之间的第一缝隙82会过于稠密,影响气流的流动阻力;而当螺旋圈811的数量过少时,螺旋圈811之间的第一缝隙82会过于稀疏,会使得雾气在未经完全加热雾化为粒径相对更小的雾气的状态下就已经穿过第一缝隙82,不利于雾气的加热雾化。
同理,为了确保第一平均粒径雾气获得相对较好的加热雾化效果,第一缝隙82的宽度范围为0.1~0.4mm,优选在0.2mm-0.25mm之间。
在一些实施例中,如图9所示,螺旋发热体81在其轴截面上顶角β的角度为30°~60°。可以理解地,若螺旋发热体81的顶角角度过大时,螺旋发热体81中位于底部的螺旋圈811的内径过大,部分第一平均粒径雾气难以获得良好的加热效果;而若螺旋发热体81的顶角角度过小,螺旋发热体81的最外侧与通气管70的内壁之间留有一定的距离,会导致部分第一平均粒径雾气直接从螺旋发热体81的外周流过。
在一些实施例中,螺旋发热体81的顶部远离喷出口6210设置,同时螺旋发热体81其中外径最大的螺旋圈811设于扩张通道72与出气通道71的交界处。这样,可以提高雾化的效率和改善出气通道71的流场。
综上,如图10所示,在当喷嘴62喷出的雾气从通气管70的入口端进入扩张通道72,由于扩张通道72采用倾斜设计,可以有效避免或减少回流现象的发生。接着,雾气撞击到螺旋发热体81上,受热再次雾化,再次雾化后形成的较小粒径的雾气随气流从螺旋发热体81的第一缝隙82中通过。
可以理解的,以上实施例仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制;应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,可以对上述技术特点进行自由组合,还可以做出若干变形和改进,这些都属于本发明的保护范围;因此,凡跟本发明权利要求范围所做的等同变换与修饰,均应属于本发明权利要求的涵盖范围。

Claims (10)

  1. 一种电子雾化装置,其特征在于,包括中空的通气管(70)、加热组件(80)和喷嘴(62),所述喷嘴(62)朝向所述通气管(70)的入口端设置,用于将液态基质雾化,且将其喷向所述通气管(70)内;
    所述加热组件(80)收容于所述通气管(70)内,且与所述喷嘴(62)相对设置,以将所述喷嘴(62)喷出的雾气再次雾化;
    所述加热组件(80)包括呈塔式螺旋结构的螺旋发热体(81);所述螺旋发热体(81)包括轴向回旋延伸的多个螺旋圈(811);任意相邻的两个螺旋圈(811)之间留有供雾气通过的第一缝隙(82);
    其中,任意相邻的两个螺旋圈(811)在同一平面上的两个对应投影相互紧贴。
  2. 根据权利要求1所述的电子雾化装置,其特征在于,所述螺旋发热体(81)整体围绕圆锥体的外侧面轴向回旋成型。
  3. 根据权利要求2所述的电子雾化装置,其特征在于,所述螺旋发热体(81)在其轴截面上的顶角β的角度为30°~60°。
  4. 根据权利要求1所述的电子雾化装置,其特征在于,所述多个螺旋圈(811)的周长随着自身与所述喷嘴(62)之间的距离增加而逐渐减小。
  5. 根据权利要求1所述的电子雾化装置,其特征在于,所述多个螺旋圈(811)的数量为12~18个。
  6. 根据权利要求1所述的电子雾化装置,其特征在于,所述螺旋发热体(81)包括螺旋发热丝。
  7. 根据权利要求1所述的电子雾化装置,其特征在于,所述第一缝隙(82)的宽度为0.1~0.4mm。
  8. 根据权利要求1所述的电子雾化装置,其特征在于,所述通气管(70)包括自其所述入口端内径逐渐向外增大的扩张通道(72)、以及与所述扩张通道(72)连通的出气通道(71);所述喷嘴(62)喷出的雾气从所述扩张通道(72)流向所述出气通道(71)。
  9. 根据权利要求8所述的电子雾化装置,其特征在于,所述扩张通道(72)中倾斜的内壁面与其轴线之间连接呈夹角α设置,所述夹角α为45°~70°。
  10. 根据权利要求8所述的电子雾化装置,其特征在于,所述加热组件(80)设于所述出气通道(71);其中,所述螺旋发热体(81)中外径最大的螺旋圈(811)设于所述扩张通道(72)与所述出气通道(71)的交界处。
PCT/CN2023/080906 2022-06-14 2023-03-10 电子雾化装置 WO2023241131A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210669213.8 2022-06-14
CN202210669213.8A CN117256948A (zh) 2022-06-14 2022-06-14 电子雾化装置

Publications (1)

Publication Number Publication Date
WO2023241131A1 true WO2023241131A1 (zh) 2023-12-21

Family

ID=89193127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080906 WO2023241131A1 (zh) 2022-06-14 2023-03-10 电子雾化装置

Country Status (2)

Country Link
CN (1) CN117256948A (zh)
WO (1) WO2023241131A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170280775A1 (en) * 2016-03-31 2017-10-05 Laurent Manca Atomizing assembly for use in an aerosol-generating system
US20170280777A1 (en) * 2016-03-31 2017-10-05 Altria Client Services Llc Vaporizing assembly comprising a viewable heating element and delivery device for an aerosol-generating system
CN108290016A (zh) * 2015-12-22 2018-07-17 菲利普莫里斯生产公司 带泵的气溶胶生成系统
CN108367128A (zh) * 2015-12-22 2018-08-03 菲利普莫里斯生产公司 带电机的气溶胶生成系统
CN108402524A (zh) * 2018-04-13 2018-08-17 赫斯提亚深圳生物科技有限公司 抛弃式气溶胶生成制品、雾化器及加热组件
CN108697867A (zh) * 2016-03-31 2018-10-23 菲利普莫里斯生产公司 用于气溶胶生成系统的雾化组合件
CN108883241A (zh) * 2016-03-31 2018-11-23 菲利普莫里斯生产公司 带泵的气溶胶生成系统
CN109069773A (zh) * 2016-03-31 2018-12-21 菲利普莫里斯生产公司 用于气溶胶生成系统的包括片状加热元件和液体递送装置的汽化组合件
CN109068732A (zh) * 2016-03-31 2018-12-21 菲利普莫里斯生产公司 包括可视加热元件和液体传递装置的用于气溶胶生成系统的蒸发组件
CN109512027A (zh) * 2017-09-17 2019-03-26 陆峰 盘丝式的电子烟雾化器及其盘丝制作工具
DE102018120392A1 (de) * 2018-08-21 2020-02-27 Sergej Klein Verdampfervorrichtung für aromatische Substanzen
CN211241766U (zh) * 2019-11-16 2020-08-14 何锐 一种具有锥形雾化腔的发热芯

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108290016A (zh) * 2015-12-22 2018-07-17 菲利普莫里斯生产公司 带泵的气溶胶生成系统
CN108367128A (zh) * 2015-12-22 2018-08-03 菲利普莫里斯生产公司 带电机的气溶胶生成系统
US20170280775A1 (en) * 2016-03-31 2017-10-05 Laurent Manca Atomizing assembly for use in an aerosol-generating system
US20170280777A1 (en) * 2016-03-31 2017-10-05 Altria Client Services Llc Vaporizing assembly comprising a viewable heating element and delivery device for an aerosol-generating system
CN108697867A (zh) * 2016-03-31 2018-10-23 菲利普莫里斯生产公司 用于气溶胶生成系统的雾化组合件
CN108883241A (zh) * 2016-03-31 2018-11-23 菲利普莫里斯生产公司 带泵的气溶胶生成系统
CN109069773A (zh) * 2016-03-31 2018-12-21 菲利普莫里斯生产公司 用于气溶胶生成系统的包括片状加热元件和液体递送装置的汽化组合件
CN109068732A (zh) * 2016-03-31 2018-12-21 菲利普莫里斯生产公司 包括可视加热元件和液体传递装置的用于气溶胶生成系统的蒸发组件
CN109512027A (zh) * 2017-09-17 2019-03-26 陆峰 盘丝式的电子烟雾化器及其盘丝制作工具
CN108402524A (zh) * 2018-04-13 2018-08-17 赫斯提亚深圳生物科技有限公司 抛弃式气溶胶生成制品、雾化器及加热组件
DE102018120392A1 (de) * 2018-08-21 2020-02-27 Sergej Klein Verdampfervorrichtung für aromatische Substanzen
CN211241766U (zh) * 2019-11-16 2020-08-14 何锐 一种具有锥形雾化腔的发热芯

Also Published As

Publication number Publication date
CN117256948A (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
JP2004176717A (ja) ガスタービン用吸気消音装置
JP2023029226A (ja) 電子霧化装置
WO2023093482A1 (zh) 气溶胶基质结构和气溶胶产生装置
WO2023241131A1 (zh) 电子雾化装置
RU2287745C1 (ru) Распылительное устройство для увлажнителя воздуха
CN110918285B (zh) 雾化喷头及装有该喷头的雾化设备
CN212139318U (zh) 电子雾化设备的雾化组件
WO2023241100A1 (zh) 电子雾化装置
WO2023241101A1 (zh) 电子雾化装置
WO2023241129A1 (zh) 电子雾化装置及其雾化装置
WO2023207292A1 (zh) 电子雾化装置及其储液雾化组件
CN216088897U (zh) 一种电子雾化装置及其雾化器
WO2023207368A1 (zh) 电子雾化装置及其储液雾化组件和喷嘴
WO2023241099A1 (zh) 电子雾化装置及其加热组件
WO2023207313A1 (zh) 电子雾化装置及其喷嘴雾化组件
WO2023207366A1 (zh) 电子雾化装置及其储液雾化组件
WO2023207314A1 (zh) 电子雾化装置及其储液雾化组件
CN208362004U (zh) 一种用于污废水治理的推流曝气机上用的雾化器
WO2023207322A1 (zh) 电子雾化装置及其储液雾化组件
WO2023207323A1 (zh) 电子雾化装置
CN206919297U (zh) 一种雾化式加湿器
WO2024139078A1 (zh) 雾化器及气溶胶生成装置
WO2023207320A1 (zh) 电子雾化装置
WO2023207312A1 (zh) 喷嘴组件及电子雾化装置
WO2023206597A1 (zh) 电子雾化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23822703

Country of ref document: EP

Kind code of ref document: A1