WO2023207312A1 - 喷嘴组件及电子雾化装置 - Google Patents

喷嘴组件及电子雾化装置 Download PDF

Info

Publication number
WO2023207312A1
WO2023207312A1 PCT/CN2023/078886 CN2023078886W WO2023207312A1 WO 2023207312 A1 WO2023207312 A1 WO 2023207312A1 CN 2023078886 W CN2023078886 W CN 2023078886W WO 2023207312 A1 WO2023207312 A1 WO 2023207312A1
Authority
WO
WIPO (PCT)
Prior art keywords
atomization
channel
section
nozzle assembly
liquid
Prior art date
Application number
PCT/CN2023/078886
Other languages
English (en)
French (fr)
Inventor
刘成川
高椋
杨豪
宋惠雪
雷桂林
Original Assignee
海南摩尔兄弟科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海南摩尔兄弟科技有限公司 filed Critical 海南摩尔兄弟科技有限公司
Publication of WO2023207312A1 publication Critical patent/WO2023207312A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/14Disinfection, sterilisation or deodorisation of air using sprayed or atomised substances including air-liquid contact processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B15/00Details of spraying plant or spraying apparatus not otherwise provided for; Accessories
    • B05B15/60Arrangements for mounting, supporting or holding spraying apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/24Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas with means, e.g. a container, for supplying liquid or other fluent material to a discharge device
    • B05B7/26Apparatus in which liquids or other fluent materials from different sources are brought together before entering the discharge device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/12Air-humidification, e.g. cooling by humidification by forming water dispersions in the air
    • F24F6/14Air-humidification, e.g. cooling by humidification by forming water dispersions in the air using nozzles

Definitions

  • the present invention relates to the field of atomization, and more specifically, to a nozzle assembly and an electronic atomization device.
  • Existing electronic atomization devices mainly use porous media such as porous ceramics or porous cotton combined with heating components for heating and atomization. Due to the high heating temperature during atomization, when the supply of liquid matrix is insufficient, the small amount of liquid matrix on the heating component is not enough to consume the electrical energy released on the heating component, causing the temperature of the heating surface to further increase, thereby further aggravating the thermal cracking of the liquid matrix. , and even the formation of carbon deposits and dry burning can easily cause the formed aerosol to produce a burnt smell, leading to a significant deterioration in taste.
  • the technical problem to be solved by the present invention is to provide a nozzle assembly and an electronic atomization device having the nozzle assembly in view of the above-mentioned defects of the prior art.
  • the technical solution adopted by the present invention to solve the technical problem is to construct a nozzle assembly, and an air flow channel and a liquid inlet channel are formed in the nozzle assembly; the air flow channel is used to circulate high-speed air flow, and the liquid inlet channel is used to The liquid substrate is output to the air flow channel, and the liquid substrate entering the air flow channel can be atomized by the high-speed air flow circulating in the air flow channel.
  • the air flow channel includes an air supply channel and an atomization chamber connected to the air supply channel and the liquid inlet channel, and the liquid substrate generates atomization in the atomization chamber.
  • the air supply channel includes an acceleration section connected to the atomization chamber, and the cross-sectional area of the acceleration section gradually increases from an end far away from the atomization chamber to an end close to the atomization chamber. decrease.
  • the atomization chamber includes an atomization section, and the atomization section is respectively connected with the air supply channel and the liquid inlet channel.
  • the atomization section is a straight cylindrical channel.
  • the aperture of the atomization section is 0.7mm ⁇ 1.3mm.
  • the length of the atomization section is 0.8mm ⁇ 3.0mm.
  • the atomization chamber further includes an expansion section, which is connected to an end of the atomization section away from the air supply channel and is used to atomize the air generated in the atomization section.
  • the liquid particles are spread and ejected.
  • the expansion section and the atomization section are connected in a streamlined and smooth manner.
  • the hole wall surface of the expansion section has a streamlined expansion shape.
  • an atomization surface is formed at one end of the atomization section close to the air supply channel, and an atomization port is provided on the atomization surface to connect the atomization section and the air supply channel, so The aperture of the atomization port is smaller than the outer diameter of the atomization surface.
  • the vertical distance between the center line of the liquid inlet channel and the atomization surface is less than 0.8 mm.
  • the aperture of the atomization port is 0.2mm ⁇ 0.4mm.
  • the aperture of the atomization port is 0.22mm ⁇ 0.35mm
  • the length of the atomization section is 1.5mm ⁇ 3.0mm
  • the aperture of the atomization section is 0.7mm ⁇ 1.3mm.
  • a liquid-locking groove is also formed on the atomization surface, and capillary force can be generated in the liquid-locking groove.
  • the liquid-locking groove is coaxially arranged with the atomization port, and the liquid-locking groove is in a closed or non-closed annular shape.
  • the airflow channel is coaxially arranged with the atomization chamber.
  • the liquid inlet channel includes a first flow channel connected with the air flow channel, and the first flow channel is a capillary channel.
  • the liquid inlet channel further includes a second flow channel, the second flow channel is connected to an end of the first flow channel away from the air flow channel, and the second flow channel is a weak capillary channel.
  • the extending direction of the liquid inlet channel is perpendicular to the extending direction of the air flow channel.
  • the present invention also provides an electronic atomization device, including the nozzle assembly as described in any one of the above.
  • the nozzle assembly of the present invention atomizes the continuously flowing liquid substrate into liquid particles through air flow assistance.
  • the atomization process is a non-phase change atomization process and can achieve low-temperature atomization.
  • Figure 1 is a schematic three-dimensional structural diagram of an electronic atomization device in some embodiments of the present invention.
  • Figure 2 is a schematic longitudinal cross-sectional structural diagram of the electronic atomization device shown in Figure 1;
  • Figure 3 is a schematic three-dimensional structural view of the nozzle assembly in the first embodiment of the present invention.
  • Figure 4 is a schematic longitudinal cross-sectional structural view of the nozzle assembly shown in Figure 3;
  • Figure 5 is a dimensioned diagram of the nozzle in Figure 3;
  • Figure 6 is a flow field simulation distribution diagram of the nozzle shown in Figure 4.
  • Figure 7 is a schematic structural diagram of a longitudinal section of the nozzle in the second embodiment of the present invention.
  • Figure 8 is a flow field simulation distribution diagram of the nozzle shown in Figure 7;
  • Figure 9 is a schematic structural diagram of the longitudinal section of the nozzle in the third embodiment of the present invention.
  • Figure 10 is a schematic structural diagram of a longitudinal section of a nozzle in the fourth embodiment of the present invention.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • connection In the present invention, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated into one; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interactive relationship between two elements, unless otherwise specified restrictions. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood according to specific circumstances.
  • a first feature being “on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediate medium. touch.
  • a first feature being “above” a second feature can mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is at a higher level than the second feature.
  • the first feature being “below” the second feature may mean that the first feature is directly below or diagonally below the second feature, or it may simply mean that the first feature is less horizontally than the second feature.
  • FIGS 1-2 show an electronic atomization device 100 in some embodiments of the present invention.
  • the electronic atomization device 100 can be used to atomize a liquid substrate to generate an aerosol, which can be smoked or inhaled by the user.
  • it may be substantially cylindrical. It is understandable that in other embodiments, the electronic atomization device 100 may also be in other shapes such as an elliptical column, a flat column, a square column, or the like.
  • the liquid substrate may include e-liquid or medicinal liquid.
  • the electronic atomization device 100 may include a housing 10 and a control module 20 , a power supply 30 , an air source 40 and a nozzle assembly 50 contained in the housing 10 .
  • the air source 40 is connected to the nozzle assembly 50 and is used to provide the nozzle assembly 50 with high-speed air flow, which can usually be an air pump.
  • the control module 20 is electrically connected to the air source 40 for receiving instructions. The instructions can be triggered by the user or automatically triggered after the electronic atomization device 100 meets certain conditions. The control module 20 then controls the operation of the air source 40 according to the instructions.
  • the power supply 30 is electrically connected to the control module 20 and the air source 40 respectively, and is used to provide electric energy to the control module 20 and the air source 40 .
  • Figures 2-5 show a nozzle assembly 50 in the first embodiment of the present invention.
  • An air flow channel 52 and a liquid inlet channel 51 are formed in the nozzle assembly 50.
  • the air flow channel 52 is used to circulate high-speed air flow
  • the liquid inlet channel 51 is used to input a liquid substrate into the air flow channel 52 .
  • the liquid substrate entering the air flow channel 52 can be atomized by the high-speed air flow flowing in the air flow channel 52 .
  • the nozzle assembly 50 includes a nozzle 53 in which an air flow channel 52 and a liquid inlet channel 51 are formed.
  • the nozzle 51 generally has a cylindrical shape, and can be made of hard materials such as plastic.
  • the air flow channel 52 runs through the nozzle 53 in the longitudinal direction and can be coaxially arranged with the nozzle 53 .
  • the liquid inlet channel 51 extends laterally inward from one side of the nozzle 53 to communicate with the air flow channel 52 .
  • the extension direction of the liquid inlet channel 51 is perpendicular to the extension direction of the air flow channel 52 .
  • the shape of the nozzle 53 may also be in other shapes such as an ellipse or a square.
  • the air flow channel 52 may include an air supply channel 522 and an atomization chamber 521.
  • the atomization chamber 521 is connected to the air source 40 through the air supply channel 522, and is connected to the liquid storage chamber 61 in the electronic atomization device 100 through the liquid inlet channel 51.
  • the high-speed air flow from the air supply channel 522 is connected with the liquid inlet channel 51
  • the liquid substrates meet in the atomization chamber 521 and are atomized into fine liquid particles in the atomization chamber 521 , and the liquid particles are then output from the atomization chamber 521 .
  • an atomization surface 5213 is formed at one end of the atomization chamber 521 close to the air supply channel 522 , and an atomization port 5223 is provided on the atomization surface 5213 to communicate with the atomization chamber 521 and the air supply channel 522 .
  • the high-speed airflow ejected from the air supply channel 522 flows at a high speed in the atomization chamber 521.
  • the high-speed airflow generates a negative pressure in the liquid inlet channel 51 according to Bernoulli's equation. This negative pressure is transmitted to the liquid storage chamber 61 and the liquid storage chamber 61
  • the liquid matrix inside is sucked out to the atomization chamber 521, and a liquid film is formed on the atomization surface 5213.
  • the liquid film is cut and atomized by the high-speed airflow into liquid particles and then taken away from the atomization surface 5213, and then ejected with the airflow.
  • SMD total volume of liquid particles/total surface area of liquid particles, which represents the average particle size of liquid particles.
  • the air supply channel 522 may include an acceleration section 5222, and the atomization chamber 521 may include an atomization section 5211.
  • the atomization section 5211 is connected with the liquid inlet channel 51 and the acceleration section 5222 respectively, and can be a straight cylindrical channel extending longitudinally.
  • the accelerating section 5222 can be in a contracted shape, and its cross-sectional area gradually decreases from an end far away from the atomizing section 5211 to an end close to the atomizing section 5211, thereby accelerating the airflow from the air source 40.
  • the accelerating section 5222 is a conical channel that extends longitudinally and has an aperture that gradually decreases from bottom to top.
  • the aperture at the upper end of the accelerating section 5222 is smaller than the aperture of the atomization section 5211, so that the aperture between the accelerating section 5222 and the mist
  • An annular atomization surface 5213 is formed at the intersection of the atomization sections 5211.
  • the atomization port 5223 is located at the center of the atomization surface 5213, and may be circular. It can be understood that in other embodiments, the accelerating section 5222 can also be an elliptical cone shape or a pyramid shape or other contracted shapes, and the cross-sections of the atomization port 5223 and the atomization section 5211 can also be other non-circular shapes such as ellipses or rectangles. shape.
  • the air source 40 provides a continuous air flow that accelerates in the acceleration section 5222, is ejected from the atomization port 5223, and flows at a high speed in the atomization section 5211.
  • the high-speed airflow generates negative pressure in the atomization section 5211 based on Bernoulli's equation.
  • This negative pressure is transmitted to the liquid storage chamber 61 to suck the liquid substrate into the atomization section 5211.
  • the liquid supply will continue, thereby realizing continuous quantitative automatic liquid supply to the atomization section 5211.
  • the liquid matrix in the liquid storage chamber 61 is sucked out to the atomization surface 5213 by the negative pressure in the atomization section 5211.
  • a meniscus is formed between the atomization surface 5213 and the atomization section 5211. And a liquid film is formed on the atomization surface 5213. As the liquid supply process continues, the liquid film moves to the edge of the hole wall of the atomization port 5223 and meets the high-speed airflow. It is cut and atomized by the high-speed airflow and taken away from the atomization port 5223. Then it is sprayed out with the airflow to complete the atomization process.
  • Parameters such as the size and shape of the atomization port 5223 and the atomization section 5211 can affect the negative pressure in the atomization section 5211 and the size of the generated liquid particles, making the flow rate more stable.
  • the aperture D of the atomization port 5223, the aperture W1 of the atomization section 5211, and the length H of the atomization section 5211 can be set to appropriate sizes as needed.
  • the aperture D of the atomization port 5223 is related to the airflow velocity (m/s) coming out of the atomization port 5223, which can affect the particle size of the generated liquid particles.
  • the aperture D of the atomization port 5223 may range from 0.2mm to 0.4mm, preferably from 0.22mm to 0.35mm.
  • the aperture W1 of the atomization section 5211 will affect the airflow velocity in the atomization section 5211, thereby affecting the negative pressure in the atomization section 5211 and the liquid inlet channel 51. This negative pressure can cause the liquid substrate to be sucked from the liquid inlet channel 51 to the atomization section 5211.
  • the aperture W1 of the atomization section 5211 may range from 0.7 mm to 1.3 mm.
  • the length H of the atomization section 5211 can be 0.8mm ⁇ 3.0mm.
  • the communication section 5221, the atomization section 5211 or the acceleration section 5222 can also have a non-circular cross-section; when the acceleration section 5222 or the atomization section 5211 has a non-circular cross-section, the atomization port 5223
  • the aperture D or the aperture W1 of the atomization section 5211 is its equivalent diameter respectively.
  • equivalent diameter means that the diameter of a circular hole with the same hydraulic radius is defined as the equivalent diameter of a non-circular hole.
  • the range of D is 0.22mm ⁇ 0.35mm
  • the range of H is 1.5mm ⁇ 3.0mm
  • the range of W1 is 0.7mm ⁇ 1.3mm.
  • the value ranges of D, H, and W1 can be This gives the nozzle 53 advantages in the manufacturing process.
  • One end of the liquid inlet channel 51 connected to the atomization section 5211 has a liquid inlet 510.
  • the distance L between the liquid inlet 510 and the atomization surface 5213 is the key to ensuring the formation of the liquid film.
  • the distance L between the liquid inlet 510 and the atomization surface 5213 is the vertical distance between the center of the liquid inlet 510 and the atomization surface 5213 .
  • the distance L between the liquid inlet 510 and the atomization surface 5213 may range from 0.3 mm to 0.8 mm.
  • L is 0.35 mm to 0.6 mm.
  • the air supply channel 522 also includes a communication section 5221 that communicates with the acceleration section 5222.
  • the acceleration section 5222 is connected to the air source 40 through the communication section 5221.
  • the communication section 5221 may be a straight cylindrical channel extending longitudinally.
  • the upper end of the communication section 5221 is connected with the acceleration section 5222.
  • the aperture of the communication section 5221 is consistent with the aperture of the lower end of the acceleration section 5222.
  • the cross-section of the communication section 5221 may also be an ellipse, a rectangle, or other non-circular shapes.
  • the air supply channel 522 may only include an acceleration section 5222; or, when the air flow rate is sufficient, the air supply channel 522 may only include a communication section 5221.
  • the atomization chamber 521 also includes an expansion section 5212, which is connected to an end of the atomization section 5211 away from the air supply channel 522, and is used to convert the liquid particles generated after atomization in the atomization section 5211 in the form of a jet.
  • the expansion section 5212 is a conical channel extending longitudinally and with a hole diameter gradually increasing from bottom to top.
  • the atomization angle ⁇ of the expansion section 5212 (that is, the expansion angle of the expansion section 5212) must have a suitable range to ensure that the ejected liquid particles have a suitable injection range.
  • the atomization angle ⁇ of the expansion section 5212 may be 30 0 ⁇ 70 0 .
  • the expansion section 5212 may also be in an elliptical cone shape, a pyramid shape, or other shapes.
  • Figure 6 shows the flow field distribution cloud diagram using this nozzle 53. It can be seen from Figure 6 that due to the corner of the nozzle 53 at the intersection of its expansion section 5212 and atomization section 5211, an entrainment vortex is formed (as shown in the dotted box). This entrainment vortex causes the jet to shrink, thereby The actual atomization angle of the jet is smaller than the atomization angle of the expansion section 5212.
  • the electronic atomization device 100 also includes a liquid storage case 60 contained in the housing 10 .
  • the liquid storage chamber 61 is formed in the liquid storage shell 60 , and the nozzle assembly 50 is at least partially received in the liquid storage shell 60 .
  • a lower liquid channel 62 connected with the liquid storage chamber 61 is also formed in the liquid storage shell 60 .
  • the lower liquid channel 62 is connected with the liquid inlet channel 51 , and together form a resistance channel 63 that connects the liquid storage chamber 61 and the atomization section 5211 .
  • the resistance channel 63 can be used to control the flow rate of liquid supplied to the atomization section 5211 to achieve quantitative liquid supply to the atomization section 5211.
  • the size of the designed resistance channel 63 can be matched according to the flow demand, that is, the resistance channel 63 can generate resistance that matches the liquid supply power under the designed flow rate.
  • the negative pressure generated in the atomization section 5211 is the liquid supply power
  • the liquid supply resistance includes the resistance along the resistance channel 63 and the negative pressure in the liquid storage chamber 61 .
  • the specific diameter and length of the resistance channel 63 are designed.
  • the lower liquid channel 62 can be a weak capillary force channel extending laterally, that is, weak capillary force can be generated in the lower liquid channel 62
  • the liquid inlet channel 51 can be a capillary channel extending laterally, that is, the liquid inlet channel 51 Capillary force can be generated inside.
  • the overall length of the resistance channel 63 may range from 6 mm to 15 mm; the cross-sectional area of the lower liquid channel 62 may range from 0.09 mm2 to 0.16 mm2; the cross-sectional area of the inlet liquid channel 51 is smaller than the cross-sectional area of the lower liquid channel 62 , for example, the cross-sectional area of the liquid inlet channel 51 may be less than 0.08mm2.
  • other automatic or non-automatic liquid supply methods can also be used to achieve quantitative liquid supply to the atomization section 5211.
  • a small liquid supply pump such as a diaphragm pump or a peristaltic pump, etc.
  • pressurize the liquid storage chamber 61 to maintain the stability of the liquid supply to achieve quantitative liquid supply to the atomization section 5211.
  • the liquid inlet channel 51 is designed as a capillary channel, and the capillary force in the liquid inlet channel 51 is used to reduce the backflow of the liquid matrix at the end of suction, and the liquid inlet channel 51 can be designed to have a suitable channel cross-sectional area and The length of the channel is to achieve a stable liquid supply that starts and stops, and prevents the liquid substrate from flowing back to the liquid storage chamber 61 when the air source 40 stops working, causing a delay in liquid supply during the next suction.
  • the cross-sectional area of the liquid inlet channel 51 is 0.07mm2 (or the aperture 0.3mm), and the channel length is ⁇ 2mm.
  • the liquid matrix in the liquid inlet channel 51 will not be affected by the negative pressure in the liquid storage chamber 61. Return flow to the liquid storage chamber 61 prevents the atomization process from being delayed by waiting for the liquid matrix to fill the liquid inlet channel 51 when the air source 40 is started next time, thereby achieving the effect of instant start.
  • the cross-sectional area of the liquid inlet channel 51 can be 0.05mm2, and the channel length is ⁇ 1mm, which can realize stable liquid supply that starts and stops.
  • the hydraulic diameter of the liquid inlet channel 51 is less than or equal to 0.3 mm, and stable liquid supply that starts and stops can also be achieved.
  • the nozzle 53 can be longitudinally disposed in the liquid storage case 60 and can be coaxially arranged with the liquid storage case 60 .
  • the nozzle assembly 50 may also include at least one sealing ring 54 sleeved on the nozzle 53 .
  • the sealing ring 54 can be made of elastic material such as silicone, and can be an O-shaped sealing ring.
  • the sealing ring 54 is sealingly fitted between the outer wall surface of the nozzle 53 and the inner wall surface of the liquid storage case 60 to prevent liquid leakage.
  • there are two sealing rings 54 and the two sealing rings 54 are respectively disposed on the upper and lower sides of the liquid inlet channel 51 to prevent the liquid substrate from leaking from the upper and lower sides of the liquid inlet channel 51 .
  • the electronic atomization device 100 further includes a heating element 80 contained in the housing 10 .
  • the heating element 80 is electrically connected to the power supply 30 and can generate heat after being powered on.
  • An output channel 70 is also formed in the housing 10 , and the heating element 80 can be disposed in the output channel 70 and located above the nozzle 53 .
  • the liquid particles ejected from the nozzle 53 hit the heating element 80 upward and are heated by the heating element 80 to generate aerosol, which is then carried out of the output channel 70 by the air flow for the user to suck or inhale.
  • the nozzle 53 is used to atomize the continuously flowing liquid matrix into liquid particles and then evaporated by the heating element 80. Since the surface area of the fine liquid particles formed after atomization by the nozzle 53 is greatly expanded, it is easier to Heating and evaporation can, on the one hand, improve the conversion efficiency of heat and aerosol, and on the other hand, reduce the temperature of the evaporation process of the heating element 80 to achieve low-temperature atomization.
  • the liquid matrix mainly completes the physical change process, thus overcoming the problem of thermal cracking and deterioration of the liquid matrix caused by the necessity of high-temperature atomization under traditional porous ceramics or porous cotton conditions, not to mention the Burning, carbon deposition, heavy metal volatilization and other phenomena will occur, so that the unique ingredients and flavor and fragrance systems of different liquid bases can be maintained, and ultimately the inhaler can feel the unique taste corresponding to the original liquid base.
  • the heating element 80 is not in contact with the liquid storage chamber 61, and the heating element 80 does not need to be immersed in the liquid matrix for a long time, which reduces the contamination of the liquid matrix by the heating element 80, thereby reducing impurity gases in the aerosol generated after atomization.
  • the liquid particles ejected from the nozzle 53 can also hit the heating element 80 downward, that is, the heating element 80 can also be disposed below the nozzle 53; or, the liquid ejected from the nozzle 53 can The particles may also impact the heating element 80 laterally, that is, the heating element 80 and the nozzle 53 are at or approximately at the same level.
  • the electronic atomization device 100 may not be provided with the heating element 80 , that is, the liquid particles atomized by the nozzle 53 may be directly output through the output channel 70 and sucked or inhaled by the user.
  • the housing 10 may be provided with a bracket assembly 11 that divides the housing 10 into a first receiving space 121 located at the upper part and a second receiving space 122 located at the lower part.
  • the control module 20 , the power supply 30 , and the air source 40 can all be accommodated in the second accommodation space 122 .
  • the liquid storage shell 60 and the nozzle assembly 50 can be received in the first receiving space 121 and supported on the bracket assembly 11 .
  • the electronic atomization device 100 may further include a dust cover 90 detachably disposed on the upper end of the housing 10 .
  • the dust cover 90 can be placed on the upper end of the housing 10 to prevent dust and other impurities from entering the output channel 70 .
  • Figure 7 shows the nozzle 53 in the second embodiment of the present invention.
  • the hole wall surface of the expansion section 5212 is an arc surface, and the expansion section 5212
  • the arc surface can be realized through processes such as rounding.
  • the rounding method can also increase the atomization angle of the expansion section 5212, for example, the atomization angle can be increased from 40 0 to 50 0 .
  • Figure 8 shows the flow field distribution cloud diagram using this nozzle 53.
  • the expansion section 5212 with a circular arc hole wall shape reduces the binding effect on the jet entrainment vortex, allowing the jet to fully develop. It can be understood that in other embodiments, the hole wall surface of the expansion section 5212 may also have other streamlined expansion shapes.
  • the liquid inlet channel 51 in this embodiment is a stepped channel, which may include a first flow channel 511 close to the atomization section 5211 and a second flow channel 512 away from the atomization section 5211 .
  • the first flow channel 511 is a capillary channel, and by controlling the channel cross-sectional area and channel length of the first flow channel 511, stable liquid supply can be achieved on and off.
  • the cross-sectional area of the second flow channel 512 is larger than the cross-sectional area of the first flow channel 511, and it may be a weak capillary channel.
  • the second flow channel 512 may have the same cross-sectional area as the lower liquid channel 62 formed in the liquid storage shell 60 .
  • Figure 9 shows the nozzle 53 in the third embodiment of the present invention.
  • the atomization surface 5213 of the nozzle 53 in this embodiment is also provided with a liquid lock groove 5214.
  • the groove 5214 can generate capillary force and use the capillary force to flatten the liquid film, so that even when the nozzle 53 is in a tilted state, the liquid film can still be evenly distributed and atomized near the atomization port 5223, thereby reducing the influence of gravity on the distribution of the liquid film.
  • the liquid lock groove 5214 is annular and can be disposed coaxially with the atomization port 5223. It can be formed by the atomization surface 5213 being recessed longitudinally downward, that is, along the direction perpendicular to the atomization surface 5213. A lower depression forms.
  • the inner diameter of the liquid-locking tank 5214 is larger than the aperture of the atomization port 5223, and the outer diameter of the liquid-locking tank 5214 is smaller than the aperture of the atomization section 5211.
  • the nozzle 53 includes a nozzle body 531 and an extension portion 532 extending outward from one side of the nozzle body 531 .
  • the shape of the nozzle body 531 may be substantially cylindrical, and the air flow channel 52 and the first flow channel 511 are formed in the nozzle body 531 .
  • the extension portion 532 extends outward from one side of the nozzle body 531 , may be substantially cylindrical, and may be integrally formed with the nozzle body 531 .
  • the second flow channel 512 is formed in the extension portion 532 .
  • Figure 10 shows the nozzle 53 in the fourth embodiment of the present invention.
  • the liquid lock groove 5214 in this embodiment is recessed upward and outward from the outer edge of the atomization surface 5213. is formed, and the liquid locking groove 5214 is in the shape of a circumferentially non-closed C-shaped ring.
  • the liquid locking groove 5214 can be formed on the side of the atomization surface 5213 opposite to the liquid inlet channel 51.
  • the inner diameter of the liquid locking groove 5214 is consistent with the aperture of the atomization section 5211.
  • the outer diameter of the liquid locking groove 5214 is larger than the atomization section 5211.
  • the arc center angle of the liquid lock tank 5214 can be 180° ⁇ 350°.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Epidemiology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Nozzles (AREA)

Abstract

本发明涉及一种喷嘴组件及电子雾化装置。所述喷嘴组件内形成有气流通道和进液通道。所述气流通道用于流通高速气流,所述进液通道用于向所述气流通道输出液态基质,进入所述气流通道的液态基质能够受所述气流通道中流通的高速气流作用而雾化。该喷嘴组件通过气流辅助将连续流动的液态基质雾化成液体颗粒,该雾化过程为非相变的雾化过程,能够实现低温雾化。

Description

喷嘴组件及电子雾化装置 技术领域
本发明涉及雾化领域,更具体地说,涉及一种喷嘴组件及电子雾化装置。
背景技术
现有的电子雾化装置主要采用多孔陶瓷或者多孔棉等多孔介质结合发热部件进行加热雾化。由于雾化时加热温度较高,当液态基质供给不足时,发热部件上少量的液态基质不足以消耗掉发热部件上释放的电能,导致加热面温度进一步升高,从而进一步加剧液态基质的热裂解,甚至形成积碳和干烧的情况,很容易使形成的气溶胶产生烧焦的气味,导致口感显著变差。
发明内容
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种喷嘴组件及具有该喷嘴组件的电子雾化装置。
本发明解决其技术问题所采用的技术方案是:构造一种喷嘴组件,所述喷嘴组件内形成有气流通道和进液通道;所述气流通道用于流通高速气流,所述进液通道用于向所述气流通道输出液态基质,进入所述气流通道的液态基质能够受所述气流通道中流通的高速气流作用而雾化。
在一些实施例中,所述气流通道包括供气通道以及与所述供气通道和所述进液通道相连通的雾化腔,所述液态基质在所述雾化腔内产生雾化。
在一些实施例中,所述供气通道包括与所述雾化腔相连通的加速段,所述加速段的截面积从远离所述雾化腔的一端到靠近所述雾化腔的一端逐渐减小。
在一些实施例中,所述雾化腔包括雾化段,所述雾化段分别与所述供气通道和所述进液通道相连通。
在一些实施例中,所述雾化段为直柱状通道。
在一些实施例中,所述雾化段的孔径为0.7mm~1.3mm。
在一些实施例中,所述雾化段的长度为0.8mm~3.0mm。
在一些实施例中,所述雾化腔还包括扩张段,所述扩张段连通在所述雾化段远离所述供气通道的一端,用于将所述雾化段内雾化后生成的液体颗粒扩散喷出。
在一些实施例中,所述扩张段与所述雾化段之间为流线型平滑连接。
在一些实施例中,所述扩张段的孔壁面为流线型扩张形状。
在一些实施例中,所述雾化段靠近所述供气通道的一端形成有雾化面,所述雾化面设置有连通所述雾化段和所述供气通道的雾化口,所述雾化口的孔径小于所述雾化面的外径。
在一些实施例中,所述进液通道的中心线与所述雾化面之间的垂直距离在0.8mm以下。
在一些实施例中,所述雾化口的孔径为0.2mm~0.4mm。
在一些实施例中,所述雾化口的孔径为0.22mm~0.35mm,所述雾化段的长度为1.5mm~3.0mm,所述雾化段的孔径为0.7mm~1.3mm。
在一些实施例中,所述雾化面上还形成有锁液槽,所述锁液槽内能够产生毛细力。
在一些实施例中,所述锁液槽与所述雾化口同轴设置,所述锁液槽呈封闭或非封闭的环形。
在一些实施例中,所述气流通道与所述雾化腔同轴设置。
在一些实施例中,所述进液通道包括与所述气流通道相连通的第一流道,所述第一流道为毛细通道。
在一些实施例中,所述进液通道还包括第二流道,所述第二流道连通在所述第一流道远离所述气流通道的一端,所述第二流道为弱毛细通道。
在一些实施例中,所述进液通道的延伸方向与所述气流通道的延伸方向垂直。
本发明还提供一种电子雾化装置,包括如上述任一项所述的喷嘴组件。
实施本发明至少具有以下有益效果:本发明的喷嘴组件通过气流辅助将连续流动的液态基质雾化成液体颗粒,该雾化过程为非相变的雾化过程,能够实现低温雾化。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明一些实施例中电子雾化装置的立体结构示意图;
图2是图1所示电子雾化装置的纵向剖面结构示意图;
图3是本发明第一实施例中喷嘴组件的立体结构示意图;
图4是图3所示喷嘴组件的纵向剖面结构示意图;
图5是图3中喷嘴的尺寸标注图;
图6是图4所示喷嘴的流场仿真分布图;
图7是本发明第二实施例中喷嘴的纵向剖面结构示意图;
图8是图7所示喷嘴的流场仿真分布图;
图9是本发明第三实施例中喷嘴的纵向剖面结构示意图;
图10是本发明第四实施例中喷嘴的纵向剖面结构示意图。
实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。
在本发明的描述中,需要理解的是,术语“纵向”、“横向”、“上”、“下”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系或者是本发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个、三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“上方”可以是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“下方”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
图1-2示出了本发明一些实施例中的电子雾化装置100,该电子雾化装置100可用于雾化液态基质以生成气溶胶,该气溶胶可供用户吸食或者吸入,其在本实施例中可大致呈圆柱状。可以理解地,在其他实施例中,该电子雾化装置100也可呈椭圆柱状、扁平柱状或方形柱状等其他形状。该液态基质可以包括烟油或药液等。
该电子雾化装置100可包括外壳10以及收容于外壳10中的控制模块20、电源30、气源40和喷嘴组件50。气源40与喷嘴组件50连接,用于为喷嘴组件50提供高速气流,其通常可以为气泵。控制模块20与气源40电连接,用于接收指令,该指令可由用户触发或者在电子雾化装置100满足一定条件后自动触发,控制模块20再根据该指令控制气源40的工作。电源30分别与控制模块20、气源40电连接,用于向控制模块20、气源40提供电能。
图2-5示出了本发明第一实施例中的喷嘴组件50,喷嘴组件50内形成有气流通道52和进液通道51。该气流通道52用于流通高速气流,该进液通道51用于向气流通道52输入液态基质,进入气流通道52的液态基质能够受气流通道52中流通的高速气流作用而雾化。
该喷嘴组件50包括喷嘴53,气流通道52和进液通道51均形成于喷嘴53内。具体地,在本实施例中,喷嘴51大致具有圆柱状外形,其可采用塑胶等硬质材料制成。气流通道52沿纵向贯穿喷嘴53并可与喷嘴53同轴设置。进液通道51由喷嘴53的一侧侧面沿横向向内延伸至与气流通道52相连通,进液通道51的延伸方向与气流通道52的延伸方向垂直。可以理解地,在其他实施例中,喷嘴53的外形也可呈椭圆形或方形等其他形状。
气流通道52可包括供气通道522和雾化腔521。雾化腔521通过供气通道522与气源40连接,并通过进液通道51与电子雾化装置100内的储液腔61相连通,来自供气通道522的高速气流与来自进液通道51的液态基质在雾化腔521中相遇,从而在雾化腔521中雾化成细小的液体颗粒,该液体颗粒再由雾化腔521输出。
进一步地,雾化腔521靠近供气通道522的一端形成有雾化面5213,雾化面5213设置有连通雾化腔521和供气通道522的雾化口5223。由供气通道522喷出的高速气流在雾化腔521中高速流动,高速气流由伯努利方程在进液通道51内产生负压,此负压传导至储液腔61将储液腔61内的液态基质吸出至雾化腔521,在雾化面5213上形成液膜,该液膜被高速气流切割雾化成液体颗粒后带离雾化面5213,之后随气流喷出。该液态基质在雾化腔521内的雾化方式为非相变方式,雾化腔521雾化后形成的液体颗粒的粒径分布可达到SMD=30μm范围内。其中,SMD=液体颗粒总体积/液体颗粒总表面积,表示了液体颗粒的平均粒径。
具体地,供气通道522可包括加速段5222,雾化腔521包括雾化段5211。该雾化段5211分别与进液通道51和加速段5222相连通,其可以为沿纵向延伸的直圆柱形通道。加速段5222可呈收缩形状,其横截面积从远离雾化段5211的一端到靠近雾化段5211的一端逐渐减小,从而能够将来自气源40的气流加速。具体地,在本实施例中,加速段5222为沿纵向延伸且孔径由下往上逐渐减小的圆锥形通道,加速段5222的上端孔径小于雾化段5211的孔径,使得加速段5222和雾化段5211的交接处形成有一圆环形的雾化面5213。雾化口5223位于雾化面5213的中心,其可呈圆形。可以理解地,在其他实施例中,加速段5222也可以为椭圆锥形状或金字塔形状等其他收缩形状,雾化口5223、雾化段5211的横截面也可以是椭圆形或矩形等其他非圆形状。
气源40提供持续气流在加速段5222内加速,由雾化口5223喷出,并在雾化段5211中高速流动。高速气流由伯努利方程在雾化段5211内产生负压,此负压传导至储液腔61将液态基质吸出至雾化段5211中。只要气源40持续工作,供液就会持续,从而实现为雾化段5211的持续定量自动供液。储液腔61内的液态基质被雾化段5211内的负压吸出至雾化面5213,在毛细力与高速气流共同作用下在雾化面5213与雾化段5211之间形成弯液面,并在雾化面5213上形成液膜。随着供液过程的持续进行,液膜运动到雾化口5223的孔壁边缘与高速气流相遇,被高速气流切割雾化后带离雾化口5223,之后随气流喷出完成雾化过程。
雾化口5223、雾化段5211的尺寸和形状等参数能够影响雾化段5211内负压的大小以及生成的液体颗粒的粒径大小,使流量更稳定。在一些实施例中,雾化口5223的孔径D、雾化段5211的孔径W1、雾化段5211的长度H可根据需要设置合适的尺寸。
具体地,雾化口5223的孔径D与从雾化口5223出来的气流速度(m/s)相关,其能够影响生成的液体颗粒的粒径大小。在一些实施例中,雾化口5223的孔径D的范围可以为0.2mm~0.4mm ,优选为0.22mm~0.35mm。
雾化段5211的孔径W1会影响雾化段5211中的气流流速大小,从而影响雾化段5211、进液通道51内的负压大小。该负压可使液态基质从进液通道51吸至雾化段5211。在一些实施例中,雾化段5211的孔径W1的范围可以为0.7mm~1.3mm。雾化段5211的长度H可以为0.8mm~3.0mm。可以理解地,在其他实施例中,连通段5221、雾化段5211或加速段5222也可具有非圆横截面;当加速段5222或雾化段5211具有非圆横截面时,雾化口5223的孔径D或雾化段5211的孔径W1分别为其当量直径。术语“当量直径”是指,把水力半径相等的圆孔的直径定义为非圆孔的当量直径。
进一步地,在一些实施例中,D的范围为0.22mm~0.35mm,H的范围为1.5mm~3.0mm,W1的范围为0.7mm~1.3mm,该D、H、W1的取值范围能够使喷嘴53在制造工艺上得到优势。
进液通道51与雾化段5211相连通的一端具有一进液口510,该进液口510与雾化面5213之间的距离L是保证液膜形成的关键。在本实施例中,进液口510与雾化面5213之间的距离L为进液口510的中心与雾化面5213之间的垂直距离。在一些实施例中,进液口510与雾化面5213之间的距离L的范围可以为0.3mm~0.8mm,较佳地,L为0.35mm~0.6mm。
进一步地,供气通道522还包括与加速段5222连通的连通段5221,加速段5222通过连通段5221与气源40连接。连通段5221可以为沿纵向延伸的直圆柱形通道,连通段5221的上端与加速段5222相连通,连通段5221的孔径与加速段5222的下端孔径一致。在其他实施例中,连通段5221的横截面也可以是椭圆形或矩形等其他非圆形状。在另一些实施例中,供气通道522也可仅包括加速段5222;或者,当气流流速足够时,供气通道522也可仅包括连通段5221。
进一步地,雾化腔521还包括扩张段5212,该扩张段5212与雾化段5211远离供气通道522的一端连通,用于将雾化段5211内雾化后生成的液体颗粒以射流的形式扩散喷出。在本实施例中,扩张段5212为沿纵向延伸且孔径由下往上逐渐增大的圆锥形通道。扩张段5212的雾化角α(即扩张段5212的扩张角)须具有合适的范围,以保证喷射出的液体颗粒具有合适的喷射范围。在一些实施例中,扩张段5212的雾化角α可以为30 0~70 0。在其他实施例中,扩张段5212也可以为椭圆锥形状或金字塔形状等其他形状。
图6示出了采用该喷嘴53的流场分布云图。由图6可看出,由于喷嘴53在其扩张段5212与雾化段5211的交接处存在拐角而形成有卷吸涡(如虚线框中所示),该卷吸涡使得射流收腰,从而使得该射流的实际雾化角小于扩张段5212的雾化角。
再如图2-4所示,该电子雾化装置100还包括收容于外壳10中的储液壳60。储液腔61形成于储液壳60内,喷嘴组件50至少部分收容于储液壳60内。
储液壳60内还形成有与储液腔61相连通的下液通道62。该下液通道62与进液通道51连通,共同形成连通储液腔61和雾化段5211的阻力通道63。该阻力通道63可用于控制供液至雾化段5211的流量,实现雾化段5211的定量供液。通常,可按照流量需求匹配设计阻力通道63的尺寸,即在设计流量下阻力通道63能产生匹配供液动力的阻力。具体地,雾化段5211内产生的负压为供液动力,而供液阻力则包括阻力通道63的沿程阻力以及储液腔61内的负压。通过计算设计流量下阻力通道63所需的沿程阻力,设计阻力通道63的具体直径与长度。在本实施例中,下液通道62可以为沿横向延伸的弱毛细力通道,即下液通道62内能够产生弱毛细力;进液通道51为沿横向延伸的毛细通道,即进液通道51内能够产生毛细力。在一些实施例中,阻力通道63的整体长度范围可以为6mm~15mm;下液通道62的截面积范围可以为0.09 mm²~0.16mm²;进液通道51的截面积小于下液通道62的截面积,例如,进液通道51的截面积可小于0.08mm²。可以理解地,在其他实施例中,也可采用其他自动或非自动的供液方式实现对雾化段5211的定量供液,例如,可通过采用小型供液泵(例如隔膜泵或蠕动泵等)对储液腔61进行加压,保持维持供液的稳定性,来实现对雾化段5211的定量供液。
由于在停止抽吸、气源40停止工作后,由高速气流在雾化段5211内产生的负压消失,进液通道51内的液态基质向喷嘴53方向流动的动力消失,而储液腔61内存在负压,该负压会回吸进液通道51内的液态基质,从而造成下一次抽吸时供液不及时。本发明实施例通过将进液通道51设计为毛细通道,利用进液通道51内的毛细力来减少抽吸结束时液态基质的回流,并可通过设计进液通道51具有合适的通道截面积和通道长度,来实现即起即停的稳定供液,防止气源40停止工作时液态基质回流至储液腔61而造成下一次抽吸时供液延迟。例如,进液通道51的截面积为0.07mm²(或孔径0.3mm),其通道长度≥2mm,气源40停止工作时进液通道51内的液态基质不会因储液腔61内的负压向储液腔61回流,防止下一次气源40启动时还需要等待液态基质填充进液通道51造成的雾化过程延迟,达到即时启动的效果。再例如,进液通道51的截面积可以为0.05mm²,其通道长度≥1mm,可实现即起即停的稳定供液。在另一些实施例中,进液通道51的水力直径小于等于0.3mm,也可实现即起即停的稳定供液。通常来说,进液通道51的截面积越小,需要达到即时启动的效果所需的进液通道51的通道长度越小。
喷嘴53可沿纵向穿设于储液壳60中并可与储液壳60同轴设置。该喷嘴组件50还可包括套设于喷嘴53上的至少一个密封圈54。该密封圈54可采用硅胶等弹性材料制成,其可以为O形密封圈。密封圈54密封地配合于喷嘴53的外壁面和储液壳60的内壁面之间,以防止漏液。在本实施例中,密封圈54有两个,两个密封圈54分别设置于进液通道51的上下两侧,防止液态基质从进液通道51的上下两侧泄露。
进一步地,该电子雾化装置100还包括收容于外壳10中的发热件80。该发热件80与电源30电连接,其能够在通电后发热。外壳10内还形成有输出通道70,发热件80可设置于输出通道70中并位于喷嘴53的上方。由喷嘴53喷出的液体颗粒向上撞击发热件80,经过发热件80加热后生成气溶胶,该气溶胶再由气流带出输出通道70,以供用户吸食或者吸入。
本实施例通过采用喷嘴53将连续流动的液态基质雾化成液体颗粒后再由发热件80蒸发的方式,由于喷嘴53雾化后形成的细小液体颗粒的表面积得到了极大的扩展,从而更容易加热蒸发,一方面可提高热量及气溶胶的转化效率,另一方面可降低发热件80蒸发过程的温度,实现低温雾化。在较低的加热雾化温度下,液态基质主要完成物理变化过程,从而克服了传统的多孔陶瓷或者多孔棉条件下因必须采用高温方式雾化而导致的液态基质热裂解变质的问题,更不会发生烧焦、积碳和重金属挥发等现象,从而能够保持不同液态基质所特有的成分和香精香料体系,最终使吸入者感受到与原始液态基质相对应的特有的口感。此外,发热件80与储液腔61不接触,发热件80不用长期浸泡在液态基质中,减少了发热件80对液态基质的污染,从而减少了雾化后生成的气溶胶中的杂质气体。
可以理解地,在其他实施例中,由喷嘴53喷出的液体颗粒也可向下撞击发热件80,即,发热件80也可设置于喷嘴53的下方;或者,由喷嘴53喷出的液体颗粒也可横向撞击发热件80,即,发热件80与喷嘴53处于或大致处于同一水平高度上。在另一些实施例中,该电子雾化装置100中也可以不设置有发热件80,即,喷嘴53雾化后的液体颗粒可直接经输出通道70输出,被用户吸食或者吸入。
进一步地,外壳10中可设置有支架组件11,该支架组件11将外壳10内分隔成位于上部的第一收容空间121以及位于下部的第二收容空间122。控制模块20、电源30、气源40均可收容于该第二收容空间122中。储液壳60和喷嘴组件50可收容于第一收容空间121中并可支撑于支架组件11上。
进一步地,该电子雾化装置100还可包括可拆卸地罩设于外壳10上端的防尘罩90。在不需要使用电子雾化装置100时,可将防尘罩90罩设于外壳10的上端,防止灰尘等杂质进入输出通道70。
图7示出了本发明第二实施例中的喷嘴53,其与上述第一实施例中的主要区别在于,在本实施例中,扩张段5212的孔壁面为圆弧面,且扩张段5212与雾化段5211之间为流线型平滑连接,例如通过倒圆角的方式相切。在一些实施例中,该圆弧面可通过倒圆角等工艺实现,倒圆角的方式还可增大扩张段5212的雾化角,例如可将雾化角从40 0增加至50 0。图8示出了采用该喷嘴53的流场分布云图,由该图可看出,具有圆弧面孔壁形状的扩张段5212降低了对射流卷吸涡的束缚作用,使得射流能够充分发展。可以理解地,在其他实施例中,扩张段5212的孔壁面也可具有其他流线型扩张形状。
此外,再如图7所示,本实施例中的进液通道51为阶梯型通道,其可包括靠近雾化段5211的第一流道511以及远离雾化段5211的第二流道512。该第一流道511为毛细通道,通过控制该第一流道511的通道截面积和通道长度,可实现即起即停的稳定供液。该第二流道512的截面积大于第一流道511的截面积,其可以为弱毛细通道。该第二流道512可与储液壳60内形成的下液通道62具有相同的截面积。
图9示出了本发明第三实施例中的喷嘴53,其与上述实施例的主要区别在于,本实施例中的喷嘴53的雾化面5213上还设置有锁液槽5214,该锁液槽5214能够产生毛细力,利用毛细力摊平液膜,使喷嘴53即使处于倾斜状态时液膜仍能在雾化口5223附近均匀分布并雾化,降低重力对液膜分布的影响。
具体地,在本实施例中,锁液槽5214呈环形并可与雾化口5223同轴设置,其可由雾化面5213沿纵向向下凹陷形成,即沿垂直于雾化面5213的方向向下凹陷形成。锁液槽5214的内径大于雾化口5223的孔径,锁液槽5214的外径小于雾化段5211的孔径。
此外,在本实施例中,喷嘴53包括喷嘴主体531以及由喷嘴主体531的一侧向外伸出的延伸部532。喷嘴主体531的外形可大致呈圆柱状,气流通道52和第一流道511形成于喷嘴主体531内。延伸部532由喷嘴主体531的一侧向外延伸,其可大致呈圆柱状并可与喷嘴主体531一体成型。第二流道512形成于延伸部532内。
图10示出了本发明第四实施例中的喷嘴53,其与上述第三实施例的主要区别在于,本实施例中的锁液槽5214由雾化面5213的外缘向上、向外凹陷形成,且该锁液槽5214呈周向非封闭的C形环状。具体地,该锁液槽5214可形成于雾化面5213与进液通道51相对的一侧,锁液槽5214的内径与雾化段5211的孔径一致,锁液槽5214的外径大于雾化段5211的孔径。锁液槽5214的弧心角可以为180°~350°。
可以理解地,上述各技术特征可以任意组合使用而不受限制。
以上实施例仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制;应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,可以对上述技术特点进行自由组合,还可以做出若干变形和改进,这些都属于本发明的保护范围;因此,凡跟本发明权利要求范围所做的等同变换与修饰,均应属于本发明权利要求的涵盖范围。

Claims (21)

  1.  一种喷嘴组件,其特征在于,所述喷嘴组件(50)内形成有气流通道(52)和进液通道(51);所述气流通道(52)用于流通高速气流,所述进液通道(51)用于向所述气流通道(52)输出液态基质,进入所述气流通道(52)的液态基质能够受所述气流通道(52)中流通的高速气流作用而雾化。
  2.  根据权利要求1所述的喷嘴组件,其特征在于,所述气流通道(52)包括供气通道(522)以及与所述供气通道(522)和所述进液通道(51)相连通的雾化腔(521),所述液态基质在所述雾化腔(521)内产生雾化。
  3.  根据权利要求2所述的喷嘴组件,其特征在于,所述供气通道(522)包括与所述雾化腔(521)相连通的加速段(5222),所述加速段(5222)的截面积从远离所述雾化腔(521)的一端到靠近所述雾化腔(521)的一端逐渐减小。
  4.  根据权利要求2所述的喷嘴组件,其特征在于,所述雾化腔(521)包括雾化段(5211),所述雾化段(5211)分别与所述供气通道(522)和所述进液通道(51)相连通。
  5.  根据权利要求4所述的喷嘴组件,其特征在于,所述雾化段(5211)为直柱状通道。
  6.  根据权利要求4所述的喷嘴组件,其特征在于,所述雾化段(5211)的孔径为0.7mm~1.3mm。
  7.  根据权利要求4所述的喷嘴组件,其特征在于,所述雾化段(5211)的长度为0.8mm~3.0mm。
  8.  根据权利要求4所述的喷嘴组件,其特征在于,所述雾化腔(521)还包括扩张段(5212),所述扩张段(5212)连通在所述雾化段(5211)远离所述供气通道(522)的一端,用于将所述雾化段(5211)内雾化后生成的液体颗粒扩散喷出。
  9.  根据权利要求8所述的喷嘴组件,其特征在于,所述扩张段(5212)与所述雾化段(5211)之间为流线型平滑连接。
  10.  根据权利要求8所述的喷嘴组件,其特征在于,所述扩张段(5212)的孔壁面为流线型扩张形状。
  11.  根据权利要求4所述的喷嘴组件,其特征在于,所述雾化段(5211)靠近所述供气通道(522)的一端形成有雾化面(5213),所述雾化面(5213)设置有连通所述雾化段(5211)和所述供气通道(522)的雾化口(5223),所述雾化口(5223)的孔径小于所述雾化面(5213)的外径。
  12.  根据权利要求11所述的喷嘴组件,其特征在于,所述进液通道(51)的中心线与所述雾化面(5213)之间的垂直距离在0.8mm以下。
  13.  根据权利要求11所述的喷嘴组件,其特征在于,所述雾化口(5223)的孔径为0.2mm~0.4mm。
  14.  根据权利要求11所述的喷嘴组件,其特征在于,所述雾化口(5223)的孔径为0.22mm~0.35mm,所述雾化段(5211)的长度为1.5mm~3.0mm,所述雾化段(5211)的孔径为0.7mm~1.3mm。
  15.  根据权利要求11所述的喷嘴组件,其特征在于,所述雾化面(5213)上还形成有锁液槽(5214),所述锁液槽(5214)内能够产生毛细力。
  16.  根据权利要求15所述的喷嘴组件,其特征在于,所述锁液槽(5214)与所述雾化口(5223)同轴设置,所述锁液槽(5214)呈封闭或非封闭的环形。
  17.  根据权利要求2所述的喷嘴组件,其特征在于,所述气流通道(52)与所述雾化腔(521)同轴设置。
  18.  根据权利要求1-17任一项所述的喷嘴组件,其特征在于,所述进液通道(51)包括与所述气流通道(52)相连通的第一流道(511),所述第一流道(511)为毛细通道。
  19.  根据权利要求18所述的喷嘴组件,其特征在于,所述进液通道(51)还包括第二流道(512),所述第二流道(512)连通在所述第一流道(511)远离所述气流通道(52)的一端,所述第二流道(512)为弱毛细通道。
  20.  根据权利要求1-17任一项所述的喷嘴组件,其特征在于,所述进液通道(51)的延伸方向与所述气流通道(52)的延伸方向垂直。
  21.  一种电子雾化装置,其特征在于,包括如权利要求1-20任一项所述的喷嘴组件。
PCT/CN2023/078886 2022-04-29 2023-02-28 喷嘴组件及电子雾化装置 WO2023207312A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210467404.6 2022-04-29
CN202210467404.6A CN116998759A (zh) 2022-04-29 2022-04-29 喷嘴组件及电子雾化装置

Publications (1)

Publication Number Publication Date
WO2023207312A1 true WO2023207312A1 (zh) 2023-11-02

Family

ID=88517256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/078886 WO2023207312A1 (zh) 2022-04-29 2023-02-28 喷嘴组件及电子雾化装置

Country Status (2)

Country Link
CN (1) CN116998759A (zh)
WO (1) WO2023207312A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3770209A (en) * 1972-04-19 1973-11-06 Delavan Manufacturing Co Aspirating spray head
US4161282A (en) * 1976-08-30 1979-07-17 Erb Elisha Microcapillary nebulizer and method
CN110035832A (zh) * 2019-03-08 2019-07-19 璞真生活有限公司 雾化喷嘴及雾化装置
CN216094337U (zh) * 2021-06-18 2022-03-22 中国计量科学研究院 一种气溶胶喷嘴

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3770209A (en) * 1972-04-19 1973-11-06 Delavan Manufacturing Co Aspirating spray head
US4161282A (en) * 1976-08-30 1979-07-17 Erb Elisha Microcapillary nebulizer and method
CN110035832A (zh) * 2019-03-08 2019-07-19 璞真生活有限公司 雾化喷嘴及雾化装置
CN216094337U (zh) * 2021-06-18 2022-03-22 中国计量科学研究院 一种气溶胶喷嘴

Also Published As

Publication number Publication date
CN116998759A (zh) 2023-11-07

Similar Documents

Publication Publication Date Title
AU2017346137B2 (en) Atomizer and electronic cigarette thereof
WO2018000756A1 (zh) 无棉型超声波雾化器及电子烟
WO2018000761A1 (zh) 一种电子烟雾化器
WO2018210264A1 (zh) 一种超声波电子烟雾化器及该电子烟
WO2021120919A1 (zh) 雾化器及电子雾化装置
WO2019110004A1 (zh) 一种超声波电子烟雾化芯及雾化器
WO2023207312A1 (zh) 喷嘴组件及电子雾化装置
WO2024051168A1 (zh) 一种雾化组件及雾化装置
WO2023207368A1 (zh) 电子雾化装置及其储液雾化组件和喷嘴
WO2023207313A1 (zh) 电子雾化装置及其喷嘴雾化组件
WO2023207292A1 (zh) 电子雾化装置及其储液雾化组件
WO2022151846A1 (zh) 油气路分离雾化器及电子烟
WO2023207322A1 (zh) 电子雾化装置及其储液雾化组件
WO2023207323A1 (zh) 电子雾化装置
WO2022057921A1 (zh) 雾化芯、雾化器和电子雾化装置
WO2023207366A1 (zh) 电子雾化装置及其储液雾化组件
WO2023207314A1 (zh) 电子雾化装置及其储液雾化组件
WO2024037033A1 (zh) 电子雾化装置及雾化器
WO2022165848A1 (zh) 一种雾化装置和扩香仪
WO2023207321A1 (zh) 雾化喷嘴、储液雾化喷嘴及电子雾化装置
WO2023207320A1 (zh) 电子雾化装置
WO2023241100A1 (zh) 电子雾化装置
CN219069464U (zh) 雾化器及气溶胶生成装置
WO2023206597A1 (zh) 电子雾化装置
WO2024007340A1 (zh) 雾化器及电子雾化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23794748

Country of ref document: EP

Kind code of ref document: A1