WO2023207313A1 - 电子雾化装置及其喷嘴雾化组件 - Google Patents

电子雾化装置及其喷嘴雾化组件 Download PDF

Info

Publication number
WO2023207313A1
WO2023207313A1 PCT/CN2023/078887 CN2023078887W WO2023207313A1 WO 2023207313 A1 WO2023207313 A1 WO 2023207313A1 CN 2023078887 W CN2023078887 W CN 2023078887W WO 2023207313 A1 WO2023207313 A1 WO 2023207313A1
Authority
WO
WIPO (PCT)
Prior art keywords
atomization
channel
swirl
nozzle
liquid
Prior art date
Application number
PCT/CN2023/078887
Other languages
English (en)
French (fr)
Inventor
刘成川
高椋
林作飘
杨豪
雷桂林
Original Assignee
海南摩尔兄弟科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海南摩尔兄弟科技有限公司 filed Critical 海南摩尔兄弟科技有限公司
Publication of WO2023207313A1 publication Critical patent/WO2023207313A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors

Definitions

  • the present invention relates to the field of atomization, and more specifically, to an electronic atomization device and its nozzle atomization assembly.
  • Existing electronic atomization devices mainly use porous media such as porous ceramics or porous cotton combined with heating components for heating and atomization. Due to the high heating temperature during atomization, when the supply of liquid matrix is insufficient, the small amount of liquid matrix on the heating component is not enough to consume the electrical energy released on the heating component, causing the temperature of the heating surface to further increase, thereby further aggravating the thermal cracking of the liquid matrix. , and even the formation of carbon deposits and dry burning can easily cause the formed aerosol to produce a burnt smell, leading to a significant deterioration in taste.
  • the technical problem to be solved by the present invention is to provide an improved nozzle atomization assembly and an electronic atomization device having the nozzle atomization assembly in view of the above-mentioned defects of the prior art.
  • the technical solution adopted by the present invention to solve the technical problem is to construct a nozzle atomization assembly, which is formed with an atomization chamber, a liquid supply channel for inputting a liquid substrate into the atomization chamber, and An air supply channel for inputting high-speed air flow into the atomization chamber.
  • the air supply channel includes at least one swirl channel for changing the direction of the air flow.
  • the liquid substrate entering the atomization chamber is affected by the atomization chamber. Atomized by the circulating high-speed airflow.
  • the atomization chamber has an atomization surface at one end close to the air supply channel, and an atomization port is provided on the atomization surface.
  • the liquid substrate flowing into the atomization chamber can pass through the atomization surface.
  • the liquid surface forms a liquid film, and the liquid film is cut by the high-speed airflow to form liquid particles;
  • the at least one swirl channel is configured to enable at least part of the high-speed airflow entering the air supply channel to be atomized along the The edges of the mouth flow.
  • the central axes of the atomization port, the atomization chamber, and the air supply channel coincide.
  • the at least one swirl channel includes a plurality of swirl channels, and the plurality of swirl channels are evenly spaced along the periphery of the air supply channel.
  • the vertical distance between the outlet end of the at least one swirl channel close to the atomization port and the atomization port is 0.6 mm ⁇ 1.2 mm.
  • the height of the at least one swirl channel is 1.2 mm ⁇ 1.8 mm.
  • the cross-sectional area of the at least one swirl channel away from the inlet end of the atomization port is 0.4mm2 ⁇ 0.8mm2.
  • the cross-sectional area of the at least one swirl channel near the outlet end of the atomization port is 0.04mm2 ⁇ 0.15mm2.
  • the nozzle atomization assembly includes a swirl plug disposed in the air supply channel, and the at least one swirl channel includes at least one swirl groove formed on the outer surface of the swirl plug and/or Or at least one swirl hole formed in the swirl plug.
  • the inclination angle between the center line of the at least one swirl groove and the vertical direction is 45° to 75°.
  • the at least one swirl groove is arc-shaped.
  • the at least one swirl hole is tangent to an edge of the atomization port.
  • the swirl plug is truncated.
  • the air supply channel includes a constriction channel, and the cross-sectional area of the constriction channel gradually decreases from an end far away from the atomization chamber to an end close to the atomization chamber.
  • the at least one swirl channel is disposed within the constriction channel.
  • the extension direction of the atomization chamber and the air supply channel is perpendicular to the extension direction of the liquid supply channel.
  • an expansion channel is also formed in the nozzle atomization assembly.
  • the expansion channel is connected to an end of the atomization chamber away from the air supply channel.
  • the cross-sectional area of the expansion channel is from close to the air supply channel.
  • the atomization chamber gradually increases from one end to an end away from the atomization chamber.
  • the present invention also provides an electronic atomization device, including the nozzle atomization assembly as described in any one of the above.
  • the present invention atomizes the continuously flowing liquid matrix into liquid particles through high-speed airflow assistance.
  • the atomization process is a non-phase change atomization process and can achieve low-temperature atomization; in addition, by supplying
  • the swirl channel provided in the air channel can improve the energy utilization rate of the air flow, reduce the gas-liquid ratio required for atomization, and can make the particle size of the liquid particles formed after atomization smaller.
  • Figure 1 is a schematic three-dimensional structural diagram of an electronic atomization device in some embodiments of the present invention.
  • Figure 2 is a schematic longitudinal cross-sectional structural diagram of the electronic atomization device shown in Figure 1;
  • Figure 3 is a longitudinal cross-sectional view of the nozzle atomization assembly in Figure 2;
  • Figure 4 shows a longitudinal sectional view of a nozzle atomizing assembly in an alternative embodiment of the present invention
  • Figure 5 is a schematic three-dimensional structural diagram of the swirl plug in Figure 4.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • connection In the present invention, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated into one; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interactive relationship between two elements, unless otherwise specified restrictions. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood according to specific circumstances.
  • a first feature being “on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediate medium. touch.
  • a first feature being “above” a second feature can mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is at a higher level than the second feature.
  • the first feature being “below” the second feature may mean that the first feature is directly below or diagonally below the second feature, or it may simply mean that the first feature is less horizontally than the second feature.
  • FIGS 1-2 show an electronic atomization device 100 in some embodiments of the present invention.
  • the electronic atomization device 100 can be used to atomize a liquid substrate to generate an aerosol, which can be smoked or inhaled by the user.
  • it may be substantially cylindrical. It is understandable that in other embodiments, the electronic atomization device 100 may also be in other shapes such as an elliptical column, a flat column, a square column, or the like.
  • the liquid substrate may include e-liquid or medicinal liquid.
  • the electronic atomization device 100 may include a housing 10 and a control module 20 contained in the housing 10 , a power supply 30 , an air source 40 , a nozzle atomization component 60 and a liquid storage component 70 .
  • the air source 40 is used to provide high-speed air flow for the nozzle atomization assembly 60, and it can usually be an air pump.
  • the control module 20 is electrically connected to the air source 40 for receiving instructions. The instructions can be triggered by the user or automatically triggered after the electronic atomization device 100 meets certain conditions. The control module 20 then controls the operation of the air source 40 according to the instructions.
  • the power supply 30 is electrically connected to the control module 20 and the air source 40 respectively, and is used to provide electric energy to the control module 20 and the air source 40 .
  • a liquid storage chamber 71 for storing a liquid substrate is formed in the liquid storage component 70.
  • a liquid supply channel 61 and an air flow channel 62 are formed in the nozzle atomization assembly 60.
  • the liquid supply channel 61 and the air flow channel 62 are connected with the liquid storage chamber 71 and the air flow channel 62 respectively.
  • the sources 40 are connected, and the liquid matrix entering the air flow channel 62 from the liquid supply channel 61 can be atomized by the high-speed air flow flowing in the air flow channel 62 to form fine liquid particles.
  • the nozzle atomization assembly 60 may be at least partially received in the liquid storage assembly 70 , which may include a nozzle 63 .
  • the liquid supply channel 61 and the air flow channel 62 are both formed in the nozzle 63 .
  • the nozzle 63 generally has a cylindrical shape, and can be made of hard materials such as plastic.
  • the air flow channel 62 runs through the nozzle 63 in the longitudinal direction and can be coaxially arranged with the nozzle 63 .
  • the liquid supply channel 61 extends laterally inward from one side of the nozzle 63 to communicate with the air flow channel 62 , and the extension direction of the liquid supply channel 61 is perpendicular to the extension direction of the air flow channel 62 .
  • the shape of the nozzle 63 may also be in other shapes such as an ellipse or a square.
  • the air flow channel 62 may include an air supply channel 621 and an atomization chamber 622 .
  • the atomization chamber 622 is connected with the air source 40 through the air supply channel 621 , and is connected with the liquid storage chamber 71 through the liquid supply channel 61 .
  • An end surface of the atomization chamber 622 close to the air supply channel 621 forms an atomization surface 6221, and an atomization port 6220 is also formed on the atomization surface 6221.
  • the high-speed airflow from the air supply channel 621 is sprayed into the atomization chamber 622 through the atomization port 6220 and flows at high speed in the atomization chamber 622.
  • the high-speed airflow generates a negative pressure in the liquid supply channel 61 according to Bernoulli's equation.
  • This negative pressure The pressure is transmitted to the liquid storage chamber 71 and the liquid matrix in the liquid storage chamber 71 is sucked out to the atomization chamber 622 to form a liquid film on the atomization surface 6221.
  • the liquid film moves to the edge of the hole wall of the atomization port 6220 and meets the high-speed airflow, and is cut and atomized by the high-speed airflow into fine liquid particles.
  • the liquid particles are then taken away from the atomization port 6220 by the airflow. Then it is sprayed out with the airflow to complete the atomization process.
  • the liquid matrix is atomized in the atomization chamber 622 in a non-phase change atomization mode.
  • SMD total volume of liquid particles/total surface area of liquid particles, which represents the average particle size of liquid particles.
  • the atomization chamber 622 is a straight cylindrical channel, and its hole wall is perpendicular to the atomization surface 6221.
  • the atomization chamber 622 is a right cylindrical channel, the atomization surface 6221 is in the shape of concentric rings, and the inner wall surface of the atomization surface 6221 defines the atomization port 6220.
  • the cross-section of the atomization chamber 622, the atomization surface 6221, or the atomization port 6220 may also be an ellipse, a rectangle, or other non-circular shapes.
  • Parameters such as the size and shape of the atomization port 6220 and the atomization chamber 622 can affect the negative pressure in the atomization chamber 622 and the particle size of the generated liquid particles, and can make the flow rate more stable.
  • the aperture of the atomization port 6220, the aperture of the atomization chamber 622, and the length of the atomization chamber 622 can be set to appropriate sizes as needed.
  • the aperture of the atomization port 6220 is related to the airflow speed (m/s) coming out of the atomization port 6220, which can affect the particle size of the generated liquid particles.
  • the aperture range of the atomization port 6220 may be 0.2mm ⁇ 0.4mm, preferably 0.22mm ⁇ 0.35mm.
  • the aperture of the atomization chamber 622 will affect the air flow rate in the atomization chamber 622, thereby affecting the negative pressure in the atomization chamber 622 and the liquid supply channel 61. This negative pressure can cause the liquid matrix to be sucked from the liquid supply channel 61 to the atomization chamber 622 .
  • the aperture of the atomization chamber 622 may range from 0.7 mm to 1.3 mm.
  • the axial length of the atomization chamber 622 may be 0.8mm ⁇ 3.0mm.
  • the atomization port 6220 or the atomization chamber 622 may also have a non-circular cross-section; when the atomization port 6220 or the atomization chamber 622 has a non-circular cross-section, the aperture of the atomization port 6220 Or the aperture of the atomization chamber 622 is its equivalent diameter respectively.
  • equivalent diameter means that the diameter of a circular hole with the same hydraulic radius is defined as the equivalent diameter of a non-circular hole.
  • the aperture range of the atomization port 6220 is 0.22mm ⁇ 0.35mm
  • the axial length range of the atomization chamber 622 is 1.5mm ⁇ 3.0mm
  • the aperture range of the atomization chamber 622 is 0.7mm ⁇ 1.3mm
  • One end of the liquid supply channel 61 that communicates with the atomization chamber 622 has a liquid supply port 610.
  • the vertical distance between the center of the liquid supply port 610 and the atomization surface 6221 is the key to ensuring the formation of a liquid film.
  • the vertical distance between the liquid supply port 610 and the atomization surface 6221 may range from 0.3mm to 0.8mm, preferably from 0.35mm to 0.6mm.
  • the air flow channel 62 also includes an expansion channel 623, which is connected to an end of the atomization chamber 622 away from the air supply channel 621, and is used to diffuse the liquid particles generated after atomization in the atomization chamber 622 in the form of a jet. Spray out to increase the spray area of liquid particles.
  • the cross-sectional area of the expansion channel 623 gradually increases from the end close to the atomization chamber 622 to the end far away from the atomization chamber 622 .
  • the expansion channel 623 is a conical channel that extends longitudinally and has a hole diameter that gradually increases from bottom to top.
  • the atomization angle of the expansion channel 623 (that is, the expansion angle of the expansion channel 623) must have a suitable range to ensure that the ejected liquid particles have a suitable spray range.
  • the atomization angle of the expansion channel 623 may be 30 0 ⁇ 70 0 .
  • the expansion channel 623 and the atomization chamber 622 can also be connected smoothly in a streamlined manner, for example, through rounding.
  • the expansion channel 623 may also be in an elliptical cone shape, a pyramid shape, or other shapes.
  • the air supply channel 621 may include a constriction channel 6211.
  • the constriction channel 6211 has a constriction shape, and its cross-sectional area gradually decreases from an end far away from the atomization chamber 622 to an end close to the atomization chamber 622, so that the air supply channel 621 can be The air flow from the air source 40 is accelerated and then sprayed to the atomization chamber 622 .
  • the contraction channel 6211 is a conical channel extending longitudinally and with the aperture gradually decreasing from bottom to top.
  • the aperture of the upper end of the contraction channel 6211 is smaller than the aperture of the atomization chamber 622, so that the contraction channel 6211 and the atomization chamber 622
  • the junction forms a circular atomization surface 6221.
  • the contraction channel 6211 may also be an elliptical cone shape or a pyramid shape or other contraction shapes.
  • the air supply channel 621 also includes a communication channel 6212 that communicates with the contraction channel 6211.
  • the contraction channel 6211 is connected to the air source 40 through the communication channel 6212.
  • the communication channel 6212 may be a straight cylindrical channel extending longitudinally.
  • the upper end of the communication channel 6212 is connected with the contraction channel 6211.
  • the aperture of the communication channel 6212 is consistent with the aperture of the lower end of the contraction channel 6211.
  • the cross-section of the communication channel 6212 may also be an ellipse, a rectangle, or other non-circular shapes.
  • the air supply channel 621 formed in the nozzle atomization assembly 60 may also include only the constriction channel 6211; or, when the air flow rate is sufficient, the air supply channel 621 may only include the communication channel 6212.
  • the liquid supply channel 61 is a linear channel extending laterally, and may be a capillary channel.
  • the capillary force in the liquid supply channel 61 can be used to reduce or prevent the liquid matrix in the liquid supply channel 61 from flowing into the liquid storage chamber. 71 to prevent the liquid supply delay in the next suction caused by the backflow of the liquid matrix in the liquid supply channel 61.
  • the cross-sectional area of the liquid supply channel 61 is 0.07mm2 (or the hole diameter is 0.3mm), and the channel length is ⁇ 2mm.
  • the liquid matrix in the liquid supply channel 61 will not flow to the liquid supply channel 61 due to the negative pressure in the liquid storage chamber 71.
  • the liquid storage chamber 71 flows back, thereby achieving the effect of instant start-up.
  • the cross-sectional area of the liquid supply channel 61 is 0.05mm2 and the channel length is ⁇ 1mm, a stable liquid supply that can be started and stopped can also be achieved.
  • the hydraulic diameter of the liquid supply channel 61 is less than or equal to 0.3 mm, and stable liquid supply that starts and stops can also be achieved.
  • the nozzle atomization assembly 60 can be longitudinally inserted into the liquid storage assembly 70 and can be disposed coaxially with the liquid storage assembly 70 .
  • the nozzle atomization assembly 60 may also include at least one sealing ring 64 sleeved on the nozzle 63 .
  • the sealing ring 64 can be made of elastic material such as silicone, and can be an O-shaped sealing ring.
  • the sealing ring 64 is sealingly fitted between the outer wall surface of the nozzle 63 and the inner wall surface of the liquid storage assembly 70 to prevent liquid leakage.
  • there are two sealing rings 64 and the two sealing rings 64 are respectively disposed on the upper and lower sides of the liquid supply channel 61 to prevent the liquid substrate from leaking from the upper and lower sides of the liquid supply channel 61 .
  • a lower liquid channel 72 is also formed in the liquid storage assembly 70 to communicate with the liquid storage chamber 71 and the liquid supply channel 61 .
  • the lower fluid channel 72 may extend laterally, and may be a weak capillary force channel.
  • the lower liquid channel 72 can be used to adjust the amount and speed of the liquid supplied from the liquid storage chamber 71 to the air flow channel 62 to ensure that the flow rate of liquid supplied to the air flow channel 62 reaches the design value, and to realize quantitative liquid supply to the air flow channel 62 . If the resistance in the lower liquid channel 72 is too small, it will result in a larger amount of liquid and a faster speed. If the resistance in the lower channel 72 is too large, it will result in a smaller amount of liquid and a slower speed.
  • the size of the lower liquid channel 72 can be designed according to the flow demand, that is, under the designed flow rate, the lower liquid channel 72 can generate resistance that matches the liquid supply power.
  • the resistance requirement in the lower liquid channel 72 is related to the negative pressure in the air flow channel 62 .
  • the negative pressure generated in the air flow channel 62 is the liquid supply power
  • the liquid supply resistance includes the resistance along the lower liquid channel 72 and the liquid supply channel 61 and the negative pressure in the liquid storage chamber 71 .
  • the specific diameter and length of the lower liquid channel 72 are designed by calculating the resistance required along the lower liquid channel 72 at the designed flow rate.
  • the electronic atomization device 100 further includes a heating element 81 contained in the housing 10 .
  • the heating element 81 is electrically connected to the power supply 30 and can generate heat after being powered on.
  • the structure and heating form of the heating element 81 are not limited. For example, it can be a heating net, a heating sheet, a heating wire or a heating film.
  • the heating form can be resistance conduction heating, infrared radiation heating, electromagnetic induction heating or composite heating. Heated form.
  • An output channel 80 is also formed in the housing 10 , and the heating element 81 can be disposed in the output channel 80 and located above the nozzle 63 .
  • the liquid particles sprayed from the nozzle 63 hit the heating element 81 upward, and are evaporated and heated by the heating element 81 to generate aerosol.
  • the aerosol is then carried out of the output channel 80 by the air flow for the user to suck or inhale.
  • the nozzle 63 is used to atomize the continuously flowing liquid matrix into liquid particles and then evaporated by the heating element 81. Since the surface area of the fine liquid particles formed after atomization by the nozzle 63 is greatly expanded, it is easier to Heating and evaporation can, on the one hand, improve the conversion efficiency of heat and aerosol, and on the other hand, reduce the temperature of the evaporation process of the heating element 81 to achieve low-temperature atomization.
  • the liquid matrix mainly completes the physical change process, thus overcoming the problem of thermal cracking and deterioration of the liquid matrix caused by the necessity of high-temperature atomization under traditional porous ceramics or porous cotton conditions, not to mention the Burning, carbon deposition, heavy metal volatilization and other phenomena will occur, so that the unique ingredients and flavor and fragrance systems of different liquid bases can be maintained, and ultimately the inhaler can feel the unique taste corresponding to the original liquid base.
  • the heating element 81 is not in contact with the liquid storage chamber 71, and the heating element 81 does not need to be immersed in the liquid matrix for a long time, which reduces the contamination of the liquid matrix by the heating element 81, thereby reducing impurity gases in the aerosol generated after atomization.
  • the liquid particles ejected from the nozzle 63 can also hit the heating element 81 downward, that is, the heating element 81 can also be disposed below the nozzle 63; or, the liquid ejected from the nozzle 63 can The particles may also impact the heating element 81 laterally, that is, the heating element 81 and the nozzle 63 are at or approximately at the same level.
  • the electronic atomization device 100 may not be provided with the heating element 81 , that is, the liquid particles atomized by the nozzle 63 can be directly output through the output channel 80 and sucked or inhaled by the user.
  • the electronic atomization device 100 may further include an airflow sensing element 50 disposed in the housing 10 and electrically connected to the control module 20 .
  • the airflow sensing element 50 can sense changes in the airflow when the user inhales, and can usually be a negative pressure sensor, such as a microphone. The user's suction action creates negative pressure, and the airflow sensing element 50 senses the negative pressure to generate a suction signal.
  • the suction signal can be transmitted to the control module 20 to control the operation of the air source 40 and/or the heating element 81 .
  • the electronic atomization device 100 may further include a dust cover 90 detachably disposed on the upper end of the housing 10 .
  • the dust cover 90 can be placed on the upper end of the housing 10 to prevent dust and other impurities from entering the output channel 80 .
  • Figures 4-5 show a nozzle atomization assembly 60 in an alternative version of the present invention.
  • the air supply channel 621 of the nozzle atomization assembly 60 in this embodiment includes an air supply channel for changing the air flow.
  • the at least one swirl channel 6213 can be disposed in the constriction channel 6211 and configured to enable at least part of the high-speed airflow entering the air supply channel 621 to flow along the edge of the atomization port 6220 .
  • a swirl flow is created through the at least one swirl channel 6213, so that the jet flow that originally passed through the contraction channel 6211 and is concentrated in the central area of the atomization port 6220 is changed into a swirl flow with tangential velocity that is concentrated in the edge of the atomization port 6220, so that The air flow speed and energy of cutting the liquid film at the atomization port 6220 are higher, and the energy utilization rate is higher under the same input air flow conditions.
  • the gas-liquid ratio required for atomization is lower, and the liquid particles formed after cutting are The particle size is smaller and the axial jet velocity is lower, which is beneficial to the design of the heating section.
  • the design principle of the swirl channel 6213 is that it cannot be seen through when looking from one longitudinal side of the swirl channel 6213 to the other side, that is, the design structure prevents the airflow from passing through the swirl channel 6213 vertically.
  • the nozzle atomization assembly 60 in this embodiment also includes a swirl plug 65 , which is disposed in the contraction channel 6211 and used to form a swirl channel 6213 .
  • the at least one swirl channel 6213 may include a swirl groove 650 formed on the outer surface of the swirl plug 65 and/or a swirl hole formed in the swirl plug 65 .
  • the swirl plug 65 is in the shape of a truncated cone, and two arc-shaped swirl grooves 650 are formed on the outer surface of the swirl plug 65 .
  • the number of swirl grooves 650 can also be two or more, and the at least two swirl grooves 650 can be evenly spaced along the circumference of the swirl plug 65, and the at least two swirl grooves 650 can be evenly spaced along the circumference of the swirl plug 65. At least two swirl grooves 650 are arranged rotationally symmetrically with respect to the central axis of the swirl plug 65 .
  • Each swirl groove 650 has an inlet end 651 away from the atomization port 6220 and an outlet end 652 close to the atomization port 6220.
  • the cross-sectional area of the inlet end 651 can range from 0.4mm2 to 0.8mm2, and the cross-sectional area of the outlet end 652 can range from 0.04mm2 to 0.15mm2.
  • the center line of each swirl groove 650 is in the vertical direction.
  • the inclination angle can be 45° ⁇ 75°, and the height of the swirl tank 650 can be 1.2mm ⁇ 1.8mm.
  • there is a certain vertical distance between the outlet end 652 of the swirl tank 650 and the atomization port 6220 and the vertical distance can be 0.6mm ⁇ 1.2mm.
  • the above height refers to the distance between the inlet end 651 and the outlet end 652 in the axial direction of the air supply channel 621
  • the above vertical distance refers to the distance between the outlet end 652 and the atomization port 6220 in the axial direction of the air supply channel 621.
  • swirl holes may also be formed in the swirl plug 65 .
  • the swirl hole is an inclined tangential hole, and the tangential hole is tangent to the hole wall of the atomization port 6220, thereby achieving the purpose of causing most of the airflow to flow along the edge of the atomization port 6220.

Landscapes

  • Nozzles (AREA)

Abstract

一种电子雾化装置(100)及其喷嘴雾化组件(60),喷嘴雾化组件(60)内形成有雾化腔(622)、用于向雾化腔(622)输入液态基质的供液通道(61)以及用于向雾化腔(622)输入高速气流的供气通道(621),供气通道(621)包括用于改变气流流向的至少一个旋流通道(6213),进入雾化腔(622)的液态基质受雾化腔(622)中流通的高速气流作用而雾化。通过高速气流辅助将连续流动的液态基质雾化成液体颗粒,雾化过程为非相变的雾化过程,能够实现低温雾化。此外,通过在供气通道(621)内设置的旋流通道(6213),能够提高气流的能量利用率,减小雾化所需的气液比,且能够使得雾化后形成的液体颗粒的粒径更小。

Description

电子雾化装置及其喷嘴雾化组件 技术领域
本发明涉及雾化领域,更具体地说,涉及一种电子雾化装置及其喷嘴雾化组件。
背景技术
现有的电子雾化装置主要采用多孔陶瓷或者多孔棉等多孔介质结合发热部件进行加热雾化。由于雾化时加热温度较高,当液态基质供给不足时,发热部件上少量的液态基质不足以消耗掉发热部件上释放的电能,导致加热面温度进一步升高,从而进一步加剧液态基质的热裂解,甚至形成积碳和干烧的情况,很容易使形成的气溶胶产生烧焦的气味,导致口感显著变差。
发明内容
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种改进的喷嘴雾化组件及具有该喷嘴雾化组件的电子雾化装置。
本发明解决其技术问题所采用的技术方案是:构造一种喷嘴雾化组件,所述喷嘴雾化组件内形成有雾化腔、用于向所述雾化腔输入液态基质的供液通道以及用于向所述雾化腔输入高速气流的供气通道,所述供气通道包括用于改变气流流向的至少一个旋流通道,进入所述雾化腔的液态基质受所述雾化腔中流通的高速气流作用而雾化。
在一些实施例中,所述雾化腔靠近所述供气通道的一端具有雾化面,所述雾化面上设置有雾化口,流入所述雾化腔的液态基质能够在所述雾化面形成液膜,所述液膜被所述高速气流切割而形成液体颗粒;所述至少一个旋流通道被配置为能使进入所述供气通道的高速气流的至少部分沿所述雾化口的边缘流动。
在一些实施例中,所述雾化口、所述雾化腔、所述供气通道的中轴线重合。
在一些实施例中,所述至少一个旋流通道包括多个旋流通道,所述多个旋流通道沿所述供气通道的周缘均匀间隔分布。
在一些实施例中,所述至少一个旋流通道靠近所述雾化口的出口端与所述雾化口之间的垂直距离为0.6mm~1.2mm。
在一些实施例中,所述至少一个旋流通道的高度为1.2mm~1.8mm。
在一些实施例中,所述至少一个旋流通道远离所述雾化口的入口端的截面积为0.4mm²~0.8mm²。
在一些实施例中,所述至少一个旋流通道靠近所述雾化口的出口端的截面积为0.04mm²~0.15mm²。
在一些实施例中,所述喷嘴雾化组件包括设置于所述供气通道中的旋流塞,所述至少一个旋流通道包括形成于所述旋流塞外表面的至少一个旋流槽和/或形成于所述旋流塞内的至少一个旋流孔。
在一些实施例中,所述至少一个旋流槽的中心线与竖直方向的倾斜角为45°~75°。
在一些实施例中,所述至少一个旋流槽为弧形。
在一些实施例中,所述至少一个旋流孔与所述雾化口的边缘相切。
在一些实施例中,所述旋流塞为圆台形。
在一些实施例中,所述供气通道包括收缩通道,所述收缩通道的截面积从远离所述雾化腔的一端到靠近所述雾化腔的一端逐渐减小。
在一些实施例中,所述至少一个旋流通道设置于所述收缩通道内。
在一些实施例中,所述雾化腔、所述供气通道的延伸方向均与所述供液通道的延伸方向垂直。
在一些实施例中,所述喷嘴雾化组件内还形成有扩张通道,所述扩张通道与所述雾化腔远离所述供气通道的一端连通,所述扩张通道的截面积由靠近所述雾化腔的一端到远离所述雾化腔的一端逐渐增大。
本发明还提供一种电子雾化装置,包括如上述任一项所述的喷嘴雾化组件。
实施本发明至少具有以下有益效果:本发明通过高速气流辅助将连续流动的液态基质雾化成液体颗粒,该雾化过程为非相变的雾化过程,能够实现低温雾化;此外,通过在供气通道内设置的旋流通道,能够提高气流的能量利用率,减小雾化所需的气液比,且能够使得雾化后形成的液体颗粒的粒径更小。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明一些实施例中电子雾化装置的立体结构示意图;
图2是图1所示电子雾化装置的纵向剖面结构示意图;
图3是图2中喷嘴雾化组件的纵向剖视图;
图4示出了本发明一个替代方案中喷嘴雾化组件的纵向剖视图;
图5是图4中旋流塞的立体结构示意图。
实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。
在本发明的描述中,需要理解的是,术语“纵向”、“横向”、“上”、“下”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系或者是本发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个、三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“上方”可以是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“下方”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
图1-2示出了本发明一些实施例中的电子雾化装置100,该电子雾化装置100可用于雾化液态基质以生成气溶胶,该气溶胶可供用户吸食或者吸入,其在本实施例中可大致呈圆柱状。可以理解地,在其他实施例中,该电子雾化装置100也可呈椭圆柱状、扁平柱状或方形柱状等其他形状。该液态基质可以包括烟油或药液等。
该电子雾化装置100可包括外壳10以及收容于外壳10中的控制模块20、电源30、气源40、喷嘴雾化组件60和储液组件70。气源40用于为喷嘴雾化组件60提供高速气流,其通常可以为气泵。控制模块20与气源40电连接,用于接收指令,该指令可由用户触发或者在电子雾化装置100满足一定条件后自动触发,控制模块20再根据该指令控制气源40的工作。电源30分别与控制模块20、气源40电连接,用于向控制模块20、气源40提供电能。
储液组件70内形成有用于存储液态基质的储液腔71,喷嘴雾化组件60内形成有供液通道61和气流通道62,供液通道61、气流通道62分别与储液腔71、气源40相连通,从供液通道61进入到气流通道62的液态基质能够受气流通道62中流通的高速气流作用而雾化,形成细小的液体颗粒。
喷嘴雾化组件60可至少部分收容于储液组件70中,其可包括喷嘴63。供液通道61、气流通道62均形成于喷嘴63内。具体地,在本实施例中,喷嘴63大致具有圆柱状外形,其可采用塑胶等硬质材料制成。气流通道62沿纵向贯穿喷嘴63并可与喷嘴63同轴设置。供液通道61由喷嘴63的一侧侧面沿横向向内延伸至与气流通道62相连通,且供液通道61的延伸方向与气流通道62的延伸方向垂直。可以理解地,在其他实施例中,喷嘴63的外形也可呈椭圆形或方形等其他形状。
如图3所示,气流通道62可包括供气通道621和雾化腔622。雾化腔622通过供气通道621与气源40连通,并通过供液通道61与储液腔71相连通。雾化腔622靠近供气通道621的一端端面形成雾化面6221,雾化面6221上还形成有雾化口6220。来自供气通道621的高速气流经由雾化口6220喷出到雾化腔622内并在雾化腔622中高速流动,高速气流由伯努利方程在供液通道61内产生负压,此负压传导至储液腔71将储液腔71内的液态基质吸出至雾化腔622,在雾化面6221上形成液膜。随着供液过程的持续进行,液膜运动到雾化口6220的孔壁边缘与高速气流相遇,被高速气流切割雾化成细小的液体颗粒,该液体颗粒再被气流带离雾化口6220,之后随气流喷出完成雾化过程。该液态基质在雾化腔622内的雾化方式为非相变的雾化方式,雾化腔622雾化后形成的液体颗粒的粒径分布可达到SMD=30μm范围内。其中,SMD=液体颗粒总体积/液体颗粒总表面积,表示了液体颗粒的平均粒径。
雾化腔622为直柱状通道,其孔壁面与雾化面6221垂直。在本实施例中,雾化腔622为直圆柱形通道,雾化面6221为同心圆环状,雾化面6221的内壁面界定出雾化口6220。在其他实施例中,雾化腔622、雾化面6221或雾化口6220的横截面也可以是椭圆形或矩形等其他非圆形状。
雾化口6220、雾化腔622的尺寸和形状等参数能够影响雾化腔622内负压的大小以及生成的液体颗粒的粒径大小,并可使流量更稳定。在一些实施例中,雾化口6220的孔径、雾化腔622的孔径、雾化腔622的长度可根据需要设置合适的尺寸。
具体地,雾化口6220的孔径与从雾化口6220出来的气流速度(m/s)相关,其能够影响生成的液体颗粒的粒径大小。在一些实施例中,雾化口6220的孔径范围可以为0.2mm~0.4mm ,优选为0.22mm~0.35mm。
雾化腔622的孔径会影响雾化腔622中的气流流速大小,从而影响雾化腔622及供液通道61内的负压大小。该负压可使液态基质从供液通道61吸至雾化腔622。在一些实施例中,雾化腔622的孔径范围可以为0.7mm~1.3mm。雾化腔622的轴向长度可以为0.8mm~3.0mm。可以理解地,在其他实施例中,雾化口6220或雾化腔622也可具有非圆横截面;当雾化口6220或雾化腔622具有非圆横截面时,雾化口6220的孔径或雾化腔622的孔径分别为其当量直径。术语“当量直径”是指,把水力半径相等的圆孔的直径定义为非圆孔的当量直径。
进一步地,在一些实施例中,雾化口6220的孔径范围为0.22mm~0.35mm,雾化腔622的轴向长度范围为1.5mm~3.0mm,雾化腔622的孔径范围为0.7mm~1.3mm,该取值范围能够使喷嘴雾化组件60在制造工艺上得到优势。
供液通道61与雾化腔622相连通的一端具有一供液口610,该供液口610的中心与雾化面6221之间的垂直距离是保证液膜形成的关键。在一些实施例中,供液口610与雾化面6221之间的垂直距离的范围可以为0.3mm~0.8mm,优选为0.35mm~0.6mm。
进一步地,气流通道62还包括扩张通道623,该扩张通道623与雾化腔622远离供气通道621的一端连通,用于将雾化腔622内雾化后生成的液体颗粒以射流的形式扩散喷出,增大液体颗粒的喷射面积。扩张通道623的横截面积由靠近雾化腔622的一端到远离雾化腔622的一端逐渐增大。具体地,在本实施例中,扩张通道623为沿纵向延伸且孔径由下往上逐渐增大的圆锥形通道。扩张通道623的雾化角(即扩张通道623的扩张角)须具有合适范围,以保证喷射出的液体颗粒具有合适的喷射范围。在一些实施例中,扩张通道623的雾化角可以为30 0~70 0。进一步地,扩张通道623与雾化腔622之间还可采用流线型平滑连接,例如通过倒圆角的方式相切。在其他实施例中,扩张通道623也可以为椭圆锥形状或金字塔形状等其他形状。
供气通道621在一些实施例中可包括收缩通道6211,该收缩通道6211呈收缩形状,其横截面积从远离雾化腔622的一端到靠近雾化腔622的一端逐渐减小,从而能够将来自气源40的气流加速后喷出至雾化腔622。在本实施例中,收缩通道6211为沿纵向延伸且孔径由下往上逐渐减小的圆锥形通道,收缩通道6211的上端孔径小于雾化腔622的孔径,使得收缩通道6211和雾化腔622的交接处形成圆环形的雾化面6221。可以理解地,在其他实施例中,收缩通道6211也可以为椭圆锥形状或金字塔形状等其他收缩形状。
进一步地,供气通道621还包括与收缩通道6211连通的连通通道6212,收缩通道6211通过连通通道6212与气源40连接。连通通道6212可以为沿纵向延伸的直圆柱形通道,连通通道6212的上端与收缩通道6211相连通,连通通道6212的孔径与收缩通道6211的下端孔径一致。在其他实施例中,连通通道6212的横截面也可以是椭圆形或矩形等其他非圆形状。可以理解地,在其他实施例中,喷嘴雾化组件60内形成的供气通道621也可仅包括收缩通道6211;或者,当气流流速足够时,供气通道621也可仅包括连通通道6212。
供液通道61为沿横向延伸的直线形通道,其可以为毛细通道。在气源40停止工作、使得由高速气流在供液通道61内产生的负压消失时,能够利用供液通道61内的毛细力来减少或避免供液通道61内的液态基质向储液腔71的回流,防止因供液通道61内液态基质的回流而造成下一次抽吸时供液延迟。例如,供液通道61的截面积为0.07mm²(或孔径0.3mm),通道长度≥2mm,气源40停止工作时供液通道61内的液态基质不会因储液腔71内的负压向储液腔71回流,从而可达到即时启动的效果。再例如,供液通道61的截面积为0.05mm²,通道长度≥1mm,也可实现即起即停的稳定供液。在另一些实施例中,供液通道61的水力直径小于等于0.3mm,也可实现即起即停的稳定供液。通常,供液通道61的截面积越小,需要达到即时启动的效果所需的供液通道61的通道长度越小。
再如图2-3所示,喷嘴雾化组件60可沿纵向穿设于储液组件70中并可与储液组件70同轴设置。该喷嘴雾化组件60还可包括套设于喷嘴63上的至少一个密封圈64。该密封圈64可采用硅胶等弹性材料制成,其可以为O形密封圈。密封圈64密封地配合于喷嘴63的外壁面和储液组件70的内壁面之间,以防止漏液。在本实施例中,密封圈64有两个,两个密封圈64分别设置于供液通道61的上下两侧,防止液态基质从供液通道61的上下两侧泄露。
储液组件70内还形成有连通储液腔71和供液通道61的下液通道72。该下液通道72可沿横向延伸,其可以为弱毛细力通道。下液通道72能够用于调节储液腔71供液至气流通道62的下液量和下液速度,保证供液至气流通道62的流量达到设计值,实现气流通道62的定量供液。下液通道72内的阻力太小,则会导致下液量较多和下液速度较快;下液通道72内的阻力太大,则会导致下液量较少和下液速度减慢。通常,可按照流量需求匹配设计下液通道72的尺寸,即在设计流量下下液通道72能产生匹配供液动力的阻力。下液通道72内的阻力需求与气流通道62内的负压相关。具体地,气流通道62内产生的负压为供液动力,而供液阻力则包括下液通道72和供液通道61的沿程阻力以及储液腔71内的负压。通过计算设计流量下下液通道72所需的沿程阻力,设计下液通道72的具体直径与长度。
进一步地,该电子雾化装置100还包括收容于外壳10中的发热件81。该发热件81与电源30电连接,其能够在通电后发热。发热件81的结构和加热形式不受限制,例如其可以为发热网、发热片、发热丝或发热膜等结构,其加热形式可以为电阻传导加热、红外辐射加热、电磁感应加热或者复合加热等加热形式。外壳10内还形成有输出通道80,发热件81可设置于输出通道80中并位于喷嘴63的上方。由喷嘴63喷出的液体颗粒向上撞击发热件81,经过发热件81蒸发加热后生成气溶胶,该气溶胶再由气流带出输出通道80,以供用户吸食或者吸入。
本实施例通过采用喷嘴63将连续流动的液态基质雾化成液体颗粒后再由发热件81蒸发的方式,由于喷嘴63雾化后形成的细小液体颗粒的表面积得到了极大的扩展,从而更容易加热蒸发,一方面可提高热量及气溶胶的转化效率,另一方面可降低发热件81蒸发过程的温度,实现低温雾化。在较低的加热雾化温度下,液态基质主要完成物理变化过程,从而克服了传统的多孔陶瓷或者多孔棉条件下因必须采用高温方式雾化而导致的液态基质热裂解变质的问题,更不会发生烧焦、积碳和重金属挥发等现象,从而能够保持不同液态基质所特有的成分和香精香料体系,最终使吸入者感受到与原始液态基质相对应的特有的口感。此外,发热件81与储液腔71不接触,发热件81不用长期浸泡在液态基质中,减少了发热件81对液态基质的污染,从而减少了雾化后生成的气溶胶中的杂质气体。
可以理解地,在其他实施例中,由喷嘴63喷出的液体颗粒也可向下撞击发热件81,即,发热件81也可设置于喷嘴63的下方;或者,由喷嘴63喷出的液体颗粒也可横向撞击发热件81,即,发热件81与喷嘴63处于或大致处于同一水平高度上。在另一些实施例中,该电子雾化装置100中也可以不设置有发热件81,即,喷嘴63雾化后的液体颗粒可直接经输出通道80输出,被用户吸食或者吸入。
进一步地,该电子雾化装置100还可包括设置于外壳10中并与控制模块20电连接的气流感应元件50。该气流感应元件50能够感应用户抽吸时的气流变化,其通常可以为负压传感器,例如咪头。用户抽吸动作制造负压,气流感应元件50感应负压而产生抽吸信号,该抽吸信号可传递至控制模块20以控制气源40和/或发热件81的工作。
进一步地,该电子雾化装置100还可包括可拆卸地罩设于外壳10上端的防尘罩90。在不需要使用电子雾化装置100时,可将防尘罩90罩设于外壳10的上端,防止灰尘等杂质进入输出通道80。
图4-5示出了本发明一个替代方案中的喷嘴雾化组件60,其与上述实施例的主要区别在于,本实施例中的喷嘴雾化组件60的供气通道621包括用于改变气流流向的至少一个旋流通道6213。
具体地,该至少一个旋流通道6213可设置于收缩通道6211内,且被配置为能使进入供气通道621的高速气流的至少部分沿雾化口6220的边缘流动。通过该至少一个旋流通道6213制造旋流,使原本通过收缩通道6211的能量集中在雾化口6220中心区域的射流改变为能量集中在雾化口6220边缘的具有切向速度的旋流,使得雾化口6220处切割液膜的气流速度更高、能量更大,同时在相同输入气流条件下的能量利用率更高,雾化所需的气液比更低,且切割后形成液体颗粒的粒径更小,轴向射流速度更低,有利于配合加热段的设计。旋流通道6213的设计原则为,从旋流通道6213的纵向一侧看向另一侧时不能看穿,即是使气流无法竖直通过旋流通道6213的设计结构。
本实施例中的喷嘴雾化组件60还包括旋流塞65,该旋流塞65设置于收缩通道6211中,用于形成旋流通道6213。该至少一个旋流通道6213可包括形成于旋流塞65外表面的旋流槽650和/或形成于旋流塞65内的旋流孔。具体地,在本实施例中,旋流塞65为圆台形,旋流塞65的外表面形成有两个弧形的旋流槽650。可以理解地,在其他实施例中,旋流槽650的个数也可以为两个或两个以上,该至少两个旋流槽650可沿旋流塞65的周向均匀间隔分布,且该至少两个旋流槽650相对于旋流塞65的中轴线呈旋转对称设置。
每一旋流槽650均具有远离雾化口6220的入口端651以及靠近雾化口6220的出口端652。在一些实施例中,该入口端651的截面积范围可以为0.4mm²~0.8mm²,该出口端652的截面积可以为0.04mm²~0.15mm²,每一旋流槽650的中心线与竖直方向的倾斜角可以为45°~75°,旋流槽650的高度可以为1.2mm~1.8mm。此外,旋流槽650的出口端652与雾化口6220之间具有一定的垂直距离,该垂直距离可以为0.6mm~1.2mm。可以理解,上述高度是指入口端651与出口端652在供气通道621的轴向上的距离,上述垂直距离是指出口端652与雾化口6220在供气通道621的轴向上的距离。
可以理解地,在其他实施例中,旋流塞65内也可形成有旋流孔。该旋流孔为倾斜的切向孔,该切向孔与雾化口6220的孔壁相切,从而达到使气流多数沿雾化口6220边缘流动的目的。
可以理解地,上述各技术特征可以任意组合使用而不受限制。
以上实施例仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制;应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,可以对上述技术特点进行自由组合,还可以做出若干变形和改进,这些都属于本发明的保护范围;因此,凡跟本发明权利要求范围所做的等同变换与修饰,均应属于本发明权利要求的涵盖范围。

Claims (18)

  1. 一种喷嘴雾化组件,其特征在于,所述喷嘴雾化组件(60)内形成有雾化腔(622)、用于向所述雾化腔(622)输入液态基质的供液通道(61)以及用于向所述雾化腔(622)输入高速气流的供气通道(621),所述供气通道(621)包括用于改变气流流向的至少一个旋流通道(6213),进入所述雾化腔(622)的液态基质受所述雾化腔(622)中流通的高速气流作用而雾化。
  2.  根据权利要求1所述的喷嘴雾化组件,其特征在于,所述雾化腔(622)靠近所述供气通道(621)的一端具有雾化面(6221),所述雾化面(6221)上设置有雾化口(6220),流入所述雾化腔(622)的液态基质能够在所述雾化面(6221)形成液膜,所述液膜被所述高速气流切割而形成液体颗粒;所述至少一个旋流通道(6213)被配置为能使进入所述供气通道(621)的高速气流的至少部分沿所述雾化口(6220)的边缘流动。
  3.  根据权利要求2所述的喷嘴雾化组件,其特征在于,所述雾化口(6220)、所述雾化腔(622)、所述供气通道(621)的中轴线重合。
  4.  根据权利要求2所述的喷嘴雾化组件,其特征在于,所述至少一个旋流通道(6213)包括多个旋流通道(6213),所述多个旋流通道(6213)沿所述供气通道(621)的周缘均匀间隔分布。
  5.  根据权利要求2所述的喷嘴雾化组件,其特征在于,所述至少一个旋流通道(6213)靠近所述雾化口(6220)的出口端(652)与所述雾化口(6220)之间的垂直距离为0.6mm~1.2mm。
  6.  根据权利要求2所述的喷嘴雾化组件,其特征在于,所述至少一个旋流通道(6213)的高度为1.2mm~1.8mm。
  7.  根据权利要求2所述的喷嘴雾化组件,其特征在于,所述至少一个旋流通道(6213)远离所述雾化口(6220)的入口端(651)的截面积为0.4mm²~0.8mm²。
  8.  根据权利要求2所述的喷嘴雾化组件,其特征在于,所述至少一个旋流通道(6213)靠近所述雾化口(6220)的出口端的截面积为0.04mm²~0.15mm²。
  9.  根据权利要求2所述的喷嘴雾化组件,其特征在于,所述喷嘴雾化组件(60)包括设置于所述供气通道(621)中的旋流塞(65),所述至少一个旋流通道(6213)包括形成于所述旋流塞(65)外表面的至少一个旋流槽(650)和/或形成于所述旋流塞(65)内的至少一个旋流孔。
  10.  根据权利要求9所述的喷嘴雾化组件,其特征在于,所述至少一个旋流槽(650)的中心线与竖直方向的倾斜角为45°~75°。
  11.  根据权利要求9所述的喷嘴雾化组件,其特征在于,所述至少一个旋流槽(650)为弧形。
  12.  根据权利要求9所述的喷嘴雾化组件,其特征在于,所述至少一个旋流孔与所述雾化口(6220)的边缘相切。
  13.  根据权利要求9所述的喷嘴雾化组件,其特征在于,所述旋流塞(65)为圆台形。
  14.  根据权利要求1-13任一项所述的喷嘴雾化组件,其特征在于,所述供气通道(621)包括收缩通道(6211),所述收缩通道(6211)的截面积从远离所述雾化腔(622)的一端到靠近所述雾化腔(622)的一端逐渐减小。
  15.  根据权利要求14所述的喷嘴雾化组件,其特征在于,所述至少一个旋流通道(6213)设置于所述收缩通道(6211)内。
  16.  根据权利要求1-13任一项所述的喷嘴雾化组件,其特征在于,所述雾化腔(622)、所述供气通道(621)的延伸方向均与所述供液通道(61)的延伸方向垂直。
  17.  根据权利要求1-13任一项所述的喷嘴雾化组件,其特征在于,所述喷嘴雾化组件(60)内还形成有扩张通道(623),所述扩张通道(623)与所述雾化腔(622)远离所述供气通道(621)的一端连通,所述扩张通道(623)的截面积由靠近所述雾化腔(622)的一端到远离所述雾化腔(622)的一端逐渐增大。
  18.  一种电子雾化装置,其特征在于,包括如权利要求1-17任一项所述的喷嘴雾化组件。
PCT/CN2023/078887 2022-04-29 2023-02-28 电子雾化装置及其喷嘴雾化组件 WO2023207313A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210468910.7 2022-04-29
CN202210468910.7A CN116998765A (zh) 2022-04-29 2022-04-29 电子雾化装置及其喷嘴雾化组件

Publications (1)

Publication Number Publication Date
WO2023207313A1 true WO2023207313A1 (zh) 2023-11-02

Family

ID=88517241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/078887 WO2023207313A1 (zh) 2022-04-29 2023-02-28 电子雾化装置及其喷嘴雾化组件

Country Status (2)

Country Link
CN (1) CN116998765A (zh)
WO (1) WO2023207313A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200970564Y (zh) * 2006-11-18 2007-11-07 陈盾 文丘里雾化器
CN102716827A (zh) * 2012-07-10 2012-10-10 武汉钢铁(集团)公司 气液两相压平衡广角均布细雾喷嘴
CN103157161A (zh) * 2011-12-09 2013-06-19 北京东方潮汐科技发展有限公司 一种气体驱动液体雾化的装置
US20130327323A1 (en) * 2010-08-23 2013-12-12 Darren Rubin Nebulizer having different negative pressure threshold settings
CN107087819A (zh) * 2017-06-14 2017-08-25 深圳市新宜康科技有限公司 旋流电子烟雾化器结构及其旋流电子烟雾化器
CN108295345A (zh) * 2018-03-22 2018-07-20 何德学 一种医疗雾化器
CN109718433A (zh) * 2017-10-31 2019-05-07 正大天晴药业集团股份有限公司 吸入式雾化器套件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200970564Y (zh) * 2006-11-18 2007-11-07 陈盾 文丘里雾化器
US20130327323A1 (en) * 2010-08-23 2013-12-12 Darren Rubin Nebulizer having different negative pressure threshold settings
CN103157161A (zh) * 2011-12-09 2013-06-19 北京东方潮汐科技发展有限公司 一种气体驱动液体雾化的装置
CN102716827A (zh) * 2012-07-10 2012-10-10 武汉钢铁(集团)公司 气液两相压平衡广角均布细雾喷嘴
CN107087819A (zh) * 2017-06-14 2017-08-25 深圳市新宜康科技有限公司 旋流电子烟雾化器结构及其旋流电子烟雾化器
CN109718433A (zh) * 2017-10-31 2019-05-07 正大天晴药业集团股份有限公司 吸入式雾化器套件
CN108295345A (zh) * 2018-03-22 2018-07-20 何德学 一种医疗雾化器

Also Published As

Publication number Publication date
CN116998765A (zh) 2023-11-07

Similar Documents

Publication Publication Date Title
AU2017346137B2 (en) Atomizer and electronic cigarette thereof
WO2018000756A1 (zh) 无棉型超声波雾化器及电子烟
WO2021031891A1 (zh) 一种电子烟雾化芯及雾化器
WO2023207313A1 (zh) 电子雾化装置及其喷嘴雾化组件
WO2023207292A1 (zh) 电子雾化装置及其储液雾化组件
WO2023207312A1 (zh) 喷嘴组件及电子雾化装置
WO2023207368A1 (zh) 电子雾化装置及其储液雾化组件和喷嘴
WO2023207322A1 (zh) 电子雾化装置及其储液雾化组件
WO2023207323A1 (zh) 电子雾化装置
WO2023207366A1 (zh) 电子雾化装置及其储液雾化组件
WO2023207314A1 (zh) 电子雾化装置及其储液雾化组件
WO2023207320A1 (zh) 电子雾化装置
WO2023207321A1 (zh) 雾化喷嘴、储液雾化喷嘴及电子雾化装置
WO2023241100A1 (zh) 电子雾化装置
WO2024037033A1 (zh) 电子雾化装置及雾化器
CN219069464U (zh) 雾化器及气溶胶生成装置
WO2023206597A1 (zh) 电子雾化装置
WO2023241101A1 (zh) 电子雾化装置
WO2023241131A1 (zh) 电子雾化装置
WO2022179643A2 (zh) 发热组件、雾化器及电子雾化装置
CN116998784A (zh) 电子雾化装置
WO2023241129A1 (zh) 电子雾化装置及其雾化装置
WO2023240511A1 (zh) 电子雾化装置及雾化器
WO2023005029A1 (zh) 电子雾化装置、雾化器及其雾化组件
CN116998777A (zh) 支架及电子雾化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23794749

Country of ref document: EP

Kind code of ref document: A1