WO2023206597A1 - 电子雾化装置 - Google Patents

电子雾化装置 Download PDF

Info

Publication number
WO2023206597A1
WO2023206597A1 PCT/CN2022/091524 CN2022091524W WO2023206597A1 WO 2023206597 A1 WO2023206597 A1 WO 2023206597A1 CN 2022091524 W CN2022091524 W CN 2022091524W WO 2023206597 A1 WO2023206597 A1 WO 2023206597A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
channel
atomization
liquid storage
air
Prior art date
Application number
PCT/CN2022/091524
Other languages
English (en)
French (fr)
Inventor
雷桂林
刘成川
任三兵
徐志锋
王洪钊
Original Assignee
海南摩尔兄弟科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海南摩尔兄弟科技有限公司 filed Critical 海南摩尔兄弟科技有限公司
Publication of WO2023206597A1 publication Critical patent/WO2023206597A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors

Definitions

  • the present invention relates to the field of atomization, and more specifically, to an electronic atomization device.
  • Existing electronic atomization devices mainly use porous media such as porous ceramics or porous cotton combined with heating components for heating and atomization. Due to the high heating temperature during atomization, when the supply of liquid matrix is insufficient, the small amount of liquid matrix on the heating component is not enough to consume the electrical energy released on the heating component, causing the temperature of the heating surface to further increase, thereby further aggravating the thermal cracking of the liquid matrix. , and even the formation of carbon deposits and dry burning can easily cause the formed aerosol to produce a burnt smell, leading to a significant deterioration in taste.
  • the technical problem to be solved by the present invention is to provide an improved electronic atomization device in view of the above-mentioned defects of the prior art.
  • the technical solution adopted by the present invention to solve the technical problem is to construct an electronic atomization device, which includes an air source, a nozzle and a liquid storage chamber for storing a liquid substrate; an air flow channel is formed in the nozzle and the air flow is a liquid inlet channel connected with the liquid storage chamber; the air source is used to provide a high-speed air flow to the air flow channel, so that the liquid substrate entering the air flow channel from the liquid inlet channel is affected by the high-speed air flow. Atomization is produced by airflow.
  • the air flow channel includes an air supply channel connected to the air source and an atomization chamber connected to the liquid storage chamber; an end of the atomization chamber close to the air supply channel forms mist
  • the atomization surface is provided with an atomization port that connects the air supply channel and the atomization chamber.
  • the liquid substrate flowing into the atomization chamber can form a liquid film on the atomization surface, and the liquid The membrane can be cut by the high-speed gas flow to form liquid particles.
  • the hole wall surface of the atomization chamber is perpendicular to the atomization surface.
  • the atomization surface is annular, and the central axis of the atomization port coincides with the central axis of the atomization surface.
  • the aperture of the atomization chamber is 0.7mm ⁇ 1.3mm.
  • the length of the atomization chamber is 0.8mm ⁇ 3.0mm.
  • the aperture of the atomization port is 0.22mm ⁇ 0.35mm.
  • the air supply channel includes a constriction channel, and the constriction channel is connected with the atomization chamber for accelerating the air flow from the air source.
  • the airflow channel further includes an expansion channel, which is connected to an end of the atomization chamber away from the air supply channel and is used to diffuse the liquid particles generated in the atomization chamber. squirt.
  • the liquid inlet channel includes a liquid supply end section close to the atomization chamber, and the extension direction of the liquid supply end section is perpendicular to the extension direction of the atomization chamber.
  • capillary force can be formed in the final liquid supply section.
  • the vertical distance between the center line of the final liquid supply section and the atomization surface is less than 0.8 mm.
  • the electronic atomization device further includes a heating component, and the liquid particles atomized by the nozzle can hit the heating component and be atomized again by the heating component.
  • the electronic atomization device further includes a liquid storage component, the liquid storage chamber is formed in the liquid storage component, and the nozzle is at least partially received in the liquid storage component.
  • a ventilation channel connected to the liquid storage chamber is also formed in the liquid storage component.
  • the electronic atomization device further includes a housing, the air source and the nozzle are both accommodated in the housing; a cavity is formed in the housing, and the electronic atomization device further includes a housing. An airflow sensing element in the cavity.
  • an output channel for outputting aerosol is formed in the housing, an air supply port is formed on the housing, and a supply port is formed in the housing that is connected to the air supply port and the output channel respectively.
  • An air channel, the air supply channel is connected with the cavity.
  • the present invention uses an airflow auxiliary nozzle to atomize the continuously flowing liquid substrate into liquid particles. Since the surface area of the liquid particles is expanded, it is easier to heat and evaporate, and the temperature of the evaporation process of the heating component is reduced, thereby Able to achieve low temperature atomization.
  • Figure 1 is a schematic three-dimensional structural diagram of the electronic atomization device in the first embodiment of the present invention
  • Figure 2 is a schematic longitudinal cross-sectional structural diagram of the electronic atomization device shown in Figure 1;
  • Figure 3 is a schematic longitudinal cross-sectional structural view of the liquid storage atomization assembly of the electronic atomization device in Figure 2;
  • Figure 4 shows the stress situation of the liquid matrix in the liquid inlet channel when suction is stopped
  • Figure 5 is a schematic cross-sectional exploded structural view of the liquid storage atomization assembly shown in Figure 3;
  • Figure 6 is a schematic structural diagram of the longitudinal section of the nozzle in Figure 5;
  • Figure 7 is a flow field simulation distribution diagram of the nozzle shown in Figure 6;
  • Figure 8 is a schematic three-dimensional structural diagram of the heating element of the electronic atomization device in Figure 2;
  • Figure 9 is a schematic structural diagram of the longitudinal section of the heating element shown in Figure 8.
  • Figure 10 is a schematic longitudinal cross-sectional structural view of the nozzle of the electronic atomization device in the second embodiment of the present invention.
  • Figure 11 is a flow field simulation distribution diagram of the nozzle shown in Figure 10.
  • Figure 12 is a schematic longitudinal cross-sectional structural view of the nozzle of the electronic atomization device in the third embodiment of the present invention.
  • Figure 13 is a schematic longitudinal cross-sectional structural view of the nozzle of the electronic atomization device in the fourth embodiment of the present invention.
  • Figure 14 is a schematic longitudinal cross-sectional structural diagram of the electronic atomization device in the fifth embodiment of the present invention.
  • Figure 15 is a schematic cross-sectional structural diagram of the liquid storage atomization assembly and the bracket assembly in the assembled state in Figure 14;
  • Figure 16 is a schematic cross-sectional structural view of the liquid storage atomization assembly and the bracket assembly in Figure 14 in an exploded state;
  • Figure 17 is a schematic three-dimensional structural view of the liquid reservoir in Figure 16;
  • Figure 18 is a schematic cross-sectional structural diagram of the liquid storage atomization assembly and the bracket assembly in the assembled state in the sixth embodiment of the present invention.
  • Figure 19 is a schematic cross-sectional structural diagram of the liquid storage atomization assembly and the bracket assembly shown in Figure 18 in an exploded state;
  • Figure 20 is a schematic three-dimensional structural diagram of the first alternative of the liquid reservoir shown in Figure 19;
  • Figure 21 is a schematic three-dimensional structural diagram of the second alternative solution of the liquid reservoir shown in Figure 19;
  • Figure 22 is a top view of a third alternative to the liquid reservoir shown in Figure 19;
  • Figure 23 is a schematic longitudinal cross-sectional structural view of the liquid storage atomization assembly of the electronic atomization device in the seventh embodiment of the present invention.
  • Figure 24 is a schematic longitudinal cross-sectional structural view of the liquid storage atomization assembly of the electronic atomization device in the eighth embodiment of the present invention.
  • Figure 25 is a schematic cross-sectional structural diagram of the liquid storage atomization assembly shown in Figure 24;
  • Figure 26 is a schematic longitudinal cross-sectional structural view of the liquid storage atomization assembly of the electronic atomization device in the ninth embodiment of the present invention.
  • Figure 27 is a schematic three-dimensional structural diagram of the swirl plug in Figure 26;
  • Figure 28 is a schematic three-dimensional structural diagram of the nozzle of the electronic atomization device in the tenth embodiment of the present invention.
  • Figure 29 is a schematic structural diagram of the longitudinal section of the nozzle shown in Figure 28;
  • Figure 30 is a schematic diagram of the atomization principle of the nozzle shown in Figure 29;
  • Figure 31 is a dimensioned view of the nozzle shown in Figure 29;
  • Figure 32 is a schematic three-dimensional structural diagram of the liquid storage atomization assembly of the electronic atomization device in the eleventh embodiment of the present invention.
  • Figure 33 is a schematic longitudinal cross-sectional structural view of the liquid storage atomization assembly shown in Figure 32.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • connection In the present invention, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated into one; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interactive relationship between two elements, unless otherwise specified restrictions. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood according to specific circumstances.
  • a first feature being “on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediate medium. touch.
  • a first feature being “above” a second feature can mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is at a higher level than the second feature.
  • the first feature being “below” the second feature may mean that the first feature is directly below or diagonally below the second feature, or it may simply mean that the first feature is less horizontally than the second feature.
  • FIGS 1-2 show an electronic atomization device 100 in a first embodiment of the present invention.
  • the electronic atomization device 100 can be used to atomize a liquid substrate to generate an aerosol, which can be smoked or inhaled by the user. In this embodiment, it can be roughly cylindrical. It is understandable that in other embodiments, the electronic atomization device 100 may also be in other shapes such as an elliptical column, a flat column, a square column, or the like.
  • the liquid substrate may include e-liquid or medicinal liquid.
  • the electronic atomization device 100 may include a housing 10 and a control module 20 contained in the housing 10 , a power supply 30 , an air source 40 , a liquid storage atomization component 60 and a heating component 80 .
  • the control module 20 is electrically connected to the air source 40 and the heating component 80 respectively, and is used to receive instructions. The instructions can be triggered by the user or automatically triggered after the electronic atomization device 100 meets certain conditions.
  • the control module 20 then controls the air source 40 according to the instructions. , the work of the heating component 80.
  • the control module 20 may include an air source control module and a heating control module to control the air source 40 and the heating assembly 80 respectively.
  • the power supply 30 is electrically connected to the control module 20 , the air source 40 , and the heating assembly 80 respectively, and is used to provide electric energy to the control module 20 , the air source 40 , and the heating assembly 80 .
  • the liquid storage atomization assembly 60 includes a liquid storage assembly 61 and a nozzle 62.
  • the liquid storage assembly 61 is formed with a liquid storage chamber 610 for storing a liquid substrate, and the nozzle 62 is formed with an air flow channel 627 connected with the liquid storage chamber 610. , the liquid matrix can be atomized into liquid particles in the air flow channel 627.
  • the air source 40 is connected with the nozzle 62 and is used to provide a quantitative high-speed air flow to the nozzle 62.
  • the high-speed air flow can be provided by an axial flow pump or by releasing compressed gas.
  • the high-speed airflow can assist the nozzle 62 to atomize the liquid matrix from the liquid storage chamber 610 into fine liquid particles.
  • the liquid particles ejected from the nozzle 62 collide with the heating component 80 and are heated by the heating component 80 to generate an aerosol that is carried out by the air flow for the user to suck or inhale.
  • the electronic atomization device 100 may not be provided with the heating component 80 , that is, the liquid particles atomized by the nozzle 62 may be directly sucked or inhaled by the user.
  • the nozzle 62 is used to atomize the continuously flowing liquid matrix into liquid particles and then evaporated by the heating component 80. Since the surface area of the fine liquid particles formed after atomization by the nozzle 62 is greatly expanded, it is more convenient. It is easy to heat and evaporate. On the one hand, it can improve the conversion efficiency of heat and aerosol. On the other hand, it can reduce the temperature of the evaporation process of the heating component 80 and achieve low-temperature atomization.
  • the liquid matrix mainly completes the physical change process, thus overcoming the problem of thermal cracking and deterioration of the liquid matrix caused by the necessity of high-temperature atomization under traditional porous ceramics or porous cotton conditions, not to mention the Burning, carbon deposition, heavy metal volatilization and other phenomena will occur, so that the unique ingredients and flavor and fragrance systems of different liquid bases can be maintained, and ultimately the inhaler can feel the unique taste corresponding to the original liquid base.
  • the heating component 80 is not in contact with the liquid storage chamber 610, and the heating component 80 does not need to be immersed in the liquid matrix for a long time, which reduces the contamination of the liquid matrix by the heating component 80, thereby reducing impurity gases in the aerosol generated after atomization.
  • the housing 10 may include a lower housing 12 and an upper housing 11 longitudinally coupled to an upper end of the lower housing 12 .
  • the lower shell 12 may be in the shape of a cylinder with openings at both ends.
  • the shell 10 further includes a base 13 longitudinally covering the opening at the lower end of the lower shell 12 . It is understood that in other embodiments, the base 13 can also be integrally formed with the lower shell 12 .
  • the electronic atomization device 100 may further include a vent tube 70 longitudinally disposed in the upper housing 11 , and the inner wall surface of the vent tube 70 defines an output channel 71 that communicates with the nozzle 62 .
  • the heating component 80 can be accommodated in the ventilation tube 70 , and the heating component 80 , the ventilation tube 70 , and the housing 10 can all be coaxially arranged.
  • the lower shell 12 may be provided with a bracket assembly 14, which divides the lower shell 12 into a first receiving space 121 located at the upper part and a second receiving space 122 located at the lower part.
  • the control module 20 , the power supply 30 , and the air source 40 can all be accommodated in the second accommodation space 122 .
  • the control module 20 may include a circuit board and a control circuit formed on the circuit board
  • the power supply 30 may include a battery
  • the air source 40 may include an air pump.
  • the liquid storage atomization assembly 60 can be received in the first receiving space 121 and supported on the bracket assembly 14 .
  • the electronic atomization device 100 may further include an airflow sensing element 50 , and the airflow sensing element 50 may be installed at the bottom of the bracket assembly 14 .
  • the airflow sensing element 50 is electrically connected to the control module 20 and is used to sense changes in the airflow when the user inhales and transmit signals to the control module 20 .
  • the control module 20 detects that the user has a suction action, it sends a signal to the air source 40 to start the air source 40 to start supplying air, and sends a signal to the heating component 80 to start the heating component 80 to start heating.
  • the airflow sensing element 50 may be a negative pressure sensor, such as a microphone.
  • the housing 10 may further include a suction nozzle 15 disposed on the top of the upper housing 11 , through which the user can inhale the aerosol.
  • the suction nozzle 15 is in the shape of a hollow tube, and its inner wall defines an inhalation channel 150 for outputting aerosol that is connected with the output channel 71 .
  • the lower end of the suction nozzle 15 can be embedded in the breather tube 70 , and the outer wall surface of the lower end of the suction nozzle 15 is sealingly matched with the inner wall surface of the upper end of the breather tube 70 .
  • An air suction port 1501 is formed on the upper end of the suction nozzle 15 , and the air suction port 1501 is connected with the upper end of the air suction channel 150 .
  • the suction nozzle 15 and the upper shell 11 are formed separately and then assembled together; in other embodiments, the suction nozzle 15 and the upper shell 11 can also be integrally formed.
  • the electronic atomization device 100 may further include a dust cover 90 detachably provided outside the upper shell 11 .
  • the dust cover 90 can be placed outside the upper shell 11 to prevent dust and other impurities from entering the suction channel 150 .
  • an air flow channel 627 and a liquid inlet channel 622 are formed in the nozzle 62.
  • the air flow channel 627 is used to circulate high-speed air flow
  • the liquid inlet channel 622 is used to input a liquid substrate into the air flow channel 627.
  • the liquid substrate entering the air flow channel 627 from the liquid inlet channel 622 is affected by the high-speed air flow circulating in the air flow channel 627.
  • Atomization It is understood that in other embodiments, the air flow channel 627 can also be atomized in other ways. For example, a bubble nozzle can also be provided in the air flow channel 627 to generate liquid particles in the form of bubble atomization.
  • the air flow channel 627 includes an air supply channel 620 and an atomization channel 621 connected with the air supply channel 620 .
  • the liquid inlet channel 622 connects the liquid storage chamber 610 and the atomization channel 621
  • the air supply channel 620 connects the air source 40 and the atomization channel 621
  • the atomization channel 621 forms an atomization surface 6211 close to the end surface of the air supply channel 620.
  • the chemical channel 621 has an ejection port 6210 at one end away from the air supply channel 620 .
  • the liquid substrate flowing into the atomization channel 621 from the liquid inlet channel 622 can form a liquid film on the atomization surface 6211, and the liquid film can be cut and atomized into fine liquid particles by the high-speed air flow from the air supply channel 620, and the liquid particles can then be cut and atomized into fine liquid particles. It is output from the atomization channel 621 and ejected through the ejection port 6210.
  • An atomization port 6203 is also formed on the atomization surface 6211, and the high-speed airflow from the air supply channel 620 is sprayed into the atomization channel 621 through the atomization port 6203.
  • the atomization surface 6211 is in the shape of concentric rings, and the inner wall surface of the atomization surface 6211 defines the atomization port 6203.
  • the atomization surface 6211 or the atomization port 6203 may also have other shapes such as an ellipse or a rectangle.
  • the atomization channel 621 includes an atomization chamber 6212.
  • the atomization chamber 6212 is connected with the liquid inlet channel 622 and the contraction channel 6202 respectively.
  • the bottom surface of the atomization chamber 6212 forms an atomization surface 6211.
  • the high-speed airflow ejected from the atomization port 6203 flows at high speed in the atomization chamber 6212.
  • the high-speed airflow generates negative pressure in the liquid inlet channel 622 according to Bernoulli's equation. This negative pressure is transmitted to the liquid storage chamber 610 to suck the liquid matrix into In the atomization chamber 6212, a liquid film is formed near the atomization port 6203.
  • the liquid film is cut and atomized by the high-speed airflow and then taken away from the atomization port 6203, and then ejected with the airflow.
  • SMD total volume of liquid particles/total surface area of liquid particles, which represents the average particle size of liquid particles.
  • the atomization channel 621 in this embodiment adopts an internal air and external liquid structure for atomization.
  • the nozzle 62 can also use an external air-in-liquid structure for atomization.
  • the liquid substrate is first atomized through a pressure nozzle, and then atomized twice through a pneumatic cyclone, or through a pneumatic cyclone.
  • the cutting liquid film is directly atomized.
  • the nozzle 62 can also be a pneumatic ultrasonic nozzle, which adds a gas resonance cavity on the basis of maintaining the internal gas and external liquid structure.
  • the air supply channel 620, the atomization port 6203, and the atomization channel 621 are all coaxially arranged with the nozzle 62
  • the atomization chamber 6212 is a right cylindrical channel extending longitudinally
  • the liquid inlet channel 622 is Extend laterally and perpendicular to the atomization chamber 6212.
  • the size, shape and other parameters of the atomization port 6203 and the atomization chamber 6212 can affect the negative pressure in the atomization chamber 6212 and the particle size of the generated liquid particles, making the flow rate more stable.
  • the aperture D of the atomization port 6203, the aperture W1 of the atomization chamber 6212, and/or the length H of the atomization chamber 6212 can be set to appropriate sizes as needed.
  • the aperture D of the atomization port 6203 is related to the airflow velocity (m/s) coming out of the atomization port 6203, thereby affecting the particle size of the generated liquid particles.
  • the aperture D of the atomization port 6203 may range from 0.2mm to 0.4mm, preferably from 0.22mm to 0.35mm.
  • the aperture W1 of the atomization chamber 6212 will affect the air flow rate in the atomization chamber 6212, thereby affecting the negative pressure in the atomization chamber 6212 and the liquid inlet channel 622. This negative pressure can cause the liquid matrix to be sucked from the liquid inlet channel 622 to the atomization chamber 6212.
  • the aperture W1 of the atomization chamber 6212 may range from 0.7 mm to 1.3 mm.
  • the length H of the atomization chamber 6212 may be 0.8mm ⁇ 3.0mm. It can be understood that in other embodiments, the atomization chamber 6212 may also have an elliptical, rectangular or other non-circular cross-section; when the atomization chamber 6212 has a non-circular cross-section, the aperture D of the atomization port 6203 or The aperture W1 of the atomization chamber 6212 is its equivalent diameter respectively.
  • equivalent diameter means that the diameter of a circular hole with the same hydraulic radius is defined as the equivalent diameter of a non-circular hole.
  • D ranges from 0.22mm to 0.35mm
  • H ranges from 1.5mm to 3.0mm
  • W1 ranges from 0.7mm to 1.3mm, which can give the nozzle 62 advantages in the manufacturing process.
  • One end of the liquid inlet channel 622 connected to the atomization chamber 6212 has a liquid inlet 6220.
  • the distance L between the liquid inlet 6220 and the atomization surface 6211 is the key to ensuring the formation of the liquid film.
  • the distance L between the liquid inlet 6220 and the atomization surface 6211 is the vertical distance between the center of the liquid inlet 6220 and the atomization surface 6211.
  • the distance L between the liquid inlet 6220 and the atomization surface 6211 may range from 0.3 mm to 0.8 mm.
  • L is 0.35 mm to 0.6 mm.
  • the atomization channel 621 also includes an expansion channel 6213.
  • the expansion channel 6213 is connected with the upper end of the atomization chamber 6212 (the end away from the atomization surface 6211), and is used to atomize the liquid particles generated in the atomization chamber 6212. It is diffused and ejected in the form of a jet to increase the injection area of liquid particles.
  • the expansion channel 6213 is a conical channel extending longitudinally and with a hole diameter gradually increasing from bottom to top.
  • the atomization angle ⁇ of the expansion channel 6213 (that is, the expansion angle of the expansion channel 6213) must have a suitable range to ensure that the heating component 80 has a sufficient liquid supply area and to ensure that the heating component 80 does not generate local high temperature.
  • the atomization angle ⁇ of the expansion channel 6213 may be 30 0 ⁇ 70 0 .
  • the expansion channel 6213 may also be in an elliptical cone shape, a pyramid shape, or other shapes.
  • the air supply channel 620 may include a communication channel 6201 and a contraction channel 6202.
  • the communication channel 6201 is used to communicate with the air source 40, and it can be a straight channel.
  • the contraction channel 6202 communicates with the communication channel 6201 and the atomization channel 621, and its cross-sectional area gradually decreases from the end far away from the atomization channel 621 to the end close to the atomization channel 621, and is used to accelerate the air flow from the air source 40.
  • the connecting channel 6201 is a straight cylindrical channel
  • the shrinking channel 6202 is a conical channel extending longitudinally and with an aperture gradually decreasing from bottom to top. The aperture of the lower end of the shrinking channel 6202 is consistent with the aperture of the connecting channel 6201.
  • the aperture of the upper end of the contraction channel 6202 is consistent with the aperture of the atomization port 6203 of the atomization chamber 6212. It is understood that in other embodiments, the contraction channel 6202 can also be in other shapes such as an elliptical cone shape or a pyramid shape, and the cross section of the communication channel 6201 can be in an elliptical, rectangular or other non-circular shape. In other embodiments, the air supply channel 620 may also include only the constriction channel 6202; or, when the air flow rate is sufficient, the air supply channel 620 may only include the communication channel 6201.
  • FIG. 7 shows a flow field distribution diagram using this nozzle 62 . It can be seen from Figure 6 that due to the corner of the nozzle 62 at the intersection of its expansion channel 6213 and the atomization chamber 6212, an entrainment vortex is formed (as shown in the dotted box). This entrainment vortex causes the jet to shrink, thereby The actual atomization angle of the jet is smaller than the atomization angle of the expansion channel 6213.
  • the nozzle 62 is at least partially accommodated in the liquid storage assembly 61.
  • the liquid storage assembly 61 is formed with a liquid storage cavity 610 and a lower liquid channel connecting the liquid storage cavity 610 with the liquid inlet channel 622. 613.
  • the liquid inlet channel 622 and the lower liquid channel 613 together form a liquid supply channel 63 that connects the liquid storage chamber 610 and the atomization channel 621 .
  • the liquid supply channel 63 can be used to control the flow of liquid supplied to the atomization channel 621 to achieve quantitative liquid supply to the atomization channel 621.
  • the size of the liquid supply channel 63 can be designed according to the flow demand, that is, the liquid supply channel 63 can generate resistance that matches the liquid supply power under the designed flow rate.
  • the negative pressure generated in the atomization chamber 6212 is the liquid supply power
  • the liquid supply resistance includes the resistance along the liquid supply channel 63 and the negative pressure in the liquid storage chamber 610 .
  • the liquid supply channel 63 may include a main body section 632 and a liquid supply end section 631 that are connected in sequence.
  • the liquid supply end section 631 is close to the atomization channel 621 and connected with the atomization channel 621 , and the main body section 632 is far away from the atomization channel 621 and connected with the liquid storage chamber 610 .
  • the main body section 632 can be a weak capillary force channel extending laterally, that is, weak capillary force can be generated in the main body section 632;
  • the liquid supply end section 631 can be a capillary channel extending laterally, that is, the liquid supply end section 631 Capillary force can be generated inside.
  • the overall length of the liquid supply channel 63 can range from 6mm to 15mm; the cross-sectional area of the main body section 632 can range from 0.09mm2 to 0.16mm2; the cross-sectional area of the final liquid supply section 631 is smaller than the cross-sectional area of the main body section 632 , for example, the cross-sectional area of the liquid supply end section 631 may be less than 0.08mm2.
  • other automatic or non-automatic liquid supply methods can also be used to achieve quantitative liquid supply to the atomization channel 621, for example, a small liquid supply pump (such as a diaphragm pump or a peristaltic pump, etc.) can be used. ) to pressurize the liquid storage chamber 610 to maintain the stability of the liquid supply, so as to achieve quantitative liquid supply to the atomization channel 621.
  • the liquid supply end section 631 of the liquid supply channel 63 close to the atomization channel 621 as a capillary channel, it is ensured that the liquid supply end section 631 has a set of key dimensions (for example, channel cross-sectional area and channel length).
  • the capillary force in section 631 is used to reduce backflow, so as to prevent the liquid substrate from flowing back to the liquid storage chamber 610 when the air source 40 stops working, causing a delay in liquid supply during the next suction, and achieving a stable liquid supply that starts and stops.
  • Figure 4 shows the stress situation of the liquid matrix 200 in the final liquid supply section 631 after the suction is stopped and the air source 40 stops working.
  • the negative pressure generated by the high-speed airflow in the atomization chamber 6212 and the final liquid supply section 631 disappears, and the power for the liquid matrix in the final liquid supply section 631 to flow toward the nozzle 62 disappears.
  • the force situation of the liquid matrix in the final liquid supply section 631 on the gas-liquid interface 201 and the movement of the liquid surface are:
  • the liquid level will continue to move toward the liquid storage chamber 610 until enough liquid matrix flows back to the liquid storage chamber 610, so that ⁇ P is reduced to balance with ⁇ P gross due to the rise of the liquid level in the liquid storage chamber 610.
  • the liquid level movement will stop, and a relatively large cavity will be formed in the liquid supply channel 63 at this time, resulting in a long delay when the air source 40 is started next time;
  • ⁇ P negative pressure in the liquid storage chamber 610 - gravity of the liquid matrix in the liquid storage chamber 610
  • ⁇ P capillary force in the final liquid supply section 631.
  • the liquid supply end section 631 of the liquid supply channel 63 can be formed only in the nozzle 62 , or can be formed in both the nozzle 62 and the liquid storage assembly 61 .
  • the entire liquid inlet channel 622 forms the liquid supply end section 631 of the liquid supply channel 63 .
  • the liquid inlet channel 622 can also be a stepped channel, and the portion of the liquid inlet channel 622 close to the atomization channel 621 forms the final liquid supply section 631 of the liquid supply channel 63 .
  • the cross-sectional area of the final liquid supply section 631 is 0.07mm2 (or aperture 0.3mm), and its channel length is ⁇ 2mm.
  • the cross-sectional area of the final liquid supply section 631 can be 0.05mm2, and its channel length is ⁇ 1mm, which can also achieve the effect of instant start-up.
  • the hydraulic diameter of the liquid inlet channel 51 is less than or equal to 0.3 mm, and stable liquid supply that starts and stops can also be achieved. Generally speaking, the smaller the cross-sectional area of the final liquid supply section 631 is, the smaller the channel length of the final liquid supply section 631 is required to achieve the effect of instant start.
  • the nozzle 62 can be longitudinally disposed in the liquid storage component 61 and can be coaxially arranged with the liquid storage component 61 .
  • a nozzle hole 6141 for the nozzle 62 to penetrate is formed longitudinally in the liquid storage assembly 61 .
  • the nozzle 62 can also be provided with a sealing ring 628.
  • the sealing ring 628 is sealingly fitted between the outer wall surface of the nozzle 62 and the cavity wall surface of the nozzle hole 6141 to prevent liquid leakage.
  • the sealing ring 628 can be made of elastic material such as silicone, and can be an O-shaped sealing ring. In this embodiment, there are two sealing rings 628 , and the two sealing rings 628 are respectively disposed on the upper and lower sides of the liquid inlet channel 622 to prevent the liquid substrate from leaking from the upper and lower sides of the liquid inlet channel 622 .
  • the liquid storage component 61 has a receiving surface 6143.
  • the receiving surface 6143 can be located at the periphery of the air flow channel 627 and can receive the falling liquid particles or condensate.
  • the condensate includes liquid particles that are cold or touch the wall during the outflow process. of condensate.
  • At least one liquid storage tank 6144 may also be formed on the receiving surface 6143.
  • the at least one liquid storage tank 6144 has capillary force.
  • the at least one liquid storage tank 6144 can surround the spout 6210 at the upper end of the air flow channel 627 and can be disposed coaxially with the spout 6210. It can collect and store a certain amount of liquid substrate through capillary force to prevent accumulation on the receiving surface 6143. The liquid substrate flows back to the air flow channel 627, thereby blocking the air flow channel 627.
  • the top surface of the liquid storage component 61 can also be recessed to form a cavity 6142 connected to the nozzle hole 6141, and the lower end of the vent tube 70 can be embedded in the cavity 6142 and connected with the expansion channel. 6213 is connected.
  • a seal 146 may also be provided between the outer wall surface of the lower end of the ventilation tube 70 and the hole wall of the cavity 6142 .
  • the seal 146 can be made of elastic materials such as silicone to improve the sealing performance between the outer wall surface of the lower end of the vent pipe 70 and the hole wall of the cavity 6142, and has a certain heat insulation effect.
  • the cavity 6142 and the nozzle hole 6141 can be coaxially arranged, and the cross-sectional area of the cavity 6142 can be larger than the cross-sectional area of the nozzle hole 6141, so that an end surface of the cavity 6142 close to the nozzle hole 6141 forms an annular receiving surface 6143.
  • the width of the liquid reservoir 6144 may be less than or equal to 0.6 mm. It can be understood that in other embodiments, the liquid storage component 61 may not be provided with the cavity 6142 , and the receiving surface 6143 may also be formed on the upper end surface of the liquid storage component 61 .
  • a liquid guide channel 618 connecting the at least one liquid storage tank 6144 to the atomization chamber 6212 can also be formed in the liquid storage assembly 61, so that the negative pressure in the atomization cavity 6212 can condense the condensed water stored in the liquid storage tank 6144. The liquid is sucked back into the atomization chamber 6212 and atomized again.
  • a back-suction channel 623 is also formed in the nozzle 62 to connect the liquid guide channel 618 and the atomization chamber 6212. The back-suction channel 623 is connected with the liquid guide channel 618 to form a connection between the at least one liquid storage tank 6144 and the atomization chamber 6212.
  • the atomization chamber 6212 is connected to the liquid recovery channel 6216.
  • the aperture or equivalent diameter of the liquid guide channel 618 and the suction back channel 623 can be less than or equal to 0.4mm, or the cross-sectional area of the liquid guide channel 618 and the backsuction channel 623 can be less than or equal to 0.126mm2.
  • One end of the back suction channel 623 connected to the atomization chamber 6212 has a back suction port 6230, and the vertical distance between the center of the back suction port 6230 and the atomization surface 6211 may be 0.3 ⁇ 0.8 mm.
  • the suction channel 623 and the liquid inlet channel 622 are arranged rotationally symmetrically with respect to the central axis of the nozzle 62, so that the installation direction does not need to be considered when assembling the nozzle 62.
  • the upper end surface of the nozzle 62 can be higher than the receiving surface 6143 of its circumference to prevent the condensate on the receiving surface 6143 from entering the expansion channel 6213 and being blown out.
  • the back-suction channel 623 and the liquid inlet channel 622 can also be located on two opposite sides of the nozzle 62 in the circumferential direction, thereby reducing the impact of flow pulsation and making the instantaneous flow rate more stable.
  • the suction channel 623 and the liquid inlet channel 622 may not be rotationally symmetrical with respect to the central axis of the nozzle 62.
  • the suction channel 623 and the liquid inlet channel 622 may also have different sizes.
  • the suction channel 623 and the liquid inlet channel 622 can also be provided at different axial heights of the nozzle 62 .
  • the at least one liquid storage tank 6144 may include a plurality of first liquid storage sub-tanks 6145 and a plurality of annular second liquid storage sub-tanks 6146.
  • the first liquid storage sub-tank 6145 can extend along the radial direction of the receiving surface 6143, and one end of the first liquid storage sub-tank 6145 away from the center of the receiving surface 6143 can be connected with a second liquid storage sub-tank 6146 in the outermost ring.
  • One end of the liquid storage sub-tank 6145 close to the center of the receiving surface 6143 can be connected with a second liquid storage sub-tank 6146 in the innermost ring.
  • the second liquid storage sub-tank 6146 may extend along the circumferential direction of the receiving surface 6143, and may be coaxially disposed with the receiving surface 6143 and the air flow channel 627.
  • the receiving surface 6143 can also be designed with a central convex shape, for example, it can be a spherical arc surface or a tapered surface, which is conducive to the flow and diffusion of condensate near the center of the receiving surface 6143 to the periphery, and avoids the center of the receiving surface 6143 The condensate in the vicinity is blown away without being atomized.
  • the receiving surface 6143 can also be inclined toward the nozzle 62 so that the condensate accumulated on the receiving surface 6143 can flow back to the nozzle 62 for re-atomization.
  • the liquid storage assembly 61 may include a liquid storage body 611 and a liquid storage base 612 that cooperate with each other.
  • the liquid storage assembly 61 is installed on the bracket assembly 14 via the liquid storage base 612 .
  • the liquid storage chamber 610 and the lower liquid channel 613 are both formed in the liquid storage body 613 .
  • an annular liquid storage chamber 610 is concavely formed on the bottom surface of the liquid storage body 611 .
  • the liquid storage chamber 610 can surround the periphery of the air flow channel 627 and can be coaxially arranged with the air flow channel 627 .
  • a side wall of the liquid storage chamber 610 close to the nozzle 62 extends transversely toward the nozzle 62 to form a lower liquid channel 613 .
  • the liquid storage chamber 610 and/or the lower liquid channel 613 may also be formed in the liquid storage seat 612, or may be partially formed in the liquid storage body 611 and partially formed in the liquid storage seat 612. Inside.
  • a liquid injection channel 615 connected to the liquid storage chamber 610 may be formed on the liquid storage body 611 so that liquid can be injected into the liquid storage chamber 610 again after the liquid matrix in the liquid storage chamber 610 is used up.
  • the liquid injection channel 615 extends longitudinally, and the lower end of the liquid injection channel 615 is connected with the liquid storage chamber 610 .
  • the liquid storage atomization assembly 60 may also include a fixed cover 64 .
  • the fixed cover 64 is in the shape of a cylinder with an open upper end.
  • the fixing member 64 is sleeved on the liquid storage body 611 and the liquid storage seat 612 and can be interlocked and fixed with the liquid storage body 611 to connect the liquid storage body 611 and the liquid storage seat 612 to each other.
  • the fixed cover 64 can be made of metal. The thermal expansion and contraction deformation of the metal material when the temperature changes is small, making the connection and fixation between the various components in the liquid storage atomization assembly 60 more stable and reliable.
  • the working principle of the liquid storage atomization assembly 60 is:
  • Suction starts: the user's suction action creates negative pressure, the airflow sensing element 50 senses the negative pressure and transmits a signal to the control module 20, and the control module 20 starts the air source 40 to start supplying air;
  • the air source 40 provides continuous air flow that accelerates in the contraction channel 6202, is ejected from the atomization port 6203, and flows at high speed in the atomization chamber 6212; the high-speed air flow is atomized by Bernoulli's equation Negative pressure is generated in the chamber 6212, and this negative pressure is transmitted to the liquid storage chamber 610 to suck the liquid matrix into the atomization chamber 6212; as long as the air source 40 continues to work, the liquid supply will continue;
  • the air source 40 is closed, and the negative pressure in the atomization chamber 6212 disappears.
  • the liquid matrix in the liquid supply channel 63 loses the power to move toward the atomization chamber 6212, and is mainly affected by
  • the negative pressure in the liquid storage chamber 610, the liquid substrate liquid surface pressure difference force, and the capillary force of the liquid supply end section 631 of the liquid supply channel 63 work together to ensure that the liquid substrate in the liquid supply end section 631 when the air source 40 stops working
  • the negative pressure in the liquid storage chamber 610 will not flow back to the liquid storage chamber 610, preventing the atomization process from being delayed due to the need to wait for the liquid matrix to fill the final liquid supply section 631 when the air source 40 is started next time.
  • the liquid storage atomization assembly 60 in this embodiment uses a method of mixing gas and liquid in an open space for atomization; in other embodiments, quantitative air and liquid substrate can also be premixed and then atomized. For example, by using a gear pump and a dosing chamber to achieve quantitative inhalation of air and liquid matrix in the first half of the stroke, and pushing the gas and liquid out of the centrifugal nozzle for atomization in the second half of the stroke, or it can also be achieved by using a microchannel and laser drilling structure. Atomization.
  • the heating component 80 is received in the vent pipe 70 and located above the nozzle 62 , and may be coaxially arranged with the nozzle 62 .
  • the structure and heating form of the heating component 80 are not limited.
  • the heating form may be resistance conduction heating, infrared radiation heating, electromagnetic induction heating, or composite heating.
  • the structure of the heating component 80 may include a metal heating element (such as a heating sheet, heating mesh or heating wire), or may also include a porous medium and a heating element (such as a heating film, heating sheet, heating mesh or heating wire) disposed on the porous medium. ).
  • the heating component 80 includes a heating body 81 that can completely receive the liquid particles sprayed from the nozzle 62 .
  • the heating element 81 generates heat after being energized, thereby further atomizing the liquid particles sprayed from the nozzle 62 into aerosol.
  • the heating element 81 can be in the shape of a spiral sheet and include a plurality of annular spiral turns 810, which can be spirally formed by using conductive metal strips.
  • the spiral turn 810 is in the shape of a circular ring.
  • the spiral ring 810 may also be in an elliptical ring shape, a square ring shape, or other shapes.
  • the heating element 81 has a first conductive end 811 and a second conductive end 812.
  • the first conductive end 811 and the second conductive end 812 are electrically connected to the control module 20 respectively.
  • the first conductive end 811 and the second conductive end 812 are respectively located on opposite radial sides of the heating element 81 , and the current directions in the two adjacent spiral turns 810 are opposite.
  • the first conductive end 811 and the second conductive end 812 may also be located on the same radial side of the heating element 81 .
  • one of the first conductive end 811 and the second conductive end 812 may be located on the inner ring of the heating body 81 , and the other may be located on the outer ring of the heating body 81 .
  • each spiral turn 810 has a proximal end 813 close to the center of the heating element 81 and a distal end 815 far away from the center of the heating element 81.
  • the proximal end 813 is arranged obliquely upward relative to the distal end 815, so that the distance between the spiral turn 810 and the horizontal line There is an angle ⁇ between them.
  • the included angle ⁇ may range from 5 0 to 50 0 .
  • each helical turn 810 onto the helical turn 810 of its adjacent inner turn allows unheated liquid particles at the proximal end 813 of the helical turn 810 to fall onto it.
  • the spiral ring 810 of the adjacent inner ring is heated, thereby improving the heating efficiency.
  • Figure 10 shows the nozzle 62 in the second embodiment of the present invention.
  • the hole wall surface of the expansion channel 6213 is an arc surface, and the expansion channel 6213 is in contact with the mist.
  • the chemical chambers 6212 are connected in a streamlined and smooth manner, for example, tangentially connected by rounding corners.
  • the arc surface can be realized through processes such as rounding.
  • the rounding method can also increase the atomization angle of the expansion channel 6213. For example, the atomization angle can be increased from 40 0 to 50 0 .
  • Figure 11 shows the flow field distribution cloud diagram using this nozzle 62.
  • the expansion channel 6213 with a circular arc face wall shape reduces the binding effect on the jet entrainment vortex, allowing the jet to fully develop. It can be understood that in other embodiments, the hole wall surface of the expansion channel 6213 may also have other streamlined expansion shapes.
  • the liquid inlet channel 622 in this embodiment is a stepped channel, which may include a liquid supply end section 6221 close to the atomization chamber 6212 and a liquid supply front section 6312 away from the atomization chamber 6212 .
  • the liquid supply end section 6221 is a capillary channel.
  • the cross-sectional area of the liquid supply front section 6312 is larger than the cross-sectional area of the liquid supply end section 6221, and it can be a weak capillary channel.
  • Figure 12 shows the nozzle 62 in the third embodiment of the present invention.
  • the atomization surface 6211 of the nozzle 62 in this embodiment is also provided with a liquid lock groove. 6215.
  • the liquid locking tank 6215 can generate capillary force and use the capillary force to flatten the liquid film, so that when the nozzle 62 is in a tilted state, the liquid film can still be evenly distributed and atomized near the atomization port 6203, reducing the impact of gravity on the distribution of the liquid film. Influence.
  • the liquid lock groove 6215 is annular and can be disposed coaxially with the atomization port 6203. It can be formed by the atomization surface 6211 being recessed longitudinally downward, that is, along the direction perpendicular to the atomization surface 6211. A lower depression forms.
  • the inner diameter of the liquid locking tank 6215 is larger than the aperture of the atomization port 6203, and the outer diameter of the liquid locking tank 6215 is smaller than the aperture of the atomization chamber 6212.
  • Figure 13 shows the nozzle 62 in the fourth embodiment of the present invention.
  • the liquid lock groove 6215 in this embodiment is formed by the outer edge of the atomization surface 6211 being recessed upward and outward.
  • the liquid-locking groove 6215 is in the shape of a circumferentially non-closed C-shaped ring.
  • the liquid locking groove 6215 can be formed on the side of the atomization surface 6211 opposite to the liquid inlet channel 622.
  • the inner diameter of the liquid locking groove 6215 is consistent with the aperture of the atomization chamber 6212.
  • the outer diameter of the liquid locking groove 6215 is larger than the atomization chamber 6212.
  • the arc center angle of the liquid lock tank 6215 can be 180° ⁇ 350°.
  • FIGS 14-17 show the electronic atomization device 100 in the fifth embodiment of the present invention.
  • the main difference from the first embodiment is that an air supply channel is also formed in the liquid storage atomization assembly 60 in this embodiment. 67.
  • the air supply channel 67 can be used for the air supply function of the electronic atomization device 100. Its main function is to cooperate with the user's suction action to activate the electronic atomization device 100, so that the electronic atomization device 100 can realize the active operation of part of the air source 40.
  • a composite air supply mode that provides air supply and suction for some users. On the one hand, this compound air supply mode can improve the user experience, and on the other hand, in order to adapt to the user's habits, the electronic atomization device 100 is activated by using the usual suction action.
  • the housing 10 is also provided with an air supply port 16 for allowing outside air to enter the air supply channel 67 .
  • an air supply port 16 for allowing outside air to enter the air supply channel 67 .
  • An air supply channel 620, an atomization channel 621, and a liquid inlet channel 622 are formed in the nozzle 62.
  • the structures of the air supply channel 620, the atomization channel 621, and the liquid inlet channel 622 may be similar to the above embodiments and will not be described again here.
  • the air supplement channel 67 and the air supply channel 620 can be isolated from each other to prevent them from affecting each other.
  • the air supply channel 67 may include at least one air supply hole 6250 formed in the nozzle 62 .
  • the at least one air supply hole 6250 may extend longitudinally, and its axis may be parallel to the central axis of the nozzle 62 . That is, the extension direction of the at least one air supply hole 6250 is the same as the extension direction of the air flow channel 627 .
  • the air supply hole 6250 and the air flow channel 627 are both formed in the nozzle 62 and isolated from each other.
  • the upper end of the air supply hole 6250 is connected with the cavity 6142 and further connected with the suction channel 150 via the output channel 71 .
  • the at least one air supply hole 6250 is integrally formed in the nozzle 62, which can avoid the problem that the air supply hole 6250 penetrates the inside of the liquid storage component 61 and requires the addition of additional seals, thus simplifying the assembly process.
  • the nozzle 62 may include a nozzle body 625, in which the atomization channel 621, the liquid inlet channel 622, the contraction channel 6202, and at least one air supply hole 6250 may be formed.
  • the central axis of the atomization channel 621 and the contraction channel 6202 coincides with the central axis of the nozzle body 625, and the central axis of at least one air supply hole 6250 is parallel to the central axis of the nozzle body 625.
  • the plurality of air supply holes 6250 may surround the periphery of the atomization channel 621, and the plurality of air supply holes 6250 may be evenly spaced along the circumferential direction of the nozzle body 625, which can make the air flow uniform. Distributed to help the aerosol flow out smoothly after one nebulization.
  • the number of air supply holes 6250 can be set as needed, which can usually be 3 to 10.
  • the nozzle 62 further includes a neck portion 624 extending downward from the lower end surface of the nozzle body 625 , and the outer diameter of the neck portion 624 may be smaller than the outer diameter of the nozzle body 625 .
  • the neck 624 and the nozzle body 625 can be coaxially arranged, and the communication channel 6201 extends longitudinally upward from the lower end surface of the neck 624 into the nozzle body 625 to communicate with the contraction channel 6202.
  • the air supplement channel 67 also includes an air inlet channel 141 and an air flow cavity 143 .
  • the air inlet channel 141 is connected with the air supply port 16, and in this embodiment is a linear channel extending laterally.
  • the air flow cavity 143 connects the air inlet channel 141 with the plurality of air supply holes 6250 . The air sucked in through the air supply port 16 is distributed in the air flow cavity 143 and then flows into each air supply hole 6250 evenly.
  • the airflow cavity 143 may be an annular cavity that surrounds the airflow channel 630 and is isolated from the airflow channel 627 .
  • bracket assembly 14 may include bracket 144 and seal 146 .
  • a perforation 148 may be formed longitudinally on the bracket 144, and the sealing member 146 may be sealingly disposed between the outer wall of the nozzle 62 and the wall of the perforation 148.
  • the seal 146 can be made of elastic material such as silicone to improve its sealing performance.
  • the upper end surface of the sealing member 146 is concavely formed with a first sealing cavity 1461
  • the lower end surface of the sealing member 146 is concavely formed with a second sealing cavity 1462 connected with the first sealing cavity 1461
  • a sealing surface 1463 is formed on one end of the first sealing chamber 1461 close to the second sealing chamber 1462.
  • the sealing surface 1463 is provided with a sealing opening 1464 for the neck 624 to pass through.
  • the lower end of the nozzle body 625 is received in the first sealing cavity 1461 , and there is a certain gap between the lower end surface of the nozzle body 625 and the sealing surface 1463 , and this gap is used to form the airflow cavity 143 .
  • each air supply hole 6250 can extend longitudinally downward from the upper end surface of the nozzle body 625 to the lower end surface of the nozzle body 625, and be connected with the first sealing cavity 1461.
  • An air inlet 663 for inhaled air to enter the air flow cavity 143 can also be provided on the wall of the first sealed cavity 1461.
  • the air inhaled through the air inlet 663 is distributed in the air flow cavity 143 and then flows into each supplement evenly. Stomata 6250. Further, the air inlet 663 may be disposed close to the sealing surface 1463 of the first sealing cavity 1461 .
  • the outer wall surface of the nozzle body 625 can also extend outward to form a positioning flange 6251, and the positioning flange 6251 can be used for axial positioning of the nozzle body 625. Specifically, the upper end surface of the positioning flange 6251 can abut against the liquid storage assembly 61 , and/or the lower end surface of the positioning flange 6251 can abut against the seal 146 .
  • the liquid storage atomization assembly 60 may also include a sealing sleeve 65 sleeved on the upper end of the nozzle body 625 .
  • the sealing sleeve 65 can be made of elastic materials such as silicone to improve its sealing performance.
  • a ventilation hole 650 is provided on the top wall of the sealing sleeve 65 corresponding to each air supply hole 6250.
  • the bracket assembly 14 is formed with a cavity 145 for accommodating the airflow sensing element 50 and a sensing cavity 140 connected with the cavity 145 .
  • the airflow sensing element 50 has a sensing surface 51 that is connected with the sensing chamber 140 to sense the negative pressure of the sensing chamber 140 .
  • the air supply channel 67 connects the sensing surface 51 of the air flow sensing element 50 and the suction channel 150, so that the air supply channel 67 can cooperate with the user's suction action to start the electronic atomization device 100, and at the same time, the air flow is evenly distributed to help the first mist. Smooth outflow of aerosol after melting.
  • the cavity 145 can be formed by the bottom surface of the bracket assembly 14 being concave upward in the longitudinal direction, and the bottom of the cavity 145 is open for the airflow sensing element 50 to be installed.
  • the sensing cavity 140 is formed by extending upward from the cavity 145 , and the cross-sectional area of the sensing cavity 140 is smaller than the cross-sectional area of the cavity 145 .
  • the sensing surface 51 is located on the upper end surface of the airflow sensing element 50 and can be connected with the bottom of the sensing cavity 140 .
  • the bracket assembly 14 is also formed with an air inlet channel 141 that communicates with the air flow cavity 143 and the sensing cavity 140 .
  • the air inlet channel 141 may extend laterally inwardly from one side of the bracket assembly 14. Further, the air inlet channel 141 may be a linear channel extending laterally.
  • the upper end of the induction cavity 140 is connected with the air inlet channel 141. Further, the induction cavity 140 can be disposed at the air inlet end of the air inlet channel 141 (that is, the end away from the air inlet 663).
  • the sensing cavity 140 senses the negative pressure change in the air inlet channel 141 , and the negative pressure value in the sensing cavity 140 can be controlled by adjusting the overall size of the single air inlet channel 141 to match the starting negative pressure of the airflow sensing element 50 .
  • the air supply port 16 is opened on the base 13 and can penetrate the base 13 in the longitudinal direction.
  • the air inlet 1501 When the user inhales through the air inlet 1501 , external air enters through the air supply port 16 , flows upward, and enters the air inlet channel 141 .
  • the air flows upward through the control module 20, the power supply 30, the air source 40, etc., it can take away part of the heat from the control module 20, the power supply 30, the air source 40, etc., and dissipate heat therefrom.
  • the air supply port 16 can also be opened in other parts of the housing 10 , for example, it can be opened in the side wall of the lower shell 12 .
  • the liquid storage atomization assembly 60 in this embodiment is also formed with a ventilation channel 616 connected with the liquid storage chamber 610.
  • the ventilation channel 616 can be used to restore the pressure in the liquid storage chamber 610, using the nozzle 62 to The negative pressure area cooperates with the ventilation channel 616 to realize automatic and stable liquid supply to the nozzle 62, thereby solving the problem of insufficient liquid supply due to excessive negative pressure in the liquid storage chamber 610.
  • the reduction of the liquid matrix in the liquid storage chamber 610 will cause the air pressure to decrease.
  • the negative ventilation pressure reaches the limit, air bubbles will enter the liquid storage chamber 610 through the ventilation channel 616 and the negative pressure of the liquid storage chamber 610 will be restored.
  • controllable negative pressure range of the liquid storage chamber 610 is -200Pa ⁇ -700Pa.
  • the wall of the liquid storage chamber 610 can also be configured to be flexible and have no air inside, so as to solve the problem that the negative pressure of the liquid storage chamber 610 is too large and cannot supply liquid.
  • the ventilation channel 616 in this embodiment may include a ventilation groove 6162 formed on the outer surface of the liquid storage component 61 and a ventilation hole that communicates the ventilation groove 6162 with the liquid storage chamber 610 and is formed in the liquid storage component 61 6161.
  • the ventilation groove 6162 may adopt a direct liquid ventilation structure, which may include a plurality of rotation grooves 6164 formed on the outer surface of the liquid reservoir 612 and a plurality of communication grooves 6165 connecting the plurality of rotation grooves 6164.
  • Each rotating groove 6164 can be annular and extend along the circumferential direction of the liquid reservoir 612.
  • each rotating groove 6164 can range from 0.04mm2 to 0.16mm2, and the total length of the plurality of rotating grooves 6164 can range from 3mm to 3mm. 12mm.
  • the plurality of rotating grooves 6164 can be evenly spaced along the axial direction of the liquid reservoir 612
  • the plurality of communication grooves 6165 can be evenly spaced along the circumferential direction of the liquid reservoir 612 .
  • Each communication groove 6165 extends along the axial direction of the liquid reservoir 612. The upper end of each communication groove 6165 is connected to the uppermost rotation groove 6164, and the lower end is connected to the lowermost rotation groove 6164.
  • the ventilation channel 616 may also include a plurality of ventilation grooves 6163 that connect the plurality of rotation grooves 6164 with the outside world.
  • the ventilation groove 6163 can extend longitudinally upward from the bottom surface of the liquid storage assembly 61 to communicate with the bottom rotation groove 6164 .
  • a plurality of ventilation openings 641 are also formed on the fixed cover 64 to connect a plurality of ventilation slots 6163 to the outside world.
  • the plurality of vents 641 can be distributed on the outer edge of the bottom wall of the fixed cover 64 , and the plurality of vents 641 can be evenly spaced along the circumferential direction of the fixed cover 64 .
  • the ventilation hole 6161 may include a first sub-ventilation hole 6166, a second sub-ventilation hole 6167 and a third sub-ventilation hole 6168 that are connected in sequence.
  • the first sub-ventilation hole 6166 can extend laterally inwardly from the outer surface of the liquid storage seat 612.
  • One end of the first sub-ventilation hole 6166 can be connected to a rotating groove 6164 located at the top, and the other end can be connected to the second sub-ventilation hole 6166.
  • the stomata 6167 are connected.
  • the second sub-ventilation hole 6167 may extend longitudinally downward from the upper end surface of the liquid storage seat 612 to communicate with the first sub-ventilation hole 6166.
  • the third sub-ventilation hole 6168 can extend longitudinally downward from the bottom surface of the liquid storage chamber 610 to the bottom surface of the liquid storage body 611, and is correspondingly connected with the second sub-ventilation hole 6167.
  • Figures 18-19 show the electronic atomization device 100 in the sixth embodiment of the present invention.
  • the air supply channel 67 in this embodiment also includes a sequentially connected air inlet channel 141, an air flow cavity
  • the cavity 143 and the air supply hole 6250, the air supply channel 67 are also isolated from the air flow channel 627.
  • the air inhaled through the air inlet 16 enters the air inlet channel 141 , is distributed in the air flow cavity 143 , and then flows evenly into each air inlet 6250 .
  • the air supply hole 6250 in this embodiment is formed in the liquid storage component 61 .
  • the air supply hole 6250 can be a linear channel extending longitudinally.
  • the upper end of the air supply hole 6250 is connected with the cavity 6142
  • the lower end of the air supply hole 6250 extends into the bracket assembly 14 and is connected with the air inlet channel 141 .
  • there may be a plurality of air supply holes 6250 the plurality of air supply holes 6250 may surround the outside of the nozzle 62 , and the plurality of air supply holes 6250 may be evenly spaced along the circumferential direction of the nozzle 62 .
  • An annular airflow cavity 143 is also formed in the bracket assembly 14 . The air sucked in through the air inlet channel 141 is distributed in the airflow cavity 143 and then flows evenly into each air supply channel 67 .
  • the airflow cavity 143 is annular and formed in the bracket assembly 14 , and can surround the periphery of the airflow channel 627 and be isolated from the airflow channel 627 .
  • the bracket assembly 14 may include a bracket 144 and a seal 146 embedded at the bottom of the bracket 144, and the airflow cavity 143 may be formed between the bracket 144 and the seal 146.
  • the seal 146 may be made of elastic material such as silicone in some embodiments.
  • the bracket 144 may include a support arm 1443 and a first annular wall 1444, a second annular wall 1445, and a third annular wall 1446 extending longitudinally downward from the support arm 1443.
  • the outer diameter and the inner diameter of the first annular wall 1444, the second annular wall 1445, and the third annular wall 1446 all increase in sequence.
  • the first annular wall 1444 is in a closed annular shape, and the inner wall surface of the first annular wall 1444 defines a through hole 148 that communicates with the airflow channel 630 .
  • the inner diameter of the second annular wall 1445 is larger than the outer diameter of the first annular wall 1444, and the seal 146 is sealingly provided between the inner wall surface of the second annular wall 1445 and the outer wall surface of the first annular wall 1444, so that the second annular wall A sealed annular airflow cavity 143 is formed between the inner wall surface of 1445 and the outer wall surface of the first annular wall 1444 .
  • the second annular wall 1445 is in the shape of a non-closed annular ring, and an opening is formed on one side thereof so that the air inlet channel 141 can communicate with the air flow cavity 143 .
  • the third ring wall 1446 extends downward from the outer edge of the support arm 1443, and its outer diameter can be consistent with the outer diameter of the support arm 1443.
  • the air inlet channel 141 may be formed between the bracket 144 and the sealing member 146, and the receiving cavity 145 and the sensing cavity 140 may be formed in the sealing member 146.
  • the air intake passage 141 may include a longitudinally extending air intake front section 1411 and a transversely extending air intake rear section 1412.
  • the air inlet front section 1411 can be formed between the outer wall surface of the seal 146 and the inner wall surface of the third annular wall 1446
  • the air inlet rear section 1412 can be formed between the lower end surface of the bracket 144 and the upper end surface of the seal 146 .
  • the liquid storage assembly 61 may include a liquid storage body 611, a liquid storage seat 612 embedded at the bottom of the liquid storage body 611, and a sealing sleeve 617 sealingly provided between the liquid storage body 611 and the liquid storage seat 612.
  • the sealing sleeve 617 can be made of elastic materials such as silicone, and the liquid storage body 611 and the liquid storage seat 612 can be made of hard materials such as plastic.
  • the sealing sleeve 617 may be made of hard materials such as plastic, and the liquid storage body 617 and the liquid storage seat 612 may be made of elastic materials such as silicone.
  • a plurality of air supply tubes 6120 extending longitudinally are formed on the liquid storage seat 612, and the inner wall surface of the air supply tubes 6120 defines an air supply hole 6250.
  • a plurality of through holes 6170 are formed on the sealing sleeve 617 respectively corresponding to the plurality of air supply tubes 6120, so that the plurality of air supply tubes 6120 can pass through them in a sealing manner.
  • a lower fluid channel 613 may be formed between mating surfaces of the two components of the fluid storage assembly 61 .
  • the liquid storage component 61 includes a first surface 6172 and a second surface 6122 that fit together, and at least one of the first surface 6172 and the second surface 6122 is provided with a liquid guide groove 6121.
  • the first surface 6172 and the second surface 6122 are respectively located on two independently formed components. After the two components are assembled together, the first surface 6172 and the second surface 6122 are attached to each other, so that a liquid guide groove 6121 is formed. The cavity is sealed to form a liquid conducting channel 611.
  • the lower liquid channel 613 may be formed between the sealing sleeve 617 and the liquid storage seat 612 .
  • the second surface 6122 is located on the upper end surface of the liquid reservoir 612, and a liquid guide groove 6121 is provided on it.
  • the first surface 6172 is located at the lower end surface of the sealing sleeve 617, and the first surface 6172 is a plane, that is, the first surface 6172 is not provided with a liquid guide groove 6121.
  • the lower end surface of the sealing sleeve 617 fits the upper end surface of the liquid reservoir 612, and a lower liquid channel 613 is defined between the lower end surface of the sealing sleeve 617 and the liquid guide groove 6121.
  • the sealing sleeve 617 is also formed with a lower liquid port 6171 that communicates the liquid storage chamber 610 with the lower liquid channel 613 .
  • One end of the lower liquid channel 613 is connected to the lower liquid port 6171, and the other end is connected to the atomization chamber 6212.
  • the liquid guide groove 6121 can be in a linear shape, so that the lower liquid channel 613 is also in a linear shape.
  • the liquid guide groove 6121 and the lower liquid channel 613 can also be in various non-linear shapes such as curved shapes (such as sinusoidal shapes) or polygonal shapes (such as square wave shapes), so as to facilitate the placement of liquid in the liquid reservoir. 612 provides different resistance within a limited space distance.
  • the upper end surface of the liquid storage seat 612 can also be a flat surface, and the liquid guide groove 6121 is formed on the lower end surface of the sealing sleeve 617 .
  • the lower fluid channel 613 in this embodiment is formed by fitting the lower end surface of the sealing sleeve 617 and the upper end surface of the liquid reservoir 612, so that the lower fluid channel 613 can be designed into different shapes and sizes according to different resistance requirements.
  • the surface shape is easy to process and manufacture, and the dimensional accuracy is easy to control.
  • one of the sealing sleeve 617 and the liquid reservoir 612 used to form the lower liquid channel 613 is made of soft material and the other is made of hard material, the sealing of the lower liquid channel 613 can be ensured and liquid leakage can be prevented.
  • the liquid guide groove 6121 is disposed on the rigid liquid storage seat 612, it can avoid being squeezed after assembly and causing the size of the lower liquid channel 613 to change.
  • the lower end surface of the sealing sleeve 617 may be provided with a liquid guide groove 6121, and the upper end surface of the liquid storage seat 612 may be a flat surface; or, the lower end surface of the sealing sleeve 617 and the liquid storage seat 612 may be flat.
  • the upper end surface of the seat 612 is provided with liquid guide grooves 6121; alternatively, the lower liquid channel 613 can also be formed between the sealing sleeve 617 and the liquid storage body 611.
  • the liquid storage assembly 61 may not include the sealing sleeve 617, and the liquid storage seat 612 may be directly embedded in the bottom of the liquid storage body 611 and directly connected to the liquid storage body 611, so that the lower liquid channel 613 may also be formed in Between the liquid storage seat 612 and the liquid storage main body 611; at this time, the liquid storage main body 611 can be made of hard material, and the liquid storage seat 612 can be made of hard or soft material.
  • the liquid channel 613 can be used to adjust the amount and speed of liquid to ensure smooth and stable liquid flow. If the resistance in the lower fluid channel 613 is too small, the amount of fluid will be larger and the fluid speed will be faster. If the resistance in the lower fluid channel 613 is too large, the amount of fluid will be smaller and the speed of the fluid will be slower.
  • the resistance requirement in the lower liquid channel 613 is related to the negative pressure in the atomization chamber 6212.
  • the greater the viscosity of the liquid matrix the greater the resistance of the liquid matrix when flowing in the lower liquid channel 613;
  • the longer the length the greater the resistance in the lower liquid channel 613; the larger the cross-sectional area of the lower liquid channel 613, the smaller the resistance in the lower liquid channel 613; the more tortuous the lower liquid channel 613, the lower the resistance in the lower liquid channel 613.
  • the greater the internal resistance when the viscosity of the liquid matrix is 20 cp ⁇ 250 cp, the length of the lower liquid channel 613 may be 3 mm ⁇ 100 mm, and the cross-sectional size (such as aperture, length or width, etc.) may be 0.2 mm ⁇ 0.8 mm.
  • Figures 20-22 respectively show a liquid reservoir 612 in some alternatives of the present invention, as an alternative to the liquid reservoir 612 in the above-mentioned sixth embodiment.
  • the liquid guide groove 6121 formed on the liquid reservoir 612 is in a square wave shape, and may include a plurality of linear first groove segments 6123 and a plurality of linear first groove segments 6123 disposed on the plurality of first groove segments 6123.
  • Several square second groove segments 6124 are located on the same side of the groove segment 6123, that is, the plurality of second groove segments 6124 are spaced apart along one side of the extending direction of the liquid guide groove 6121.
  • the lengths of the plurality of first groove segments 6123 are equal, and the dimensions of the plurality of second groove segments 6124 (the length of each segment of each first groove segment 6123) are also equal.
  • the lengths of the plurality of first groove segments 6123 may also be unequal, and/or the sizes of the plurality of second groove segments 6124 may also be unequal.
  • the liquid guide groove 6121 formed on the liquid reservoir 612 is in a square wave shape, which may include several square first groove sections 6123 and several square second groove sections 6124 .
  • the plurality of first groove segments 6123 and the plurality of second groove segments 6124 are alternately distributed along both sides of the extending direction of the liquid guide groove 6121.
  • the size of the plurality of first groove segments 6123 (the length of each segment of each first groove segment 6123) is different, and the size of the plurality of second groove segments 6124 (the length of each segment of each second groove segment) 6124The length of each segment) also varies.
  • the sizes of the plurality of first groove segments 6123 may also be equal, and the sizes of the plurality of second groove segments 6124 may also be equal.
  • the size of the first groove section 6123 may be equal to or different from the size of the second groove section 6124.
  • the liquid guide groove 6121 formed on the liquid reservoir 612 is S-shaped.
  • Figure 23 shows the liquid storage atomization assembly 60 of the electronic atomization device 100 in the seventh embodiment of the present invention.
  • the lower liquid channel 613 and the liquid inlet channel 622 in this embodiment There are two respectively, and the two lower liquid channels 613 and the two liquid inlet channels 622 are connected correspondingly.
  • the two lower liquid channels 613 are arranged in rotational symmetry with respect to the central axis of the liquid storage assembly 61
  • the two liquid inlet channels 622 are arranged in rotational symmetry with respect to the central axis of the nozzle 62 , so that between the liquid storage assembly 61 and the nozzle 62 There is no need to consider the assembly direction when assembling.
  • the two liquid inlet channels 622 respectively extend along the radial direction of the nozzle 62 , and the two liquid inlet channels 622 are respectively located on two radially opposite sides of the nozzle 62 .
  • Supplying liquid to the atomization chamber 6212 through two symmetrically arranged liquid inlet channels 622 can reduce the impact of flow pulsation and make the instantaneous flow rate more stable.
  • each liquid inlet channel 622 may be less than or equal to 0.4 mm, or the cross-sectional area of each liquid inlet channel 622 may be less than or equal to 0.126 mm2.
  • Each liquid inlet channel 622 is connected to the atomization chamber 6212 through a liquid inlet 6220.
  • the vertical distance between the center line of the liquid inlet 6220 and the atomization surface 6211 may range from 0.3 mm to 0.8 mm.
  • the number of lower liquid channels 613 and liquid inlet channels 622 can also be more than two, and the two or more lower liquid channels 613 can be evenly spaced along the circumferential direction of the liquid storage assembly 61.
  • the two or more liquid inlet channels 622 may be evenly spaced along the circumferential direction of the nozzle 62 .
  • the aperture W1 of the atomization chamber 6212 can also be reduced, thereby reducing the area of the atomization surface 6211, making the liquid matrix involved in gas-liquid cutting at the atomization port 6203 more concentrated, and making the negative pressure supply
  • the process of liquid to gas-liquid shearing is more continuous, thereby reducing the impact of pulsation and making the instantaneous flow rate more stable.
  • the aperture of the atomization chamber 6212 and the outer diameter of the atomization surface 6211 may be 0.4 ⁇ 0.7 mm. It can be understood that this method of reducing pulsation by reducing the area of the atomization surface 6211 is also applicable to the situation where a single liquid inlet channel 622 supplies liquid.
  • Figures 24-25 show the liquid storage atomization assembly 60 of the electronic atomization device 100 in the eighth embodiment of the present invention.
  • the main difference from the above-mentioned embodiment is that in this embodiment, the There are two liquid inlet channels 622 , and the two liquid inlet channels 622 are arranged rotationally symmetrically along the circumferential direction of the atomization channel 621 . Supplying liquid to the atomization channel 621 through two symmetrically arranged liquid inlet channels 622 can reduce the impact of flow pulsation and make the instantaneous flow rate more stable.
  • each liquid inlet channel 622 may be less than or equal to 0.4 mm, or the cross-sectional area of each liquid inlet channel 622 may be less than or equal to 0.126 mm2.
  • Each liquid inlet channel 622 is connected to the atomization chamber 6212 through a liquid inlet 6220.
  • the vertical distance between the center line of the liquid inlet 6220 and the atomization surface 6211 may range from 0.3 mm to 0.8 mm.
  • the axis of at least one liquid inlet channel 622 does not intersect with the central axis of the atomization chamber 6212, that is, the outlet direction of the at least one liquid inlet channel 622 is not facing the central axis of the atomization chamber 6212, so that the liquid matrix It has a circumferential velocity after entering the atomization chamber 6212.
  • each liquid inlet channel 622 is tangential to the cavity wall of the atomization channel 621. The tangential design can enable the incoming liquid substrate to obtain tangential velocity, increase the velocity difference between the air and liquid, and thereby achieve better results. It is conducive to atomization and improves the atomization effect.
  • the lower liquid channel 613 for connecting the liquid storage chamber 610 and the two liquid inlet channels 622 includes a first channel 6131 and a second channel 6132.
  • the first channel 6131 may be a linear channel, one end of the first channel 6131 is connected to the liquid storage chamber 610, and the other end is connected to the second channel 6132.
  • the second channel 6132 is an annular channel that surrounds the atomization channel 621 and can be coaxially arranged with the atomization channel 621 .
  • One end of each liquid inlet channel 622 is connected to the second channel 6132, and the other end is connected to the atomization channel 621.
  • the nozzle 62 and the liquid reservoir 612 are integrally formed.
  • the number of liquid inlet channels 622 is not limited to two, and it can also be more than two; the at least two liquid inlet channels 622 can be uniform along the circumferential direction of the atomization channel 621 interval distribution.
  • the first channel 6131 may also be a non-linear channel, and the number of the first channels 6131 may also be two or more.
  • the nozzle 62 and the liquid reservoir 612 can also be formed separately and then assembled together.
  • the aperture W1 of the atomization chamber 6212 can also be reduced, thereby reducing the area of the atomization surface 6211, so that the liquid matrix participating in the gas-liquid cutting at the atomization port 6203 is more concentrated, and the negative pressure is reduced.
  • the process from pressure supply to gas-liquid shearing is more continuous, thereby reducing the impact of pulsation and making the instantaneous flow rate more stable.
  • Figures 26-27 show the liquid storage atomization assembly 60 of the electronic atomization device 100 in the ninth embodiment of the present invention.
  • the main difference from the above-mentioned embodiment is that the supply of the liquid storage atomization assembly 60 in this embodiment is
  • the air channel 620 includes at least one swirl channel 6206 for changing the direction of the air flow.
  • the at least one swirl channel 6206 can be disposed in the contraction channel 6202 and configured to enable at least part of the high-speed airflow entering the air supply channel 621 to flow along the edge of the atomization port 6220 .
  • a swirl flow is created through the at least one swirl channel 6206, so that the jet flow that originally passed through the contraction channel 6202 and is concentrated in the central area of the atomization port 6203 is changed into a swirl flow with tangential velocity that is concentrated in the edge of the atomization port 6203, so that The air flow speed and energy of cutting the liquid film at the atomization port 6203 are higher, and the energy utilization rate is higher under the same input air flow conditions.
  • the gas-liquid ratio required for atomization is lower, and the liquid particles formed after cutting are The particle size is smaller and the axial jet velocity is lower, which is beneficial to the design of the heating section.
  • the design principle of the swirl channel 6206 is that it cannot be seen through when looking from one longitudinal side of the swirl channel 6206 to the other side, that is, the design structure prevents the airflow from passing through the swirl channel 6206 vertically.
  • the nozzle atomization assembly 60 also includes a swirl plug 65, which is disposed in the contraction channel 6202 and used to form a swirl channel 6206.
  • the at least one swirl channel 6206 may include a swirl groove 6260 formed on the outer surface of the swirl plug 65 and/or a swirl hole formed in the swirl plug 65 .
  • the swirl plug 626 is in the shape of a truncated cone, and two arc-shaped swirl grooves 6260 are formed on the outer surface of the swirl plug 626 .
  • the number of swirl grooves 6260 may also be two or more, and the at least two swirl grooves 6260 may be evenly spaced along the circumferential direction of the swirl plug 626, and the At least two swirl grooves 6260 are arranged rotationally symmetrically with respect to the central axis of the swirl plug 626 .
  • Each swirl groove 6260 has an inlet end 6261 away from the atomization port 6203 and an outlet end 6262 close to the atomization port 6203.
  • the cross-sectional area of the inlet end 6261 can range from 0.4mm2 to 0.8mm2, and the cross-sectional area of the outlet end 6262 can range from 0.04mm2 to 0.15mm2.
  • the center line of each swirl groove 6260 is in the vertical direction.
  • the inclination angle can be 45° ⁇ 75°, and the height of the swirl tank 6260 can be 1.2mm ⁇ 1.8mm.
  • there is a certain vertical distance between the outlet end 6262 of the swirl tank 6260 and the atomization port 6203 and the vertical distance can be 0.6mm ⁇ 1.2mm.
  • the above-mentioned height refers to the distance between the inlet end 6261 and the outlet end 6262 in the axial direction of the air supply channel
  • the above-mentioned vertical distance refers to the axial distance between the outlet end 6262 and the atomization port 6203 in the axial direction of the air supply channel 620. distance.
  • swirl holes may also be formed in the swirl plug 65 .
  • the swirl hole is an inclined tangential hole, and the tangential hole is tangent to the hole wall of the atomization port 6203, thereby achieving the purpose of causing most of the airflow to flow along the edge of the atomization port 6203.
  • the liquid storage assembly 61 in this embodiment has an integrated structure, that is, the liquid storage main body 611 and the liquid storage seat 612 are integrally formed.
  • the liquid storage component 61 may also be of a separate structure.
  • Figures 28-31 show the nozzle 62 of the electronic atomization device 100 in the tenth embodiment of the present invention, which is different from the nozzle 62 with an axially symmetrical structure in the above embodiment.
  • the nozzle 62 in this embodiment is plane-symmetrical.
  • Planar structure, the air flow channel 627 and the liquid inlet channel 622 formed in the nozzle 62 are both planar channels, and each feature of the air flow channel 627 and the liquid inlet channel 622 has the same thickness.
  • the nozzle 62 has a square shape. Similar to the above embodiment, in this embodiment, the airflow channel 627 may extend longitudinally from the lower end surface of the nozzle 62 to the upper end surface of the nozzle 62 , and may be coaxially disposed with the nozzle 62 .
  • the air flow channel 627 also includes an air supply channel 620 and an atomization channel 621. The structures of the air supply channel 620 and the atomization channel 621 are similar to the above embodiments and will not be described again here.
  • the atomization surface 6211 is a rectangular plane
  • the atomization port 6203 is a rectangular shape and is coaxially arranged with the atomization surface 6211
  • the atomization port 6203 and the atomization surface 6211 have Same thickness.
  • only the side of the atomization surface 6211 close to the liquid inlet channel 622 can form a liquid film, so that the nozzle 62 has a single-sided atomization structure.
  • a liquid inlet channel 622 can also be provided on both sides of the air flow channel 627, so that the nozzle 62 can achieve double-sided atomization.
  • the liquid inlet channel 622 may include a first liquid inlet section 6221 and a second liquid inlet section 6222 that are connected in sequence.
  • the first liquid inlet section 6221 may be a linear channel extending laterally, with one end connected to the atomization channel 621 and the other end connected to the second liquid inlet section 6222.
  • the first liquid inlet section 6221 has a liquid inlet 6220 at one end close to the atomization channel 621, and the liquid substrate in the first liquid inlet section 6221 is output to the atomization channel 621 through the liquid inlet 6220.
  • the liquid inlet 6220 can be located at the intersection of the atomization chamber 6212 and the expansion channel 6213.
  • the upper and lower sides of the liquid inlet 6220 are connected to the atomization chamber 6212 and the expansion channel 6213 respectively.
  • This structure can achieve primary cutting and atomization of the liquid substrate at the edge of the atomizing port 6203 and secondary cutting and atomizing at the junction 6214 of the liquid inlet 6220 and the expansion channel 6213, thereby effectively reducing the distribution of large droplets in the spray.
  • the liquid substrate 200 entering from the first liquid inlet section 6221 will form an inclined liquid surface 203 at the liquid inlet 6220 due to air pressure, and will form an inclined liquid surface 203 on the side of the atomization surface 6211 close to the first liquid inlet section 6221 due to capillary force.
  • the meniscus liquid surface 202 is formed, and the high-speed airflow entering from the air supply channel 620 will perform gas-liquid shear atomization at the edge of the atomization port 6203 close to the first liquid inlet section 6221 to form larger atomized droplets. Larger atomized droplets can hit the junction 6214 of the liquid inlet 6220 and the expansion channel 6213 to further break up the atomization, thereby forming a spray with smaller particle size.
  • the second liquid inlet section 6222 can be arranged at an angle, and it can be a linear channel arranged at an angle.
  • the angle between the extension direction of the second liquid inlet section 6222 and the extension direction of the first liquid inlet section 6221 may be an acute angle or an obtuse angle.
  • the second liquid inlet section 6222 and the first liquid inlet section 6221 have the same width.
  • the second liquid inlet section 6222 and the first liquid inlet section 6221 can also have different widths.
  • the width of the second liquid inlet section 6222 can be greater than the width of the first liquid inlet section 6221 .
  • the extension direction of the second liquid inlet section 6222 may also be parallel to the extension direction of the first liquid inlet section 6221.
  • the characteristics of the air flow channel 627 and the liquid inlet channel 622 (the connecting channel 6201, the contraction channel 6202, the atomization port 6203, the atomization surface 6211, the atomization chamber 6212, the expansion channel 6213, the first liquid inlet section 6221, the second liquid inlet section 6222, and the liquid inlet 6220) all have the same thickness ⁇ .
  • the thickness ⁇ can be understood as the length of the channel in the direction perpendicular to the paper surface in FIG. 31 .
  • the thickness ⁇ of the air flow channel 627 and the liquid inlet channel 622 may be 0.15mm ⁇ 0.25mm.
  • the nozzle 62 is a planar plane-symmetric structure, which may be an integrated structure.
  • the nozzle 62 can be formed by photolithography, which can be photolithographically obtained by photolithography from a feature plane having a gas flow channel 627 and a liquid inlet channel 622, thereby forming a rectangular channel with a uniform photoetching depth.
  • photolithography is performed on a first substrate (such as a silicon wafer) to obtain a flow channel substrate with a flow channel structure, and then the flow channel substrate and a second substrate (such as glass) are bonded or combined to obtain a flow channel substrate with high consistency.
  • nozzle At this time, the above-mentioned thickness ⁇ can be understood as the photolithography depth.
  • the nozzle 62 can also be formed by stretching, which can be obtained by stretching the characteristic plane with the air flow channel 627 and the liquid inlet channel 622, thereby forming a rectangular channel with a uniform stretching height.
  • the above Thickness ⁇ can be understood as the tensile height.
  • the nozzle 62 can also be formed using other manufacturing processes such as three-dimensional printing.
  • the size of the width W1 of the atomization chamber 6212 is related to the size of the negative liquid supply pressure generated in the atomization chamber 6212. In some embodiments, W1 can be 0.7mm ⁇ 1.4mm.
  • the size of the width W2 of the communication channel 6201 is related to the size of the air intake resistance. In some embodiments, the size of the width W2 of the communication channel 6201 may be 0.8mm ⁇ 2mm.
  • the angle ⁇ 1 between the second liquid inlet section 6222 and the expansion channel 6213 is related to the secondary crushing atomization effect. In some embodiments, ⁇ 1 may be 30° ⁇ 70°.
  • the size of the contraction angle ⁇ 2 of the contraction channel 6202 is related to the size of the control channel resistance, which may be 20° ⁇ 80° in some embodiments.
  • the width ⁇ 1 of the second liquid inlet section 6222 can be 0.2mm ⁇ 0.4mm, and the extension length L1 of the second liquid inlet section 6222 can be greater than or equal to 0.4mm.
  • the capillary force in the second liquid inlet section 6222 can reduce the backflow of the liquid matrix.
  • the height H of the atomization channel 621 can be 0.6mm ⁇ 1.3mm, the vertical distance h between the bottom wall edge of the second liquid inlet section 6222 and the atomization surface 6211 can be 0.2mm ⁇ 0.6mm, and H/W1 can be the range 1 ⁇ 1.2, so as to have appropriate negative pressure and reduce droplet collision after atomization.
  • the structure of the liquid storage atomization assembly 60 including the nozzle 62, the liquid storage chamber 610, the ventilation channel 616, and the liquid supply channel 63 can be designed and integrated with it, and processed in an integrated manner. , there is no assembly relationship between the parts, the air tightness is good, the processing accuracy of each flow channel structure is easy to control, and the accuracy is high.
  • Figures 32-33 show the liquid storage atomization assembly 60 of the electronic atomization device 100 in the eleventh embodiment of the present invention.
  • the liquid storage atomization assembly 60 in this embodiment The whole is an integrated structure with a face-symmetric structure, which can be realized through integrated processing.
  • the liquid storage atomization assembly 60 has a stepped shape as a whole, and may include a liquid storage portion 601 and a nozzle portion 602 disposed on one side of the liquid storage portion 601 .
  • a liquid storage chamber 610 and a ventilation channel 616 are formed in the liquid storage part 601
  • an air supply channel 620 , an atomization channel 621 and a liquid inlet channel 622 are formed in the nozzle part 602 .
  • the outer dimensions of the liquid storage part 601 are larger than the outer dimensions of the nozzle part 602.
  • the liquid storage part 601 and the nozzle part 602 have the same thickness, and the height of the liquid storage part 601 is larger than the height of the nozzle part 602.
  • liquid storage cavity 610 formed in the liquid storage part 601 has sufficient liquid storage space.
  • the structures of the air flow channel 627, the liquid inlet channel 622 and the ventilation channel 616 formed in the liquid storage atomization assembly 60 can adopt the channel structure in any of the above embodiments.

Landscapes

  • Nozzles (AREA)

Abstract

一种电子雾化装置(100),包括气源(40)、喷嘴(62)以及用于存储液态基质的储液腔(610);喷嘴(62)内形成有气流通道(627)以及将气流通道(627)与储液腔(610)相连通的进液通道(622);气源(40)用于为气流通道(627)提供高速气流,以使从进液通道(622)进入到气流通道(627)的液态基质受高速气流作用而产生雾化。由于液体颗粒的表面积得到扩展,从而更容易加热蒸发,降低加热组件(80)蒸发过程的温度。

Description

电子雾化装置 技术领域
本发明涉及雾化领域,更具体地说,涉及一种电子雾化装置。
背景技术
现有的电子雾化装置主要采用多孔陶瓷或者多孔棉等多孔介质结合发热部件进行加热雾化。由于雾化时加热温度较高,当液态基质供给不足时,发热部件上少量的液态基质不足以消耗掉发热部件上释放的电能,导致加热面温度进一步升高,从而进一步加剧液态基质的热裂解,甚至形成积碳和干烧的情况,很容易使形成的气溶胶产生烧焦的气味,导致口感显著变差。
技术问题
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种改进的电子雾化装置。
技术解决方案
本发明解决其技术问题所采用的技术方案是:构造一种电子雾化装置,包括气源、喷嘴以及用于存储液态基质的储液腔;所述喷嘴内形成有气流通道以及将所述气流通道与所述储液腔相连通的进液通道;所述气源用于为所述气流通道提供高速气流,以使从所述进液通道进入到所述气流通道的液态基质受所述高速气流作用而产生雾化。
在一些实施例中,所述气流通道包括与所述气源连接的供气通道以及与所述储液腔连通的雾化腔;所述雾化腔靠近所述供气通道的一端形成有雾化面,所述雾化面设置有连通所述供气通道和所述雾化腔的雾化口,流入所述雾化腔的液态基质能够在所述雾化面形成液膜,所述液膜能够被所述高速气流切割而形成液体颗粒。
在一些实施例中,所述雾化腔的孔壁面垂直于所述雾化面。
在一些实施例中,所述雾化面呈环状,所述雾化口的中轴线与所述雾化面的中轴线重合。
在一些实施例中,所述雾化腔的孔径为0.7mm~1.3mm。
在一些实施例中,所述雾化腔的长度为0.8mm~3.0mm。
在一些实施例中,所述雾化口的孔径为0.22mm~0.35mm。
在一些实施例中,所述供气通道包括收缩通道,所述收缩通道与所述雾化腔相连通,用于加速来自所述气源的气流。
在一些实施例中,所述气流通道还包括扩张通道,所述扩张通道与所述雾化腔远离所述供气通道的一端相连通,用于将所述雾化腔内生成的液体颗粒扩散喷出。
在一些实施例中,所述进液通道包括靠近所述雾化腔的供液末段,所述供液末段的延伸方向与所述雾化腔的延伸方向垂直。
在一些实施例中,所述供液末段内能够形成毛细力。
在一些实施例中,所述供液末段中心线与所述雾化面之间的垂直距离在0.8mm以下。
在一些实施例中,所述电子雾化装置还包括加热组件,所述喷嘴雾化形成的液体颗粒能够撞击所述加热组件而被所述加热组件再次雾化。
在一些实施例中,所述电子雾化装置还包括储液组件,所述储液腔形成于所述储液组件内,所述喷嘴至少部分收容于所述储液组件。
在一些实施例中,所述储液组件内还形成有与所述储液腔相连通的换气通道。
在一些实施例中,所述电子雾化装置还包括外壳,所述气源和所述喷嘴均收容于所述外壳中;所述外壳内形成有容腔,所述电子雾化装置还包括收容于所述容腔中的气流感应元件。
在一些实施例中,所述外壳内形成有用于输出气溶胶的输出通道,所述外壳上形成有补气口,所述外壳内形成有分别与所述补气口和所述输出通道相连通的补气通道,所述补气通道与所述容腔相连通。
有益效果
实施本发明至少具有以下有益效果:本发明通过采用气流辅助喷嘴将连续流动的液态基质雾化成液体颗粒,由于液体颗粒的表面积得到扩展,从而更容易加热蒸发,降低加热组件蒸发过程的温度,从而能够实现低温雾化。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明第一实施例中电子雾化装置的立体结构示意图;
图2是图1所示电子雾化装置的纵向剖面结构示意图;
图3是图2中电子雾化装置的储液雾化组件的纵向剖面结构示意图;
图4示出了在停止抽吸时液态基质在进液通道内的受力情况;
图5是图3所示储液雾化组件的剖面分解结构示意图;
图6是图5中喷嘴的纵向剖面结构示意图;
图7是图6所示喷嘴的流场仿真分布图;
图8是图2中电子雾化装置的发热体的立体结构示意图;
图9是图8所示发热体的纵向剖面结构示意图;
图10是本发明第二实施例中电子雾化装置的喷嘴的纵向剖面结构示意图;
图11是图10所示喷嘴的流场仿真分布图;
图12是本发明第三实施例中电子雾化装置的喷嘴的纵向剖面结构示意图;
图13是本发明第四实施例中电子雾化装置的喷嘴的纵向剖面结构示意图;
图14是本发明第五实施例中电子雾化装置的纵向剖面结构示意图;
图15是图14中储液雾化组件和支架组件组装状态下的剖面结构示意图;
图16是图14中储液雾化组件和支架组件分解状态下的剖面结构示意图;
图17是图16中储液座的立体结构示意图;
图18是本发明第六实施例中储液雾化组件和支架组件组装状态下的剖面结构示意图;
图19是图18所示储液雾化组件和支架组件分解状态下的剖面结构示意图;
图20是图19所示储液座的第一替代方案的立体结构示意图;
图21是图19所示储液座的第二替代方案的立体结构示意图;
图22是图19所示储液座的第三替代方案的俯视图;
图23是本发明第七实施例中电子雾化装置的储液雾化组件的纵向剖面结构示意图;
图24是本发明第八实施例中电子雾化装置的储液雾化组件的纵向剖面结构示意图;
图25是图24所示储液雾化组件的横向剖面结构示意图;
图26是本发明第九实施例中电子雾化装置的储液雾化组件的纵向剖面结构示意图;
图27是图26中旋流塞的立体结构示意图;
图28是本发明第十实施例中电子雾化装置的喷嘴的立体结构示意图;
图29是图28所示喷嘴的纵向剖面结构示意图;
图30是图29所示喷嘴的雾化原理示意图;
图31是图29所示喷嘴的尺寸标注图;
图32是本发明第十一实施例中电子雾化装置的储液雾化组件的立体结构示意图;
图33是图32所示储液雾化组件的纵向剖面结构示意图。
本发明的实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。
在本发明的描述中,需要理解的是,术语“纵向”、“横向”、“宽度”、“厚度”、“上”、“下”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系或者是本发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个、三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“上方”可以是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“下方”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
图1-2示出了本发明第一实施例中的电子雾化装置100,该电子雾化装置100可用于雾化液态基质以生成气溶胶,该气溶胶可供用户吸食或者吸入,其在本实施例中可大致呈圆柱状。可以理解地,在其他实施例中,该电子雾化装置100也可呈椭圆柱状、扁平柱状或方形柱状等其他形状。该液态基质可以包括烟油或药液等。
该电子雾化装置100可包括外壳10以及收容于外壳10中的控制模块20、电源30、气源40、储液雾化组件60和加热组件80。控制模块20分别与气源40、加热组件80电连接,用于接收指令,该指令可由用户触发或者在电子雾化装置100满足一定条件后自动触发,控制模块20再根据该指令控制气源40、加热组件80的工作。控制模块20可以包括气源控制模块和加热控制模块分别对气源40和加热组件80进行控制。电源30分别与控制模块20、气源40、加热组件80电连接,用于向控制模块20、气源40、加热组件80提供电能。储液雾化组件60包括储液组件61和喷嘴62,其中,储液组件61内形成有用于存储液态基质的储液腔610,喷嘴62内形成有与储液腔610相连通的气流通道627,液态基质能够在气流通道627内雾化成液体颗粒。气源40与喷嘴62相连通,用于为喷嘴62提供定量的高速气流,例如,可以通过轴流泵实现提供高速气流,也可以通过释放压缩气体实现提供高速气流。该高速气流可辅助喷嘴62将来自储液腔610的液态基质雾化成细小的液体颗粒。喷嘴62喷出的液体颗粒撞击加热组件80,经过加热组件80加热后生成气溶胶由气流带出以供用户吸食或者吸入。在其他实施例中,该电子雾化装置100中也可以不设置有加热组件80,即,喷嘴62雾化后的液体颗粒可直接被用户吸食或者吸入。
本发明实施例通过采用喷嘴62将连续流动的液态基质雾化成液体颗粒后再由加热组件80蒸发的方式,由于喷嘴62雾化后形成的细小液体颗粒的表面积得到了极大的扩展,从而更容易加热蒸发,一方面可提高热量及气溶胶的转化效率,另一方面可降低加热组件80蒸发过程的温度,实现低温雾化。在较低的加热雾化温度下,液态基质主要完成物理变化过程,从而克服了传统的多孔陶瓷或者多孔棉条件下因必须采用高温方式雾化而导致的液态基质热裂解变质的问题,更不会发生烧焦、积碳和重金属挥发等现象,从而能够保持不同液态基质所特有的成分和香精香料体系,最终使吸入者感受到与原始液态基质相对应的特有的口感。此外,加热组件80与储液腔610不接触,加热组件80不用长期浸泡在液态基质中,减少了加热组件80对液态基质的污染,从而减少了雾化后生成的气溶胶中的杂质气体。
在一些实施例中,外壳10可包括下壳12以及沿纵向配合于下壳12上端的上壳11。具体地,在本实施例中,下壳12可呈两端开口的圆筒状,该外壳10还包括沿纵向封盖于下壳12下端开口处的底座13。可以理解地,在其他实施例中,该底座13也可与下壳12一体成型。进一步地,该电子雾化装置100还可包括沿纵向设置于上壳11中的通气管70,通气管70的内壁面界定出与喷嘴62相连通的输出通道71。加热组件80可收容于通气管70中,加热组件80、通气管70、外壳10均可同轴设置。
进一步地,下壳12中可设置有支架组件14,该支架组件14将下壳12内分隔成位于上部的第一收容空间121以及位于下部的第二收容空间122。控制模块20、电源30、气源40均可收容于该第二收容空间122中。其中,该控制模块20可包括电路板以及形成于该电路板上的控制电路,该电源30可包括电池,该气源40可包括气泵。储液雾化组件60可收容于第一收容空间121中并可支撑于支架组件14上。进一步地,该电子雾化装置100还可包括气流感应元件50,该气流感应元件50可安装于支架组件14的底部。气流感应元件50与控制模块20电连接,用于感应用户抽吸时的气流变化并传递信号至控制模块20。控制模块20在检测到用户有抽吸动作时,发送信号至气源40以启动气源40开始供气,并发送信号至加热组件80以启动加热组件80开始加热。在一些实施例中,气流感应元件50可以为负压传感器,例如咪头。
在一些实施例中,外壳10还可包括设置于上壳11顶部的吸嘴15,用户可通过吸嘴15吸食气溶胶。该吸嘴15呈中空管状,其内壁面界定出与输出通道71相连通的用于输出气溶胶的吸气通道150。吸嘴15的下端可嵌置于通气管70中,吸嘴15的下端外壁面与通气管70的上端内壁面密封配合。吸嘴15的上端形成有吸气口1501,该吸气口1501与吸气通道150的上端相连通。在本实施例中,吸嘴15与上壳11分别成型后再组装在一起;在其他实施例中,吸嘴15与上壳11也可一体成型。
进一步地,在一些实施例中,该电子雾化装置100还可包括可拆卸地罩设于上壳11外的防尘罩90。在不需要使用电子雾化装置100时,可将防尘罩90罩设于上壳11外,防止灰尘等杂质进入吸气通道150。
如图3-6所示,喷嘴62内形成有气流通道627和进液通道622。该气流通道627用于流通高速气流,该进液通道622用于向气流通道627输入液态基质,从进液通道622进入到气流通道627的液态基质受气流通道627中流通的高速气流的作用而雾化。可以理解地,在其他实施例中,气流通道627也可采用其他方式进行雾化,例如,也可在气流通道627内设置气泡喷嘴,通过气泡雾化的形式生成液体颗粒。
进一步地,气流通道627包括供气通道620以及与供气通道620相连通的雾化通道621。其中,进液通道622连通储液腔610与雾化通道621,供气通道620连通气源40与雾化通道621,雾化通道621靠近供气通道620的一端端面形成雾化面6211,雾化通道621远离供气通道620的一端具有喷出口6210。从进液通道622流入到雾化通道621中的液态基质能够在雾化面6211形成液膜,该液膜能够被来自供气通道620的高速气流切割雾化成细小的液体颗粒,该液体颗粒再由雾化通道621输出并经由喷出口6210喷出。
雾化面6211上还形成有雾化口6203,来自供气通道620的高速气流经由雾化口6203喷出到雾化通道621内。具体地,在本实施方式中,雾化面6211为同心圆环状,雾化面6211的内壁面界定出雾化口6203。在其他实施例中,雾化面6211或雾化口6203也可具有椭圆形或矩形等其他形状。
雾化通道621包括雾化腔6212,雾化腔6212分别与进液通道622和收缩通道6202相连通,雾化腔6212的底面形成雾化面6211。由雾化口6203喷出的高速气流在雾化腔6212中高速流动,高速气流由伯努利方程在进液通道622内产生负压,此负压传导至储液腔610将液态基质吸出至雾化腔6212,在雾化口6203附近形成液膜,该液膜被高速气流切割雾化后带离雾化口6203,之后随气流喷出。液态基质在雾化腔6212内的雾化过程为非相变的方式,雾化腔6212内雾化后形成的液体颗粒的粒径分布可达到SMD=30μm范围内。其中,SMD=液体颗粒总体积/液体颗粒总表面积,表示了液体颗粒的平均粒径。
需要说明的是,本实施例中的雾化通道621采用的是内气外液式结构进行雾化。在其他实施例中,喷嘴62也可采用外气内液式结构进行雾化,例如,通过压力喷嘴实现液态基质的初次雾化、再通过气动旋流二次雾化,或者,通过气动旋流切割液膜直接雾化。在另一些实施例中,喷嘴62也可以为气动超声式喷嘴,在维持内气外液式结构的基础上,增加气体共振腔。
具体地,在本实施例中,供气通道620、雾化口6203、雾化通道621均与喷嘴62同轴设置,雾化腔6212为沿纵向延伸的直圆柱形通道,进液通道622沿横向延伸并与雾化腔6212垂直。雾化口6203、雾化腔6212的尺寸、形状等参数能够影响雾化腔6212内负压的大小以及生成的液体颗粒的粒径大小,使流量更稳定。在一些实施例中,雾化口6203的孔径D、雾化腔6212的孔径W1和/或雾化腔6212的长度H可根据需要设置合适的尺寸。
具体地,雾化口6203的孔径D与从雾化口6203出来的气流速度(m/s)相关,从而影响生成的液体颗粒的粒径大小。在一些实施例中,雾化口6203的孔径D的范围可以为0.2mm~0.4mm ,优选为0.22mm~0.35mm。
雾化腔6212的孔径W1会影响雾化腔6212中的气流流速大小,从而影响雾化腔6212、进液通道622内的负压大小。该负压可使液态基质从进液通道622吸至雾化腔6212。在一些实施例中,雾化腔6212的孔径W1的范围可以为0.7mm~1.3mm。
在一些实施例中,雾化腔6212的长度H可以为0.8mm~3.0mm。可以理解地,在其他实施例中,雾化腔6212也可具有椭圆形或矩形等其他非圆形状的横截面;当雾化腔6212具有非圆横截面时,雾化口6203的孔径D或雾化腔6212的孔径W1分别为其当量直径。术语“当量直径”是指,把水力半径相等的圆孔的直径定义为非圆孔的当量直径。
在一些实施例中,D的范围为0.22mm~0.35mm,H的范围为1.5mm~3.0mm,W1的范围为0.7mm~1.3mm,能够使喷嘴62在制造工艺上得到优势。
进液通道622与雾化腔6212相连通的一端具有一进液口6220,该进液口6220与雾化面6211之间的距离L是保证液膜形成的关键。在本实施例中,进液口6220与雾化面6211之间的距离L为进液口6220的中心与雾化面6211之间的垂直距离。在一些实施例中,进液口6220与雾化面6211之间的距离L的范围可以为0.3mm~0.8mm,较佳地,L为0.35mm~0.6mm。
进一步地,雾化通道621还包括扩张通道6213,扩张通道6213与雾化腔6212的上端(远离雾化面6211的一端)相连通,用于将雾化腔6212内雾化后生成的液体颗粒以射流的形式扩散喷出,增大液体颗粒的喷射面积。在本实施例中,扩张通道6213为沿纵向延伸且孔径由下往上逐渐增大的圆锥形通道。扩张通道6213的雾化角α(即扩张通道6213的扩张角)须具有合适的范围,以保证加热组件80具有充分的供液面积,确保加热组件80不会产生局部高温现象。在一些实施例中,扩张通道6213的雾化角α可以为30 0~70 0。在其他实施例中,扩张通道6213也可以为椭圆锥形状或金字塔形状等其他形状。
供气通道620可包括连通通道6201和收缩通道6202。连通通道6201用于与气源40相连通,其可以为直通道。收缩通道6202连通连通通道6201与雾化通道621,其横截面面积从远离雾化通道621的一端向靠近雾化通道621的一端逐渐减小,用于将来自气源40的气流加速。在本实施例中,连通通道6201为直圆柱状通道,收缩通道6202为沿纵向延伸且孔径由下往上逐渐减小的圆锥形通道,收缩通道6202的下端孔径与连通通道6201的孔径一致,收缩通道6202的上端孔径与雾化腔6212的雾化口6203的孔径一致。可以理解地,在其他实施例中,收缩通道6202也可以为椭圆锥形状或金字塔形状等其他形状,连通通道6201的横截面可以是椭圆形或矩形等其他非圆形状。在另一些实施例中,供气通道620也可仅包括收缩通道6202;或者,当气流流速足够时,供气通道620也可仅包括连通通道6201。
图7示出了采用该喷嘴62的流场分布云图。由图6可看出,由于喷嘴62在其扩张通道6213与雾化腔6212的交接处存在拐角而形成有卷吸涡(如虚线框中所示),该卷吸涡使得射流收腰,从而使得该射流的实际雾化角小于扩张通道6213的雾化角。
再如图3、图5所示,喷嘴62至少部分收容于储液组件61中,储液组件61内形成有储液腔610以及将储液腔610与进液通道622相连通的下液通道613。进液通道622、下液通道613共同形成连通储液腔610与雾化通道621的供液通道63。
供液通道63可用于控制供液至雾化通道621的流量,实现雾化通道621的定量供液。通常,可按照流量需求匹配设计供液通道63的尺寸,即在设计流量下供液通道63能产生匹配供液动力的阻力。具体地,雾化腔6212内产生的负压为供液动力,而供液阻力则包括供液通道63的沿程阻力以及储液腔610内的负压。通过计算设计流量下供液通道63所需的沿程阻力,设计供液通道63的具体直径与长度。供液通道63可包括依次连通的主体段632以及供液末段631。该供液末段631靠近雾化通道621并与雾化通道621相连通,该主体段632远离雾化通道621并与储液腔610相连通。在本实施例中,主体段632可以为沿横向延伸的弱毛细力通道,即主体段632内能够产生弱毛细力;供液末段631为沿横向延伸的毛细通道,即供液末段631内能够产生毛细力。在一些实施例中,供液通道63的整体长度范围可以为6mm~15mm;主体段632的截面积范围可以为0.09mm²~0.16mm²;供液末段631的截面积小于主体段632的截面积,例如,供液末段631的截面积可小于0.08mm²。可以理解地,在其他实施例中,也可采用其他自动或非自动的供液方式实现对雾化通道621的定量供液,例如,可通过采用小型供液泵(例如隔膜泵或蠕动泵等)对储液腔610进行加压,保持维持供液的稳定性,来实现对雾化通道621的定量供液。
抽吸结束后,由于储液腔610内存在负压,该负压会回吸供液末段631内的液态基质,从而造成下一次抽吸时供液不及时。因此,通过将供液通道63靠近雾化通道621的供液末段631设计为毛细通道,保证供液末段631具有一套关键尺寸(例如,通道截面积和通道长度),利用供液末段631内的毛细力来减少回流,以防止气源40停止工作时液态基质回流至储液腔610而造成下一次抽吸时供液延迟,实现即起即停的稳定供液。
图4示出了在停止抽吸、气源40停止工作后,液态基质200在供液末段631内的受力情况。在停止抽吸、气源40停止工作后,由高速气流在雾化腔6212和供液末段631内产生的负压消失,供液末段631内的液态基质向喷嘴62方向流动的动力消失,供液末段631内的液态基质在气液交界面201上的受力情况以及液面运动情况为:
若ΔP =ΔP,则液面经过短暂的向储液腔610方向运动后停止,在下一次气源40启动时有短时延迟;
若ΔP <ΔP,则液面会持续向储液腔610方向运动,直到有足够的液态基质回流到储液腔610,使得ΔP因储液腔610液面回升而降低至与ΔP 平衡,液面运动才会停止,此时会在供液通道63内形成相对很大的空腔,造成在下一次气源40启动时会有较长时间延迟;
若ΔP >ΔP,则液面不会回流,可在下一次气源40启动时即时雾化。
其中,ΔP=储液腔610内的负压-储液腔610内液态基质的重力,ΔP =供液末段631内的毛细力。
再如图3、图5所示,供液通道63的供液末段631可仅形成在喷嘴62内,也可同时形成在喷嘴62和储液组件61内。在本实施例中,进液通道622的整体形成供液通道63的供液末段631。可以理解地,在其他实施例中,进液通道622也可以为阶梯型通道,进液通道622靠近雾化通道621的部分形成供液通道63的供液末段631。在一些实施例中,供液末段631的截面积为0.07mm²(或孔径0.3mm),其通道长度≥2mm,气源40停止工作时供液末段631内的液态基质不会因储液腔610内的负压向储液腔610回流,防止下一次气源40启动时还需要等待液态基质填充供液末段631造成的雾化过程延迟,达到即时启动的效果。在另一些实施例中,供液末段631的截面积可以为0.05mm²,其通道长度≥1mm,也可达到即时启动的效果。在另一些实施例中,进液通道51的水力直径小于等于0.3mm,也可实现即起即停的稳定供液。通常来说,供液末段631的截面积越小,需要达到即时启动的效果所需的供液末段631的通道长度越小。
喷嘴62可沿纵向穿设于储液组件61中并可与储液组件61同轴设置。储液组件61内沿纵向形成有用于供喷嘴62穿设的喷嘴孔6141。喷嘴62外还可套设有密封圈628,密封圈628密封地配合于喷嘴62的外壁面和喷嘴孔6141的腔壁面之间,以防止漏液。密封圈628可采用硅胶等弹性材料制成,其可以为O形密封圈。在本实施例中,密封圈628有两个,两个密封圈628分别设置于进液通道622的上下两侧,防止液态基质从进液通道622的上下两侧泄露。
储液组件61具有一承接面6143,该承接面6143可位于气流通道627的外围,其能够承接回落的液体颗粒或者冷凝液,该冷凝液包括液体颗粒在流出过程中遇冷或者触碰壁面形成的冷凝液。承接面6143上还可形成有至少一个储液槽6144,在一些实施例中,该至少一个储液槽6144具有毛细作用力。该至少一个储液槽6144可环绕于气流通道627上端的喷出口6210外并可与喷出口6210同轴设置,其能够通过毛细作用力收集并存储一定量的液态基质,防止承接面6143上积蓄的液态基质回流至气流通道627,从而堵塞气流通道627。
具体地,在本实施例中,储液组件61的顶面还可下凹形成有与喷嘴孔6141相连通的容腔6142,通气管70的下端可嵌置于容腔6142中并与扩张通道6213相连通。通气管70的下端外壁面与容腔6142的孔壁之间还可设置有密封件146。密封件146可采用硅胶等弹性材料制成,以提高通气管70的下端外壁面与容腔6142的孔壁之间的密封性能,并具有一定的隔热作用。容腔6142、喷嘴孔6141可同轴设置,容腔6142的横截面积可大于喷嘴孔6141的横截面积,使得容腔6142靠近喷嘴孔6141的一端端面形成环状的承接面6143。在一些实施例中,储液槽6144的槽宽可小于等于0.6mm。可以理解地,在其他实施例中,储液组件61内也可不设置有容腔6142,承接面6143也可形成于储液组件61的上端面。
储液组件61内还可形成有将该至少一个储液槽6144与雾化腔6212相连通的导液通道618,以使雾化腔6212内的负压能够将储液槽6144内存储的冷凝液回吸至雾化腔6212再次雾化。相应地,喷嘴62内还形成有将导液通道618与雾化腔6212相连通的回吸通道623,该回吸通道623与导液通道618连通形成用于将该至少一个储液槽6144与雾化腔6212相连通的液体回收通道6216。导液通道618、回吸通道623的孔径或当量直径可小于等于0.4mm,或者,导液通道618、回吸通道623的截面积小于等于0.126mm²。回吸通道623与雾化腔6212相连通的一端具有一回吸口6230,该回吸口6230的中心与雾化面6211之间的垂直距离可以为0.3~0.8mm。进一步地,在本实施例中,回吸通道623、进液通道622相对于喷嘴62的中轴线呈旋转对称设置,从而在组装喷嘴62时可无需考虑安装方向。喷嘴62安装至喷嘴孔6141中后,喷嘴62的上端面可高出其周圈的承接面6143,避免承接面6143的冷凝液进入扩张通道6213而被吹出。此外,回吸通道623、进液通道622还可位于喷嘴62的周向两相对侧,从而还能降低流量脉动带来的影响,使得瞬时流量更加稳定。可以理解地,在其他实施例中,回吸通道623、进液通道622也可相对于喷嘴62的中轴线不呈旋转对称设置,例如,回吸通道623、进液通道622也可具有不同尺寸,和/或,回吸通道623、进液通道622也可设置于喷嘴62的不同轴向高度上。
在一些实施例中,该至少一个储液槽6144可包括若干个第一储液子槽6145以及若干个环状的第二储液子槽6146。第一储液子槽6145可沿承接面6143的径向延伸,第一储液子槽6145远离承接面6143中心的一端可与最外圈的一个第二储液子槽6146相连通,第一储液子槽6145靠近承接面6143中心的一端可与最内圈的一个第二储液子槽6146相连通。第二储液子槽6146可沿承接面6143的周向延伸,其可与承接面6143、气流通道627同轴设置。进一步地,承接面6143还可设计为中心凸起的形状,例如,其可以为球形弧面或锥形面,有利于承接面6143中心处附近的冷凝液向外围流动扩散,避免承接面6143中心处附近的冷凝液未经雾化而直接被吹走。在另一些实施例中,承接面6143也可向喷嘴62倾斜,使得承接面6143上积蓄的冷凝液能够流回至喷嘴62重新雾化。
储液组件61可包括相互配合的储液主体611和储液座612,储液组件61经由储液座612安装于支架组件14上。在本实施例中,储液腔610、下液通道613均形成于储液主体613内。具体地,储液主体611的底面上凹形成圆环状的储液腔610,该储液腔610可环绕于气流通道627的外围并可与气流通道627同轴设置。储液腔610靠近喷嘴62的一侧腔壁面沿横向向喷嘴62延伸形成下液通道613。可以理解地,在其他实施例中,储液腔610和/或下液通道613也可形成于储液座612内,或者也可部分形成于储液主体611内、部分形成于储液座612内。
进一步地,储液主体611上还可形成有与储液腔610相连通的注液通道615,以在储液腔610内的液态基质用完后能够再次向储液腔610内注液。在本实施例中,注液通道615沿纵向延伸,注液通道615的下端与储液腔610相连通。
进一步地,该储液雾化组件60还可包括固定盖64。固定盖64呈上端开口的筒状,固定件64套设于储液主体611和储液座612外并可与储液主体611相互扣合固定,以将储液主体611和储液座612相互固定。进一步地,固定盖64可以为金属材质,金属材质在温度变化时而产生的热胀冷缩形变较小,使得储液雾化组件60内各个部件之间的连接固定更加稳定可靠。
该储液雾化组件60的工作原理为:
(1)抽吸开始:用户抽吸动作制造负压,气流感应元件50感应负压并传递信号至控制模块20,控制模块20启动气源40开始供气;
(2)持续定量自动供液:气源40提供持续气流在收缩通道6202内加速,由雾化口6203喷出,并在雾化腔6212中高速流动;高速气流由伯努利方程在雾化腔6212内产生负压,此负压传导至储液腔610将液态基质吸出至雾化腔6212中;只要气源40持续工作,供液就会持续;
(3)雾化过程:储液腔610内的液态基质被负压吸出至雾化面6211,在毛细力与高速气流共同作用下在雾化面6211与雾化腔6212之间形成弯液面,并在雾化口6203附近形成液膜;随着供液过程的持续进行,液膜运动到雾化口6203的孔壁边缘与高速气流相遇,被高速气流切割雾化后带离雾化口6203,之后随气流喷出完成雾化过程;
(4)随着用户抽吸动作结束,气源40关闭,雾化腔6212内的负压消失,此时供液通道63内的液态基质失去了向雾化腔6212运动的动力,而主要受到储液腔610内的负压、液态基质液面压差力、供液通道63的供液末段631的毛细力的共同作用,保证气源40停止工作时供液末段631内的液态基质不会因储液腔610内的负压向储液腔610回流,防止下一次气源40启动时还需要等待液态基质填充供液末段631造成的雾化过程延迟。
重复上述过程(1)至(4)即为储液雾化组件60多次工作的流程。
需要说明的是,本实施例中的储液雾化组件60采用气液在开放空间混合的方式进行雾化;在其他实施例中,也可采用定量空气和液态基质先预混再雾化的方式,例如,通过采用齿轮泵和定量腔室实现前半冲程定量吸入空气和液态基质、后半冲程将气液一并推出离心喷嘴雾化,或者,也可采用微通道和激光打孔的结构实现雾化。
如图2、8-9所示,加热组件80收容于通气管70中并位于喷嘴62的上方,其可与喷嘴62同轴设置。加热组件80的结构和加热形式不受限制,例如其加热形式可以为电阻传导加热、红外辐射加热、电磁感应加热或者复合加热等方式。加热组件80的结构可包括金属发热体(例如发热片、发热网或发热丝),或者也可包括多孔介质以及设置于多孔介质上的发热体(例如发热膜、发热片、发热网或发热丝)。具体地,在本实施例中,加热组件80包括发热体81,该发热体81能够完全接收由喷嘴62喷射过来的液体颗粒。发热体81在通电后发热,从而进一步将从喷嘴62喷射过来的液体颗粒雾化成气溶胶。具体地,该发热体81可呈螺旋片状并包括多个环状的螺旋圈810,其可采用导电金属条螺旋而成。在本实施例中,螺旋圈810呈圆环状。在其他实施例中,螺旋圈810也可呈椭圆环状、方环状等其他形状。
该发热体81具有第一导电端811和第二导电端812,该第一导电端811和第二导电端812分别与控制模块20电性连接。在本实施例中,第一导电端811和第二导电端812分别位于发热体81的径向两相对侧,相邻两个螺旋圈810中的电流方向相反。在其他实施例中,第一导电端811和第二导电端812也可位于发热体81的径向同一侧。在另一些实施例中,也可以是第一导电端811和第二导电端812中的一个位于发热体81的内圈,另一个位于发热体81的外圈。
进一步地,每一螺旋圈810均具有靠近发热体81中心的近端813以及远离发热体81中心的远端815,该近端813相对于远端815斜向上设置,使得螺旋圈810与水平线之间形成有一夹角β。在一些实施例中,该夹角β的范围可以为5 0~50 0。通过将螺旋圈810倾斜设置,一方面可增大发热体81的加热面积,另一方面,还可使得喷射至发热体81中心处的液体颗粒向外导流扩散,减少中心处未经加热的液体颗粒直接坠入到扩张通道6213中。此外,每一螺旋圈810的近端813在竖直方向上的投影在其相邻内圈的螺旋圈810上,可使得该螺旋圈810的近端813未经加热的液体颗粒能够坠落到其相邻内圈的螺旋圈810上而被加热,提高加热效率。
图10示出了本发明第二实施例中的喷嘴62,其与第一实施例的主要区别在于,在本实施例中,扩张通道6213的孔壁面为圆弧面,且扩张通道6213与雾化腔6212之间为流线型平滑连接,例如通过倒圆角的方式相切连接。在一些实施例中,该圆弧面可通过倒圆角等工艺实现,倒圆角的方式还可增大扩张通道6213的雾化角,例如可将雾化角从40 0增加至50 0。图11示出了采用该喷嘴62的流场分布云图,由该图可看出,具有圆弧面孔壁形状的扩张通道6213降低了对射流卷吸涡的束缚作用,使得射流能够充分发展。可以理解地,在其他实施例中,扩张通道6213的孔壁面也可具有其他流线型扩张形状。
此外,再如图10所示,本实施例中的进液通道622为阶梯型通道,其可包括靠近雾化腔6212的供液末段6221以及远离雾化腔6212的供液前段6312。该供液末段6221为毛细通道。该供液前段6312的截面积大于供液末段6221的截面积,其可以为弱毛细通道。
图12示出了本发明第三实施例中的喷嘴62,其与上述第一、第二实施例的主要区别在于,本实施例中的喷嘴62的雾化面6211上还设置有锁液槽6215,该锁液槽6215能够产生毛细力,利用毛细力摊平液膜,使喷嘴62处于倾斜状态时液膜仍能在雾化口6203附近均匀分布并雾化,降低重力对液膜分布的影响。
具体地,在本实施例中,锁液槽6215呈环形并可与雾化口6203同轴设置,其可由雾化面6211沿纵向向下凹陷形成,即沿垂直于雾化面6211的方向向下凹陷形成。锁液槽6215的内径大于雾化口6203的孔径,锁液槽6215的外径小于雾化腔6212的孔径。
图13出了本发明第四实施例中的喷嘴62,其与上述第三实施例的主要区别在于,本实施例中的锁液槽6215由雾化面6211的外缘向上、向外凹陷形成,且该锁液槽6215呈周向非封闭的C形环状。具体地,该锁液槽6215可形成于雾化面6211与进液通道622相对的一侧,锁液槽6215的内径与雾化腔6212的孔径一致,锁液槽6215的外径大于雾化腔6212的孔径。锁液槽6215的弧心角可以为180°~350°。
图14-17示出了本发明第五实施例中的电子雾化装置100,其与第一实施例的主要区别在于,本实施例中的储液雾化组件60中还形成有补气通道67,该补气通道67可用于电子雾化装置100的补气功能,其主要作用是配合用户的抽吸动作以启动电子雾化装置100,使电子雾化装置100能够实现部分气源40主动供气、部分用户抽吸的复合式供气模式。该复合式供气模式一方面可提升用户体验,另一方面是为了配合用户习惯,利用惯有的抽吸动作来启动电子雾化装置100。
外壳10上还设置有补气口16,用于供外界空气进入补气通道67。当用户在吸气口1501发生抽吸动作时,外界空气能够经由补气口16进入补气通道67并进一步进入输出通道71,与从气流通道627流出的液体颗粒混合。
喷嘴62内形成有供气通道620、雾化通道621以及进液通道622,该供气通道620、雾化通道621以及进液通道622的结构可与上述实施例类似,在此不再赘述。该补气通道67可与供气通道620相互隔绝,避免其相互之间产生影响。
该补气通道67可包括形成于喷嘴62内的至少一个补气孔6250,该至少一个补气孔6250可沿纵向延伸,其中轴线可与喷嘴62的中轴线平行。即该至少一个补气孔6250的延伸方向与所述气流通道627的延伸方向相同。该补气孔6250与气流通道627均形成于喷嘴62内且相互隔离。补气孔6250的上端与容腔6142相连通,进而经由输出通道71与吸气通道150相连通。本实施例中,该至少一个补气孔6250一体成型于喷嘴62内,可避免补气孔6250穿过储液组件61内部从而需要添加额外密封件的问题,从而可简化装配过程。
具体地,喷嘴62可包括喷嘴主体625,雾化通道621、进液通道622、收缩通道6202以及至少一个补气孔6250均可形成于喷嘴主体625内。其中,雾化通道621、收缩通道6202的中轴线与喷嘴主体625的中轴线重合,至少一个补气孔6250的中轴线与喷嘴主体625的中轴线平行。进一步地,补气孔6250可以有多个,该多个补气孔6250可环绕于雾化通道621的外围,且多个补气孔6250可沿喷嘴主体625的周向均匀间隔排布,可使得气流均匀分布以帮助一次雾化后气溶胶的顺利流出。补气孔6250的数量可按需设置,其通常可以为3~10个。
进一步地,喷嘴62还包括由喷嘴主体625的下端面向下延伸的颈部624,该颈部624的外径可小于喷嘴主体625的外径。颈部624、喷嘴主体625可同轴设置,连通通道6201由颈部624的下端面沿纵向向上延伸至喷嘴主体625中与收缩通道6202相连通。
进一步地,补气通道67还包括进气通道141和气流空腔143。该进气通道141与补气口16相连通,其在本实施例中为沿横向延伸的直线形通道。该气流空腔143将进气通道141和多个补气孔6250相连通。由补气口16吸入的空气在气流空腔143内分布后再均匀流入各个补气孔6250。气流空腔143可以为环形空腔,其可环绕于气流通道630外并与气流通道627相隔离。
喷嘴62的下端穿设于支架组件14中,气流空腔143可形成于喷嘴62的颈部624的外壁面与支架组件14的内壁面之间,进气通道141可形成于支架组件14内。具体地,支架组件14可包括支架144和密封件146。支架144上可沿纵向形成有一穿孔148,密封件146可密封地套设于喷嘴62的外壁面和穿孔148的孔壁之间。在一些实施例中,密封件146可采用硅胶等弹性材料制成,以提高其密封性能。密封件146的上端面下凹形成有第一密封腔1461,密封件146的下端面上凹形成有与第一密封腔1461相连通的第二密封腔1462。第一密封腔1461靠近第二密封腔1462的一端形成有密封面1463,密封面1463上设置有供颈部624穿过的密封口1464。喷嘴主体625的下端收容于第一密封腔1461中,且喷嘴主体625的下端面与密封面1463之间具有一定的间隔,该间隔用于形成气流空腔143。进一步地,喷嘴主体625的外周面与第一密封腔1461的内壁面密封配合,颈部624密封地穿过密封口1464,使得颈部624的外周面与第一密封腔1461的内周面之间形成一密闭的环形气流空腔143。每一补气孔6250均可由喷嘴主体625的上端面沿纵向向下延伸至喷嘴主体625的下端面,并与第一密封腔1461相连通。
第一密封腔1461的腔壁上还可开设有用于供吸入的空气进入气流空腔143的进气口663,由进气口663吸入的空气在气流空腔143内分布后再均匀流入各个补气孔6250。进一步地,进气口663可靠近第一密封腔1461的密封面1463设置。
喷嘴主体625的外壁面还可向外延伸形成有定位凸缘6251,该定位凸缘6251可用于喷嘴主体625的轴向定位。具体地,定位凸缘6251的上端面可抵靠于储液组件61上,和/或,定位凸缘6251的下端面可抵靠于密封件146上。
进一步地,储液雾化组件60还可包括套设于喷嘴主体625上端的密封套65。密封套65可采用硅胶等弹性材料制成,以提高其密封性能。密封套65的顶壁上分别对应每一补气孔6250开设有通气孔650。
支架组件14上形成有一用于收容气流感应元件50的容腔145以及与该容腔145相连通的感应腔140。气流感应元件50具有一感应面51,该感应面51与感应腔140相连通,以感应感应腔140的负压。该补气通道67连通气流感应元件50的感应面51与吸气通道150,从而使得补气通道67能够配合用户的抽吸动作以启动电子雾化装置100,同时使得气流均匀分布以帮助一次雾化后气溶胶的顺利流出。具体地,在本实施例中,容腔145可由支架组件14的底面沿纵向上凹形成,容腔145的底部敞开,供气流感应元件50装入。感应腔140由容腔145向上延伸形成,且感应腔140的横截面积小于容腔145的横截面积。感应面51位于气流感应元件50的上端面,其可与感应腔140的底部相连通。进一步地,支架组件14上还形成有连通气流空腔143和感应腔140的进气通道141。该进气通道141可由支架组件14的一侧沿横向向内延伸,进一步地,进气通道141可以为沿横向延伸的直线形通道。感应腔140的上端与进气通道141相连通,进一步地,感应腔140可设置于进气通道141的进气端(即远离进气口663的一端)设置。感应腔140感应进气通道141内的负压变压,可通过调节唯一进气通道141的整体尺寸来控制感应腔140内的负压值,用以匹配气流感应元件50的启动负压。
进一步地,在本实施例中,补气口16开设于底座13上,其可沿纵向贯穿底座13。用户在吸气口1501抽吸时,外界空气经由补气口16进入,向上流动并进入进气通道141。空气在向上流经控制模块20、电源30、气源40等时,能够带走控制模块20、电源30、气源40等的部分热量,对其进行散热。可以理解地,在其他实施例中,补气口16也可开设于外壳10的其他部位,例如,其可以开设于下壳12的侧壁上。
此外,本实施例中的储液雾化组件60内还形成有与储液腔610相连通的换气通道616,该换气通道616可用于恢复储液腔610内的压力,利用喷嘴62的负压区和换气通道616相配合,实现向喷嘴62的自动稳定供液,解决因储液腔610负压过大而不能稳定供液的问题。在抽吸过程中,储液腔610内液态基质减少会带来气压降低,降低至极限换气负压会由换气通道616换气泡进入储液腔610,恢复储液腔610负压。通常,可控制储液腔610的负压范围为-200Pa ~ -700Pa。在其他实施例中,也可将储液腔610的腔壁设置成柔性且内部没有空气的腔壁,来解决储液腔610负压过大不能供液的问题。
具体地,本实施例中的换气通道616可包括形成于储液组件61外表面的换气槽6162以及连通换气槽6162和储液腔610并形成于储液组件61内的换气孔6161。具体地,该换气槽6162可采用直液式换气结构,其可包括形成于储液座612外表面的若干个旋转槽6164以及连通该若干个旋转槽6164的若干个连通槽6165。每一旋转槽6164均可呈环形并沿储液座612的周向延伸,每一旋转槽6164的截面积范围可以为0.04mm²~0.16mm²,该若干个旋转槽6164的总长度可以为3mm~12mm。该若干个旋转槽6164可沿储液座612的轴向均匀间隔排布,该若干个连通槽6165可沿储液座612的周向均匀间隔排布。每一连通槽6165均沿储液座612的轴向延伸,每一连通槽6165的上端与位于最上方的一个旋转槽6164相连通,下端与位于最下方的一个旋转槽6164相连通。进一步地,该换气通道616还可包括将该若干个旋转槽6164与外界相连通的若干个通气槽6163。通气槽6163可由储液组件61的底面沿纵向向上延伸至与位于最下方的一个旋转槽6164相连通。固定盖64上还形成有将若干个通气槽6163与外界相连通的若干个通气口641。本实施例中,该若干个通气口641可分布于固定盖64的底壁外缘,且该若干个通气口641可沿固定盖64的周向均匀间隔排布。
该换气孔6161可包括依次连通的第一子换气孔6166、第二子换气孔6167以及第三子换气孔6168。第一子换气孔6166可由储液座612的外表面沿横向向内延伸,第一子换气孔6166的一端可与位于最上方的一个旋转槽6164相连通,另一端与第二子换气孔6167相连通。第二子换气孔6167可由储液座612的上端面沿纵向向下延伸至与第一子换气孔6166相连通。第三子换气孔6168可由储液腔610的底面沿纵向向下延伸至储液主体611的底面,并与第二子换气孔6167对应连通。
图18-19示出了本发明第六实施例中的电子雾化装置100,与上述第五实施例类似,本实施例中的补气通道67也包括依次连通的进气通道141、气流空腔143以及补气孔6250,该补气通道67也与气流通道627之间相互隔离。用户在吸气口1501抽吸时,由补气口16吸入的空气进入进气通道141,然后在气流空腔143内分布后再均匀流入各个补气孔6250。
与上述第五实施例不同的是,本实施例中的补气孔6250形成于储液组件61内。具体地,该补气孔6250可以为沿纵向延伸的直线形通道,补气孔6250的上端与容腔6142相连通,补气孔6250的下端伸入到支架组件14中并与进气通道141相连通。进一步地,该补气孔6250可以有多个,该多个补气孔6250可以环绕于喷嘴62外,且多个补气孔6250可沿喷嘴62的周向均匀间隔分布。支架组件14内还形成有一环形的气流空腔143,由进气通道141吸入的空气在气流空腔143内分布后再均匀流入各个补气通道67。
气流空腔143呈环形并形成于支架组件14内,其可环绕于气流通道627的外围并与气流通道627相隔离。具体地,支架组件14可包括支架144以及嵌置于支架144底部的密封件146,气流空腔143可形成于支架144和密封件146之间。该密封件146在一些实施例中可采用硅胶等弹性材料制成。具体地,支架144可包括支撑臂1443以及由支撑臂1443沿纵向向下延伸的第一环壁1444、第二环壁1445、第三环壁1446。第一环壁1444、第二环壁1445、第三环壁1446的外径和内径均依次增大。第一环壁1444呈封闭的圆环形,第一环壁1444的内壁面界定出与气流通道630相连通的穿孔148。第二环壁1445的内径大于第一环壁1444的外径,密封件146密封地设置于第二环壁1445的内壁面和第一环壁1444的外壁面之间,以使第二环壁1445的内壁面和第一环壁1444的外壁面之间形成密闭的环形气流空腔143。第二环壁1445呈非封闭的圆环形,其一侧形成有开口,以使进气通道141能够与气流空腔143相连通。第三环壁1446由支撑臂1443的外缘向下延伸,其外径可与支撑臂1443的外径一致。
进气通道141可形成于支架144和密封件146之间,容腔145、感应腔140可形成于密封件146内。进气通道141可包括沿纵向延伸的进气前段1411以及沿横向延伸的进气后段1412。该进气前段1411可形成于密封件146的外壁面和第三环壁1446的内壁面之间,该进气后段1412可形成于支架144的下端面和密封件146的上端面之间。
储液组件61可包括储液主体611、嵌置于储液主体611底部的储液座612以及密封地设置于储液主体611和储液座612之间的密封套617。在一些实施例中,该密封套617可采用硅胶等弹性材料制成,储液主体611、储液座612可采用塑胶等硬质材料制成。在另一些实施例中,也可以是密封套617采用塑胶等硬质材料制成,储液主体617、储液座612采用硅胶等弹性材料制成。储液座612上形成有多个沿纵向延伸的补气管6120,该补气管6120的内壁面界定出补气孔6250。密封套617上分别对应该多个补气管6120形成有多个通孔6170,以供该多个补气管6120分别密封地穿过。
此外,下液通道613可形成于储液组件61的两个部件的相互配合的表面之间。具体地,储液组件61包括相互贴合配合的第一表面6172和第二表面6122,第一表面6172和第二表面6122中的至少一个设置有导液槽6121。第一表面6172和第二表面6122分别位于两个独立成型的部件上,在该两个部件装配在一起后,第一表面6172和第二表面6122相互贴合,使得导液槽6121处形成一密闭空腔,从而形成导液通道611。
在本实施例中,下液通道613可形成于密封套617和储液座612之间。进一步地,第二表面6122位于储液座612的上端面,其上设置有导液槽6121。第一表面6172位于密封套617的下端面,且第一表面6172为平面,即第一表面6172未设置有导液槽6121。在储液座612和密封套617装配在一起后,密封套617的下端面与储液座612的上端面贴合,密封套617的下端面与导液槽6121之间界定出下液通道613。密封套617上还形成有将储液腔610与下液通道613相连通的下液口6171。下液通道613的一端与下液口6171相连通,另一端与雾化腔6212相连通。进一步地,在本实施例中,该导液槽6121可呈直线形,从而使得下液通道613也呈直线形。可以理解地,在其他实施例中,导液槽6121、下液通道613也可呈曲线形(例如正弦状)或者折线形(例如方波状)等各种非直线形状,以便于在储液座612有限的空间距离内提供不同的阻力。在另一些实施例中,也可以储液座612的上端面为平面,导液槽6121形成于密封套617的下端面。
本实施例中的下液通道613由密封套617的下端面与储液座612的上端面贴合形成,从而使得该下液通道613可根据不同的阻力要求来设计成不同的形状和尺寸,表面形状易于加工制造,尺寸精度易于控制。此外,由于用于形成下液通道613的密封套617和储液座612中的一个是软性材料、另一个是硬质材料,还能确保下液通道613的密闭性,防止漏液。另外,由于导液槽6121设置于刚性的储液座612上,可避免组装后受挤压而导致下液通道613的尺寸发生变化。
可以理解地,在其他实施例中,也可以是密封套617的下端面设置有导液槽6121,储液座612的上端面为平面;或者,也可以是密封套617的下端面、储液座612的上端面均设置有导液槽6121;或者,下液通道613也可形成于密封套617和储液主体611之间。在另一些实施例中,储液组件61也可不包括密封套617,储液座612可直接嵌置于储液主体611的底部与储液主体611直接连接,从而下液通道613也可形成于储液座612和储液主体611之间;此时,储液主体611可采用硬质材料制成,储液座612可采用硬质或软质材料制成。
下液通道613可用于调节下液量和下液速度,确保下液顺畅稳定。下液通道613内的阻力太小,则会导致下液量较多和下液速度较快;下液通道613内的阻力太大,则会导致下液量较少和下液速度减慢。下液通道613内的阻力需求与雾化腔6212内的负压相关,通常来说,液态基质的粘度越大,则液态基质在下液通道613中流通时的阻力越大;下液通道613的长度越越长,则下液通道613内的阻力越大;下液通道613的截面积越大,下液通道613内的阻力越小;下液通道613的曲折程度越多,下液通道613内的阻力越大。在一些实施例中,当液态基质的粘度为20cp~250cp时,下液通道613的长度可以为3mm~100mm,截面尺寸(例如孔径、长度或宽度等尺寸)可以为0.2mm~0.8mm。
图20-22分别示出了本发明一些替代方案中的储液座612,作为上述第六实施例中的储液座612的替代方案。
其中,在图20所示的第一替代方案中,储液座612上形成的导液槽6121呈方波形,其可包括若干个直线形的第一槽段6123以及设置于该若干个第一槽段6123同一侧的若干个方形的第二槽段6124,即该若干个第二槽段6124沿导液槽6121延伸方向的一侧间隔分布。在本实施例中,该若干个第一槽段6123的长度相等,该若干个第二槽段6124的尺寸(每一第一槽段6123各分段的长度)也相等。可以理解地,在其他实施例中,该若干个第一槽段6123的长度也可不相等,和/或,该若干个第二槽段6124的尺寸也可不相等。
在图21所示的第二替代方案中,储液座612上形成的导液槽6121呈方波形,其可包括若干个方形的第一槽段6123以及若干个方形的第二槽段6124。该若干个第一槽段6123、若干个第二槽段6124沿导液槽6121延伸方向的两侧交替分布。在本实施例中,该若干个第一槽段6123的尺寸(每一第一槽段6123各分段的长度)不等,该若干个第二槽段6124的尺寸(每一第二槽段6124各分段的长度)也不等。可以理解地,在其他实施例中,该若干个第一槽段6123的尺寸也可相等,该若干个第二槽段6124的尺寸也可相等。此外,第一槽段6123的尺寸也可与第二槽段6124的尺寸相等或不等。
在图22所示的第三替代方案中,储液座612上形成的导液槽6121呈S形。
图23示出了本发明第七实施例中的电子雾化装置100的储液雾化组件60,其与上述实施例的主要区别在于,本实施例中的下液通道613、进液通道622均分别有两个,两个下液通道613与两个进液通道622分别对应连通。进一步地,两个下液通道613相对于储液组件61的中轴线呈旋转对称设置,两个进液通道622相对于喷嘴62的中轴线呈旋转对称设置,从而在储液组件61和喷嘴62组装时可无需考虑装配方向。此外,在本实施例中,两个进液通道622分别沿喷嘴62的径向方向延伸,且两个进液通道622分别位于喷嘴62的径向两相对侧。通过两个对称设置的进液通道622为雾化腔6212供液,可降低流量脉动带来的影响,使得瞬时流量更加稳定。
在一些实施例中,每一进液通道622的直径可小于等于0.4mm,或者,每一进液通道622的截面积小于等于0.126mm²。每一进液通道622通过进液口6220接入雾化腔6212,该进液口6220的中心线与雾化面6211之间的垂直距离的范围可以为0.3mm~0.8mm。
可以理解地,在其他实施例中,下液通道613、进液通道622的个数也可以为两个以上,该两个以上下液通道613可沿储液组件61的周向均匀间隔分布,该两个以上进液通道622可沿喷嘴62的周向均匀间隔分布。
此外,在本实施例中,还可缩小雾化腔6212的孔径W1,从而减小雾化面6211的面积,使雾化口6203处参与气液切割的液态基质更加集中,并使负压供液到气液剪切这一过程更加连续,从而降低脉动带来的影响,使得瞬时的流量更加稳定。在一些实施例中,雾化腔6212的孔径、雾化面6211的外径可以为0.4~0.7mm。可以理解地,该通过减小雾化面6211的面积来减小脉动的方式也适用于单进液通道622供液的情况。
图24-25示出了本发明第八实施例中电子雾化装置100的储液雾化组件60,其与上述实施例的主要区别在于,本实施例中用于与雾化通道621连通的进液通道622有两个,两个进液通道622沿雾化通道621的周向呈旋转对称设置。通过两个对称设置的进液通道622为雾化通道621供液,可降低流量脉动带来的影响,使得瞬时流量更加稳定。
在一些实施例中,每一进液通道622的直径可小于等于0.4mm,或者,每一进液通道622的截面积小于等于0.126mm²。每一进液通道622通过进液口6220接入雾化腔6212,该进液口6220的中心线与雾化面6211之间的垂直距离的范围可以为0.3mm~0.8mm。
在一些实施例中,至少一个进液通622的轴线与雾化腔6212的中轴线不相交,即,至少一个进液通道622的出口方向不正对雾化腔6212的中轴线,以使液态基质进入雾化腔6212后具有周向速度。进一步地,在本实施例中,每一进液通道622与雾化通道621的腔壁相切,切向设计能够使进来的液态基质获得切向速度,加大气液的速度差,从而更有利于雾化,提升雾化效果。
用于连通储液腔610与两个进液通道622的下液通道613包括第一通道6131和第二通道6132。第一通道6131可以为直线形通道,第一通道6131的一端与储液腔610相连通,另一端与第二通道6132相连通。第二通道6132为环形通道,其环绕于雾化通道621外并可与雾化通道621同轴设置。每一进液通道622的一端与第二通道6132相连通,另一端与雾化通道621相连通。此外,在本实施例中,喷嘴62与储液座612一体成型。
可以理解地,在其他实施例中,进液通道622的个数并不局限于两个,其也可以为两个以上;该至少两个进液通道622可沿雾化通道621的周向均匀间隔分布。第一通道6131也可以为非直线形通道,第一通道6131的数量也可以为两个或两个以上。在另一些实施例中,喷嘴62与储液座612也可分别成型后再组装在一起。
此外,在本实施例中,也可通过缩小雾化腔6212的孔径W1,从而减小雾化面6211的面积,以使雾化口6203处参与气液切割的液态基质更加集中,并使负压供液到气液剪切这一过程更加连续,从而降低脉动带来的影响,使得瞬时流量更加稳定。
图26-27示出了本发明第九实施例中电子雾化装置100的储液雾化组件60,其与上述实施例的主要区别在于,本实施例中的储液雾化组件60的供气通道620包括用于改变气流流向的至少一个旋流通道6206。
具体地,该至少一个旋流通道6206可设置于收缩通道6202内,且被配置为能使进入供气通道621的高速气流的至少部分沿雾化口6220的边缘流动。通过该至少一个旋流通道6206制造旋流,使原本通过收缩通道6202的能量集中在雾化口6203中心区域的射流改变为能量集中在雾化口6203边缘的具有切向速度的旋流,使得雾化口6203处切割液膜的气流速度更高、能量更大,同时在相同输入气流条件下的能量利用率更高,雾化所需的气液比更低,且切割后形成液体颗粒的粒径更小,轴向射流速度更低,有利于配合加热段的设计。旋流通道6206的设计原则为,从旋流通道6206的纵向一侧看向另一侧时不能看穿,即是使气流无法竖直通过旋流通道6206的设计结构。
进一步地,在本实施例中,喷嘴雾化组件60还包括旋流塞65,该旋流塞65设置于收缩通道6202中,用于形成旋流通道6206。该至少一个旋流通道6206可包括形成于旋流塞65外表面的旋流槽6260和/或形成于旋流塞65内的旋流孔。具体地,在本实施例中,旋流塞626为圆台形,旋流塞626的外表面形成有两个弧形的旋流槽6260。可以理解地,在其他实施例中,旋流槽6260的个数也可以为两个或两个以上,该至少两个旋流槽6260可沿旋流塞626的周向均匀间隔分布,且该至少两个旋流槽6260相对于旋流塞626的中轴线呈旋转对称设置。
每一旋流槽6260均具有远离雾化口6203的入口端6261以及靠近雾化口6203的出口端6262。在一些实施例中,该入口端6261的截面积范围可以为0.4mm²~0.8mm²,该出口端6262的截面积可以为0.04mm²~0.15mm²,每一旋流槽6260的中心线与竖直方向的倾斜角可以为45°~75°,旋流槽6260的高度可以为1.2mm~1.8mm。此外,旋流槽6260的出口端6262与雾化口6203之间具有一定的垂直距离,该垂直距离可以为0.6mm~1.2mm。可以理解,上述高度是指入口端6261与出口端6262在所述供气通道的轴向上的距离,上述垂直距离是指出口端6262与雾化口6203在供气通道620的轴向上的距离。
可以理解地,在其他实施例中,旋流塞65内也可形成有旋流孔。该旋流孔为为倾斜的切向孔,该切向孔与雾化口6203的孔壁相切,从而达到使气流多数沿雾化口6203边缘流动的目的。
此外,本实施例中的储液组件61为一体结构,即储液主体611和储液座612一体成型。在其他实施例中,储液组件61也可以为分体结构。
图28-31示出了本发明第十实施例中电子雾化装置100的喷嘴62,其与上述实施例中具有轴对称结构的喷嘴62不同,本实施例中的喷嘴62为面对称的平面化结构,喷嘴62内形成的气流通道627和进液通道622均为平面型通道,气流通道627、进液通道622的各特征均具有相同的厚度。
具体地,在本实施例中,喷嘴62具有方形外形。与上述实施例类似,在本实施例中,气流通道627可由喷嘴62的下端面沿纵向延伸至喷嘴62的上端面,并可与喷嘴62同轴设置。气流通道627也包括供气通道620和雾化通道621,供气通道620、雾化通道621的构成与上述实施例类似,在此不再赘述。与上述实施例不同的是,在本实施例中,雾化面6211为矩形平面,雾化口6203为矩形形状并与雾化面6211同轴设置,且雾化口6203、雾化面6211具有相同的厚度。本实施例中,仅雾化面6211靠近进液通道622的一侧能够形成液膜,从而使得该喷嘴62为单侧雾化结构。可以理解地,在其他实施例中,也可在气流通道627的两侧分别设置一进液通道622,从而使得喷嘴62能够实现双侧雾化。
进液通道622可包括依次连通的第一进液段6221和第二进液段6222。该第一进液段6221可以为沿横向延伸的直线形通道,其一端与雾化通道621相连通,另一端与第二进液段6222相连通。第一进液段6221靠近雾化通道621的一端具有进液口6220,第一进液段6221内的液态基质经由进液口6220输出到雾化通道621。进液口6220可位于雾化腔6212和扩张通道6213的交接处,进液口6220的上侧、下侧分别与雾化腔6212和扩张通道6213相连通。该结构能够实现液态基质在雾化口6203边缘的一次切割雾化以及在进液口6220与扩张通道6213的交接处6214的二次切割雾化,从而有效降低喷雾中的大液滴分布。具体地,由第一进液段6221进入的液态基质200在进液口6220处会因空气压力形成倾斜液面203,在雾化面6211靠近第一进液段6221的一侧会因毛细力形成弯月液面202,由供气通道620进入的高速气流会在雾化口6203靠近第一进液段6221的一侧边缘进行气液剪切雾化形成较大的雾化液滴,该较大的雾化液滴能够撞击至进液口6220与扩张通道6213的交接处6214进一步破碎雾化,从而形成粒子尺寸更小的喷雾。液态基质200在雾化通道621内的雾化过程为非相变的方式,雾化通道621内雾化后形成的液体颗粒的粒径分布可达到SMD=30μm范围内。其中,SMD=液体颗粒总体积/液体颗粒总表面积,表示了液体颗粒的平均粒径。
该第二进液段6222可倾斜设置,其可以为倾斜设置的直线形通道。第二进液段6222的延伸方向与第一进液段6221的延伸方向之间的夹角可以为锐角或钝角。此外,在本实施例中,第二进液段6222、第一进液段6221具有相同的宽度。可以理解地,在其他实施例中,第二进液段6222、第一进液段6221也可具有不同的宽度,例如,第二进液段6222的宽度可大于第一进液段6221的宽度。在另一些实施例中,第二进液段6222的延伸方向也可与第一进液段6221的延伸方向平行。
在本实施例中,气流通道627和进液通道622的各特征(连通通道6201、收缩通道6202、雾化口6203、雾化面6211、雾化腔6212、扩张通道6213、第一进液段6221、第二进液段6222、进液口6220)均具有相同的厚度δ。该厚度δ可以理解为在图31中,垂直于纸面方向上通道的长度。在一些实施例中,气流通道627和进液通道622的厚度δ可以为0.15mm~0.25mm。
喷嘴62为平面化的面对称结构,其可以为一体化结构。在一些实施例中,喷嘴62可通过光刻成型,其可由具有气流通道627和进液通道622的特征平面经过光刻得到,从而形成具有统一光刻深度的矩形通道。具体地,在第一基板(例如硅片)上进行光刻得到具有流道结构的流道基板,再将该流道基板和第二基板(例如玻璃)进行键合或组合以得到一致性高的喷嘴。此时,上述厚度δ可以理解为光刻深度。在另一些实施例中,喷嘴62也可通过拉伸成型,其可由具有气流通道627和进液通道622的特征平面经过拉伸得到,从而形成具有统一拉伸高度的矩形通道,此时,上述厚度δ可以理解为拉伸高度。另外,喷嘴62也可以采用三维打印等其他制造工艺成型。
雾化腔6212的宽度W1的大小与雾化腔6212内产生的供液负压大小相关,在一些实施例中,W1可以为0.7mm~1.4mm。连通通道6201的宽度W2的大小与进气阻力的大小相关,在一些实施例中,连通通道6201的宽度W2的大小可以为0.8mm~2mm。通过控制雾化口6203的宽度W3的大小可以控制气液剪切速度,控制雾化效果和空气量,在一些实施例中,雾化口6203的宽度W3为0.15mm~0.25mm。第二进液段6222与扩张通道6213之间的夹角θ1与二次破碎雾化效果相关,在一些实施例中,θ1可以为30°~70°。收缩通道6202的收缩角θ2的大小与控制通道阻力大小相关,其在一些实施例中可以为20°~80°。第二进液段6222的宽度φ1可以为0.2mm~0.4mm,第二进液段6222的延伸长度L1可大于等于0.4mm,可通过第二进液段6222内的毛细力减少液态基质回流。雾化通道621的高度H可以为0.6mm~1.3mm,第二进液段6222的底壁边缘与雾化面6211之间的垂直距离h可以为0.2mm~0.6mm,H/W1可以为范围1~1.2,以使有合适负压并且雾化后减少液滴碰壁。
进一步地,由于单侧喷嘴62的平面化结构,可设计与之一体化的包含喷嘴62、储液腔610、换气通道616、供液通道63的储液雾化组件60结构,一体式加工,各零件之间没有装配关系,气密性好,各流道结构的加工精度容易控制,精度高。
图32-33示出了本发明第十一实施例中电子雾化装置100的储液雾化组件60,做为上述第十实施例的进一步改进,本实施例中的储液雾化组件60整体为面对称结构的一体结构,其可通过一体化加工实现。
具体地,储液雾化组件60整体具有阶梯形状,其可包括储液部601以及设置于储液部601一侧的喷嘴部602。储液部601内形成有储液腔610和换气通道616,喷嘴部602内形成供气通道620、雾化通道621以及进液通道622。储液部601的外形尺寸大于喷嘴部602的外形尺寸,具体地,在本实施例中,储液部601、喷嘴部602具有相同的厚度,储液部601的高度大于喷嘴部602的高度,保证储液部601内形成的储液腔610具有足够的储液空间。储液雾化组件60内形成的气流通道627、进液通道622以及换气通道616的结构可采用上述任一种实施例中的通道结构。
可以理解地,上述各技术特征可以任意组合使用而不受限制。
以上实施例仅表达了本发明的具体实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制;应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,可以对上述技术特点进行自由组合,还可以做出若干变形和改进,这些都属于本发明的保护范围;因此,凡跟本发明权利要求范围所做的等同变换与修饰,均应属于本发明权利要求的涵盖范围。

Claims (18)

  1. 一种电子雾化装置,其特征在于,包括气源、喷嘴以及用于存储液态基质的储液腔;所述喷嘴内形成有气流通道以及将所述气流通道与所述储液腔相连通的进液通道;所述气源用于为所述气流通道提供高速气流,以使从所述进液通道进入到所述气流通道的液态基质受所述高速气流作用而产生雾化。
  2. 根据权利要求1所述的电子雾化装置,其特征在于,所述气流通道包括与所述气源连接的供气通道以及与所述储液腔连通的雾化腔;所述雾化腔靠近所述供气通道的一端形成有雾化面,所述雾化面设置有连通所述供气通道和所述雾化腔的雾化口,流入所述雾化腔的液态基质能够在所述雾化面形成液膜,所述液膜能够被所述高速气流切割而形成液体颗粒。
  3. 根据权利要求2所述的电子雾化装置,其特征在于,所述雾化腔的孔壁面垂直于所述雾化面。
  4. 根据权利要求2所述的电子雾化装置,其特征在于,所述雾化面呈环状,所述雾化口的中轴线与所述雾化面的中轴线重合。
  5. 根据权利要求2所述的电子雾化装置,其特征在于,所述雾化腔的孔径为0.7mm~1.3mm。
  6. 根据权利要求2所述的电子雾化装置,其特征在于,所述雾化腔的长度为0.8mm~3.0mm。
  7. 根据权利要求2所述的电子雾化装置,其特征在于,所述雾化口的孔径为0.22mm~0.35mm。
  8. 根据权利要求2所述的电子雾化装置,其特征在于,所述供气通道包括收缩通道,所述收缩通道与所述雾化腔相连通,用于加速来自所述气源的气流。
  9. 根据权利要求2所述的电子雾化装置,其特征在于,所述气流通道还包括扩张通道,所述扩张通道与所述雾化腔远离所述供气通道的一端相连通,用于将所述雾化腔内生成的液体颗粒扩散喷出。
  10. 根据权利要求9所述的电子雾化装置,其特征在于,所述扩张通道的孔壁面为流线型扩张形状。
  11. 根据权利要求2所述的电子雾化装置,其特征在于,所述进液通道包括靠近所述雾化腔的供液末段,所述供液末段的延伸方向与所述雾化腔的延伸方向垂直。
  12. 根据权利要求11所述的电子雾化装置,其特征在于,所述供液末段内能够形成毛细力。
  13. 根据权利要求11所述的电子雾化装置,其特征在于,所述供液末段中心线与所述雾化面之间的垂直距离在0.8mm以下。
  14. 根据权利要求1所述的电子雾化装置,其特征在于,所述电子雾化装置还包括加热组件,所述喷嘴雾化形成的液体颗粒能够撞击所述加热组件而被所述加热组件再次雾化。
  15. 根据权利要求1-14任一项所述的电子雾化装置,其特征在于,所述电子雾化装置还包括储液组件,所述储液腔形成于所述储液组件内,所述喷嘴至少部分收容于所述储液组件。
  16. 根据权利要求15所述的电子雾化装置,其特征在于,所述储液组件内还形成有与所述储液腔相连通的换气通道。
  17. 根据权利要求1-14任一项所述的电子雾化装置,其特征在于,所述电子雾化装置还包括外壳,所述气源和所述喷嘴均收容于所述外壳中;所述外壳内形成有容腔,所述电子雾化装置还包括收容于所述容腔中的气流感应元件。
  18. 根据权利要求17所述的电子雾化装置,其特征在于,所述外壳内形成有用于输出气溶胶的输出通道,所述外壳上形成有补气口,所述外壳内形成有分别与所述补气口和所述输出通道相连通的补气通道,所述补气通道与所述容腔相连通。
PCT/CN2022/091524 2022-04-29 2022-05-07 电子雾化装置 WO2023206597A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210468904.1 2022-04-29
CN202210468904.1A CN116998763A (zh) 2022-04-29 2022-04-29 电子雾化装置

Publications (1)

Publication Number Publication Date
WO2023206597A1 true WO2023206597A1 (zh) 2023-11-02

Family

ID=88517058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091524 WO2023206597A1 (zh) 2022-04-29 2022-05-07 电子雾化装置

Country Status (2)

Country Link
CN (1) CN116998763A (zh)
WO (1) WO2023206597A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109561734A (zh) * 2016-10-11 2019-04-02 英美烟草(投资)有限公司 气溶胶供应系统及方法
US10286163B1 (en) * 2014-03-04 2019-05-14 Philip J. Paustian On demand aerosolized delivery inhaler
CN211794321U (zh) * 2019-12-06 2020-10-30 深圳雪雾科技有限公司 一种电子烟
CN112545063A (zh) * 2020-12-11 2021-03-26 昂纳自动化技术(深圳)有限公司 电子雾化装置
CN212911671U (zh) * 2020-08-06 2021-04-09 常州市派腾电子技术服务有限公司 雾化器及气溶胶发生装置
CN112690499A (zh) * 2020-12-22 2021-04-23 深圳市兆威机电股份有限公司 一种电子烟
CN215124311U (zh) * 2020-12-11 2021-12-14 昂纳自动化技术(深圳)有限公司 电子雾化装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10286163B1 (en) * 2014-03-04 2019-05-14 Philip J. Paustian On demand aerosolized delivery inhaler
CN109561734A (zh) * 2016-10-11 2019-04-02 英美烟草(投资)有限公司 气溶胶供应系统及方法
CN211794321U (zh) * 2019-12-06 2020-10-30 深圳雪雾科技有限公司 一种电子烟
CN212911671U (zh) * 2020-08-06 2021-04-09 常州市派腾电子技术服务有限公司 雾化器及气溶胶发生装置
CN112545063A (zh) * 2020-12-11 2021-03-26 昂纳自动化技术(深圳)有限公司 电子雾化装置
CN215124311U (zh) * 2020-12-11 2021-12-14 昂纳自动化技术(深圳)有限公司 电子雾化装置
CN112690499A (zh) * 2020-12-22 2021-04-23 深圳市兆威机电股份有限公司 一种电子烟

Also Published As

Publication number Publication date
CN116998763A (zh) 2023-11-07

Similar Documents

Publication Publication Date Title
CN111011932A (zh) 电子雾化装置及其雾化器
WO2023130767A1 (zh) 电子雾化装置及其雾化器
WO2023206597A1 (zh) 电子雾化装置
WO2023207366A1 (zh) 电子雾化装置及其储液雾化组件
WO2023155476A1 (zh) 雾化器和雾化装置
WO2023207314A1 (zh) 电子雾化装置及其储液雾化组件
WO2023241100A1 (zh) 电子雾化装置
WO2023207313A1 (zh) 电子雾化装置及其喷嘴雾化组件
WO2023207322A1 (zh) 电子雾化装置及其储液雾化组件
WO2023207292A1 (zh) 电子雾化装置及其储液雾化组件
WO2023207368A1 (zh) 电子雾化装置及其储液雾化组件和喷嘴
WO2023207312A1 (zh) 喷嘴组件及电子雾化装置
TW200932204A (en) An atomizer capable of speeding up the mist output
WO2023207323A1 (zh) 电子雾化装置
WO2023241101A1 (zh) 电子雾化装置
WO2023207320A1 (zh) 电子雾化装置
CN219069464U (zh) 雾化器及气溶胶生成装置
WO2024037033A1 (zh) 电子雾化装置及雾化器
WO2023207321A1 (zh) 雾化喷嘴、储液雾化喷嘴及电子雾化装置
WO2023241131A1 (zh) 电子雾化装置
WO2024037015A1 (zh) 电子雾化装置及雾化器和喷嘴组件
CN116998784A (zh) 电子雾化装置
CN218043795U (zh) 雾化器及气溶胶发生装置
CN216408956U (zh) 一种低碳节能的上进风式燃烧器
CN216931912U (zh) 一种气溶胶生成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939440

Country of ref document: EP

Kind code of ref document: A1