WO2023207321A1 - 雾化喷嘴、储液雾化喷嘴及电子雾化装置 - Google Patents

雾化喷嘴、储液雾化喷嘴及电子雾化装置 Download PDF

Info

Publication number
WO2023207321A1
WO2023207321A1 PCT/CN2023/079129 CN2023079129W WO2023207321A1 WO 2023207321 A1 WO2023207321 A1 WO 2023207321A1 CN 2023079129 W CN2023079129 W CN 2023079129W WO 2023207321 A1 WO2023207321 A1 WO 2023207321A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
atomization
liquid
liquid inlet
air flow
Prior art date
Application number
PCT/CN2023/079129
Other languages
English (en)
French (fr)
Inventor
林作飘
刘成川
宋惠雪
杨豪
雷桂林
Original Assignee
海南摩尔兄弟科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海南摩尔兄弟科技有限公司 filed Critical 海南摩尔兄弟科技有限公司
Publication of WO2023207321A1 publication Critical patent/WO2023207321A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F47/00Smokers' requisites not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/02Sprayers or atomisers specially adapted for therapeutic purposes operated by air or other gas pressure applied to the liquid or other product to be sprayed or atomised
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge

Definitions

  • the present invention relates to the field of atomization, and more specifically, to an atomization nozzle, a liquid storage atomization nozzle and an electronic atomization device.
  • Existing electronic atomization devices mainly use porous media such as porous ceramics or porous cotton combined with heating components for heating and atomization. Due to the high heating temperature during atomization, when the supply of liquid matrix is insufficient, the small amount of liquid matrix on the heating component is not enough to consume the electrical energy released on the heating component, causing the temperature of the heating surface to further increase, thereby further aggravating the thermal cracking of the liquid matrix. , and even the formation of carbon deposits and dry burning can easily cause the formed aerosol to produce a burnt smell, leading to a significant deterioration in taste.
  • the technical problem to be solved by the present invention is to provide an atomizing nozzle, a liquid storage atomizing nozzle and an electronic atomizing device in view of the above-mentioned defects of the prior art.
  • the technical solution adopted by the present invention to solve the technical problem is to construct an atomizing nozzle, and an air flow channel and a liquid inlet channel are formed in the atomizing nozzle, and the air flow channel and the liquid inlet channel are planar channels,
  • the air flow channel is used to circulate high-speed air flow
  • the liquid inlet channel is used to input a liquid substrate into the air flow channel.
  • the liquid substrate entering the air flow channel is atomized by the high-speed air flow circulating in the air flow channel.
  • the atomization nozzle is formed by stretch molding, three-dimensional printing, or photolithography processing from a substrate.
  • the air flow channel and the liquid inlet channel have the same thickness; the thickness of the air flow channel and the liquid inlet channel is 0.15mm ⁇ 0.25mm.
  • the air flow channel includes an atomization channel and an air supply channel.
  • the atomization channel is connected to the air supply channel and the liquid inlet channel respectively.
  • the atomization channel is close to the air supply channel.
  • An atomization surface is formed at one end of the channel.
  • the atomization surface is provided with an atomization port that connects the air supply channel and the atomization channel.
  • the liquid matrix flowing into the atomization channel can form an atomization surface on the atomization surface.
  • the liquid film is cut into liquid particles by the high-speed airflow at the edge of the atomization port.
  • the atomization channel includes an atomization chamber and an expansion channel.
  • the expansion channel is connected to an end of the atomization chamber away from the air supply channel.
  • the width of the expansion channel is determined by the width close to the mist.
  • the atomization chamber gradually increases from one end to an end far away from the atomization chamber.
  • the atomization chamber, the atomization surface, and the atomization port all have the same thickness
  • the width of the atomization cavity is 0.7mm ⁇ 1.4mm, the width of the atomization port is 0.15mm ⁇ 0.25mm, and the height of the atomization channel is 0.6mm ⁇ 1.3mm.
  • the liquid inlet channel includes a liquid inlet terminal section connected with the atomization channel, and the liquid inlet terminal section has a liquid inlet near one end of the atomization channel, and the liquid inlet port Connected to the intersection of the atomization chamber and the expansion channel; the liquid particles formed by cutting and atomizing at the edge of the atomization port can hit the intersection of the liquid inlet and the expansion channel and be atomized again .
  • the extension direction of the liquid inlet end section is perpendicular to the extension direction of the atomization channel.
  • the angle between the final liquid inlet section and the expansion channel is 30° to 70°.
  • the vertical distance between the edge of the end liquid inlet section close to the atomization surface and the atomization surface is 0.2mm ⁇ 0.6mm.
  • the extension length of the final liquid inlet section is greater than or equal to 0.4mm, and the width of the final liquid inlet section is 0.2mm ⁇ 0.4mm.
  • the air supply channel includes a constriction channel, and the width of the constriction channel gradually decreases from an end far away from the atomization chamber to an end close to the atomization chamber.
  • the contraction angle of the contraction channel is 20° to 80°, and the width of the end of the contraction channel away from the atomization chamber is 0.8 mm to 2 mm.
  • the present invention also provides an electronic atomization device, including an atomization nozzle as described in any one of the above.
  • the present invention also provides a liquid storage atomization nozzle, which is formed with a liquid storage cavity for storing a liquid substrate, an air flow channel for circulating high-speed air flow, and a liquid storage cavity and the air flow connected thereto.
  • the liquid inlet channel of the channel, the liquid storage chamber, the air flow channel and the liquid inlet channel are all planar, and the liquid substrate entering the air flow channel can be misted by the high-speed air flow circulating in the air flow channel. change.
  • a ventilation channel is also formed in the liquid storage atomization nozzle to connect the liquid storage chamber with the outside world.
  • the liquid storage chamber, the air flow channel, the liquid inlet channel and the ventilation channel all have the same thickness
  • the liquid storage atomization nozzle is formed by stretch molding, three-dimensional printing or by
  • the substrate is formed by photolithography.
  • the air flow channel includes an atomization channel and an air supply channel.
  • the atomization channel is connected to the air supply channel and the liquid inlet channel respectively.
  • the atomization channel is close to the air supply channel.
  • An atomization surface is formed at one end of the channel.
  • the atomization surface is provided with an atomization port that connects the air supply channel and the atomization channel.
  • the liquid matrix flowing into the atomization channel can form an atomization surface on the atomization surface.
  • the liquid film is cut into liquid particles by the high-speed airflow at the edge of the atomization port.
  • the atomization channel includes an atomization chamber and an expansion channel.
  • the expansion channel is connected to an end of the atomization chamber away from the air supply channel.
  • the width of the expansion channel is determined by the width close to the mist.
  • the atomization chamber gradually increases from one end to an end far away from the atomization chamber.
  • the air supply channel includes a constriction channel, and the width of the constriction channel gradually decreases from an end far away from the atomization chamber to an end close to the atomization chamber.
  • the present invention also provides an electronic atomization device, including the liquid storage atomization nozzle as described in any one of the above.
  • the present invention uses high-speed airflow to assist in atomizing the continuously flowing liquid matrix into liquid particles. Since the surface area of the liquid particles is expanded, it is easier to heat and evaporate, and low-temperature atomization can be achieved; in addition, because The nozzle has a planar structure, which is conducive to integrated processing and molding, and can achieve better manufacturing accuracy and good air tightness.
  • Figure 1 is a schematic three-dimensional structural diagram of an atomizing nozzle in some embodiments of the present invention
  • Figure 2 is a schematic structural diagram of the longitudinal section of the atomizing nozzle shown in Figure 1;
  • Figure 3 is a schematic diagram of the atomization principle of the atomization nozzle shown in Figure 2;
  • Figure 4 is a dimensioned diagram of the atomizing nozzle shown in Figure 2;
  • Figure 5 is a schematic three-dimensional structural diagram of a liquid storage atomizing nozzle in some embodiments of the present invention.
  • Figure 6 is a schematic structural diagram of a longitudinal section of the liquid storage atomizing nozzle shown in Figure 5;
  • Figure 7 is a schematic three-dimensional structural diagram of an electronic atomization device in some embodiments of the present invention.
  • FIG. 8 is a schematic longitudinal cross-sectional structural view of the electronic atomization device shown in FIG. 7 .
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • connection In the present invention, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated into one; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interactive relationship between two elements, unless otherwise specified restrictions. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood according to specific circumstances.
  • a first feature being “on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediate medium. touch.
  • a first feature being “above” a second feature can mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is at a higher level than the second feature.
  • the first feature being “below” the second feature may mean that the first feature is directly below or diagonally below the second feature, or it may simply mean that the first feature is less horizontally than the second feature.
  • FIGS 1-4 show an atomizing nozzle 10 in some embodiments of the present invention.
  • An airflow channel 11 and a liquid inlet channel 12 are formed in the atomizing nozzle 10.
  • the air flow channel 11 is used to circulate high-speed air flow
  • the liquid inlet channel 12 is used to input liquid substrate into the air flow channel 11.
  • the liquid substrate entering the air flow channel 11 from the liquid inlet channel 12 can be affected by the high-speed air flow circulating in the air flow channel 11. Atomized to form fine liquid particles.
  • the air flow channel 11 and the liquid inlet channel 12 are both planar channels, and each feature of the air flow channel 11 and the liquid inlet channel 12 has the same thickness.
  • the atomizing nozzle 10 has a square shape.
  • the airflow channel 11 can extend longitudinally from the lower end surface of the atomizing nozzle 10 to the upper end surface of the atomizing nozzle 10 , and can be coaxially arranged with the atomizing nozzle 10 .
  • the air flow channel 11 may include an atomization channel 112 and an air supply channel 111.
  • the atomization channel 112 is connected to the air supply channel 111 and the liquid inlet channel 12 respectively.
  • An end surface of the atomization channel 112 close to the air supply channel 111 forms an atomization surface 1123, and an atomization port 1120 is also formed on the atomization surface 1123.
  • the atomization surface 1123 is a rectangular plane
  • the atomization port 1120 is rectangular in shape and is coaxially arranged with the atomization surface 1123
  • the atomization port 1120 and the atomization surface 1123 have the same thickness.
  • the high-speed airflow from the air supply channel 111 is sprayed into the atomization channel 112 through the atomization port 1120 and flows at high speed in the atomization channel 112.
  • the liquid matrix entering the atomization channel 112 from the liquid inlet channel 12 can flow on the atomization surface.
  • a liquid film forms on 1123.
  • the liquid film moves to the edge of the hole wall of the atomization port 1120 and meets the high-speed airflow, and is cut and atomized by the high-speed airflow into fine liquid particles.
  • the liquid particles are then taken away from the atomization port 1120 by the airflow. Then it is ejected with the air flow.
  • only the side of the atomizing surface 1123 close to the liquid inlet channel 12 can form a liquid film, so that the atomizing nozzle 10 has a single-sided atomizing structure.
  • a liquid inlet channel 12 can also be provided on both sides of the air flow channel 11, so that the atomizing nozzle 10 can achieve double-sided atomization.
  • the atomization channel 112 may include an atomization chamber 1121 and an expansion channel 1122.
  • the atomization chamber 1121 is a straight channel, and its hole wall is perpendicular to the atomization surface 1123 .
  • the expansion channel 1122 is connected with the end of the atomization chamber 1121 away from the air supply channel 111 , and the end of the expansion channel 1122 close to the atomization chamber 1121 has the same width as the atomization chamber 1121 .
  • the expansion channel 1122 is in an expanded shape, and its width gradually increases from an end close to the atomization chamber 1121 to an end far away from the atomization chamber 1121.
  • the liquid particles generated after atomization can be diffused and ejected in the form of a jet, increasing the size of the liquid particles. spray area.
  • the air supply channel 111 may include a constriction channel 1111.
  • the constriction channel 1111 has a constriction shape, and its width gradually decreases from an end far away from the atomization chamber 1121 to an end close to the atomization chamber 1121, thereby accelerating the air flow. Then it is sprayed to the atomization chamber 1121.
  • the air supply channel 111 also includes a communication channel 1112, which is connected with an end of the contraction channel 1111 away from the atomization chamber 1121.
  • the communication channel 1112 may be a straight channel extending longitudinally.
  • the upper end of the communication channel 1112 is connected with the contraction channel 1111 , and the width of the communication channel 1112 is consistent with the width of the lower end of the contraction channel 1111 .
  • the air supply channel 111 may also include only the constriction channel 1111; or, when the air flow rate is sufficient, the air supply channel 111 may only include the communication channel 1112.
  • the liquid inlet channel 12 includes a liquid inlet end section 121 connected with the air flow channel 11 .
  • the liquid inlet end section 121 can be a linear channel extending laterally, and its extension direction is perpendicular to the extension direction of the atomization channel 112 .
  • the liquid inlet end section 121 has a liquid inlet 120 at one end close to the atomization channel 112.
  • the liquid substrate in the liquid inlet end section 121 is output to the atomization channel 112 through the liquid inlet 120.
  • the liquid inlet 120 may be located at the intersection of the atomization chamber 1121 and the expansion channel 1122.
  • the upper and lower sides of the liquid inlet 120 are connected to the atomization chamber 1121 and the expansion channel 1122 respectively.
  • This structure can realize primary cutting and atomization of the liquid substrate at the edge of the atomizing port 1120 and secondary cutting and atomizing at the junction 1201 of the liquid inlet 120 and the expansion channel 1122, thereby effectively reducing the distribution of large droplets in the spray.
  • the liquid matrix 200 entering from the final liquid inlet section 121 will form an inclined liquid surface 201 at the liquid inlet 120 due to air pressure, and will form a curve due to capillary force on the side of the atomization surface 1123 close to the final liquid inlet section 121 .
  • the high-speed airflow entering from the air supply channel 111 will perform gas-liquid shear atomization at the edge of the atomization port 1120 near the liquid inlet end section 121 to form larger atomized droplets.
  • the atomized droplets can hit the junction 1201 of the liquid inlet 120 and the expansion channel 1122 to further break up the atomization, thereby forming a spray with smaller particle size.
  • SMD total volume of liquid particles/total surface area of liquid particles, which represents the average particle size of liquid particles.
  • the liquid inlet channel 12 may also include a liquid inlet front section 122 connected to an end of the liquid inlet end section 121 away from the atomization channel 112 .
  • the front liquid inlet section 122 can be arranged at an angle, and the angle between the extension direction of the front liquid inlet section 122 and the extension direction of the final liquid inlet section 121 can be an acute angle or an obtuse angle.
  • the front liquid inlet section 122 and the final liquid inlet section 121 have the same width. It can be understood that in other embodiments, the front liquid inlet section 122 and the final liquid inlet section 121 may also have different widths.
  • the width of the front liquid inlet section 122 may be greater than the width of the final liquid inlet section 121 .
  • the extending direction of the front liquid inlet section 122 may also be parallel to the extending direction of the final liquid inlet section 121 .
  • the various characteristics of the air flow channel 11 and the liquid inlet channel 12 both have the same thickness ⁇ .
  • the thickness ⁇ can be understood as the length of the channel in the direction perpendicular to the paper surface in Figure 4.
  • the thickness ⁇ of the air flow channel 11 and the liquid inlet channel 12 may be 0.15mm ⁇ 0.25mm.
  • the atomizing nozzle 10 has a plane-symmetric structure, which can be realized by integrated processing.
  • the atomizing nozzle 10 can be formed by photolithography, which can be obtained by photolithography from a characteristic plane having the air flow channel 11 and the liquid inlet channel 12, thereby forming a rectangular channel with a uniform photolithography depth.
  • photolithography is performed on a first substrate (such as a silicon wafer) to obtain a flow channel substrate with a flow channel structure, and then the flow channel substrate and a second substrate (such as glass) are bonded or combined to obtain a flow channel substrate with high consistency.
  • atomizing nozzle At this time, the above-mentioned thickness ⁇ can be understood as the photolithography depth.
  • the atomization nozzle 10 can also be formed by stretching, which can be obtained by stretching the characteristic plane with the air flow channel 11 and the liquid inlet channel 12, thereby forming a rectangular channel with a uniform stretching height.
  • the above thickness ⁇ can be understood as the tensile height.
  • the atomizing nozzle 10 can also be formed using other manufacturing processes such as three-dimensional printing.
  • the width W1 of the atomization chamber 1121 is related to the negative liquid supply pressure generated in the atomization chamber 1121. In some embodiments, the width W1 of the atomization chamber 1121 can range from 0.7 mm to 1.4 mm.
  • the size of the width W2 of the communication channel 1112 is related to the size of the air intake resistance. In some embodiments, the range of W2 may be 0.8mm ⁇ 2mm.
  • the range of W3 can be 0.15mm ⁇ 0.25mm.
  • the angle ⁇ 1 between the final liquid inlet section 121 and the expansion channel 1122 is related to the secondary crushing and atomization effect.
  • ⁇ 1 can be 30° ⁇ 70°.
  • the size of the contraction angle ⁇ 2 of the contraction channel 1111 is related to the size of the control channel resistance.
  • ⁇ 2 may be 20° ⁇ 80°.
  • the width ⁇ 1 of the liquid inlet end section 121 can be 0.2mm ⁇ 0.4mm, and the extension length L1 of the liquid inlet end section 121 can be greater than or equal to 0.4mm.
  • the capillary force in the liquid inlet end section 121 can reduce the backflow of the liquid matrix.
  • the height H of the atomization channel 112 can be 0.6mm ⁇ 1.3mm, the vertical distance h between the bottom wall edge of the liquid inlet end section 121 and the atomization surface 1123 can be 0.2mm ⁇ 0.6mm, and H/W1 can be in the range 1 ⁇ 1.2, so as to have appropriate negative pressure and reduce droplet collision after atomization.
  • Figures 5-6 show the liquid storage atomization nozzle 20 in some embodiments of the present invention.
  • the liquid storage atomization nozzle 20 in this embodiment is an integral structure with a plane-symmetrical structure. This can be achieved through integrated processing.
  • the liquid storage atomization nozzle 20 is formed with a liquid storage chamber 23 for storing the liquid substrate, an air flow channel 21 for circulating high-speed air flow, a liquid inlet channel 22 connecting the liquid storage chamber 23 and the air flow channel 21, and a liquid storage chamber 23 and an air flow channel 21.
  • a ventilation channel 24 connected to the outside world.
  • the air flow channel 21 also includes an atomization channel 212 and an air supply channel 211.
  • An end surface of the atomization channel 212 close to the air supply channel 211 forms an atomization surface 2123, and an atomization port is provided on the atomization surface 2123. 2120.
  • the high-speed airflow from the air supply channel 211 is sprayed into the atomization channel 212 through the atomization port 2120 and flows at high speed in the atomization channel 212.
  • the high-speed airflow is generated in the atomization channel 212 and the liquid inlet channel 22 by Bernoulli's equation.
  • this negative pressure is transmitted to the liquid storage chamber 23 to suck the liquid matrix in the liquid storage chamber 23 to the atomization channel 212, and form a liquid film on the atomization surface 2123.
  • the liquid film moves to the edge of the atomization port 2120 and meets the high-speed airflow, and is cut and atomized into fine liquid particles by the high-speed airflow.
  • the liquid particles are then taken away from the atomization port 2120 by the airflow, and then The airflow is ejected to complete the atomization process.
  • the atomization channel 212 in this embodiment also includes an atomization chamber 2121 and an expansion channel 2122, and the air supply channel 211 includes a communication channel 2112 and a contraction channel 2111.
  • the liquid inlet channel 22 in this embodiment is a linear channel extending laterally, and the liquid inlet 220 of the liquid inlet channel 22 is located on the hole wall of the atomization chamber 2121. It can be understood that in other embodiments, the liquid inlet 220 of the liquid inlet channel 22 can also be located at the intersection of the atomization chamber 2121 and the expansion channel 2122, and the liquid inlet channel 22 can also be a curved straight line or other shapes. .
  • the ventilation channel 24 can be used to restore the negative pressure in the liquid storage chamber 23 and solve the problem of unable to stably supply liquid due to excessive negative pressure in the liquid storage chamber 23 .
  • the reduction of the liquid matrix in the liquid storage chamber 23 will cause the air pressure to decrease.
  • bubbles will enter the liquid storage chamber 23 through the ventilation channel 24 and the negative pressure of the liquid storage chamber 23 will be restored.
  • the negative pressure area in the atomization channel 212 is used to cooperate with the ventilation channel 24 to realize automatic and stable liquid supply to the atomization channel 212.
  • the controllable negative pressure range of the liquid storage chamber 23 is -200Pa ⁇ -700Pa.
  • the structure of the ventilation passage 24 is not limited.
  • the ventilation passage 24 adopts a direct liquid ventilation structure, which may include a plurality of first ventilation passages 241 extending laterally and a longitudinally extending first ventilation passage 241 connecting the plurality of first ventilation passages 241 .
  • the second ventilation channel 242 is open.
  • the liquid storage atomization nozzle 20 has a stepped shape as a whole, and may include a larger liquid storage portion 25 and a smaller nozzle portion 26 .
  • the liquid storage chamber 23 and the ventilation channel 24 are formed in the liquid storage part 25, and the air flow channel 21 is formed in the nozzle part 26.
  • the nozzle part 26 is provided on one side of the liquid storage part 25, and the liquid storage part 25 and the nozzle part 26 have the same thickness. The height of the liquid storage part 25 is relatively large to ensure that the liquid storage chamber 23 has sufficient liquid storage space.
  • the liquid storage atomizing nozzle 20 in this embodiment can be processed in one piece. There is no assembly relationship between the components, and the air tightness is good. The processing accuracy of each flow channel structure is easy to control and the accuracy is high.
  • FIGS 7-8 illustrate an electronic atomization device 100 in some embodiments of the present invention.
  • the electronic atomization device 100 can be used to atomize a liquid substrate to generate an aerosol.
  • the aerosol can be smoked or inhaled by the user.
  • it may be substantially cylindrical. It is understandable that in other embodiments, the electronic atomization device 100 may also be in other shapes such as an elliptical column, a flat column, a square column, or the like.
  • the liquid substrate may include e-liquid or medicinal liquid.
  • the electronic atomization device 100 may include a housing 30 and a liquid storage atomization nozzle 20 housed in the housing 30 , an air source 40 , a power supply 50 , a control module 60 and a heating element 80 .
  • the air source 40 is used to provide high-speed air flow for the air flow channel 21, and it can usually be an air pump.
  • the control module 60 is electrically connected to the air source 40 and the heating element 80 respectively, and is used to receive instructions. The instructions can be triggered by the user or automatically triggered after the electronic atomization device 100 meets certain conditions.
  • the control module 60 then controls the air source 40 according to the instructions. , the work of the heating element 80.
  • the power supply 50 is electrically connected to the control module 60 , the air source 40 and the heating element 80 respectively, and is used to provide electric energy to the control module 60 , the air source 40 and the heating element 80 .
  • the heating element 80 is electrically connected to the power supply 50 and can generate heat after being powered on.
  • the structure and heating form of the heating element 80 are not limited. For example, it can be a heating net, a heating sheet, a heating wire or a heating film.
  • the heating form can be resistance conduction heating, infrared radiation heating, electromagnetic induction heating or composite heating. Heated form.
  • An output channel 31 is also formed in the housing 30 , and the heating element 80 can be disposed in the output channel 31 and located above the air flow channel 21 .
  • the liquid particles ejected from the airflow channel 21 hit the heating element 80 upward, and are evaporated and heated by the heating element 80 to generate an aerosol.
  • the aerosol is then carried out of the output channel 31 by the airflow for the user to suck or inhale.
  • the liquid storage atomizing nozzle 20 is used to atomize the continuously flowing liquid substrate into liquid particles and then evaporated by the heating element 80 . Since the surface area of the fine liquid particles formed after atomization by the liquid storage atomizing nozzle 20 is It is greatly expanded, making it easier to heat and evaporate. On the one hand, it can improve the conversion efficiency of heat and aerosol. On the other hand, it can reduce the temperature of the evaporation process of the heating element 80 and achieve low-temperature atomization.
  • the liquid matrix mainly completes the physical change process, thus overcoming the problem of thermal cracking and deterioration of the liquid matrix caused by the necessity of high-temperature atomization under traditional porous ceramics or porous cotton conditions, not to mention the Burning, carbon deposition, heavy metal volatilization and other phenomena will occur, so that the unique ingredients and flavor and fragrance systems of different liquid bases can be maintained, and ultimately the inhaler can feel the unique taste corresponding to the original liquid base.
  • the heating element 80 is not in contact with the liquid storage chamber 23, and the heating element 80 does not need to be immersed in the liquid matrix for a long time, which reduces the contamination of the liquid matrix by the heating element 80, thereby reducing impurity gases in the aerosol generated after atomization.
  • the liquid particles sprayed from the airflow channel 21 can also hit the heating element 80 downward, that is, the heating element 80 can also be disposed below the airflow channel 21; or, the liquid particles sprayed from the airflow channel 21 can The outgoing liquid particles may also impact the heating element 80 laterally, that is, the heating element 80 and the airflow channel 21 are at or approximately at the same level.
  • the electronic atomization device 100 may not be provided with the heating element 80 , that is, the liquid particles atomized by the air flow channel 21 can be directly output through the output channel 31 and sucked or inhaled by the user.
  • the electronic atomization device 100 may further include an airflow sensing element 70 disposed in the housing 30 and electrically connected to the control module 60 .
  • the airflow sensing element 70 can sense changes in the airflow when the user inhales, and can usually be a negative pressure sensor, such as a microphone. The user's suction action creates negative pressure, and the airflow sensing element 70 senses the negative pressure to generate a suction signal.
  • the suction signal can be transmitted to the control module 60 to control the operation of the air source 40 and/or the heating element 80 .
  • the electronic atomization device 100 may further include a dust cover 90 detachably disposed on the upper end of the housing 30 .
  • the dust cover 90 can be placed on the upper end of the housing 30 to prevent dust and other impurities from entering the output channel 31 .
  • the electronic atomization device 100 may also include an atomization nozzle 10 , and a liquid storage chamber is provided in the electronic atomization device 100 to communicate with the liquid inlet channel 12 of the atomization nozzle 10 .

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nozzles (AREA)

Abstract

本发明涉及一种雾化喷嘴、储液雾化喷嘴及电子雾化装置,所述雾化喷嘴内形成有气流通道和进液通道,所述气流通道和所述进液通道为平面型通道,所述气流通道用于流通高速气流,所述进液通道用于向所述气流通道输入液态基质,进入到所述气流通道的液态基质受所述气流通道中流通的高速气流作用而雾化。本发明通过采用高速气流辅助将连续流动的液态基质雾化成液体颗粒,由于液体颗粒的表面积得到扩展,从而更容易加热蒸发,能够实现低温雾化;此外,由于喷嘴具有平面化结构,利于一体加工成型,能得到较好的制造精度和良好的气密性。

Description

雾化喷嘴、储液雾化喷嘴及电子雾化装置 技术领域
本发明涉及雾化领域,更具体地说,涉及一种雾化喷嘴、储液雾化喷嘴及电子雾化装置。
背景技术
现有的电子雾化装置主要采用多孔陶瓷或者多孔棉等多孔介质结合发热部件进行加热雾化。由于雾化时加热温度较高,当液态基质供给不足时,发热部件上少量的液态基质不足以消耗掉发热部件上释放的电能,导致加热面温度进一步升高,从而进一步加剧液态基质的热裂解,甚至形成积碳和干烧的情况,很容易使形成的气溶胶产生烧焦的气味,导致口感显著变差。
发明内容
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种雾化喷嘴、储液雾化喷嘴及电子雾化装置。
本发明解决其技术问题所采用的技术方案是:构造一种雾化喷嘴,所述雾化喷嘴内形成有气流通道和进液通道,所述气流通道和所述进液通道为平面型通道,所述气流通道用于流通高速气流,所述进液通道用于向所述气流通道输入液态基质,进入到所述气流通道的液态基质受所述气流通道中流通的高速气流作用而雾化。
在一些实施例中,所述雾化喷嘴通过拉伸成型、三维打印或者由基板经过光刻加工形成。
在一些实施例中,所述气流通道和所述进液通道具有相同的厚度;所述气流通道和所述进液通道的厚度为0.15mm~0.25mm。
在一些实施例中,所述气流通道包括雾化通道和供气通道,所述雾化通道分别与所述供气通道以及所述进液通道相连通,所述雾化通道靠近所述供气通道的一端形成有雾化面,所述雾化面设置有连通所述供气通道和所述雾化通道的雾化口,流入所述雾化通道的液态基质能够在所述雾化面形成液膜,所述液膜在所述雾化口的边缘被所述高速气流切割成液体颗粒。
在一些实施例中,所述雾化通道包括雾化腔和扩张通道,所述扩张通道与所述雾化腔远离所述供气通道的一端连通,所述扩张通道的宽度由靠近所述雾化腔的一端到远离所述雾化腔的一端逐渐增大。
在一些实施例中,所述雾化腔、所述雾化面、所述雾化口均具有相同的厚度;
所述雾化腔的宽度为0.7mm~1.4mm,所述雾化口的宽度为0.15mm~0.25mm,所述雾化通道的高度为0.6mm~1.3mm。
在一些实施例中,所述进液通道包括与所述雾化通道相连通的进液末段,所述进液末段靠近所述雾化通道的一端具有进液口,所述进液口连通于所述雾化腔和所述扩张通道的交接处;在所述雾化口的边缘切割雾化形成的液体颗粒能够撞击所述进液口与所述扩张通道的交接处而再次雾化。
在一些实施例中,所述进液末段的延伸方向与所述雾化通道的延伸方向垂直。
在一些实施例中,所述进液末段与所述扩张通道之间的夹角为30°~70°。
在一些实施例中,所述进液末段靠近所述雾化面一侧的边缘与所述雾化面之间的垂直距离为0.2mm~0.6mm。
在一些实施例中,所述进液末段的延伸长度大于等于0.4mm,所述进液末段的宽度为0.2mm~0.4mm。
在一些实施例中,所述供气通道包括收缩通道,所述收缩通道的宽度由远离所述雾化腔的一端到靠近所述雾化腔的一端逐渐减小。
在一些实施例中,所述收缩通道的收缩角为20°~80°,所述收缩通道远离所述雾化腔的一端的宽度为0.8mm~2mm。
本发明还提供一种电子雾化装置,包括如上述任一项所述的雾化喷嘴。
本发明还提供一种储液雾化喷嘴,所述储液雾化喷嘴内形成有用于存储液态基质的储液腔、用于流通高速气流的气流通道以及连通所述储液腔和所述气流通道的进液通道,所述储液腔、所述气流通道和所述进液通道均为平面型,进入到所述气流通道的液态基质能够受所述气流通道中流通的高速气流作用而雾化。
在一些实施例中,所述储液雾化喷嘴内还形成有将所述储液腔与外界相连通的换气通道。
在一些实施例中,所述储液腔、所述气流通道、所述进液通道以及所述换气通道均具有相同的厚度,所述储液雾化喷嘴通过拉伸成型、三维打印或者由基板经过光刻加工形成。
在一些实施例中,所述气流通道包括雾化通道和供气通道,所述雾化通道分别与所述供气通道以及所述进液通道相连通,所述雾化通道靠近所述供气通道的一端形成有雾化面,所述雾化面设置有连通所述供气通道和所述雾化通道的雾化口,流入所述雾化通道的液态基质能够在所述雾化面形成液膜,所述液膜在所述雾化口的边缘被所述高速气流切割成液体颗粒。
在一些实施例中,所述雾化通道包括雾化腔和扩张通道,所述扩张通道与所述雾化腔远离所述供气通道的一端连通,所述扩张通道的宽度由靠近所述雾化腔的一端到远离所述雾化腔的一端逐渐增大。
在一些实施例中,所述供气通道包括收缩通道,所述收缩通道的宽度由远离所述雾化腔的一端到靠近所述雾化腔的一端逐渐减小。
本发明还提供一种电子雾化装置,包括如上述任一项所述的储液雾化喷嘴。
实施本发明至少具有以下有益效果:本发明通过采用高速气流辅助将连续流动的液态基质雾化成液体颗粒,由于液体颗粒的表面积得到扩展,从而更容易加热蒸发,能够实现低温雾化;此外,由于喷嘴具有平面化结构,利于一体加工成型,能得到较好的制造精度和良好的气密性。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明一些实施例中雾化喷嘴的立体结构示意图;
图2是图1所示雾化喷嘴的纵向剖面结构示意图;
图3是图2所示雾化喷嘴的雾化原理示意图;
图4是图2所示雾化喷嘴的尺寸标注图;
图5是本发明一些实施例中储液雾化喷嘴的立体结构示意图;
图6是图5所示储液雾化喷嘴的纵向剖面结构示意图;
图7是本发明一些实施例中电子雾化装置的立体结构示意图;
图8是图7所示电子雾化装置的纵向剖面结构示意图。
实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。
在本发明的描述中,需要理解的是,术语“纵向”、“横向”、“宽度”、“厚度”、“上”、“下”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系或者是本发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个、三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“上方”可以是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“下方”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
图1-4示出了本发明一些实施例中的雾化喷嘴10,该雾化喷嘴10内形成有气流通道11和进液通道12。该气流通道11用于流通高速气流,该进液通道12用于向气流通道11输入液态基质,从进液通道12进入到气流通道11的液态基质能够受气流通道11中流通的高速气流作用而雾化,形成细小的液体颗粒。该气流通道11和进液通道12均为平面型通道,气流通道11、进液通道12的各特征均具有相同的厚度。
在本实施例中,雾化喷嘴10具有方形外形。气流通道11可由雾化喷嘴10的下端面沿纵向延伸至雾化喷嘴10的上端面,并可与雾化喷嘴10同轴设置。气流通道11可包括雾化通道112和供气通道111,该雾化通道112分别与供气通道111和进液通道12相连通。雾化通道112靠近供气通道111的一端端面形成雾化面1123,雾化面1123上还形成有雾化口1120。具体地,在本实施例中,雾化面1123为矩形平面,雾化口1120为矩形形状并与雾化面1123同轴设置,且雾化口1120、雾化面1123具有相同的厚度。来自供气通道111的高速气流经由雾化口1120喷出到雾化通道112内并在雾化通道112中高速流动,从进液通道12进入到雾化通道112的液态基质能够在雾化面1123上形成液膜。随着供液过程的持续进行,液膜运动到雾化口1120的孔壁边缘与高速气流相遇,被高速气流切割雾化成细小的液体颗粒,该液体颗粒再被气流带离雾化口1120,之后随气流喷出。本实施例中,仅雾化面1123靠近进液通道12的一侧能够形成液膜,从而使得该雾化喷嘴10为单侧雾化结构。可以理解地,在其他实施例中,也可在气流通道11的两侧分别设置一进液通道12,从而使得雾化喷嘴10能够实现双侧雾化。
雾化通道112可包括雾化腔1121和扩张通道1122。该雾化腔1121为直通道,其孔壁面垂直于雾化面1123。扩张通道1122与雾化腔1121远离供气通道111的一端连通,且扩张通道1122靠近雾化腔1121的一端与雾化腔1121具有相同的宽度。扩张通道1122呈扩张形状,其宽度由靠近雾化腔1121的一端到远离雾化腔1121的一端逐渐增大,可将雾化后生成的液体颗粒以射流的形式扩散喷出,增大液体颗粒的喷射面积。
供气通道111在一些实施例中可包括收缩通道1111,该收缩通道1111呈收缩形状,其宽度从远离雾化腔1121的一端到靠近雾化腔1121的一端逐渐减小,从而能够将气流加速后喷出至雾化腔1121。进一步地,供气通道111还包括连通通道1112,连通通道1112与收缩通道1111远离雾化腔1121的一端相连通。连通通道1112可以为沿纵向延伸的直通道,连通通道1112的上端与收缩通道1111相连通,连通通道1112的宽度与收缩通道1111的下端宽度一致。可以理解地,在其他实施例中,供气通道111也可仅包括收缩通道1111;或者,当气流流速足够时,供气通道111也可仅包括连通通道1112。
进液通道12包括与气流通道11相连通的进液末段121,该进液末段121可以为沿横向延伸的直线形通道,其延伸方向与雾化通道112的延伸方向垂直。进液末段121靠近雾化通道112的一端具有进液口120,进液末段121内的液态基质经由进液口120输出到雾化通道112。进液口120可位于雾化腔1121和扩张通道1122的交接处,进液口120的上侧、下侧分别与雾化腔1121和扩张通道1122相连通。该结构能够实现液态基质在雾化口1120边缘的一次切割雾化以及在进液口120与扩张通道1122的交接处1201的二次切割雾化,从而有效降低喷雾中大液滴分布。具体地,由进液末段121进入的液态基质200在进液口120处会因空气压力形成倾斜液面201,在雾化面1123靠近进液末段121的一侧会因毛细力形成弯月液面202,由供气通道111进入的高速气流会在雾化口1120靠近进液末段121的一侧边缘进行气液剪切雾化形成较大的雾化液滴,该较大的雾化液滴能够撞击至进液口120与扩张通道1122的交接处1201进一步破碎雾化,从而形成粒子尺寸更小的喷雾。液态基质200在雾化通道112内的雾化过程为非相变的方式,雾化通道112内雾化后形成的液体颗粒的粒径分布可达到SMD=30μm范围内。其中,SMD=液体颗粒总体积/液体颗粒总表面积,表示了液体颗粒的平均粒径。
进一步地,进液通道12还可包括进液前段122,该进液前段122连通于进液末段121远离雾化通道112的一端。进液前段122可倾斜设置,进液前段122的延伸方向与进液末段121的延伸方向之间的夹角可以为锐角或钝角。此外,在本实施例中,进液前段122、进液末段121具有相同的宽度。可以理解地,在其他实施例中,进液前段122、进液末段121也可具有不同的宽度,例如,进液前段122的宽度可大于进液末段121的宽度。在另一些实施例中,进液前段122的延伸方向也可与进液末段121的延伸方向平行。
在本实施例中,气流通道11和进液通道12的各特征(连通通道1112、收缩通道1111、雾化口1120、雾化面1123、雾化腔1121、扩张通道1122、进液前段122、进液末段121、进液口120)均具有相同的厚度δ。该厚度δ可以理解成在图4中,垂直于纸面方向上通道的长度。在一些实施例中,气流通道11和进液通道12的厚度δ可以为0.15mm~0.25mm。
雾化喷嘴10对平面化的面对称结构,其可采用一体化加工实现。在一些实施例中,雾化喷嘴10可通过光刻成型,其可由具有气流通道11和进液通道12的特征平面经过光刻得到,从而形成具有统一光刻深度的矩形通道。具体地,在第一基板(例如硅片)上进行光刻得到具有流道结构的流道基板,再将该流道基板和第二基板(例如玻璃)进行键合或组合以得到一致性高的雾化喷嘴。此时,上述厚度δ可以理解为光刻深度。在另一些实施例中,雾化喷嘴10也可通过拉伸成型,其可由具有气流通道11和进液通道12的特征平面经过拉伸得到,从而形成具有统一拉伸高度的矩形通道,此时,上述厚度δ可以理解为拉伸高度。另外,雾化喷嘴10也可以采用三维打印等其他制造工艺成型。
雾化腔1121的宽度W1的大小与雾化腔1121内产生的供液负压大小相关,在一些实施例中,W1的范围可以为0.7mm~1.4mm。连通通道1112的宽度W2的大小与进气阻力的大小相关,在一些实施例中,W2的范围可以为0.8mm~2mm。通过控制雾化口1120的宽度W3的大小可以控制气液剪切速度,控制雾化效果和空气量,在一些实施例中,W3的范围可以为0.15mm~0.25mm。进液末段121与扩张通道1122之间的夹角θ1与二次破碎雾化效果相关,在一些实施例中,θ1可以为30°~70°。收缩通道1111的收缩角θ2的大小与控制通道阻力大小相关,在一些实施例中,θ2可以为20°~80°。进液末段121的宽度φ1可以为0.2mm~0.4mm,进液末段121的延伸长度L1可大于等于0.4mm,可通过进液末段121内的毛细力减少液态基质的回流。雾化通道112的高度H可以为0.6mm~1.3mm,进液末段121的底壁边缘与雾化面1123之间的垂直距离h可以为0.2mm~0.6mm,H/W1可以为范围1~1.2,以使有合适负压并且雾化后减少液滴碰壁。
图5-6示出了本发明一些实施例中的储液雾化喷嘴20,做为上述实施例的扩展,本实施例中的储液雾化喷嘴20整体为面对称结构的一体结构,其可通过一体化加工实现。
储液雾化喷嘴20内形成有用于存储液态基质的储液腔23、用于流通高速气流的气流通道21、连通储液腔23和气流通道21的进液通道22以及将储液腔23与外界相连通的换气通道24。
与上述实施例类似,该气流通道21也包括雾化通道212和供气通道211,雾化通道212靠近供气通道211的一端端面形成雾化面2123,雾化面2123上设置有雾化口2120。来自供气通道211的高速气流经由雾化口2120喷出到雾化通道212内并在雾化通道212中高速流动,高速气流由伯努利方程在雾化通道212和进液通道22内产生负压,此负压传导至储液腔23将储液腔23内的液态基质吸出至雾化通道212,在雾化面2123上形成液膜。随着供液过程的持续进行,液膜运动到雾化口2120的边缘与高速气流相遇,被高速气流切割雾化成细小的液体颗粒,该液体颗粒再被气流带离雾化口2120,之后随气流喷出完成雾化过程。
此外,与上述实施例类似,本实施例中的雾化通道212也包括雾化腔2121和扩张通道2122,供气通道211包括连通通道2112和收缩通道2111。与上述实施例中不同的是,本实施例中的进液通道22整体为沿横向延伸的直线形通道,且进液通道22的进液口220位于雾化腔2121的孔壁上。可以理解地,在其他实施例中,进液通道22的进液口220也可位于雾化腔2121与扩张通道2122的交接处,该进液通道22也可以为弯折的直线形或其他形状。
换气通道24可用于恢复储液腔23内的负压,解决因储液腔23内负压过大而不能稳定供液的问题。在抽吸过程中,储液腔23内液态基质的减少会带来气压降低,降低至极限换气负压会由换气通道24换气泡进入储液腔23,恢复储液腔23负压。利用雾化通道212内的负压区和换气通道24相配合,实现向雾化通道212的自动稳定供液。通常,可控制储液腔23的负压范围为-200Pa ~ -700Pa。
换气通道24的结构不受限制。在本实施例中,换气通道24采用直液式换气结构,其可包括多个沿横向延伸的第一换气道241以及沿纵向延伸的、将该多个第一换气道241相连通的第二换气道242。
该储液雾化喷嘴20整体具有阶梯形状,其可包括尺寸较大的储液部25以及尺寸较小的喷嘴部26。储液腔23、换气通道24形成于储液部25内,气流通道21形成于喷嘴部26内。喷嘴部26设置于储液部25的一侧,且储液部25、喷嘴部26具有相同的厚度。储液部25的高度较大,保证储液腔23具有足够的储液空间。
本实施例中的储液雾化喷嘴20可采用一体式加工得到,各零部件之间没有装配关系,气密性好,各流道结构的加工精度容易控制,精度高。
图7-8示出了本发明一些实施例中的电子雾化装置100,该电子雾化装置100可用于雾化液态基质以生成气溶胶,该气溶胶可供用户吸食或者吸入,其在本实施例中可大致呈圆柱状。可以理解地,在其他实施例中,该电子雾化装置100也可呈椭圆柱状、扁平柱状或方形柱状等其他形状。该液态基质可以包括烟油或药液等。
该电子雾化装置100可包括外壳30以及收容于外壳30中的储液雾化喷嘴20、气源40、电源50、控制模块60和发热件80。气源40用于为气流通道21提供高速气流,其通常可以为气泵。控制模块60分别与气源40、发热件80电连接,用于接收指令,该指令可由用户触发或者在电子雾化装置100满足一定条件后自动触发,控制模块60再根据该指令控制气源40、发热件80的工作。电源50分别与控制模块60、气源40、发热件80电连接,用于向控制模块60、气源40、发热件80提供电能。
发热件80与电源50电连接,其能够在通电后发热。发热件80的结构和加热形式不受限制,例如其可以为发热网、发热片、发热丝或发热膜等结构,其加热形式可以为电阻传导加热、红外辐射加热、电磁感应加热或者复合加热等加热形式。外壳30内还形成有输出通道31,发热件80可设置于输出通道31中并位于气流通道21的上方。由气流通道21喷出的液体颗粒向上撞击发热件80,经过发热件80蒸发加热后生成气溶胶,该气溶胶再由气流带出输出通道31,以供用户吸食或者吸入。
本实施例通过采用储液雾化喷嘴20将连续流动的液态基质雾化成液体颗粒后再由发热件80蒸发的方式,由于储液雾化喷嘴20雾化后形成的细小液体颗粒的表面积得到了极大的扩展,从而更容易加热蒸发,一方面可提高热量及气溶胶的转化效率,另一方面可降低发热件80蒸发过程的温度,实现低温雾化。在较低的加热雾化温度下,液态基质主要完成物理变化过程,从而克服了传统的多孔陶瓷或者多孔棉条件下因必须采用高温方式雾化而导致的液态基质热裂解变质的问题,更不会发生烧焦、积碳和重金属挥发等现象,从而能够保持不同液态基质所特有的成分和香精香料体系,最终使吸入者感受到与原始液态基质相对应的特有的口感。此外,发热件80与储液腔23不接触,发热件80不用长期浸泡在液态基质中,减少了发热件80对液态基质的污染,从而减少了雾化后生成的气溶胶中的杂质气体。
可以理解地,在其他实施例中,由气流通道21喷出的液体颗粒也可向下撞击发热件80,即,发热件80也可设置于气流通道21的下方;或者,由气流通道21喷出的液体颗粒也可横向撞击发热件80,即,发热件80与气流通道21处于或大致处于同一水平高度上。在另一些实施例中,该电子雾化装置100中也可以不设置有发热件80,即,气流通道21雾化后的液体颗粒可直接经输出通道31输出,被用户吸食或者吸入。
进一步地,该电子雾化装置100还可包括设置于外壳30中并与控制模块60电连接的气流感应元件70。该气流感应元件70能够感应用户抽吸时的气流变化,其通常可以为负压传感器,例如咪头。用户抽吸动作制造负压,气流感应元件70感应负压而产生抽吸信号,该抽吸信号可传递至控制模块60以控制气源40和/或发热件80的工作。
进一步地,该电子雾化装置100还可包括可拆卸地罩设于外壳30上端的防尘罩90。在不需要使用电子雾化装置100时,可将防尘罩90罩设于外壳30的上端,防止灰尘等杂质进入输出通道31。
可以理解地,在其他实施例中,该电子雾化装置100也可包括雾化喷嘴10,电子雾化装置100内设置有储液腔与雾化喷嘴10的进液通道12相连通。
可以理解地,上述各技术特征可以任意组合使用而不受限制。
以上实施例仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制;应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,可以对上述技术特点进行自由组合,还可以做出若干变形和改进,这些都属于本发明的保护范围;因此,凡跟本发明权利要求范围所做的等同变换与修饰,均应属于本发明权利要求的涵盖范围。

Claims (21)

  1.  一种雾化喷嘴,其特征在于,所述雾化喷嘴内形成有气流通道和进液通道,所述气流通道和所述进液通道为平面型通道,所述气流通道用于流通高速气流,所述进液通道用于向所述气流通道输入液态基质,进入到所述气流通道的液态基质受所述气流通道中流通的高速气流作用而雾化。
  2.  根据权利要求1所述的雾化喷嘴,其特征在于,所述雾化喷嘴通过拉伸成型、三维打印或者由基板经过光刻加工形成。
  3.  根据权利要求1所述的雾化喷嘴,其特征在于,所述气流通道和所述进液通道具有相同的厚度δ;所述气流通道和所述进液通道的厚度δ为0.15mm~0.25mm。
  4.  根据权利要求1所述的雾化喷嘴,其特征在于,所述气流通道包括雾化通道和供气通道,所述雾化通道分别与所述供气通道以及所述进液通道相连通,所述雾化通道靠近所述供气通道的一端形成有雾化面,所述雾化面设置有连通所述供气通道和所述雾化通道的雾化口,流入所述雾化通道的液态基质能够在所述雾化面形成液膜,所述液膜在所述雾化口的边缘被所述高速气流切割成液体颗粒。
  5.  根据权利要求4所述的雾化喷嘴,其特征在于,所述雾化通道包括雾化腔和扩张通道,所述扩张通道与所述雾化腔远离所述供气通道的一端连通,所述扩张通道的宽度由靠近所述雾化腔的一端到远离所述雾化腔的一端逐渐增大。
  6.  根据权利要求5所述的雾化喷嘴,其特征在于,所述雾化腔、所述雾化面、所述雾化口均具有相同的厚度;
    所述雾化腔的宽度W1为0.7mm~1.4mm,所述雾化口的宽度W3为0.15mm~0.25mm,所述雾化通道的高度H为0.6mm~1.3mm。
  7.  根据权利要求5所述的雾化喷嘴,其特征在于,所述进液通道包括与所述雾化通道相连通的进液末段,所述进液末段靠近所述雾化通道的一端具有进液口,所述进液口连通于所述雾化腔和所述扩张通道的交接处;在所述雾化口的边缘切割雾化形成的液体颗粒能够撞击所述进液口与所述扩张通道的交接处而再次雾化。
  8.  根据权利要求7所述的雾化喷嘴,其特征在于,所述进液末段的延伸方向与所述雾化通道的延伸方向垂直。
  9.  根据权利要求7所述的雾化喷嘴,其特征在于,所述进液末段与所述扩张通道之间的夹角θ1为30°~70°。
  10.  根据权利要求7所述的雾化喷嘴,其特征在于,所述进液末段靠近所述雾化面一侧的边缘与所述雾化面之间的垂直距离h为0.2mm~0.6mm。
  11.  根据权利要求7所述的雾化喷嘴,其特征在于,所述进液末段的延伸长度L1大于等于0.4mm,所述进液末段的宽度φ1为0.2mm~0.4mm。
  12.  根据权利要求4-11任一项所述的雾化喷嘴,其特征在于,所述供气通道包括收缩通道,所述收缩通道的宽度由远离所述雾化腔的一端到靠近所述雾化腔的一端逐渐减小。
  13.  根据权利要求12所述的雾化喷嘴,其特征在于,所述收缩通道的收缩角θ2为20°~80°,所述收缩通道远离所述雾化腔的一端的宽度为0.8mm~2mm。
  14.  一种电子雾化装置,其特征在于,包括如权利要求1-13任一项所述的雾化喷嘴。
  15.  一种储液雾化喷嘴,其特征在于,所述储液雾化喷嘴内形成有用于存储液态基质的储液腔、用于流通高速气流的气流通道以及连通所述储液腔和所述气流通道的进液通道,所述储液腔、所述气流通道和所述进液通道均为平面型,进入到所述气流通道的液态基质能够受所述气流通道中流通的高速气流作用而雾化。
  16.  根据权利要求15所述的储液雾化喷嘴,其特征在于,所述储液雾化喷嘴内还形成有将所述储液腔与外界相连通的换气通道。
  17.  根据权利要求16所述的储液雾化喷嘴,其特征在于,所述储液腔、所述气流通道、所述进液通道以及所述换气通道均具有相同的厚度,所述储液雾化喷嘴通过拉伸成型、三维打印或者由基板经过光刻加工形成。
  18.  根据权利要求15-17任一项所述的储液雾化喷嘴,其特征在于,所述气流通道包括雾化通道和供气通道,所述雾化通道分别与所述供气通道以及所述进液通道相连通,所述雾化通道靠近所述供气通道的一端形成有雾化面,所述雾化面设置有连通所述供气通道和所述雾化通道的雾化口,流入所述雾化通道的液态基质能够在所述雾化面形成液膜,所述液膜在所述雾化口的边缘被所述高速气流切割成液体颗粒。
  19.  根据权利要求18所述的储液雾化喷嘴,其特征在于,所述雾化通道包括雾化腔和扩张通道,所述扩张通道与所述雾化腔远离所述供气通道的一端连通,所述扩张通道的宽度由靠近所述雾化腔的一端到远离所述雾化腔的一端逐渐增大。
  20.  根据权利要求18所述的储液雾化喷嘴,其特征在于,所述供气通道包括收缩通道,所述收缩通道的宽度由远离所述雾化腔的一端到靠近所述雾化腔的一端逐渐减小。
  21.  一种电子雾化装置,其特征在于,包括如权利要求15-20任一项所述的储液雾化喷嘴。
PCT/CN2023/079129 2022-04-29 2023-03-01 雾化喷嘴、储液雾化喷嘴及电子雾化装置 WO2023207321A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210467402.7 2022-04-29
CN202210467402.7A CN116998758A (zh) 2022-04-29 2022-04-29 雾化喷嘴、储液雾化喷嘴及电子雾化装置

Publications (1)

Publication Number Publication Date
WO2023207321A1 true WO2023207321A1 (zh) 2023-11-02

Family

ID=88517250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/079129 WO2023207321A1 (zh) 2022-04-29 2023-03-01 雾化喷嘴、储液雾化喷嘴及电子雾化装置

Country Status (2)

Country Link
CN (1) CN116998758A (zh)
WO (1) WO2023207321A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3770209A (en) * 1972-04-19 1973-11-06 Delavan Manufacturing Co Aspirating spray head
CN108697867A (zh) * 2016-03-31 2018-10-23 菲利普莫里斯生产公司 用于气溶胶生成系统的雾化组合件
CN110035832A (zh) * 2019-03-08 2019-07-19 璞真生活有限公司 雾化喷嘴及雾化装置
WO2019162368A1 (en) * 2018-02-26 2019-08-29 Nerudia Limited Device, system and method
CN110507011A (zh) * 2019-10-11 2019-11-29 广州丹绮环保科技有限公司 一种电子烟
US20210347554A1 (en) * 2021-06-25 2021-11-11 Bloomy Lotus Limited Atomizer structure and atomizer having the same
CN216094337U (zh) * 2021-06-18 2022-03-22 中国计量科学研究院 一种气溶胶喷嘴

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3770209A (en) * 1972-04-19 1973-11-06 Delavan Manufacturing Co Aspirating spray head
CN108697867A (zh) * 2016-03-31 2018-10-23 菲利普莫里斯生产公司 用于气溶胶生成系统的雾化组合件
WO2019162368A1 (en) * 2018-02-26 2019-08-29 Nerudia Limited Device, system and method
CN110035832A (zh) * 2019-03-08 2019-07-19 璞真生活有限公司 雾化喷嘴及雾化装置
CN110507011A (zh) * 2019-10-11 2019-11-29 广州丹绮环保科技有限公司 一种电子烟
CN216094337U (zh) * 2021-06-18 2022-03-22 中国计量科学研究院 一种气溶胶喷嘴
US20210347554A1 (en) * 2021-06-25 2021-11-11 Bloomy Lotus Limited Atomizer structure and atomizer having the same

Also Published As

Publication number Publication date
CN116998758A (zh) 2023-11-07

Similar Documents

Publication Publication Date Title
AU2017346137B2 (en) Atomizer and electronic cigarette thereof
WO2018000756A1 (zh) 无棉型超声波雾化器及电子烟
WO2019011222A1 (zh) 雾化器及其电子烟
CN217509891U (zh) 雾化底座、雾化器及电子雾化装置
CN218164288U (zh) 发热体、雾化器及电子雾化装置
WO2023207321A1 (zh) 雾化喷嘴、储液雾化喷嘴及电子雾化装置
CN115177025A (zh) 发热体、雾化器及电子雾化装置
CN114916708A (zh) 发热组件、雾化器及电子雾化装置
WO2023207292A1 (zh) 电子雾化装置及其储液雾化组件
CN216088897U (zh) 一种电子雾化装置及其雾化器
WO2023185155A1 (zh) 一种电子雾化装置及其雾化器
WO2023207313A1 (zh) 电子雾化装置及其喷嘴雾化组件
WO2023207368A1 (zh) 电子雾化装置及其储液雾化组件和喷嘴
WO2023207312A1 (zh) 喷嘴组件及电子雾化装置
WO2023207323A1 (zh) 电子雾化装置
WO2023207322A1 (zh) 电子雾化装置及其储液雾化组件
CN219537465U (zh) 一种雾化器及电子雾化装置
WO2023207320A1 (zh) 电子雾化装置
WO2023241099A1 (zh) 电子雾化装置及其加热组件
WO2023241100A1 (zh) 电子雾化装置
WO2023241129A1 (zh) 电子雾化装置及其雾化装置
CN219613043U (zh) 发热体、雾化器及电子雾化装置
CN218219142U (zh) 一种可提高湍流强度的雾化通道及其雾化装置
WO2022179643A2 (zh) 发热组件、雾化器及电子雾化装置
WO2023206597A1 (zh) 电子雾化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23794757

Country of ref document: EP

Kind code of ref document: A1