WO2023202253A1 - 大功率气体机空燃比的标定方法及标定系统 - Google Patents

大功率气体机空燃比的标定方法及标定系统 Download PDF

Info

Publication number
WO2023202253A1
WO2023202253A1 PCT/CN2023/080448 CN2023080448W WO2023202253A1 WO 2023202253 A1 WO2023202253 A1 WO 2023202253A1 CN 2023080448 W CN2023080448 W CN 2023080448W WO 2023202253 A1 WO2023202253 A1 WO 2023202253A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
fuel ratio
leakage flow
calibration
gas
Prior art date
Application number
PCT/CN2023/080448
Other languages
English (en)
French (fr)
Inventor
孔龙
徐清祥
Original Assignee
潍柴动力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 潍柴动力股份有限公司 filed Critical 潍柴动力股份有限公司
Publication of WO2023202253A1 publication Critical patent/WO2023202253A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present application relates to the technical field of gas engines, for example, to a calibration method and calibration system for the air-fuel ratio of a high-power gas engine.
  • a gas engine refers to a system that can burn natural gas, biogas, industrial waste gas and other combustible gases to generate kinetic energy. It is a type of engine.
  • air-fuel ratio control has always been an important parameter, that is, it is necessary to determine the air and gas ratio, the air-fuel ratio needs to be measured.
  • oxygen sensors installed in the exhaust system are usually used to measure the oxygen content after high-temperature combustion and then calculate the air-fuel ratio.
  • the oxygen sensor itself has a drift problem.
  • This application provides a calibration method and calibration system for the air-fuel ratio of a high-power gas engine.
  • the air-fuel ratio is calibrated through air leakage flow, and can handle the situation where the air-fuel ratio calculation is inaccurate due to oxygen sensor drift.
  • One embodiment provides a method for calibrating the air-fuel ratio of a high-power gas engine, including:
  • the air-fuel ratio is calculated
  • the calibration working conditions include power
  • control gas machine under calibrated working conditions is: while keeping the power unchanged, the control gas machine operates under calibrated power;
  • the relationship diagram between the air leakage flow rate and the air-fuel ratio is: the first map of the air leakage flow rate and the air-fuel ratio under constant power.
  • the calibration working conditions include power and rotational speed
  • control gas machine under calibrated working conditions is: the control gas machine operates under different calibrated powers and different calibrated speeds;
  • the relationship diagram between the air leakage flow rate and the air-fuel ratio is: a second map of the air leakage flow rate and the air-fuel ratio under different powers and different speeds.
  • the calibration conditions include intake pipe pressure and rotational speed
  • control gas machine under calibrated working conditions is: the control gas machine operates under different calibrated air inlet pipe pressures and different calibrated rotational speeds;
  • the relationship diagram between the air leakage flow rate and the air-fuel ratio is: the third map of the air leakage flow rate and air-fuel ratio under different intake pipe pressures and different rotational speeds.
  • obtaining the gas flow, air flow and real-time air leakage flow, and making the air leakage flow equal to the real-time air leakage flow also includes:
  • One embodiment provides a calibration system for the air-fuel ratio of a high-power gas engine, including a control unit and a gas flow valve electrically connected to the control unit respectively.
  • the gas flow valve is configured to collect gas flow under calibration conditions. And transmit the gas electric signal corresponding to the gas flow to the control unit;
  • the air flow valve the air flow valve is set to collect the intake air flow under the calibration condition, and transmit the air electric signal corresponding to the air flow to the control unit Unit;
  • air-fuel ratio calculation unit the air-fuel ratio calculation unit is configured to calculate the air-fuel ratio based on the gas electrical signal and the air electrical signal transmitted by the control unit, and transmit the air-fuel ratio electrical signal to the control unit;
  • the calibration system also includes a correction unit electrically connected to the control unit.
  • the calibration system further includes an oxygen sensor starting unit electrically connected to the control unit.
  • the oxygen sensor starting unit is configured to start the oxygen sensor during maintenance and control the air-fuel ratio through the oxygen sensor pair. Turn off the oxygen sensor when finished.
  • the calibration unit calibrates maps of air leakage flow and air-fuel ratio under different calibration working conditions according to different calibration working conditions.
  • the air-fuel ratio is calculated; in the coordinate system where the leakage flow and air-fuel ratio are coordinates, the leakage flow and air-fuel ratio are marked.
  • Figure 1 is a schematic flow chart of a calibration method for the air-fuel ratio of a high-power gas engine provided by an embodiment
  • Figure 2 is a map of leakage air flow and air-fuel ratio provided by an embodiment
  • Figure 3 is a block diagram of a high-power gas machine provided by an embodiment
  • Figure 4 is a functional block diagram of a calibration system for the air-fuel ratio of a high-power gas engine provided by an embodiment.
  • a calibration method for the air-fuel ratio of a high-power gas engine is applied to the calibration system for the air-fuel ratio of a high-power gas engine described in Embodiment 2.
  • the calibration method includes the following steps:
  • Step S100 control the gas machine to operate under calibration conditions
  • Step S200 Obtain gas flow, air flow and real-time air leakage flow, and make the air leakage flow equal to the real-time air leakage flow.
  • a calibration correction step is also included, specifically:
  • Step S110 Determine whether the maintenance cycle is a regular maintenance cycle; usually the maintenance cycle is 1000-2000h. After the maintenance is completed and restarted, the oxygen sensor test function is turned on. After completion, the oxygen sensor test air-fuel ratio function is turned off;
  • Step S120 In response to the determination result that the maintenance cycle is not a regular maintenance cycle, execute step S120. Step S200;
  • Step S400 Mark the leakage flow and air-fuel ratio in the coordinate system in which the leakage flow and air-fuel ratio are coordinates.
  • S600 is executed.
  • S600 is executed.
  • S500 is executed.
  • Step S500 After maintaining or changing the calibration working conditions, perform S100 again, that is, repeat the above steps until a relationship diagram is formed;
  • This application obtains the relationship between the corresponding air leakage flow rate and air-fuel ratio by controlling the operation of the gas machine under the calibration working conditions, and establishes a relationship in the coordinate system.
  • the corresponding air leakage flow rate and air-fuel ratio can be obtained by controlling the calibration working conditions.
  • the relationship between the air-fuel ratio in the coordinate system is until a relationship diagram is formed in the coordinate system to complete the calibration of the air-fuel ratio. It can be seen that this application mainly uses the leakage flow to calibrate the air-fuel ratio, which solves the problems in the related technology of using oxygen sensors to calibrate the air-fuel ratio.
  • the calibration method of this application has high operational reliability, is easy to implement, and has stable operation.
  • Step S100 is: controlling the gas machine to run at the calibrated power while keeping the power unchanged;
  • Step S200 Obtain gas flow, air flow and real-time air leakage flow, and make the air leakage flow equal to the real-time air leakage flow;
  • Step S300 Calculate the air-fuel ratio based on the gas flow and air flow
  • Step S400 Mark the leakage flow and air-fuel ratio in the coordinate system in which the leakage flow and air-fuel ratio are coordinates.
  • Step S500 is: keep the power unchanged, and then perform step S100;
  • Step S600 is: using the relationship between the leakage air flow rate and the air-fuel ratio as a first map of the leakage air flow rate and the air-fuel ratio under constant power.
  • Calibration under constant power conditions is to carry out air-fuel ratio sweep points through the above steps, and finally form the first map in the coordinate system.
  • Step S100 is: controlling the gas machine to operate at different calibrated powers and different calibrated speeds
  • Step S200 Obtain gas flow, air flow and real-time air leakage flow, and make the air leakage flow equal to the real-time air leakage flow;
  • Step S300 Calculate the air-fuel ratio based on the gas flow and air flow
  • Step S400 Mark the leakage flow and air-fuel ratio in the coordinate system in which the leakage flow and air-fuel ratio are coordinates.
  • Step S500 is: change the calibration power and the calibration speed, and then execute S100;
  • Step S600 is: using the relationship between the leakage air flow rate and the air-fuel ratio as a second map of the leakage air flow rate and air-fuel ratio under different powers and different speeds.
  • S100 controls the gas machine to operate under different calibrated intake pipe pressures and different calibrated speeds
  • Step S300 Calculate the air-fuel ratio based on the gas flow and air flow
  • Step S400 Mark the leakage flow and air-fuel ratio in the coordinate system in which the leakage flow and air-fuel ratio are coordinates.
  • S500 is: change the calibrated intake pipe pressure and change the calibrated speed, and then execute S100;
  • S600 The relationship between air leakage flow and air-fuel ratio is the third map of air leakage flow and air-fuel ratio under different intake pipe pressures and different speeds.
  • Adjust the intake pipe pressure and speed perform air-fuel ratio sweeps under different intake pipe pressures and different speeds, and finally obtain the third map of air-fuel ratio and air leakage flow under different intake pipe pressures and speeds.
  • this application is based on the calibrated relationship between air leakage flow and air-fuel ratio at different speeds, the relationship between air leakage flow and air-fuel ratio at different powers or different intake pipe pressures, and then based on the relationship between air-fuel ratio and air leakage flow, the corresponding calibration model.
  • the operation cycle correction calibration is performed. After the maintenance is completed and the engine is started again, the engine is loaded to a certain load, the oxygen sensor test air-fuel ratio function is turned on, and the air leakage flow is calibrated for running time to obtain the running time correction. Coefficient k, turn off the oxygen sensor test function after completion.
  • the high-power gas engine includes an air filter 1, a mixer 2, a supercharger 4, an intercooler 5, and an electronic throttle 6 , oil and gas separator 7, exhaust tail pipe 9, oxygen sensor 10, intake pipe 11 and exhaust pipe 12.
  • the air filter 1 is connected to the mixer 2, the mixer 2 is connected to the gas metering valve 3, the mixer 2 is connected to the supercharger 4, the supercharger 4 is connected to the intercooler 5, and the supercharger
  • the device 4 is also connected to the crankcase 14, the gas metering valve 3 is connected to the control unit 13, the intercooler 5 is connected to the electronic throttle 6, the electronic throttle 6 is connected to the intake pipe 11, the oil and gas separator 7 is connected to the air leakage flow meter 17 is connected, the oil and gas separator 7 is also connected to the crankcase 14, the air leakage flow meter 17 is connected to the control unit 13, the oxygen sensor 10 is connected to the control unit 13, the air filter 1 is connected to the control unit 13, and the exhaust tail pipe 9 is connected to the oxygen sensor 10.
  • the calibration system of the present application also includes a control unit 13 and a gas flow valve 3, an air flow valve 15, an air-fuel ratio calculation unit 16, an air leakage flow meter 17, and a calibration unit that are electrically connected to the control unit 13. 18.
  • Correction unit 19 and oxygen sensor activation unit 20 As shown in Figure 4, the gas flow valve 3 is connected to the control unit 13, the air flow valve 15 is connected to the control unit 13, the air-fuel ratio calculation unit 16 is connected to the control unit 13, the leakage flow meter 17 is connected to the control unit 13, and the calibration The unit 18 is connected to the control unit 13 , the correction unit 19 is connected to the control unit 13 , and the oxygen sensor activation unit 20 is connected to the control unit 13 .
  • the gas flow valve 3 is configured to collect the gas flow under calibration conditions, and transmit the gas electrical signal corresponding to the gas flow to the control unit 13;
  • the air flow valve 15 is configured to collect the intake air flow under calibration conditions, and transmit the air electrical signal corresponding to the air flow to the control unit 13;
  • the air leakage flow meter 17 is set to obtain the real-time air leakage flow rate under the calibrated working condition, and transmit the corresponding air leakage electrical signal to the control unit 13.
  • the calibration unit 18 After the calibration unit 18 receives the air-fuel ratio electrical signal and the leakage flow electrical signal transmitted by the control unit 13, it marks the leakage flow rate and the air-fuel ratio in a coordinate system until the leakage flow rate and air-leakage flow rate are obtained in the coordinate system.
  • the relationship diagram of the fuel ratio is a map of the air leakage flow rate and the air-fuel ratio under the calibration working conditions; the calibration unit calibrates the maps of the air leakage flow rate and the air-fuel ratio under different calibration working conditions according to different calibration working conditions.
  • the oxygen sensor starting unit 20 is configured to start the oxygen sensor 10 during maintenance, control the air-fuel ratio through the pair of oxygen sensors 10, and turn off the oxygen sensor 10 after the maintenance is completed.
  • the control unit controls the gas engine to operate under the calibration conditions, collects the gas flow through the gas flow valve, collects the air flow through the air flow valve, and measures the air leakage flow
  • the instrument obtains the air leakage flow rate under the calibrated working condition, and then transmits the gas electrical signal and the air electrical signal to the air-fuel ratio calculation unit.
  • the air-fuel ratio calculation unit calculates the air-fuel ratio, and at the same time starts the correction unit to correct the air leakage flow rate, and then The air-fuel ratio electrical signal and the air leakage electrical signal are respectively transmitted to the calibration unit.
  • the calibration unit marks the air-fuel ratio and air leakage flow rate in the coordinate system, and then controls the unit.
  • control unit 13 obtains the first map under constant power conditions, the second map under different powers and different rotational speeds, and the third map under different intake pipe pressures and different rotational speeds. picture.
  • the air-fuel ratio can be controlled according to the above working conditions.
  • the oxygen sensor starting unit 20 is started at the same time, so that during the process of obtaining the running time correction coefficient k, the oxygen sensor 10 works to control the air-fuel ratio. After the correction is completed, the oxygen sensor test function is turned off.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

一种大功率气体机空燃比的标定方法及标定系统,标定方法包括:控制气体机在标定工况下运行;获取燃气流量、空气流量和实时漏气流量,令漏气流量等于实时漏气流量;根据燃气流量和空气流量,计算出空燃比;在漏气流量和空燃比为坐标的坐标系中,标出漏气流量和空燃比;当坐标系中形成漏气流量和空燃比的关系图时,将该关系图作为标定工况下的漏气流量与空燃比的map图;当坐标系中无法形成漏气流量和空燃比的关系图时,保持或改变标定工况后,返回执行控制气体机在标定工况下运行的步骤。

Description

大功率气体机空燃比的标定方法及标定系统
本申请要求于2022年04月19日提交中国专利局、申请号为202210408999.8、发明名称为“一种大功率气体机空燃比的标定方法及标定系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及气体机技术领域,例如涉及一种大功率气体机空燃比的标定方法及标定系统。
背景技术
气体机是指能够燃烧天然气、沼气、工业废气等可燃气体,产生动能的系统,属于发动机的一种,在大功率稀薄燃烧气体机控制中,空燃比控制一直是重要的参数,即需要确定空气和燃气的比例,需要测量空燃比。目前,通常使用安装在排气系统的氧传感器,来测量高温燃烧后氧气含量,再计算出空燃比。但是氧传感器自身存在漂移的问题,在天然气发动机车用机应用中,主要是在发动机断油过程中,对氧传感器进行大气标定,恢复测量。但是,在持续发电的应用,采用此种断油就必须停机,影响发动机运行效率。此外,在高温环境下使用氧传感器会缩短寿命,而且维护费用较高。
发明内容
本申请提供一种大功率气体机空燃比的标定方法及标定系统,通过漏气流量来标定空燃比,能够处理氧传感器漂移导致空燃比计算不准确的情况。
一实施例提供一种大功率气体机空燃比的标定方法,包括:
控制气体机在标定工况下运行;
获取燃气流量、空气流量和实时漏气流量,令漏气流量等于实时漏气流量;
根据燃气流量和空气流量,计算出空燃比;
在漏气流量和空燃比为坐标的坐标系中,标出漏气流量和空燃比;
当坐标系中形成漏气流量和空燃比的关系图时,将该关系图作为标定工况下的漏气流量与空燃比的map图;当坐标系中无法形成漏气流量和空燃比的关系图时,保持或改变标定工况后,返回执行所述控制气体机在标定工况下运行 的步骤。
可选地,所述标定工况包括功率;
所述控制气体机在标定工况下运行为:在保持功率不变的情况下,控制气体机在标定功率下运行;
所述当坐标系中无法形成漏气流量和空燃比的关系图时,保持或改变标定工况后,返回执行所述控制气体机在标定工况下运行的步骤为:当坐标系中无法形成漏气流量和空燃比的关系图时,保持功率不变,返回执行所述控制气体机在标定工况下运行的步骤;
所述漏气流量和空燃比的关系图为:定功率下的漏气流量与空燃比的第一map图。
可选地,所述标定工况包括功率和转速;
所述控制气体机在标定工况下运行为:控制气体机在不同的标定功率和不同的标定转速下运行;
所述漏气流量和空燃比的关系图为:不同功率和不同转速下的漏气流量和空燃比的第二map图。
可选地,所述标定工况包括进气管压力和转速;
所述控制气体机在标定工况下运行为:控制气体机在不同的标定进气管压力和不同的标定转速下运行;
所述漏气流量和空燃比的关系图为:不同进气管压力和不同转速下的漏气流量和空燃比的第三map图。
可选地,所述获取燃气流量、空气流量和实时漏气流量,令漏气流量等于实时漏气流量之前还包括:
判断维修周期是否为定期维修保养周期;
响应于维修周期不是定期维修保养周期的判断结果,执行所述获取燃气流量、空气流量和实时漏气流量,令漏气流量等于实时漏气流量的步骤;响应于维修周期是定期维修保养周期的判断结果,获取燃气流量、空气流量、实时漏气流量和运行时间修正系数k,令漏气流量=K*实时漏气流量。
可选地,空燃比利用公式λ=Qair/(Qgas*LHV)计算得到,其中λ为空燃比,Qair为空气流量,Qgas为燃气流量,LHV为燃气的低热值。
一实施例提供一种大功率气体机空燃比的标定系统,包括控制单元及分别与所述控制单元电连接的:燃气流量阀,所述燃气流量阀设置为采集标定工况下的燃气流量,并传输燃气流量对应的燃气电信号至所述控制单元;空气流量阀,所述空气流量阀设置为采集标定工况下的进气空气流量,并传输空气流量对应的空气电信号至所述控制单元;空燃比计算单元,所述空燃比计算单元设置为根据所述控制单元传输的燃气电信号和空气电信号,计算出空燃比,并传输空燃比电信号至所述控制单元;漏气流量测量仪,所述漏气流量测量仪设置为得到标定工况下的实时漏气流量,并传输对应的漏气电信号至所述控制单元,所述控制单元利用公式漏气流量=实时漏气流量,得到漏气流量;标定单元,所述标定单元接收到所述控制单元传输的空燃比电信号和漏气流量电信号后,在漏气流量和空燃比为坐标的坐标系中标出,直至在坐标系中得到漏气流量和空燃比的关系图,关系图为标定工况的漏气流量和空燃比的map图。
可选地,所述标定系统还包括与所述控制单元电连接的修正单元,所述修正单元设置为在定期维修保养周期到后,获取运行时间修正系数K,并传输修正系数K至所述控制单元;所述控制单元利用公式漏气流量=K*实时漏气流量,对实时漏气流量进行修正。
可选地,所述标定系统还包括与所述控制单元电连接的氧传感器启动单元,所述氧传感器启动单元设置为在维修保养期间启动氧传感器,通过氧传感器对来控制空燃比,维修保养完成后关闭氧传感器。
可选地,所述标定单元根据不同标定工况,标定出不同标定工况下的漏气流量和空燃比的map图。
由于本申请的大功率气体机空燃比的标定方法及标定系统,通过控制气体机在标定工况下运行,获取燃气流量、空气流量和实时漏气流量,令漏气流量=实时漏气流量;根据燃气流量和空气流量,计算出空燃比;在漏气流量和空燃比为坐标的坐标系中,标出漏气流量和空燃比,当坐标系中形成漏气流量和 空燃比的关系图时,形成了标定工况下漏气流量和空燃比的map图,当坐标系中未形成关系图时,保持或改变标定工况再重复上述步骤。可见,本申请利用不同工况下,漏气流量和空燃比之间的关系,来标定空燃比,解决了相关技术中利用氧传感器标定空燃比所存在的问题,且本申请的标定方法,运行可靠性高,易实现,运行稳定。
附图说明
图1是一实施例提供的大功率气体机空燃比的标定方法的流程示意图;
图2是一实施例提供的漏气流量和空燃比的map图;
图3是一实施例提供的大功率气体机的框图;
图4是一实施例提供的大功率气体机空燃比的标定系统的原理框图。
图中:1-空气滤清器,2-混合器,3-燃气计量阀,4-增压器,5-中冷器,6-电子节气门,7-油气分离器,8-漏气流量测量仪,9-排气尾管,10-氧传感器,11-进气管,12-排气管,13-控制单元,14-曲轴箱,15-空气流量阀,16-空燃比计算单元,17-漏气流量测量仪,18-标定单元,19-修正单元,20-氧传感器启动单元。
具体实施方式
实施例一:
如图1和图2所示,一种大功率气体机空燃比的标定方法,应用于实施例二中所述的大功率气体机空燃比的标定系统,标定方法包括以下步骤:
步骤S100、控制气体机在标定工况下运行;
步骤S200、获取燃气流量、空气流量和实时漏气流量,令漏气流量等于实时漏气流量;本实施例中步骤S200之前,还包括标定修正步骤,具体为:
步骤S110、判断维修周期是否为定期维修保养周期;通常维护周期为1000-2000h,在完成维修保养再次启动后,开启氧传感测试功能,完成后关闭氧传感测试空燃比功能;
步骤S120、响应于维修周期不是定期维修保养周期的判断结果,执行步 骤S200;
响应于维修周期是定期维修保养周期的判断结果,获取燃气流量、空气流量、实时漏气流量和运行时间修正系数k,令漏气流量=K*实时漏气流量;
步骤S300、根据燃气流量和空气流量,计算出空燃比;其中,空燃比利用公式λ=Qair/(Qgas*LHV)计算得到,其中λ为空燃比,Qair为空气流量,Qgas为燃气流量,LHV为燃气的低热值,对于给定的燃气,LHV是定值。
步骤S400、在漏气流量和空燃比为坐标的坐标系中,标出漏气流量和空燃比,当坐标系中形成漏气流量和空燃比的关系图时执行S600,当坐标系中无法形成漏气流量和空燃比的关系图时,执行S500;
步骤S500、保持或改变标定工况后,再执行S100,即重复上述步骤直到形成关系图为止;
步骤S600、将该关系图作为标定工况下的漏气流量与空燃比的map图,其中,map图中漏气流量与空燃比的关系为λ=f(Q漏);而修正后的漏气流量与空燃比关系为λ=K*f(Q漏),Q漏为漏气流量,λ为空燃比。
本申请通过控制气体机在标定工况下运行,获取对应的漏气流量和空燃比之间的关系,并在坐标系中建立关系,可通过控制标定工况,来获取对应的漏气流量和空燃比在坐标系中的关系,直至在坐标系中形成关系图,完成空燃比的标定。可见,本申请主要是利用了漏气流量来标定空燃比,解决了相关技术中利用氧传感器标定空燃比所存在的问题,且本申请的标定方法,运行可靠性高,易实现,运行稳定。
当标定工况为功率时:
步骤S100为:在保持功率不变的情况下,控制气体机在标定功率下运行;
步骤S200、获取燃气流量、空气流量和实时漏气流量,令漏气流量等于实时漏气流量;
步骤S300、根据燃气流量和空气流量,计算出空燃比;
步骤S400、在漏气流量和空燃比为坐标的坐标系中,标出漏气流量和空燃比,当坐标系中形成漏气流量和空燃比的关系图时执行S600,否则执行S500;
步骤S500为:保持功率不变,再执行步骤S100;
步骤S600为:将该漏气流量和空燃比的关系图作为定功率下的漏气流量与空燃比的第一map图。
定功率工况下标定,就是通过上述步骤进行空燃比扫点,最终在坐标系中形成第一map图。
当标定工况包括功率和转速时:
步骤S100为:控制气体机在不同的标定功率和不同的标定转速下运行;
步骤S200、获取燃气流量、空气流量和实时漏气流量,令漏气流量等于实时漏气流量;
步骤S300、根据燃气流量和空气流量,计算出空燃比;
步骤S400、在漏气流量和空燃比为坐标的坐标系中,标出漏气流量和空燃比,当坐标系中形成漏气流量和空燃比的关系图时执行S600,否则执行S500;
步骤S500为:改变标定功率和改变标定转速,再执行S100;
步骤S600为:将该漏气流量和空燃比的关系图作为不同功率和不同转速下的漏气流量和空燃比的第二map图。
调整功率和转速,在不同功率和不同转速下,进行空燃比扫点,最终得到不同功率和不同转速下的空燃比与漏气流量的第二map图。
当标定工况包括进气管压力和转速时:
S100为:控制气体机在不同的标定进气管压力和不同的标定转速下运行;
步骤S200、获取燃气流量、空气流量和实时漏气流量,令漏气流量=实时漏气流量;
步骤S300、根据燃气流量和空气流量,计算出空燃比;
步骤S400、在漏气流量和空燃比为坐标的坐标系中,标出漏气流量和空燃比,当坐标系中形成漏气流量和空燃比的关系图时执行S600,否则执行S500;
S500为:改变标定进气管压力和改变标定转速,再执行S100;
S600为:漏气流量和空燃比的关系图为不同进气管压力和不同转速下的漏气流量和空燃比的第三map图。
调整进气管压力和转速,在不同的进气管压力和不同转速下,进行空燃比扫点,最终得到不同进气管压力和转速下,空燃比与漏气流量的第三map图。
综上所述,本申请根据标定的不同转速下漏气流量与空燃比关系,不同功率或不同进气管压力下漏气流量与空燃比关系,再根据空燃比与漏气流量的关系,获得相应的标定模型。再运行一个维修保养周期后进行运行周期修正标定,在完成维修保养再次启动后,将发动机加载至一定负荷,开启氧传感测试空燃比功能,对漏气流量进行运行时间标定,获得运行时间修正系数k,完成后关闭氧传感器测试功能。
实施例二:
如图3和图4所示,一种大功率气体机空燃比的标定系统,大功率气体机包括空气滤清器1,混合器2,增压器4,中冷器5,电子节气门6,油气分离器7,排气尾管9,氧传感器10,进气管11和排气管12。如图3所示,空气滤清器1与混合器2连接,混合器2与燃气计量阀3连接,混合器2与增压器4连接,增压器4与中冷器5连接,增压器4还与曲轴箱14连接,燃气计量阀3与控制单元13连接,中冷器5与电子节气门6连接,电子节气门6与进气管11连接,油气分离器7与漏气流量测量仪17连接,油气分离器7还与曲轴箱14连接,漏气流量测量仪17与控制单元13连接,氧传感器10与控制单元13连接,空气滤清器1与控制单元13连接,排气尾管9与氧传感器10连接。
如图4所示,本申请的标定系统还包括控制单元13及分别与控制单元13电连接的燃气流量阀3,空气流量阀15,空燃比计算单元16,漏气流量测量仪17,标定单元18,修正单元19和氧传感器启动单元20。如图4所示,燃气流量阀3与控制单元13连接,空气流量阀15与控制单元13连接,空燃比计算单元16与控制单元13连接,漏气流量测量仪17与控制单元13连接,标定单元18与控制单元13连接,修正单元19与控制单元13连接,氧传感器启动单元20与控制单元13连接。
其中,燃气流量阀3设置为采集标定工况下的燃气流量,并传输燃气流量对应的燃气电信号至控制单元13;
其中,空气流量阀15设置为采集标定工况下的进气空气流量,并传输空气流量对应的空气电信号至控制单元13;
其中,空燃比计算单元16设置为根据控制单元13传输的燃气电信号和空气电信号,计算出空燃比,并传输空燃比电信号至控制单元13;空燃比利用公式λ=Qair/(Qgas*LHV)计算得到,其中λ为空燃比,Qair为空气流量,Qgas为燃气流量,LHV为燃气的低热值,对于给定的燃气,LHV是定值。
其中,漏气流量测量仪17设置为得到标定工况下的实时漏气流量,并传输对应的漏气电信号至控制单元13,控制单元13利用公式漏气流量=实时漏气流量,得到漏气流量;
其中,标定单元18接收到控制单元13传输的空燃比电信号和漏气流量电信号后,在漏气流量和空燃比为坐标的坐标系中标出,直至在坐标系中得到漏气流量和空燃比的关系图,关系图为标定工况的漏气流量和空燃比的map图;标定单元根据不同标定工况,标定出不同标定工况下的漏气流量和空燃比的map图。
其中,修正单元19设置为在定期维修保养周期到后,获取运行时间修正系数K,并传输修正系数K至控制单元13;控制单元13利用公式漏气流量=K*实时漏气流量,对实时漏气流量进行修正。
其中,氧传感器启动单元20设置为在维修保养期间启动氧传感器10,通过氧传感器10对来控制空燃比,维修保养完成后关闭氧传感器10。
本申请的大功率气体机空燃比的标定系统使用时,控制单元控制气体机在标定工况下运行,通过燃气流量阀采集到燃气流量,通过空气流量阀采集到空气流量,通过漏气流量测量仪得到该标定工况下的漏气流量,再将燃气电信号和空气电信号传输至空燃比计算单元,通过空燃比计算单元计算出空燃比,同时启动修正单元对漏气流量进行修正,接着将空燃比电信号和漏气电信号分别传输至标定单元,标定单元在坐标系中标出空燃比和漏气流量,再然后控制单 元保持或者改变标定工况,再重复上面操作,在坐标系中标出对应的漏气流量和空燃比,直到坐标系中形成漏气流量和空燃比的关系图为止,完成标定工况下漏气流量和空燃比的标定,得到对应标定工况下的map图。
在实际标定过程中,控制单元13在定功率工况下,得到第一map图,在不同功率和不同转速下,得到第二map图,在不同进气管压力和不同转速下,得到第三map图。
在本申请的标定系统投入使用后,可根据上述工况,控制空燃比。
可见,本申请解决了相关技术中利用氧传感器控制空燃比所存在的技术问题,并且本系统运行可靠,简单易实现。
另外,当启动修正单元19后,同时启动氧传感器启动单元20,令获取运行时间修正系数k的过程中,氧传感器10工作对空燃比进行控制,当完成修正后,再关闭氧传感器测试功能。

Claims (10)

  1. 一种大功率气体机空燃比的标定方法,包括:
    控制气体机在标定工况下运行;
    获取燃气流量、空气流量和实时漏气流量,令漏气流量等于实时漏气流量;
    根据燃气流量和空气流量,计算出空燃比;
    在漏气流量和空燃比为坐标的坐标系中,标出漏气流量和空燃比;
    当坐标系中形成漏气流量和空燃比的关系图时,将该关系图作为标定工况下的漏气流量与空燃比的map图;当坐标系中无法形成漏气流量和空燃比的关系图时,保持或改变标定工况后,返回执行所述控制气体机在标定工况下运行的步骤。
  2. 根据权利要求1所述的大功率气体机空燃比的标定方法,其中,所述标定工况包括功率;
    所述控制气体机在标定工况下运行为:在保持功率不变的情况下,控制气体机在标定功率下运行;
    所述当坐标系中无法形成漏气流量和空燃比的关系图时,保持或改变标定工况后,返回执行所述控制气体机在标定工况下运行的步骤为:当坐标系中无法形成漏气流量和空燃比的关系图时,保持功率不变,返回执行所述控制气体机在标定工况下运行的步骤;
    所述漏气流量和空燃比的关系图为:定功率下的漏气流量与空燃比的第一map图。
  3. 根据权利要求1所述的大功率气体机空燃比的标定方法,其中,所述标定工况包括功率和转速;
    所述控制气体机在标定工况下运行为:控制气体机在不同的标定功率和不同的标定转速下运行;
    所述漏气流量和空燃比的关系图为:不同功率和不同转速下的漏气流量和空燃比的第二map图。
  4. 根据权利要求1所述的大功率气体机空燃比的标定方法,其中,所述标 定工况包括进气管压力和转速;
    所述控制气体机在标定工况下运行为:控制气体机在不同的标定进气管压力和不同的标定转速下运行;
    所述漏气流量和空燃比的关系图为:不同进气管压力和不同转速下的漏气流量和空燃比的第三map图。
  5. 根据权利要求1至4任一项所述的大功率气体机空燃比的标定方法,其中,所述获取燃气流量、空气流量和实时漏气流量,令漏气流量等于实时漏气流量之前还包括:
    判断维修周期是否为定期维修保养周期;
    响应于维修周期不是定期维修保养周期的判断结果,执行所述获取燃气流量、空气流量和实时漏气流量,令漏气流量等于实时漏气流量的步骤;响应于维修周期是定期维修保养周期的判断结果,获取燃气流量、空气流量、实时漏气流量和运行时间修正系数k,令漏气流量=K*实时漏气流量。
  6. 根据权利要求5所述的大功率气体机空燃比的标定方法,其中,空燃比利用公式λ=Qair/(Qgas*LHV)计算得到,其中λ为空燃比,Qair为空气流量,Qgas为燃气流量,LHV为燃气的低热值。
  7. 一种大功率气体机空燃比的标定系统,包括控制单元(13)及分别与所述控制单元(13)电连接的:
    燃气流量阀(3),所述燃气流量阀(3)设置为采集标定工况下的燃气流量,并传输燃气流量对应的燃气电信号至所述控制单元(13);
    空气流量阀(15),所述空气流量阀(15)设置为采集标定工况下的进气空气流量,并传输空气流量对应的空气电信号至所述控制单元(13);
    空燃比计算单元(16),所述空燃比计算单元(16)设置为根据所述控制单元(13)传输的燃气电信号和空气电信号,计算出空燃比,并传输空燃比电信号至所述控制单元(13);
    漏气流量测量仪(17),所述漏气流量测量仪(17)设置为得到标定工况下的实时漏气流量,并传输对应的漏气电信号至所述控制单元(13),所述控 制单元(13)利用公式漏气流量=实时漏气流量,得到漏气流量;
    标定单元(18),所述标定单元(18)接收到所述控制单元(13)传输的空燃比电信号和漏气流量电信号后,在漏气流量和空燃比为坐标的坐标系中标出,直至在坐标系中得到漏气流量和空燃比的关系图,关系图为标定工况的漏气流量和空燃比的map图。
  8. 根据权利要求7所述的大功率气体机空燃比的标定系统,其中,所述标定系统还包括与所述控制单元(13)电连接的修正单元(19),所述修正单元(19)设置为在定期维修保养周期到后,获取运行时间修正系数K,并传输修正系数K至所述控制单元(13);
    所述控制单元(13)设置为利用公式漏气流量=K*实时漏气流量,对实时漏气流量进行修正。
  9. 根据权利要求7所述的大功率气体机空燃比的标定系统,其中,所述标定系统还包括与所述控制单元(13)电连接的氧传感器启动单元(20),所述氧传感器启动单元(20)设置为在维修保养期间启动氧传感器(10),通过氧传感器(10)对来控制空燃比,维修保养完成后关闭氧传感器(10)。
  10. 根据权利要求7所述的大功率气体机空燃比的标定系统,其中,所述标定单元(18)根据不同标定工况,标定出不同标定工况下的漏气流量和空燃比的map图。
PCT/CN2023/080448 2022-04-19 2023-03-09 大功率气体机空燃比的标定方法及标定系统 WO2023202253A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210408999.8 2022-04-19
CN202210408999.8A CN114720133B (zh) 2022-04-19 2022-04-19 一种大功率气体机空燃比的标定方法及标定系统

Publications (1)

Publication Number Publication Date
WO2023202253A1 true WO2023202253A1 (zh) 2023-10-26

Family

ID=82244029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080448 WO2023202253A1 (zh) 2022-04-19 2023-03-09 大功率气体机空燃比的标定方法及标定系统

Country Status (2)

Country Link
CN (1) CN114720133B (zh)
WO (1) WO2023202253A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114720133B (zh) * 2022-04-19 2024-06-18 潍柴动力股份有限公司 一种大功率气体机空燃比的标定方法及标定系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05163993A (ja) * 1991-12-10 1993-06-29 Japan Electron Control Syst Co Ltd 内燃機関におけるブローバイガス発生検出装置及び燃料供給系異常診断装置
JPH06288265A (ja) * 1993-04-02 1994-10-11 Tokyo Gas Co Ltd ガスエンジンの空燃比制御方法及び装置
JPH0868353A (ja) * 1994-08-26 1996-03-12 Nissan Motor Co Ltd 内燃機関の空燃比制御装置
CN110671218A (zh) * 2019-09-30 2020-01-10 潍柴动力股份有限公司 气体机的控制方法及装置
CN112081677A (zh) * 2020-08-28 2020-12-15 奇瑞汽车股份有限公司 空燃比控制方法及装置
CN114720133A (zh) * 2022-04-19 2022-07-08 潍柴动力股份有限公司 一种大功率气体机空燃比的标定方法及标定系统

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0663643B2 (ja) * 1985-10-11 1994-08-22 株式会社横井機械工作所 燃焼装置の空燃比制御システム
JPH02308950A (ja) * 1989-05-25 1990-12-21 Japan Electron Control Syst Co Ltd 内燃機関の制御装置における空気漏れ自己診断装置及び空気漏れ学習補正装置
JP2669699B2 (ja) * 1989-11-28 1997-10-29 日本碍子株式会社 空燃比センサ
JPH05280403A (ja) * 1992-03-31 1993-10-26 Toyota Motor Corp 車両のエンジン吸気系における吸気漏れ検出装置
JP2767352B2 (ja) * 1993-02-02 1998-06-18 株式会社ユニシアジェックス 内燃機関の始動時空燃比制御装置
JPH09242587A (ja) * 1996-03-08 1997-09-16 Suzuki Motor Corp 内燃機関の空燃比制御装置
JP4135563B2 (ja) * 2003-06-04 2008-08-20 トヨタ自動車株式会社 空燃比センサの異常検出装置
JP2007009845A (ja) * 2005-07-01 2007-01-18 Toyota Motor Corp 内燃機関の空燃比制御装置
JP4166779B2 (ja) * 2005-11-28 2008-10-15 三菱電機株式会社 内燃機関制御装置
JP5689774B2 (ja) * 2011-10-04 2015-03-25 日本電信電話株式会社 対話型情報発信装置、対話型情報発信方法、及びプログラム
WO2013076842A1 (ja) * 2011-11-24 2013-05-30 トヨタ自動車株式会社 空燃比検出装置及び空燃比検出方法
JP6287810B2 (ja) * 2014-12-19 2018-03-07 トヨタ自動車株式会社 空燃比センサの異常診断装置
JP2017008721A (ja) * 2015-06-16 2017-01-12 愛三工業株式会社 ブローバイガス制御装置
JP2017115802A (ja) * 2015-12-25 2017-06-29 トヨタ自動車株式会社 内燃機関の空燃比制御装置
CN109209661B (zh) * 2018-10-13 2021-05-18 潍柴西港新能源动力有限公司 一种天然气发动机高原功率损失补偿控制方法
CN110630396B (zh) * 2019-09-30 2022-06-28 潍柴动力股份有限公司 气体机的控制方法及装置
CN110671219B (zh) * 2019-12-05 2020-03-17 潍柴动力股份有限公司 燃气发动机空燃比的控制方法以及控制系统
CN112594073B (zh) * 2020-12-15 2022-09-23 潍柴动力股份有限公司 一种发动机空燃比的控制方法及发动机
CN112664319B (zh) * 2020-12-25 2022-08-30 航天时代飞鸿技术有限公司 航空活塞二冲程增压发动机的控制系统和故障诊断方法
CN113202652B (zh) * 2021-06-18 2023-08-18 潍柴动力股份有限公司 燃气发动机燃气喷射修正方法及燃气发动机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05163993A (ja) * 1991-12-10 1993-06-29 Japan Electron Control Syst Co Ltd 内燃機関におけるブローバイガス発生検出装置及び燃料供給系異常診断装置
JPH06288265A (ja) * 1993-04-02 1994-10-11 Tokyo Gas Co Ltd ガスエンジンの空燃比制御方法及び装置
JPH0868353A (ja) * 1994-08-26 1996-03-12 Nissan Motor Co Ltd 内燃機関の空燃比制御装置
CN110671218A (zh) * 2019-09-30 2020-01-10 潍柴动力股份有限公司 气体机的控制方法及装置
CN112081677A (zh) * 2020-08-28 2020-12-15 奇瑞汽车股份有限公司 空燃比控制方法及装置
CN114720133A (zh) * 2022-04-19 2022-07-08 潍柴动力股份有限公司 一种大功率气体机空燃比的标定方法及标定系统

Also Published As

Publication number Publication date
CN114720133A (zh) 2022-07-08
CN114720133B (zh) 2024-06-18

Similar Documents

Publication Publication Date Title
US7281368B2 (en) Nox discharge quantity estimation method for internal combustion engine
TWI403638B (zh) 柴油引擎噴射系統及其相關方法
US8108130B2 (en) Method for calibrating a lambda sensor and internal combustion engine
JP4581993B2 (ja) 内燃機関の燃焼異常検出装置
US8447456B2 (en) Detection of engine intake manifold air-leaks
WO2023202253A1 (zh) 大功率气体机空燃比的标定方法及标定系统
JP4577211B2 (ja) Wiebe関数パラメータの決定方法および決定装置
JP2004263571A (ja) 内燃機関における充填空気量演算
US20190360421A1 (en) Method to evaluate the instantaneous fuel to torque ice efficiency status
JP2010236534A (ja) 内燃機関の制御装置
CN105736206A (zh) 一种发动机变工况下循环喷油量的在线检测方法及装置
CN110552799A (zh) 一种废气再循环控制方法及装置
CN102230425A (zh) 燃气发电机组空燃比快速自动调节系统
CN110987452A (zh) 一种基于转速信号的内燃机转矩软测量方法
CN113027626A (zh) 一种egr阀控制系统及其控制方法
CN111315975A (zh) 内燃发动机扫气气流的测量、建模和估算
JP4173565B2 (ja) 外部排気ガス再循環を有する内燃機関の負荷信号の決定方法
CN111156095A (zh) 废气流量的修正方法及装置
CN102032066B (zh) 利用当量比补偿因子操作发动机的方法和装置
CN114635785B (zh) 一种气体机、控制方法及装置、气体机系统
CN105649755A (zh) 一种确定涡轮增压汽油机扫气率的方法
CN113847150B (zh) 一种燃气发动机的排放控制方法及装置
JP4577239B2 (ja) Wiebe関数パラメータの決定方法および決定装置
CN115387925B (zh) 一种高温环境下提高柴油机性能稳定性的方法及系统
CN109883719B (zh) 一种增压直喷汽油机扫气量测量方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23790914

Country of ref document: EP

Kind code of ref document: A1