WO2023197806A1 - 一种多孔聚合物涂层铜电极及其制备方法和应用 - Google Patents

一种多孔聚合物涂层铜电极及其制备方法和应用 Download PDF

Info

Publication number
WO2023197806A1
WO2023197806A1 PCT/CN2023/081320 CN2023081320W WO2023197806A1 WO 2023197806 A1 WO2023197806 A1 WO 2023197806A1 CN 2023081320 W CN2023081320 W CN 2023081320W WO 2023197806 A1 WO2023197806 A1 WO 2023197806A1
Authority
WO
WIPO (PCT)
Prior art keywords
polystyrene
polyethylene glycol
copper electrode
polymer
porous polymer
Prior art date
Application number
PCT/CN2023/081320
Other languages
English (en)
French (fr)
Inventor
陈正件
徐林
Original Assignee
珠海中科先进技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海中科先进技术研究院有限公司 filed Critical 珠海中科先进技术研究院有限公司
Publication of WO2023197806A1 publication Critical patent/WO2023197806A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the technical field of electrode materials, and in particular to a porous polymer-coated copper electrode and its preparation method and application.
  • the purpose of the present invention is to provide a porous polymer-coated copper electrode and its preparation method and application, so as to solve the problems existing in the above-mentioned prior art, ensure the performance of lithium metal batteries, and improve the cycle life.
  • the present invention provides the following solutions:
  • the invention provides a porous polymer-coated copper electrode, which includes a polymer coating and a copper substrate; the polymer coating is composed of polystyrene-b-polyethylene glycol and polystyrene-b-polymethyl acrylic nails ester or polystyrene-b-poly-4-vinylpyridine;
  • the ratio of the hydrophilic block to the hydrophobic block of the polymer coating component is 1-10:1-10; specifically: in the polystyrene-b-polyethylene glycol, the polystyrene block The ratio of block to polyethylene glycol block is 1:10-10:1; in the polystyrene-b-polymethyl methacrylate, the ratio of polystyrene block to polymethyl methacrylate block is 1:10-10:1; in the polystyrene-b-poly-4-vinylpyridine, the ratio of polystyrene block to poly-4-vinylpyridine block is 1:10-10:1.
  • the thickness of the polymer coating is 80-300nm.
  • the invention also provides a method for preparing the above-mentioned porous polymer-coated copper electrode, which includes the following steps:
  • the polymer is dissolved in an organic solvent, and the obtained polymer solution is coated on the surface of metallic copper to obtain the porous polymer-coated copper electrode.
  • the organic solvent includes toluene, chloroform, acetone, cyclohexane or acetic acid.
  • a step of cleaning to remove the hydrophilic block is also included.
  • the cleaning agent used for cleaning is water or acetic acid.
  • the present invention also provides the application of the above-mentioned porous polymer-coated copper electrode in lithium-ion batteries.
  • the two blocks undergo phase separation during the solvent evaporation process, and then use a selective solvent to clean an enriched phase to form a porous structure, and prepare a pore size controllable and uniformly distributed
  • the porous polymer coating successfully achieves continuous and uniform deposition of lithium, inhibits the growth of lithium dendrites, and improves the cycle life of lithium metal batteries.
  • Figure 1 is a morphology diagram of the polystyrene-b-polyethylene glycol coating current collector prepared in Example 1 of the present invention
  • Figure 2 is a Coulombic efficiency diagram of polymer-coated current collectors prepared in Example 1, Example 4 and Comparative Example 1 of the present invention
  • Figure 3 shows the lithium deposition morphology of different electrodes; A is the lithium deposition morphology of the pure copper electrode of Comparative Example 1, and B is the lithium deposition morphology of the porous polymer-coated electrode of Example 1.
  • polystyrene-b-polyethylene glycol is as follows:
  • polystyrene-b-polymethylmethacrylate The structure of polystyrene-b-polymethylmethacrylate is as follows:
  • polystyrene-b-poly-4-vinylpyridine The structure of polystyrene-b-poly-4-vinylpyridine is as follows:
  • Step 2 Use a glue spreader to spin-coat the polystyrene-b-polyethylene glycol solution on the copper electrode to prepare the polystyrene-b-polyethylene glycol coating.
  • the thickness of the polymer coating is 80nm, and then remove the Wash in ionized water for 30 minutes to remove the polyethylene glycol block, and obtain a current collector with a polystyrene-b-polyethylene glycol coating (coating thickness 80 nm).
  • Step 3 Assemble the coin cell battery and test the battery cycle performance, as follows:
  • the diameter of the polymer-coated current collector is 16mm.
  • the assembly sequence is negative electrode shell, shrapnel, gasket, lithium sheet, interlayer, separator, porous polymer-coated copper electrode, positive electrode shell, and the battery is sealed with an electric sealing machine.
  • the lithium sheet serves as the working electrode
  • the porous polymer-coated copper electrode serves as the counter electrode.
  • Step 2 Use a glue spreader to spin-coat the polystyrene-b-polyethylene glycol solution on the copper electrode to prepare the polystyrene-b-polyethylene glycol coating.
  • the thickness of the polymer coating is 80nm, and then remove the ionized water
  • the polyethylene glycol block was removed by cleaning for 30 minutes, and a current collector with a polystyrene-b-polyethylene glycol coating (coating thickness 80 nm) was obtained.
  • Step 3 Assemble the coin cell battery and test battery cycle performance.
  • the button battery assembly steps are the same as in Example 1.
  • Step 2 Use a glue spreader to spin-coat the polystyrene-b-polyethylene glycol solution on the copper electrode to prepare the polystyrene-b-polyethylene glycol coating.
  • the thickness of the polymer coating is 80nm, and then remove the Wash in ionized water for 30 minutes to remove the polyethylene glycol block, and obtain a current collector with a polystyrene-b-polyethylene glycol coating (coating thickness 80 nm).
  • Step 3 Assemble the coin cell battery and test battery cycle performance.
  • the button battery assembly steps are the same as in Example 1.
  • Step 2 Use a glue spreader to spin-coat the polystyrene-b-polyethylene glycol solution on the copper electrode to prepare the polystyrene-b-polyethylene glycol coating.
  • the thickness of the polymer coating is 80nm, and then remove the Wash in ionized water for 30 minutes to remove the polyethylene glycol block, and obtain a current collector with a polystyrene-b-polyethylene glycol coating (coating thickness 80 nm).
  • Step 3 Assemble the coin cell battery and test battery cycle performance.
  • the button battery assembly steps are the same as in Example 1.
  • Step 2 Use a glue spreader to spin-coat the polystyrene-b-polyethylene glycol solution on the copper electrode to prepare the polystyrene-b-polyethylene glycol coating.
  • the thickness of the polymer coating is 80nm, and then remove the Wash in ionized water for 30 minutes to remove the polyethylene glycol block, and obtain a current collector with a polystyrene-b-polyethylene glycol coating (coating thickness 80 nm).
  • Step 3 Assemble the coin cell battery and test battery cycle performance.
  • the button battery assembly steps are the same as in Example 1.
  • Step 2 Use a glue spreader to spin-coat the polystyrene-b-polyethylene glycol solution on the copper electrode to prepare the polystyrene-b-polyethylene glycol coating.
  • the thickness of the polymer coating is 80nm, and then remove the Wash in ionized water for 30 minutes to remove the polyethylene glycol block, and obtain a current collector with a polystyrene-b-polyethylene glycol coating (coating thickness 80 nm).
  • Step 3 Assemble the coin cell battery and test battery cycle performance.
  • the button battery assembly steps are the same as in Example 1.
  • Step 2 Use a glue spreader to spin-coat the polystyrene-b-polyethylene glycol solution on the copper electrode to prepare the polystyrene-b-polyethylene glycol coating.
  • the thickness of the polymer coating is 120nm, and then remove the Wash in ionized water for 30 minutes to remove the polyethylene glycol block, and obtain a current collector with a polystyrene-b-polyethylene glycol coating (coating thickness 120 nm).
  • Step 3 Assemble the coin cell battery and test battery cycle performance.
  • the button battery assembly steps are the same as in Example 1.
  • Step 2 Use a glue spreader to spin-coat the polystyrene-b-polyethylene glycol solution on the copper electrode to prepare the polystyrene-b-polyethylene glycol coating.
  • the thickness of the polymer coating is 300nm, and then remove the Wash in ionized water for 30 minutes to remove the polyethylene glycol block, and obtain a current collector with a polystyrene-b-polyethylene glycol coating (coating thickness 300 nm).
  • Step 3 Assemble the coin cell battery and test battery cycle performance.
  • the button battery assembly steps are the same as in Example 1.
  • Step 2 Use a glue spreader to spin-coat the polystyrene-b-polymethylmethacrylate solution on the copper electrode to prepare the polystyrene-b-polymethylmethacrylate coating.
  • the thickness of the polymer coating is 80nm. , and then washed in acetic acid for 30 minutes to remove the polymethyl methacrylate block, and a current collector with a polystyrene-b-polymethyl methacrylate coating (coating thickness 80 nm) was obtained.
  • Step 3 Assemble the coin cell battery and test battery cycle performance.
  • the button battery assembly steps are the same as in Example 1.
  • Step 2 Use a glue spreader to spin-coat the polystyrene-b-poly-4-vinylpyridine solution on the copper electrode to prepare the polystyrene-b-poly-4-vinylpyridine coating.
  • the polymer coating The thickness is 80 nm, and then washed in deionized water for 30 minutes to remove the poly-4-vinylpyridine block to obtain a current collector with a polypolystyrene-b-poly-4-vinylpyridine coating (coating thickness 80 nm).
  • Step 3 Assemble the coin cell battery and test battery cycle performance.
  • the button battery assembly steps are the same as in Example 1.
  • Figure 2 is a Coulombic efficiency diagram of polymer-coated current collectors prepared in Example 1, Example 4 and Comparative Example 1 of the present invention. It can be seen from Figure 2 that the structure of the block polymer has a very obvious impact on the cycle stability of the battery. The coating without porous structure only slightly improves the cycle stability of the battery. However, the formation of a porous structure greatly improves the cycle stability of the battery. . It can be seen that the present invention proposes a method for preparing a battery electrode coating with high cycle stability.
  • Figure 3 shows the lithium deposition morphology of different electrodes; A is the lithium deposition morphology of the pure copper electrode of Comparative Example 1, and B is the lithium deposition morphology of the porous polymer-coated electrode of Example 1. It can be seen that the present invention successfully achieves continuous and uniform deposition of lithium using the porous polymer coating.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种多孔聚合物涂层铜电极及其制备方法和应用,涉及电极材料技术领域。该多孔聚合物涂层铜电极包括聚合物涂层和铜基底;采用的聚合物为聚苯乙烯-b-聚乙二醇、聚苯乙烯-b-聚甲基丙烯酸甲酯或聚苯乙烯-b-聚-4-乙烯基吡啶。本发明通过简单的嵌段共聚物自组装的方法,制备了具有孔径可控且分布均匀的多孔聚合物涂层,成功实现了锂的连续均匀沉积,抑制了锂枝晶的生长,提高了锂金属电池的循环寿命。

Description

一种多孔聚合物涂层铜电极及其制备方法和应用 技术领域
本发明涉及电极材料技术领域,特别是涉及一种多孔聚合物涂层铜电极及其制备方法和应用。
背景技术
锂金属电池在电镀/剥离过程中,活泼锂与电解液的无限副反应、枝晶生长、无限增长的体积效应等问题导致电池容量迅速衰减,电池循环寿命降低。通过在电极/电解质界面人工设计SEI膜是解决锂金属电池问题最直接的调控方法,来达到改善电池性能的目的。锂负极的“无宿主”性质使其在循环过程中产生巨大的体积变化,也是导致锂金属电池性能差的一个主要原因。
因此,通过设计“宿主”来做为锂沉积的载体成为有效的方法。先前方法报道具有微纳米聚合物SEI膜/隔膜/固体电解质的方法可以有效提高锂金属电池稳定性。以此可知,纳米级多孔通道可以作为锂沉积的优先载体,引导锂离子在孔内传输。但先前方法存在过程复杂且孔径难以有效调控的缺陷,同时,难以实现工业化生产。
发明内容
本发明的目的是提供一种多孔聚合物涂层铜电极及其制备方法和应用,以解决上述现有技术存在的问题,保证锂金属电池的性能,提高循环寿命。
为实现上述目的,本发明提供了如下方案:
本发明提供一种多孔聚合物涂层铜电极,包括聚合物涂层和铜基底;所述聚合物涂层成分为聚苯乙烯-b-聚乙二醇、聚苯乙烯-b-聚甲基丙烯酸甲 酯或聚苯乙烯-b-聚-4-乙烯基吡啶;
进一步地,所述聚合物涂层成分的亲水嵌段与疏水嵌段比例为1-10:1-10;具体的:所述聚苯乙烯-b-聚乙二醇中,聚苯乙烯嵌段与聚乙二醇嵌段比例为1:10-10:1;所述聚苯乙烯-b-聚甲基丙烯酸甲酯中,聚苯乙烯嵌段与聚甲基丙烯酸甲酯嵌段比例为1:10-10:1;所述聚苯乙烯-b-聚-4-乙烯基吡啶中,聚苯乙烯嵌段与聚-4-乙烯基吡啶嵌段比例为1:10-10:1。
进一步地,所述聚合物涂层的厚度为80-300nm。
本发明还提供上述多孔聚合物涂层铜电极的制备方法,包括以下步骤:
将所述聚合物溶解于有机溶剂中,将得到的聚合物溶液涂敷于金属铜表面,得到所述多孔聚合物涂层铜电极。
进一步地,所述有机溶剂包括甲苯、氯仿、丙酮、环己烷或乙酸。
进一步地,所述聚合物溶液涂敷完毕后,还包括清洗去除亲水嵌段的步骤。
进一步地,清洗所用清洗剂为水或乙酸。
本发明还提供上述多孔聚合物涂层铜电极在锂离子电池中的应用。
本发明公开了以下技术效果:
本发明通过简单的嵌段共聚物自组装的方法,两嵌段在溶剂挥发过程中发生相分离,再利用选择性溶剂清洗一富集相,形成多孔结构,制备了具有孔径可控且分布均匀的多孔聚合物涂层,成功实现了锂的连续均匀的沉积,抑制了锂枝晶的生长,提高了锂金属电池的循环寿命。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对 实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例1制备得到的聚苯乙烯-b-聚乙二醇涂层集流体形貌图;
图2为本发明实施例1、实施例4与对比例1制备得到的聚合物涂层集流体的库伦效率图;
图3为不同电极的锂沉积形貌图;其中:A为对比例1的纯铜电极锂沉积形貌图,B为实施例1的多孔聚合物涂层电极锂沉积形貌图。
具体实施方式
现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。
应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。
除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等 同的任何方法和材料。本说明书中提到的所有文献通过引用并入,用以公开和描述与所述文献相关的方法和/或材料。在与任何并入的文献冲突时,以本说明书的内容为准。
在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实施方式对技术人员而言是显而易见的。本发明说明书和实施例仅是示例性的。
关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。
本发明中,聚苯乙烯-b-聚乙二醇的结构如下:
聚苯乙烯-b-聚甲基丙烯酸甲酯的结构如下:
聚苯乙烯-b-聚-4-乙烯基吡啶的结构如下:
实施例1
步骤1:溶解聚苯乙烯嵌段:聚乙二醇嵌段=10:1的聚苯乙烯-b-聚乙二醇于环己烷中配置8mg/mL聚苯乙烯-b-聚乙二醇溶液。
步骤2:利用匀胶机在铜电极上旋涂聚苯乙烯-b-聚乙二醇溶液来制备聚苯乙烯-b-聚乙二醇涂层,聚合物涂层的厚度80nm,然后在去离子水中清洗30分钟去除聚乙二醇嵌段,得到具有聚苯乙烯-b-聚乙二醇涂层集流体(涂层厚度80nm)。
步骤3:组装扣式电池并测试电池循环性能,具体如下:
在充满氩气且水、氧值均小于0.1ppm的手套箱中,使用直径为14mm,厚度为1mm的锂片、直径18mm的隔膜(Celgard 2325)和1mol/L的双三氟甲基磺酰亚胺锂、含有2wt%硝酸锂的1,3二氧戊环/乙二醇二甲醚(v/v=1:1)的电解液,进行型号为CR2025的扣式电池的组装。具有聚合物涂层集流体的直径为16mm。组装顺序依次为负极壳、弹片、垫片、锂片、夹层、隔膜、多孔聚合物涂层铜电极、正极壳,用电动封装机将电池密封。组装半电池时,锂片为工作电极,多孔聚合物涂层铜电极为对电极。
在1mA/cm2的电流密度和容量1mAh/cm2条件下,稳定循环175圈。
本发明实施例1制备得到的聚苯乙烯-b-聚乙二醇涂层集流体形貌图如图1所示。
实施例2
步骤1:溶解聚苯乙烯嵌段:聚乙二醇嵌段=1:10的聚苯乙烯-b-聚乙二醇于环己烷中配置8mg/mL聚苯乙烯-b-聚乙二醇溶液。
步骤2:利用匀胶机在铜电极上旋涂聚苯乙烯-b-聚乙二醇溶液来制备聚苯乙烯-b-聚乙二醇涂层,聚合物涂层的厚度80nm,然后在去离子水中 清洗30分钟去除聚乙二醇嵌段,得到具有聚苯乙烯-b-聚乙二醇涂层集流体(涂层厚度80nm)。
步骤3:组装扣式电池并测试电池循环性能。扣式电池组装步骤同实施例1。
在1mA/cm2的电流密度和容量1mAh/cm2条件下,稳定循环200圈。
实施例3
步骤1:溶解聚苯乙烯嵌段:聚乙二醇嵌段=1:1的聚苯乙烯-b-聚乙二醇于氯仿中配置8mg/mL聚苯乙烯-b-聚乙二醇溶液。
步骤2:利用匀胶机在铜电极上旋涂聚苯乙烯-b-聚乙二醇溶液来制备聚苯乙烯-b-聚乙二醇涂层,聚合物涂层的厚度80nm,然后在去离子水中清洗30分钟去除聚乙二醇嵌段,得到具有聚苯乙烯-b-聚乙二醇涂层集流体(涂层厚度80nm)。
步骤3:组装扣式电池并测试电池循环性能。扣式电池组装步骤同实施例1。
在1mA/cm2的电流密度和容量1mAh/cm2条件下,稳定循环135圈。
实施例4
步骤1:溶解聚苯乙烯嵌段:聚乙二醇嵌段=10:1的聚苯乙烯-b-聚乙二醇于氯仿中配置8mg/mL聚苯乙烯-b-聚乙二醇溶液。
步骤2:利用匀胶机在铜电极上旋涂聚苯乙烯-b-聚乙二醇溶液来制备聚苯乙烯-b-聚乙二醇涂层,聚合物涂层的厚度80nm,然后在去离子水中清洗30分钟去除聚乙二醇嵌段,得到具有聚苯乙烯-b-聚乙二醇涂层集流体(涂层厚度80nm)。
步骤3:组装扣式电池并测试电池循环性能。扣式电池组装步骤同实施例1。
在1mA/cm2的电流密度和容量1mAh/cm2条件下,稳定循环130圈。
实施例5
步骤1:溶解聚苯乙烯嵌段:聚乙二醇嵌段=1:1的聚苯乙烯-b-聚乙二醇于环己烷中配置8mg/mL聚苯乙烯-b-聚乙二醇溶液。
步骤2:利用匀胶机在铜电极上旋涂聚苯乙烯-b-聚乙二醇溶液来制备聚苯乙烯-b-聚乙二醇涂层,聚合物涂层的厚度80nm,然后在去离子水中清洗30分钟去除聚乙二醇嵌段,得到具有聚苯乙烯-b-聚乙二醇涂层集流体(涂层厚度80nm)。
步骤3:组装扣式电池并测试电池循环性能。扣式电池组装步骤同实施例1。
在1mA/cm2的电流密度和容量1mAh/cm2条件下,稳定循环180圈。
实施例6
步骤1:溶解聚苯乙烯嵌段:聚乙二醇嵌段=1:10的聚苯乙烯-b-聚乙二醇于氯仿中配置8mg/mL聚苯乙烯-b-聚乙二醇溶液。
步骤2:利用匀胶机在铜电极上旋涂聚苯乙烯-b-聚乙二醇溶液来制备聚苯乙烯-b-聚乙二醇涂层,聚合物涂层的厚度80nm,然后在去离子水中清洗30分钟去除聚乙二醇嵌段,得到具有聚苯乙烯-b-聚乙二醇涂层集流体(涂层厚度80nm)。
步骤3:组装扣式电池并测试电池循环性能。扣式电池组装步骤同实施例1。
在1mA/cm2的电流密度和容量1mAh/cm2条件下,稳定循环125圈。
实施例7
步骤1:溶解聚苯乙烯嵌段:聚乙二醇嵌段=1:10的聚苯乙烯-b-聚乙二醇于环己烷中配置16mg/mL聚苯乙烯-b-聚乙二醇溶液。
步骤2:利用匀胶机在铜电极上旋涂聚苯乙烯-b-聚乙二醇溶液来制备聚苯乙烯-b-聚乙二醇涂层,聚合物涂层的厚度120nm,然后在去离子水中清洗30分钟去除聚乙二醇嵌段,得到具有聚苯乙烯-b-聚乙二醇涂层集流体(涂层厚度120nm)。
步骤3:组装扣式电池并测试电池循环性能。扣式电池组装步骤同实施例1。
在1mA/cm2的电流密度和容量1mAh/cm2条件下,稳定循环180圈。
实施例8
步骤1:溶解聚苯乙烯嵌段:聚乙二醇嵌段=1:10的聚苯乙烯-b-聚乙二醇于环己烷中配置25mg/mL聚苯乙烯-b-聚乙二醇溶液。
步骤2:利用匀胶机在铜电极上旋涂聚苯乙烯-b-聚乙二醇溶液来制备聚苯乙烯-b-聚乙二醇涂层,聚合物涂层的厚度300nm,然后在去离子水中清洗30分钟去除聚乙二醇嵌段,得到具有聚苯乙烯-b-聚乙二醇涂层集流体(涂层厚度300nm)。
步骤3:组装扣式电池并测试电池循环性能。扣式电池组装步骤同实施例1。
在1mA/cm2的电流密度和容量1mAh/cm2条件下,稳定循环150圈。
实施例9
步骤1:溶解聚苯乙烯嵌段:聚甲基丙烯酸甲酯嵌段=1:1的聚苯乙烯-b-聚甲基丙烯酸甲酯于环己烷中配置8mg/mL聚苯乙烯-b-聚甲基丙烯酸甲酯溶液。
步骤2:利用匀胶机在铜电极上旋涂聚苯乙烯-b-聚甲基丙烯酸甲酯溶液来制备聚苯乙烯-b-聚甲基丙烯酸甲酯涂层,聚合物涂层的厚度80nm,然后在乙酸中清洗30分钟去除聚甲基丙烯酸甲酯嵌段,得到具有聚苯乙烯-b-聚甲基丙烯酸甲酯涂层集流体(涂层厚度80nm)。
步骤3:组装扣式电池并测试电池循环性能。扣式电池组装步骤同实施例1。
在1mA/cm2的电流密度和容量1mAh/cm2条件下,稳定循环165圈。
实施例10
步骤1:溶解聚苯乙烯嵌段:聚-4-乙烯基吡啶嵌段=1:1的聚聚苯乙烯-b-聚-4-乙烯基吡啶于氯仿中配置8mg/mL聚聚苯乙烯-b-聚-4-乙烯基吡啶溶液。
步骤2:利用匀胶机在铜电极上旋涂聚聚苯乙烯-b-聚-4-乙烯基吡啶溶液来制备聚聚苯乙烯-b-聚-4-乙烯基吡啶涂层,聚合物涂层的厚度80nm,然后在去离子水中清洗30分钟去除聚-4-乙烯基吡啶嵌段,得到具有聚聚苯乙烯-b-聚-4-乙烯基吡啶涂层集流体(涂层厚度80nm)。
步骤3:组装扣式电池并测试电池循环性能。扣式电池组装步骤同实施例1。
在1mA/cm2的电流密度和容量1mAh/cm2条件下,稳定循环160圈。
对比例1
以铜电极(裸铜)为集流体组装扣式电池,测试电池循环性能,扣式电池组装步骤同实施例1。
在1mA/cm2的电流密度和容量1mAh/cm2条件下,稳定循环60圈。
图2为本发明实施例1、实施例4与对比例1制备得到的聚合物涂层集流体的库伦效率图。由图2可以看出嵌段聚合物的结构对电池循环稳定性影响非常明显,没有多孔结构形成的涂层只是稍改善电池的循环稳定性,然而形成多孔结构后大大改善了电池的循环稳定性。由此可见,本发明提出了一种制备高循环稳定性电池电极涂层的方法。
图3为不同电极的锂沉积形貌图;其中:A为对比例1的纯铜电极锂沉积形貌图,B为实施例1的多孔聚合物涂层电极锂沉积形貌图。可以看出,本发明利用多孔聚合物涂层成功实现了锂的连续均匀沉积。
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (8)

  1. 一种多孔聚合物涂层铜电极,其特征在于,包括聚合物涂层和铜基底;所述聚合物涂层成分为聚苯乙烯-b-聚乙二醇、聚苯乙烯-b-聚甲基丙烯酸甲酯或聚苯乙烯-b-聚-4-乙烯基吡啶。
  2. 根据权利要求1所述的多孔聚合物涂层铜电极,其特征在于,所述聚苯乙烯-b-聚乙二醇中,聚苯乙烯嵌段与聚乙二醇嵌段比例为1:10-10:1;所述聚苯乙烯-b-聚甲基丙烯酸甲酯中,聚苯乙烯嵌段与聚甲基丙烯酸甲酯嵌段比例为1:10-10:1;所述聚苯乙烯-b-聚-4-乙烯基吡啶中,聚苯乙烯嵌段与聚-4-乙烯基吡啶嵌段比例为1:10-10:1。
  3. 根据权利要求1所述的多孔聚合物涂层铜电极,其特征在于,所述聚合物涂层的厚度为80-300nm。
  4. 如权利要求1-3任一项所述的多孔聚合物涂层铜电极的制备方法,其特征在于,包括以下步骤:
    将聚合物溶解于有机溶剂中得到聚合物溶液,将得到的聚合物溶液涂敷于金属铜表面,得到多孔聚合物涂层铜电极。
  5. 根据权利要求4所述的制备方法,其特征在于,所述有机溶剂包括甲苯、氯仿、丙酮、环己烷或乙酸。
  6. 根据权利要求4所述的制备方法,其特征在于,所述聚合物溶液涂敷完毕后,还包括清洗的步骤。
  7. 根据权利要求6所述的制备方法,其特征在于,清洗所用清洗剂为水或乙酸。
  8. 如权利要求1-3任一项所述的多孔聚合物涂层铜电极在锂离子电池中的应用。
PCT/CN2023/081320 2022-04-12 2023-03-14 一种多孔聚合物涂层铜电极及其制备方法和应用 WO2023197806A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210382931.7A CN114678515B (zh) 2022-04-12 2022-04-12 一种多孔聚合物涂层铜电极及其制备方法和应用
CN202210382931.7 2022-04-12

Publications (1)

Publication Number Publication Date
WO2023197806A1 true WO2023197806A1 (zh) 2023-10-19

Family

ID=82077640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081320 WO2023197806A1 (zh) 2022-04-12 2023-03-14 一种多孔聚合物涂层铜电极及其制备方法和应用

Country Status (3)

Country Link
CN (1) CN114678515B (zh)
LU (1) LU505370B1 (zh)
WO (1) WO2023197806A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114678515B (zh) * 2022-04-12 2024-05-31 珠海中科先进技术研究院有限公司 一种多孔聚合物涂层铜电极及其制备方法和应用
CN115838557B (zh) * 2022-09-23 2023-12-08 上海交通大学 一种金属负极用高分子功能涂层的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239854A (ja) * 2007-03-28 2008-10-09 Nitto Denko Corp ミクロ相分離構造を有する高分子体の製造方法ならびにミクロ相分離構造を有する高分子体
US8425981B1 (en) * 2011-02-23 2013-04-23 Sandia Corporation Method for making nanoporous hydrophobic coatings
US20160293943A1 (en) * 2015-03-30 2016-10-06 SolidEnergy Systems Composite coating systems and methods for lithium metal anodes in battery applications
US20180043314A1 (en) * 2016-08-15 2018-02-15 Pall Corporation Fluoropolymers and membranes comprising fluoropolymers (ii)
CN110474053A (zh) * 2019-08-21 2019-11-19 厦门大学 一种锂金属负极材料、制备方法及应用
CN111129504A (zh) * 2020-01-17 2020-05-08 清华大学深圳国际研究生院 改性集流体的制备方法、改性集流体、电极片及锂电池
CN114220947A (zh) * 2021-12-09 2022-03-22 厦门大学 一种锂金属电池负极、集流体及其制备方法和电池
CN114678515A (zh) * 2022-04-12 2022-06-28 珠海中科先进技术研究院有限公司 一种多孔聚合物涂层铜电极及其制备方法和应用

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5176477B2 (ja) * 2007-10-22 2013-04-03 日産自動車株式会社 二次電池および組電池、並びにこれらを搭載した車両
CN101704957B (zh) * 2009-10-29 2011-07-20 南京工业大学 一种制备具有连续纳米孔道的聚合物薄膜的方法
CN102130323B (zh) * 2011-02-12 2013-02-13 中南大学 一种含多孔聚合物弹性体的锂离子电池薄膜负极及制备方法
KR101532136B1 (ko) * 2013-06-26 2015-06-29 (주)오렌지파워 음극, 이의 제조 방법 및 이를 포함하는 이차 전지
CN103788398B (zh) * 2014-01-26 2016-01-13 中国科学院长春应用化学研究所 一种嵌段共聚物有序介孔薄膜的制备方法
CN105186006B (zh) * 2014-06-17 2017-08-11 北京好风光储能技术有限公司 一种复合多孔集流体及其制备方法与应用
KR101984723B1 (ko) * 2016-09-07 2019-05-31 주식회사 엘지화학 리튬 전극용 다공성 집전체 및 이를 포함하는 리튬 전극
US10665844B2 (en) * 2016-10-12 2020-05-26 Prologium Technology Co., Ltd. Lithium metal electrode and its related lithium metal battery
WO2019104365A1 (en) * 2017-11-30 2019-06-06 Nano-Nouvelle Pty Ltd Current collector
CN108777307A (zh) * 2017-12-29 2018-11-09 上海其鸿新材料科技有限公司 一种锂电池集流体导电涂层
CN110098409B (zh) * 2018-01-30 2021-11-02 宁德时代新能源科技股份有限公司 一种二次电池集流体及使用该集流体的二次电池
EP3748742A4 (en) * 2018-01-31 2021-01-13 Hitachi Chemical Company, Ltd. NEGATIVE ELECTRODE ACTIVE MATERIAL FOR LITHIUM-ION SECONDARY BATTERY, NEGATIVE ELECTRODE FOR LITHIUM-ION SECONDARY BATTERY, AND LITHIUM-ION SECONDARY BATTERY
CN109161047B (zh) * 2018-09-03 2021-07-09 江苏科技大学 聚苯乙烯或聚苯乙烯共聚物多孔通透膜的制备方法
CN112216818B (zh) * 2019-07-11 2022-02-08 比亚迪股份有限公司 一种锂离子电池负极及其制备方法、锂离子电池和电池模组
CN110364739A (zh) * 2019-07-29 2019-10-22 中国科学院宁波材料技术与工程研究所 一种集流体及其制备方法和应用
WO2021212428A1 (zh) * 2020-04-23 2021-10-28 宁德时代新能源科技股份有限公司 锂金属电池及其制备方法、包含锂金属电池的装置和负极极片
CN112968210A (zh) * 2021-02-24 2021-06-15 珠海中科先进技术研究院有限公司 一种两性离子液体凝胶电解质及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239854A (ja) * 2007-03-28 2008-10-09 Nitto Denko Corp ミクロ相分離構造を有する高分子体の製造方法ならびにミクロ相分離構造を有する高分子体
US8425981B1 (en) * 2011-02-23 2013-04-23 Sandia Corporation Method for making nanoporous hydrophobic coatings
US20160293943A1 (en) * 2015-03-30 2016-10-06 SolidEnergy Systems Composite coating systems and methods for lithium metal anodes in battery applications
US20180043314A1 (en) * 2016-08-15 2018-02-15 Pall Corporation Fluoropolymers and membranes comprising fluoropolymers (ii)
CN110474053A (zh) * 2019-08-21 2019-11-19 厦门大学 一种锂金属负极材料、制备方法及应用
CN111129504A (zh) * 2020-01-17 2020-05-08 清华大学深圳国际研究生院 改性集流体的制备方法、改性集流体、电极片及锂电池
CN114220947A (zh) * 2021-12-09 2022-03-22 厦门大学 一种锂金属电池负极、集流体及其制备方法和电池
CN114678515A (zh) * 2022-04-12 2022-06-28 珠海中科先进技术研究院有限公司 一种多孔聚合物涂层铜电极及其制备方法和应用

Also Published As

Publication number Publication date
CN114678515A (zh) 2022-06-28
LU505370B1 (en) 2024-01-09
CN114678515B (zh) 2024-05-31

Similar Documents

Publication Publication Date Title
CN111900388B (zh) 一种锌离子电池负极材料、其制备及应用
WO2023197806A1 (zh) 一种多孔聚合物涂层铜电极及其制备方法和应用
CN110808360A (zh) 一种硅碳负极材料及制备方法、电池负极片及锂离子电池
WO2020094090A1 (zh) 离子选择性复合隔膜及其制备方法和应用
CN113036153A (zh) 诱导锂金属负极优先横向沉积的铜基集流体及其制备方法与应用
CN112909433A (zh) 一氧化硅/聚丙烯酸改性高安全电池隔膜及其制备方法和应用
CN1320681C (zh) 一种可长时间贮存的氢镍电池及其制作方法
CN113937269A (zh) 一种银颗粒涂层修饰的三维多孔铜集流体-锂负极一体结构及其制备方法和应用
CN115064702A (zh) 一种亲钠型3d碳集流体及其制备方法和应用以及无负极固态钠电池的制备方法
WO2022161438A1 (zh) 一种含硼改性隔膜及其制备方法和应用及含该隔膜的电池
JP2023513815A (ja) 陽極片、当該極片を採用した電池及び電子装置
CN108987652A (zh) 锂硫电池隔膜以及锂硫电池
CN112366322B (zh) 一种提升硅碳负极结构稳定性以及循环性能的集流体及其制备方法和包含该集流体的电池
CN110854441B (zh) 一种三维多孔集流体及模板刻蚀方法与应用
KR20190108316A (ko) 수소 거품 형판을 이용한 다공성 전극 집전체의 제조방법 및 상기 방법에 의해 제조된 전극 집전체
TW200423449A (en) Secondary cell with polymer coated anode
CN109065833B (zh) 一种锂电池硅碳复合负极片的多孔集流体表面处理方法
CN108376764B (zh) 锂二次电池负极表面改性方法、使用该方法制得的Ag改性锂电极及应用
CN112447970A (zh) 锂硫电池正极自修复涂层及其制备方法
WO2023088078A1 (zh) 金属锂负极、二次电池、电池模块、电池包及用电装置
CN213150817U (zh) 一种铜集流体
CN110581263B (zh) 二氧化锰改性锂硫电池金属锂负极的制备方法以及一种锂硫电池
JP3738293B2 (ja) リチウム二次電池用負極及びこれを用いたリチウム二次電池
CN113130854A (zh) 一种无枝晶锂金属-石墨烯纸复合负极的制备方法
CN111710842A (zh) 一种锂电池用金属锂-氧化铝复合负极及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23787454

Country of ref document: EP

Kind code of ref document: A1