WO2023189759A1 - 発泡性メタクリル酸メチル系樹脂粒子、メタクリル酸メチル系樹脂発泡粒子、メタクリル酸メチル系樹脂発泡成形体および消失模型 - Google Patents

発泡性メタクリル酸メチル系樹脂粒子、メタクリル酸メチル系樹脂発泡粒子、メタクリル酸メチル系樹脂発泡成形体および消失模型 Download PDF

Info

Publication number
WO2023189759A1
WO2023189759A1 PCT/JP2023/010704 JP2023010704W WO2023189759A1 WO 2023189759 A1 WO2023189759 A1 WO 2023189759A1 JP 2023010704 W JP2023010704 W JP 2023010704W WO 2023189759 A1 WO2023189759 A1 WO 2023189759A1
Authority
WO
WIPO (PCT)
Prior art keywords
methyl methacrylate
weight
resin particles
parts
expandable
Prior art date
Application number
PCT/JP2023/010704
Other languages
English (en)
French (fr)
Inventor
剛 小林
基理人 鈴木
太郎 木口
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2023189759A1 publication Critical patent/WO2023189759A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent

Definitions

  • the present invention relates to expandable methyl methacrylate resin particles, methyl methacrylate resin foam particles, methyl methacrylate resin foam molded articles, and vanishing models.
  • Patent Document 1 describes the use of methyl methacrylate units, acrylic ester units, and crosslinking agent-derived constituent units as expandable methyl methacrylate resin particles for producing foam molded articles of methyl methacrylate polymers.
  • Expandable methyl methacrylate-based resin particles are disclosed that include a base resin containing a structural unit having the following properties and a blowing agent.
  • One aspect of the present invention is to provide expandable methyl methacrylate resin particles that can provide a methyl methacrylate resin foam molded article with excellent surface beauty.
  • one embodiment of the present invention includes the following configuration.
  • Expandable methyl methacrylate resin particles comprising a base resin containing methyl methacrylate units and acrylic ester units as constituent units, and a blowing agent, wherein the expandable methyl methacrylate resin particles have a volume average
  • the particle size is 0.30 mm to 0.50 mm
  • the peak top particle size of the particle size distribution is 0.33 mm to 0.47 mm
  • the expandable methyl methacrylate resin particles are steam blown at a pressure of 0.10 MPa to 0. .16 MPa and the internal pressure of the foaming machine from 0.005 MPa to 0.030 MPa, the time required for the expandable methyl methacrylate resin particles to become expanded methyl methacrylate resin particles with a bulk ratio of 50 times.
  • Expandable methyl methacrylate resin particles comprising a base resin containing methyl methacrylate units and acrylic ester units as constituent units, and a blowing agent, wherein the acrylic ester units are butyl acrylate units.
  • the content of the methyl methacrylate unit is 93.0 parts by weight to 98.0 parts by weight. parts
  • the content of the butyl acrylate unit is 2.0 parts by weight to 7.0 parts by weight
  • the expandable methyl methacrylate resin particles have a volume average particle diameter of 0.30 mm to 0.3 parts by weight. 50 mm
  • the peak top particle diameter of the particle size distribution is 0.33 mm to 0.47 mm
  • the weight average molecular weight of the base resin is 175,000 to 285,000, an expandable methyl methacrylate type resin particles.
  • expandable methyl methacrylate-based resin particles may be referred to as “expandable resin particles”
  • methyl methacrylate-based resin expanded particles may be referred to as “foamed particles”
  • methacrylate-based resin particles may be referred to as “foamed particles”.
  • Acid methyl resin foam molded product may also be referred to as “foamed molded product.”
  • the foamed molded article obtained using the expandable resin particles disclosed in Patent Document 1 has room for improvement from the viewpoint of surface beauty.
  • a methyl methacrylate-based resin made by foaming expandable methyl methacrylate-based resin particles with excellent uniformity and foamability and a small volume average particle diameter;
  • the foamed methyl methacrylate resin particles are poor, when the foamed methyl methacrylate resin particles are filled into the molded object, there will be areas in the molded object where the packing density of the foamed particles is high and the expanded foamed particles. A region where the packing density of particles is low is formed. If in-mold molding is carried out under such conditions, the foamed particles will need to expand more in areas where the packing density of foamed particles is low compared to areas where the packing density of foamed particles is high in order to fill the gaps. .
  • the degree of foaming of the foamed particles (in other words, the size of the foamed particles constituting the methyl methacrylate resin foam molded product) is different between the region where the packing density of the foamed particles is low and the region where the packing density of the foamed particles is high. Because of the difference, the surface beauty of the resulting methyl methacrylate resin foam molded product is reduced. Therefore, the "fillability of methyl methacrylate resin foam particles" can be one of the indicators for evaluating the surface beauty of methyl methacrylate resin foam moldings, as described in the examples below. .
  • the peak top particle size of the expandable methyl methacrylate resin particles is large, the particle size variation is large, and the particle size of the expanded methyl methacrylate resin particles derived from the expandable methyl methacrylate resin particles is large. also becomes larger.
  • the sizes of the foamed particles that make up the resulting methyl methacrylate resin foam molded product differ.
  • the surface beauty of the resin foam molded product will be degraded. Therefore, the "peak top particle diameter of expandable methyl methacrylate resin particles" is one of the indicators for evaluating the surface beauty of methyl methacrylate resin foam moldings, as described in the examples below. It can become one.
  • the expandable methyl methacrylate resin particles according to one embodiment of the present invention are expandable methyl methacrylate resin particles containing a base resin containing methyl methacrylate units and acrylic ester units as constituent units, and a blowing agent.
  • the expandable methyl methacrylate resin particles have a volume average particle diameter of 0.30 mm to 0.50 mm, and a peak top particle diameter of the particle size distribution of 0.33 mm to 0.47 mm,
  • the expandable methyl methacrylate resin particles are foamed under the conditions of a steam blowing pressure of 0.10 MPa to 0.16 MPa and a foaming machine internal pressure of 0.005 MPa to 0.030 MPa
  • the time (A) required for foamed methyl methacrylate resin particles having a bulk ratio of 50 times is less than 80 seconds.
  • the expandable methyl methacrylate resin particles according to one embodiment of the present invention are expandable methyl methacrylate resin particles containing a base resin containing methyl methacrylate units and acrylic ester units as constituent units, and a blowing agent.
  • the acrylic acid ester unit is a butyl acrylate unit
  • the methacrylate unit is a butyl acrylate unit.
  • the content of the methyl acid unit is 93.0 parts by weight to 98.0 parts by weight
  • the content of the butyl acrylate unit is 2.0 parts by weight to 7.0 parts by weight
  • the content of the foamable methacrylate unit is 2.0 parts by weight to 7.0 parts by weight.
  • the acid methyl resin particles have a volume average particle diameter of 0.30 mm to 0.50 mm, a peak top particle diameter of particle size distribution of 0.33 mm to 0.47 mm, and a weight average molecular weight of the base resin. It is 175,000 to 285,000.
  • expandable methyl methacrylate resin particles according to an embodiment of the present invention may be referred to as “expandable resin particles” hereinafter.
  • Expanded particles can be provided by foaming the present expandable resin particles by a known method.
  • a foamed molded article can be provided by molding expanded particles formed by foaming the present expandable resin particles in a mold by a known method.
  • the present expandable resin particles have the above structure, they have the advantage of being able to provide a methyl methacrylate-based resin foam molded article with excellent surface beauty. Specifically, the present expandable resin particles have a peak top particle diameter in a particle size distribution within a specific range. Therefore, the foamable resin particles of the present invention have the advantage of having small variations in particle size, that is, excellent uniformity. Further, the expandable resin particles according to one embodiment of the present invention have excellent foamability. In addition, the expandable resin particles according to another embodiment of the present invention surprisingly have excellent foamability because they have a specific amount of specific structural units and the weight average molecular weight of the base resin is small. .
  • the expanded particles formed by foaming the expandable resin particles also have the advantage of having a small particle diameter.
  • Expanded particles having a small particle diameter have the advantage of being excellent in filling molds of various shapes (for example, narrow places with a width of several mm).
  • foamed particles made by foaming foamable resin particles with excellent uniformity and foamability and a small volume average particle diameter can be used during in-mold molding using methyl methacrylate resin foaming during molding. As a result of the elongation of the body surface, it has the advantage of providing a foamed molded article with excellent surface beauty.
  • the base resin contained in the present expandable resin particles contains methyl methacrylate units and acrylic ester units as structural units.
  • a "methyl methacrylate unit” is a structural unit derived from a methyl methacrylate monomer
  • an "acrylic ester unit” is a structural unit derived from an acrylic ester monomer.
  • the expression “monomer” may be omitted. Therefore, in this specification, for example, when simply written as “methyl methacrylate” and “acrylic ester”, “methyl methacrylate monomer” and “acrylic ester monomer” are intended, respectively.
  • the content of (a) methyl methacrylate units is 93.0 parts by weight to 98.0 parts by weight based on 100 parts by weight of the total amount of methyl methacrylate units and acrylic ester units.
  • 0 parts by weight, and the content of acrylic acid ester units can be from 2.0 parts by weight to 7.0 parts by weight, and (b) the content of methyl methacrylate units is from 93.5 parts by weight to 98.0 parts by weight. parts by weight, and the content of acrylic acid ester units is preferably 2.0 parts by weight to 6.5 parts by weight, and the content of (c) methyl methacrylate units is 94.0 parts by weight to 98.0 parts by weight.
  • the content of acrylic acid ester units is more preferably 2.0 parts by weight to 6.0 parts by weight, and the content of (d) methyl methacrylate units is 94.5 parts by weight to 94.5 parts by weight. 98.0 parts by weight, and the content of acrylic acid ester units is more preferably 2.0 parts by weight to 5.5 parts by weight, and (e) the content of methyl methacrylate units is 95.0 parts by weight. Parts by weight to 97.5 parts by weight, and the content of acrylic acid ester units is particularly preferably from 2.5 parts to 5.0 parts by weight.
  • the foamable resin particles When the content of acrylic ester units in the base resin is within the above-mentioned range based on 100 parts by weight of the total amount of methyl methacrylate units and acrylic ester units, the foamable resin particles have an advantage of excellent foamability. . As a result, the expandable resin particles (foamed particles) have the advantage of being able to provide a foamed molded article with excellent surface beauty.
  • acrylic ester examples include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, and the like.
  • acrylic ester butyl acrylate is particularly preferred.
  • the acrylic ester unit is a butyl acrylate unit derived from a butyl acrylate monomer.
  • Butyl acrylate has a great effect of lowering the glass transition temperature of the base resin. Therefore, this configuration has the advantage that the expandable resin particles have excellent foamability.
  • the expandable resin particles (foamed particles) have the advantage of being able to provide a foamed molded article with excellent surface beauty.
  • the base resin of the present expandable resin particles may contain a structural unit derived from a crosslinking agent (hereinafter also referred to as a crosslinking agent unit).
  • a crosslinking agent unit a structural unit derived from a crosslinking agent
  • the expandable resin particles have the advantage of being able to provide expanded particles with excellent shrinkage control properties and having excellent foamability.
  • the crosslinking agent examples include compounds having two or more functional groups exhibiting radical reactivity.
  • compounds having two or more functional groups exhibiting radical reactivity it is preferable to use a difunctional monomer having two functional groups as the crosslinking agent.
  • the base resin of the present expandable resin particles preferably contains a difunctional monomer unit, which is a structural unit derived from a difunctional monomer, as a crosslinking agent unit. According to this configuration, (a) the expandable resin particles have excellent foamability, (b) the expanded particles obtained by foaming the expandable resin particles have excellent shrinkage control properties, and (c) the expanded particles are The foam molded product obtained by molding has the advantage of having excellent surface beauty.
  • bifunctional monomers include (a) ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, etc., in which both terminal hydroxyl groups of ethylene glycol are Compounds esterified with acid, and/or compounds in which both terminal hydroxyl groups of the ethylene glycol oligomer are esterified with (meth)acrylic acid, (b) neopentyl glycol di(meth)acrylate, hexanediol di(meth)acrylate ( (1,6-hexanediol diacrylate, etc.), butanediol di(meth)acrylate, and other dihydric alcohol hydroxyl groups esterified with acrylic acid or methacrylic acid, and (c) alkenyl groups such as divinylbenzene.
  • Examples include aryl compounds having two aryl compounds.
  • hexanediol di(meth)acrylate such as 1,6-hexanediol diacrylate is preferred because hexanediol di(meth)acrylate allows easy adjustment of the molecular weight of the base resin.
  • (meth)acrylate is intended to mean methacrylate and/or acrylate
  • (meth)acrylic acid is intended to be methacrylic acid and/or acrylic acid.
  • the content of crosslinking agent units is 0 parts by weight or more and less than 0.20 parts by weight, with respect to 100 parts by weight of the total amount of methyl methacrylate units and acrylic ester units, and 0 parts by weight to 0.19 parts by weight. parts by weight, more preferably from 0 parts by weight to 0.17 parts by weight, more preferably from 0 parts by weight to 0.15 parts by weight, even more preferably from 0 parts by weight to 0.13 parts by weight.
  • the foamed molded product made by the above method has the advantage of having excellent surface beauty.
  • the content of the crosslinking agent unit may be 0.01 part by weight or more, and may be 0.03 part by weight or more with respect to 100 parts by weight of the total amount of methyl methacrylate units and acrylic ester units.
  • the amount may be 0.05 part by weight or more, or may be 0.08 part by weight or more.
  • the base resin of the present expandable resin particles may further contain, as a structural unit, a structural unit derived from an aromatic monomer (hereinafter also referred to as an aromatic unit).
  • aromatic monomer include aromatic vinyl compounds such as styrene, ⁇ -methylstyrene, paramethylstyrene, t-butylstyrene, and chlorostyrene.
  • the amount of structures derived from aromatic monomers (e.g., aromatic rings) contained in the base resin of the expandable resin particles should be as small as possible. is preferred.
  • the amount of aromatic units contained in the base resin of the expandable resin particles is 2.5 parts by weight or less, preferably less than 2.5 parts by weight, based on 100 parts by weight of the base resin. It is more preferably 0 parts by weight or less, more preferably 1.5 parts by weight or less, even more preferably 1.0 parts by weight or less, even more preferably 0.5 parts by weight or less, and particularly preferably 0 parts by weight. That is, it is particularly preferable that the base resin of the present expandable resin particles does not contain aromatic units.
  • blowing agent The blowing agent contained in the present expandable resin particles is not particularly limited.
  • blowing agents include (a) aliphatic hydrocarbons having 3 to 5 carbon atoms such as propane, isobutane, normal butane, isopentane, normal pentane, and neopentane, and (b) difluoroethane and tetrafluorocarbons. Volatile blowing agents such as hydrofluorocarbons with an ozone depletion coefficient of zero such as ethane are included. These blowing agents may be used alone or in combination of two or more without any problem.
  • the content of the blowing agent is preferably from 5 parts by weight to 12 parts by weight, more preferably from 7 parts by weight to 10 parts by weight, based on 100 parts by weight of the base resin.
  • the present expandable resin particles may optionally contain other additives in addition to the base resin and the blowing agent.
  • additives include solvents, plasticizers, cell regulators, flame retardants, flame retardant aids, heat radiation suppressants, pigments, dyes, and antistatic agents.
  • the solvent is not particularly limited, but preferably has a boiling point of 50°C or higher.
  • solvents with a boiling point of 50°C or higher include (a) aliphatic hydrocarbons having 6 or more carbon atoms (C6 or more) such as toluene, hexane, and heptane, and (b) fats having C6 or more such as cyclohexane and cyclooctane. Examples include cyclic hydrocarbons. Toluene and/or cyclohexane are preferable as the solvent having a boiling point of 50° C. or higher, since expandable resin particles with excellent foamability can be obtained.
  • the content of the solvent is preferably 1.5 parts by weight to 3.0 parts by weight based on 100 parts by weight of the base resin.
  • the content of the solvent with respect to 100 parts by weight of the base resin is (a) 1.5 parts by weight or more, expandable resin particles having sufficient foaming power can be obtained, and (b) 3.0 parts by weight. If it is below, a foamed molded article with suppressed surface expansion, that is, excellent dimensional stability, can be obtained.
  • the plasticizer is not particularly limited, but a high boiling point plasticizer with a boiling point of 200°C or higher is preferred.
  • the high-boiling plasticizer include (a) fatty acid glycerides such as stearic acid triglyceride, palmitic acid triglyceride, lauric acid triglyceride, stearic acid diglyceride, and stearic acid monoglyceride, (b) coconut oil, palm oil, palm kernel oil, etc. (c) aliphatic esters such as dioctyl adipate and dibutyl sebacate; and (d) organic hydrocarbons such as liquid paraffin and cyclohexane.
  • the content of the plasticizer is preferably from 0.40 parts by weight to 4.00 parts by weight, preferably from 0.50 parts by weight to 3.50 parts by weight, based on 100 parts by weight of the base resin. More preferably 0.60 parts by weight to 3.00 parts by weight, more preferably 0.70 parts by weight to 2.70 parts by weight, more preferably 0.80 parts by weight to 2.40 parts by weight, 0.90 parts by weight. It is more preferably 2.10 parts by weight, even more preferably 1.00 parts by weight to 1.80 parts by weight, and particularly preferably 1.20 parts by weight to 1.50 parts by weight. According to this configuration, the expandable resin particles have excellent foamability, and the expandable resin particles have the advantage of being able to provide expanded particles with excellent shrinkage suppressing properties.
  • the cell regulator examples include (a) aliphatic bisamides such as methylene bisstearamide and ethylene bisstearamide, and (b) polyethylene wax.
  • the content of the cell regulator is preferably 0.01 part by weight to 0.50 part by weight based on 100 parts by weight of the base resin.
  • the volume average particle diameter of the expandable resin particles is 0.30 mm to 0.50 mm, preferably 0.35 to 0.45 mm, and more preferably 0.40 mm to 0.45 mm.
  • the volume average particle diameter of the expandable resin particles is less than 0.30 mm, the expandable resin particles tend to cause a decrease in foamability during foaming and/or an increase in the amount of blocking during foaming.
  • the volume average particle diameter of the expandable resin particles is larger than 0.50 mm, the expanded particles formed by foaming the expandable resin particles have difficulty filling a narrow space when filling the expanded particles into a molding machine. Deteriorate. Note that the narrow space in the molding machine corresponds to a thinner portion of the resulting foamed molded product.
  • the volume average particle size of the expandable resin particles is defined as the particle size of the expandable resin particles measured on a volume basis using a particle size analyzer (for example, an image processing type Millitrac JPA particle size analyzer).
  • a particle size analyzer for example, an image processing type Millitrac JPA particle size analyzer.
  • the obtained results are displayed as a cumulative distribution, and the particle size at which the cumulative volume is 50% (ie, D50) is determined.
  • the volume average particle diameter of the expandable resin particles is determined by (a) the amount of the initial dispersant (e.g., tribasic calcium phosphate, sodium ⁇ -olefin sulfonate), (b) the amount of the dispersant added during the polymerization (e.g., It can be adjusted by changing the amount of (calcium phosphate) and (c) the timing of adding the dispersant during the polymerization (for example, the time from the start of polymerization to the addition of the dispersant).
  • the amount of the initial dispersant e.g., tribasic calcium phosphate, sodium ⁇ -olefin sulfonate
  • the amount of the dispersant added during the polymerization e.g., It can be adjusted by changing the amount of (calcium phosphate)
  • the timing of adding the dispersant during the polymerization for example, the time from the start of polymerization to the addition of the dispersant.
  • the peak top particle diameter of the particle size distribution of the expandable resin particles is 0.33 mm to 0.47 mm, preferably 0.35 mm to 0.47 mm, and more preferably 0.40 mm to 0.45 mm.
  • the peak top particle size of the particle size distribution of the expandable resin particles refers to the particle size of the expandable resin particles measured on a volume basis using a particle size analyzer (for example, an image processing type Millitrac JPA particle size analyzer).
  • the obtained results are displayed as a distribution with the horizontal axis representing the particle diameter (0.1 mm interval) and the vertical axis representing the volume frequency.
  • the most frequent region (particle size) in the obtained particle size distribution is defined as the peak top particle size.
  • the time (A) required for the resin particles to become foamed methyl methacrylate resin particles having a bulk ratio of 50 times may be less than 80 seconds.
  • the time (A) is preferably 70 seconds or less, more preferably 50 seconds or less.
  • time (A) is at least over 0 seconds. When the time (A) is less than 80, it can be said that the expandable resin particles have excellent foamability.
  • the method for measuring the time (A) (expansion rate) of the expandable resin particles is not particularly limited, but examples include a method of sequentially performing the following (1) to (4): (1) Foaming (2) Next, the steam blowing pressure is 0.10 MPa to 0.16 MPa, and the pressure inside the foaming machine is 0.005 MPa to 0.030 MPa.
  • Blowing steam for example, water vapor
  • Blowing steam into the foaming machine under the following conditions to heat the foamable resin particles
  • (4) Time (A) from blowing steam into the expandable resin particles until foamed particles with a bulk ratio of 50 times are obtained also referred to as heating time (A)
  • the bulk magnification of the expanded particles can also be called the expansion magnification.
  • the unit of the bulk magnification is actually cm 3 /g based on the above-mentioned formula, in this specification, the unit of the bulk magnification is expressed as “times” for convenience.
  • the weight average molecular weight of the base resin contained in the present expandable resin particles may be from 175,000 to 285,000. Surprisingly, when the weight average molecular weight of the base resin is 285,000 or less, the foamable resin particles have an advantage of excellent foamability. As a result, the expandable resin particles (foamed particles) have the advantage of being able to provide a foamed molded article with excellent surface beauty. When the weight average molecular weight of the base resin is 175,000 or more, there is an advantage that shrinkage of the expanded particles is small and when formed into a molded product, gaps between particles are difficult to form and surface elongation is excellent.
  • the weight average molecular weight is preferably 200,000 to 260,000, more preferably 230,000 to 250,000.
  • the weight average molecular weight measured by the following method is defined as the weight average molecular weight of the base resin contained in the expandable resin particles: (1) 0.02 g of the expandable resin particles are mixed with tetrahydrofuran (hereinafter referred to as (sometimes abbreviated as "THF"); (2) Then, the gel component in the resulting solution is filtered; (3) Then, only the components soluble in THF (i.e., the filtrate) are sampled. (4) Calculate the weight average molecular weight (Mw) and number average molecular weight (Mn) from the GPC measurement chart obtained by the GPC measurement. . Note that the weight average molecular weight (Mw) and number average molecular weight (Mn) are relative values in terms of polystyrene.
  • THF tetrahydrofuran
  • the weight average molecular weight of the base resin depends on the composition (type and amount) of the monomers used in the polymerization (copolymerization) process of the base resin, the type and amount of the chain transfer agent, the polymerization temperature and time, and the type of initiator. It can be adjusted by changing the amount and the type and amount of the crosslinking agent.
  • a method for producing expandable methyl methacrylate resin particles according to an embodiment of the present invention includes a copolymerization step of copolymerizing a monomer mixture containing a methyl methacrylate monomer and an acrylic ester monomer; The method may include a blowing agent impregnation step of impregnating the obtained copolymer with a blowing agent.
  • the copolymerization step includes (a) copolymerization of the monomer mixture in the presence of 0.20 parts by weight to 1.20 parts by weight of the first poorly water-soluble inorganic salt based on 100 parts by weight of the monomer mixture; (b) after the initiation step, at a time when the polymerization conversion rate is 35% to 70%, 0.08 to 0.50 parts by weight based on 100 parts by weight of the monomer mixture; and adding a second slightly water-soluble inorganic salt to the reaction mixture.
  • the amount of the methyl methacrylate monomer used is 93.0 parts by weight to 98.0 parts by weight based on 100 parts by weight of the total amount of the methyl methacrylate monomer and the acrylic acid ester monomer. parts by weight, and the amount of the acrylic acid ester monomer used is preferably 2.0 parts by weight to 7.0 parts by weight.
  • the term “poorly water-soluble inorganic salt” refers to an inorganic salt whose solubility in water at 25°C is 0.1 mg/ml or less.
  • the "method for producing expandable methyl methacrylate resin particles according to an embodiment of the present invention” may be referred to as the "present production method” hereinafter.
  • the present manufacturing method has the above configuration, it is possible to provide expandable methyl methacrylate resin particles that can provide a methyl methacrylate resin foam molded article with excellent surface beauty. Since the present manufacturing method has the above configuration, for example, [2. Expandable methyl methacrylate resin particles] according to an embodiment of the present invention can be provided.
  • This manufacturing method includes [2. Expandable methyl methacrylate-based resin particles] is suitably used to produce the expandable resin particles described in the section.
  • the "copolymer" in this manufacturing method is [2. This corresponds to the "base resin" contained in the expandable resin particles described in the section "Expansible Methyl Methacrylate Resin Particles".
  • Expandable methyl methacrylate resin particles is incorporated herein by reference. Also, [2. Expandable methyl methacrylate resin particles]
  • the present expandable resin particles explained in the section 1 are preferably manufactured by the present manufacturing method, but may be manufactured by a method other than the present manufacturing method. That is, the present method for manufacturing expandable resin particles is not limited to the embodiment of the present manufacturing method as described below.
  • the copolymerization step included in this production method includes suspension polymerization in which a monomer mixture is polymerized in an aqueous suspension.
  • the copolymer (base resin) obtained in the copolymerization step may be simply referred to as "resin particles.”
  • aqueous suspension in the present invention refers to a liquid in which monomer droplets and/or resin particles are dispersed in water or an aqueous solution using stirring or the like.
  • aqueous suspension (a) water-soluble surfactants and monomers may be dissolved, and (b) water-insoluble dispersants, polymerization initiators, chain transfer agents, and crosslinking agents. , a cell regulator, a flame retardant, a solvent, a plasticizer, etc. may be dispersed together with the monomer.
  • the weight ratio of the monomer and polymer (resin) to water or aqueous solution in the aqueous suspension is 1.0/0.6 to 1.0/0.6 to 1.0/0.6 to 1.0/0.6 to 1.0/1. 0/3.0 is preferred.
  • the "aqueous solution” referred to here is intended to be a solution consisting of water and components other than the methyl methacrylate resin.
  • copolymerization of the monomer mixture is initiated in the presence of 0.20 to 1.20 parts by weight of the first poorly water-soluble inorganic salt based on 100 parts by weight of the monomer mixture. Including process.
  • the starting step for example, (a) water, (b) a monomer mixture containing a methyl methacrylate monomer and an acrylic ester monomer, and (c) 0.20 parts by weight per 100 parts by weight of the monomer mixture.
  • the first poorly water-soluble inorganic salt that is blended (added) to the aqueous suspension in the initiation step, the polymerization initiator that is optionally blended, and the like can be said to be substances (raw materials) used at the initial stage of polymerization.
  • the first poorly water-soluble inorganic salt can function as a dispersant.
  • the first poorly water-soluble inorganic salt used in the initiation step that is, the initial stage of polymerization, include tribasic calcium phosphate, magnesium pyrophosphate, hydroxyapatite, and kaolin.
  • water-soluble polymers such as polyvinyl alcohol, methylcellulose, polyacrylamide, and polyvinylpyrrolidone
  • anionic surfactants such as sodium ⁇ -olefin sulfonate and sodium dodecylbenzenesulfonate are used.
  • the agent may be used in combination with the first poorly water-soluble inorganic salt.
  • the first poorly water-soluble inorganic salt used in the initiation step tribasic calcium phosphate is preferred from the viewpoint of protecting the resin particles and/or monomer droplets.
  • the monomer mixture is copolymerized in the presence of tricalcium phosphate, which is a poorly water-soluble inorganic salt, and sodium ⁇ -olefin sulfonate, which is an anionic surfactant.
  • it is a starting step.
  • the starting step is preferably 0.20 to 1.20 parts by weight, more preferably 0.20 to 1.10 parts by weight, even more preferably 0.40 parts by weight, based on 100 parts by weight of the monomer mixture.
  • the step is preferably one in which copolymerization of the monomer mixture is initiated in the presence of the first poorly water-soluble inorganic salt in an amount of from 1.10 parts by weight to 1.10 parts by weight.
  • the volume average particles of the resulting expandable resin particles There is no risk of the diameter becoming too large.
  • the concentration of the water-soluble polymer and/or anionic surfactant in the aqueous suspension It is preferably 30 ppm to 100 ppm based on the concentration of the monomer mixture.
  • the copolymerization step after the initiation step, when the polymerization conversion rate is 35% to 70%, 0.08 to 0.50 parts by weight of the second poorly water-soluble material is added to 100 parts by weight of the monomer mixture. an addition step of adding an inorganic salt into the reaction mixture.
  • the second slightly water-soluble inorganic salt added to the reaction mixture can be said to be a substance (raw material) used during the polymerization.
  • the reaction mixture in the addition step can also be said to be an aqueous suspension.
  • the second poorly water-soluble inorganic salt can function as a dispersant.
  • the second poorly water-soluble inorganic salt used in the addition step that is, during the polymerization, include the substances already exemplified as the first poorly water-soluble inorganic salt.
  • the second poorly water-soluble inorganic salt is preferably one or more selected from the group consisting of tribasic calcium phosphate, hydroxyapatite, and kaolin, and more preferably tribasic calcium phosphate. According to this configuration, it is possible to prevent the resin particles from coalescing after the addition (addition) of the dispersant, and there is an advantage that resin particles having a target particle size can be obtained.
  • the addition step is performed after the initiation step, when the polymerization conversion rate is 35% to 70%, preferably 0.08 parts by weight to 0.50 parts by weight, more preferably 0 parts by weight, based on 100 parts by weight of the monomer mixture. .10 parts by weight to 0.50 parts by weight, more preferably 0.10 parts by weight to 0.40 parts by weight, still more preferably 0.10 parts by weight to 0.30 parts by weight, particularly preferably 0.10 parts by weight to Preferably, 0.20 parts by weight of the second poorly water-soluble inorganic salt is added to the reaction mixture.
  • the addition step when 0.08 parts by weight or more of the second poorly water-soluble inorganic salt is added to the reaction mixture based on 100 parts by weight of the monomer mixture, the volume average particle diameter of the resulting expandable resin particles is There is no risk of it becoming too large.
  • the addition step if 0.50 parts by weight or less of the second poorly water-soluble inorganic salt is added to the reaction mixture based on 100 parts by weight of the monomer mixture, production costs may be increased due to excessive use of the poorly water-soluble inorganic salt. becomes higher.
  • the second slightly water-soluble inorganic salt is preferably added to the reaction mixture at a polymerization conversion rate of 35% to 70%, more preferably at a polymerization conversion rate of 40% to 50%. is preferred. According to this configuration, expandable resin particles having a desired volume average particle diameter can be obtained. The method for measuring the polymerization conversion rate in this specification will be described in detail in the Examples below.
  • the copolymerization step is preferably carried out in at least two stages by varying the polymerization temperature.
  • the two polymerization steps having different polymerization temperatures are hereinafter referred to as a first polymerization step and a second polymerization step. It can also be said that it is preferable that the copolymerization step includes a continuous first polymerization step and a second polymerization step at different polymerization temperatures.
  • the copolymerization step includes, for example, (a) a first polymerization step carried out at a polymerization temperature of 70° C. to 90° C. and using a low-temperature decomposition type polymerization initiator, and (b) continuous to the first polymerization step. It is preferable to include a second polymerization step carried out at a higher polymerization temperature (for example, 90° C. to 110° C.) than the first polymerization step and using a high-temperature decomposition type polymerization initiator. In the copolymerization step, it is preferable that the main polymerization reaction is performed in the first polymerization step described above, and the remaining monomers are reduced in the second polymerization step described above.
  • radical-generating polymerization initiator a radical-generating polymerization initiator that is generally used in the production of thermoplastic polymers can be used.
  • Typical radical-generating polymerization initiators include (a) benzoyl peroxide, lauroyl peroxide, t-butyl peroxybenzoate, isopropyl-t-butyl peroxycarbonate, butyl perbenzoate, and t-butyl peroxybenzoate; Oxy-2-ethylhexanoate, t-butyl perpivalate, t-butylperoxyisopropyl carbonate, di-t-butylperoxyhexahydroterephthalate, 1,1-bis(t-butylperoxy)-3, 3,5-trimethylcyclohexane, 1,1-bis(t-amylperoxy)-3,3,5-trimethylcyclohexane, 1,1-bis(t-butylperoxy)cyclohexane, t-butyl
  • the amount of the polymerization initiator used is the sum of the amount used in the first polymerization step and the amount used in the second polymerization step, for example, 0.05 parts by weight to 0.5 parts by weight per 100 parts by weight of the monomer mixture. Parts by weight or less are preferred. According to this configuration, expandable resin particles having excellent foamability can be obtained.
  • the initiation step may be a step of (a) initiating copolymerization of the monomer mixture in the presence of the first poorly water-soluble inorganic salt, a low-temperature decomposition type polymerization initiator, and a high-temperature decomposition type polymerization initiator. It may also be a step (b) of starting copolymerization of the monomer mixture in the presence of the first poorly water-soluble inorganic salt and a low-temperature decomposition type polymerization initiator.
  • the initiation step is a step of initiating copolymerization of the monomer mixture in the presence of the first poorly water-soluble inorganic salt and a low-temperature decomposition type polymerization initiator
  • the high-temperature decomposition type polymerization initiator is used after the initiation step, i.e. It may be added to the reaction mixture (aqueous suspension) during the polymerization.
  • chain transfer agent is not particularly limited, and any well-known substance used in the polymerization of methyl methacrylate resins can be used.
  • chain transfer agents include (a) monofunctional chain transfer agents such as alkyl mercaptans and thioglycolic acid esters, and (b) polyhydric alcohol hydroxyl groups such as ethylene glycol, neopentyl glycol, trimethylolpropane, and sorbitol. and esterified with thioglycolic acid or 3-mercaptopropionic acid.
  • alkyl mercaptans examples include n-octyl mercaptan, n-dodecyl mercaptan, and t-dodecyl mercaptan.
  • the amount of the chain transfer agent used is, for example, preferably 0.100 parts by weight or more and less than 0.500 parts by weight, more preferably 0.270 parts by weight or more and less than 0.340 parts by weight, based on 100 parts by weight of the base resin.
  • blowing agent impregnation step expandable methyl methacrylate resin particles can be obtained by impregnating the methyl methacrylate resin particles, which are the copolymer obtained in the copolymerization step, with a blowing agent.
  • the blowing agent impregnation step can be performed at any time, for example, together with the second polymerization step or after the second polymerization step.
  • the blowing agent impregnation step it is preferable to impregnate the obtained copolymer with a blowing agent when the polymerization conversion rate from monomer to copolymer is 80% to 95%.
  • a blowing agent is impregnated into a copolymer when the polymerization conversion rate is 80% or more, the blowing agent is appropriately impregnated into the inside of the copolymer, which prevents agglomeration of copolymers due to softening of the copolymer. There is no possibility that this will occur, and the production yield will be good.
  • the copolymer When the copolymer is impregnated with a blowing agent when the polymerization conversion rate is 95% or less, the blowing agent is sufficiently impregnated into the inside of the copolymer, so that the resulting foamed resin particles are foamed. There is no possibility that a double cell structure (hard core) will be formed. As a result, by in-mold molding the foamed particles, a foamed molded article with excellent surface beauty can be obtained.
  • the amount of the blowing agent to be impregnated into the copolymer methyl methacrylate resin particles includes preferred embodiments, [2.
  • the content of the blowing agent in the expandable resin particles is the same as that described in the section (Blowing agent) of Expandable methyl methacrylate resin particles. According to this configuration, expandable resin particles having sufficient foamability can be obtained, and the expandable resin particles can be safely produced without causing aggregation of the copolymer in the blowing agent impregnation step.
  • the treatment temperature also referred to as impregnation temperature
  • treatment time also referred to as impregnation time
  • the impregnation temperature when impregnating the copolymer with the blowing agent is preferably 95°C to 120°C or lower, more preferably 100°C to 117°C or lower.
  • the impregnation temperature is 95°C or higher, the blowing agent is sufficiently impregnated into the inside of the copolymer, so that the resulting foamed resin particles have a double cell structure (hard core). There is no risk of formation.
  • the impregnation temperature is 120° C. or lower, the pressure inside the polymerization machine does not become too high, so it is possible to provide expanded particles with a uniform cell structure without the need for heavy impregnation equipment that can withstand large pressures. Expandable resin particles can be obtained.
  • the solvent when using a solvent (for example, a solvent with a boiling point of 50°C or higher), the solvent may be added to the reaction mixture (aqueous suspension) immediately before or simultaneously with the blowing agent impregnation step. is preferred.
  • a solvent for example, a solvent with a boiling point of 50°C or higher
  • the foamed methyl methacrylate-based resin particles according to one embodiment of the present invention are [2. Expandable methyl methacrylate resin particles], or the expandable methyl methacrylate resin particles described in [3. These are expanded particles obtained by foaming expandable methyl methacrylate resin particles produced by the manufacturing method described in the section 1. Method for producing expandable methyl methacrylate resin particles.
  • methyl methacrylate-based resin foam particles according to an embodiment of the present invention may be referred to as “the present foam particles” below.
  • the present expandable resin particles can be made into expanded particles by a general foaming method.
  • foamed methyl methacrylate resin particles can be obtained by performing the following operations (1) to (3) in order: (1) Place foamable methacrylic acid in a container equipped with a stirrer. Add methyl methacrylate resin particles; (2) Heat the foamable methyl methacrylate resin particles using a heat source such as water vapor; (3) Perform foaming to the desired expansion ratio according to (2) above, and add methyl methacrylate resin particles. Obtain resin foam particles.
  • the foaming of the expandable methyl methacrylate resin particles can also be said to be a preliminary foaming performed in order to obtain a methyl methacrylate resin foam molded article, which will be described later, from the expandable methyl methacrylate resin particles. Therefore, foaming of expandable methyl methacrylate resin particles is sometimes referred to as "pre-expanded", and expanded methyl methacrylate resin particles are sometimes referred to as "pre-expanded methyl methacrylate resin particles”.
  • the present expanded particles have excellent filling properties.
  • the filling properties of expanded particles can be evaluated by performing the following (1) to (5) in order.
  • Leave the foamed particles e.g., the foamed particles with a bulk ratio of 50 times
  • room temperature e.g., 25°C
  • in-mold molding is performed by vacuum suction heating until the foaming pressure reaches 0.100 MPa to 0.180 MPa, and the foamed particles are fused together; (4) The foaming pressure is 0.100 MPa to 0.18 MPa. After the pressure reaches 180 MPa, the mold is left for 200 seconds, and then the foamed molded product is taken out; (5) The resulting foamed molded product is visually checked for filling defects.
  • the methyl methacrylate-based resin foam molded article according to one embodiment of the present invention has [4. This is a foam molded article obtained by molding the foamed methyl methacrylate resin particles described in the section ⁇ Methyl methacrylate resin foam particles'' in a mold.
  • the "methyl methacrylate-based resin foam molded product according to an embodiment of the present invention” may be hereinafter referred to as "the present foam molded product”.
  • the present expanded particles can be made into a foamed molded product by molding using a general in-mold molding method.
  • a methyl methacrylate-based resin foam molded product can be obtained by performing the following operations (1) to (3) in order: (1) A mold that can be closed but cannot be sealed. (2) heating the foamed methyl methacrylate resin particles with water vapor; (3) fusing the foamed methyl methacrylate resin particles together by (2) above. By doing so, a methyl methacrylate resin foam molded article is obtained.
  • the methyl methacrylate-based resin foam molded article according to one embodiment of the present invention has the advantage of excellent surface beauty and little residue upon combustion. For these reasons, the methyl methacrylate-based resin foam molded article according to one embodiment of the present invention can be suitably used as a disappearing model.
  • the vanishing model according to an embodiment of the present invention includes [5. Methyl methacrylate resin foam molded article].
  • the vanishing model according to one embodiment of the present invention has excellent surface beauty and can be suitably used for various metal castings.
  • Expandable methyl methacrylate resin particles comprising a base resin containing methyl methacrylate units and acrylic ester units as structural units, and a blowing agent, the expandable methyl methacrylate resin particles comprising: , the volume average particle diameter is 0.30 mm to 0.50 mm, and the peak top particle diameter of the particle size distribution is 0.33 mm to 0.47 mm, and the expandable methyl methacrylate resin particles are steam-blown under a pressure of 0.5 mm.
  • the expandable methyl methacrylate resin particles form expanded methyl methacrylate resin particles with a bulk ratio of 50 times. Expandable methyl methacrylate resin particles having a time (A) of less than 80 seconds.
  • Expandable methyl methacrylate resin particles comprising a base resin containing methyl methacrylate units and acrylic ester units as structural units, and a blowing agent, wherein the acrylic ester units are butyl acrylate units. unit, and when the total content of the methyl methacrylate unit and the butyl acrylate unit in the base resin is 100 parts by weight, the content of the methyl methacrylate unit is 93.0 parts by weight to 98 parts by weight. 0 parts by weight, the content of the butyl acrylate unit is 2.0 parts to 7.0 parts by weight, and the expandable methyl methacrylate resin particles have a volume average particle diameter of 0.30 mm. - 0.50 mm, the peak top particle diameter of the particle size distribution is 0.33 mm - 0.47 mm, and the weight average molecular weight of the base resin is 175,000 - 285,000. Acid methyl resin particles.
  • the blowing agent contains (a) an aliphatic hydrocarbon which is a hydrocarbon having 3 or more and 5 or less carbon atoms, and/or (b) a volatile blowing agent, [1] to [4] The expandable methyl methacrylate resin particles according to any one of the above.
  • the content of structural units derived from the crosslinking agent is 0 parts by weight or more and less than 0.20 parts by weight based on 100 parts by weight of the total amount of the methyl methacrylate units and the acrylic ester units.
  • the uniformity of the expandable methyl methacrylate resin particles was evaluated based on the following index: A (very good): Peak top particle size is 0.33 mm to 0.47 mm B (poor): The peak top particle diameter is less than 0.33 mm or more than 0.47 mm.
  • Weight average molecular weight of base resin The weight average molecular weight measured by the following method was taken as the weight average molecular weight of the base resin contained in the expandable resin particles: (1) 0.02 g of expandable resin particles was dissolved in 20 ml of THF; (2) Thereafter, the gel component in the obtained solution was filtered; (3) Next, using a gel permeation chromatograph (GPC) using only the THF-soluble component (i.e., the filtrate) as a sample, GPC measurement was performed under the following conditions; (4) Weight average molecular weight (Mw) and number average molecular weight (Mn) were calculated from the GPC measurement chart obtained by GPC measurement.
  • GPC gel permeation chromatograph
  • weight average molecular weight (Mw) and number average molecular weight (Mn) are relative values in terms of polystyrene.
  • ⁇ GPC measurement conditions Measuring device: Tosoh Corporation, high-speed GPC device HLC-8220 Columns used: Tosoh Corporation, SuperHZM-H x 2, SuperH-RC x 2 Column temperature: 40°C, Mobile phase: THF (tetrahydrofuran) Flow rate: 0.35ml/min, injection volume: 10 ⁇ l Detector: RI.
  • Expandable methyl methacrylate resin particles were put into a pressurized foaming machine, BHP110 manufactured by Daikai Kogyo Co., Ltd.; (2) Foaming was carried out under conditions of a steam blowing pressure of 0.10 MPa to 0.16 MPa and a foaming machine internal pressure of 0.005 MPa to 0.030 MPa.
  • the foamability of the foamed methyl methacrylate resin particles was evaluated based on the following index: A (very good): heating time 70 seconds or less B (good): heating time 80 seconds or less C (poor): heating time more than 80 seconds.
  • methyl methacrylate resin foam particles (Filling properties of expanded methyl methacrylate resin particles) Using methyl methacrylate resin foam particles, the following (1) to (4) were carried out in order to obtain a methyl methacrylate resin foam molded article: (1) Methyl methacrylate resin with a bulk magnification of 50 times The foamed particles were left at room temperature (25°C) for 3 days; (2) Methyl methacrylate with a bulk magnification of 50 times was placed in a molding machine (DAISEN KR-57) having a mold with a length of 450 mm, a width of 300 mm, and a thickness of 10 mm.
  • DAISEN KR-57 molding machine having a mold with a length of 450 mm, a width of 300 mm, and a thickness of 10 mm.
  • the filling defects of the obtained methyl methacrylate resin foam molded article were visually confirmed, and the filling properties of the methyl methacrylate resin foam particles were evaluated based on the following index: A (Good): There are no filling defects B (Poor): There are filling defects.
  • the surface of the methyl methacrylate resin foam molded product was visually observed, and the surface beauty of the methyl methacrylate resin foam molded product was evaluated based on the following index.
  • the degree of the gap between the methyl methacrylate resin foam particles constituting the methyl methacrylate resin foam molded article is set from 0 (the gap between the particles is not filled at all) to 5 (the gap between the particles is completely filled). Evaluation was made using a score scale of 0.25 points between the following: A (very good): The gap between the expanded particles is 4.50 points or more, and the filling property and peak top particle diameter are very good. B (good): The gap between the expanded particles is 4.25 points. or more, less than 4.50, and the filling property and peak top particle size are very good.
  • Example 1 In a 6L autoclave equipped with a stirrer, 150 parts by weight of water, 0.53 parts by weight of tribasic calcium phosphate as the first poorly water-soluble inorganic salt, 0.0075 parts by weight of sodium ⁇ -olefin sulfonate, and 0.08 parts by weight of lauroyl peroxide.
  • 0.1 part by weight of 1,1-bis(t-butylperoxy)cyclohexane, 0.1 part by weight of 1,6-hexanediol diacrylate as a crosslinking agent, 0.300 part by weight of n-dodecylmercaptan, and Sumisorp 0.03 part by weight was added to prepare a liquid mixture containing the first poorly water-soluble inorganic salt. Thereafter, 95.0 parts by weight of methyl methacrylate, 5.0 parts by weight of butyl acrylate, and 1.0 parts by weight of toluene were added to the mixture as a monomer mixture to prepare an aqueous suspension. Then, the temperature of the aqueous suspension was raised to 80° C.
  • an initiation step was performed.
  • the polymerization conversion rate was measured and found to be 40% to 50%.
  • 0.12 parts by weight of tribasic calcium phosphate as a second poorly water-soluble inorganic salt was added to the reaction mixture (aqueous suspension), and the addition step was carried out. did.
  • n-rich butane was used as a blowing agent (the weight ratio of n-butane and isobutane in n-rich butane (n-butane/isobutane) was 70/30. ) 9 parts by weight were placed in an aqueous suspension. Thereafter, the temperature of the aqueous suspension was raised to 101°C. Next, the temperature of the aqueous suspension was maintained at 101° C. for 10 hours to perform copolymerization and impregnation of the blowing agent into the copolymer (copolymerization step and blowing agent impregnation step). The aqueous suspension was then cooled. After cooling the aqueous suspension, the resulting product was washed, dehydrated, and dried to obtain expandable methyl methacrylate resin particles.
  • the obtained expandable methyl methacrylate resin particles were sieved through sieves with openings of 0.235 mm and 0.600 mm. Through this operation, expandable methyl methacrylate resin particles having a particle size of 0.235 mm to 0.600 mm were collected. Thereafter, 0.40 parts by weight of zinc stearate as a fatty acid metal salt and 0.05 parts by weight of hydrogenated castor oil as a fusion promoter were applied to the surface of the expandable methyl methacrylate resin particles.
  • each evaluation item volume average particle diameter, peak top particle diameter, uniformity, foamability and filling property of expandable methyl methacrylate resin particles, and surface beauty of methyl methacrylate resin foam molded product) was evaluated.
  • the evaluation results are shown in Table 1.
  • Example 2 Expandable methyl methacrylate-based resin particles were obtained by carrying out the same operation as in Example 1, except that the monomer mixture used was changed to 96.5 parts by weight of methyl methacrylate and 3.5 parts by weight of butyl acrylate. . Each evaluation item was evaluated using the same method as in Example 1. The evaluation results are shown in Table 1.
  • Example 3 Expandable methyl methacrylate resin particles were obtained by carrying out the same operation as in Example 1, except that the monomer mixture used was changed to 97.5 parts by weight of methyl methacrylate and 2.5 parts by weight of butyl acrylate. . Each evaluation item was evaluated using the same method as in Example 1. The evaluation results are shown in Table 1.
  • Example 4 Example except that the monomer mixture used was changed to 97.5 parts by weight of methyl methacrylate and 2.5 parts by weight of butyl acrylate, and the n-dodecyl mercaptan used was changed to 0.340 parts by weight. The same operation as in 1 was performed to obtain expandable methyl methacrylate resin particles. Each evaluation item was evaluated using the same method as in Example 1. The evaluation results are shown in Table 1.
  • Example 5 Expandable methyl methacrylate resin particles were obtained by carrying out the same operation as in Example 1, except that the amount of n-dodecyl mercaptan used was changed to 0.275 parts by weight. Each evaluation item was evaluated using the same method as in Example 1. The evaluation results are shown in Table 1.
  • Example 6 Expandable methyl methacrylate resin particles were obtained by carrying out the same operation as in Example 1, except that the amount of n-dodecyl mercaptan used was changed to 0.340 parts by weight. Each evaluation item was evaluated using the same method as in Example 1. The evaluation results are shown in Table 1.
  • one embodiment of the present invention it is possible to provide expandable methyl methacrylate resin particles that can provide a methyl methacrylate resin foam molded article with excellent surface beauty. Therefore, one embodiment of the present invention can be suitably used as a disappearing model when performing metal casting by the full mold method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

表面美麗性に優れたメタクリル酸メチル系樹脂発泡成形体を提供し得る発泡性メタクリル酸メチル系樹脂粒子の提供を目的とする。メタクリル酸メチル単位およびアクリル酸エステル単位を含む基材樹脂と発泡剤とを含み、(a)特定の体積平均粒子径、ピークトップ粒子径および発泡性、または(b)特定の構成単位比率、体積平均粒子径、ピークトップ粒子径および重量平均分子量を有する、発泡性メタクリル酸メチル系樹脂粒子を用いることにより、上記課題を解決する。

Description

発泡性メタクリル酸メチル系樹脂粒子、メタクリル酸メチル系樹脂発泡粒子、メタクリル酸メチル系樹脂発泡成形体および消失模型
 本発明は、発泡性メタクリル酸メチル系樹脂粒子、メタクリル酸メチル系樹脂発泡粒子、メタクリル酸メチル系樹脂発泡成形体および消失模型に関する。
 金属鋳造を行うとき、発泡成形体で作製した模型を鋳造砂に埋没し、当該発泡成形体に対して溶融金属を流し込んで発泡成形体と金属とを置換することにより、鋳物を鋳造する消失模型鋳造法(フルモールド法)が知られている。フルモールド法では、メタクリル酸メチル系重合体の発泡成形体が、消失模型として、多く使用されている。
 メタクリル酸メチル系重合体の発泡成形体を製造するための発泡性メタクリル酸メチル系樹脂粒子として、例えば、特許文献1には、構成単位としてメタクリル酸メチル単位、アクリル酸エステル単位および架橋剤に由来する構成単位を含む基材樹脂と、発泡剤とを含む発泡性メタクリル酸メチル系樹脂粒子が開示されている。
WO2021/199878号公報
 しかしながら、上述のような従来技術は、メタクリル酸メチル系樹脂発泡成形体の表面美麗性の観点から、改善の余地がある。
 本発明の一態様は、表面美麗性に優れたメタクリル酸メチル系樹脂発泡成形体を提供し得る、発泡性メタクリル酸メチル系樹脂粒子を提供することにある。
 発明者らは、前記課題を解決するため鋭意検討した結果、本発明を完成させるに至った。すなわち、本発明の一実施形態は、以下の構成を含むものである。
 構成単位としてメタクリル酸メチル単位およびアクリル酸エステル単位を含む基材樹脂と、発泡剤とを含む、発泡性メタクリル酸メチル系樹脂粒子であって、前記発泡性メタクリル酸メチル系樹脂粒子は、体積平均粒子径が0.30mm~0.50mmであり、かつ粒度分布のピークトップ粒子径が0.33mm~0.47mmであり、前記発泡性メタクリル酸メチル系樹脂粒子を蒸気吹き込み圧0.10MPa~0.16MPa、かつ発泡機内圧力0.005MPa~0.030MPaの条件下で発泡させたとき、前記発泡性メタクリル酸メチル系樹脂粒子が嵩倍率50倍のメタクリル酸メチル系樹脂発泡粒子に至るまでの時間(A)が80秒未満である、発泡性メタクリル酸メチル系樹脂粒子。
 構成単位としてメタクリル酸メチル単位およびアクリル酸エステル単位を含む基材樹脂と、発泡剤とを含む、発泡性メタクリル酸メチル系樹脂粒子であって、前記アクリル酸エステル単位は、アクリル酸ブチル単位であり、前記基材樹脂における前記メタクリル酸メチル単位および前記アクリル酸ブチル単位の合計含有量を100重量部とした場合に、前記メタクリル酸メチル単位の含有量は、93.0重量部~98.0重量部であり、前記アクリル酸ブチル単位の含有量は、2.0重量部~7.0重量部であり、前記発泡性メタクリル酸メチル系樹脂粒子は、体積平均粒子径が0.30mm~0.50mmであり、かつ粒度分布のピークトップ粒子径が0.33mm~0.47mmであり、前記基材樹脂の重量平均分子量が17.5万~28.5万である、発泡性メタクリル酸メチル系樹脂粒子。
 本発明の一態様によれば、表面美麗性に優れたメタクリル酸メチル系樹脂発泡成形体を提供し得る、発泡性メタクリル酸メチル系樹脂粒子を提供することができるという効果を奏する。
 本発明の一実施形態について以下に説明するが、本発明はこれに限定されるものではない。本発明は、以下に説明する各構成に限定されるものではなく、請求の範囲に示した範囲で種々の変更が可能である。また、異なる実施形態または実施例にそれぞれ開示された技術的手段を組み合わせて得られる実施形態または実施例についても、本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。なお、本明細書中に記載された学術文献および特許文献の全てが、本明細書中において参考文献として援用される。また、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上(Aを含みかつAより大きい)B以下(Bを含みかつBより小さい)」を意図する。
 本明細書において、「発泡性メタクリル酸メチル系樹脂粒子」を「発泡性樹脂粒子」と称する場合もあり、「メタクリル酸メチル系樹脂発泡粒子」を「発泡粒子」と称する場合もあり、「メタクリル酸メチル系樹脂発泡成形体」を「発泡成形体」と称する場合もある。
 〔1.本発明の一実施形態の技術的思想〕
 特許文献1に開示された発泡性樹脂粒子を用いて得られる発泡成形体は、表面美麗性の観点から、改善の余地がある。
 本発明者らは鋭意検討した結果、以下の新規事項を独自に見出し、本発明を完成させるに至った:(i)粒度分布のピークトップ粒子径が特定の範囲内である発泡性メタクリル酸メチル系樹脂粒子は、粒子径の大小ムラが小さく、すなわち均一性に優れること、(ii)特定の構成単位を特定量有し、かつ基材樹脂の重量平均分子量が小さい発泡性メタクリル酸メチル系樹脂粒子は、発泡性が優れること、(ii)体積平均粒子径が小さい発泡性メタクリル酸メチル系樹脂粒子を発泡させてなるメタクリル酸メチル系樹脂発泡粒子は、様々な形状の型物(例えば、幅数mm程度の狭い箇所)への充填性に優れること、(iii)均一性および発泡性に優れ、かつ体積平均粒子径が小さい発泡性メタクリル酸メチル系樹脂粒子を発泡させてなるメタクリル酸メチル系樹脂発泡粒子は、当該メタクリル酸メチル系樹脂発泡粒子を用いる型内成形において、成形途中のメタクリル酸メチル系樹脂発泡成形体の表面が伸びるため、得られるメタクリル酸メチル系樹脂発泡成形体の表面美麗性が向上すること。
 メタクリル酸メチル系樹脂発泡粒子の充填性が悪い場合、当該メタクリル酸メチル系樹脂発泡粒子を型物内へ充填したときに、型物内に、当該発泡粒子の充填密度が高い領域と、当該発泡粒子の充填密度が低い領域とが形成されることになる。このような状態で型内成形を実施すると、発泡粒子の充填密度が低い領域では、発泡粒子の充填密度が高い領域と比較して、隙間を埋めるために発泡粒子がより大きく発泡する必要が生じる。つまり、発泡粒子の充填密度が低い領域と、発泡粒子の充填密度が高い領域とでは、発泡粒子の発泡度合い(換言すれば、メタクリル酸メチル系樹脂発泡成形体を構成する発泡粒子のサイズ)が異なるため、得られるメタクリル酸メチル系樹脂発泡成形体の表面美麗性が低下することとなる。それ故に、「メタクリル酸メチル系樹脂発泡粒子の充填性」は、後述する実施例に記載のように、メタクリル酸メチル系樹脂発泡成形体の表面美麗性を評価するために指標の1つとなり得る。
 発泡性メタクリル酸メチル系樹脂粒子のピークトップ粒子径が大きい場合、粒子径の大小ムラが大きく、当該発泡性メタクリル酸メチル系樹脂粒子に由来するメタクリル酸メチル系樹脂発泡粒子の粒子径の大小ムラも大きくなる。粒子径の大小ムラが大きなメタクリル酸メチル系樹脂発泡粒子を用いて型内成形を実施すると、得られるメタクリル酸メチル系樹脂発泡成形体を構成する発泡粒子のサイズが異なるため、当該メタクリル酸メチル系樹脂発泡成形体の表面美麗性が低下することとなる。それ故に、「発泡性メタクリル酸メチル系樹脂粒子のピークトップ粒子径」は、後述する実施例に記載のように、メタクリル酸メチル系樹脂発泡成形体の表面美麗性を評価するために指標の1つとなり得る。
 〔2.発泡性メタクリル酸メチル系樹脂粒子〕
 本発明の一実施形態に係る発泡性メタクリル酸メチル系樹脂粒子は、構成単位としてメタクリル酸メチル単位およびアクリル酸エステル単位を含む基材樹脂と、発泡剤とを含む、発泡性メタクリル酸メチル系樹脂粒子であって、前記発泡性メタクリル酸メチル系樹脂粒子は、体積平均粒子径が0.30mm~0.50mmであり、かつ粒度分布のピークトップ粒子径が0.33mm~0.47mmであり、前記発泡性メタクリル酸メチル系樹脂粒子を蒸気吹き込み圧0.10MPa~0.16MPa、かつ発泡機内圧力0.005MPa~0.030MPaの条件下で発泡させたとき、前記発泡性メタクリル酸メチル系樹脂粒子が嵩倍率50倍のメタクリル酸メチル系樹脂発泡粒子に至るまでの時間(A)が80秒未満である。
 本発明の一実施形態に係る発泡性メタクリル酸メチル系樹脂粒子は、構成単位としてメタクリル酸メチル単位およびアクリル酸エステル単位を含む基材樹脂と、発泡剤とを含む、発泡性メタクリル酸メチル系樹脂粒子であって、前記アクリル酸エステル単位は、アクリル酸ブチル単位であり、前記基材樹脂における前記メタクリル酸メチル単位および前記アクリル酸ブチル単位の合計含有量を100重量部とした場合に、前記メタクリル酸メチル単位の含有量は、93.0重量部~98.0重量部であり、前記アクリル酸ブチル単位の含有量は、2.0重量部~7.0重量部であり、前記発泡性メタクリル酸メチル系樹脂粒子は、体積平均粒子径が0.30mm~0.50mmであり、かつ粒度分布のピークトップ粒子径が0.33mm~0.47mmであり、前記基材樹脂の重量平均分子量が17.5万~28.5万である。
 「本発明の一実施形態に係る発泡性メタクリル酸メチル系樹脂粒子」を、以下「本発泡性樹脂粒子」と称する場合もある。
 本発泡性樹脂粒子を公知の方法により発泡することにより、発泡粒子を提供できる。本発泡性樹脂粒子を発泡してなる発泡粒子を公知の方法により型内成形することにより、発泡成形体を提供できる。
 本発泡性樹脂粒子は、上記構成を有するため、表面美麗性に優れたメタクリル酸メチル系樹脂発泡成形体を提供することができるという利点を有する。具体的に、本発泡性樹脂粒子は、粒度分布のピークトップ粒子径が特定の範囲内である。そのため、本発泡性樹脂粒子は、粒子径の大小ムラが小さく、すなわち均一性に優れるという利点を有する。また、本発明の一実施形態に係る発泡性樹脂粒子は、発泡性に優れる。また、本発明の別の一実施形態に係る発泡性樹脂粒子は、特定の構成単位を特定量有し、かつ基材樹脂の重量平均分子量が小さいことにより、驚くべきことに、発泡性に優れる。また、本発泡性樹脂粒子は、体積平均粒子径が小さいため、当該発泡性樹脂粒子を発泡してなる発泡粒子も粒子径が小さいという利点を有する。粒子径が小さい発泡粒子は、様々な形状の型物(例えば、幅数mm程度の狭い箇所)への充填性に優れるという利点を有する。また、均一性および発泡性に優れ、かつ体積平均粒子径が小さい発泡性樹脂粒子を発泡させてなる発泡粒子は、当該発泡粒子を用いる型内成形において、成形途中のメタクリル酸メチル系樹脂発泡成形体の表面が伸びる結果、表面美麗性に優れる発泡成形体を提供できるという利点を有する。
 (基材樹脂)
 本発泡性樹脂粒子が含む基材樹脂は、構成単位としてメタクリル酸メチル単位およびアクリル酸エステル単位を含む。本明細書において、「メタクリル酸メチル単位」とは、メタクリル酸メチル単量体に由来する構成単位であり、「アクリル酸エステル単位」とは、アクリル酸エステル単量体に由来する構成単位である。本明細書において、「単量体」の表記は省略する場合がある。故に、本明細書において、例えば、単に「メタクリル酸メチル」および「アクリル酸エステル」と表記した場合は、それぞれ、「メタクリル酸メチル単量体」および「アクリル酸エステル単量体」を意図する。
 本発泡性樹脂粒子が含む基材樹脂では、メタクリル酸メチル単位およびアクリル酸エステル単位の合計量100重量部に対して、(a)メタクリル酸メチル単位の含有量は93.0重量部~98.0重量部であり、かつアクリル酸エステル単位の含有量は2.0重量部~7.0重量部であり得、(b)メタクリル酸メチル単位の含有量は93.5重量部~98.0重量部であり、かつアクリル酸エステル単位の含有量は2.0重量部~6.5重量部であることが好ましく、(c)メタクリル酸メチル単位の含有量は94.0重量部~98.0重量部であり、かつアクリル酸エステル単位の含有量は2.0重量部~6.0重量部であることがより好ましく、(d)メタクリル酸メチル単位の含有量は94.5重量部~98.0重量部であり、かつアクリル酸エステル単位の含有量は2.0重量部~5.5重量部であることがさらに好ましく、(e)メタクリル酸メチル単位の含有量は95.0重量部~97.5重量部であり、かつアクリル酸エステル単位の含有量は2.5重量部~5.0重量部であることが特に好ましい。
 基材樹脂において、メタクリル酸メチル単位及びアクリル酸エステル単位の合計量100重量部に対するアクリル酸エステル単位の含有量が上述した範囲内である場合、発泡性樹脂粒子が発泡性に優れるという利点を有する。その結果、発泡性樹脂粒子(発泡粒子)は、表面美麗性に優れる発泡成形体を提供できるという利点を有する。
 本発明の一実施形態に係るアクリル酸エステルとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチルなどが挙げられる。アクリル酸エステルとしては、アクリル酸ブチルが特に好ましい。換言すれば、アクリル酸エステル単位が、アクリル酸ブチル単量体に由来するアクリル酸ブチル単位であることが特に好ましい。アクリル酸ブチルは、基材樹脂のガラス転移温度を低下させる効果が大きい。そのため、当該構成によると、発泡性樹脂粒子が発泡性に優れるという利点を有する。その結果、発泡性樹脂粒子(発泡粒子)は、表面美麗性に優れる発泡成形体を提供できるという利点を有する。
 本発泡性樹脂粒子の基材樹脂は、架橋剤に由来する構成単位(以下、架橋剤単位とも称する)を含んでいてもよい。本発泡性樹脂粒子の基材樹脂が架橋剤単位を含む場合、当該発泡性樹脂粒子は、収縮抑制性に優れる発泡粒子を提供でき、かつ発泡性に優れる、という利点を有する。
 架橋剤としては、例えば、ラジカル反応性を示す官能基を2つ以上有する化合物が挙げられる。ラジカル反応性を示す官能基を2つ以上有する化合物の中でも、架橋剤としては、官能基を2つ有する二官能性単量体を用いることが好ましい。換言すれば、本発泡性樹脂粒子の基材樹脂は、架橋剤単位として、二官能性単量体に由来する構成単位である二官能性単量体単位を含むことが好ましい。当該構成によると、(a)発泡性樹脂粒子は発泡性により優れ、(b)当該発泡性樹脂粒子を発泡してなる発泡粒子は収縮抑制性により優れ、かつ(c)当該発泡粒子を型内成形してなる発泡成形体は表面美麗性に優れる、という利点を有する。
 二官能性単量体としては、例えば、(a)エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート等のエチレングリコールの両末端水酸基を(メタ)アクリル酸でエステル化した化合物、およびまたは当該エチレングリコールのオリゴマーの両末端水酸基を(メタ)アクリル酸でエステル化した化合物、(b)ネオペンチルグリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート(例えば1,6-ヘキサンジオールジアクリレートなど)、ブタンジオールジ(メタ)アクリレート等の2価のアルコールの水酸基をアクリル酸またはメタクリル酸でエステル化した化合物、および(c)ジビニルベンゼン等のアルケニル基を2個有するアリール化合物等が挙げられる。ヘキサンジオールジ(メタ)アクリレートは基材樹脂の分子量を調整し易いため、二官能性単量体としては、1,6-ヘキサンジオールジアクリレートなどのヘキサンジオールジ(メタ)アクリレートが好ましい。本明細書において「(メタ)アクリレート」は、メタクリレートおよび/またはアクリレートを意図しており、「(メタ)アクリル酸」は、メタクリル酸および/またはアクリル酸を意図する。
 基材樹脂において、メタクリル酸メチル単位およびアクリル酸エステル単位の合計量100重量部に対する、架橋剤単位の含有量は0重量部以上0.20重量部未満であり、0重量部~0.19重量部が好ましく、0重量部~0.17重量部以下がより好ましく、0重量部~0.15重量部以下がより好ましく、0重量部~0.13重量部がさらに好ましい。前記構成によると、(a)発泡性樹脂粒子は発泡性に優れ、(b)当該発泡性樹脂粒子を発泡してなる発泡粒子は収縮抑制性に優れ、(c)当該発泡粒子を型内成形してなる発泡成形体は表面美麗性に優れるという利点を有する。基材樹脂において、メタクリル酸メチル単位およびアクリル酸エステル単位の合計量100重量部に対する、架橋剤単位の含有量は、0.01重量部以上であってもよく、0.03重量部以上であってもよく、0.05重量部以上であってもよく、0.08重量部以上であってもよい。
 本発泡性樹脂粒子の基材樹脂は、構成単位として、さらに、芳香族系単量体に由来する構成単位(以下、芳香族系単位とも称する)を含有していても良い。芳香族系単量体としては、スチレン、α-メチルスチレン、パラメチルスチレン、t-ブチルスチレンおよびクロルスチレン等の芳香族ビニル化合物等が挙げられる。本発泡性樹脂粒子の基材樹脂が芳香族系単位を含む場合、強度に優れる発泡成形体を得ることができる。
 一方、燃焼時の残渣の少ない発泡成形体を得る観点から、発泡性樹脂粒子の基材樹脂に含まれる、芳香族系単量体に由来する構造(例えば芳香環)の量はできる限り少ないことが好ましい。例えば、発泡性樹脂粒子の基材樹脂が含む芳香族系単位の量は、基材樹脂100重量部に対して、2.5重量部以下であり、2.5重量部未満が好ましく、2.0重量部以下がより好ましく、1.5重量部以下がより好ましく、1.0重量部以下がさらに好ましく、0.5重量部以下がさらに好ましく、0重量部が特に好ましい。すなわち、本発泡性樹脂粒子の基材樹脂は、芳香族系単位を含有しないことが特に好ましい。
 (発泡剤)
 本発泡性樹脂粒子に含まれる発泡剤は、特に限定されない。発泡剤としては、例えば、(a)プロパン、イソブタン、ノルマルブタン、イソペンタン、ノルマルペンタン、ネオペンタン等の炭素数3以上5以下の炭化水素である脂肪族炭化水素類、および(b)ジフルオロエタン、テトラフルオロエタン等のオゾン破壊係数がゼロであるハイドロフルオロカーボン類、等の揮発性発泡剤が挙げられる。これらの発泡剤は1種を単独で使用してもよく、2種以上を組み合わせて使用しても何ら差し支えない。
 本発泡性樹脂粒子において、基材樹脂100重量部に対する、発泡剤の含有量は、5重量部~12重量部が好ましく、7重量部~10重量部がより好ましい。当該構成によると、十分な発泡性を有する発泡性樹脂粒子を提供でき、かつ重厚な重合設備が不要となる、という利点を有する。
 (その他の添加剤)
 本発泡性樹脂粒子は、基材樹脂および発泡剤に加えて、任意でその他の添加剤を含んでいてもよい。上記その他の添加剤としては、溶剤、可塑剤、気泡調整剤、難燃剤、難燃助剤、熱線輻射抑制剤、顔料、染料および帯電防止剤などが挙げられる。
 溶剤としては、特に限定されるものではないが、沸点50℃以上の溶剤が好ましい。沸点50℃以上の溶剤としては、例えば、(a)トルエン、へキサン、ヘプタン等の炭素数6以上(C6以上)の脂肪族炭化水素、および(b)シクロヘキサン、シクロオクタン等のC6以上の脂環族炭化水素、などが挙げられる。発泡性に優れる発泡性樹脂粒子を得ることができることから、沸点50℃以上の溶剤としては、トルエンおよび/またはシクロヘキサンが好ましい。本発泡性樹脂粒子において、基材樹脂100重量部に対する、溶剤の含有量は、1.5重量部~3.0重量部が好ましい。基材樹脂100重量部に対する溶剤の含有量が、(a)1.5重量部以上である場合、十分な発泡力を有する発泡性樹脂粒子を得ることができ、(b)3.0重量部以下である場合、表面の膨張が抑制された、すなわち寸法安定性に優れる発泡成形体を得ることができる。
 可塑剤としては、特に限定されるものではないが、沸点200℃以上である高沸点可塑剤が好ましい。前記高沸点可塑剤としては、例えば、(a)ステアリン酸トリグリセライド、パルミチン酸トリグリセライド、ラウリン酸トリグリセライド、ステアリン酸ジグリセライド、ステアリン酸モノグリセライド等の脂肪酸グリセライド、(b)ヤシ油、パーム油、パーム核油等の植物油、(c)ジオクチルアジペート、ジブチルセバケート等の脂肪族エステル、および(d)流動パラフィン、シクロヘキサン等の有機炭化水素、などが挙げられる。
 本発泡性樹脂粒子において、基材樹脂100重量部に対する、可塑剤の含有量は、0.40重量部~4.00重量部が好ましく、0.50重量部~3.50重量部が好ましく、0.60重量部~3.00重量部がより好ましく、0.70重量部~2.70重量部がより好ましく、0.80重量部~2.40重量部がより好ましく、0.90重量部~2.10重量部がより好ましく、1.00重量部~1.80重量部がさらに好ましく、1.20重量部~1.50重量部が特に好ましい。当該構成によると、発泡性樹脂粒子は発泡性に優れ、当該発泡性樹脂粒子は収縮抑制性に優れる発泡粒子を提供できるという利点を有する。
 気泡調整剤としては、例えば、(a)メチレンビスステアリン酸アマイド、エチレンビスステアリン酸アマイド等の脂肪族ビスアマイド、および(b)ポリエチレンワックス、などが挙げられる。基材樹脂100重量部に対する、気泡調整剤の含有量は、0.01重量部~0.50重量部であることが好ましい。
 (体積平均粒子径)
 本発泡性樹脂粒子の体積平均粒子径は、0.30mm~0.50mmであり、0.35~0.45mmが好ましく、0.40mm~0.45mmがより好ましい。発泡性樹脂粒子の体積平均粒子径が0.30mm未満である場合、発泡性樹脂粒子は、発泡時の発泡性の低下および/または発泡時のブロッキング量の増加をもたらす傾向がある。発泡性樹脂粒子の体積平均粒子径が0.50mmよりも大きい場合、発泡性樹脂粒子を発泡してなる発泡粒子は、当該発泡粒子を成形機へ充填するときに、狭い空間への充填性が悪くなる。なお、成形機における狭い空間は、得られる発泡成形体における厚さの薄い部位に対応する。本明細書において、発泡性樹脂粒子の体積平均粒子径とは、粒度分析計(例えば画像処理方式ミリトラックJPA粒度分析計)を用いて、発泡性樹脂粒子の粒径を体積基準で測定し、得られた結果を累積分布で表示し、体積累積50%となる粒径(すなわちD50)とする。
 発泡性樹脂粒子の体積平均粒子径は、(a)初期の分散剤(例えば、第三リン酸カルシウム、α-オレフィンスルホン酸ソーダ)の量、(b)重合の途中で加える分散剤(例えば、第三リン酸カルシウム)の量、および、(c)重合の途中で分散剤を添加するタイミング(例えば、重合開始から分散剤添加までの時間)などを変更することで、調節できる。
 (粒度分布のピークトップ粒子径)
 本発泡性樹脂粒子の粒度分布のピークトップ粒子径は、0.33mm~0.47mmであり、0.35mm~0.47mmが好ましく、0.40mm~0.45mmがより好ましい。
 本明細書において、発泡性樹脂粒子の粒度分布のピークトップ粒子径とは、粒度分析計(例えば画像処理方式ミリトラックJPA粒度分析計)を用いて、発泡性樹脂粒子の粒径を体積基準で測定し、得られた結果を、横軸を粒子径(0.1mm間隔)、縦軸を体積頻度とした分布で表示する。得られた粒度分布で最も頻度の多い領域(粒子径)をピークトップ粒子径とする。
 (発泡性メタクリル酸メチル系樹脂粒子の発泡性)
 本発泡性樹脂粒子は、当該発泡性樹脂粒子を蒸気吹き込み圧0.10MPa~0.16MPa、かつ発泡機内圧力0.005MPa~0.030MPaの条件下で発泡させたとき、前記発泡性メタクリル酸メチル系樹脂粒子が嵩倍率50倍のメタクリル酸メチル系樹脂発泡粒子に至るまでの時間(A)が80秒未満であり得る。当該時間(A)は、70秒以下であることが好ましく、50秒以下であることがより好ましい。時間(A)の下限値は限定されないが、時間(A)は少なくとも0秒を超える。時間(A)が80未満である場合、当該発泡性樹脂粒子は、発泡性に優れると言える。
 ここで、発泡性樹脂粒子の時間(A)(発泡速度)の測定方法は特に限定されるものではないが、例えば以下(1)~(4)を順に行う方法が挙げられる:(1)発泡性樹脂粒子を加圧式の発泡機(例えば大開工業社製のBHP)に投入する;(2)次に、蒸気吹き込み圧0.10MPa~0.16MPa、かつ発泡機内圧力0.005MPa~0.030MPaの条件にて発泡機内に蒸気(例えば水蒸気)を吹き込み、発泡性樹脂粒子を加熱する;(3)一定時間ごとに、前記発泡性樹脂粒子が発泡されてなる発泡粒子を前記発泡機から取り出し、当該発泡粒子の嵩倍率を計測する;(4)発泡性樹脂粒子に対して蒸気を吹き込んでから、嵩倍率50倍の発泡粒子が得られるまでの時間(A)(加熱時間(A)とも言える。)を計測する。
 蒸気吹き込み圧0.10MPaにて発泡性樹脂粒子を加熱した場合と比較して、蒸気吹き込み圧0.16MPaにて発泡性樹脂粒子を加熱した場合、嵩倍率50倍の発泡粒子が得られるまでの時間は極僅かに短くなるが、実質的にほぼ変化しない。本明細書においては、蒸気吹き込み圧0.10MPa~0.16MPa、かつ発泡機内圧力0.005MPa~0.030MPaの条件にて発泡性樹脂粒子を加熱した場合に嵩倍率50倍の発泡粒子が得られるまでの時間を、時間(A)とみなす。
 本明細書において、発泡粒子の嵩倍率は、以下(1)~(3)を順に実施して得られた値とする:(1)発泡粒子10gを量り取り、1000cmのメスシリンダーへ入れる;(2)メスシリンダーの目盛から、10gの発泡粒子の体積を測定する;(3)以下の式により、発泡粒子の嵩倍率を算出する;
嵩倍率(cm/g)=発泡粒子の体積(cm)/10g。
 本明細書において、発泡粒子の嵩倍率は、発泡倍率とも言える。また、嵩倍率の単位は、実際には上述の式に基づきcm/gであるが、本明細書では、便宜上、嵩倍率の単位を「倍」と表記する。
 (重量平均分子量)
 本発泡性樹脂粒子が含む基材樹脂の重量平均分子量は、17.5万~28.5万であり得る。基材樹脂の重量平均分子量が28.5万以下である場合、驚くべきことに、発泡性樹脂粒子が発泡性に優れるという利点を有する。その結果、発泡性樹脂粒子(発泡粒子)は、表面美麗性に優れる発泡成形体を提供できるという利点を有する。基材樹脂の重量平均分子量が17.5万以上である場合、発泡粒子の収縮が小さく成形体にした際に粒子間の隙間ができにくく表面伸びが優れるという利点を有する。当該重量平均分子量は、20万~26万であることが好ましく、23万~25万であることがより好ましい。
 本明細書では、以下の方法により測定して得られる重量平均分子量を、発泡性樹脂粒子が含む基材樹脂の重量平均分子量とする:(1)発泡性樹脂粒子0.02gをテトラヒドロフラン(以下、「THF」と略す場合がある)20mlに溶解させる;(2)その後、得られる溶解液中のゲル成分をろ過する;(3)次いで、THFに可溶な成分(すなわちろ液)のみを試料として、ゲルパーミェーションクロマトグラフ(GPC)を用いて、GPC測定を行う;(4)GPC測定により得られるGPC測定チャートから、重量平均分子量(Mw)および数平均分子量(Mn)を算出する。なお、重量平均分子量(Mw)および数平均分子量(Mn)はポリスチレン換算の相対値である。
 基材樹脂の重量平均分子量は、基材樹脂の重合(共重合)過程で使用する単量体の組成(種類および量)、連鎖移動剤の種類および量、重合温度および時間、開始剤の種類および量、並びに架橋剤の種類および量などを変更することで、調節できる。
 〔3.発泡性メタクリル酸メチル系樹脂粒子の製造方法〕
 本発明の一実施形態に係る発泡性メタクリル酸メチル系樹脂粒子の製造方法は、メタクリル酸メチル単量体およびアクリル酸エステル単量体を含む単量体混合物を共重合する共重合工程と、得られた共重合体に発泡剤を含浸させる発泡剤含浸工程とを含み得る。前記共重合工程は、(a)前記単量体混合物100重量部に対して0.20重量部~1.20重量部の第1の難水溶性無機塩の存在下、単量体混合物の共重合を開始する開始工程と、(b)前記開始工程後、重合転化率が35%~70%の時点で、前記単量体混合物100重量部に対して0.08重量部~0.50重量部の第2の難水溶性無機塩を、反応混合物中に添加する添加工程と、をさらに含む。前記共重合工程において、前記メタクリル酸メチル単量体および前記アクリル酸エステル単量体の合計使用量100重量部に対する、前記メタクリル酸メチル単量体の使用量は93.0重量部~98.0重量部であり、前記アクリル酸エステル単量体の使用量は2.0重量部~7.0重量部であることが好ましい。
 本明細書において、「難水溶性無機塩」とは、25℃の水に対する溶解度が0.1mg/ml以下である無機塩を意図する。
 「本発明の一実施形態に係る発泡性メタクリル酸メチル系樹脂粒子の製造方法」を、以下「本製造方法」と称する場合もある。
 本製造方法は、前記構成を有するため、表面美麗性に優れたメタクリル酸メチル系樹脂発泡成形体を提供し得る、発泡性メタクリル酸メチル系樹脂粒子を提供することができる。本製造方法は、前記構成を有するため、例えば〔2.発泡性メタクリル酸メチル系樹脂粒子〕の項に記載の、本発明の一実施形態に係る発泡性メタクリル酸メチル系樹脂粒子を提供できる。本製造方法は、〔2.発泡性メタクリル酸メチル系樹脂粒子〕の項に記載の本発泡性樹脂粒子を製造するために好適に用いられる。なお、本製造方法における「共重合体」は、〔2.発泡性メタクリル酸メチル系樹脂粒子〕の項に記載の発泡性樹脂粒子が含む「基材樹脂」に相当する。
 以下、本製造方法に関する各工程について説明するが、以下に詳説した事項以外は、適宜、〔2.発泡性メタクリル酸メチル系樹脂粒子〕の項の記載を援用する。また、〔2.発泡性メタクリル酸メチル系樹脂粒子〕の項で説明した本発泡性樹脂粒子は、本製造方法によって製造されることが好ましいが、本製造方法以外の方法によって製造されてもよい。すなわち、本発泡性樹脂粒子の製造方法は以下に説明するような本製造方法の態様に限定されるものではない。
 (3-1.共重合工程)
 本製造方法が有する共重合工程としては、水性懸濁液中で単量体混合物の重合を行う懸濁重合が挙げられる。以下、共重合工程で得られる共重合体(基材樹脂)を単に「樹脂粒子」と称する場合もある。
 本発明における「水性懸濁液」とは、攪拌等を用いて、単量体液滴および/または樹脂粒子を、水または水溶液中に分散させた状態の液体を指す。水性懸濁液中には、(a)水溶性の界面活性剤および単量体が溶解していてもよく、また(b)水に不溶の分散剤、重合開始剤、連鎖移動剤、架橋剤、気泡調整剤、難燃剤、溶剤、可塑剤等が単量体と共に分散していてもよい。
 水性懸濁液中の単量体および重合体(樹脂)と水または水溶液との重量比は、得られるメタクリル酸メチル系樹脂/水または水溶液の比として、1.0/0.6~1.0/3.0が好ましい。なお、ここで言及する「水溶液」とは、水と、メタクリル酸メチル系樹脂以外の成分とからなる溶液を意図する。
 共重合工程は、単量体混合物100重量部に対して0.20重量部~1.20重量部の第1の難水溶性無機塩の存在下、単量体混合物の共重合を開始する開始工程を含む。開始工程は、例えば、(a)水、(b)メタクリル酸メチル単量体およびアクリル酸エステル単量体を含む単量体混合物、(c)単量体混合物100重量部に対して0.20重量部~1.20重量部の第1の難水溶性無機塩、(d)架橋剤、および、任意で(e)重合開始剤、界面活性剤、難水溶性無機塩以外の分散剤、連鎖移動剤、気泡調整剤、難燃剤、溶剤および可塑剤など、を含む水性懸濁液を用いて、単量体混合物の共重合を開始する工程である。
 本明細書において、「重合反応の開始前」を「重合初期」と称する場合もある。開始工程において水性懸濁液に配合(添加)される第1の難水溶性無機塩、および任意で配合される重合開始剤などは、重合初期に使用される物質(原料)と言える。
 開始工程において、第1の難水溶性無機塩は、分散剤として機能し得る。開始工程すなわち重合初期において使用する第1の難水溶性無機塩としては、例えば、第三リン酸カルシウム、ピロリン酸マグネシウム、ハイドロキシアパタイト、カオリンなどが挙げられる。
 また、開始工程において、(a)ポリビニルアルコール、メチルセルロース、ポリアクリルアミド、ポリビニルピロリドンなどの水溶性高分子、および/または(b)α‐オレフィンスルホン酸ソーダ、ドデシルベンゼンスルホン酸ソーダなどのアニオン系界面活性剤を、第1の難水溶性無機塩と併用してもよい。
 開始工程において使用する第1の難水溶性無機塩としては、樹脂粒子及び/又は単量体の液滴の保護力の観点から、第三リン酸カルシウムが好ましい。開始工程は、液滴の分散安定性の観点から、難水溶性無機塩である第三リン酸カルシウムおよびアニオン系界面活性剤であるα-オレフィンスルホン酸ソーダの存在下、単量体混合物の共重合を開始する工程であることが好ましい。
 開始工程は、単量体混合物100重量部に対して、好ましくは0.20重量部~1.20重量部、より好ましくは0.20重量部~1.10重量部、さらに好ましくは0.40重量部~1.10重量部、の第1の難水溶性無機塩の存在下、単量体混合物の共重合を開始する工程であることが好ましい。単量体混合物100重量部に対して0.20重量部以上の第1の難水溶性無機塩の存在下単量体混合物の共重合を開始する場合、得られる発泡性樹脂粒子の体積平均粒子径が大きくなりすぎる虞がない。単量体混合物100重量部に対して1.10重量部以下の第1の難水溶性無機塩の存在下単量体混合物の共重合を開始する場合、発泡性樹脂粒子の微粒子が多く発生する虞がない。すなわち、上述の範囲内の量の第1の難水溶性無機塩の存在下、単量体混合物の共重合を開始することにより、所望の体積平均粒子径を有する発泡性樹脂粒子を収率よく得ることができる。
 開始工程において、水溶性高分子および/またはアニオン系界面活性剤を第1の難水溶性無機塩と併用する場合、水溶性高分子および/またはアニオン系界面活性剤の水性懸濁液中の濃度としては、単量体混合物の濃度を基準として、30ppm~100ppmが好ましい。
 共重合工程は、開始工程後、重合転化率が35%~70%の時点で、単量体混合物100重量部に対して0.08重量部~0.50重量部の第2の難水溶性無機塩を、反応混合物中に添加する添加工程を含む。
 本明細書において、「重合反応の開始後」を「重合途中」と称する場合もある。添加工程において、反応混合物中に添加される第2の難水溶性無機塩は、重合途中に使用される物質(原料)と言える。
 共重合工程における単量体混合物の重合(共重合)が懸濁重合で行われる場合、添加工程における反応混合物は、水性懸濁液とも言える。
 添加工程において、第2の難水溶性無機塩は、分散剤として機能し得る。添加工程すなわち重合途中において使用する第2の難水溶性無機塩としては、第1の難水溶性無機塩として既に例示した物質が挙げられる。第2の難水溶性無機塩としては、第三リン酸カルシウム、ハイドロキシアパタイトおよびカオリンからなる群から選択される1種以上であることが好ましく、第三リン酸カルシウムであることがより好ましい。当該構成によると、分散剤の添加(追加)以降の樹脂粒子同士の合一を防ぐことができ、目的の粒径の樹脂粒子が得られるという利点を有する。
 添加工程は、開始工程後、重合転化率が35%~70%の時点で、単量体混合物100重量部に対して、好ましくは0.08重量部~0.50重量部、より好ましくは0.10重量部~0.50重量部、より好ましくは0.10重量部~0.40重量部、さらに好ましくは0.10重量部~0.30重量部、特に好ましくは0.10重量部~0.20重量部、の第2の難水溶性無機塩を、反応混合物中に添加する工程であることが好ましい。添加工程において、単量体混合物100重量部に対して0.08重量部以上の第2の難水溶性無機塩を反応混合物中に添加する場合、得られる発泡性樹脂粒子の体積平均粒子径が大きくなりすぎる虞がない。添加工程において、単量体混合物100重量部に対して0.50重量部以下の第2の難水溶性無機塩を反応混合物中に添加する場合、難水溶性無機塩の過剰な使用により生産コストが高くなる。すなわち、添加工程において、上述の範囲内の量の第2の難水溶性無機塩を反応混合物中に添加することにより、所望の体積平均粒子径を有する発泡性樹脂粒子を、低い生産コストで得ることができる。
 添加工程は、好ましくは重合転化率が35%~70%の時点で、より好ましくは重合転化率が40%~50%の時点で第2の難水溶性無機塩を反応混合物中に添加することが好ましい。当該構成によると、所望の体積平均粒子径を有する発泡性樹脂粒子を得ることができる。本明細書における重合転化率の測定方法については、下記実施例にて詳述する。
 共重合工程は、重合温度を変化させて少なくとも2段階で実施されることが好ましい。重合温度が異なる2つの重合工程を、便宜上、以下、第1重合工程および第2重合工程と称する。共重合工程は、重合温度が異なる連続した第1重合工程および第2重合工程を含むことが好ましいとも言える。
 共重合工程は、例えば、(a)70℃~90℃の重合温度で、かつ低温分解型の重合開始剤を用いて実施される第1重合工程と、(b)当該第1重合工程に連続して実施され、第1重合工程よりも高い重合温度(例えば90℃~110℃)で、かつ高温分解型の重合開始剤を用いて実施される第2重合工程と、を含むことが好ましい。共重合工程では、上述した第1重合工程において主要な重合反応が行われ、上述した第2重合工程において残存する単量体を低減させることが好ましい。
 重合開始剤としては、一般に熱可塑性重合体の製造に用いられるラジカル発生型重合開始剤を用いることができる。代表的なラジカル発生型重合開始剤としては、例えば、(a)過酸化ベンゾイル、ラウロイルパーオキサイド、t-ブチルパーオキシベンゾエート、イソプロピル-t-ブチルパーオキシカーボネート、過安息香酸ブチル、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーピバレート、t-ブチルパーオキシイソプロピルカーボネート、ジ-t-ブチルパーオキシヘキサハイドロテレフタレート、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-アミルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネートなどの有機過酸化物、および(b)アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリルなどのアゾ化合物、が挙げられる。これらの重合開始剤は、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 上述したラジカル発生型重合開始剤のうち、(a)過酸化ベンゾイル、ラウロイルパーオキサイド、t-ブチルパーピバレート、ジ-t-ブチルパーオキシヘキサハイドロテレフタレート、アゾビスイソブチロニトリルおよびアゾビスジメチルバレロニトリルは低温分解型の重合開始剤であり、(b)t-ブチルパーオキシベンゾエート、イソプロピル-t-ブチルパーオキシカーボネート、過安息香酸ブチル、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソプロピルカーボネート、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-アミルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサンおよびt-ブチルパーオキシ-2-エチルヘキシルモノカーボネートは高温分解型の重合開始剤である。
 重合開始剤の使用量は、第1重合工程における使用量と第2重合工程における使用量とを合計して、例えば、単量体混合物100重量部に対して0.05重量部~0.5重量部以下が好ましい。当該構成によると、発泡性に優れる発泡性樹脂粒子が得られる。
 開始工程は、(a)第1の難水溶性無機塩、低温分解型の重合開始剤および高温分解型の重合開始剤の存在下、単量体混合物の共重合を開始する工程であってもよく、(b)第1の難水溶性無機塩および低温分解型の重合開始剤の存在下、単量体混合物の共重合を開始する工程であってもよい。開始工程が第1の難水溶性無機塩および低温分解型の重合開始剤の存在下単量体混合物の共重合を開始する工程である場合、高温分解型の重合開始剤は、開始工程後すなわち重合途中に、反応混合物(水性懸濁液)中に添加されてもよい。
 共重合工程において、連鎖移動剤を使用することが好ましい。連鎖移動剤としては、特に限定されず、メタクリル酸メチル系樹脂の重合に用いられる周知の物質を使用できる。連鎖移動剤としては、例えば、(a)アルキルメルカプタン類、チオグリコール酸エステル類等の単官能連鎖移動剤、および(b)エチレングリコール、ネオペンチルグリコール、トリメチロールプロパン、ソルビトール等の多価アルコール水酸基をチオグリコール酸または3-メルカプトプロピオン酸でエステル化した多官能性連鎖移動剤、が挙げられる。アルキルメルカプタン類としては、n-オクチルメルカプタン、n-ドデシルメルカプタンおよびt-ドデシルメルカプタンなどが挙げられる。連鎖移動剤の使用量は、例えば、基材樹脂100重量部に対して0.100重量部以上0.500重量部未満が好ましく、0.270重量部以上0.340重量部未満がより好ましい。
 (3-2.発泡剤含浸工程)
 発泡剤含浸工程では、共重合工程にて得られた共重合体であるメタクリル酸メチル系樹脂粒子に発泡剤を含浸させることにより、発泡性メタクリル酸メチル系樹脂粒子を得ることができる。
 発泡剤含浸工程は任意の時点で行われることが可能であり、例えば、第2重合工程と共に行われるか、または第2重合工程の後に行われ得る。
 発泡剤含浸工程は、単量体から共重合体への重合転化率が80%~95%の時点で、得られた共重合体に発泡剤を含浸させることが好ましい。重合転化率が80%以上の時点で共重合体に発泡剤を含浸させる場合、発泡剤が共重合体の内部へ適度に含浸されるため、共重合体の軟化による共重合体同士の凝集が生じる虞が無く、製造収率が良好となる。重合転化率が95%以下の時点で共重合体に発泡剤を含浸させる場合、発泡剤が共重合体の内部まで十分に含浸されるため、得られる発泡性樹脂粒子を発泡させてなる発泡粒子に二重の気泡構造(硬芯)が形成される虞がない。その結果、当該発泡粒子を型内成形することにより、表面美麗性に優れる発泡成形体を得ることができる。
 発泡剤含浸工程において、共重合体であるメタクリル酸メチル系樹脂粒子に含浸させる発泡剤の量は、好ましい態様を含み、〔2.発泡性メタクリル酸メチル系樹脂粒子〕の(発泡剤)の項にて記載した、発泡性樹脂粒子における発泡剤の含有量と同じである。当該構成によると、十分な発泡性を有する発泡性樹脂粒子が得られるとともに、発泡剤含浸工程において共重合体の凝集を引き起こすことなく、安全に発泡性樹脂粒子を製造できる。
 発泡剤含浸工程において、共重合体に発泡剤を含浸させるときの処理温度(含浸温度とも称する。)および処理時間(含浸時間とも称する。)は特に限定されない。
 発泡剤含浸工程において、発泡剤を共重合体に含浸させるときの含浸温度は、95℃~120℃以下が好ましく、100℃~117℃以下がより好ましい。含浸温度が95℃以上である場合、発泡剤が共重合体の内部まで十分に含浸されるため、得られる発泡性樹脂粒子を発泡させてなる発泡粒子に二重の気泡構造(硬芯)が形成される虞がない。その結果、当該発泡粒子を型内成形することにより、表面美麗性に優れる発泡成形体が得られる。含浸温度が120℃以下である場合、重合機内の圧力が高くなりすぎないため、大きな圧力に耐え得る重装備な含浸設備を必要とすることなく、均一な気泡構造を有する発泡粒子を提供し得る発泡性樹脂粒子を得ることができる。
 本製造方法において、溶剤(例えば沸点50℃以上の溶剤)を使用する場合、発泡剤含浸工程の直前または、発泡剤含浸工程と同時に、溶剤を反応混合物(水性懸濁液)中に添加することが好ましい。
 〔4.メタクリル酸メチル系樹脂発泡粒子〕
 本発明の一実施形態に係るメタクリル酸メチル系樹脂発泡粒子は、〔2.発泡性メタクリル酸メチル系樹脂粒子〕の項に記載の発泡性メタクリル酸メチル系樹脂粒子、または〔3.発泡性メタクリル酸メチル系樹脂粒子の製造方法〕の項に記載の製造方法により製造された発泡性メタクリル酸メチル系樹脂粒子、を発泡してなる発泡粒子である。
 「本発明の一実施形態に係るメタクリル酸メチル系樹脂発泡粒子」を、以下「本発泡粒子」と称する場合もある。
 本発泡性樹脂粒子は、一般的な発泡方法によって、発泡粒子とすることができる。具体的には、例えば以下の(1)~(3)の操作を順に行うことにより、メタクリル酸メチル系樹脂発泡粒子を得ることができる:(1)攪拌機を具備した容器内に発泡性メタクリル酸メチル系樹脂粒子を入れる;(2)水蒸気等の熱源により当該発泡性メタクリル酸メチル系樹脂粒子を加熱する;(3)前記(2)により、所望の発泡倍率まで発泡を行い、メタクリル酸メチル系樹脂発泡粒子を得る。
 発泡性メタクリル酸メチル系樹脂粒子の発泡は、当該発泡性メタクリル酸メチル系樹脂粒子から後述するメタクリル酸メチル系樹脂発泡成形体を得るために、予備的に行う発泡とも言える。そのため、発泡性メタクリル酸メチル系樹脂粒子の発泡は、「予備発泡」と称される場合もあり、メタクリル酸メチル系樹脂発泡粒子を「メタクリル酸メチル系樹脂予備発泡粒子」と称する場合もある。
 本発泡粒子は、充填性に優れるものである。発泡粒子の充填性は、以下の(1)~(5)を順に実施して、評価され得る。(1)本発泡粒子(例えば、嵩倍率50倍の本発泡粒子)を常温(例えば、25℃)下で放置(例えば、3日間放置)する;(2)縦450mm、横300mmおよび厚さ30mmの金型を有する成形機に本発泡粒子を充填する;(3)蒸気吹き込み圧0.10MPa~0.50MPaにて金型内に水蒸気を吹き込み、金型内の圧力が0.030Mpa~0.100MPaの条件下で、発泡圧力が0.100MPa~0.180MPaとなるまで真空吸引加熱による型内成形を行い、本発泡粒子同士を融着させる;(4)発泡圧力が0.100MPa~0.180MPaに到達した後、金型を200秒間放置し、その後、発泡成形体を取り出す;(5)得られた発泡成形体の充填不良個所を目視で確認する。
 〔5.メタクリル酸メチル系樹脂発泡成形体〕
 本発明の一実施形態に係るメタクリル酸メチル系樹脂発泡成形体は、〔4.メタクリル酸メチル系樹脂発泡粒子〕の項に記載のメタクリル酸メチル系樹脂発泡粒子を型内成形してなる発泡成形体である。
 「本発明の一実施形態に係るメタクリル酸メチル系樹脂発泡成形体」を、以下「本発泡成形体」と称する場合もある。
 本発泡粒子は、一般的な型内成形方法によって成形することにより、発泡成形体とすることができる。具体的には、例えば以下の(1)~(3)の操作を順に行うことにより、メタクリル酸メチル系樹脂発泡成形体を得ることができる:(1)閉鎖し得るが密閉しえない金型内にメタクリル酸メチル系樹脂発泡粒子を充填する;(2)水蒸気により当該メタクリル酸メチル系樹脂発泡粒子を加熱する;(3)前記(2)により当該メタクリル酸メチル系樹脂発泡粒子同士を融着させることにより、メタクリル酸メチル系樹脂発泡成形体を得る。
 本発明の一実施形態に係るメタクリル酸メチル系樹脂発泡成形体は、表面美麗性に優れる、および、燃焼時の残渣が少ないという利点を有する。これらの理由から、本発明の一実施形態に係るメタクリル酸メチル系樹脂発泡成形体は、消失模型として好適に使用できる。
 〔6.消失模型〕
 本発明の一実施形態に係る消失模型は、〔5.メタクリル酸メチル系樹脂発泡成形体〕の項に記載のメタクリル酸メチル系樹脂発泡成形体を含む。
 本発明の一実施形態に係る消失模型は、表面美麗性に優れるため、様々な金属鋳造に好適に利用できる。
 〔7.その他〕
 本発明は、以下のように構成することができる。
 〔1〕構成単位としてメタクリル酸メチル単位およびアクリル酸エステル単位を含む基材樹脂と、発泡剤とを含む、発泡性メタクリル酸メチル系樹脂粒子であって、前記発泡性メタクリル酸メチル系樹脂粒子は、体積平均粒子径が0.30mm~0.50mmであり、かつ粒度分布のピークトップ粒子径が0.33mm~0.47mmであり、前記発泡性メタクリル酸メチル系樹脂粒子を蒸気吹き込み圧0.10MPa~0.16MPa、かつ発泡機内圧力0.005MPa~0.030MPaの条件下で発泡させたとき、前記発泡性メタクリル酸メチル系樹脂粒子が嵩倍率50倍のメタクリル酸メチル系樹脂発泡粒子に至るまでの時間(A)が80秒未満である、発泡性メタクリル酸メチル系樹脂粒子。
 〔2〕前記アクリル酸エステル単位はアクリル酸ブチル単位である、〔1〕に記載の発泡性メタクリル酸メチル系樹脂粒子。
 〔3〕前記基材樹脂の重量平均分子量が17.5万~28.5万である、〔1〕または〔2〕に記載の発泡性メタクリル酸メチル系樹脂粒子。
 〔4〕構成単位としてメタクリル酸メチル単位およびアクリル酸エステル単位を含む基材樹脂と、発泡剤とを含む、発泡性メタクリル酸メチル系樹脂粒子であって、前記アクリル酸エステル単位は、アクリル酸ブチル単位であり、前記基材樹脂における前記メタクリル酸メチル単位および前記アクリル酸ブチル単位の合計含有量を100重量部とした場合に、前記メタクリル酸メチル単位の含有量は、93.0重量部~98.0重量部であり、前記アクリル酸ブチル単位の含有量は、2.0重量部~7.0重量部であり、前記発泡性メタクリル酸メチル系樹脂粒子は、体積平均粒子径が0.30mm~0.50mmであり、かつ粒度分布のピークトップ粒子径が0.33mm~0.47mmであり、前記基材樹脂の重量平均分子量が17.5万~28.5万である、発泡性メタクリル酸メチル系樹脂粒子。
 〔5〕前記発泡剤は、(a)炭素数3以上5以下の炭化水素である脂肪族炭化水素類、および/または、(b)揮発性発泡剤を含むものである、〔1〕~〔4〕のいずれかに記載の発泡性メタクリル酸メチル系樹脂粒子。
 〔6〕前記基材樹脂100重量部に対する、前記発泡剤の含有量は、5重量部~12重量部である、〔1〕~〔5〕のいずれかに記載の発泡性メタクリル酸メチル系樹脂粒子。
 〔7〕前記基材樹脂は、架橋剤に由来する構成単位を含む、〔1〕~〔6〕のいずれかに記載の発泡性メタクリル酸メチル系樹脂粒子。
 〔8〕前記基材樹脂は、前記架橋剤に由来する構成単位として、二官能性単量体に由来する構成単位である二官能性単量体単位を含む、〔7〕に記載の発泡性メタクリル酸メチル系樹脂粒子。
 〔9〕前記基材樹脂において、前記メタクリル酸メチル単位および前記アクリル酸エステル単位の合計量100重量部に対する、前記架橋剤に由来する構成単位の含有量は0重量部以上0.20重量部未満である、〔7〕または〔8〕に記載の発泡性メタクリル酸メチル系樹脂粒子。
 〔10〕さらに可塑剤を含む、〔1〕~〔9〕のいずれかに記載の発泡性メタクリル酸メチル系樹脂粒子。
 〔11〕前記基材樹脂100重量部に対する、前記可塑剤の含有量は、0.40重量部~4.00重量部である、〔10〕に記載の発泡性メタクリル酸メチル系樹脂粒子。
 〔12〕〔1〕~〔11〕のいずれかに記載の発泡性メタクリル酸メチル系樹脂粒子を発泡してなる、メタクリル酸メチル系樹脂発泡粒子。
 〔13〕〔12〕に記載のメタクリル酸メチル系樹脂発泡粒子を型内成形してなる、メタクリル酸メチル系樹脂発泡成形体。
 〔14〕〔13〕に記載のメタクリル酸メチル系樹脂発泡成形体を含む、消失模型。
 以下に実施例および比較例を挙げて本発明の一実施形態をより詳細に説明するが、本発明はこれらによって限定されるものではない。
 (発泡性メタクリル酸メチル系樹脂粒子の体積平均粒子径、ピークトップ粒子径、および、均一性)
 画像処理方式ミリトラックJPA粒度分析計を用いて、発泡性メタクリル酸メチル系樹脂粒子の粒径を、体積基準でカット幅0.005mm間隔にて測定した。得られた結果を累積分布にて表示し、体積累積50%となる粒径を体積平均粒子径とした。また得られた粒度分布で最も頻度の多い領域をピークトップ粒子径とした。
 下記指標に基づき、発泡性メタクリル酸メチル系樹脂粒子の均一性を評価した:
A(非常に良好):ピークトップ粒子径が0.33mm~0.47mm
B(不良):ピークトップ粒子径が0.33mm未満もしくは0.47mmを超える。
 (基材樹脂の重量平均分子量)
 以下の方法により測定して得られる重量平均分子量を、発泡性樹脂粒子が含む基材樹脂の重量平均分子量とした:(1)発泡性樹脂粒子0.02gをTHF20mlに溶解させた;(2)その後、得られた溶解液中のゲル成分をろ過した;(3)次いで、THFに可溶な成分(すなわちろ液)のみを試料として、ゲルパーミェーションクロマトグラフ(GPC)を用いて、以下の条件にてGPC測定を行った;(4)GPC測定により得られるGPC測定チャートから、重量平均分子量(Mw)および数平均分子量(Mn)を算出した。なお、重量平均分子量(Mw)および数平均分子量(Mn)はポリスチレン換算の相対値である。
<GPC測定の条件>
測定装置:東ソー社製、高速GPC装置 HLC-8220
使用カラム:東ソー社製、SuperHZM-H×2本、SuperH-RC×2本
カラム温度:40℃、移動相:THF(テトラヒドロフラン)
流量:0.35ml/分、注入量:10μl
検出器:RI。
 (メタクリル酸メチル系樹脂発泡粒子の発泡性)
 発泡性メタクリル酸メチル系樹脂粒子を用いて、以下(1)~(3)を順に行い、嵩倍率50倍のメタクリル酸メチル系樹脂発泡粒子を得た:(1)発泡性メタクリル酸メチル系樹脂粒子を加圧式の発泡機である大開工業社製のBHP110に投入した;(2)蒸気吹き込み圧0.10MPa~0.16MPa、かつ発泡機内圧力0.005MPa~0.030MPaの条件下にて発泡機内に水蒸気を吹き込み、発泡性メタクリル酸メチル系樹脂粒子を加熱した;(3)前記(2)により、嵩倍率が50倍に至るまで発泡性メタクリル酸メチル系樹脂粒子の発泡を行い、嵩倍率50倍のメタクリル酸メチル系樹脂発泡粒子を得た。また、発泡性メタクリル酸メチル系樹脂粒子が嵩倍率50倍のメタクリル酸メチル系樹脂発泡粒子に至るまでの加熱時間を測定した。
 下記指標に基づき、メタクリル酸メチル系樹脂発泡粒子の発泡性を評価した:
A(非常に良好):加熱時間70秒以下
B(良好):加熱時間80秒以下
C(不良):加熱時間80秒超。
 (メタクリル酸メチル系樹脂発泡粒子の充填性)
 メタクリル酸メチル系樹脂発泡粒子を用いて、以下の(1)~(4)を順に実施し、メタクリル酸メチル系樹脂発泡成形体を得た:(1)嵩倍率50倍のメタクリル酸メチル系樹脂発泡粒子を常温(25℃)下で3日間放置した;(2)縦450mm、横300mmおよび厚さ10mmの金型を有する成形機(DAISEN製KR-57)に嵩倍率50倍のメタクリル酸メチル系樹脂発泡粒子を充填した;(3)蒸気吹き込み圧0.10MPa~0.50MPaにて金型内に水蒸気を吹き込み、金型内の圧力が0.030Mpa~0.100MPaの条件下で、発泡圧力が0.100MPa~0.180MPaとなるまで真空吸引加熱による型内成形を行い、メタクリル酸メチル系樹脂発泡粒子同士を融着させた;(4)発泡圧力が0.100MPa~0.180MPaに到達した後、金型を200秒間放置し、その後、発泡成形体を取り出した。
 得られたメタクリル酸メチル系樹脂発泡成形体の充填不良個所を目視で確認し、下記指標に基づき、メタクリル酸メチル系樹脂発泡粒子の充填性を評価した:
A(良好):充填不良箇所がない
B(不良):充填不良箇所がある。
 (メタクリル酸メチル系樹脂発泡成形体の表面美麗性)
 目視にてメタクリル酸メチル系樹脂発泡成形体の表面を観察し、下記指標に基づき、メタクリル酸メチル系樹脂発泡成形体の表面美麗性を評価した。なお、メタクリル酸メチル系樹脂発泡成形体を構成するメタクリル酸メチル系樹脂発泡粒子の間の隙間の度合いを、0(粒子間の隙間が全く埋まっていない)~5点(粒子間の隙間が完全に埋まっている)の間にて、0.25点間隔の点数にて、評価した:
A(非常に良好):発泡粒子間の隙間が4.50点以上、かつ、充填性およびピークトップ粒子径、が非常に良好である
B(良好):発泡粒子間に隙間が4.25点以上、4.50未満、かつ、充填性およびピークトップ粒子径が非常に良好である
C(不良):発泡粒子間の隙間が4.25点未満、ピークトップ粒子径が不良、または、充填性が不良である。
 (発泡性メタクリル酸メチル系樹脂粒子の重合転化率)
 重合中に水性懸濁液のサンプリングを行い、当該水性懸濁液をろ過した。ろ紙上に残った樹脂成分の重量を計量し、得られた重量を加熱前重量とした。次いで、当該樹脂成分に重合禁止剤を加えた後150℃で30分樹脂成分を加熱することで揮発成分を除去した。その後、得られた樹脂成分の重量を計量し、得られた重量を加熱後重量とした。下記式を用いて重合転化率を算出した。
重合転化率(%)=加熱後重量/加熱前重量×100。
 (実施例1)
 撹拌機付き6Lオートクレーブに、水150重量部、第1の難水溶性無機塩として第三リン酸カルシウム0.53重量部、α-オレフィンスルホン酸ソーダ0.0075重量部、ラウロイルパーオキサイド0.08重量部、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン0.1重量部、架橋剤として1,6-ヘキサンジオールジアクリレート0.1重量部、n-ドデシルメルカプタン0.300重量部、および、スミソープ0.03重量部を仕込み、第1の難水溶性無機塩を含む混合液を調製した。その後、当該混合液中に、単量体混合物としてメタクリル酸メチル95.0重量部およびアクリル酸ブチル5.0重量部、トルエン1.0重量部を仕込み、水性懸濁液を調製した。次いで、水性懸濁液の温度を80℃に昇温して重合を開始し、すなわち開始工程を実施した。重合開始から1時間45分経過後(開始工程後)、重合転化率を測定したところ40%~50%であった。重合開始から1時間45分経過後(開始工程後)、第2の難水溶性無機塩として第三リン酸カルシウム0.12重量部を反応混合物(水性懸濁液)中に添加し、添加工程を実施した。
 その後さらに2時間35分経過後、可塑剤としてシクロヘキサン1.5重量部および発泡剤としてノルマルリッチブタン(ノルマルリッチブタンにおける、ノルマルブタンとイソブタンとの重量比(ノルマルブタン/イソブタン)は70/30である。)9重量部を水性懸濁液中に仕込んだ。その後、水性懸濁液の温度を101℃に昇温した。次いで、水性懸濁液の温度を101℃にて10時間保持することにより、共重合および共重合体への発泡剤の含浸(共重合工程および発泡剤含浸工程)を行った。その後、水性懸濁液を冷却した。水性懸濁液の冷却後、得られた生成物を洗浄、脱水および乾燥することにより発泡性メタクリル酸メチル系樹脂粒子を得た。
 得られた発泡性メタクリル酸メチル系樹脂粒子を、目開き0.235mmおよび0.600mmの篩で篩い分けした。かかる操作により、粒径0.235mm~0.600mmの発泡性メタクリル酸メチル系樹脂粒子を採取した。その後、脂肪酸金属塩としてステアリン酸亜鉛0.40重量部、融着促進剤としてヒマシ硬化油0.05重量部を、発泡性メタクリル酸メチル系樹脂粒子の表面に塗布した。
 上述の方法に従い、各評価項目(発泡性メタクリル酸メチル系樹脂粒子の体積平均粒子径、ピークトップ粒子径、均一性、発泡性および充填性、並びにメタクリル酸メチル系樹脂発泡成形体の表面美麗性)を評価した。評価結果を表1に示す。
 (実施例2)
 使用した単量体混合物をメタクリル酸メチル96.5重量部およびアクリル酸ブチル3.5重量部に変更した以外は、実施例1と同じ操作をし、発泡性メタクリル酸メチル系樹脂粒子を得た。各評価項目を実施例1と同じ方法で評価した。評価結果を表1に示す。
 (実施例3)
 使用した単量体混合物をメタクリル酸メチル97.5重量部およびアクリル酸ブチル2.5重量部に変更した以外は、実施例1と同じ操作をし、発泡性メタクリル酸メチル系樹脂粒子を得た。各評価項目を実施例1と同じ方法で評価した。評価結果を表1に示す。
 (実施例4)
 使用した単量体混合物をメタクリル酸メチル97.5重量部およびアクリル酸ブチル2.5重量部に変更し、かつ、使用したn-ドデシルメルカプタンを0.340重量部に変更した以外は、実施例1と同じ操作をし、発泡性メタクリル酸メチル系樹脂粒子を得た。各評価項目を実施例1と同じ方法で評価した。評価結果を表1に示す。
 (実施例5)
 使用したn-ドデシルメルカプタンを0.275重量部に変更した以外は、実施例1と同じ操作をし、発泡性メタクリル酸メチル系樹脂粒子を得た。各評価項目を実施例1と同じ方法で評価した。評価結果を表1に示す。
 (実施例6)
 使用したn-ドデシルメルカプタンを0.340重量部に変更した以外は、実施例1と同じ操作をし、発泡性メタクリル酸メチル系樹脂粒子を得た。各評価項目を実施例1と同じ方法で評価した。評価結果を表1に示す。
 (比較例1)
 使用したn-ドデシルメルカプタンを0.240重量部に変更した以外は、実施例1と同じ操作をし、発泡性メタクリル酸メチル系樹脂粒子を得た。各評価項目を実施例1と同じ方法で評価した。評価結果を表1に示す。
 (比較例2)
 使用した第1の難水溶性無機塩としての第三リン酸カルシウムを0.15重量部に変更した以外は、実施例1と同じ操作をし、発泡性メタクリル酸メチル系樹脂粒子を得た。各評価項目を実施例1と同じ方法で評価した。評価結果を表1に示す。
 (比較例3)
 使用した単量体混合物をメタクリル酸メチル97.5重量部およびアクリル酸ブチル2.5重量部に変更し、かつ、使用したn-ドデシルメルカプタンを0.265重量部に変更した以外は、実施例1と同じ操作をし、発泡性メタクリル酸メチル系樹脂粒子を得た。各評価項目を実施例1と同じ方法で評価した。評価結果を表1に示す。
 (比較例4)
 使用した第1の難水溶性無機塩としての第三リン酸カルシウムを0.15重量部に変更し、かつ、発泡性メタクリル酸メチル系樹脂粒子の篩い分けに使用した篩の目開きを0.50mm~1.40mmに変更したこと以外は、実施例1と同じ操作をし、発泡性メタクリル酸メチル系樹脂粒子を得た。各評価項目を実施例1と同じ方法で評価した。評価結果を表1に示す。
 (比較例5)
 使用した単量体混合物をメタクリル酸メチル91.5重量部およびアクリル酸ブチル8.5重量部に変更した以外は、実施例1と同じ操作をし、発泡性メタクリル酸メチル系樹脂粒子を得た。各評価項目を実施例1と同じ方法で評価した。評価結果を表1に示す。
 (比較例6)
 使用した単量体混合物をメタクリル酸メチル98.5重量部およびアクリル酸ブチル1.5重量部に変更した以外は、実施例1と同じ操作をし、発泡性メタクリル酸メチル系樹脂粒子を得た。各評価項目を実施例1と同じ方法で評価した。評価結果を表1に示す。
 (比較例7)
 アクリル酸ブチルの代わりにアクリル酸メチルを使用した以外は、実施例1と同じ操作をし、発泡性メタクリル酸メチル系樹脂粒子を得た。各評価項目を実施例1と同じ方法で評価した。評価結果を表1に示す。
 (結果)
 表1から明らかなように、実施例1~6では、「均一性」、「発泡性」および「充填性」の評価が高く、それらに由来して、「表面美麗性」の評価も高かった。
Figure JPOXMLDOC01-appb-T000001
 本発明の一実施形態によると、表面美麗性に優れたメタクリル酸メチル系樹脂発泡成形体を提供し得る、発泡性メタクリル酸メチル系樹脂粒子を提供できる。そのため、本発明の一実施形態は、フルモールド法により金属鋳造を行うときの消失模型として好適に利用できる。

Claims (14)

  1.  構成単位としてメタクリル酸メチル単位およびアクリル酸エステル単位を含む基材樹脂と、発泡剤とを含む、発泡性メタクリル酸メチル系樹脂粒子であって、
     前記発泡性メタクリル酸メチル系樹脂粒子は、体積平均粒子径が0.30mm~0.50mmであり、かつ粒度分布のピークトップ粒子径が0.33mm~0.47mmであり、
     前記発泡性メタクリル酸メチル系樹脂粒子を蒸気吹き込み圧0.10MPa~0.16MPa、かつ発泡機内圧力0.005MPa~0.030MPaの条件下で発泡させたとき、前記発泡性メタクリル酸メチル系樹脂粒子が嵩倍率50倍のメタクリル酸メチル系樹脂発泡粒子に至るまでの時間(A)が80秒未満である、発泡性メタクリル酸メチル系樹脂粒子。
  2.  前記アクリル酸エステル単位はアクリル酸ブチル単位である、請求項1に記載の発泡性メタクリル酸メチル系樹脂粒子。
  3.  前記基材樹脂の重量平均分子量が17.5万~28.5万である、請求項1または2に記載の発泡性メタクリル酸メチル系樹脂粒子。
  4.  構成単位としてメタクリル酸メチル単位およびアクリル酸エステル単位を含む基材樹脂と、発泡剤とを含む、発泡性メタクリル酸メチル系樹脂粒子であって、
     前記アクリル酸エステル単位は、アクリル酸ブチル単位であり、
     前記基材樹脂における前記メタクリル酸メチル単位および前記アクリル酸ブチル単位の合計含有量を100重量部とした場合に、前記メタクリル酸メチル単位の含有量は、93.0重量部~98.0重量部であり、前記アクリル酸ブチル単位の含有量は、2.0重量部~7.0重量部であり、
     前記発泡性メタクリル酸メチル系樹脂粒子は、体積平均粒子径が0.30mm~0.50mmであり、かつ粒度分布のピークトップ粒子径が0.33mm~0.47mmであり、
     前記基材樹脂の重量平均分子量が17.5万~28.5万である、発泡性メタクリル酸メチル系樹脂粒子。
  5.  前記発泡剤は、(a)炭素数3以上5以下の炭化水素である脂肪族炭化水素類、および/または、(b)揮発性発泡剤を含むものである、請求項1または4に記載の発泡性メタクリル酸メチル系樹脂粒子。
  6.  前記基材樹脂100重量部に対する、前記発泡剤の含有量は、5重量部~12重量部である、請求項1または4に記載の発泡性メタクリル酸メチル系樹脂粒子。
  7.  前記基材樹脂は、架橋剤に由来する構成単位を含む、請求項1または4に記載の発泡性メタクリル酸メチル系樹脂粒子。
  8.  前記基材樹脂は、前記架橋剤に由来する構成単位として、二官能性単量体に由来する構成単位である二官能性単量体単位を含む、請求項7に記載の発泡性メタクリル酸メチル系樹脂粒子。
  9.  前記基材樹脂において、前記メタクリル酸メチル単位および前記アクリル酸エステル単位の合計量100重量部に対する、前記架橋剤に由来する構成単位の含有量は0重量部以上0.20重量部未満である、請求項7に記載の発泡性メタクリル酸メチル系樹脂粒子。
  10.  さらに可塑剤を含む、請求項1または4に記載の発泡性メタクリル酸メチル系樹脂粒子。
  11.  前記基材樹脂100重量部に対する、前記可塑剤の含有量は、0.40重量部~4.00重量部である、請求項10に記載の発泡性メタクリル酸メチル系樹脂粒子。
  12.  請求項1または4に記載の発泡性メタクリル酸メチル系樹脂粒子を発泡してなる、メタクリル酸メチル系樹脂発泡粒子。
  13.  請求項12に記載のメタクリル酸メチル系樹脂発泡粒子を型内成形してなる、メタクリル酸メチル系樹脂発泡成形体。
  14.  請求項13に記載のメタクリル酸メチル系樹脂発泡成形体を含む、消失模型。
PCT/JP2023/010704 2022-03-29 2023-03-17 発泡性メタクリル酸メチル系樹脂粒子、メタクリル酸メチル系樹脂発泡粒子、メタクリル酸メチル系樹脂発泡成形体および消失模型 WO2023189759A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-054289 2022-03-29
JP2022054289 2022-03-29

Publications (1)

Publication Number Publication Date
WO2023189759A1 true WO2023189759A1 (ja) 2023-10-05

Family

ID=88201063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010704 WO2023189759A1 (ja) 2022-03-29 2023-03-17 発泡性メタクリル酸メチル系樹脂粒子、メタクリル酸メチル系樹脂発泡粒子、メタクリル酸メチル系樹脂発泡成形体および消失模型

Country Status (1)

Country Link
WO (1) WO2023189759A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000086804A (ja) * 1998-09-16 2000-03-28 Sumitomo Chem Co Ltd 発泡性メタクリル酸メチル系樹脂粒子の製造方法
JP2015183111A (ja) * 2014-03-25 2015-10-22 株式会社ジェイエスピー 発泡性アクリル系樹脂粒子、アクリル系樹脂発泡粒子、アクリル系樹脂発泡粒子成形体
JP2018135408A (ja) * 2017-02-20 2018-08-30 株式会社カネカ 発泡性メタクリル酸メチル系樹脂粒子の製造方法
JP2020084040A (ja) * 2018-11-26 2020-06-04 株式会社ジェイエスピー 発泡性アクリル系樹脂粒子、アクリル系樹脂発泡粒子、アクリル系樹脂発泡粒子成形体
WO2021199878A1 (ja) * 2020-03-30 2021-10-07 株式会社カネカ 発泡性メタクリル酸メチル系樹脂粒子、メタクリル酸メチル系発泡粒子、メタクリル酸メチル系発泡成形体および消失模型
WO2022004692A1 (ja) * 2020-06-30 2022-01-06 株式会社カネカ 発泡性メタクリル酸メチル系樹脂粒子、メタクリル酸メチル系樹脂発泡粒子、メタクリル酸メチル系樹脂発泡成形体および消失模型

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000086804A (ja) * 1998-09-16 2000-03-28 Sumitomo Chem Co Ltd 発泡性メタクリル酸メチル系樹脂粒子の製造方法
JP2015183111A (ja) * 2014-03-25 2015-10-22 株式会社ジェイエスピー 発泡性アクリル系樹脂粒子、アクリル系樹脂発泡粒子、アクリル系樹脂発泡粒子成形体
JP2018135408A (ja) * 2017-02-20 2018-08-30 株式会社カネカ 発泡性メタクリル酸メチル系樹脂粒子の製造方法
JP2020084040A (ja) * 2018-11-26 2020-06-04 株式会社ジェイエスピー 発泡性アクリル系樹脂粒子、アクリル系樹脂発泡粒子、アクリル系樹脂発泡粒子成形体
WO2021199878A1 (ja) * 2020-03-30 2021-10-07 株式会社カネカ 発泡性メタクリル酸メチル系樹脂粒子、メタクリル酸メチル系発泡粒子、メタクリル酸メチル系発泡成形体および消失模型
WO2022004692A1 (ja) * 2020-06-30 2022-01-06 株式会社カネカ 発泡性メタクリル酸メチル系樹脂粒子、メタクリル酸メチル系樹脂発泡粒子、メタクリル酸メチル系樹脂発泡成形体および消失模型

Similar Documents

Publication Publication Date Title
EP3199580B1 (en) Expandable methyl methacrylate resin particles, pre-expanded particles, expansion molded article, and lost foam
JP6225781B2 (ja) 発泡性アクリル系樹脂粒子、アクリル系樹脂発泡粒子、アクリル系樹脂発泡粒子成形体
US20230022682A1 (en) Expandable methyl-methacrylate-based resin particles, methyl-methacrylate-based expanded particles, methyl-methacrylate-based molded foam, and evaporative pattern
CN113646345B (zh) 发泡性甲基丙烯酸甲酯系树脂颗粒及其制造方法、其预发泡颗粒及发泡成型体
JP7019410B2 (ja) 発泡性メタクリル酸メチル系樹脂粒子
CN115867601B (zh) 发泡性甲基丙烯酸甲酯系树脂颗粒、甲基丙烯酸甲酯系树脂发泡颗粒、甲基丙烯酸甲酯系树脂发泡成型体和消失模型
JP4835007B2 (ja) 発泡性メタクリル酸メチル系樹脂粒子及びこれを用いた発泡体
JP2018135408A (ja) 発泡性メタクリル酸メチル系樹脂粒子の製造方法
JP7247200B2 (ja) 発泡性樹脂粒子およびその製造方法、並びに発泡成形体
JP7148795B2 (ja) 発泡性アクリル系樹脂粒子、アクリル系樹脂発泡粒子、アクリル系樹脂発泡粒子成形体
CN110997778B (zh) 发泡性聚苯乙烯系树脂颗粒、聚苯乙烯系预发泡颗粒和发泡成型体
WO2023189759A1 (ja) 発泡性メタクリル酸メチル系樹脂粒子、メタクリル酸メチル系樹脂発泡粒子、メタクリル酸メチル系樹脂発泡成形体および消失模型
JP2018203871A (ja) 複合樹脂粒子、複合樹脂発泡粒子、複合樹脂発泡粒子成形体
JP2018135407A (ja) メタクリル酸メチル系発泡粒子
JP2023049915A (ja) 発泡性メタクリル酸メチル系樹脂粒子
WO2023286822A1 (ja) 発泡性メタクリル酸メチル系樹脂粒子、メタクリル酸メチル系樹脂発泡粒子、メタクリル酸メチル系樹脂発泡成形体、消失模型、および発泡性メタクリル酸メチル系樹脂粒子の製造方法
JP7121279B2 (ja) 発泡性スチレン系樹脂粒子
WO2024116722A1 (ja) 発泡性メタクリル酸メチル系樹脂粒子
JP6679390B2 (ja) 発泡性スチレン系樹脂粒子
JP4424637B2 (ja) 発泡性樹脂粒子及び発泡成形品
WO2022185844A1 (ja) 改質ポリスチレン系樹脂粒子の製造方法、発泡性改質ポリスチレン系樹脂粒子の製造方法、およびそれらの利用
JP2022134655A (ja) 発泡性改質ポリスチレン系樹脂粒子の製造方法、発泡性改質ポリスチレン系樹脂粒子、およびそれらの利用
JP4424634B2 (ja) 発泡性樹脂粒子及び発泡成形品
JPH07145261A (ja) 発泡性アクリル樹脂組成物、これを用いた発泡成形品及び金属鋳造物の製造法
JP2024030432A (ja) 発泡性アクリル系樹脂粒子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779775

Country of ref document: EP

Kind code of ref document: A1