WO2023189400A1 - 砥粒の製造方法、化学機械研磨用組成物および研磨方法 - Google Patents

砥粒の製造方法、化学機械研磨用組成物および研磨方法 Download PDF

Info

Publication number
WO2023189400A1
WO2023189400A1 PCT/JP2023/009228 JP2023009228W WO2023189400A1 WO 2023189400 A1 WO2023189400 A1 WO 2023189400A1 JP 2023009228 W JP2023009228 W JP 2023009228W WO 2023189400 A1 WO2023189400 A1 WO 2023189400A1
Authority
WO
WIPO (PCT)
Prior art keywords
chemical mechanical
mechanical polishing
abrasive grains
polishing composition
group
Prior art date
Application number
PCT/JP2023/009228
Other languages
English (en)
French (fr)
Inventor
孝典 柳
鵬宇 王
康二 中西
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Publication of WO2023189400A1 publication Critical patent/WO2023189400A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a method for producing abrasive grains, a composition for chemical mechanical polishing, and a polishing method.
  • CMP chemical mechanical polishing
  • tungsten which has excellent embedding properties, is used for contact holes that electrically connect interconnections in the vertical and vertical directions.
  • Patent Documents 1 to 3 propose chemical mechanical polishing compositions used to polish excess tungsten film on an insulating film.
  • silica when silica is used as an abrasive grain, the silica reacts with the silicon oxide film, increasing the polishing speed of the silicon oxide film. This makes it difficult to selectively polish the tungsten film.
  • silica tends to aggregate when not in an alkaline solution, and the storage stability of the chemical mechanical polishing composition is likely to be impaired.
  • Some aspects of the present invention are chemical mechanical polishing compositions that can selectively polish tungsten films by increasing the polishing rate of tungsten films relative to silicon oxide films, and that also have excellent storage stability.
  • the present invention provides a polishing method using the same.
  • Some embodiments of the present invention provide a chemical mechanical polishing composition that can polish a silicon oxide film at high speed and has excellent storage stability, and a polishing method using the same. be.
  • some embodiments of the present invention provide a method for producing abrasive grains that can be used in the above-mentioned chemical mechanical polishing composition.
  • One aspect of the method for producing abrasive grains according to the present invention is as follows: Particles with hydroxyl groups (-OH) immobilized on the surface via covalent bonds, an alkoxysilane having an epoxy group; a basic compound; It includes the step of mixing and heating.
  • the method may further include a third step of further adding and heating an alkoxysilane having an alkyl group.
  • the basic compound may be at least one selected from the group consisting of ammonia and a compound having an amino group.
  • the abrasive grain may have a partial structure represented by the following general formula (1) on its surface.
  • R 1 represents a single bond or a divalent organic group having 1 or more carbon atoms
  • R 2 represents a divalent organic group having 1 or more carbon atoms
  • R 3 , R 4 and R 5 each independently represents a hydrogen atom or a monovalent organic group having 1 or more carbon atoms
  • * represents a bond.
  • the abrasive grain may have a partial structure represented by the following general formula (2) and an alkyl group on its surface.
  • R 6 represents a divalent organic group having 1 or more carbon atoms
  • R 7 and R 8 each independently represent a hydrogen atom or a monovalent organic group having 1 or more carbon atoms
  • * represents a bond.
  • the abrasive grains may have a zeta potential of 10 mV or more.
  • One embodiment of the chemical mechanical polishing composition according to the present invention is Abrasive grains produced by the method of any of the above aspects; a liquid medium; Contains.
  • a chemical mechanical polishing composition containing abrasive grains and a liquid medium The abrasive grain has a partial structure represented by the following general formula (1) on its surface.
  • R 1 represents a single bond or a divalent organic group having 1 or more carbon atoms
  • R 2 represents a divalent organic group having 1 or more carbon atoms
  • R 3 , R 4 and R 5 each independently represents a hydrogen atom or a monovalent organic group having 1 or more carbon atoms
  • * represents a bond.
  • a chemical mechanical polishing composition containing abrasive grains and a liquid medium The abrasive grain has a partial structure represented by the following general formula (2) and an alkyl group on its surface.
  • R 6 represents a divalent organic group having 1 or more carbon atoms
  • R 7 and R 8 each independently represent a hydrogen atom or a monovalent organic group having 1 or more carbon atoms
  • * represents a bond.
  • the pH may be 2 or more and 5 or less.
  • the chemical mechanical polishing composition may contain an acidic compound, an iron (III) compound, and an oxidizing agent.
  • the chemical mechanical polishing composition of any of the above embodiments may be used for polishing a silicon oxide film.
  • the chemical mechanical polishing composition of any of the above embodiments may be used to selectively polish a tungsten film.
  • the method includes a step of polishing a silicon oxide film using the chemical mechanical polishing composition of any of the above embodiments.
  • the method includes a step of selectively polishing a tungsten film using the chemical mechanical polishing composition of any of the above embodiments.
  • the polishing rate of the tungsten film relative to the silicon oxide film can be increased, so that the tungsten film can be selectively polished, and the composition is storage stable. It also has excellent sex. Further, according to the method for producing abrasive grains according to the present invention, it is possible to selectively polish a tungsten film with respect to a silicon oxide film, and the storage stability in a chemical mechanical polishing composition is also excellent. Abrasive grains can be manufactured.
  • the chemical mechanical polishing composition of the present invention it is possible to increase the polishing rate for a silicon oxide film, and it also has excellent storage stability. Further, according to the method for producing abrasive grains according to the present invention, abrasive grains that can polish silicon oxide films at high speed and have excellent storage stability in chemical mechanical polishing compositions can be produced. I can do it.
  • FIG. 1 is a cross-sectional view schematically showing an object to be processed suitable for use in the polishing method according to the present embodiment.
  • FIG. 2 is a cross-sectional view schematically showing the polishing method according to this embodiment.
  • FIG. 3 is a perspective view schematically showing a chemical mechanical polishing apparatus.
  • (meth)acrylic acid is a concept that encompasses both “acrylic acid” and “methacrylic acid”.
  • (meth)acrylamide is a concept that includes both “acrylamide” and “methacrylamide.”
  • a method for producing abrasive grains according to an embodiment of the present invention includes particles having a hydroxyl group (-OH) immobilized on the surface through a covalent bond, an alkoxysilane having an epoxy group, and a basic abrasive grain. It includes a step of mixing and heating the compound.
  • abrasive grain manufacturing method according to the present embodiment abrasive grains for selectively polishing a tungsten film with respect to a silicon oxide film can be manufactured. Further, according to the abrasive grain manufacturing method according to the present embodiment, abrasive grains for polishing a silicon oxide film at high speed can be manufactured.
  • a method for producing abrasive grains according to an embodiment of the present invention includes mixing particles on which a hydroxyl group (-OH) is fixed via a covalent bond, an alkoxysilane having an epoxy group, and a basic compound. By heating it, abrasive grains having a partial structure represented by the following general formula (1) can be obtained.
  • the mixing method is not particularly limited, but includes a first step of heating a mixture containing particles on which hydroxyl groups (-OH) are fixed via covalent bonds and an alkoxysilane having an epoxy group; After the first step, it is preferable to include a second step of further adding a basic compound and heating. By going through the first step and the second step, side reactions of each component can be suppressed.
  • R 1 represents a single bond or a divalent organic group having 1 or more carbon atoms
  • R 2 represents a divalent organic group having 1 or more carbon atoms
  • R 3 , R 4 and R 5 each independently represents a hydrogen atom or a monovalent organic group having 1 or more carbon atoms
  • * represents a bond.
  • the first step is a step of heating a mixture containing particles on which hydroxyl groups (-OH) are immobilized via covalent bonds and an alkoxysilane having an epoxy group. By going through the first step, it is possible to produce particles in which an organic group having an epoxy group is immobilized on the surface of the particles.
  • the heating temperature in the first step can be carried out between room temperature and 100°C, preferably between 40 and 80°C.
  • the heating time can be carried out between 10 minutes and 24 hours, preferably between 30 minutes and 12 hours.
  • particles with hydroxyl groups (-OH) immobilized on their surfaces via covalent bonds are used.
  • Particles on which a hydroxyl group (-OH) is immobilized via a covalent bond do not include particles to which a compound having a hydroxyl group is physically or ionically adsorbed on the surface.
  • the material of the particles that serve as the raw material for the abrasive grains is not particularly limited, and examples thereof include inorganic oxides such as silica, ceria, alumina, zirconia, and titania, and among them, silica is preferred.
  • examples of the silica include fumed silica, colloidal silica, etc., and colloidal silica is preferable from the viewpoint of reducing polishing defects such as scratches.
  • Colloidal silica has a hydroxyl group on the surface like Si-OH, and for example, one produced by the method described in JP-A No. 2003-109921 can be used.
  • an alkoxysilane having an epoxy group is used.
  • An alkoxysilane having an epoxy group is a compound in which an alkoxy group is hydrolyzed to produce a silanol group, which undergoes a dehydration condensation reaction with a hydroxyl group (-OH) immobilized on the particle surface and bonds to the particle surface. If so, there are no particular restrictions.
  • an organic group having an epoxy group can be easily immobilized on the particle surface.
  • alkoxysilane having an epoxy group an alkoxysilane having two or three alkoxy groups bonded to a silicon atom can be preferably used.
  • alkoxy group lower alkoxy groups such as methoxy group, ethoxy group, propoxy group, butoxy group are preferable, and methoxy group and ethoxy group are more preferable.
  • epoxy group a glycidoxyalkyl group is preferable, and an epoxy group in a glycidoxypropyl group is more preferable.
  • alkoxysilane having an epoxy group glycidoxyalkyltrialkoxysilane, glycidoxyalkyldialkoxysilane, and 2-(3,4-epoxycyclohexyl)alkyltrialkoxysilane are preferred.
  • the glycidoxyalkyltrialkoxysilane include 3-glycidoxypropyltrimethoxysilane and 3-glycidoxypropyltriethoxysilane.
  • Examples of the glycidoxyalkyldialkoxysilane include 3-glycidoxypropyl(methyl)dimethoxysilane and 3-glycidoxypropyl(methyl)diethoxysilane.
  • Examples of the 2-(3,4-epoxycyclohexyl)alkyltrialkoxysilane include 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane and 2-(3,4-epoxycyclohexyl)ethyltriethoxysilane.
  • 3-glycidoxypropyltrimethoxysilane and 3-glycidoxypropyltriethoxysilane are more preferred.
  • These alkoxysilanes having an epoxy group may be used alone or in combination of two or more.
  • Second step is to further add a basic compound to the particles obtained in the first step, on which an organic group having an epoxy group is immobilized on the surface through a covalent bond, and then heat the particles.
  • This is the process of By adding an appropriate amount of a basic compound to the particles obtained in the first step, on which an organic group having an epoxy group is immobilized on the surface through a covalent bond, and heating, the surface of the particle is fixed.
  • the immobilized epoxy group can be converted into a group represented by the following general formula (1) or a group represented by the following general formula (2) by ring-opening reaction with a basic compound.
  • R 1 represents a single bond or a divalent organic group having 1 or more carbon atoms
  • R 2 represents a divalent organic group having 1 or more carbon atoms
  • R 3 , R 4 and R 5 each independently represents a hydrogen atom or a monovalent organic group having 1 or more carbon atoms
  • * represents a bond.
  • R 1 is a divalent organic group having 1 or more carbon atoms
  • R 1 is -(CH 2 ) n O- (n is an integer greater than or equal to 1) It is preferable to have a structure represented by:
  • the divalent organic group having 1 or more carbon atoms represented by R 2 is a divalent aliphatic hydrocarbon group, a divalent aromatic hydrocarbon group, a divalent aromatic aliphatic hydrocarbon group, or a divalent aliphatic hydrocarbon group. It may be any of the alicyclic hydrocarbon groups, and may be linear or branched, but R 2 is -( CH2 ) n- (n is an integer greater than or equal to 1) It is preferable to have a structure represented by:
  • the monovalent organic groups having 1 or more carbon atoms represented by R 3 , R 4 and R 5 include monovalent aliphatic hydrocarbon groups, monovalent aromatic hydrocarbon groups, and monovalent aromatic aliphatic hydrocarbon groups. Either a hydrogen group or a monovalent alicyclic hydrocarbon group may be used. Further, the aliphatic group in the aliphatic hydrocarbon group and the aromatic aliphatic hydrocarbon group may be saturated or unsaturated, and may be linear or branched. Examples of these hydrocarbon groups include linear, branched, or cyclic alkyl groups, alkenyl groups, alkynyl groups, cycloalkyl groups, aralkyl groups, and aryl groups.
  • R 6 represents a divalent organic group having 1 or more carbon atoms
  • R 7 and R 8 each independently represent a hydrogen atom or a monovalent organic group having 1 or more carbon atoms
  • * represents a bond.
  • the divalent organic group having one or more carbon atoms represented by R 6 is preferably a group represented by the following general formula (3).
  • R 1 , R 2 and R 5 have the same meanings as R 1 , R 2 and R 5 in formula (1). * represents a bond.
  • R 1 is a divalent organic group having 1 or more carbon atoms
  • R 1 is -(CH 2 ) n O- (n is an integer greater than or equal to 1) It is preferable to have a structure represented by:
  • the divalent organic group having 1 or more carbon atoms represented by R 2 is a divalent aliphatic hydrocarbon group, a divalent aromatic hydrocarbon group, a divalent aromatic aliphatic hydrocarbon group, or a divalent aliphatic hydrocarbon group. It may be any of the alicyclic hydrocarbon groups, and may be linear or branched, but R 2 is -( CH2 ) n- (n is an integer greater than or equal to 1) It is preferable to have a structure represented by:
  • the monovalent organic group having 1 or more carbon atoms represented by R 7 and R 8 includes a monovalent aliphatic hydrocarbon group, a monovalent aromatic hydrocarbon group, a monovalent aromatic It may be either an aliphatic hydrocarbon group or a monovalent alicyclic hydrocarbon group. Further, the aliphatic group in the aliphatic hydrocarbon group and the aromatic aliphatic hydrocarbon group may be saturated or unsaturated, and may be linear or branched. Examples of these hydrocarbon groups include linear, branched, or cyclic alkyl groups, alkenyl groups, alkynyl groups, cycloalkyl groups, aralkyl groups, and aryl groups.
  • the heating temperature in the second step can be carried out between room temperature and 100°C, preferably between 40 and 80°C.
  • the heating time can be carried out between 10 minutes and 24 hours, preferably between 30 minutes and 12 hours.
  • the basic compound can be converted into a group represented by the above general formula (1) or a group represented by the above general formula (2) by a ring-opening reaction with an epoxy group immobilized on the particle surface.
  • a ring-opening reaction with an epoxy group immobilized on the particle surface.
  • ammonia and compounds having an amino group are preferred.
  • ammonia When ammonia is added as a basic compound, it is preferably added as aqueous ammonia with a concentration of 1 to 30% by mass.
  • Examples of compounds having an amino group include isopropylamine, amylamine, isoamylamine, dibutylamine, monoethanolamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, benzylamine, methylamine, ethylenediamine, Diglycolamine is preferred.
  • the above basic compounds may be used alone or in combination of two or more.
  • the method for producing abrasive grains according to the present embodiment may further include, after the second step, a third step of further adding and heating an alkoxysilane having an alkyl group. Adding an appropriate amount of alkoxysilane having an alkyl group to the particles obtained in the second step and having a group represented by the above general formula (1) or a group represented by the above general formula (2) on the surface. By heating, in addition to the group represented by the above general formula (1) or the above general formula (2), an alkyl group can be introduced onto the particle surface.
  • the abrasive grains having further alkyl groups introduced into their surfaces are made hydrophobic by reducing the number of silanol groups on their surfaces, and their interaction with the silicon oxide film can be reduced. Thereby, the polishing rate ratio of the silicon oxide film to the tungsten film can be lowered, so that the tungsten film can be polished more selectively.
  • the heating temperature in the third step can be carried out between room temperature and 100°C, preferably between 40 and 80°C.
  • the heating time can be carried out between 10 minutes and 24 hours, preferably between 30 minutes and 12 hours.
  • an alkoxysilane having an alkyl group is used.
  • the alkoxysilane having an alkyl group is a different component from the alkoxysilane having an epoxy group used in the first step.
  • the alkoxy group is hydrolyzed to produce a silanol group, which undergoes a dehydration condensation reaction with the hydroxyl group (-OH) remaining on the particle surface without reacting in the first step.
  • hydroxyl group hydroxyl group
  • the alkoxysilane having an alkyl group preferably has one or two alkyl groups bonded to a silicon atom.
  • the alkoxy group include lower alkoxy groups such as methoxy, ethoxy, propoxy, and butoxy groups, with methoxy and ethoxy groups being preferred.
  • the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, cyclohexyl group, n-octyl group, and the like.
  • alkoxysilanes having an alkyl group include methyltrimethoxysilane, dimethyldimethoxysilane, ethyltrimethoxysilane, diethyldimethoxysilane, ethyltriethoxysilane, diethyldiethoxysilane, n-butyltrimethoxysilane, and cyclohexyl Examples include trimethoxysilane and n-octyltrimethoxysilane. These alkoxysilanes having an alkyl group may be used alone or in combination of two or more.
  • the abrasive grain obtained by the method according to this embodiment has the following characteristics.
  • the zeta potential of the abrasive grains produced by the method according to the present embodiment in the chemical mechanical polishing composition is preferably 10 mV or more, more preferably 15 mV or more, particularly preferably 20 mV or more. . Moreover, it is preferably 40 mV or less, more preferably 35 mV or less.
  • the abrasive grains produced by the method according to the present embodiment can be used by being added to a chemical mechanical polishing composition described below. When the zeta potential of the abrasive grains is within the above range, the electrostatic repulsion between the abrasive grains can effectively prevent agglomeration of the particles, and the tungsten film can be polished at a more stable polishing rate.
  • the pH of the chemical mechanical polishing composition is preferably 2 or more and 5 or less.
  • an alkoxysilane having an epoxy group or a It can be adjusted by increasing or decreasing the amount of the basic compound used in step 2.
  • the zeta potential of the abrasive grains can be measured by a conventional method using a zeta potential measuring device based on the laser Doppler method.
  • zeta potential measuring devices include "Zeta Potential Analyzer” manufactured by Brookhaven Instruments, "ELSZ-1000ZS” manufactured by Otsuka Electronics Co., Ltd., and "DT-300” manufactured by Dispersion Technology. Can be mentioned.
  • the average secondary particle size of the abrasive grains produced by the method according to the present embodiment is preferably 30 nm or more, more preferably 40 nm or more, and particularly preferably 50 nm or more.
  • the average secondary particle size of the abrasive grains produced by the method according to the present embodiment is preferably 100 nm or less, more preferably 95 nm or less, particularly preferably 90 nm or less.
  • the average secondary particle size of the abrasive grains can be measured using a dynamic light scattering particle size distribution measuring device. Examples of such a dynamic light scattering particle size distribution measuring device include "Nanoparticle Analyzer SZ-100" manufactured by Horiba, Ltd.
  • a chemical mechanical polishing composition according to one embodiment of the present invention contains abrasive grains produced by the method described above and a liquid medium. Each component contained in the chemical mechanical polishing composition according to this embodiment will be described in detail below.
  • the chemical mechanical polishing composition according to the present embodiment contains abrasive grains produced by the method described above.
  • the abrasive grains produced by the above method include the following two embodiments.
  • the abrasive grain according to the first aspect has a partial structure represented by the following general formula (1) on its surface through the first step and second step described above.
  • R 1 represents a single bond or a divalent organic group having 1 or more carbon atoms
  • R 2 represents a divalent organic group having 1 or more carbon atoms
  • R 3 , R 4 and R 5 each independently represents a hydrogen atom or a monovalent organic group having 1 or more carbon atoms
  • * represents a bond.
  • the abrasive grains according to the first aspect have an amino group on the surface and thus have a zeta potential of 10 mV or more in an acidic chemical mechanical polishing composition. Therefore, in an acidic chemical mechanical polishing composition, the storage stability is improved due to the electrostatic repulsion between the abrasive grains. Furthermore, since the chemical mechanical polishing composition contains an acidic compound, an iron (III) compound, and an oxidizing agent in addition to the abrasive grains according to the first aspect, the polishing rate of the tungsten film relative to the silicon oxide film is increased. Due to the significant improvement, the tungsten film can be selectively polished.
  • the abrasive grain according to the second aspect has a partial structure represented by the following general formula (2) on its surface through the first step, second step, and third step described above. , and an alkyl group.
  • R 6 represents a divalent organic group having 1 or more carbon atoms
  • R 7 and R 8 each independently represent a hydrogen atom or a monovalent organic group having 1 or more carbon atoms
  • * represents a bond.
  • the abrasive grains according to the second aspect further introduce an alkyl group to the surface, thereby reducing the number of silanol groups on the surface and making it hydrophobic, thereby making it possible to reduce the interaction with the silicon oxide film. Thereby, the polishing rate ratio of the silicon oxide film to the tungsten film can be lowered, so that the tungsten film can be polished more selectively.
  • the content of abrasive grains is preferably 1% by mass or more, more preferably 2% by mass or more, particularly preferably 3% by mass, when the total mass of the chemical mechanical polishing composition is 100% by mass. That's all.
  • the content of abrasive grains is preferably 10% by mass or less, more preferably 8% by mass or less, particularly preferably 6% by mass when the total mass of the chemical mechanical polishing composition is 100% by mass. It is as follows. When the abrasive grain content is within the above range, high-speed polishing of the tungsten film to be polished can be achieved, and the storage stability of the chemical mechanical polishing composition may be improved.
  • the chemical mechanical polishing composition according to this embodiment contains a liquid medium.
  • the liquid medium include water, a mixed medium of water and alcohol, a mixed medium containing water and an organic solvent having compatibility with water, and the like. Among these, it is preferable to use water or a mixed medium of water and alcohol, and it is more preferable to use water.
  • Water is not particularly limited, but pure water is preferred. Water may be blended as the remainder of the constituent materials of the chemical mechanical polishing composition, and there is no particular restriction on the water content.
  • the chemical mechanical polishing composition according to the present embodiment may optionally contain an acidic compound, an iron (III) compound, an oxidizing agent, a water-soluble polymer, a surfactant, a corrosion inhibitor, a pH adjuster, etc. It may further contain additives.
  • the chemical mechanical polishing composition according to the present embodiment polishes a tungsten film, it is preferable that the chemical mechanical polishing composition contains an acidic compound, an iron (III) compound, and an oxidizing agent. Each additive will be explained below.
  • the chemical mechanical polishing composition according to this embodiment may contain an acidic compound.
  • an acidic compound By containing an acidic compound, the polishing rate of the tungsten film may be improved due to a synergistic effect with the abrasive grains.
  • Such acidic compounds include organic acids and inorganic acids.
  • organic acids include saturated carboxylic acids such as malonic acid, citric acid, malic acid, tartaric acid, oxalic acid, lactic acid, and iminodiacetic acid; acrylic acid, methacrylic acid, crotonic acid, 2-butenoic acid, and 2-methyl-3 - Unsaturated monocarboxylic acids such as butenoic acid, 2-hexenoic acid, 3-methyl-2-hexenoic acid; maleic acid, fumaric acid, citraconic acid, mesaconic acid, 2-pentenedioic acid, itaconic acid, allylmalonic acid, isopropylene Unsaturated dicarboxylic acids such as lydensuccinic acid, 2,4-hexadienedioic acid and acetylene dicarboxylic acid; aromatic carboxylic acids such as trimellitic acid, and salts thereof.
  • inorganic acids include phosphoric acid, sulfuric acid,
  • the content of the acidic compound is preferably 0.001% when the total mass of the chemical mechanical polishing composition is 100% by mass. ⁇ 5% by weight, more preferably 0.002 ⁇ 1% by weight, particularly preferably 0.003 ⁇ 0.5% by weight.
  • the chemical mechanical polishing composition according to this embodiment may contain an iron (III) compound.
  • an iron (III) compound By containing an iron (III) compound, the tungsten surface may be oxidized to create a brittle modified layer on the tungsten surface, thereby improving the polishing rate of the tungsten film.
  • the iron(III) compound may be either an organic acid iron salt or an inorganic acid iron salt.
  • iron (III) compounds include iron (III) nitrate, iron (III) ammonium sulfate, iron (III) perchlorate, iron (III) chloride, iron (III) sulfate, iron (III) citrate, Examples include ammonium iron (III) citrate and ammonium iron (III) oxalate.
  • iron(III) compounds iron(III) nitrate is particularly preferred.
  • the iron (III) compounds may be used alone or in combination of two or more.
  • the content of the iron (III) compound is 100% by mass when the total mass of the chemical mechanical polishing composition is 100% by mass. , preferably 0.001 to 1% by weight, more preferably 0.002 to 0.5% by weight, particularly preferably 0.003 to 0.3% by weight.
  • the chemical mechanical polishing composition according to this embodiment may contain an oxidizing agent.
  • an oxidizing agent By containing an oxidizing agent, it is possible to oxidize the tungsten film and create a brittle modified layer, which may improve the polishing rate.
  • oxidizing agent examples include ammonium persulfate, potassium persulfate, hydrogen peroxide, diammonium cerium nitrate, potassium hypochlorite, ozone, potassium periodate, peracetic acid, and the like.
  • ammonium persulfate, potassium persulfate, and hydrogen peroxide are preferred, and hydrogen peroxide is more preferred.
  • These oxidizing agents may be used alone or in combination of two or more.
  • the content of the oxidizing agent is preferably 0.1% when the total mass of the chemical mechanical polishing composition is 100% by mass. ⁇ 5% by weight, more preferably 0.3 ⁇ 4% by weight, particularly preferably 0.5 ⁇ 3% by weight. Note that since the oxidizing agent is easily decomposed in the chemical mechanical polishing composition, it is desirable to add it immediately before performing the CMP polishing process.
  • the chemical mechanical polishing composition according to this embodiment may contain a water-soluble polymer.
  • Water-soluble polymers have the effect of adsorbing to the surface to be polished and reducing polishing friction. This effect may reduce the occurrence of dishing on the surface to be polished.
  • Water-soluble polymers include polyethyleneimine, poly(meth)acrylamide, polyN-alkyl(meth)acrylamide, poly(meth)acrylic acid, polyoxyethylenealkylamine, polyvinyl alcohol, polyvinyl alkyl ether, polyvinylpyrrolidone, and hydroxyethyl cellulose. , carboxymethyl cellulose, copolymers of (meth)acrylic acid and maleic acid, and polymeric amine compounds such as poly(meth)acrylamine.
  • heat-responsive polymers such as polyvinyl methyl ether and poly(N-isopropylacrylamide) and polymeric amine compounds such as poly(meth)acrylamine
  • the polishing speed for the surface to be polished can be reduced. In some cases, the occurrence of dishing on the surface to be polished can be effectively reduced.
  • the weight average molecular weight (Mw) of the water-soluble polymer is preferably 1,000 to 1,000,000, more preferably 3,000 to 800,000.
  • Mw weight average molecular weight
  • the content of the water-soluble polymer is preferably 100% by mass when the total mass of the chemical mechanical polishing composition is 100% by mass. is 0.005 to 0.5% by mass, more preferably 0.01 to 0.2% by mass.
  • the content of the water-soluble polymer also depends on the weight average molecular weight (Mw) of the water-soluble polymer, but if the viscosity of the chemical mechanical polishing composition at 25°C is 0.5 mPa ⁇ s or more and less than 10 mPa ⁇ s It is preferable to adjust so that When the viscosity of the chemical mechanical polishing composition at 25° C. is 0.5 mPa ⁇ s or more and less than 10 mPa ⁇ s, it is easy to polish the surface to be polished at high speed, and since the viscosity is appropriate, the chemical can be stably deposited on the polishing cloth.
  • a mechanical polishing composition can be provided.
  • the chemical mechanical polishing composition according to this embodiment may contain a surfactant. By containing a surfactant, it may be possible to impart appropriate viscosity to the chemical mechanical polishing composition.
  • the viscosity of the chemical mechanical polishing composition is preferably adjusted to 0.5 mPa ⁇ s or more and less than 10 mPa ⁇ s at 25°C.
  • the surfactant is not particularly limited, and includes anionic surfactants, cationic surfactants, nonionic surfactants, and the like.
  • anionic surfactants include fatty acid soaps, carboxylates such as alkyl ether carboxylates; sulfonates such as alkylbenzene sulfonates, alkylnaphthalene sulfonates, and ⁇ -olefin sulfonates; higher alcohol sulfates; Examples include sulfates such as ester salts, alkyl ether sulfates, and polyoxyethylene alkylphenyl ether sulfates; fluorine-containing surfactants such as perfluoroalkyl compounds; Examples of the cationic surfactant include aliphatic amine salts and aliphatic ammonium salts.
  • nonionic surfactant examples include nonionic surfactants having a triple bond such as acetylene glycol, acetylene glycol ethylene oxide adduct, and acetylene alcohol; polyethylene glycol type surfactants, and the like. These surfactants may be used alone or in combination of two or more.
  • the content of the surfactant is preferably 0% when the total mass of the chemical mechanical polishing composition is 100% by mass.
  • the content is .001 to 5% by weight, more preferably 0.003 to 3% by weight, particularly preferably 0.005 to 1% by weight.
  • the chemical mechanical polishing composition according to this embodiment may contain a corrosion inhibitor.
  • corrosion inhibitors include benzotriazole and its derivatives.
  • the benzotriazole derivative refers to one in which one or more hydrogen atoms of benzotriazole are substituted with, for example, a carboxyl group, a methyl group, an amino group, a hydroxy group, or the like.
  • Specific examples of benzotriazole derivatives include 4-carboxybenzotriazole, 7-carboxybenzotriazole, benzotriazole butyl ester, 1-hydroxymethylbenzotriazole, 1-hydroxybenzotriazole, and salts thereof.
  • the content of the corrosion inhibitor is preferably 1% by mass when the total mass of the chemical mechanical polishing composition is 100% by mass. or less, and more preferably 0.001 to 0.1% by mass.
  • the chemical mechanical polishing composition according to the present embodiment may further contain a pH adjuster, if necessary.
  • pH adjusters include acids such as hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid; potassium hydroxide, ethylenediamine, monoethanolamine, TMAH (tetramethylammonium hydroxide), TEAH (tetraethylammonium hydroxide), and ammonia.
  • acids such as hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid
  • potassium hydroxide ethylenediamine, monoethanolamine
  • TMAH tetramethylammonium hydroxide
  • TEAH tetraethylammonium hydroxide
  • ammonia examples include bases, and one or more of these can be used.
  • the pH of the chemical mechanical polishing composition according to this embodiment is preferably 2 or more and 5 or less, more preferably 2 or more and 4 or less.
  • the pH of the chemical mechanical polishing composition is in the range of 2 or more and 5 or less, the tungsten surface is easily changed into an oxide that is easily removed mechanically, so that high-speed polishing of the tungsten film can be achieved.
  • the pH of the chemical mechanical polishing composition is 2 or more and 5 or less because the dispersibility of abrasive grains is improved and the storage stability of the chemical mechanical polishing composition is improved.
  • the pH of the chemical mechanical polishing composition according to the present embodiment can be adjusted, for example, by appropriately increasing or decreasing the content of the acidic compound, the pH adjuster, and the like.
  • pH refers to the hydrogen ion index, and its value is measured using a commercially available pH meter (for example, a desktop pH meter manufactured by Horiba, Ltd.) at 25°C and 1 atm. can be measured.
  • the chemical mechanical polishing composition according to the present embodiment can be used as an abrasive for selectively polishing a tungsten film among a plurality of materials constituting a semiconductor device.
  • Such a chemical mechanical polishing composition is particularly suitable for polishing an excess tungsten film on an insulating film (for example, a silicon oxide film), and for producing contact holes for vertically electrically connecting interconnects, for example. It can be used when Further, according to one aspect of the chemical mechanical polishing composition according to the present embodiment, it can be used as an abrasive for polishing a silicon oxide film at high speed.
  • the chemical mechanical polishing composition according to the present embodiment can be prepared by dissolving or dispersing the above-mentioned components in a liquid medium such as water.
  • the method for dissolving or dispersing is not particularly limited, and any method may be used as long as it can be uniformly dissolved or dispersed. Further, there are no particular restrictions on the mixing order or mixing method of each of the above-mentioned components.
  • the chemical mechanical polishing composition according to the present embodiment can also be prepared as a concentrated stock solution and diluted with a liquid medium such as water before use.
  • polishing method includes a step of polishing a silicon oxide film using the above-mentioned chemical mechanical polishing composition. According to the chemical mechanical polishing composition described above, a silicon oxide film can be polished at high speed.
  • one embodiment of the polishing method according to the present invention includes a step of selectively polishing a tungsten film using the above-mentioned chemical mechanical polishing composition.
  • a tungsten film can be selectively polished, so a tungsten plug of good quality can be formed.
  • the polishing method (manufacturing of tungsten plugs) according to this embodiment will be described in detail with reference to FIGS. 1 to 3.
  • FIG. 1 shows an example of an object to be processed 100 applied to the polishing method according to the present embodiment.
  • the base body 10 may be composed of, for example, a silicon substrate and a silicon oxide film formed thereon. Furthermore, a functional device such as a transistor may be formed on the base 10.
  • a silicon oxide film 12 which is an insulating film, is formed on the base 10 by a CVD method using silane gas and oxygen gas. Thereafter, the silicon oxide film 12 is polished halfway by CMP to flatten the surface.
  • a resist pattern is formed on the silicon oxide film 12. Using this as a mask, the silicon oxide film 12 is etched to form a contact hole 14. After forming the contact hole 14, the resist pattern is removed.
  • a tungsten film 16 is deposited on the surface of the silicon oxide film 12 and within the contact hole 14 by applying the CVD method.
  • the object to be processed 100 is formed.
  • polishing step as shown in FIG. 2, the tungsten film 16 is polished using the chemical mechanical polishing composition described above until the silicon oxide film 12 is exposed. According to the chemical mechanical polishing composition described above, the polishing rate of the tungsten film is high and the tungsten film can be selectively polished, so that a tungsten plug of good quality can be formed.
  • abrasive grain can be removed by a normal cleaning method.
  • abrasive grains attached to the surface to be polished can be removed by cleaning with an alkaline cleaning liquid containing ammonia:hydrogen peroxide:water in a mass ratio of about 1:1:5.
  • a cleaning solution for impurity metal species adsorbed on the surface to be polished for example, a citric acid aqueous solution, a mixed aqueous solution of hydrofluoric acid and citric acid, and a mixed aqueous solution of hydrofluoric acid and ethylenediaminetetraacetic acid (EDTA) are used. can.
  • EDTA ethylenediaminetetraacetic acid
  • FIG. 3 is a perspective view schematically showing the chemical mechanical polishing apparatus 200.
  • a slurry (chemical mechanical polishing composition) 44 is supplied from a slurry supply nozzle 42, and a carrier head 52 holding a semiconductor substrate 50 is brought into contact with the turntable 48 to which a polishing pad 46 is attached while rotating. To do this.
  • FIG. 3 also shows the water supply nozzle 54 and the dresser 56.
  • the polishing load of the carrier head 52 can be selected within the range of 10 to 980 hPa, preferably 30 to 490 hPa. Further, the rotation speed of the turntable 48 and the carrier head 52 can be appropriately selected within the range of 10 to 400 rpm, preferably 30 to 150 rpm.
  • the flow rate of the slurry (chemical mechanical polishing composition) 44 supplied from the slurry supply nozzle 42 can be selected within the range of 10 to 1,000 mL/min, preferably 50 to 400 mL/min.
  • Chemical mechanical polishing devices include, for example, manufactured by Ebara Corporation, models “EPO-112" and “EPO-222”; manufactured by Lapmaster SFT, models “LGP-510” and “LGP-552”; and Applied Materials. Examples include “Mirra” and “Reflexion” manufactured by G&P TECHNOLOGY; “POLI-400L” manufactured by G&P TECHNOLOGY; and “Reflexion LK” manufactured by AMAT.
  • abrasive grains 4.1.1. Synthesis of Silica Particles A A monomer solution was prepared by mixing 100 parts by mass of tetramethyl orthosilicate (manufactured by Tama Chemical Industries, Ltd.) and 26.8 parts by mass of methanol at room temperature and pressure. Next, 61.2 parts by mass of ammonia aqueous solution (28% by mass), 98.6 parts by mass of water, and 791.4 parts by mass of methanol were charged into a reaction vessel, and while stirring at 35°C, the monomer prepared above was added. The solution was added gradually over 30 minutes. Thereafter, it was heated to 90°C and held for 6 hours. Thereafter, 341 parts by mass of water was added and the reaction solution was concentrated under reduced pressure to prepare a dispersion of silica particles A having a silica equivalent concentration of 20% by mass.
  • methyl hydrolyzate was added at a rate of 6 mL/min.
  • a 1N aqueous solution of tetramethylammonium hydroxide was successively added to adjust the pH of the reaction solution to about 8.
  • 90 ⁇ m mesh filter filtration was performed, and finally vacuum concentration was performed to prepare a dispersion of silica particles B in which particles were connected in a bead shape and had a silica equivalent concentration of 20% by mass.
  • Example 1 4.2.1. Preparation of abrasive grains 0.14 parts by mass of 3-glycidoxypropyltrimethoxysilane as an alkoxysilane having an epoxy group was added to 100 parts by mass of the dispersion of silica particles A prepared above with stirring, and the mixture was heated to 60°C. Stirring was continued for 2 hours. Thereafter, 9.21 parts by mass of a 5% ammonia aqueous solution as a basic compound was added with stirring, and the group represented by the following formula (4) was fixed on the surface of the silica particles A by heating at 60° C. for 2 hours. . (In formula (4), * represents a bond.) Furthermore, after concentrating to 90 parts by mass under reduced pressure conditions of 60° C.
  • polishing conditions ⁇ Polishing pad: Manufactured by Nitta DuPont, model number "IC1000" ⁇ Carrier head load: 129g/ cm2 ⁇ Surface plate rotation speed: 100 rpm ⁇ Polishing head rotation speed: 90 rpm - Chemical mechanical polishing composition supply amount: 50 mL/min (evaluation criteria for chemical mechanical polishing composition A) - If the polishing rate ratio of the silicon oxide film to the tungsten film is 10 or more, it is judged to be good because the tungsten film can be selectively polished. (Evaluation criteria for chemical mechanical polishing composition B) - If the polishing rate of the silicon oxide film is 1500 ⁇ /min or more, it is determined that the polishing rate is sufficiently fast and good.
  • the abrasive grains used in Examples 2 to 6 and 13 are abrasive grains having the same group represented by the above formula (4) as in Example 1 on the surface.
  • the abrasive grains used in Example 7 are abrasive grains having a group represented by the following formula (5) on the surface.
  • the abrasive grains used in Example 8 are abrasive grains having a group represented by the following formula (6) on the surface.
  • the abrasive grains used in Example 9 are abrasive grains having a group represented by the following formula (7) on the surface.
  • the abrasive grains used in Example 10 are abrasive grains having a group represented by the following formula (8) on the surface.
  • the abrasive grains used in Example 11 are abrasive grains having a group represented by the following formula (9) on the surface.
  • the abrasive grains used in Example 12 are abrasive grains having a group represented by the following formula (10) on the surface.
  • * represents a bond.
  • Example 14 To 100 parts by mass of the dispersion of silica particles A produced above, 0.14 parts by mass of 3-glycidoxypropyltrimethoxysilane as a silane compound having an epoxy group was added dropwise with stirring, followed by 9.0 parts by mass of a 5% aqueous ammonia solution. After adding 21 parts by mass, it was heated at 60° C. for 2 hours. Furthermore, after concentrating to 90 parts by mass under reduced pressure conditions of 60°C and 100 hPa, ultrapure water was added to form abrasive grains on which the group represented by the above formula (4) was immobilized on the surface of the silica particles A. An abrasive dispersion containing 20% by mass was prepared to prepare each chemical mechanical polishing composition. Thereafter, the prepared chemical mechanical polishing composition was evaluated in the same manner as in Example 1. The results are shown in Table 2 below.
  • Example 15 After producing abrasive grains in the same manner as in Example 4, the resulting abrasive grains were further mixed with 0.14 parts by mass of methyltrimethoxysilane as a silane compound having an alkyl group, and heated at 60° C. for 2 hours. Thereafter, after concentrating to 90 parts by mass under reduced pressure conditions of 60° C. and 100 hPa, ultrapure water is added to the surface of the silica particles B to form an abrasive grain having a group represented by the above formula (4) and a methyl group on the surface. An abrasive dispersion containing 20% by mass of grains was prepared. Thereafter, chemical mechanical polishing composition A was prepared in the same manner as in Example 4, and evaluated in the same manner as in Example 4. The results are shown in Table 3 below. In Example 15, chemical mechanical polishing composition B was not prepared, and the silicon oxide film was not evaluated.
  • Examples 16-20 Abrasive grains were prepared in the same manner as in Example 15, except that the silane compound having an alkyl group was used in the type and amount shown in Table 3 below, and chemical mechanical polishing composition A was prepared. did. Thereafter, the prepared chemical mechanical polishing composition A was evaluated in the same manner as in Example 15. The results are shown in Table 3 below.
  • Example 21 0.14 parts by mass of 3-glycidoxypropyltrimethoxysilane as a silane compound having an epoxy group and methyltrimethoxy as a silane compound having an alkyl group were added to 100 parts by mass of the dispersion of silica particles B prepared above while stirring. After dropping 0.14 parts by mass of silane and further adding 9.21 parts by mass of 5% aqueous ammonia solution, the mixture was heated at 60° C. for 2 hours. Furthermore, after concentrating to 90 parts by mass under reduced pressure conditions of 60° C.
  • Comparative examples 1 and 2 A chemical mechanical polishing composition was prepared in the same manner as in Example 1, except that silica particles A (Comparative Example 1) and silica particles B (Comparative Example 2) whose particle surfaces were not modified were used as abrasive grains as they were. We conducted an evaluation. The results are shown in Table 2 below.
  • composition A refers to chemical mechanical polishing composition A prepared above
  • composition B refers to chemical mechanical polishing composition B prepared above.
  • ⁇ Silane compound having an alkyl group> ⁇ Methyltrimethoxysilane: Manufactured by Shin-Etsu Silicone Co., Ltd., product name “KBM-13” ⁇ n-Butyltrimethoxysilane: Fluorochem Ltd. Cyclohexyltrimethoxysilane manufactured by Tokyo Chemical Industry Co., Ltd. n-octyltrimethoxysilane manufactured by Fluorochem Ltd. Made
  • the abrasive grains used in Examples 15 to 21 that have a group represented by the above formula (4) and an alkyl group on the surface are made hydrophobic by decreasing the number of silanol groups on the surface, and form a silicon oxide film. It was found that the tungsten film can be polished more selectively because the interaction between the two can be reduced.
  • Examples 1 to 14 by using chemical mechanical polishing composition B containing abrasive grains having one of the groups of formulas (4) to (10) on the surface, a silicon oxide film can be polished at high speed. It was found that it was possible to achieve good polishing properties and to have excellent storage stability.
  • chemical mechanical polishing composition A according to the present invention can selectively polish a tungsten film with respect to a silicon oxide film at high speed, achieve good polishing properties, and It was also found to have excellent stability. Furthermore, it was found that according to the chemical mechanical polishing composition B according to the present invention, a silicon oxide film can be polished at high speed, good polishing properties can be achieved, and storage stability is also excellent.
  • the present invention is not limited to the embodiments described above, and various modifications are possible.
  • the present invention includes configurations that are substantially the same as those described in the embodiments (for example, configurations that have the same functions, methods, and results, or configurations that have the same objectives and effects).
  • the present invention includes a configuration in which non-essential parts of the configuration described in the embodiments are replaced.
  • the present invention includes a configuration that has the same effects or a configuration that can achieve the same purpose as the configuration described in the embodiment.
  • the present invention includes a configuration in which a known technique is added to the configuration described in the embodiment.
  • SYMBOLS 10 Substrate, 12... Silicon oxide film, 14... Contact hole, 16... Tungsten film, 42... Slurry supply nozzle, 44... Slurry (chemical mechanical polishing composition), 46... Polishing pad, 48... Turntable, 50 ... semiconductor substrate, 52 ... carrier head, 54 ... water supply nozzle, 56 ... dresser, 100 ... object to be processed, 200 ... chemical mechanical polishing device

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

シリコン酸化膜に対するタングステン膜の研磨速度を大きくすることによりタングステン膜を選択的に研磨することができ、かつ、貯蔵安定性にも優れた化学機械研磨用組成物、およびそれを用いた研磨方法、ならびにそれらに用いられ得る砥粒の製造方法を提供する。また、シリコン酸化膜を高速で研磨することができ、かつ、貯蔵安定性にも優れた化学機械研磨用組成物、およびそれを用いた研磨方法、ならびにそれらに用いられ得る砥粒の製造方法を提供する。 本発明に係る砥粒の製造方法は、水酸基(-OH)が共有結合を介して表面に固定化された粒子と、エポキシ基を有するアルコキシシランと、塩基性化合物と、を混合して加熱する工程を含む。

Description

砥粒の製造方法、化学機械研磨用組成物および研磨方法
 本発明は、砥粒の製造方法、化学機械研磨用組成物および研磨方法に関する。
 半導体集積回路の製造技術の向上に伴い、半導体素子の高集積化、高速動作が求められている。これに伴い、半導体素子における微細回路の製造工程において要求される半導体基板表面の平坦性は益々厳しくなってきており、化学機械研磨(Chemical Mechanical Polishing、以下「CMP」ともいう。)が半導体素子の製造工程に不可欠な技術となっている。
 例えば、配線間を上下縦方向に電気的に接合するコンタクトホールには、埋め込み性に優れるタングステンが使用される。例えば特許文献1~3には、絶縁膜上の余分なタングステン膜を研磨するために使用される化学機械研磨用組成物が提案されている。
特表2005-518091号公報 特開2007-19093号公報 特表2008-503875号公報
 上述のようなタングステン膜を研磨するために使用される化学機械研磨用組成物においては、砥粒としてシリカを使用すると、シリカがシリコン酸化膜と反応することでシリコン酸化膜の研磨速度が速くなる傾向があり、タングステン膜を選択的に研磨することが困難となる。また、シリカは、アルカリ液中以外では凝集しやすく、化学機械研磨用組成物の貯蔵安定性が損なわれやすい。
 本発明に係る幾つかの態様は、シリコン酸化膜に対するタングステン膜の研磨速度を大きくすることによりタングステン膜を選択的に研磨することができ、かつ、貯蔵安定性にも優れた化学機械研磨用組成物、およびこれを用いた研磨方法を提供するものである。
 一方、シリコン酸化膜を研磨するために使用される化学機械研磨用組成物においては、砥粒としてシリカを使用すると、アルカリ液中以外では凝集しやすく、化学機械研磨用組成物の貯蔵安定性が損なわれやすい。そのため、液性が酸性の化学機械研磨用組成物では、砥粒の凝集によってシリコン酸化膜の研磨速度が低下する傾向があった。
 本発明に係る幾つかの態様は、シリコン酸化膜を高速で研磨することができ、かつ、貯蔵安定性にも優れた化学機械研磨用組成物、およびこれを用いた研磨方法を提供するものである。
 また、本発明に係る幾つかの態様は、上述の化学機械研磨用組成物に用いられ得る砥粒の製造方法を提供するものである。
 本発明に係る砥粒の製造方法の一態様は、
 水酸基(-OH)が共有結合を介して表面に固定化された粒子と、
 エポキシ基を有するアルコキシシランと、
 塩基性化合物と、
を混合して加熱する工程を含む。
 前記砥粒の製造方法の一態様において、
 前記水酸基(-OH)が共有結合を介して表面に固定化された粒子と、前記エポキシ基を有するアルコキシシランと、を含有する混合物を加熱する第1の工程と、
 前記第1の工程後、前記塩基性化合物をさらに添加して加熱する第2の工程と、
を含んでもよい。
 前記砥粒の製造方法のいずれかの態様において、
 前記第2の工程後、アルキル基を有するアルコキシシランをさらに添加して加熱する第3の工程をさらに含んでもよい。
 前記砥粒の製造方法のいずれかの態様において、
 前記塩基性化合物が、アンモニアおよびアミノ基を有する化合物からなる群より選択される少なくとも1種であってもよい。
 前記砥粒の製造方法のいずれかの態様において、
 前記砥粒が、その表面に下記一般式(1)で表される部分構造を有していてもよい。
Figure JPOXMLDOC01-appb-C000005
(式(1)中、Rは単結合または炭素数1以上の2価の有機基を表し、Rは炭素数1以上の2価の有機基を表し、R、RおよびRは各々独立して水素原子または炭素数1以上の1価の有機基を表し、*は結合手を表す。)
 前記砥粒の製造方法のいずれかの態様において、
 前記砥粒が、その表面に下記一般式(2)で表される部分構造と、アルキル基と、を有していてもよい。
Figure JPOXMLDOC01-appb-C000006
(式(2)中、Rは炭素数1以上の2価の有機基を表し、RおよびRは各々独立して水素原子または炭素数1以上の1価の有機基を表し、*は結合手を表す。)
 前記砥粒の製造方法のいずれかの態様において、
 前記砥粒を含有する化学機械研磨用組成物中において、前記砥粒のゼータ電位が10mV以上であってもよい。
 本発明に係る化学機械研磨用組成物の一態様は、
 前記いずれかの態様の方法によって製造される砥粒と、
 液状媒体と、
を含有する。
 本発明に係る化学機械研磨用組成物の一態様は、
 砥粒と、液状媒体と、を含有する化学機械研磨用組成物であって、
 前記砥粒が、その表面に下記一般式(1)で表される部分構造を有するものである。
Figure JPOXMLDOC01-appb-C000007
(式(1)中、Rは単結合または炭素数1以上の2価の有機基を表し、Rは炭素数1以上の2価の有機基を表し、R、RおよびRは各々独立して水素原子または炭素数1以上の1価の有機基を表し、*は結合手を表す。)
 本発明に係る化学機械研磨用組成物の一態様は、
 砥粒と、液状媒体と、を含有する化学機械研磨用組成物であって、
 前記砥粒が、その表面に、下記一般式(2)で表される部分構造と、アルキル基と、を有するものである。
Figure JPOXMLDOC01-appb-C000008
(式(2)中、Rは炭素数1以上の2価の有機基を表し、RおよびRは各々独立して水素原子または炭素数1以上の1価の有機基を表し、*は結合手を表す。)
 前記化学機械研磨用組成物のいずれかの態様において、
 pHが2以上5以下であってもよい。
 前記化学機械研磨用組成物のいずれかの態様において、
 さらに、酸性化合物、鉄(III)化合物、および酸化剤を含有してもよい。
 前記いずれかの態様の化学機械研磨用組成物は、シリコン酸化膜を研磨するために用いられるものであってもよい。
 前記いずれかの態様の化学機械研磨用組成物は、タングステン膜を選択的に研磨するために用いられるものであってもよい。
 本発明に係る研磨方法の一態様は、
 前記いずれかの態様の化学機械研磨用組成物を用いて、シリコン酸化膜を研磨する工程を含む。
 本発明に係る研磨方法の一態様は、
 前記いずれかの態様の化学機械研磨用組成物を用いて、タングステン膜を選択的に研磨する工程を含む。
 本発明に係る化学機械研磨用組成物の一態様によれば、シリコン酸化膜に対するタングステン膜の研磨速度を大きくすることができるので、タングステン膜を選択的に研磨することができ、かつ、貯蔵安定性にも優れたものとなる。また、本発明に係る砥粒の製造方法によれば、シリコン酸化膜に対してタングステン膜を選択的に研磨することができ、かつ、化学機械研磨用組成物中での貯蔵安定性にも優れる砥粒を製造することができる。
 本発明に係る化学機械研磨用組成物の一態様によれば、シリコン酸化膜に対する研磨速度を大きくすることができ、かつ、貯蔵安定性にも優れたものとなる。また、本発明に係る砥粒の製造方法によれば、シリコン酸化膜を高速で研磨することができ、かつ、化学機械研磨用組成物中での貯蔵安定性にも優れる砥粒を製造することができる。
図1は、本実施形態に係る研磨方法での使用に適した被処理体を模式的に示す断面図である。 図2は、本実施形態に係る研磨方法を模式的に示す断面図である。 図3は、化学機械研磨装置を模式的に示す斜視図である。
 以下、本発明の好適な実施形態について詳細に説明する。なお、本発明は、下記の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において実施される各種の変形例も含む。
 本明細書における「(メタ)アクリル酸~」とは、「アクリル酸~」および「メタクリル酸~」の双方を包括する概念である。同様に「(メタ)アクリルアミド」とは、「アクリルアミド」および「メタクリルアミド」の双方を包括する概念である。
 本明細書において、「X~Y」を用いて記載された数値範囲は、数値Xを下限値として含み、かつ、数値Yを上限値として含むものとして解釈される。
 1.砥粒の製造方法
 本発明の一実施形態に係る砥粒の製造方法は、水酸基(-OH)が共有結合を介して表面に固定化された粒子と、エポキシ基を有するアルコキシシランと、塩基性化合物と、を混合して加熱する工程を含む。本実施形態に係る砥粒の製造方法によれば、シリコン酸化膜に対してタングステン膜を選択的に研磨するための砥粒を製造することができる。また、本実施形態に係る砥粒の製造方法によれば、シリコン酸化膜を高速で研磨するための砥粒を製造することができる。
 本発明の一実施形態に係る砥粒の製造方法は、水酸基(-OH)が共有結合を介して表面に固定化された粒子と、エポキシ基を有するアルコキシシランと、塩基性化合物と、を混合して加熱することにより、下記一般式(1)で表される部分構造を有する砥粒を得ることができる。混合方法は、特に限定されないが、水酸基(-OH)が共有結合を介して表面に固定化された粒子と、エポキシ基を有するアルコキシシランと、を含有する混合物を加熱する第1の工程と、前記第1の工程後、塩基性化合物をさらに添加して加熱する第2の工程と、を含むことが好ましい。第1の工程および第2の工程を経ることにより、各成分の副反応を抑制することができる。
Figure JPOXMLDOC01-appb-C000009
(式(1)中、Rは単結合または炭素数1以上の2価の有機基を表し、Rは炭素数1以上の2価の有機基を表し、R、RおよびRは各々独立して水素原子または炭素数1以上の1価の有機基を表し、*は結合手を表す。)
 以下、本実施形態に係る砥粒の製造方法について工程ごとに詳細に説明する。
 1.1.第1の工程
 第1の工程は、水酸基(-OH)が共有結合を介して表面に固定化された粒子と、エポキシ基を有するアルコキシシランと、を含有する混合物を加熱する工程である。第1の工程を経ることにより、前記粒子の表面にエポキシ基を有する有機基が固定化された粒子を製造することができる。
 第1の工程における加熱温度は、室温~100℃の間で実施することができ、好ましくは40~80℃である。加熱時間は、10分~24時間の間で実施することができ、好ましくは30分~12時間である。
 第1の工程では、水酸基(-OH)が共有結合を介して表面に固定化された粒子を用いる。このような水酸基(-OH)が共有結合を介して表面に固定化された粒子には、表面に水酸基を有する化合物が物理的あるいはイオン的に吸着したような粒子は含まれない。
 砥粒の原料となる粒子の材質は、特に制限されず、シリカ、セリア、アルミナ、ジルコニア、チタニア等の無機酸化物を挙げることができるが、中でもシリカが好ましい。シリカとしては、例えば、ヒュームドシリカ、コロイダルシリカ等が挙げられるが、スクラッチ等の研磨欠陥を低減する観点から、コロイダルシリカが好ましい。コロイダルシリカは、Si-OHのように表面に水酸基を有しており、例えば特開2003-109921号公報等に記載された方法で製造されたものを用いることができる。
 第1の工程では、エポキシ基を有するアルコキシシランを用いる。エポキシ基を有するアルコキシシランとしては、アルコキシ基が加水分解してシラノール基が生成し、粒子表面に固定化された水酸基(-OH)と脱水縮合反応して粒子表面と結合することができる化合物であれば特に制限されない。エポキシ基を有するアルコキシシランを反応させることで、粒子表面にエポキシ基を有する有機基を簡便に固定化することができる。
 エポキシ基を有するアルコキシシランとしては、ケイ素原子に結合するアルコキシ基を2個または3個有するアルコキシシランを好ましく用いることができる。アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等の低級アルコキシ基が好ましく、メトキシ基、エトキシ基がより好ましい。また、エポキシ基としては、グリシドキシアルキル基が好ましく、グリシドキシプロピル基中のエポキシ基であることがより好ましい。
 エポキシ基を有するアルコキシシランの具体例としては、グリシドキシアルキルトリアルコキシシラン、グリシドキシアルキルジアルコキシシラン、2-(3,4-エポキシシクロヘキシル)アルキルトリアルコキシシランが好ましい。グリシドキシアルキルトリアルコキシシランとしては、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン等が挙げられる。グリシドキシアルキルジアルコキシシランとしては、3-グリシドキシプロピル(メチル)ジメトキシシラン、3-グリシドキシプロピル(メチル)ジエトキシシラン等が挙げられる。2-(3,4-エポキシシクロヘキシル)アルキルトリアルコキシシランとしては、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシランが挙げられる。これらの中でも、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシランがより好ましい。これらのエポキシ基を有するアルコキシシランは、1種単独で使用してもよく、2種以上を併用してもよい。
 1.2.第2の工程
 第2の工程は、前記第1の工程により得られた、エポキシ基を有する有機基が共有結合を介して表面に固定化された粒子を、さらに塩基性化合物を添加して加熱する工程である。前記第1の工程により得られた、表面にエポキシ基を有する有機基が共有結合を介して表面に固定化された粒子に対して、塩基性化合物を適量添加して加熱することにより、表面に固定化されたエポキシ基と、塩基性化合物とを開環反応させて、下記一般式(1)で表される基または下記一般式(2)で表される基に変換することができる。
Figure JPOXMLDOC01-appb-C000010
(式(1)中、Rは単結合または炭素数1以上の2価の有機基を表し、Rは炭素数1以上の2価の有機基を表し、R、RおよびRは各々独立して水素原子または炭素数1以上の1価の有機基を表し、*は結合手を表す。)
 Rが炭素数1以上の2価の有機基である場合、Rは、
-(CHO-
(nは1以上の整数)
で表される構造を有することが好ましい。
 Rで表される炭素数1以上の2価の有機基としては、2価の脂肪族炭化水素基、2価の芳香族炭化水素基、2価の芳香脂肪族炭化水素基、または2価の脂環式炭化水素基のいずれでもよく、直鎖状でも分岐状でもよいが、Rは、
-(CH
(nは1以上の整数)
で表される構造を有することが好ましい。
 R、RおよびRで表される炭素数1以上の1価の有機基としては、1価の脂肪族炭化水素基、1価の芳香族炭化水素基、1価の芳香脂肪族炭化水素基、または1価の脂環式炭化水素基のいずれでもよい。また、脂肪族炭化水素基および芳香脂肪族炭化水素基における脂肪族は、飽和でも不飽和でもよく、直鎖状でも分岐状でもよい。これらの炭化水素基としては、例えば、直鎖状、分岐状または環状の、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アラルキル基、およびアリール基等が挙げられる。
Figure JPOXMLDOC01-appb-C000011
(式(2)中、Rは炭素数1以上の2価の有機基を表し、RおよびRは各々独立して水素原子または炭素数1以上の1価の有機基を表し、*は結合手を表す。)
 Rで表される炭素数1以上の2価の有機基としては、下記一般式(3)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000012
(式(3)中、R、RおよびRは、式(1)中のR、RおよびRと同義である。*は結合手を表す。)
 Rが炭素数1以上の2価の有機基である場合、Rは、
-(CHO-
(nは1以上の整数)
で表される構造を有することが好ましい。
 Rで表される炭素数1以上の2価の有機基としては、2価の脂肪族炭化水素基、2価の芳香族炭化水素基、2価の芳香脂肪族炭化水素基、または2価の脂環式炭化水素基のいずれでもよく、直鎖状でも分岐状でもよいが、Rは、
-(CH
(nは1以上の整数)
で表される構造を有することが好ましい。
 式(2)中、RおよびRで表される炭素数1以上の1価の有機基としては、1価の脂肪族炭化水素基、1価の芳香族炭化水素基、1価の芳香脂肪族炭化水素基、または1価の脂環式炭化水素基のいずれでもよい。また、脂肪族炭化水素基および芳香脂肪族炭化水素基における脂肪族は、飽和でも不飽和でもよく、直鎖状でも分岐状でもよい。これらの炭化水素基としては、例えば、直鎖状、分岐状または環状の、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アラルキル基、およびアリール基等が挙げられる。
 第2の工程における加熱温度は、室温~100℃の間で実施することができ、好ましくは40~80℃である。加熱時間は、10分~24時間の間で実施することができ、好ましくは30分~12時間である。
 塩基性化合物としては、粒子表面に固定化されたエポキシ基と開環反応をして上記一般式(1)で表される基または上記一般式(2)で表される基に変換することができる化合物であれば特に限定されないが、アンモニア、アミノ基を有する化合物が好ましい。
 塩基性化合物としてアンモニアを添加する場合、濃度1~30質量%のアンモニア水として添加することが好ましい。
 アミノ基を有する化合物としては、例えば、イソプロピルアミン、アミルアミン、イソアミルアミン、ジブチルアミン、モノエタノールアミン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルアミン、メチルアミン、エチレンジアミン、ジグリコールアミンが好ましい。
 第2の工程では、上記の塩基性化合物を、1種単独で使用してもよく、2種以上を併用してもよい。
 1.3.第3の工程
 本実施形態に係る砥粒の製造方法においては、前記第2の工程後、アルキル基を有するアルコキシシランをさらに添加して加熱する第3の工程をさらに含んでもよい。前記第2の工程により得られた、表面に上記一般式(1)で表される基または上記一般式(2)で表される基を有する粒子へアルキル基を有するアルコキシシランを適量添加して加熱することにより、上記一般式(1)で表される基または上記一般式(2)で表される基に加えて、粒子表面にアルキル基を導入することができる。このように表面にアルキル基がさらに導入された砥粒は、表面のシラノール基数が減少することで疎水化され、シリコン酸化膜との相互作用を小さくすることができる。これにより、タングステン膜に対するシリコン酸化膜の研磨速度比を下げることができるため、タングステン膜をより選択的に研磨することができる。
 第3の工程における加熱温度は、室温~100℃の間で実施することができ、好ましくは40~80℃である。加熱時間は、10分~24時間の間で実施することができ、好ましくは30分~12時間である。
 第3の工程では、アルキル基を有するアルコキシシランを用いる。アルキル基を有するアルコキシシランは、第1の工程で使用されるエポキシ基を有するアルコキシランとは異なる成分である。アルキル基を有するアルコキシシランとしては、アルコキシ基が加水分解してシラノール基が生成し、粒子表面に前記第1の工程において反応せずに残存している水酸基(-OH)と脱水縮合反応して粒子表面で結合し、粒子表面にアルキル基を固定化することができる化合物であれば特に制限されない。アルキル基を有するアルコキシシランを反応させることで、粒子表面にアルキル基を簡便に固定化することができる。
 アルキル基を有するアルコキシシランとしては、ケイ素原子に結合するアルキル基を1個または2個有することが好ましい。アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等の低級アルコキシ基を挙げることができるが、メトキシ基、エトキシ基が好ましい。また、アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、シクロへキシル基、n-オクチル基等が挙げられる。
 アルキル基を有するアルコキシシランの具体例としては、メチルトリメトキシシラン、ジメチルジメトキシシラン、エチルトリメトキシシラン、ジエチルジメトキシシラン、エチルトリエトキシシラン、ジエチルジエトキシシラン、n-ブチルトリメトキシシラン、シクロへキシルトリメトキシシラン、n-オクチルトリメトキシシランが挙げられる。これらのアルキル基を有するアルコキシシランは、1種単独で使用してもよく、2種以上を併用してもよい。
 1.4.砥粒の特徴
 本実施形態に係る方法によって得られた砥粒は、以下の特徴を有する。
 1.4.1.ゼータ電位
 本実施形態に係る方法により製造される砥粒の、化学機械研磨用組成物中におけるゼータ電位は、好ましくは10mV以上であり、より好ましくは15mV以上であり、特に好ましくは20mV以上である。また、好ましくは40mV以下であり、より好ましくは35mV以下である。本実施形態に係る方法により製造される砥粒は、後述する化学機械研磨用組成物に添加して使用することができる。砥粒のゼータ電位が前記範囲にあると、砥粒間の静電反発力によって効果的に粒子同士の凝集を防ぐとともに、タングステン膜をより安定した研磨速度で研磨できる場合がある。上記範囲内のゼータ電位を得るためには、前記化学機械研磨用組成物のpHを2以上5以下とすることが好ましい。化学機械研磨用組成物のpHが2以上5以下の領域のいずれかにおける砥粒のゼータ電位を10mV以上とするためには、例えば、第1の工程において使用するエポキシ基を有するアルコキシシランや第2の工程において使用する塩基性化合物の使用量を増減することにより調整することができる。
 砥粒のゼータ電位は、レーザードップラー法を測定原理とするゼータ電位測定装置を用いて常法により測定することできる。このようなゼータ電位測定装置としては、例えば、ブルックヘブンインスツルメント社製の「ゼータポテンシャルアナライザー」、大塚電子株式会社製の「ELSZ-1000ZS」、Dispersion Technology社製の「DT-300」等が挙げられる。
 1.4.2.平均二次粒径
 本実施形態に係る方法により製造される砥粒の平均二次粒径は、好ましくは30nm以上であり、より好ましくは40nm以上であり、特に好ましくは50nm以上である。本実施形態に係る方法により製造される砥粒の平均二次粒径は、好ましくは100nm以下であり、より好ましくは95nm以下であり、特に好ましくは90nm以下である。砥粒の平均二次粒径は、動的光散乱式粒子径分布測定装置を用いることにより測定することができる。このような動的光散乱式粒子径分布測定装置としては、例えば、株式会社堀場製作所製の「ナノ粒子解析装置 SZ-100」等が挙げられる。
 2.化学機械研磨用組成物
 本発明の一実施形態に係る化学機械研磨用組成物は、上述の方法により製造される砥粒と、液状媒体と、を含有する。以下、本実施形態に係る化学機械研磨用組成物に含まれる各成分について詳細に説明する。
 2.1.砥粒
 本実施形態に係る化学機械研磨用組成物は、上述の方法により製造される砥粒を含有する。上述の方法により製造される砥粒としては、以下の二つの態様が挙げられる。
 2.1.1.第1の態様
 第1の態様に係る砥粒は、上述した第1の工程および第2の工程を経て、その表面に下記一般式(1)で表される部分構造を有するものである。
Figure JPOXMLDOC01-appb-C000013
(式(1)中、Rは単結合または炭素数1以上の2価の有機基を表し、Rは炭素数1以上の2価の有機基を表し、R、RおよびRは各々独立して水素原子または炭素数1以上の1価の有機基を表し、*は結合手を表す。)
 第1の態様に係る砥粒は、表面にアミノ基を有することで、酸性の化学機械研磨用組成物中において10mV以上のゼータ電位を有する。このため、酸性の化学機械研磨用組成物中では、砥粒同士の静電反発力によって貯蔵安定性が向上する。また、化学機械研磨用組成物が、第1の態様に係る砥粒の他に、酸性化合物、鉄(III)化合物、および酸化剤を含有することにより、シリコン酸化膜に対するタングステン膜の研磨速度が大幅に向上するため、タングステン膜を選択的に研磨することができる。
 2.1.2.第2の態様
 第2の態様に係る砥粒は、上述した第1の工程、第2の工程、および第3の工程を経て、その表面に下記一般式(2)で表される部分構造と、アルキル基と、を有するものである。
Figure JPOXMLDOC01-appb-C000014
(式(2)中、Rは炭素数1以上の2価の有機基を表し、RおよびRは各々独立して水素原子または炭素数1以上の1価の有機基を表し、*は結合手を表す。)
 第2の態様に係る砥粒は、表面にアルキル基がさらに導入されることにより、表面のシラノール基数が減少して疎水化され、シリコン酸化膜との相互作用を小さくすることができる。これにより、タングステン膜に対するシリコン酸化膜の研磨速度比を下げることができるため、タングステン膜をより選択的に研磨することができる。
 上記第1の態様および上記第2の態様に係る砥粒の製造方法や特徴については、上述したので説明を省略する。
 砥粒の含有量は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは1質量%以上であり、より好ましくは2質量%以上であり、特に好ましくは3質量%以上である。砥粒の含有量は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは10質量%以下であり、より好ましくは8質量%以下であり、特に好ましくは6質量%以下である。砥粒の含有量が前記範囲にあると、研磨対象であるタングステン膜に対する高速研磨を実現できるとともに、化学機械研磨用組成物の貯蔵安定性が良好となる場合がある。
 2.2.液状媒体
 本実施形態に係る化学機械研磨用組成物は、液状媒体を含有する。液状媒体としては、水、水およびアルコールの混合媒体、水および水との相溶性を有する有機溶媒を含む混合媒体等が挙げられる。これらの中でも、水、水およびアルコールの混合媒体を用いることが好ましく、水を用いることがより好ましい。水としては、特に制限されるものではないが、純水が好ましい。水は、化学機械研磨用組成物の構成材料の残部として配合されていればよく、水の含有量については特に制限はない。
 2.3.その他の添加剤
 本実施形態に係る化学機械研磨用組成物は、必要に応じて、酸性化合物、鉄(III)化合物、酸化剤、水溶性高分子、界面活性剤、防蝕剤、pH調整剤等の添加剤をさらに含有してもよい。本実施形態に係る化学機械研磨用組成物がタングステン膜を研磨対象とする場合には、酸性化合物、鉄(III)化合物、および酸化剤を含有することが好ましい。以下、各添加剤について説明する。
<酸性化合物>
 本実施形態に係る化学機械研磨用組成物は、酸性化合物を含有してもよい。酸性化合物を含有することにより、砥粒との相乗効果により、タングステン膜の研磨速度を向上できる場合がある。
 このような酸性化合物としては、有機酸および無機酸が挙げられる。有機酸としては、例えば、マロン酸、クエン酸、リンゴ酸、酒石酸、シュウ酸、乳酸、イミノジ酢酸等の飽和カルボン酸;アクリル酸、メタクリル酸、クロトン酸、2-ブテン酸、2-メチル-3-ブテン酸、2-ヘキセン酸、3-メチル-2-ヘキセン酸等の不飽和モノカルボン酸;マレイン酸、フマル酸、シトラコン酸、メサコン酸、2-ペンテン二酸、イタコン酸、アリルマロン酸、イソプロピリデンコハク酸、2,4-ヘキサジエン二酸、アセチレンジカルボン酸等の不飽和ジカルボン酸;トリメリット酸等の芳香族カルボン酸、およびこれらの塩が挙げられる。無機酸としては、例えば、リン酸、硫酸、塩酸、硝酸、およびこれらの塩が挙げられる。これらの酸性化合物は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 本実施形態に係る化学機械研磨用組成物が酸性化合物を含有する場合において、酸性化合物の含有量は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは0.001~5質量%であり、より好ましくは0.002~1質量%であり、特に好ましくは0.003~0.5質量%である。
<鉄(III)化合物>
 本実施形態に係る化学機械研磨用組成物は、鉄(III)化合物を含有してもよい。鉄(III)化合物を含有することにより、タングステン表面を酸化して脆弱な改質層をタングステンの表面に作り出し、タングステン膜の研磨速度を向上できる場合がある。
 鉄(III)化合物としては、有機酸鉄塩または無機酸鉄塩のいずれであってもよい。鉄(III)化合物の具体例としては、硝酸鉄(III)、硫酸アンモニウム鉄(III)、過塩素酸鉄(III)、塩化鉄(III)、硫酸鉄(III)、クエン酸鉄(III)、クエン酸アンモニウム鉄(III)、およびシュウ酸アンモニウム鉄(III)等が挙げられる。これらの鉄(III)化合物のうち、硝酸鉄(III)であることが特に好ましい。鉄(III)化合物は、1種単独で用いてもよく、2種以上組み合わせて用いてもよい。
 本実施形態に係る化学機械研磨用組成物が鉄(III)化合物を含有する場合において、鉄(III)化合物の含有量は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは0.001~1質量%であり、より好ましくは0.002~0.5質量%であり、特に好ましくは0.003~0.3質量%である。
<酸化剤>
 本実施形態に係る化学機械研磨用組成物は、酸化剤を含有してもよい。酸化剤を含有することにより、タングステン膜を酸化して脆弱な改質層を作り出すことができるため、研磨速度が向上する場合がある。
 酸化剤としては、例えば、過硫酸アンモニウム、過硫酸カリウム、過酸化水素、硝酸二アンモニウムセリウム、次亜塩素酸カリウム、オゾン、過ヨウ素酸カリウム、過酢酸等が挙げられる。これらの酸化剤のうち、酸化力および取り扱いやすさを考慮すると、過硫酸アンモニウム、過硫酸カリウム、過酸化水素が好ましく、過酸化水素がより好ましい。これらの酸化剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 本実施形態に係る化学機械研磨用組成物が酸化剤を含有する場合において、酸化剤の含有量は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは0.1~5質量%であり、より好ましくは0.3~4質量%であり、特に好ましくは0.5~3質量%である。なお、酸化剤は、化学機械研磨用組成物中で分解されやすいため、CMPの研磨工程を行う直前に添加されることが望ましい。
<水溶性高分子>
 本実施形態に係る化学機械研磨用組成物は、水溶性高分子を含有してもよい。水溶性高分子には、被研磨面に吸着して研磨摩擦を低減させる効果がある。この効果により、被研磨面におけるディッシングの発生を低減できる場合がある。
 水溶性高分子としては、ポリエチレンイミン、ポリ(メタ)アクリルアミド、ポリN-アルキル(メタ)アクリルアミド、ポリ(メタ)アクリル酸、ポリオキシエチレンアルキルアミン、ポリビニルアルコール、ポリビニルアルキルエーテル、ポリビニルピロリドン、ヒドロキシエチルセルロース、カルボキシメチルセルロース、(メタ)アクリル酸とマレイン酸の共重合体、ポリ(メタ)アクリルアミン等の高分子アミン化合物等が挙げられる。これらの中でも、ポリビニルメチルエーテル、ポリ(N-イソプロピルアクリルアミド)等の熱応答性ポリマーやポリ(メタ)アクリルアミン等の高分子アミン化合物を添加することにより、被研磨面に対する研磨速度を低下させることなく、被研磨面におけるディッシングの発生を効果的に低減できる場合がある。
 水溶性高分子の重量平均分子量(Mw)は、好ましくは1,000~1,000,000であり、より好ましくは3,000~800,000である。水溶性高分子の重量平均分子量が前記範囲にあると、被研磨面に吸着しやすくなり、研磨摩擦をより低減できる場合がある。その結果、被研磨面におけるディッシングの発生を効果的に低減できる場合がある。なお、本明細書中における「重量平均分子量(Mw)」とは、GPC(ゲルパーミエーションクロマトグラフィー)によって測定されたポリエチレングリコール換算の重量平均分子量のことを指す。
 本実施形態に係る化学機械研磨用組成物が水溶性高分子を含有する場合において、水溶性高分子の含有量は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは0.005~0.5質量%であり、より好ましくは0.01~0.2質量%である。
 なお、水溶性高分子の含有量は、水溶性高分子の重量平均分子量(Mw)にも依存するが、化学機械研磨用組成物の25℃における粘度が0.5mPa・s以上10mPa・s未満となるように調整することが好ましい。化学機械研磨用組成物の25℃における粘度が0.5mPa・s以上10mPa・s未満であると、被研磨面を高速で研磨しやすく、粘度が適正であるため研磨布上に安定して化学機械研磨用組成物を供給することができる。
<界面活性剤>
 本実施形態に係る化学機械研磨用組成物は、界面活性剤を含有してもよい。界面活性剤を含有することにより、化学機械研磨用組成物に適度な粘性を付与できる場合がある。化学機械研磨用組成物の粘度は、25℃において0.5mPa・s以上10mPa・s未満となるように調整することが好ましい。
 界面活性剤としては、特に制限されず、アニオン性界面活性剤、カチオン性界面活性剤、非イオン性界面活性剤等が挙げられる。
 アニオン性界面活性剤としては、例えば、脂肪酸石鹸、アルキルエーテルカルボン酸塩等のカルボン酸塩;アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、α-オレフィンスルホン酸塩等のスルホン酸塩;高級アルコール硫酸エステル塩、アルキルエーテル硫酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸塩等の硫酸塩;パーフルオロアルキル化合物等の含フッ素系界面活性剤等が挙げられる。カチオン性界面活性剤としては、例えば、脂肪族アミン塩、脂肪族アンモニウム塩等が挙げられる。非イオン性界面活性剤としては、例えば、アセチレングリコール、アセチレングリコールエチレンオキサイド付加物、アセチレンアルコール等の三重結合を有する非イオン性界面活性剤;ポリエチレングリコール型界面活性剤等が挙げられる。これらの界面活性剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 本実施形態に係る化学機械研磨用組成物が界面活性剤を含有する場合において、界面活性剤の含有量は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは0.001~5質量%であり、より好ましくは0.003~3質量%であり、特に好ましくは0.005~1質量%である。
<防蝕剤>
 本実施形態に係る化学機械研磨用組成物は、防蝕剤を含有してもよい。防蝕剤としては、例えば、ベンゾトリアゾールおよびその誘導体が挙げられる。ここで、ベンゾトリアゾール誘導体とは、ベンゾトリアゾールの有する1個または2個以上の水素原子を、例えば、カルボキシ基、メチル基、アミノ基、ヒドロキシ基等で置換したものをいう。ベンゾトリアゾール誘導体の具体例としては、4-カルボキシベンゾトリアゾール、7-カルボキシベンゾトリアゾール、ベンゾトリアゾールブチルエステル、1-ヒドロキシメチルベンゾトリアゾール、1-ヒドロキシベンゾトリアゾール、およびこれらの塩等が挙げられる。
 本実施形態に係る化学機械研磨用組成物が防蝕剤を含有する場合において、防蝕剤の含有量は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは1質量%以下であり、より好ましくは0.001~0.1質量%である。
<pH調整剤>
 本実施形態に係る化学機械研磨用組成物は、さらに必要に応じてpH調整剤を含有してもよい。pH調整剤としては、例えば、塩酸、硝酸、硫酸、リン酸等の酸;水酸化カリウム、エチレンジアミン、モノエタノールアミン、TMAH(テトラメチルアンモニウムヒドロキシド)、TEAH(テトラエチルアンモニウムヒドロキシド)、アンモニア等の塩基が挙げられ、これらの1種以上を用いることができる。
 2.4.pH
 本実施形態に係る化学機械研磨用組成物のpHは、好ましくは2以上5以下であり、より好ましくは2以上4以下である。化学機械研磨用組成物のpHが2以上5以下の領域では、タングステン表面を機械的に除去されやすい酸化物に変化させやすくするので、タングステン膜に対する高速研磨を実現することができる。また、化学機械研磨用組成物のpHが2以上5以下であると、砥粒の分散性が向上することにより、化学機械研磨用組成物の貯蔵安定性が良好となるため好ましい。
 なお、本実施形態に係る化学機械研磨用組成物のpHは、例えば、前記酸性化合物や前記pH調整剤等の含有量を適宜増減することにより調整することができる。
 本明細書において、pHとは、水素イオン指数のことを指し、その値は、25℃、1気圧の条件下で市販のpHメーター(例えば、株式会社堀場製作所製、卓上型pHメーター)を用いて測定することができる。
 2.5.用途
 本実施形態に係る化学機械研磨用組成物の一態様によれば、半導体装置を構成する複数の材料のうち、タングステン膜を選択的に研磨するための研磨材として使用することができる。かかる化学機械研磨用組成物は、絶縁膜(例えばシリコン酸化膜)上の余分なタングステン膜を研磨する用途に特に適しており、例えば配線間を上下縦方向に電気的に接合するコンタクトホールを製造する際に用いることができる。また、本実施形態に係る化学機械研磨用組成物の一態様によれば、シリコン酸化膜を高速で研磨するための研磨材として使用することができる。
 2.6.化学機械研磨用組成物の調製方法
 本実施形態に係る化学機械研磨用組成物は、水等の液状媒体に上述の各成分を溶解または分散させることにより調製することができる。溶解または分散させる方法は、特に制限されず、均一に溶解または分散できればどのような方法を適用してもよい。また、上述の各成分の混合順序や混合方法についても特に制限されない。
 また、本実施形態に係る化学機械研磨用組成物は、濃縮タイプの原液として調製し、使用時に水等の液状媒体で希釈して使用することもできる。
 3.研磨方法
 本発明に係る研磨方法の一態様は、上述の化学機械研磨用組成物を用いて、シリコン酸化膜を研磨する工程を含む。上述の化学機械研磨用組成物によれば、シリコン酸化膜を高速で研磨することができる。
 また、本発明に係る研磨方法の一態様は、上述の化学機械研磨用組成物を用いて、タングステン膜を選択的に研磨する工程を含む。上述の化学機械研磨用組成物によれば、タングステン膜を選択的に研磨することができるため、良好な品質のタングステンプラグを形成することができる。以下、図1~図3を参照しながら、本実施形態に係る研磨方法(タングステンプラグの製造)について詳細に説明する。
 3.1.被処理体
 図1に、本実施形態に係る研磨方法に適用される被処理体100の一例を示す。
(1)まず、図1に示すように、基体10を用意する。基体10は、例えば、シリコン基板とその上に形成されたシリコン酸化膜から構成されていてもよい。さらに、基体10には、トランジスタ等の機能デバイスが形成されていてもよい。
(2)次に、基体10の上に、シランガスと酸素ガスを用いたCVD法によって、絶縁膜であるシリコン酸化膜12を形成する。その後、CMPによりシリコン酸化膜12を途中まで研磨して表面を平坦化する。
(3)次に、シリコン酸化膜12にレジストパターンを形成する。それをマスクとして、シリコン酸化膜12をエッチングし、コンタクトホール14を形成する。コンタクトホール14を形成した後、レジストパターンを除去する。
(4)次に、CVD法を適用して、シリコン酸化膜12の表面およびコンタクトホール14内にタングステン膜16を堆積させる。
 以上の工程により、被処理体100が形成される。
 3.2.研磨工程
 研磨工程では、図2に示すように、上述の化学機械研磨用組成物を用いてタングステン膜16をシリコン酸化膜12が露出するまで研磨する。上述の化学機械研磨用組成物によれば、タングステン膜の研磨速度が大きく、かつ、タングステン膜を選択的に研磨することができるため、良好な品質のタングステンプラグを形成することができる。
 研磨工程後、被研磨面に残留する砥粒を除去することが好ましい。この砥粒の除去は、通常の洗浄方法によって行うことができる。例えば、ブラシスクラブ洗浄後、アンモニア:過酸化水素:水が1:1:5(質量比)程度のアルカリ性洗浄液によって洗浄を行うことにより、被研磨面に付着した砥粒を除去することができる。さらに、被研磨面に吸着した不純物金属種の洗浄液として、例えば、クエン酸水溶液、フッ化水素酸とクエン酸の混合水溶液、およびフッ化水素酸とエチレンジアミン四酢酸(EDTA)の混合水溶液等が使用できる。
 3.3.化学機械研磨装置
 前記研磨工程では、例えば、図3に示すような化学機械研磨装置200を用いることができる。図3は、化学機械研磨装置200を模式的に示した斜視図である。スラリー供給ノズル42からスラリー(化学機械研磨用組成物)44を供給し、かつ、研磨用パッド46が貼付されたターンテーブル48を回転させながら、半導体基板50を保持したキャリアーヘッド52を当接させることにより行う。なお、図3には、水供給ノズル54およびドレッサー56も併せて示してある。
 キャリアーヘッド52の研磨荷重は、10~980hPaの範囲内で選択することができ、好ましくは30~490hPaである。また、ターンテーブル48およびキャリアーヘッド52の回転数は10~400rpmの範囲内で適宜選択することができ、好ましくは30~150rpmである。スラリー供給ノズル42から供給されるスラリー(化学機械研磨用組成物)44の流量は、10~1,000mL/分の範囲内で選択することができ、好ましくは50~400mL/分である。
 市販の化学機械研磨装置としては、例えば、荏原製作所社製、型式「EPO-112」、「EPO-222」;ラップマスターSFT社製、型式「LGP-510」、「LGP-552」;アプライドマテリアル社製、型式「Mirra」、「Reflexion」;G&P TECHNOLOGY社製、型式「POLI-400L」;AMAT社製、型式「Reflexion LK」等が挙げられる。
 4.実施例
 以下、本発明を実施例により説明するが、本発明はこれらの実施例により何ら限定されるものではない。なお、本実施例における「部」および「%」は、特に断らない限り質量基準である。
 4.1.砥粒の製造
 4.1.1.シリカ粒子Aの合成
 常温常圧下で、オルトケイ酸テトラメチル(多摩化学工業株式会社製)100質量部とメタノール26.8質量部を混合してモノマー溶液を作製した。次いで、反応容器へ、アンモニア水溶液(28質量%)61.2質量部と、水98.6質量部と、メタノール791.4質量部とを仕込み、35℃で撹拌しながら、上記で作製したモノマー溶液を30分かけて徐々に添加した。その後、90℃に加熱し6時間保持した。その後、水341質量部を加えて反応液を減圧濃縮し、シリカ換算濃度が20質量%のシリカ粒子Aの分散液を作製した。
 4.1.2.シリカ粒子Bの合成
 常温常圧下で、水1216質量部を攪拌しながら、オルトケイ酸テトラメチル(多摩化学工業株式会社製)100質量部を添加し、1時間反応させてオルトケイ酸テトラメチルの加水分解液を作製した。次いで、80℃に加熱したテトラメチルアンモニウムヒドロキシド(富士フイルム和光純薬株式会社製、1N水溶液)0.2質量部及び水1737質量部の混合液を攪拌しながら、先に作製したオルトケイ酸テトラメチルの加水分解液を6mL/分の速度で全て添加した。なお、添加の過程において溶液のpHが6.35まで低下した際には逐次、テトラメチルアンモニウムヒドロキシドの1N水溶液を添加し、反応溶液をpH8程度に調整した。添加が完了した後、90μmのメッシュフィルターろ過を行い、最後に減圧濃縮を行い、シリカ換算濃度が20質量%の数珠状に粒子が連結したシリカ粒子Bの分散液を作製した。
 4.2.実施例1
 4.2.1.砥粒の作製
 上記で作製したシリカ粒子Aの分散液100質量部に、エポキシ基を有するアルコキシシランとして3-グリシドキシプロピルトリメトキシシラン0.14質量部を攪拌しながら摘下し、60℃に加熱した後2時間攪拌を続けた。その後、塩基性化合物として5%アンモニア水溶液9.21質量部を撹拌しながら添加し、60℃で2時間加熱することによりシリカ粒子Aの表面に下記式(4)で表される基を固定した。
Figure JPOXMLDOC01-appb-C000015
(式(4)中、*は結合手を表す。)
 さらに、60℃、100hPaの減圧条件下で90質量部まで濃縮した後、超純水を添加してシリカ粒子Aの表面に上記式(4)で表される基を固定化した砥粒を20質量%含有する砥粒分散液を作製した。
 4.2.2.化学機械研磨用組成物の調製
<化学機械研磨用組成物Aの調製>
 上記で作製した砥粒分散液に、マロン酸、硝酸鉄(III)、および水を加えて、マロン酸が0.0028質量%、硝酸鉄(III)が0.036質量%となるように混合し、さらに1%硝酸を添加してpHを2.5に調整した。その後、過酸化水素が1質量%となるように35質量%の過酸化水素水溶液(富士フイルム和光純薬株式会社製)を添加し、孔径0.3μmのフィルターで濾過して化学機械研磨用組成物Aを調製した。
<化学機械研磨用組成物Bの調製>
 上記で作製した砥粒分散液に水を加えて、砥粒が1質量%となるように混合し、さらに1%硝酸を添加してpHを4.5に調整した。その後、孔径0.3μmのフィルターで濾過して化学機械研磨用組成物Bを調製した。
 4.2.3.評価方法
<砥粒のゼータ電位の測定>
 上記で作製した各化学機械研磨用組成物が含有する砥粒のゼータ電位(表面電荷)を、超音波方式粒度分布・ゼータ電位測定装置(Dispersion Technology社製、型式「DT-300」)を用いて測定した。その結果を下表1に示す。
<砥粒の平均二次粒径の測定>
 上記で作製した各化学機械研磨用組成物が含有する砥粒の平均二次粒径を、株式会社堀場製作所製、ナノ粒子解析装置SZ-100を用いて測定した。その結果を下表1に示す。
<研磨速度の評価>
 上記で作製した化学機械研磨用組成物Aを使用し、タングステン膜600nm付きの12インチのシリコン基板、シリコン酸化膜2000nm付きの12インチのシリコン基板、のそれぞれを被研磨体とし、化学機械研磨装置(G&P Technology社製、型式「POLI-400L」)を用いて下記の条件で化学機械研磨を実施した。その結果を下表1に示す。
 また、上記で作製した化学機械研磨用組成物Bを使用し、シリコン酸化膜2000nm付きの12インチのシリコン基板を被研磨体とし、化学機械研磨装置(G&P Technology社製、型式「POLI-400L」)を用いて下記の条件で化学機械研磨を実施した。その結果を下表1に示す。
 なお、研磨前後のタングステン膜の厚さについては、抵抗率測定機(NPS社製、型式「Σ-5」)により直流4探針法で抵抗を測定し、このシート抵抗値とタングステンの体積抵抗率から下記式によって算出した。
 膜の厚さ(Å)=[タングステン膜の体積抵抗率(Ω・m)÷シート抵抗値(Ω)]×1010
 研磨前後のシリコン酸化膜の厚さについては、非接触式光学式膜厚測定装置(ナノメトリックス・ジャパン社製、型式「NanoSpec 6100」)を用いて測定した。
(研磨条件)
・研磨パッド:ニッタ・デュポン社製、型番「IC1000」
・キャリアーヘッド荷重:129g/cm
・定盤回転数:100rpm
・研磨ヘッド回転数:90rpm
・化学機械研磨用組成物供給量:50mL/分
(化学機械研磨用組成物Aに係る評価基準)
・タングステン膜に対するシリコン酸化膜の研磨速度比が10以上である場合、選択的にタングステン膜を研磨することができるので良好と判断する。
(化学機械研磨用組成物Bに係る評価基準)
・シリコン酸化膜の研磨速度が1500Å/分以上である場合、研磨速度が十分速く良好と判断する。
<貯蔵安定性の評価>
 化学機械研磨用組成物を調製した後、60℃、常圧で静置し、一週間静置後の各化学機械研磨用組成物を目視にて観察することによって貯蔵安定性を評価した。貯蔵安定性の評価の指標としては、動的光散乱式粒子径測定装置(株式会社堀場製作所製、型式「SZ-100」)を用いて、調製直後および一週間静置後の砥粒の平均粒子径を算術平均径として求め、平均粒子径の変化から評価した。評価基準は以下の通りである。その結果を下表1に示す。
(評価基準)
・調製直後および一週間静置後の砥粒の平均粒子径の変化が5nm未満の場合、長時間にわたり安定な研磨特性を発現すると推測できるため、非常に良好と判断して「AA」と表記した。
・調製直後および一週間静置後の砥粒の平均粒子径の変化が5nm以上10nm未満の場合、長期保存はできないが製造から使用まで短期間での商業的使用については問題がないと推測できるため良好と判断して「A」と表記した。
・調製直後および一週間静置後の砥粒の平均粒子径の変化が10nm以上もしくは砥粒の凝集沈降が生じている場合、実用に供することができず不良と判断して「B」と表記した。
 4.3.実施例2~13
 上記実施例1の「4.2.1.砥粒の作製」の項において、シリカ粒子、エポキシ基を有するシラン化合物、塩基性化合物を、下表1~2に示す種類と添加量とした以外は、実施例1と同様にして砥粒を作製し、化学機械研磨用組成物を調製した。その後、調製した化学機械研磨用組成物を実施例1と同様に評価した。その結果を下表1~2に示す。
 なお、実施例2~6、13で使用した砥粒は、上記実施例1と同じ上記式(4)で表される基を表面に有する砥粒である。実施例7で使用した砥粒は、下記式(5)で表される基を表面に有する砥粒である。実施例8で使用した砥粒は、下記式(6)で表される基を表面に有する砥粒である。実施例9で使用した砥粒は、下記式(7)で表される基を表面に有する砥粒である。実施例10で使用した砥粒は、下記式(8)で表される基を表面に有する砥粒である。実施例11で使用した砥粒は、下記式(9)で表される基を表面に有する砥粒である。実施例12で使用した砥粒は、下記式(10)で表される基を表面に有する砥粒である。下記式(5)~(10)において、*は結合手を表す。
Figure JPOXMLDOC01-appb-C000016
 4.4.実施例14
 上記で作製したシリカ粒子Aの分散液100質量部に、攪拌しながらエポキシ基を有するシラン化合物として3-グリシドキシプロピルトリメトキシシラン0.14質量部を滴下し、更に5%アンモニア水溶液9.21質量部を添加した後に60℃で2時間加熱した。さらに、60℃、100hPaの減圧条件で90質量部まで濃縮した後、超純水を添加してシリカ粒子Aの表面に上記式(4)で表される基を表面に固定化した砥粒を20質量%含有する砥粒分散液を作製し、各化学機械研磨用組成物を調製した。その後、調製した化学機械研磨用組成物を実施例1と同様に評価した。その結果を下表2に示す。
 4.5.実施例15
 上記実施例4と同様に砥粒を作製した後、さらに得られた砥粒とアルキル基を有するシラン化合物としてメチルトリメトキシシラン0.14質量部を混合して60℃で2時間加熱した。その後、60℃、100hPaの減圧条件で90質量部まで濃縮した後、超純水を添加してシリカ粒子Bの表面に上記式(4)で表される基とメチル基とを表面に有する砥粒を20質量%含有する砥粒分散液を作製した。その後、実施例4と同様に化学機械研磨用組成物Aを作製し、実施例4と同様に評価した。その結果を下表3に示す。なお、実施例15では、化学機械研磨用組成物Bを調製しておらず、シリコン酸化膜の評価については実施しなかった。
 4.6.実施例16~20
 上記実施例15において、アルキル基を有するシラン化合物を、下表3に示す種類および添加量とした以外は、実施例15と同様にして砥粒を作製し、化学機械研磨用組成物Aを調製した。その後、調製した化学機械研磨用組成物Aを実施例15と同様に評価した。その結果を下表3に示す。
 4.7.実施例21
 上記で作製したシリカ粒子Bの分散液100質量部に、攪拌しながらエポキシ基を有するシラン化合物として3-グリシドキシプロピルトリメトキシシラン0.14質量部とアルキル基を有するシラン化合物としてメチルトリメトキシシラン0.14質量部を滴下し、更に5%アンモニア水溶液9.21質量部を添加した後に60℃で2時間加熱した。さらに、60℃、100hPaの減圧条件で90質量部まで濃縮した後、超純水を添加してシリカ粒子Bの表面に上記式(4)で表される基とメチル基とを表面に有する砥粒を20質量%含有する砥粒分散液を作製した。その後、実施例15と同様に化学機械研磨用組成物Aを作製し、実施例15と同様に評価した。その結果を下表3に示す。
 4.8.比較例1、2
 粒子表面が修飾されていないシリカ粒子A(比較例1)およびシリカ粒子B(比較例2)をそのまま砥粒として用いた以外は、実施例1と同様にして化学機械研磨用組成物を作製し評価を行った。その結果を下表2に示す。
 4.9.評価結果
 下表1~3に、各実施例および各比較例における砥粒の製造工程で使用した試薬および添加量、ならびに化学機械研磨用組成物の各評価結果を示す。各表中において、「組成物A」は上記で調製した化学機械研磨用組成物Aのことを指し、「組成物B」は上記で調製した化学機械研磨用組成物Bのことを指す。
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
 上表1~3中の試薬は、それぞれ下記の市販品を用いた。
<エポキシ基を有するシラン化合物>
・3-グリシドキシプロピルトリメトキシシラン:信越シリコーン株式会社製、商品名「KBM―403」
・2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン:信越シリコーン株式会社製、製品名「KBM-303」
・3-グリシドキシプロピルメチルジメトキシシラン:信越シリコーン株式会社製、製品名「KBM-402」
<塩基性化合物>
・アンモニア(5%水溶液):三菱ガス化学株式会社製、29%水溶液を超純水で5%に希釈して使用
・イソプロピルアミン:東京化成工業株式会社製
・アミルアミン:東京化成工業株式会社製
・イソアミルアミン:東京化成工業株式会社製
・モノエタノールアミン:東京化成工業株式会社製
・ジブチルアミン:東京化成工業株式会社製
<アルキル基を有するシラン化合物>
・メチルトリメトキシシラン:信越シリコーン株式会社製、製品名「KBM-13」
・n-ブチルトリメトキシシラン:Fluorochem Ltd.製
・シクロヘキシルトリメトキシシラン:東京化成工業株式会社製
・n-オクチルトリメトキシシラン:Fluorochem Ltd.製
 実施例1~21では、水酸基(-OH)が共有結合を介して表面に固定化された粒子と、エポキシ基を有するアルコキシシランと、塩基性化合物と、を混合して加熱することによって、表面に上記式(4)~(10)の何れかの基を有する砥粒が得られた。該砥粒、酸性化合物、鉄(III)化合物、および酸化剤を含有する化学機械研磨用組成物Aを使用することで、シリコン酸化膜に対してタングステン膜を選択的に研磨することでき、良好な研磨特性が達成できるとともに、貯蔵安定性にも優れることがわかった。
 特に、実施例15~21で使用された、表面に上記式(4)で表される基およびアルキル基を有する砥粒は、表面のシラノール基数が減少することで疎水化され、シリコン酸化膜との相互作用を小さくすることができるため、タングステン膜をより選択的に研磨できることがわかった。
 また、実施例1~14では、表面に上記式(4)~(10)の何れかの基を有する砥粒を含有する化学機械研磨用組成物Bを使用することで、シリコン酸化膜を高速で研磨することができ、良好な研磨特性が達成できるとともに、貯蔵安定性にも優れることがわかった。
 一方、比較例1~2では、表面修飾のないシリカ粒子Aまたはシリカ粒子Bをそのまま砥粒として使用したため、化学機械研磨用組成物Aではタングステン膜の選択的研磨特性に劣り、化学機械研磨用組成物Bではシリコン酸化膜の研磨速度が低下した。
 以上の結果から、本願発明に係る化学機械研磨用組成物Aによれば、シリコン酸化膜に対してタングステン膜を選択的に高速で研磨することができ、良好な研磨特性が達成できるとともに、貯蔵安定性にも優れることがわかった。また、本願発明に係る化学機械研磨用組成物Bによれば、シリコン酸化膜を高速で研磨することができ、良好な研磨特性が達成できるとともに、貯蔵安定性にも優れることがわかった。
 本発明は、上述した実施形態に限定されるものではなく、種々の変形が可能である。例えば、本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法及び結果が同一の構成、あるいは目的及び効果が同一の構成)を含む。また、本発明は、実施形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施形態で説明した構成に公知技術を付加した構成を含む。
10…基体、12…シリコン酸化膜、14…コンタクトホール、16…タングステン膜、42…スラリー供給ノズル、44…スラリー(化学機械研磨用組成物)、46…研磨用パッド、48…ターンテーブル、50…半導体基板、52…キャリアーヘッド、54…水供給ノズル、56…ドレッサー、100…被処理体、200…化学機械研磨装置

Claims (16)

  1.  砥粒の製造方法であって、
     水酸基(-OH)が共有結合を介して表面に固定化された粒子と、
     エポキシ基を有するアルコキシシランと、
     塩基性化合物と、
    を混合して加熱する工程を含む、砥粒の製造方法。
  2.  前記水酸基(-OH)が共有結合を介して表面に固定化された粒子と、前記エポキシ基を有するアルコキシシランと、を含有する混合物を加熱する第1の工程と、
     前記第1の工程後、前記塩基性化合物をさらに添加して加熱する第2の工程と、
    を含む、請求項1に記載の砥粒の製造方法。
  3.  前記第2の工程後、アルキル基を有するアルコキシシランをさらに添加して加熱する第3の工程をさらに含む、請求項2に記載の砥粒の製造方法。
  4.  前記塩基性化合物が、アンモニアおよびアミノ基を有する化合物からなる群より選択される少なくとも1種である、請求項1ないし請求項3のいずれか一項に記載の砥粒の製造方法。
  5.  前記砥粒が、その表面に下記一般式(1)で表される部分構造を有する、請求項1ないし請求項4のいずれか一項に記載の砥粒の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは単結合または炭素数1以上の2価の有機基を表し、Rは炭素数1以上の2価の有機基を表し、R、RおよびRは各々独立して水素原子または炭素数1以上の1価の有機基を表し、*は結合手を表す。)
  6.  前記砥粒が、その表面に下記一般式(2)で表される部分構造と、アルキル基と、を有する、請求項3に記載の砥粒の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、Rは炭素数1以上の2価の有機基を表し、RおよびRは各々独立して水素原子または炭素数1以上の1価の有機基を表し、*は結合手を表す。)
  7.  前記砥粒を含有する化学機械研磨用組成物中において、前記砥粒のゼータ電位が10mV以上である、請求項1ないし請求項6のいずれか一項に記載の砥粒の製造方法。
  8.  請求項1ないし請求項7のいずれか一項に記載の方法によって製造される砥粒と、
     液状媒体と、
    を含有する、化学機械研磨用組成物。
  9.  砥粒と、液状媒体と、を含有する化学機械研磨用組成物であって、
     前記砥粒が、その表面に下記一般式(1)で表される部分構造を有する、化学機械研磨用組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式(1)中、Rは単結合または炭素数1以上の2価の有機基を表し、Rは炭素数1以上の2価の有機基を表し、R、RおよびRは各々独立して水素原子または炭素数1以上の1価の有機基を表し、*は結合手を表す。)
  10.  砥粒と、液状媒体と、を含有する化学機械研磨用組成物であって、
     前記砥粒が、その表面に、下記一般式(2)で表される部分構造と、アルキル基と、を有する、化学機械研磨用組成物。
    Figure JPOXMLDOC01-appb-C000004
    (式(2)中、Rは炭素数1以上の2価の有機基を表し、RおよびRは各々独立して水素原子または炭素数1以上の1価の有機基を表し、*は結合手を表す。)
  11.  pHが2以上5以下である、請求項8ないし請求項10のいずれか一項に記載の化学機械研磨用組成物。
  12.  さらに、酸性化合物、鉄(III)化合物、および酸化剤を含有する、請求項8ないし請求項11のいずれか一項に記載の化学機械研磨用組成物。
  13.  シリコン酸化膜を研磨するために用いられる、請求項8ないし請求項11のいずれか一項に記載の化学機械研磨用組成物。
  14.  タングステン膜を選択的に研磨するために用いられる、請求項12に記載の化学機械研磨用組成物。
  15.  請求項8ないし請求項11のいずれか一項に記載の化学機械研磨用組成物を用いて、シリコン酸化膜を研磨する工程を含む、研磨方法。
  16.  請求項12に記載の化学機械研磨用組成物を用いて、タングステン膜を選択的に研磨する工程を含む、研磨方法。
PCT/JP2023/009228 2022-03-28 2023-03-10 砥粒の製造方法、化学機械研磨用組成物および研磨方法 WO2023189400A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022051381 2022-03-28
JP2022-051381 2022-03-28

Publications (1)

Publication Number Publication Date
WO2023189400A1 true WO2023189400A1 (ja) 2023-10-05

Family

ID=88200698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009228 WO2023189400A1 (ja) 2022-03-28 2023-03-10 砥粒の製造方法、化学機械研磨用組成物および研磨方法

Country Status (2)

Country Link
TW (1) TW202403007A (ja)
WO (1) WO2023189400A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009006784A1 (fr) * 2007-07-06 2009-01-15 Anji Microelectronics (Shanghai) Co., Ltd Sol de dioxyde de silicium modifié, son procédé de fabrication et son utilisation
JP2009094450A (ja) * 2007-09-18 2009-04-30 Hitachi Chem Co Ltd アルミニウム膜研磨用研磨液及び基板の研磨方法
WO2009119178A1 (ja) * 2008-03-24 2009-10-01 株式会社Adeka 表面改質コロイダルシリカおよびこれを含有するcmp用研磨組成物
JP2020117707A (ja) * 2019-01-24 2020-08-06 ローム アンド ハース エレクトロニック マテリアルズ シーエムピー ホウルディングス インコーポレイテッド 誘電体基板を研磨するための安定化された砥粒粒子を有する化学機械研磨組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009006784A1 (fr) * 2007-07-06 2009-01-15 Anji Microelectronics (Shanghai) Co., Ltd Sol de dioxyde de silicium modifié, son procédé de fabrication et son utilisation
JP2009094450A (ja) * 2007-09-18 2009-04-30 Hitachi Chem Co Ltd アルミニウム膜研磨用研磨液及び基板の研磨方法
WO2009119178A1 (ja) * 2008-03-24 2009-10-01 株式会社Adeka 表面改質コロイダルシリカおよびこれを含有するcmp用研磨組成物
JP2020117707A (ja) * 2019-01-24 2020-08-06 ローム アンド ハース エレクトロニック マテリアルズ シーエムピー ホウルディングス インコーポレイテッド 誘電体基板を研磨するための安定化された砥粒粒子を有する化学機械研磨組成物

Also Published As

Publication number Publication date
TW202403007A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
JP2009272601A (ja) 研磨剤、これを用いた基板の研磨方法並びにこの研磨方法に用いる溶液及びスラリー
TWI760252B (zh) 研磨粒的製造方法、化學機械研磨用組成物及化學機械研磨方法
TWI842954B (zh) 化學機械研磨用組成物以及化學機械研磨方法
WO2023189400A1 (ja) 砥粒の製造方法、化学機械研磨用組成物および研磨方法
JP6892035B1 (ja) 化学機械研磨用組成物及び化学機械研磨方法
JP2023094060A (ja) 化学機械研磨用組成物および研磨方法
WO2021124772A1 (ja) 化学機械研磨用組成物、化学機械研磨方法、及び化学機械研磨用粒子の製造方法
WO2023085008A1 (ja) 化学機械研磨用組成物およびその製造方法、ならびに研磨方法
WO2024162160A1 (ja) 化学機械研磨用組成物および研磨方法
WO2023085007A1 (ja) 化学機械研磨用組成物および研磨方法
TWI826498B (zh) 化學機械研磨用水系分散體
WO2023085009A1 (ja) 化学機械研磨用組成物および研磨方法
WO2021124771A1 (ja) 化学機械研磨用組成物、化学機械研磨方法、及び化学機械研磨用粒子の製造方法
JP6892033B1 (ja) 化学機械研磨用組成物及び化学機械研磨方法
JP6892034B1 (ja) 化学機械研磨用組成物及び化学機械研磨方法
JP6958774B1 (ja) 砥粒の製造方法、化学機械研磨用組成物及び化学機械研磨方法
WO2021095415A1 (ja) 化学機械研磨用組成物及び化学機械研磨方法
JP2023072344A (ja) 化学機械研磨用組成物および研磨方法
JP2023093850A (ja) 化学機械研磨用組成物および研磨方法
TW202340404A (zh) 半導體製程用組合物和半導體元件的製造方法
TW202229478A (zh) 研磨用組成物及其製造方法、研磨方法以及基板的製造方法
TW202340405A (zh) 半導體製程用組合物以及基板的拋光方法
JP2022104814A (ja) 半導体工程用研磨組成物及び研磨組成物を適用した基板の研磨方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779424

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024511660

Country of ref document: JP

Kind code of ref document: A