WO2023179573A1 - 一种冷凝组件及衣物处理设备 - Google Patents

一种冷凝组件及衣物处理设备 Download PDF

Info

Publication number
WO2023179573A1
WO2023179573A1 PCT/CN2023/082616 CN2023082616W WO2023179573A1 WO 2023179573 A1 WO2023179573 A1 WO 2023179573A1 CN 2023082616 W CN2023082616 W CN 2023082616W WO 2023179573 A1 WO2023179573 A1 WO 2023179573A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide plate
condensate
guide
flow
air
Prior art date
Application number
PCT/CN2023/082616
Other languages
English (en)
French (fr)
Inventor
唐启庆
尤惠钦
唐雨生
陆源
Original Assignee
无锡小天鹅电器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡小天鹅电器有限公司 filed Critical 无锡小天鹅电器有限公司
Publication of WO2023179573A1 publication Critical patent/WO2023179573A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/20General details of domestic laundry dryers 
    • D06F58/24Condensing arrangements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F25/00Washing machines with receptacles, e.g. perforated, having a rotary movement, e.g. oscillatory movement, the receptacle serving both for washing and for centrifugally separating water from the laundry and having further drying means, e.g. using hot air 
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the present application relates to the field of clothing cleaning and care technology, and in particular, to a condensation component and clothing treatment equipment.
  • the drying process generally requires the use of a condensing component to reduce the humidity of the hot and humid air flow.
  • the working principle of the condensation component is as follows: after the hot and humid airflow discharged from the drum enters the condensation component, it comes into contact with the condensed water in the condensation component. During the contact process, the water vapor in the hot and humid airflow condenses into water, and the condensed water mixes into the condensation component. The condensed water is discharged through the drainage pipe, and the condensed hot and humid airflow turns into relatively dry cold air and enters the drum again.
  • condensation in the condensation component The most important thing in the entire drying process is condensation in the condensation component.
  • the current condensation component is relatively large in size, has many structural restrictions, and the condensation effect is difficult to guarantee.
  • embodiments of the present application are expected to provide a condensation component and a laundry treatment device with a relatively compact structure and good condensation effect.
  • an embodiment of the present application provides a condensation assembly, including:
  • the pipe body has a water inlet, a drain, an air inlet and an air outlet.
  • a condensate flow path extending vertically downward is formed between the water inlet and the drain.
  • the air inlet and the air outlet are An air flow path extending laterally is formed between the air outlets, and the condensate flow path is in contact with the air flow path. paths intersect;
  • a flow guide structure disposed at the intersection of the condensate flow path and the airflow flow path to guide the condensate flowing along the condensate flow path to form a path for the airflow flow path to pass through water curtain.
  • the flow guide structure includes a guide plate, and the guide plate guides the condensate to flow toward at least one of two opposite sides of the guide plate along the air flow direction.
  • the guide plate has a guide surface, and the guide surface is arranged horizontally; or, the guide surface is downward from a side located downstream in the air flow direction to a side located upstream in the air flow direction. Tilt setting.
  • the flow guiding surface is a flow guiding plane.
  • the relative position of the guide plate and the water inlet is such that: the guide plate is located on one of the two opposite sides of the axial centerline of the water inlet along the air flow direction; or, The axial centerline of the water inlet passes through the guide plate.
  • the flow guide structure includes a plurality of the flow guide plates, and each of the flow guide plates is arranged at intervals.
  • At least some of the baffles can guide the condensate to flow to opposite sides of the baffle along the air flow direction.
  • each of the baffles is arranged vertically in layers; or,
  • Some of the deflectors among the plurality of deflectors are arranged vertically in layers, and some of the deflectors are arranged at intervals along the transverse direction.
  • the relative positions of at least part of the vertically adjacent baffles are such that along the flow direction of the condensate, the baffles located downstream can receive At least part of the condensate flowing down from the baffle located upstream.
  • the plurality of deflectors include a first deflector and a second deflector arranged vertically adjacent to each other, and both the first deflector and the second deflector can guide The condensate flows to opposite sides of the guide plate along the air flow direction, the first guide plate is located upstream of the second guide plate along the condensate flow direction, and the first guide plate is The horizontal projection of the deflector is located on the second deflector within the horizontal projection area.
  • the opposite sides of the guide plate along the airflow direction are the first side and the second side respectively, and the plurality of guide plates include first guide plates arranged in sequence from top to bottom in the vertical direction. plate, a second guide plate and a third guide plate.
  • the first guide plate, the second guide plate and the third guide plate can all guide the condensate towards the guide plate. flow on the first side and the second side of the deflector;
  • the horizontal projection of the first side of the first deflector is located within the horizontal projection area of the second deflector, the horizontal projection of the second side of the first deflector and the second deflector
  • the horizontal projections of the second side are all located within the horizontal projection area of the third deflector; or,
  • the horizontal projection of the first side of the first deflector is located within the horizontal projection area of the second deflector, and the horizontal projection of the second side of the first deflector is located in the third deflector. Within the horizontal projection area, the horizontal projection of the second side of the second deflector is staggered from the horizontal projection of the first side of the third deflector.
  • An embodiment of the present application also provides a clothing treatment device, including:
  • a cylinder assembly the cylinder assembly is provided with a clothes treatment chamber and an air inlet and an air outlet connected with the clothes treatment chamber;
  • a filtering device the filtering device communicates with the air outlet and the air inlet;
  • An air guide device communicates with the air outlet and the air inlet.
  • the condensate flow path extends downward vertically, and the air flow path extends transversely.
  • a guide structure is provided at the intersection of the condensate flow path and the air flow path.
  • the guide structure can The condensate is guided to flow down from the edge of the guide structure to form a water curtain for the hot and humid airflow to pass through. Since the air flow path of the condensation assembly extends along the transverse direction, the condensation assembly does not require a large condensation liquid drop, nor does it require a large air flow flow distance in the vertical direction. That is to say, the condensation assembly is not affected by the condensation liquid.
  • the structure is not only relatively compact, but also flexible and can adapt to more functional structures.
  • the water curtain formed after the condensate flows down from the edge of the diversion structure can improve the contact between the hot and humid airflow and the condensate. area, so that the hot and humid airflow can fully exchange heat with the condensate, thereby improving the condensation effect.
  • the condensation component not only has a relatively compact structure, but also has a good condensation effect.
  • Figure 1 is a partial structural schematic diagram of a clothes treatment device according to an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of the condensation assembly according to the first embodiment of the present application.
  • Figure 3 is a partial cross-sectional view of the condensation assembly shown in Figure 2;
  • Figure 4 is a schematic diagram of part of the internal structure of the condensation assembly shown in Figure 3;
  • Figure 5 is a schematic diagram of the flow of airflow and condensate in the structure shown in Figure 3.
  • the arrows with dotted lines indicate the flow direction of the airflow, and the continuous arrows with solid lines indicate the flow direction of the condensate;
  • Figure 6 is a schematic structural diagram of the condensation assembly according to the second embodiment of the present application, in which the continuous arrows with solid lines indicate the flow direction of the condensate, and the air flow direction is the same as the air flow direction shown in Figure 5;
  • Figure 7 is a schematic structural diagram of the condensation assembly according to the third embodiment of the present application, in which the continuous arrows with solid lines indicate the flow direction of the condensate, and the air flow direction is the same as the air flow direction shown in Figure 5;
  • FIG. 8 is a schematic structural diagram of a condensation assembly according to the fourth embodiment of the present application.
  • the continuous arrows with solid lines indicate the flow direction of the condensate, and the air flow direction is the same as the air flow direction shown in FIG. 5 .
  • orientation or positional relationships are based on the orientation or positional relationship shown in Figure 1
  • lateral and “vertical” orientations or positional relationships are based on the orientation or positional relationship shown in Figure 4.
  • orientation terms are only used to facilitate the description of the present application and simplify the description, but do not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be construed as limiting the scope of the present application. limits.
  • An embodiment of the present application provides a condensation assembly 10. Please refer to Figures 1 to 8.
  • the condensation assembly 10 includes a tube body 11 and a flow guide structure 12.
  • the pipe body 11 has a water inlet 11c, a drain 11d, an air inlet 11a and an air outlet 11b.
  • a condensate flow path extending vertically downward is formed between the water inlet 11c and the drain 11d. That is to say, the water inlet 11c of the pipe body 11 is located on the upper side of the drain outlet 11d, and the condensate flow path formed between the water inlet 11c and the drain outlet 11d extends from top to bottom, or in other words, flows from the water inlet 11c into the pipe.
  • the condensate in the body 11 can flow along the condensate flow path from top to bottom under the action of its own gravity, and flow out from the drain port 11d.
  • An air flow path extending laterally is formed between the air inlet 11a and the air outlet 11b. That is to say, the air inlet 11a and the air outlet 11b are respectively located on opposite sides of the tube body 11 laterally. The air flowing into the tube body 11 from the air inlet 11a The air flow can flow laterally along the air flow path and flow out from the air outlet 11b. It should be noted that the air flow path described here only needs to extend transversely, and is not limited to flowing from a specified side to a specified other side.
  • the condensate flow path intersects the air flow path, that is to say, the air flow path needs to pass through the condensate flow path, that is, the air flow passes through the condensate when flowing along the air flow path.
  • the specific composition of the condensate is not limited and can be water or other types of liquids.
  • the condensation assembly 10 is used to dehumidify and cool the hot and humid airflow. Specifically, the hot and humid airflow enters the tube body 11 from the air inlet 11a and flows along the air flow path, and the condensate liquid enters the tube body 11 from the water inlet 11c and flows along the condensate flow path. Flow, when the hot and humid airflow passes through the condensate, the hot and humid airflow exchanges heat with the condensate. The condensate absorbs the heat of the hot and humid airflow. The water vapor in the hot and humid airflow is precipitated from the airflow due to cooling and condenses into water droplets. The water droplets mix into the condensation. In the liquid, it is finally discharged from the water outlet.
  • the effect of dehumidification and cooling of the hot and humid airflow is achieved, so that the gas discharged from the air outlet 11b is a relatively low-temperature and dry airflow that has been cooled and dehumidified.
  • the low-temperature dry air flow is relative to the humid and hot air flow, and the temperature of the low-temperature dry air flow is lower than the temperature of the humid and hot air flow.
  • the low temperature in the embodiment of the present application may be room temperature.
  • the condensation assembly 10 of the embodiment of the present application can be used in any appropriate situation. Illustratively, the embodiment of the present application is described by taking the condensation assembly 10 being applied to a laundry treatment device as an example.
  • This embodiment of the present application provides a clothes treatment device, including a cylinder assembly 20, a filter device 30, an air guide device 40, and the condensation assembly 10 of any embodiment of the present application.
  • the cylinder assembly 20 is provided with a clothes treatment chamber and an air inlet and an air outlet connected with the clothes treatment chamber; the filter device 30 connects the air outlet and the air inlet 11a; the air guide device 40 connects the air outlet 11b and the air inlet.
  • the air guide device 40 is equipped with a fan and a heater.
  • the airflow channel 11e of the condensation assembly 10 shown in Figure 1 is arranged along the left and right directions of the barrel assembly 20. That is to say, most of the area of the airflow channel 11e extends along the left and right sides of the barrel assembly 20.
  • the air flow channel 11e of the condensation assembly 10 may also be arranged along the axial direction of the barrel assembly 20.
  • the drain port 11d of the condensation assembly 10 shown in Figure 1 is located on the axial rear side of the barrel assembly 20. That is to say, part of the structure of the condensation assembly 10 can be extended to the axial rear side of the barrel assembly 20 to facilitate drain.
  • An air flow circulation channel is formed in the clothes processing equipment, and the air guide device 40 guides the dry hot air flow into the clothes processing cavity through the air inlet.
  • the dry hot air flow flows through the surface of the wet clothes and exchanges heat and moisture with the wet clothes. It absorbs the moisture in the clothes and turns it into a hot and humid airflow.
  • the lint and impurities produced by the clothes are mixed into the hot and humid airflow.
  • the hot and humid airflow carries the lint and impurities and flows out through the air outlet in turn and then enters the filter device 30 for filtration. , the filtered hot and humid airflow can remove most of the lint and impurities.
  • the hot and humid air flows through the condensation component 10
  • the condensate is condensed and dehumidified to form a low-temperature dry airflow.
  • the low-temperature dry airflow enters the air guide 40 from the air outlet 11b and is heated by the heater in the air guide 40 to form a dry hot airflow.
  • the hot dry airflow enters the clothes processing chamber again, and the lint trapped in the hot and humid airflow is mixed with the condensed water into the condensate, and is discharged through the drain port 11d. This cycle operates to achieve continuous and efficient drying and filtering of the clothes. crumbs.
  • the flow guide structure 12 is provided at the intersection of the condensate flow path and the air flow path to guide the condensate flowing along the condensate flow path to form a water curtain for the air flow path to pass through, which is equivalent to The water curtain is also located on the air flow path.
  • the hot and humid air flow can fully contact the water curtain, the lint trapped in the hot and humid air flow is more likely to be mixed into the condensate with the condensed water, thus improving the filtration and dandruff removal effect.
  • the condensation components in the related art are generally arranged vertically, and the water inlet, drain, air inlet and air outlet are all arranged vertically.
  • the air inlet and drain are arranged at a low place, and the air outlet and water inlet are arranged vertically.
  • Set up at a high place that is to say, the condensate entering the condensation component from the water inlet flows vertically downward, while the hot and humid airflow entering the condensation component from the air inlet flows vertically upward, and the hot and humid airflow flows vertically upward.
  • the condensate flows vertically downward to achieve the condensation effect.
  • this type of condensation component requires a large condensate drop and a large air flow distance. Therefore, the condensation component has a relatively large volume and many structural restrictions, making it difficult to guarantee the condensation effect.
  • the condensate flow path of the condensation assembly 10 in the embodiment of the present application extends downward vertically, and the air flow path extends transversely.
  • a guide structure 12 is provided at the intersection of the condensate flow path and the air flow path to guide the condensate flow path.
  • the flow structure 12 can guide the condensate to flow down from the edge of the flow guide structure 12 to form a water curtain that can be passed by the hot and humid airflow. Since the air flow path of the condensation assembly 10 extends laterally, the condensation assembly 10 does not require a large condensate drop, nor does it require a large air flow distance in the vertical direction.
  • the condensation assembly 10 does not Affected by the drop of the condensate and the air flow distance, the structure is not only relatively compact, but also flexible and can adapt to more functional structures.
  • the water curtain formed after the condensate flows down from the edge of the guide structure 12 can improve the relationship between the hot and humid airflow and
  • the contact area of the condensate allows the hot and humid airflow to fully exchange heat with the condensate, thereby improving the condensation effect.
  • the condensation assembly 10 of the embodiment of the present application not only has a relatively compact structure, but also has a good condensation effect.
  • the relative height between the air inlet 11a and the air outlet 11b in the embodiment of the present application can be adjusted as needed.
  • the highest point of the air inlet 11a can be set higher than the lowest point of the air outlet 11b.
  • the setting height of the point is that at least some areas of the air inlet 11a are set higher than the air outlet 11b.
  • only some areas of the air inlet 11a are set higher than the air outlet 11b, which is equivalent to
  • the height difference between the air inlet 11a and the air outlet 11b is small, which is beneficial to reducing the height dimension of the pipe body 11 and saving the installation space of the pipe body 11 in the height direction.
  • the air inlet 11a when the air inlet 11a is set up vertically or at an angle as shown in Figures 2 and 3, the air inlet 11a has an obvious highest point and a lowest point, while when the air inlet 11a is set up horizontally (that is, as shown in Figure 2 2 and Figure 3 The air outlet 11b is set in the same manner), the air inlet 11a has only one setting height, and the setting height is equal to the setting height of the highest point of the air inlet 11a. Similarly, when the air outlet 11b is set vertically or tilted, the air outlet 11b has obvious highest points and lowest points. When the air outlet 11b is set horizontally as shown in Figures 2 and 3, the air outlet 11b has only one setting. The set height is equal to the set height of the lowest point of the air outlet 11b.
  • the height of the highest point of the air inlet 11a may be equal to the height of the lowest point of the air outlet 11b, or the height of the highest point of the air inlet 11a may be lower than the lowest point of the air outlet 11b. Set height.
  • the position of the water inlet 11c in the embodiment of the present application can be adjusted as needed.
  • the water inlet 11c can be provided on the top wall of the pipe body 11.
  • the water inlet 11c A water inlet pipe is provided on the top wall of the body 11, and the entrance of the water inlet pipe is the water inlet 11c.
  • a water inlet 11c that penetrates the top wall may also be formed on the top wall.
  • the relative height between the water inlet 11c and the air outlet 11b can also be adjusted as needed.
  • the setting height of the highest point of the water inlet 11c can be higher than the setting height of the lowest point of the air outlet 11b. , that is to say, at least some areas of the water inlet 11c are set higher than the air outlet 11b.
  • the definition of the highest point of the water inlet 11c is the same as the definition of the highest point of the air inlet 11a.
  • the water inlet 11c and the air outlet 11b shown in Figures 2 to 4 are both set horizontally.
  • the height difference between the water inlet 11c and the air outlet 11b It is also relatively small, so it is also helpful to reduce the height dimension of the pipe body 11 and save the installation space of the pipe body 11 in the height direction.
  • the setting height of the highest point of the water inlet 11c may also be equal to the setting height of the lowest point of the air outlet 11b, or the setting height of the highest point of the water inlet 11c may also be lower than the lowest point of the air outlet 11b. Set height.
  • the tube body 11 can form an airflow channel 11e having an air inlet 11a and an air outlet 11b. That is to say, the airflow path is located in the airflow channel 11e, and the water inlet 11c can be located in the airflow channel 11e.
  • the drainage outlet 11d can be located on the lower side of the airflow channel 11e. The height of the drainage outlet 11d relative to the water inlet 11c is higher than that of the airflow channel 11e. The installation height is lower than the installation height of the air flow channel 11e.
  • a partition wall 11f can be provided in the pipe body 11.
  • the partition wall 11f separates the air flow channel 11e and a drainage channel 11g located below the air flow channel 11e in the pipe body 11.
  • the drainage channel 11g There is a drain port 11d, that is, a part of the condensate flow path passes through the drain channel 11g.
  • Part of the edge of the partition wall 11f in Figure 3 is spaced apart from the inner wall of the tube body 11, so that a water passage (not shown) connecting the air flow path and the drainage channel 11g is formed at the space.
  • the passage The nozzle may also be formed directly on the partition wall 11f.
  • the condensate After the condensate passes through the air flow path, the condensate flows from the water outlet into the drainage channel 11g and is discharged from the drainage outlet 11d.
  • the drainage channel 11g can serve to collect condensate so that the condensate can be discharged from the drain outlet 11d in a timely manner.
  • the flow guide structure 12 can be located downstream of the water outlet along the air flow direction, which means that the hot and humid air first flows above the water outlet and then passes through the condensate.
  • a partial area of the side of the partition wall 11f facing the guide structure 12 can form a drainage surface 11h.
  • the drainage surface 11h guides the condensate flow path to extend toward the water outlet.
  • the drainage surface 11h in Figures 4 and 5 is a curved surface.
  • the drainage surface 11h can also be an inclined plane. After the condensate flowing through the drainage structure 12 falls on the drainage surface 11h, it can flow to the water outlet along the drainage surface 11h, which is equivalent to the flow direction of the condensate flowing along the drainage surface 11h. It is opposite to the flow direction of the air flow, thereby preventing the condensate from flowing to the air outlet 11b along with the condensed low-temperature dry air flow as much as possible.
  • the airflow channel 11e may also have a first extension section 11e1 and a second extension section 11e2; the second extension section 11e2 is connected to the first extension section 11e1 and extends toward the first extension section 11e1. extends to one side of One end of 11e2 away from the first extension section 11e1 has an air outlet 11b, and the condensate flow path passes through the first extension section 11e1.
  • the first extension section 11e1 extends along the length direction of the pipe body 11, and the second extension section 11e2 extends along the width direction of the pipe body 11.
  • Providing the second extension section 11e2 is equivalent to saving pipes.
  • the length of the body 11 is increased so that the overall structure of the condensing assembly 10 can be more compact.
  • the low-temperature dry air flow formed after condensation may also contain tiny droplets formed by a small amount of condensate. Therefore, by providing the first extension section 11e1 and the second extension section 11e2, a corner can be formed at the connection between the first extension section 11e1 and the second extension section 11e2.
  • the tiny droplets contained in the low-temperature drying air flow can be thrown to the side wall of the air flow channel 11e under the action of centrifugal force. This can also prevent the condensate from flowing to the air outlet 11b with the air flow as much as possible.
  • the air guide structure 12 can have a variety of structural forms. For example, please refer to Figures 3 to 8.
  • the air guide structure 12 includes a air guide plate 121.
  • the air guide structure 12 shown in Figures 3 to 8 is provided with a plurality of The guide plates 121 are arranged at intervals. In some embodiments, the guide structure 12 can also be provided with only one guide plate 121.
  • the shape of the guide plate 121 shown in Figures 3 to 8 is generally rectangular. It can be understood that the shape of the guide plate 121 is not limited to a rectangular shape. In some embodiments, the shape of the guide plate 121 can also be circular, elliptical, trapezoidal, triangular, special-shaped, etc.
  • the baffle 121 can guide the condensate to flow to opposite sides of the baffle 121 along the air flow direction.
  • the airflow direction refers to the direction in which the airflow flows along the airflow path. That is to say, after the condensate flows down from the opposite sides of the guide plate 121 along the air flow direction, water curtains can be formed on the opposite sides of the guide plate 121 along the air flow direction, and the guide plate 121 can also guide the condensation. The liquid only flows to one side of the opposite sides of the guide plate 121 along the air flow direction. This is equivalent to the fact that after the condensate flows down from one of the opposite sides of the guide plate 121 along the air flow direction, it can only flow down after the condensate flows down.
  • FIGS. 3 to 5 Four deflectors 121 are shown in FIGS. 3 to 5 .
  • the four deflectors 121 shown in FIGS. 3 to 5 are respectively referred to as The first guide plate 121a, the second guide plate 121b, the third guide plate 121c and the fourth guide plate 121d, wherein the first guide plate 121a, the second guide plate 121b and the third guide plate 121c
  • the condensate can be guided to flow to opposite sides of the guide plate 121 along the airflow direction.
  • the condensate flowing down from the first guide plate 121a, the second guide plate 121b, and the third guide plate 121c can flow through the first guide plate 121.
  • the plate 121a, the second guide plate 121b, and the third guide plate 121c respectively form water curtains on opposite sides along the air flow direction, and the fourth guide plate 121d guides the condensate to the opposite sides of the guide plate 121 along the air flow direction.
  • One of the two sides flows, and the condensate flowing down from the fourth guide plate 121d only forms a water curtain on the side where the condensate flows down.
  • the guide plate 121 guides the condensate to flow to opposite sides of the guide plate 121 along the airflow direction, so that the hot and humid airflow can pass through at least two water curtains, thereby allowing This allows the hot and humid airflow to more fully contact the water curtain, thereby further improving the condensation, filtration and chip removal effects.
  • the flow guide structure 12 shown in FIGS. 3 to 5 is actually a part of the guide plates 121 among the plurality of guide plates 121 that guide the condensate to flow to opposite sides of the guide plate 121 along the air flow direction.
  • the other part of the guide plate 121 guides the condensate to flow to one of the opposite sides of the guide plate 121 along the air flow direction.
  • each guide plate 121 may also guide the condensate to flow to opposite sides of the guide plate 121 along the air flow direction, or each guide plate 121 may guide the condensate to flow toward the guide plate 121 along the air flow direction.
  • One of the opposite sides flows.
  • the guide plate 121 can be configured to guide condensate to flow to opposite sides of the guide plate 121 along the airflow direction, or can be configured to guide condensate to the guide plate 121 Flow along one of the two opposite sides in the direction of air flow.
  • the guide surface of the guide plate 121 can be inclined downward from the side located downstream of the air flow direction to the side located upstream of the air flow direction. That is to say, the hot and humid air flow can interact with water in addition to In addition to curtain contact, it can also be in contact with the condensate on the guide surface. This can also increase the contact area between the hot and humid airflow and the condensate to further improve the condensation, filtration and chip removal effects.
  • the flow guide surface is not limited to being arranged downwardly from the side located downstream in the air flow direction to the side located upstream in the air flow direction.
  • the flow guide surface may also be arranged horizontally.
  • the guide surface shown in Figures 4 and 5 is a guide plane.
  • the guide surface can also be a curved surface, which can also collect part of the condensate.
  • the relative position of the guide plate 121 and the water inlet 11c can be determined as needed, as long as the condensate flowing into the pipe body 11 from the water inlet 11c can flow to the guide plate 121.
  • the relative position of the guide plate 121 and the water inlet 11c can be: the axial centerline of the water inlet 11c passes through the guide plate 121, that is, the first guide plate 121a, the second guide plate 121b and the third guide plate in Figure 4.
  • the arrangement of the flow plate 121c and the relative position between the flow guide 121 and the water inlet 11c can also be: the flow guide 121 is located on one of the two opposite sides of the axial centerline of the water inlet 11c along the air flow direction, as shown in Figure 4th place The arrangement method of the four deflectors 121d.
  • the plurality of guide plates 121 can be arranged at intervals in the pipe body 11 in various ways. For example, please refer to FIGS. 4 to 7 .
  • Each guide plate 121 can be arranged vertically in layers, that is to say, Each guide plate 121 may be arranged at intervals along the vertical direction to form a multi-layer structure.
  • the relative positions of at least part of the vertically adjacent guide plates 121 can satisfy: along the direction of condensate flow, the guide plates located downstream 121 can receive at least part of the condensate flowing down from the upstream baffle 121 , that is to say, at least two vertically adjacent baffles 121 are in relative positions such that the condensate flowing down from one baffle 121 is At least part of the condensate can flow to another adjacent baffle 121 located below the baffle 121 .
  • the first guide plate 121a and the second guide plate 121b are arranged vertically adjacent, and the first guide plate 121a and the second guide plate 121b are vertically adjacent.
  • 121a is located upstream of the second guide plate 121b along the condensate flow direction, and the horizontal projection of the first guide plate 121a is located within the horizontal projection area of the second guide plate 121b.
  • the horizontal projection refers to the vertical projection of the first guide plate 121a. Projection onto a perpendicular horizontal plane.
  • the condensate on the first guide plate 121a can flow from opposite sides of the first guide plate 121a to the second guide plate 121b along the air flow direction, which is equivalent to flowing from the first guide plate 121a to the second guide plate 121b. All the condensate flowing down flows to the second guide plate 121b.
  • the second guide plate 121b and the third guide plate 121c are arranged vertically adjacent to each other, and the second guide plate 121b is located at the third guide plate 121b.
  • the horizontal projection of the second flow guide plate 121b is located within the horizontal projection area of the third flow guide plate 121c, which is equivalent to all the condensate flowing down from the second flow guide plate 121b. Arriving at the third guide plate 121c. Please continue to refer to Figure 4.
  • the third guide plate 121c and the fourth guide plate 121d are arranged vertically adjacent to each other, and the third guide plate 121c is located upstream of the fourth guide plate 121d along the condensate flow direction. Among the two opposite sides of the guide plate 121c along the airflow direction, only the horizontal projection of one side is located within the horizontal projection area of the fourth guide plate 121d.
  • first baffle 121a, the second baffle 121b and the third baffle 121c are The arrangement is not limited to the arrangement shown in FIG. 4 .
  • the opposite sides of the baffle 121 along the air flow direction may be referred to as the first side and the first side respectively.
  • the second side, the first side in Figure 6 is located upstream of the second side along the air flow direction.
  • the first side can also be located downstream of the second side along the air flow direction, which is equivalent to the first side and The positions of the second side are interchangeable.
  • the horizontal projection of the first side of the first deflector 121a in Figure 6 is located within the horizontal projection area of the second deflector 121b, and the horizontal projection of the second side of the first deflector 121a and the second deflector 121b
  • the horizontal projections of the second side are all located within the horizontal projection area of the third guide plate 121c, which is equivalent to the condensate flowing down from the first side of the first guide plate 121a flowing onto the second guide plate 121b, from the third guide plate 121b.
  • the condensate flowing down from the second side of a baffle 121a and the second side of the second baffle 121b all flows to the third baffle 121c, and the condensate flowing down from the first side of the second baffle 121b
  • the condensate does not flow to the third guide plate 121c. That is to say, the guide plate 121 located downstream of the condensate flow direction can receive part of the condensate flowing down from the adjacent upstream guide plate 121. .
  • the downstream guide plate 121 can receive at least part of the condensate flowing down from the adjacent upstream guide plate 121.
  • the relative positions of the first guide plate 121a, the second guide plate 121b and the third guide plate 121c can also be: the horizontal projection of the first side of the first guide plate 121a is located at the second guide plate 121a. Within the horizontal projection area of the plate 121b, the horizontal projection of the second side of the first deflector 121a is located within the horizontal projection area of the third deflector 121c, and the horizontal projection of the second side of the second deflector 121b is in line with the third deflector 121b.
  • the horizontal projection of the first side of the baffle 121c is staggered, that is to say, the condensate flowing down from the first side of the first baffle 121a flows onto the second baffle 121b, and the condensate flowing down from the first side of the first baffle 121a flows onto the second baffle 121b.
  • the condensate flowing down from the second side flows to the third guide plate 121c, but the condensate flowing down from the second side of the second guide plate 121b does not flow to the third guide plate 121c, but avoids the third guide plate 121c.
  • the third guide plate 121c continues to flow downward.
  • the second guide plate 121b can catch part of the condensate flowing down from the adjacent and upstream first guide plate 121a.
  • the third guide plate 121c Not catching the condensate flowing up and down the adjacent and upstream second guide plate 121b is equivalent to the relative position of only some vertically adjacent guide plates 121 among the plurality of guide plates 121 satisfying: along the condensation direction In the liquid flow direction, the downstream baffle 121 can receive at least part of the condensate flowing down from the upstream baffle 121 .
  • the guide plate 121 located downstream in the direction of condensate flow receives at least part of the condensate flowing down from the adjacent guide plate 121 located upstream, which can not only form a water curtain between the two adjacent guide plates 121, but also form a water curtain between the two adjacent guide plates 121. It can also slow down the flow rate of the condensate, thereby further improving the condensation, filtration and chip removal effects. Especially when at least some of the guide plates 121 among the plurality of guide plates 121 can also guide the condensate to flow to opposite sides of the guide plate 121 along the air flow direction, the condensation, filtration and chip removal effects of the condensation assembly 10 can be greatly improved. .
  • the third guide plate 121c in Figure 7 does not receive the condensate flowing down from the adjacent and upstream second guide plate 121b, the condensate flowing down from the second guide plate 121b is The condensate flowing down the second side also forms a separate water curtain. That is to say, compared with the flow guide structure 12 shown in Figure 4, the flow guide structure 12 shown in Figure 4 adds a third guide plate 121c.
  • the number of water curtains on the lower side can also improve the condensation, filtration and chip removal effects of the condensation assembly 10 .
  • the multi-layer structure used in the flow guide structure 12 shown in Figures 3 to 7 is that only one guide plate 121 is provided on each layer.
  • the flow guide structure 12 can also be multiple. Some of the guide plates 121 are arranged in layers along the vertical direction, and some of the guide plates 121 are arranged at intervals along the transverse direction. That is to say, the guide structure 12 shown in Figure 8 also adopts a multi-layer structure, except that Compared with the air guide structure 12 shown in FIGS. 3 to 7 , at least one layer of the air guide structure 12 shown in FIG. 8 can be provided with at least two air guide plates 121 , and at least two air guide plates 121 on the same layer. Set at horizontal intervals. It should be noted that the air guide structure 12 shown in FIG. 8 can use the air guide plate 121 described in any of the previous embodiments, which will not be described again.
  • the barrel assembly 20 includes an inner barrel and an outer barrel.
  • the inner barrel is rotatably disposed in the outer barrel, and the above-mentioned condensation assembly 10 is connected to the outer barrel.
  • the condensation assembly 10 may be disposed at any appropriate position outside the outer tub.
  • the condensation assembly 10 may be disposed on the top side of the barrel assembly 20 .
  • the condensation assembly 10 can be disposed on any side of the cylinder assembly 20 along the circumferential direction.
  • the inner cylinder may be a non-porous inner cylinder or a perforated inner cylinder.
  • the inner cylinder is a perforated inner cylinder, rely on the outer bucket to hold water.
  • the inner cylinder is a non-porous inner cylinder, it relies on the inner cylinder itself to hold water, that is to say, the water inside the inner cylinder It can hold both water and clothes.
  • the water in the inner cylinder will not enter the outer bucket.
  • it will drain through the outer bucket.
  • the clothes processing equipment in the embodiment of the present application may be a clothes dryer, an integrated washing and drying machine, etc., and is not limited here.
  • the laundry treatment equipment may be a drum type laundry treatment equipment or a pulsator type laundry treatment equipment.

Abstract

一种冷凝组件,包括管体(11)和导流结构(12);管体(11)具有进水口(11c)、排水口(11d)、进风口(11a)和出风口(11b),进水口(11c)和排水口(11d)之间形成沿竖向向下延伸的冷凝液流动路径,进风口(11a)和出风口之间形成沿横向延伸的气流流动路径,冷凝液流动路径与气流流动路径相交;导流结构(12)设置在冷凝液流动路径与气流流动路径的相交处,以引导沿冷凝液流动路径流动的冷凝液形成可供气流流动路径穿过的水幕。还涉及包括冷凝组件的衣物处理设备。该冷凝组件的结构紧凑,冷凝效果好。

Description

一种冷凝组件及衣物处理设备
相关申请的交叉引用
本申请基于申请号为202210286613.0、申请日为2022年03月22日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及衣物洗护技术领域,尤其涉及一种冷凝组件及衣物处理设备。
背景技术
以滚筒洗烘一体机为例,其烘干过程一般需要使用冷凝组件来降低湿热气流的湿度。冷凝组件的工作原理如下:从滚筒内排出的湿热气流进入冷凝组件之后,与冷凝组件中的冷凝水进行接触,在接触过程中,湿热气流中的水蒸汽冷凝成水,凝结成的水混合到冷凝水中,经排水管道排出,被冷凝后的湿热气流又变为相对干燥的冷空气,再次进入滚筒内。
整个烘干过程,最重要的就是在冷凝组件中进行冷凝,但是,目前的冷凝组件的体积比较大,结构限制较多,且冷凝效果难以保证。
发明内容
有鉴于此,本申请实施例期望提供一种结构相对紧凑且冷凝效果较好的冷凝组件及衣物处理设备。
为达到上述目的,本申请一实施例提供了一种冷凝组件,包括:
管体,所述管体具有进水口、排水口、进风口和出风口,所述进水口和所述排水口之间形成沿竖向向下延伸的冷凝液流动路径,所述进风口和所述出风口之间形成沿横向延伸的气流流动路径,所述冷凝液流动路径与所述气流流动 路径相交;
导流结构,所述导流结构设置在所述冷凝液流动路径与所述气流流动路径的相交处,以引导沿所述冷凝液流动路径流动的冷凝液形成可供所述气流流动路径穿过的水幕。
一些实施方案中,所述导流结构包括导流板,所述导流板引导所述冷凝液向所述导流板沿气流流动方向的相对两侧的至少其中一侧流动。
一些实施方案中,所述导流板具有导流面,所述导流面水平设置;或,所述导流面从位于气流流动方向下游的一侧朝位于气流流动方向上游的一侧向下倾斜设置。
一些实施方案中,所述导流面为导流平面。
一些实施方案中,所述导流板与所述进水口的相对位置满足:所述导流板位于所述进水口的轴向中心线沿气流流动方向的相对两侧的其中一侧;或,所述进水口的轴向中心线穿过所述导流板。
一些实施方案中,所述导流结构包括多个所述导流板,各所述导流板间隔设置。
一些实施方案中,多个所述导流板中,至少部分所述导流板可引导所述冷凝液向所述导流板沿气流流动方向的相对两侧流动。
一些实施方案中,各所述导流板沿竖向分层设置;或,
多个所述导流板中的部分所述导流板沿竖向分层设置,部分所述导流板沿横向间隔设置。
一些实施方案中,多个所述导流板中,至少部分竖向相邻的所述导流板的相对位置满足:沿所述冷凝液流动方向,位于下游的所述导流板可盛接从位于上游的所述导流板上流下的至少部分冷凝液。
一些实施方案中,多个所述导流板包括沿竖向相邻设置的第一导流板和第二导流板,所述第一导流板和所述第二导流板均可引导所述冷凝液向所述导流板沿气流流动方向的相对两侧流动,所述第一导流板位于所述第二导流板沿所述冷凝液流动方向的上游,且所述第一导流板的水平投影位于所述第二导流板 的水平投影区域内。
一些实施方案中,所述导流板沿气流流动方向的相对两侧分别为第一侧和第二侧,多个所述导流板包括沿竖向由上至下依次设置的第一导流板、第二导流板和第三导流板,所述第一导流板、所述第二导流板和所述第三导流板均可引导所述冷凝液向所述导流板的第一侧和所述导流板的第二侧流动;
所述第一导流板的第一侧的水平投影位于所述第二导流板的水平投影区域内,所述第一导流板的第二侧的水平投影以及所述第二导流板的第二侧的水平投影均位于所述第三导流板的水平投影区域内;或,
所述第一导流板的第一侧的水平投影位于所述第二导流板的水平投影区域内,所述第一导流板的第二侧的水平投影位于所述第三导流板的水平投影区域内,所述第二导流板的第二侧的水平投影与所述第三导流板的第一侧的水平投影错开。
本申请实施例还提供一种衣物处理设备,包括:
上述所述的冷凝组件;
筒体组件,所述筒体组件设置有衣物处理腔以及与所述衣物处理腔连通的进气口和出气口;
过滤装置,所述过滤装置连通所述出气口与所述进风口;
导风装置,所述导风装置连通所述出风口和所述进气口。
本申请实施例的冷凝组件,冷凝液流动路径沿竖向向下延伸,气流流动路径则沿横向延伸,同时,在冷凝液流动路径与气流流动路径的相交处设置导流结构,导流结构可引导冷凝液从导流结构的边缘流下之后形成可供湿热气流穿过的水幕。由于该冷凝组件的气流流动路径沿横向延伸,所以,该冷凝组件不需要较大的冷凝液落差,在竖向上也不需要较大的气流流动距离,也就是说,该冷凝组件不受冷凝液落差及气流流动距离的影响,结构不仅相对紧凑,且灵活多变,可以适应更多的功能结构,而冷凝液从导流结构的边缘流下之后形成的水幕可以提高湿热气流与冷凝液的接触面积,以使得湿热气流能够与冷凝液进行充分地热量交换,由此,可以提升冷凝效果。也就是说,本申请实施例的 冷凝组件不仅结构相对紧凑,且具有较好的冷凝效果。
附图说明
图1为本申请一实施例的衣物处理设备的部分结构示意图;
图2为本申请第一实施例的冷凝组件的结构示意图;
图3为图2所示的冷凝组件的局部剖视图;
图4为图3所示的冷凝组件的部分内部结构示意图;
图5为气流和冷凝液在图3所示结构内流动的示意图,其中带虚线的箭头示意气流流动方向,带实线的连续箭头示意冷凝液流动方向;
图6为本申请第二实施例的冷凝组件的结构示意图,其中带实线的连续箭头示意冷凝液流动方向,气流流动方向与图5所示的气流流动方向相同;
图7为本申请第三实施例的冷凝组件的结构示意图,其中带实线的连续箭头示意冷凝液流动方向,气流流动方向与图5所示的气流流动方向相同;
图8为本申请第四实施例的冷凝组件的结构示意图,其中带实线的连续箭头示意冷凝液流动方向,气流流动方向与图5所示的气流流动方向相同。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的技术特征可以相互组合,具体实施方式中的详细描述应理解为本申请宗旨的解释说明,不应视为对本申请的不当限制。
在本申请实施例的描述中,“左”、“右”方位或位置关系为基于附图1,“横向”、“竖向”方位或位置关系为基于附图4所示的方位或位置关系。需要理解的是,这些方位术语仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
本申请一实施例提供了一种冷凝组件10,请参阅图1至图8,冷凝组件10包括管体11和导流结构12。
请参阅图2至图5,管体11具有进水口11c、排水口11d、进风口11a和出风口11b,进水口11c和排水口11d之间形成沿竖向向下延伸的冷凝液流动路径,也就是说,管体11的进水口11c位于排水口11d的上侧,进水口11c和排水口11d之间形成的冷凝液流动路径为从上向下延伸,或者说,从进水口11c流入管体11内的冷凝液可以在自身重力的作用下沿冷凝液流动路径流动从上向下流动,并从排水口11d流出。进风口11a和出风口11b之间形成沿横向延伸的气流流动路径,也就是说,进风口11a和出风口11b分别位于管体11横向的相对两侧,从进风口11a流入管体11内的气流可以沿气流流动路径横向流动,并从出风口11b流出。需要说明的是,这里所述的气流流动路径只需要沿横向延伸即可,而不限定必须从某一指定的一侧流向指定的另一侧。冷凝液流动路径与气流流动路径相交,也就是说,气流流动路径需要穿过冷凝液流动路径,即气流沿气流流动路径流动的过程中,会从冷凝液中穿过。
冷凝液的具体成分不限,可以是水、也可以其他类型的液体。
冷凝组件10用于对湿热气流进行除湿降温,具体地,湿热气流从进风口11a进入管体11内并沿气流流动路径流动,冷凝液从进水口11c进入管体11内并沿冷凝液流动路径流动,当湿热气流穿过冷凝液时,湿热气流与冷凝液进行热量交换,冷凝液吸收湿热气流的热量,湿热气流中的水蒸汽因降温从气流中析出并凝结成水珠,水珠混入冷凝液中,最终从出水口排出,如此,达到对湿热气流除湿降温的效果,使得从出风口11b排出的气体为经过降温除湿后的相对低温干燥的气流。需要说明的是,低温干燥的气流是相对湿热气流而言的,低温干燥气流的温度比湿热气流的温度低。本申请实施例中的低温可以是室温。
本申请实施例的冷凝组件10可以用于任何适当的场合。示例性地,本申请实施例以冷凝组件10应用于衣物处理设备为例进行描述。
示例性地,请参阅图1,本申请实施例提供一种衣物处理设备,包括筒体组件20、过滤装置30、导风装置40以及本申请任一实施例的冷凝组件10。筒体组件20设置有衣物处理腔以及与衣物处理腔连通的进气口和出气口;过滤装置30连通出气口与进风口11a;导风装置40连通出风口11b和进气口。需要 说明的是,导风装置40内配置有风机和加热器。
具体地,图1所示的冷凝组件10的气流通道11e沿筒体组件20的左右方向布置,也就是说,气流通道11e的大部分区域是沿筒体组件20的左右延伸,在一些实施方式中,冷凝组件10的气流通道11e也可以沿筒体组件20的轴向布置。
图1所示的冷凝组件10的排水口11d位于筒体组件20沿轴向的后侧,也就是说,冷凝组件10的部分结构可以延伸至筒体组件20沿轴向的后侧,以便于排水。
衣物处理设备内形成气流循环通道,导风装置40将干燥热气流经进气口导入衣物处理腔内,在衣物处理腔中,干燥热气流流经湿衣物表面,与湿衣物进行热湿交换,吸收衣物中的水分,变为湿热气流,在干衣过程中衣物产生的线屑、杂质等混入湿热气流中,湿热气流裹挟着线屑、杂质依次经出气口流出后进入过滤装置30内进行过滤,经过过滤之后的湿热气流能够除去大部分的线屑、杂质,但是,还有少量尺寸较小的毛屑会随着湿热气流从进风口11a进入冷凝组件10中,湿热气流经冷凝组件10内的冷凝液冷凝除湿后形成低温干燥气流,低温干燥气流从出风口11b处进入导风装置40内,经导风装置40内的加热器加热后形成干燥热气流。干燥热气流再次进入衣物处理腔,而湿热气流中裹挟的毛屑则随着凝结成的水混合到冷凝液中,并通过排水口11d排出,如此循环运行,实现衣物的连续高效干燥以及过滤除屑。
请参阅图3至图5,导流结构12设置在冷凝液流动路径与气流流动路径的相交处,以引导沿冷凝液流动路径流动的冷凝液形成可供气流流动路径穿过的水幕,相当于水幕也同时位于气流流动路径上。
具体地,冷凝液沿冷凝液流动路径从上向下流动的过程中会流经导流结构12,请参阅图5,冷凝液从导流结构12上流下之后会形成水幕,沿气流流动路径流动的湿热气流从水幕穿过时,可以与水幕充分接触,也就是说,水幕提高了湿热气流与冷凝液的接触面积,由此,可以使得湿热气流能够与冷凝液进行充分地热量交换,进而可以提升冷凝效果。
另外,由于湿热气流能够与水幕充分接触,所以,湿热气流中裹挟的毛屑也更容易随着凝结成的水混合到冷凝液中,由此,也可以提升过滤除屑的效果。
需要说明的是,相关技术中的冷凝组件一般为垂直布置,进水口、排水口、进风口和出风口均沿竖向设置,其中,进风口和排水口设置在低处,出风口和进水口设置在高处,也就是说,从进水口进入冷凝组件的冷凝液沿竖向向下流动,而从进风口进入冷凝组件的湿热气流则沿竖向向上流动,湿热气流沿竖向向上流动的过程中经过沿竖向向下流动的冷凝液,从而达到冷凝的效果。但是,此种冷凝组件需要较大的冷凝液落差以及较大的气流流动距离,所以,该冷凝组件的体积比较大,结构限制较多,冷凝效果难以保证。
而本申请实施例的冷凝组件10的冷凝液流动路径沿竖向向下延伸,气流流动路径则沿横向延伸,同时,在冷凝液流动路径与气流流动路径的相交处设置导流结构12,导流结构12可引导冷凝液从导流结构12的边缘流下之后形成可供湿热气流穿过的水幕。由于该冷凝组件10的气流流动路径沿横向延伸,所以,该冷凝组件10不需要较大的冷凝液落差,在竖向上也不需要较大的气流流动距离,也就是说,该冷凝组件10不受冷凝液落差及气流流动距离的影响,结构不仅相对紧凑,且灵活多变,可以适应更多的功能结构,而冷凝液从导流结构12的边缘流下之后形成的水幕可以提高湿热气流与冷凝液的接触面积,以使得湿热气流能够与冷凝液进行充分地热量交换,由此,可以提升冷凝效果。也就是说,本申请实施例的冷凝组件10不仅结构相对紧凑,且具有较好的冷凝效果。
本申请实施例的进风口11a与出风口11b之间的相对高度可以根据需要进行调整,比如,请参阅图2和图3,进风口11a的最高点的设置高度可以高于出风口11b的最低点的设置高度,也就是说,进风口11a至少有部分区域的设置高度高于出风口11b,图2和图3所示的进风口11a只有部分区域的设置高度高于出风口11b,相当于进风口11a与出风口11b之间的高度差较小,有利于减小管体11的高度尺寸,节省管体11在高度方向上的安装空间。需要说明的是,进风口11a为竖直设置或如图2和图3所示的倾斜设置时,进风口11a具有明显的最高点和最低点,而进风口11a为水平设置时(即与图2和图3所示 的出风口11b的设置方式相同),进风口11a只有一个设置高度,该设置高度就等同于进风口11a的最高点的设置高度。同样地,出风口11b为竖直设置或倾斜设置时,出风口11b具有明显的最高点和最低点,而出风口11b为图2和图3所示的水平设置时,出风口11b只有一个设置高度,该设置高度就等同于出风口11b的最低点的设置高度。
在一些实施例中,进风口11a的最高点的设置高度也可以等于出风口11b的最低点的设置高度,或者,进风口11a的最高点的设置高度也可以低于出风口11b的最低点的设置高度。
本申请实施例的进水口11c的设置位置可以根据需要进行调整,较优选地,请参阅图2至图4,进水口11c可以设置在管体11的顶壁上,图2至图4中管体11的顶壁上设置有进水管,进水管的入口就是进水口11c,在一些实施例中,也可以是在顶壁上形成贯穿顶壁的进水口11c。
进水口11c与出风口11b之间的相对高度也可以根据需要进行调整,比如,请参阅图2至图4,进水口11c的最高点的设置高度可以高于出风口11b的最低点的设置高度,也就是说,进水口11c至少有部分区域的设置高度高于出风口11b。需要说明的是,进水口11c的最高点的定义与进风口11a的最高点的定义相同。图2至图4中所示的进水口11c与出风口11b均为水平设置,虽然整个进水口11c的设置高度都高于出风口11b,但是,进水口11c与出风口11b之间的高度差也相对较小,因此,也有利于减小管体11的高度尺寸,节省管体11在高度方向上的安装空间。
在一些实施例中,进水口11c的最高点的设置高度也可以等于出风口11b的最低点的设置高度,或者,进水口11c的最高点的设置高度也可以低于出风口11b的最低点的设置高度。
一实施例中,请参阅图3至图5,管体11可以形成具有进风口11a和出风口11b的气流通道11e,也就是说,气流流动路径位于气流通道11e内,进水口11c可以位于气流通道11e的上侧,排水口11d可以位于气流通道11e的下侧,相对于进水口11c的设置高度高于气流通道11e的设置高度,排水口11d的设 置高度低于气流通道11e的设置高度。
一实施例中,请参阅图3,管体11内可以设置间隔壁11f,间隔壁11f在管体11内分隔出气流通道11e以及位于气流通道11e下侧的排水通道11g,其中,排水通道11g具有排水口11d,也就是说,冷凝液流动路径的一部分经过排水通道11g。图3中的间隔壁11f的部分边缘与管体11的内壁间隔设置,以使得间隔处形成了连通气流流动路径和排水通道11g的过水口(图未示出),在一些实施例中,过水口也可以直接形成在间隔壁11f上。当冷凝液穿过气流流动路径之后,冷凝液从过水口流入排水通道11g,并从排水口11d排出。排水通道11g可以起到汇聚冷凝液的作用,以便与及时将冷凝液从排水口11d排出。
另外,请参阅图4和图5,导流结构12可以位于过水口沿气流流动方向的下游,相当于湿热气流先从过水口的上方流过,再从冷凝液中穿过。间隔壁11f面向导流结构12的一侧的部分区域可以形成引流面11h,引流面11h引导冷凝液流动路径向过水口延伸,图4和图5的引流面11h为曲面,在一些实施方式中,引流面11h也可以是倾斜的平面,流经导流结构12的冷凝液落到引流面11h之后,可以沿着引流面11h流向过水口,相当于沿引流面11h流动的冷凝液的流动方向与气流的流动方向相反,由此,可以尽可能地阻止冷凝液随冷凝后的低温干燥气流流向出风口11b。
一实施例中,请参阅图2和图3,气流通道11e也可以具有第一延伸段11e1和第二延伸段11e2;第二延伸段11e2与第一延伸段11e1连通且向第一延伸段11e1的一侧延伸,也就是说,第二延伸段11e2与第一延伸段11e1之间具有一定的夹角,第一延伸段11e1远离第二延伸段11e2的一端具有进风口11a,第二延伸段11e2远离第一延伸段11e1的一端具有出风口11b,冷凝液流动路径穿过第一延伸段11e1。
具体地,为便于描述,可以认为第一延伸段11e1是沿管体11的长度方向延伸,第二延伸段11e2是沿管体11的宽度方向延伸,设置第二延伸段11e2相当于可以节省管体11的长度,以使冷凝组件10的整体结构能够更加紧凑。另外,冷凝后形成的低温干燥气流中也可能夹杂少量冷凝液形成的微小液滴,因 此,设置第一延伸段11e1和第二延伸段11e2,可以在第一延伸段11e1和第二延伸段11e2的连通处形成转角,当低温干燥气流流经第一延伸段11e1和第二延伸段11e2的连通处时,低温干燥气流中夹杂的微小液滴可以在离心力的作用下被甩到气流通道11e的侧壁上,由此,也可以尽可能地阻止冷凝液随气流流向出风口11b。
导流结构12的结构形式可以有多种,示例性地,请参阅图3至图8,导流结构12包括导流板121,图3至图8所示的导流结构12设置了多个导流板121,各导流板121间隔设置,在一些实施例中,导流结构12也可以只设置一个导流板121,图3至图8所示的导流板121的外形大致为矩形,可以理解的是,导流板121的外形并不限于为矩形,在一些实施例中,导流板121的外形也可以是圆形、椭圆形、梯形、三角形、异形等。导流板121可以引导冷凝液向导流板121沿气流流动方向的相对两侧流动。需要说明的是,气流流动方向是指气流沿气流流动路径流动的方向。也就是说,冷凝液从导流板121沿气流流动方向的相对两侧流下之后,可以在该导流板121沿气流流动方向的相对两侧分别形成水幕,导流板121也可以引导冷凝液只向导流板121沿气流流动方向的相对两侧的其中一侧流动,相当于冷凝液从导流板121沿气流流动方向的相对两侧的其中一侧流下之后,只能在冷凝液流下的那一侧形成水幕。比如,请继续参阅图3至图5,图3至图5中示出了四个导流板121,为便于描述,将图3至图5中所示的四个导流板121分别称为第一导流板121a、第二导流板121b、第三导流板121c和第四导流板121d,其中,第一导流板121a、第二导流板121b、第三导流板121c均可以引导冷凝液向导流板121沿气流流动方向的相对两侧流动,从第一导流板121a、第二导流板121b、第三导流板121c上流下的冷凝液在第一导流板121a、第二导流板121b、第三导流板121c沿气流流动方向的相对两侧分别形成水幕,而第四导流板121d则引导冷凝液向导流板121沿气流流动方向的相对两侧的其中一侧流动,从第四导流板121d上流下的冷凝液只在冷凝液流下的那一侧形成水幕。导流板121引导冷凝液向导流板121沿气流流动方向的相对两侧流动,可以使得湿热气流能够至少穿过两个水幕,由此,可以 使湿热气流能够更加充分地与水幕接触,由此,可以进一步提高冷凝、过滤除屑效果。
需要说明的是,图3至图5中所示的导流结构12实际上是多个导流板121中的一部分导流板121引导冷凝液向导流板121沿气流流动方向的相对两侧流动,另一部分导流板121引导冷凝液向导流板121沿气流流动方向的相对两侧的其中一侧流动,可以理解的是,在一些实施方式中,当导流结构12具有多个导流板121时,也可以是各导流板121均引导冷凝液向导流板121沿气流流动方向的相对两侧流动,还可以是各导流板121均引导冷凝液向导流板121沿气流流动方向的相对两侧的其中一侧流动。当导流结构12只有一个导流板121时,该导流板121既可以设置为引导冷凝液向导流板121沿气流流动方向的相对两侧流动,也可以设置为引导冷凝液向导流板121沿气流流动方向的相对两侧的其中一侧流动。
请参阅图4和图5,导流板121的导流面可以从位于气流流动方向下游的一侧朝位于气流流动方向上游的一侧向下倾斜设置,也就是说,湿热气流除了能够与水幕接触之外,还可以与导流面上的冷凝液接触,由此,也可以增加湿热气流与冷凝液的接触面积,以进一步提高冷凝、过滤除屑效果。
可以理解的是,导流面并不限于从位于气流流动方向下游的一侧朝位于气流流动方向上游的一侧向下倾斜设置,比如,在一些实施例中,导流面也可以水平设置。
另外,图4和图5所示的导流面为导流平面,在一些实施例中,导流面也可以是曲面,相当于导流面还可以汇聚部分冷凝液。
导流板121与进水口11c的相对位置可以根据需要进行确定,只要从进水口11c流入管体11内的冷凝液能够流到导流板121上即可,示例性地,请参阅图4,导流板121与进水口11c的相对位置可以为:进水口11c的轴向中心线穿过导流板121,即图4中第一导流板121a、第二导流板121b和第三导流板121c的设置方式,导流板121与进水口11c的相对位置也可以为:导流板121位于进水口11c的轴向中心线沿气流流动方向的相对两侧的其中一侧,即图4中第 四导流板121d的设置方式。
多个导流板121在管体11内间隔设置的方式也可以有多种,示例性地,请参阅图4至图7,各导流板121可以沿竖向分层设置,也就是说,各导流板121可以沿竖向依次间隔设置,以形成多层结构。
进一步地,请参阅图4至图7,对于多层结构的导流板121,至少部分竖向相邻的导流板121的相对位置可以满足:沿冷凝液流动方向,位于下游的导流板121可盛接从位于上游的导流板121上流下的至少部分冷凝液,也就是说,至少有两个竖向相邻的导流板121的相对位置为从一个导流板121上流下的冷凝液至少有部分可以流到位于该导流板121下侧且相邻的另一个导流板121上。
具体地,以图4中的第一导流板121a和第二导流板121b为例,第一导流板121a和第二导流板121b沿竖向相邻设置,且第一导流板121a位于第二导流板121b沿冷凝液流动方向的上游,第一导流板121a的水平投影位于第二导流板121b的水平投影区域内,需要说明的是,水平投影是指在与竖向相垂直的水平面上的投影。也就是说,第一导流板121a上的冷凝液可以分别从第一导流板121a沿气流流动方向的相对两侧流到第二导流板121b上,相当于从第一导流板121a上流下的冷凝液全部流到了第二导流板121b上,同样地,第二导流板121b和第三导流板121c沿竖向相邻设置,且第二导流板121b位于第三导流板121c沿冷凝液流动方向的上游,第二导流板121b的水平投影位于第三导流板121c的水平投影区域内,相当于从第二导流板121b上流下的冷凝液也全部流到了第三导流板121c上。请继续参阅图4,第三导流板121c和第四导流板121d沿竖向相邻设置,且第三导流板121c位于第四导流板121d沿冷凝液流动方向的上游,第三导流板121c沿气流流动方向的相对两侧中,只有其中一侧的水平投影位于第四导流板121d的水平投影区域内,因此,从第三导流板121c上流下的冷凝液只有一部分流到第四导流板121d上,另一部分则不经过第四导流板121d,直接流向排水口11d,或者说,从第三导流板121c上流下的冷凝液只有一部分流到了第四导流板121d上。
需要说明的是,第一导流板121a、第二导流板121b和第三导流板121c并 不仅限于采用图4所示的布置形式,比如,在另一实施例中,请参阅图6,为便于描述,可以将导流板121沿气流流动方向的相对两侧分别称为第一侧和第二侧,图6中的第一侧位于第二侧沿气流流动方向的上游,在一些实施例中,第一侧也可以位于第二侧沿气流流动方向的下游,相当于第一侧和第二侧的位置可以互换。图6中的第一导流板121a的第一侧的水平投影位于第二导流板121b的水平投影区域内,第一导流板121a的第二侧的水平投影以及第二导流板121b的第二侧的水平投影均位于第三导流板121c的水平投影区域内,相当于从第一导流板121a的第一侧流下的冷凝液流到第二导流板121b上,从第一导流板121a的第二侧以及从第二导流板121b的第二侧流下的冷凝液均流到第三导流板121c上,而从第二导流板121b的第一侧流下的冷凝液则不流到第三导流板121c上,也就是说,位于冷凝液流动方向下游的导流板121可盛接从相邻的且位于上游的导流板121上流下的部分冷凝液。
图4和图6所示的导流结构12中,位于下游的导流板121均可以盛接相邻的且位于上游的导流板121上流下的至少部分冷凝液,另一实施例中,请参阅图7,第一导流板121a、第二导流板121b和第三导流板121c的相对位置也可以为:第一导流板121a的第一侧的水平投影位于第二导流板121b的水平投影区域内,第一导流板121a的第二侧的水平投影位于第三导流板121c的水平投影区域内,第二导流板121b的第二侧的水平投影与第三导流板121c的第一侧的水平投影错开,也就是说,从第一导流板121a的第一侧流下的冷凝液流到第二导流板121b上,从第一导流板121a的第二侧流下的冷凝液流到第三导流板121c上,但是,从第二导流板121b的第二侧流下的冷凝液不流到第三导流板121c上,而是避开第三导流板121c继续向下流,也就是说,第二导流板121b可以盛接相邻的且位于上游的第一导流板121a上流下的部分冷凝液,但是,第三导流板121c不盛接相邻的且位于上游的第二导流板121b上流下的冷凝液,相当于多个导流板121中,只有部分竖向相邻的导流板121的相对位置满足:沿冷凝液流动方向,位于下游的导流板121可盛接从位于上游的导流板121上流下的至少部分冷凝液。
位于冷凝液流动方向下游的导流板121盛接相邻的且位于上游的导流板121上流下的至少部分冷凝液,不仅可以在相邻的两个导流板121之间形成水幕,还可以减缓冷凝液的流速,由此,也可以进一步提高冷凝、过滤除屑效果。特别是当多个导流板121中的至少部分导流板121还可以引导冷凝液向导流板121沿气流流动方向的相对两侧流动时,冷凝组件10的冷凝、过滤除屑效果可以大幅提升。
另外,请参阅图7,虽然图7中的第三导流板121c没有盛接相邻的且位于上游的第二导流板121b上流下的冷凝液,但是,从第二导流板121b的第二侧流下的冷凝液也单独形成了一个的水幕,也就是说,与图4所示的导流结构12相比,图4所示的导流结构12增加了第三导流板121c下侧的水幕的数量,由此,也可以提升冷凝组件10的冷凝、过滤除屑效果。
图3至图7所示的导流结构12所采用的多层结构是每层只设置一个导流板121,在另一实施例中,请参阅图8,导流结构12也可以是多个导流板121中的部分导流板121沿竖向分层设置,部分导流板121沿横向间隔设置,也就是说,图8所示的导流结构12同样采用的是多层结构,只是与图3至图7所示的导流结构12相比,图8所示的导流结构12的至少其中一层可以设置至少两个导流板121,同一层的至少两个导流板121沿横向间隔设置。需要说明的是,图8所示的导流结构12可以采用前面任一实施例所述的导流板121,在此不再赘述。
一实施例中,请参阅,筒体组件20包括内筒和外桶,内筒转动地设置于外桶内,上述的冷凝组件10与外桶连接。
冷凝组件10可以设置于外桶外侧的任何适当的位置,例如,在衣物处理设备为滚筒式衣物处理设备时,冷凝组件10可以设置于筒体组件20的顶侧。在衣物处理设备为波轮式衣物处理设备时,冷凝组件10可以设置于筒体组件20沿周向的任意一侧。
其中,内筒可以是无孔式内筒或有孔式内筒。当内筒为有孔式内筒时,依靠外桶盛水。当内筒为无孔式内筒时,依靠内筒自身盛水,也就是说,内筒内 既能够盛水又能够容纳衣物,在洗涤过程中,内筒内的水不会进入外桶内,在排水过程中,会通过外桶排水。
需要说明的是,本申请实施例的衣物处理设备可以是干衣机、洗干一体机等,在此不做限制。衣物处理设备可以是滚筒式衣物处理设备,也可以是波轮式衣物处理设备。
本申请提供的各个实施例/实施方式在不产生矛盾的情况下可以相互组合。
以上所述仅为本申请的较佳实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均包含在本申请的保护范围之内。

Claims (12)

  1. 一种冷凝组件,包括:
    管体(11),所述管体(11)具有进水口(11c)、排水口(11d)、进风口(11a)和出风口(11b),所述进水口(11c)和所述排水口(11d)之间形成沿竖向向下延伸的冷凝液流动路径,所述进风口(11a)和所述出风口(11b)之间形成沿横向延伸的气流流动路径,所述冷凝液流动路径与所述气流流动路径相交;
    导流结构(12),所述导流结构(12)设置在所述冷凝液流动路径与所述气流流动路径的相交处,以引导沿所述冷凝液流动路径流动的冷凝液形成可供所述气流流动路径穿过的水幕。
  2. 根据权利要求1所述的冷凝组件,所述导流结构(12)包括导流板(121),所述导流板(121)引导所述冷凝液向所述导流板(121)沿气流流动方向的相对两侧的至少其中一侧流动。
  3. 根据权利要求2所述的冷凝组件,所述导流板(121)具有导流面,所述导流面水平设置;或,所述导流面从位于气流流动方向下游的一侧朝位于气流流动方向上游的一侧向下倾斜设置。
  4. 根据权利要求3所述的冷凝组件,所述导流面为导流平面。
  5. 根据权利要求2-4任意一项所述的冷凝组件,所述导流板(121)与所述进水口(11c)的相对位置满足:所述导流板(121)位于所述进水口(11c)的轴向中心线沿气流流动方向的相对两侧的其中一侧;或,所述进水口(11c)的轴向中心线穿过所述导流板(121)。
  6. 根据权利要求2-4任意一项所述的冷凝组件,所述导流结构(12)包括多个所述导流板(121),各所述导流板(121)间隔设置。
  7. 根据权利要求6所述的冷凝组件,多个所述导流板(121)中,至少部分所述导流板(121)可引导所述冷凝液向所述导流板(121)沿气流流动方向的 相对两侧流动。
  8. 根据权利要求6所述的冷凝组件,各所述导流板(121)沿竖向分层设置;或,
    多个所述导流板(121)中的部分所述导流板(121)沿竖向分层设置,部分所述导流板(121)沿横向间隔设置。
  9. 根据权利要求8所述的冷凝组件,多个所述导流板(121)中,至少部分竖向相邻的所述导流板(121)的相对位置满足:沿所述冷凝液流动方向,位于下游的所述导流板(121)可盛接从位于上游的所述导流板(121)上流下的至少部分冷凝液。
  10. 根据权利要求9所述的冷凝组件,多个所述导流板(121)包括沿竖向相邻设置的第一导流板(121a)和第二导流板(121b),所述第一导流板(121a)和所述第二导流板(121b)均可引导所述冷凝液向所述导流板(121)沿气流流动方向的相对两侧流动,所述第一导流板(121a)位于所述第二导流板(121b)沿所述冷凝液流动方向的上游,且所述第一导流板(121a)的水平投影位于所述第二导流板(121b)的水平投影区域内。
  11. 根据权利要求9所述的冷凝组件,所述导流板(121)沿气流流动方向的相对两侧分别为第一侧和第二侧,多个所述导流板(121)包括沿竖向由上至下依次设置的第一导流板(121a)、第二导流板(121b)和第三导流板(121c),所述第一导流板(121a)、所述第二导流板(121b)和所述第三导流板(121c)均可引导所述冷凝液向所述导流板(121)的第一侧和所述导流板(121)的第二侧流动;
    所述第一导流板(121a)的第一侧的水平投影位于所述第二导流板(121b)的水平投影区域内,所述第一导流板(121a)的第二侧的水平投影以及所述第二导流板(121b)的第二侧的水平投影均位于所述第三导流板(121c)的水平投影区域内;或,
    所述第一导流板(121a)的第一侧的水平投影位于所述第二导流板(121b) 的水平投影区域内,所述第一导流板(121a)的第二侧的水平投影位于所述第三导流板(121c)的水平投影区域内,所述第二导流板(121b)的第二侧的水平投影与所述第三导流板(121c)的第一侧的水平投影错开。
  12. 一种衣物处理设备,包括:
    权利要求1-11任一项所述的冷凝组件(10);
    筒体组件(20),所述筒体组件(20)设置有衣物处理腔以及与所述衣物处理腔连通的进气口和出气口;
    过滤装置(30),所述过滤装置(30)连通所述出气口与所述进风口(11a);
    导风装置(40),所述导风装置(40)连通所述出风口(11b)和所述进气口。
PCT/CN2023/082616 2022-03-22 2023-03-20 一种冷凝组件及衣物处理设备 WO2023179573A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210286613.0 2022-03-22
CN202210286613.0A CN114703643B (zh) 2022-03-22 2022-03-22 一种冷凝组件及衣物处理设备

Publications (1)

Publication Number Publication Date
WO2023179573A1 true WO2023179573A1 (zh) 2023-09-28

Family

ID=82169356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082616 WO2023179573A1 (zh) 2022-03-22 2023-03-20 一种冷凝组件及衣物处理设备

Country Status (2)

Country Link
CN (1) CN114703643B (zh)
WO (1) WO2023179573A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114657740B (zh) * 2022-03-22 2023-12-01 无锡小天鹅电器有限公司 一种冷凝器及衣物处理设备
CN114703643B (zh) * 2022-03-22 2023-11-28 无锡小天鹅电器有限公司 一种冷凝组件及衣物处理设备
CN114737374A (zh) * 2022-03-22 2022-07-12 无锡小天鹅电器有限公司 一种冷凝装置及衣物处理设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1379480A (en) * 1971-03-27 1975-01-02 Beges Ag Drying apparatus
FR2646501A1 (fr) * 1989-04-28 1990-11-02 Esswein Sa Condenseur d'humidite pour air chaud et humide, et appareil muni d'un tel condenseur
EP0485700A1 (en) * 1990-11-16 1992-05-20 ANTONIO MERLONI S.p.A. Condensation device, particularly for washing-drying machines
CN1403649A (zh) * 2001-05-23 2003-03-19 株式会社日立制作所 洗涤干燥机及水冷式热交换器
KR20080013251A (ko) * 2006-08-08 2008-02-13 엘지전자 주식회사 건조기의 스프레이 채임버를 이용한 린트 프리 및 콘덴싱모듈
CN102733136A (zh) * 2011-03-30 2012-10-17 松下电器产业株式会社 衣物处理装置
CN114657740A (zh) * 2022-03-22 2022-06-24 无锡小天鹅电器有限公司 一种冷凝器及衣物处理设备
CN114703643A (zh) * 2022-03-22 2022-07-05 无锡小天鹅电器有限公司 一种冷凝组件及衣物处理设备
CN114737374A (zh) * 2022-03-22 2022-07-12 无锡小天鹅电器有限公司 一种冷凝装置及衣物处理设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2148127C3 (de) * 1971-09-17 1982-05-06 Bosch-Siemens Hausgeräte GmbH, 7000 Stuttgart Wäschetrockner
DE2214618C3 (de) * 1971-09-17 1981-07-23 Bosch-Siemens Hausgeräte GmbH, 7000 Stuttgart Wäschetrockner
US3866333A (en) * 1971-09-17 1975-02-18 Siemens Elektrogeraete Gmbh Dehumidifier for air utilized in laundry drying
DE2931824C2 (de) * 1979-08-06 1982-04-22 Bosch-Siemens Hausgeräte GmbH, 7000 Stuttgart Haushalt-Wäschetrockner
CN207259818U (zh) * 2017-08-14 2018-04-20 苏州三星电子有限公司 一种滚筒洗衣机用冷凝器及烘干装置
CN212152849U (zh) * 2020-02-11 2020-12-15 青岛海尔滚筒洗衣机有限公司 衣物处理设备及其熔敷冷凝器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1379480A (en) * 1971-03-27 1975-01-02 Beges Ag Drying apparatus
FR2646501A1 (fr) * 1989-04-28 1990-11-02 Esswein Sa Condenseur d'humidite pour air chaud et humide, et appareil muni d'un tel condenseur
EP0485700A1 (en) * 1990-11-16 1992-05-20 ANTONIO MERLONI S.p.A. Condensation device, particularly for washing-drying machines
CN1403649A (zh) * 2001-05-23 2003-03-19 株式会社日立制作所 洗涤干燥机及水冷式热交换器
KR20080013251A (ko) * 2006-08-08 2008-02-13 엘지전자 주식회사 건조기의 스프레이 채임버를 이용한 린트 프리 및 콘덴싱모듈
CN102733136A (zh) * 2011-03-30 2012-10-17 松下电器产业株式会社 衣物处理装置
CN114657740A (zh) * 2022-03-22 2022-06-24 无锡小天鹅电器有限公司 一种冷凝器及衣物处理设备
CN114703643A (zh) * 2022-03-22 2022-07-05 无锡小天鹅电器有限公司 一种冷凝组件及衣物处理设备
CN114737374A (zh) * 2022-03-22 2022-07-12 无锡小天鹅电器有限公司 一种冷凝装置及衣物处理设备

Also Published As

Publication number Publication date
CN114703643A (zh) 2022-07-05
CN114703643B (zh) 2023-11-28

Similar Documents

Publication Publication Date Title
WO2023179573A1 (zh) 一种冷凝组件及衣物处理设备
WO2023179564A1 (zh) 一种冷凝装置及衣物处理设备
WO2023179568A1 (zh) 一种冷凝器及衣物处理设备
KR100456953B1 (ko) 건조장치를 갖춘 드럼세탁기
JP7466004B2 (ja) 乾燥機器用の凝縮器及び乾燥機器
CN215561394U (zh) 用于烘干设备的冷凝器及烘干设备
CN214300905U (zh) 一种干衣机排湿装置的外壳结构、排湿装置、干衣机
EP4296423A1 (en) Condenser for drying device, and drying device
CN110656479B (zh) 冷凝器及衣物处理装置
CN106676859A (zh) 换热器清洗喷头、热泵干衣机清洗装置和热泵干衣机
CN111005193B (zh) 安装座及衣物处理装置
CN217127825U (zh) 一种冷凝装置及衣物处理设备
WO2023134460A1 (zh) 用于烘干设备的冷凝通道及烘干设备
CN218345744U (zh) 风道组件和衣物处理设备
CN111088676B (zh) 基座及衣物处理装置
JP2003135890A (ja) 洗濯乾燥機および水冷式熱交換器
CN112726158B (zh) 一种冷凝器及衣物处理设备
CN216585798U (zh) 用于衣物处理设备的过滤组件
CN111021013B (zh) 底座及衣物处理装置
CN111021014B (zh) 座体及衣物处理装置
CN217479803U (zh) 一种除湿器及衣物处理设备
CN114059332B (zh) 一种冷凝装置及衣物处理设备
CN215561393U (zh) 冷凝器及具有该冷凝器的衣物处理设备
CN114790630A (zh) 一种洗干一体机及其冷凝风道
CN220572166U (zh) 一种水汽分离装置、洗碗机内胆以及洗碗机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23773820

Country of ref document: EP

Kind code of ref document: A1