WO2023179568A1 - 一种冷凝器及衣物处理设备 - Google Patents

一种冷凝器及衣物处理设备 Download PDF

Info

Publication number
WO2023179568A1
WO2023179568A1 PCT/CN2023/082609 CN2023082609W WO2023179568A1 WO 2023179568 A1 WO2023179568 A1 WO 2023179568A1 CN 2023082609 W CN2023082609 W CN 2023082609W WO 2023179568 A1 WO2023179568 A1 WO 2023179568A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
condensate
condenser
guide plate
channel
Prior art date
Application number
PCT/CN2023/082609
Other languages
English (en)
French (fr)
Inventor
唐启庆
尤惠钦
吴艳婧
王洋洋
唐雨生
陆源
Original Assignee
无锡小天鹅电器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡小天鹅电器有限公司 filed Critical 无锡小天鹅电器有限公司
Publication of WO2023179568A1 publication Critical patent/WO2023179568A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F25/00Washing machines with receptacles, e.g. perforated, having a rotary movement, e.g. oscillatory movement, the receptacle serving both for washing and for centrifugally separating water from the laundry and having further drying means, e.g. using hot air 
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • D06F39/10Filtering arrangements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/20General details of domestic laundry dryers 
    • D06F58/22Lint collecting arrangements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/20General details of domestic laundry dryers 
    • D06F58/24Condensing arrangements

Definitions

  • the present application relates to the technical field of clothing cleaning and care, and in particular to a condensation device and clothing treatment equipment.
  • the drying process generally requires the use of a condenser to reduce the humidity of the hot and humid air flow.
  • the working principle of the condenser is as follows: after the hot and humid airflow discharged from the drum enters the condenser, it comes into contact with the condensed water in the condenser. During the contact process, the water vapor in the hot and humid airflow condenses into water, and the condensed water mixes into the condenser. The condensed water is discharged through the drainage pipe, and the condensed hot and humid airflow turns into relatively dry cold air and enters the drum again.
  • Condensers in the related art generally require a large condensate drop and a large air flow distance. Therefore, the condenser has a relatively large volume and many structural restrictions.
  • embodiments of the present application are expected to provide a condenser and laundry treatment equipment with a relatively compact structure.
  • an embodiment of the present application provides a condenser, including:
  • the condensation pipe has an air inlet, an air outlet, a water inlet and a drainage outlet.
  • An air flow channel extending laterally is formed between the air inlet and the air outlet.
  • the water inlet is located above the air flow channel.
  • the drainage outlet is located on the lower side of the air flow channel, between the water inlet and the drainage outlet A condensate flow path is formed through the air flow channel.
  • the height of the highest point of the air inlet is higher than or equal to the height of the lowest point of the air outlet
  • the highest point of the water inlet is higher than or equal to the lowest point of the air outlet.
  • the partition wall separates the air flow channel and a drainage channel located on the lower side of the air flow channel in the condensation tube, and the drainage channel has the drainage port;
  • the partition wall is provided with a water inlet connecting the air flow channel and the drainage channel; or, part of the edge of the partition wall is spaced apart from the inner wall of the condensation pipe to form a connection with the air flow channel at the interval. and the water outlet of the drainage channel.
  • the area where the condensate flow path passes through the air flow channel is located downstream of the water outlet along the air flow direction, and a partial area of the side of the partition wall facing the air flow channel forms a drainage surface, The drainage surface guides the condensate flow path to extend toward the water outlet.
  • the airflow channel has a first extension section and a second extension section
  • the second extension section is connected with the first extension section and extends to one side of the first extension section.
  • One end of the first extension section away from the second extension section has the air inlet
  • the An end of the second extension section away from the first extension section has the air outlet, and the condensate flow path passes through the first extension section.
  • the condenser further includes a flow guide component disposed in the air flow channel, and the flow guide component is located on the condensate flow path to control the condensate flowing along the condensate flow path. Carry out diversion.
  • the flow guide assembly includes a guide plate, and the guide plate guides the condensate to flow toward at least one of two opposite sides of the guide plate along the air flow direction.
  • a flow channel is formed on the baffle plate.
  • the flow guide assembly includes a plurality of the flow guide plates, and each of the flow guide plates is arranged at intervals.
  • each of the baffles is arranged vertically in layers; or,
  • Some of the deflectors among the plurality of deflectors are arranged vertically in layers, and some of the deflectors are arranged at intervals along the transverse direction.
  • the relative positions of at least part of the vertically adjacent baffles are such that along the flow direction of the condensate, the baffles located downstream can receive At least part of the condensate flowing down from the baffle located upstream.
  • An embodiment of the present application also provides a clothing treatment device, including:
  • a cylinder assembly the cylinder assembly is provided with a clothes treatment chamber and an air inlet and an air outlet connected with the clothes treatment chamber;
  • a filtering device the filtering device communicates with the air outlet and the air inlet;
  • An air guide device communicates with the air outlet and the air inlet.
  • the air flow channels are arranged along the left and right directions of the barrel assembly; and/or,
  • the drain port is located at the rear side of the barrel assembly in the axial direction.
  • the air flow channel extends laterally, the water inlet is located on the upper side of the air flow channel, the drain outlet is located on the lower side of the air flow channel, and the condensate flow path formed between the water inlet and the drain outlet passes from top to bottom.
  • the condensate flowing along the condensate flow path flows downward under the action of its own gravity, and exchanges heat with the hot and humid air flowing along the air flow channel when passing through the air flow channel.
  • the condenser does not require a large air flow distance in the vertical direction, nor does it require a large condensate drop. In other words, the condenser is not affected by the condensate drop and air flow distance.
  • the structure is not only relatively compact, but also It is flexible and can adapt to more functional structures, especially some special filtering devices.
  • Figure 1 is a partial structural schematic diagram of a clothes treatment device according to an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of a condenser according to the first embodiment of the present application.
  • Figure 3 is a partial cross-sectional view of the condenser shown in Figure 2;
  • Figure 4 is a schematic diagram of part of the internal structure of the condenser shown in Figure 3, in which the arrows with dotted lines indicate the direction of air flow, and the continuous arrows with solid lines indicate the direction of condensate flow;
  • Figure 5 is a partial cross-sectional view of the condenser of the second embodiment of the present application.
  • Figure 6 is a schematic diagram of part of the internal structure of the condenser shown in Figure 5;
  • Figure 7 is a schematic diagram of the flow of airflow and condensate in the structure shown in Figure 5.
  • the arrows with dotted lines indicate the flow direction of the airflow, and the continuous arrows with solid lines indicate the flow direction of the condensate;
  • Figure 8 is a schematic structural diagram of a condenser according to the third embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a condenser according to the fourth embodiment of the present application, in which the continuous arrows with solid lines indicate the flow direction of the condensate, and the air flow direction is the same as the air flow direction shown in Figure 7;
  • Figure 10 is a schematic structural diagram of the condenser of the fifth embodiment of the present application, in which the continuous arrows with solid lines indicate the flow direction of the condensate, and the air flow direction is the same as the air flow direction shown in Figure 7;
  • FIG. 11 is a schematic structural diagram of a condenser according to the sixth embodiment of the present application, in which the continuous arrows with solid lines indicate the flow direction of the condensate, and the air flow direction is the same as the air flow direction shown in FIG. 7 .
  • the condenser 10 includes a condenser tube 11.
  • the condenser tube 11 has an air inlet 11a, an air outlet 11b, a water inlet 11c and a drain outlet 11d.
  • An airflow channel 11e extending laterally is formed between the air inlet 11a and the air outlet 11b, that is to say, The air inlet 11a and the air outlet 11b are respectively located on opposite sides of the condenser tube 11 laterally.
  • the air flow flowing into the condenser tube 11 from the air inlet 11a can flow laterally along the air flow channel 11e and flow out from the air outlet 11b. That is to say, the air flow channel
  • the path within 11e is the air flow path. It should be noted that the airflow channel 11e described here only needs to extend laterally, and is not limited to flowing from a specified side to a specified other side.
  • the water inlet 11c is located on the upper side of the air flow channel 11e, and the drain outlet 11d is located on the lower side of the air flow channel 11e. That is to say, the water inlet 11c is set higher than the air flow channel 11e, and the drain outlet 11d is set higher than the air flow. Set height of channel 11e.
  • a condensate flow path through the air flow channel 11e is formed between the water inlet 11c and the drain outlet 11d. That is to say, the water inlet 11c of the condensation pipe 11 is located on the upper side of the drain outlet 11d, and a condensate flow path is formed between the water inlet 11c and the drain outlet 11d.
  • the condensate flow path extends from top to bottom.
  • the condensate flowing into the condensation pipe 11 from the water inlet 11c falls from the upper side of the air flow channel 11e under the action of its own gravity, and passes through the air flow channel 11e during the falling process. Finally, it flows out from the drain port 11d.
  • the specific composition of the condensate is not limited and can be water or other types of liquids.
  • the condenser 10 is used to dehumidify and cool the hot and humid airflow. Specifically, the hot and humid airflow enters the condensation pipe 11 from the air inlet 11a and flows along the airflow channel 11e, and the condensate liquid enters the condensation pipe 11 from the water inlet 11c and flows along the condensate flow path. Flow, when the hot and humid airflow passes through the condensate, the hot and humid airflow exchanges heat with the condensate. The condensate absorbs the heat of the hot and humid airflow. The water vapor in the hot and humid airflow is precipitated from the airflow due to cooling and condenses into water droplets. The water droplets mix into the condensation. In the liquid, it is finally discharged from the water outlet.
  • the effect of dehumidification and cooling of the hot and humid airflow is achieved, so that the gas discharged from the air outlet 11b is a relatively low-temperature and dry airflow that has been cooled and dehumidified.
  • the low-temperature dry air flow is relative to the humid and hot air flow, and the temperature of the low-temperature dry air flow is lower than the temperature of the humid and hot air flow.
  • the low temperature in the embodiment of the present application may be room temperature.
  • the condenser 10 of the embodiment of the present application can be used in any appropriate situation. Illustratively, the embodiment of the present application is described by taking the condenser 10 being applied to a laundry treatment device as an example.
  • FIG. 1 This embodiment of the present application provides a clothes treatment device, including a cylinder assembly 20, a filter device 30, an air guide device 40, and the condenser 10 of any embodiment of the present application.
  • the condenser 10 is disposed on the top of the barrel assembly 20.
  • the barrel assembly 20 is provided with a clothes treatment chamber and a clothes processing chamber.
  • the air inlet and air outlet of the management cavity are connected;
  • the filter device 30 connects the air outlet and the air inlet 11a;
  • the air guide device 40 connects the air outlet 11b and the air inlet.
  • the air guide device 40 is equipped with a fan and a heater.
  • the air flow channel 11e of the condenser 10 shown in Figure 1 is arranged along the left and right directions of the barrel assembly 20. That is to say, most of the area of the air flow channel 11e extends along the left and right sides of the barrel assembly 20.
  • the air flow channel 11e of the condenser 10 may also be arranged along the axial direction of the cylinder assembly 20.
  • the drain port 11d of the condenser 10 shown in Figure 1 is located on the axial rear side of the barrel assembly 20. That is to say, part of the structure of the condenser 10 can be extended to the axial rear side of the barrel assembly 20 to facilitate drain.
  • An air flow circulation channel is formed in the clothes processing equipment, and the air guide device 40 guides the dry hot air flow into the clothes processing cavity through the air inlet.
  • the dry hot air flow flows through the surface of the wet clothes and exchanges heat and moisture with the wet clothes. It absorbs the moisture in the clothes and turns it into a hot and humid airflow.
  • the lint and impurities produced by the clothes are mixed into the hot and humid airflow.
  • the hot and humid airflow carries the lint and impurities and flows out through the air outlet in turn and then enters the filter device 30 for filtration. , the filtered hot and humid airflow can remove most of the lint and impurities.
  • the hot and humid air flows through the condenser 10
  • the condensate is condensed and dehumidified to form a low-temperature dry airflow.
  • the low-temperature dry airflow enters the air guide 40 from the air outlet 11b and is heated by the heater in the air guide 40 to form a dry hot airflow.
  • the hot dry airflow enters the clothes processing chamber again, and the lint trapped in the hot and humid airflow is mixed with the condensed water into the condensate, and is discharged through the drain port 11d. This cycle operates to achieve continuous and efficient drying and filtering of the clothes. crumbs.
  • Condensers in the related art are generally arranged vertically, and the water inlet, drain, air inlet and air outlet are all arranged vertically.
  • the air inlet and drain are set at a low place, and the air outlet and water inlet are set at a high place. That is to say, the condensate entering the condenser from the water inlet flows vertically downward, while the hot and humid airflow entering the condenser from the air inlet flows upward vertically. In the process of flowing upward vertically, the hot and humid airflow passes along the vertical direction. Condensate flowing downward to achieve condensation effect.
  • this type of condenser requires a large condensate drop and a large air flow distance.
  • the condenser is relatively large, takes up more installation space, and has many structural restrictions, especially when a certain type of condenser needs to be used. special filtering devices At this time, it is difficult to install a special filter device on the condenser.
  • the air flow channel 11e of the condenser 10 in the embodiment of the present application extends laterally, the water inlet 11c is located on the upper side of the air flow channel 11e, and the drain outlet 11d is located on the lower side of the air flow channel 11e.
  • the condensation formed between the water inlet 11c and the drain outlet 11d The liquid flow path passes through the air flow channel 11e from top to bottom.
  • the condensate flowing along the condensate flow path flows downward under the action of its own gravity, and when passing through the air flow channel 11e, it interacts with the hot and humid airflow flowing along the air flow channel 11e. heat exchange.
  • the condenser 10 Since the air flow channel 11e of the condenser 10 extends laterally, the condenser 10 does not require a large air flow distance in the vertical direction, nor does it require a large condensate drop. That is to say, the condenser 10 does not Affected by the condensate drop and air flow distance, the structure is not only relatively compact, but also flexible and can adapt to more functional structures, especially to some special filtering devices 30 .
  • the relative height between the air inlet 11a and the air outlet 11b in the embodiment of the present application can be adjusted as needed.
  • the highest point of the air inlet 11a can be set higher than the lowest point of the air outlet 11b.
  • the setting height of the point is that at least some areas of the air inlet 11a are set higher than the air outlet 11b.
  • only some areas of the air inlet 11a are set higher than the air outlet 11b, which is equivalent to
  • the height difference between the air inlet 11a and the air outlet 11b is small, which is beneficial to reducing the height dimension of the condenser pipe 11 and saving the installation space of the condenser pipe 11 in the height direction.
  • the air inlet 11a when the air inlet 11a is set up vertically or at an angle as shown in Figures 2 and 3, the air inlet 11a has an obvious highest point and a lowest point, while when the air inlet 11a is set up horizontally (that is, as shown in Figure 2 2 is the same as the setting method of the air outlet 11b shown in Figure 3), the air inlet 11a has only one setting height, and the setting height is equal to the setting height of the highest point of the air inlet 11a. Similarly, when the air outlet 11b is set vertically or tilted, the air outlet 11b has obvious highest points and lowest points. When the air outlet 11b is set horizontally as shown in Figures 2 and 3, the air outlet 11b has only one setting. The set height is equal to the set height of the lowest point of the air outlet 11b.
  • the height of the highest point of the air inlet 11a may be equal to the height of the lowest point of the air outlet 11b, or the height of the highest point of the air inlet 11a may be lower than the lowest point of the air outlet 11b. Set height.
  • the position of the water inlet 11c in the embodiment of the present application can be adjusted as needed.
  • the water inlet 11c can be provided on the top wall of the condensation pipe 11.
  • a water inlet pipe is provided on the top wall of the condensation pipe 11.
  • the entrance of the water inlet pipe is the water inlet 11c.
  • a water inlet 11c penetrating the top wall may also be formed on the top wall.
  • the relative height between the water inlet 11c and the air outlet 11b can also be adjusted as needed.
  • the setting height of the highest point of the water inlet 11c can be higher than the setting height of the lowest point of the air outlet 11b. , that is to say, at least some areas of the water inlet 11c are set higher than the air outlet 11b.
  • the definition of the highest point of the water inlet 11c is the same as the definition of the highest point of the air inlet 11a.
  • the water inlet 11c and the air outlet 11b shown in Figures 2 to 4 are both set horizontally.
  • the entire water inlet 11c is set higher than the air outlet 11b, the height difference between the water inlet 11c and the air outlet 11b It is also relatively small. Therefore, it is also beneficial to reduce the height dimension of the condenser pipe 11 and save the installation space of the condenser pipe 11 in the height direction.
  • the setting height of the highest point of the water inlet 11c may also be equal to the setting height of the lowest point of the air outlet 11b, or the setting height of the highest point of the water inlet 11c may also be lower than the lowest point of the air outlet 11b. Set height.
  • the condenser tube 11 is provided with a partition wall 11f, and the partition wall 11f separates the airflow channel 11e in the condenser tube 11 and the drainage channel 11g located below the airflow channel 11e.
  • the drain channel 11g has a drain port 11d, that is, a part of the condensate flow path passes through the drain channel 11g.
  • Part of the edge of the partition wall 11f in Figure 3 is spaced apart from the inner wall of the condensation tube 11, so that a water inlet (not shown) connecting the airflow channel 11e and the drainage channel 11g is formed at the interval.
  • the nozzle may also be formed directly on the partition wall 11f.
  • the condensate After the condensate passes through the air flow channel 11e, the condensate flows into the drainage channel 11g from the water outlet and is discharged from the drainage outlet 11d.
  • the drainage channel 11g can serve to collect condensate so that the condensate can be discharged from the drain outlet 11d in a timely manner.
  • the area where the condensate flow path passes through the air flow channel 11e can be located downstream of the water outlet along the air flow direction, which is equivalent to the hot and humid air flowing from above the water outlet first and then through the condensate.
  • a partial area of the side of the partition wall 11f facing the air flow channel 11e forms a drainage surface 11h.
  • the drainage surface 11h guides the condensate flow path to extend toward the water outlet.
  • the drainage surface 11h in Figure 4 is a curved surface.
  • the drainage surface 11h also It can be an inclined plane, passing through the condensation of the air flow channel 11e After the liquid falls on the drainage surface 11h, it can flow to the water outlet along the drainage surface 11h.
  • the airflow channel 11e may also have a first extension section 11e1 and a second extension section 11e2; the second extension section 11e2 is connected to the first extension section 11e1 and extends toward the first extension section 11e1. extends to one side of One end of 11e2 away from the first extension section 11e1 has an air outlet 11b, and the condensate flow path passes through the first extension section 11e1.
  • the first extension section 11e1 extends along the length direction of the condensation pipe 11, and the second extension section 11e2 extends along the width direction of the condensation pipe 11.
  • Providing the second extension section 11e2 is equivalent to saving condensation.
  • the length of the tube 11 is such that the overall structure of the condenser 10 can be more compact.
  • the low-temperature dry air flow formed after condensation may also contain tiny droplets formed by a small amount of condensate. Therefore, by providing the first extension section 11e1 and the second extension section 11e2, the first extension section 11e1 and the second extension section 11e2 can be The connection point forms a corner.
  • the tiny droplets contained in the low-temperature drying airflow can be thrown to the airflow channel 11e under the action of centrifugal force.
  • the condensate can also be prevented from flowing to the air outlet 11b along with the air flow as much as possible.
  • the condenser 10 further includes a flow guide assembly 12.
  • the flow guide assembly 12 is disposed in the air flow channel 11e and is located on the condensate flow path. When the condensate flows through the flow guide assembly At 12 o'clock, the flow guide assembly 12 can guide the condensate so that the hot and humid airflow can fully contact the condensate, thereby improving the condensation and filtration and chip removal effects of the condenser 10 .
  • the guide assembly 12 can have various structural forms. For example, please refer to Figures 5 to 11.
  • the guide assembly 12 includes a guide plate 121.
  • the guide plate 121 guides the condensate to the guide plate 121 along the air flow direction. At least one of the opposite sides flows.
  • the air guide assembly 12 shown in Figures 5 to 11 is provided with multiple air guide plates 121, and each air guide plate 121 is arranged at intervals. In some embodiments, the air guide assembly 12 may also be provided with only one air guide plate. 121,
  • the shape of the guide plate 121 shown in FIGS. 5 to 11 is generally rectangular. It can be understood that the shape of the guide plate 121 is not limited to a rectangle. In some embodiments, the shape of the guide plate 121 may also be a rectangle. Circle, oval, trapezoid, triangle, special shape, etc.
  • the baffle 121 can guide the condensate to flow to opposite sides of the baffle 121 along the air flow direction.
  • the airflow direction refers to the direction in which the airflow flows along the airflow path. That is to say, after the condensate flows down from the opposite sides of the guide plate 121 along the air flow direction, water curtains can be formed on the opposite sides of the guide plate 121 along the air flow direction.
  • the guide plate 121 can also guide the condensate to flow only to one side of the opposite sides of the guide plate 121 along the air flow direction, which is equivalent to the condensate flowing down from one of the opposite sides of the guide plate 121 along the air flow direction. Afterwards, a water curtain can only form on the side where the condensate flows down.
  • FIGS. 5 to 7 Four deflectors 121 are shown in FIGS.
  • the four deflectors 121 shown in FIGS. 5 to 7 are respectively referred to as The first guide plate 121a, the second guide plate 121b, the third guide plate 121c and the fourth guide plate 121d, wherein the first guide plate 121a, the second guide plate 121b and the third guide plate 121c
  • the condensate can be guided to flow to opposite sides of the guide plate 121 along the airflow direction.
  • the condensate flowing down from the first guide plate 121a, the second guide plate 121b, and the third guide plate 121c can flow through the first guide plate 121.
  • the plate 121a, the second guide plate 121b, and the third guide plate 121c respectively form water curtains on opposite sides along the air flow direction, and the fourth guide plate 121d guides the condensate to the opposite sides of the guide plate 121 along the air flow direction.
  • One of the two sides flows, and the condensate flowing down from the fourth guide plate 121d only forms a water curtain on the side where the condensate flows down.
  • the water curtain can increase the contact area between the hot and humid airflow and the condensate, so that the hot and humid airflow can fully exchange heat with the condensate, thereby improving the condensation effect.
  • the hot and humid airflow can be made to pass through at least two water curtains, that is, the guide plate 121 guides the condensate.
  • the guide plate 121 guides the condensate to flow to the opposite sides of the guide plate 121 along the air flow direction, so that the number of water curtains can be increased so that The hot and humid airflow can more fully contact the water curtain, thus further improving the condensation, filtration and chip removal effects.
  • the guide assembly 12 shown in FIGS. 5 to 7 is actually a part of the plurality of guide plates 121 .
  • the guide plates 121 guide the condensate to flow to opposite sides of the guide plate 121 along the air flow direction.
  • the other part of the guide plate 121 guides the condensate to flow to one of the opposite sides of the guide plate 121 along the air flow direction.
  • each guide plate 121 can also guide the condensate to flow to the opposite sides of the guide plate 121 along the air flow direction, or each guide plate 121 can guide the condensate to flow to the guide plate 121 along the air flow direction.
  • One of the opposite sides flows.
  • the guide plate 121 can be configured to guide condensate to flow to opposite sides of the guide plate 121 along the air flow direction, or can be configured to guide condensate to the guide plate 121 Flow along one of the two opposite sides in the direction of air flow.
  • the guide surface of the guide plate 121 can be inclined downward from the side located downstream of the air flow direction to the side located upstream of the air flow direction. That is to say, the hot and humid air flow can not only interact with water In addition to curtain contact, it can also be in contact with the condensate on the guide surface. This can also increase the contact area between the hot and humid airflow and the condensate to further improve the condensation, filtration and chip removal effects.
  • the flow guide surface is not limited to being arranged downwardly from the side located downstream in the air flow direction to the side located upstream in the air flow direction.
  • the flow guide surface may also be arranged horizontally.
  • a flow concentrating groove 121 e can also be formed on the guide plate 121 , and the condensing groove 121 e can collect the condensate, thereby not only slowing down the flow rate of the condensate, but also allowing the flow path along the air flow to Part of the flowing hot and humid airflow can fully contact the condensate in the collecting tank 121e, thereby improving the condensation, filtration and chip removal effects.
  • the flow concentrating groove 121e can be formed in various ways.
  • the flow guide surface of the guide plate 121 can define the flow concentrating groove 121e. That is to say, a non-planar flow guide surface can be used to form the flow concentrating groove 121e.
  • the flow guide plate 121 can be bent so that the flow guide surface can construct the flow collecting groove 121e.
  • the guide surface of the guide plate 121 shown in FIG. 8 is a curved surface that is bent toward the bottom end surface of the guide plate 121.
  • the guide surface may also include a first inclined surface and a third connected surface.
  • the two inclined planes, the first inclined plane and the second inclined plane may both be inclined planes, one of them may be an inclined plane and the other may be an inclined curved plane, and the first inclined plane and the second inclined plane define a gathering groove 121e.
  • a part of the top of the baffle 121 may be recessed to form a flow collecting channel. 121e.
  • three guide plates 121 are provided with flow collecting grooves 121e, and the last guide plate 121 along the condensate flow direction is not provided with a flow collecting groove 121e. It can be understood that there is no flow collecting groove 121e.
  • the position and number of the guide plates 121 provided with the flow collecting grooves 121e can be adjusted as needed. In some embodiments, all the guide plates 121 may be provided with the flow collecting grooves 121e, or all the guide plates 121 may be provided with the flow collecting grooves 121e. None of the baffles 121 is provided with flow collecting grooves 121e.
  • the relative position of the guide plate 121 and the water inlet 11c can be determined as needed, as long as the condensate flowing into the condensation pipe 11 from the water inlet 11c can flow to the guide plate 121.
  • the relative position of the guide plate 121 and the water inlet 11c can be: the axial centerline of the water inlet 11c passes through the guide plate 121, that is, the first guide plate 121a, the second guide plate 121b and the third guide plate in Figure 6.
  • the arrangement of the flow plate 121c and the relative position between the flow guide 121 and the water inlet 11c can also be: the flow guide 121 is located on one of the two opposite sides of the axial centerline of the water inlet 11c along the air flow direction, as shown in Figure The arrangement method of the fourth guide plate 121d in 6.
  • the multiple baffle plates 121 can be arranged at intervals in the condensation tube 11 in various ways. For example, please refer to FIGS. 5 to 7 .
  • Each baffle plate 121 can be arranged vertically in layers, that is to say, Each guide plate 121 may be arranged at intervals along the vertical direction to form a multi-layer structure.
  • the relative position of at least part of the vertically adjacent guide plates 121 can satisfy: along the direction of condensate flow, the guide plate located downstream 121 can receive at least part of the condensate flowing down from the upstream baffle 121 , that is to say, at least two vertically adjacent baffles 121 are in relative positions such that the condensate flowing down from one baffle 121 is At least part of the condensate can flow to another adjacent baffle 121 located below the baffle 121 .
  • the first guide plate 121a and the second guide plate 121b are vertically adjacent, and the first guide plate 121a and the second guide plate 121b are vertically adjacent.
  • the guide plate 121a is located upstream of the second guide plate 121b along the condensate flow direction, and the horizontal projection of the first guide plate 121a is located within the horizontal projection area of the second guide plate 121b.
  • the horizontal projection refers to A projection on a horizontal plane perpendicular to the vertical.
  • the condensate on the first guide plate 121a can flow from opposite sides of the first guide plate 121a along the air flow direction to the second guide plate 121b, which is equivalent to flowing from the second guide plate 121a to the second guide plate 121b. All the condensate flowing up and down the first guide plate 121a flows to the second guide plate 121b.
  • the second guide plate 121b and the third guide plate 121c are arranged vertically adjacent to each other, and the second guide plate 121b and the third guide plate 121c are vertically adjacent. 121b is located upstream of the third guide plate 121c along the condensate flow direction.
  • the horizontal projection of the second guide plate 121b is located within the horizontal projection area of the third guide plate 121c, which is equivalent to the water flowing down from the second guide plate 121b. All the condensate also flows to the third guide plate 121c. Please continue to refer to Figures 6 and 7.
  • the third guide plate 121c and the fourth guide plate 121d are arranged vertically adjacent to each other, and the third guide plate 121c is located upstream of the fourth guide plate 121d along the condensate flow direction. , among the opposite sides of the third guide plate 121c along the air flow direction, only the horizontal projection of one side is located in the horizontal projection area of the fourth guide plate 121d.
  • first baffle 121a, the second baffle 121b and the third baffle 121c are not limited to the arrangement shown in Figures 6 and 7.
  • the opposite sides of the guide plate 121 along the air flow direction can be referred to as the first side and the second side respectively.
  • the first side in FIG. 9 is located upstream of the second side along the air flow direction.
  • the first side may also be located downstream of the second side along the air flow direction, and the positions of the first side and the second side may be interchanged.
  • the horizontal projection of the first side of the first deflector 121a in Figure 9 is located within the horizontal projection area of the second deflector 121b, and the horizontal projection of the second side of the first deflector 121a and the second deflector 121b
  • the horizontal projections of the second side are all located within the horizontal projection area of the third guide plate 121c, which is equivalent to the condensate flowing down from the first side of the first guide plate 121a flowing onto the second guide plate 121b, from the third guide plate 121b.
  • the condensate flowing down from the second side of a baffle 121a and the second side of the second baffle 121b all flows to the third baffle 121c, and the condensate flowing down from the first side of the second baffle 121b
  • the condensate does not flow to the third guide plate 121c. That is to say, the guide plate 121 located downstream of the condensate flow direction can receive part of the condensate flowing down from the adjacent upstream guide plate 121. .
  • the downstream guide plate 121 can receive at least part of the condensate flowing down from the adjacent upstream guide plate 121.
  • the relative positions of the first baffle 121a, the second baffle 121b and the third baffle 121c can also be It is assumed that: the horizontal projection of the first side of the first deflector 121a is located within the horizontal projection area of the second deflector 121b, and the horizontal projection of the second side of the first deflector 121a is located at the level of the third deflector 121c. In the projection area, the horizontal projection of the second side of the second guide plate 121b is staggered from the horizontal projection of the first side of the third guide plate 121c.
  • the water flowing down from the first side of the first guide plate 121a The condensate flows to the second guide plate 121b, and the condensate flowing down from the second side of the first guide plate 121a flows to the third guide plate 121c.
  • the condensate flowing down from the second side of the second guide plate 121b The condensate flowing down does not flow to the third guide plate 121c, but avoids the third guide plate 121c and continues to flow downward. That is to say, the second guide plate 121b can connect the adjacent and upstream third guide plate 121c.
  • the third guide plate 121c does not catch the condensate flowing down from the adjacent second guide plate 121b located upstream, which is equivalent to multiple guide plates 121 , only some of the relative positions of the vertically adjacent baffles 121 are such that along the condensate flow direction, the downstream baffle 121 can receive at least part of the condensate flowing down from the upstream baffle 121 .
  • the guide plate 121 located downstream in the direction of condensate flow receives at least part of the condensate flowing down from the adjacent guide plate 121 located upstream, which can not only form a water curtain between the two adjacent guide plates 121, but also form a water curtain between the two adjacent guide plates 121. It can also slow down the flow rate of the condensate, thereby further improving the condensation, filtration and chip removal effects. Especially when at least part of the guide plates 121 among the plurality of guide plates 121 can also guide the condensate to flow to opposite sides of the guide plate 121 along the air flow direction, the condensation, filtration and chip removal effects of the condenser 10 can be greatly improved. .
  • the third guide plate 121c in Figure 10 does not receive the condensate flowing down from the adjacent second guide plate 121b located upstream, but from the second guide plate 121b
  • the condensate flowing down the second side also forms a separate water curtain. That is to say, compared with the flow guide assembly 12 shown in Figure 6, the flow guide assembly 12 shown in Figure 9 adds a third guide plate 121c.
  • the number of water curtains on the lower side can also improve the condensation, filtration and chip removal effects of the condenser 10.
  • the multi-layer structure adopted by the air guide assembly 12 shown in Figures 5 to 10 is that only one air guide plate 121 is provided on each layer.
  • the air guide assembly 12 can also have multiple air guide plates 121. Some of the air guide plates 121 are arranged in layers along the vertical direction, and some of the air guide plates 121 are arranged at intervals along the transverse direction. That is to say, the air guide assembly 12 shown in Figure 11 also adopts a multi-layer structure, except that Same as Figure 5 to Figure 10 Compared with the air guide assembly 12 shown in FIG. 11 , at least one layer of the air guide assembly 12 shown in FIG.
  • the air guide assembly 12 shown in FIG. 11 can use the air guide plate 121 described in any of the previous embodiments, which will not be described again.
  • the cylinder assembly 20 includes an inner cylinder and an outer barrel.
  • the inner cylinder is rotatably disposed in the outer barrel, and the above-mentioned condenser 10 is connected to the outer barrel.
  • the inner cylinder may be a non-porous inner cylinder or a perforated inner cylinder.
  • the inner cylinder is a perforated inner cylinder, rely on the outer bucket to hold water.
  • the inner drum is a non-porous inner drum, it relies on the inner drum itself to hold water. That is to say, the inner drum can hold both water and clothes. During the washing process, the water in the inner drum will not enter the outer drum. , during the drainage process, water will be drained through the outer barrel.
  • the clothes processing equipment in the embodiment of the present application may be a clothes dryer, an integrated washing and drying machine, etc., and is not limited here.
  • the laundry treatment equipment may be a drum type laundry treatment equipment or a pulsator type laundry treatment equipment.

Abstract

本申请实施例提供一种冷凝器及衣物处理设备,冷凝器包括冷凝管,所述冷凝管具有进风口、出风口、进水口和排水口,所述进风口和所述出风口之间形成沿横向延伸的气流通道,所述进水口位于所述气流通道的上侧,所述排水口位于所述气流通道的下侧,所述进水口和所述排水口之间形成穿过所述气流通道的冷凝液流动路径。

Description

一种冷凝器及衣物处理设备
相关申请的交叉引用
本申请基于申请号为202210284855.6、申请日为2022年03月22日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及衣物洗护技术领域,尤其涉及一种冷凝装置及衣物处理设备。
背景技术
以滚筒洗烘一体机为例,其烘干过程一般需要使用冷凝器来降低湿热气流的湿度。冷凝器的工作原理如下:从滚筒内排出的湿热气流进入冷凝器之后,与冷凝器中的冷凝水进行接触,在接触过程中,湿热气流中的水蒸汽冷凝成水,凝结成的水混合到冷凝水中,经排水管道排出,被冷凝后的湿热气流又变为相对干燥的冷空气,再次进入滚筒内。
相关技术中的冷凝器冷凝器一般需要较大的冷凝液落差以及较大的气流流动距离,所以,冷凝器的体积比较大,结构限制较多。
发明内容
有鉴于此,本申请实施例期望提供一种结构相对紧凑的冷凝器及衣物处理设备。
为达到上述目的,本申请一实施例提供了一种冷凝器,包括:
冷凝管,所述冷凝管具有进风口、出风口、进水口和排水口,所述进风口和所述出风口之间形成沿横向延伸的气流通道,所述进水口位于所述气流通道的上侧,所述排水口位于所述气流通道的下侧,所述进水口和所述排水口之间 形成穿过所述气流通道的冷凝液流动路径。
一些实施方案中,所述进风口的最高点的设置高度高于或等于所述出风口的最低点的设置高度;
所述进水口的最高点设置高度高于或等于所述出风口的最低点的设置高度。
一些实施方案中,所述冷凝管内具有间隔壁,所述间隔壁在所述冷凝管内分隔出所述气流通道以及位于所述气流通道下侧的排水通道,所述排水通道具有所述排水口;
所述间隔壁上设置有连通所述气流通道和所述排水通道的过水口;或,所述间隔壁的部分边缘与所述冷凝管的内壁间隔设置,以在间隔处形成连通所述气流通道和所述排水通道的过水口。
一些实施方案中,所述冷凝液流动路径穿过所述气流通道的区域位于所述过水口沿气流流动方向的下游,所述间隔壁面向所述气流通道的一侧的部分区域形成引流面,所述引流面引导所述冷凝液流动路径向所述过水口延伸。
一些实施方案中,所述气流通道具有第一延伸段和第二延伸段;
所述第二延伸段与所述第一延伸段连通且向所述第一延伸段的一侧延伸,所述第一延伸段远离所述第二延伸段的一端具有所述进风口,所述第二延伸段远离所述第一延伸段的一端具有所述出风口,所述冷凝液流动路径穿过所述第一延伸段。
一些实施方案中,所述冷凝器还包括设置在所述气流通道内的导流组件,所述导流组件位于所述冷凝液流动路径上,以对沿所述冷凝液流动路径流动的冷凝液进行导流。
一些实施方案中,导流组件包括导流板,导流板引导冷凝液向导流板沿气流流动方向的相对两侧的至少其中一侧流动。
一些实施方案中,所述导流板上形成聚流槽。
一些实施方案中,所述导流组件包括多个所述导流板,各所述导流板间隔设置。
一些实施方案中,各所述导流板沿竖向分层设置;或,
多个所述导流板中的部分所述导流板沿竖向分层设置,部分所述导流板沿横向间隔设置。
一些实施方案中,多个所述导流板中,至少部分竖向相邻的所述导流板的相对位置满足:沿所述冷凝液流动方向,位于下游的所述导流板可盛接从位于上游的所述导流板上流下的至少部分冷凝液。
本申请实施例还提供一种衣物处理设备,包括:
筒体组件,所述筒体组件设置有衣物处理腔以及与所述衣物处理腔连通的进气口和出气口;
上述所述的冷凝器,所述冷凝器设置在所述筒体组件的顶部;
过滤装置,所述过滤装置连通所述出气口与所述进风口;
导风装置,所述导风装置连通所述出风口和所述进气口。
一些实施方案中,所述气流通道沿所述筒体组件的左右方向布置;和/或,
所述排水口位于所述筒体组件沿轴向的后侧。
本申请实施例的冷凝器,气流通道横向延伸,进水口位于气流通道的上侧,排水口位于气流通道的下侧,进水口和排水口之间形成的冷凝液流动路径由上至下穿过气流通道,沿冷凝液流动路径流动的冷凝液在自身重力的作用下向下流动,并在穿过气流通道时与沿气流通道流动的湿热气流进行热量交换。该冷凝器在竖向上不需要较大的气流流动距离,也不需要较大的冷凝液落差,也就是说,该冷凝器不受冷凝液落差及气流流动距离的影响,结构不仅相对紧凑,且灵活多变,可以适应更多的功能结构,特别能够适应某些专用的过滤装置。
附图说明
图1为本申请一实施例的衣物处理设备的部分结构示意图;
图2为本申请第一实施例的冷凝器的结构示意图;
图3为图2所示的冷凝器的局部剖视图;
图4为图3所示的冷凝器的部分内部结构示意图,其中带虚线的箭头示意气流流动方向,带实线的连续箭头示意冷凝液流动方向;
图5为本申请第二实施例的冷凝器的局部剖视图;
图6为图5所示的冷凝器的部分内部结构示意图;
图7为气流和冷凝液在图5所示结构内流动的示意图,其中带虚线的箭头示意气流流动方向,带实线的连续箭头示意冷凝液流动方向;
图8为本申请第三实施例的冷凝器的结构示意图;
图9为本申请第四实施例的冷凝器的结构示意图,其中带实线的连续箭头示意冷凝液流动方向,气流流动方向与图7所示的气流流动方向相同;
图10为本申请第五实施例的冷凝器的结构示意图,其中带实线的连续箭头示意冷凝液流动方向,气流流动方向与图7所示的气流流动方向相同;
图11为本申请第六实施例的冷凝器的结构示意图,其中带实线的连续箭头示意冷凝液流动方向,气流流动方向与图7所示的气流流动方向相同。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的技术特征可以相互组合,具体实施方式中的详细描述应理解为本申请宗旨的解释说明,不应视为对本申请的不当限制。
在本申请实施例的描述中,“左”、“右”方位或位置关系为基于附图1,“横向”、“上”、“下”方位或位置关系为基于附图4所示的方位或位置关系,其中,“竖向”为附图4的上下方向。需要理解的是,这些方位术语仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
本申请一实施例提供了一种冷凝器10,请参阅图1至图4,冷凝器10包括冷凝管11,冷凝管11内具有进风口11a、出风口11b、进水口11c和排水口11d。
进风口11a和出风口11b之间形成沿横向延伸的气流通道11e,也就是说, 进风口11a和出风口11b分别位于冷凝管11横向的相对两侧,从进风口11a流入冷凝管11内的气流可以沿气流通道11e横向流动,并从出风口11b流出,也就是说,气流通道11e内的路径就是气流流动路径。需要说明的是,这里所述的气流通道11e只需要沿横向延伸即可,而不限定必须从某一指定的一侧流向指定的另一侧。
进水口11c位于气流通道11e的上侧,排水口11d位于气流通道11e的下侧,也就是说,进水口11c的设置高度高于气流通道11e的设置高度,排水口11d的设置高度低于气流通道11e的设置高度。进水口11c和排水口11d之间形成穿过气流通道11e的冷凝液流动路径,也就是说,冷凝管11的进水口11c位于排水口11d的上侧,进水口11c和排水口11d之间形成的冷凝液流动路径为从上向下延伸,从进水口11c流入冷凝管11内的冷凝液在自身重力的作用下从气流通道11e的上侧下落,并在下落过程中穿过气流通道11e,最后从排水口11d流出。
冷凝液的具体成分不限,可以是水、也可以其他类型的液体。
冷凝器10用于对湿热气流进行除湿降温,具体地,湿热气流从进风口11a进入冷凝管11内并沿气流通道11e流动,冷凝液从进水口11c进入冷凝管11内并沿冷凝液流动路径流动,当湿热气流穿过冷凝液时,湿热气流与冷凝液进行热量交换,冷凝液吸收湿热气流的热量,湿热气流中的水蒸汽因降温从气流中析出并凝结成水珠,水珠混入冷凝液中,最终从出水口排出,如此,达到对湿热气流除湿降温的效果,使得从出风口11b排出的气体为经过降温除湿后的相对低温干燥的气流。需要说明的是,低温干燥的气流是相对湿热气流而言的,低温干燥气流的温度比湿热气流的温度低。本申请实施例中的低温可以是室温。
本申请实施例的冷凝器10可以用于任何适当的场合。示例性地,本申请实施例以冷凝器10应用于衣物处理设备为例进行描述。
示例性地,请参阅图1,本申请实施例提供一种衣物处理设备,包括筒体组件20、过滤装置30、导风装置40以及本申请任一实施例的冷凝器10。冷凝器10设置在筒体组件20的顶部,筒体组件20设置有衣物处理腔以及与衣物处 理腔连通的进气口和出气口;过滤装置30连通出气口与进风口11a;导风装置40连通出风口11b和进气口。需要说明的是,导风装置40内配置有风机和加热器。
具体地,图1所示的冷凝器10的气流通道11e沿筒体组件20的左右方向布置,也就是说,气流通道11e的大部分区域是沿筒体组件20的左右延伸,在一些实施方式中,冷凝器10的气流通道11e也可以沿筒体组件20的轴向布置。
图1所示的冷凝器10的排水口11d位于筒体组件20沿轴向的后侧,也就是说,冷凝器10的部分结构可以延伸至筒体组件20沿轴向的后侧,以便于排水。
衣物处理设备内形成气流循环通道,导风装置40将干燥热气流经进气口导入衣物处理腔内,在衣物处理腔中,干燥热气流流经湿衣物表面,与湿衣物进行热湿交换,吸收衣物中的水分,变为湿热气流,在干衣过程中衣物产生的线屑、杂质等混入湿热气流中,湿热气流裹挟着线屑、杂质依次经出气口流出后进入过滤装置30内进行过滤,经过过滤之后的湿热气流能够除去大部分的线屑、杂质,但是,还有少量尺寸较小的毛屑会随着湿热气流从进风口11a进入冷凝器10中,湿热气流经冷凝器10内的冷凝液冷凝除湿后形成低温干燥气流,低温干燥气流从出风口11b处进入导风装置40内,经导风装置40内的加热器加热后形成干燥热气流。干燥热气流再次进入衣物处理腔,而湿热气流中裹挟的毛屑则随着凝结成的水混合到冷凝液中,并通过排水口11d排出,如此循环运行,实现衣物的连续高效干燥以及过滤除屑。
相关技术中的冷凝器一般为垂直布置,进水口、排水口、进风口和出风口均沿竖向设置,其中,进风口和排水口设置在低处,出风口和进水口设置在高处,也就是说,从进水口进入冷凝器的冷凝液沿竖向向下流动,而从进风口进入冷凝器的湿热气流则沿竖向向上流动,湿热气流沿竖向向上流动的过程中经过沿竖向向下流动的冷凝液,从而达到冷凝的效果。但是,此种冷凝器需要较大的冷凝液落差以及较大的气流流动距离,所以,该冷凝器的体积比较大,占用的安装空间较多,结构限制也较多,特别是在需要使用某些专用的过滤装置 时,专用的过滤装置难以安装在冷凝器上。
而本申请实施例的冷凝器10的气流通道11e横向延伸,进水口11c位于气流通道11e的上侧,排水口11d位于气流通道11e的下侧,进水口11c和排水口11d之间形成的冷凝液流动路径由上至下穿过气流通道11e,沿冷凝液流动路径流动的冷凝液在自身重力的作用下向下流动,并在穿过气流通道11e时与沿气流通道11e流动的湿热气流进行热量交换。由于该冷凝器10的气流通道11e沿横向延伸,所以,该冷凝器10在竖向上不需要较大的气流流动距离,也不需要较大的冷凝液落差,也就是说,该冷凝器10不受冷凝液落差及气流流动距离的影响,结构不仅相对紧凑,且灵活多变,可以适应更多的功能结构,特别能够适应某些专用的过滤装置30。
本申请实施例的进风口11a与出风口11b之间的相对高度可以根据需要进行调整,比如,请参阅图2和图3,进风口11a的最高点的设置高度可以高于出风口11b的最低点的设置高度,也就是说,进风口11a至少有部分区域的设置高度高于出风口11b,图2和图3所示的进风口11a只有部分区域的设置高度高于出风口11b,相当于进风口11a与出风口11b之间的高度差较小,有利于减小冷凝管11的高度尺寸,节省冷凝管11在高度方向上的安装空间。需要说明的是,进风口11a为竖直设置或如图2和图3所示的倾斜设置时,进风口11a具有明显的最高点和最低点,而进风口11a为水平设置时(即与图2和图3所示的出风口11b的设置方式相同),进风口11a只有一个设置高度,该设置高度就等同于进风口11a的最高点的设置高度。同样地,出风口11b为竖直设置或倾斜设置时,出风口11b具有明显的最高点和最低点,而出风口11b为图2和图3所示的水平设置时,出风口11b只有一个设置高度,该设置高度就等同于出风口11b的最低点的设置高度。
在一些实施例中,进风口11a的最高点的设置高度也可以等于出风口11b的最低点的设置高度,或者,进风口11a的最高点的设置高度也可以低于出风口11b的最低点的设置高度。
本申请实施例的进水口11c的设置位置可以根据需要进行调整,较优选地, 请参阅图2至图4,进水口11c可以设置在冷凝管11的顶壁上,图2至图4中冷凝管11的顶壁上设置有进水管,进水管的入口就是进水口11c,在一些实施例中,也可以是在顶壁上形成贯穿顶壁的进水口11c。
进水口11c与出风口11b之间的相对高度也可以根据需要进行调整,比如,请参阅图2至图4,进水口11c的最高点的设置高度可以高于出风口11b的最低点的设置高度,也就是说,进水口11c至少有部分区域的设置高度高于出风口11b。需要说明的是,进水口11c的最高点的定义与进风口11a的最高点的定义相同。图2至图4中所示的进水口11c与出风口11b均为水平设置,虽然整个进水口11c的设置高度都高于出风口11b,但是,进水口11c与出风口11b之间的高度差也相对较小,因此,也有利于减小冷凝管11的高度尺寸,节省冷凝管11在高度方向上的安装空间。
在一些实施例中,进水口11c的最高点的设置高度也可以等于出风口11b的最低点的设置高度,或者,进水口11c的最高点的设置高度也可以低于出风口11b的最低点的设置高度。
一实施例中,请参阅图3,冷凝管11内具有间隔壁11f,间隔壁11f在冷凝管11内分隔出气流通道11e以及位于气流通道11e下侧的排水通道11g。排水通道11g具有排水口11d,也就是说,冷凝液流动路径的一部分经过排水通道11g。图3中的间隔壁11f的部分边缘与冷凝管11的内壁间隔设置,以使得间隔处形成了连通气流通道11e和排水通道11g的过水口(图未示出),在一些实施例中,过水口也可以直接形成在间隔壁11f上。当冷凝液穿过气流通道11e之后,冷凝液从过水口流入排水通道11g,并从排水口11d排出。排水通道11g可以起到汇聚冷凝液的作用,以便与及时将冷凝液从排水口11d排出。
另外,请参阅图4,冷凝液流动路径穿过气流通道11e的区域可以位于过水口沿气流流动方向的下游,相当于湿热气流先从过水口的上方流过,再从冷凝液中穿过。间隔壁11f面向气流通道11e的一侧的部分区域形成引流面11h,引流面11h引导冷凝液流动路径向过水口延伸,图4的引流面11h为曲面,在一些实施方式中,引流面11h也可以是倾斜的平面,穿过气流通道11e的冷凝 液落到引流面11h之后,可以沿着引流面11h流向过水口,相当于沿引流面11h流动的冷凝液的流动方向与气流的流动方向相反,由此,可以尽可能地阻止冷凝液随冷凝后的低温干燥气流流向出风口11b。
一实施例中,请参阅图2和图3,气流通道11e也可以具有第一延伸段11e1和第二延伸段11e2;第二延伸段11e2与第一延伸段11e1连通且向第一延伸段11e1的一侧延伸,也就是说,第二延伸段11e2与第一延伸段11e1之间具有一定的夹角,第一延伸段11e1远离第二延伸段11e2的一端具有进风口11a,第二延伸段11e2远离第一延伸段11e1的一端具有出风口11b,冷凝液流动路径穿过第一延伸段11e1。
具体地,为便于描述,可以认为第一延伸段11e1是沿冷凝管11的长度方向延伸,第二延伸段11e2是沿冷凝管11的宽度方向延伸,设置第二延伸段11e2相当于可以节省冷凝管11的长度,以使冷凝器10的整体结构能够更加紧凑。另外,冷凝后形成的低温干燥气流中也可能夹杂少量冷凝液形成的微小液滴,因此,设置第一延伸段11e1和第二延伸段11e2,可以在第一延伸段11e1和第二延伸段11e2的连通处形成转角,当低温干燥气流流经第一延伸段11e1和第二延伸段11e2的连通处时,低温干燥气流中夹杂的微小液滴可以在离心力的作用下被甩到气流通道11e的侧壁上,由此,也可以尽可能地阻止冷凝液随气流流向出风口11b。
一实施例中,请参阅图5至图11,冷凝器10还包括导流组件12,导流组件12设置在气流通道11e内,且位于冷凝液流动路径上,当冷凝液流经导流组件12时,导流组件12可以对冷凝液进行导流,以使湿热气流能够与冷凝液充分接触,进而可以提高冷凝器10冷凝以及过滤除屑的效果。
导流组件12的结构形式可以有多种,示例性地,请参阅图5至图11,导流组件12包括导流板121,导流板121引导冷凝液向导流板121沿气流流动方向的相对两侧的至少其中一侧流动。
具体地,图5至图11所示的导流组件12设置了多个导流板121,各导流板121间隔设置,在一些实施例中,导流组件12也可以只设置一个导流板121, 图5至图11所示的导流板121的外形大致为矩形,可以理解的是,导流板121的外形并不限于为矩形,在一些实施例中,导流板121的外形也可以是圆形、椭圆形、梯形、三角形、异形等。导流板121可以引导冷凝液向导流板121沿气流流动方向的相对两侧流动。需要说明的是,气流流动方向是指气流沿气流流动路径流动的方向。也就是说,冷凝液从导流板121沿气流流动方向的相对两侧流下之后,可以在该导流板121沿气流流动方向的相对两侧分别形成水幕。导流板121也可以引导冷凝液只向导流板121沿气流流动方向的相对两侧的其中一侧流动,相当于冷凝液从导流板121沿气流流动方向的相对两侧的其中一侧流下之后,只能在冷凝液流下的那一侧形成水幕。比如,请继续参阅图5至图7,图5至图7中示出了四个导流板121,为便于描述,将图5至图7中所示的四个导流板121分别称为第一导流板121a、第二导流板121b、第三导流板121c和第四导流板121d,其中,第一导流板121a、第二导流板121b、第三导流板121c均可以引导冷凝液向导流板121沿气流流动方向的相对两侧流动,从第一导流板121a、第二导流板121b、第三导流板121c上流下的冷凝液在第一导流板121a、第二导流板121b、第三导流板121c沿气流流动方向的相对两侧分别形成水幕,而第四导流板121d则引导冷凝液向导流板121沿气流流动方向的相对两侧的其中一侧流动,从第四导流板121d上流下的冷凝液只在冷凝液流下的那一侧形成水幕。水幕可以提高湿热气流与冷凝液的接触面积,以使得湿热气流能够与冷凝液进行充分地热量交换,由此,可以提升冷凝效果。另外,当导流板121引导冷凝液向导流板121沿气流流动方向的相对两侧流动时,可以使得湿热气流能够至少穿过两个水幕,也就是说,与导流板121引导冷凝液向导流板121沿气流流动方向的相对两侧的其中一侧流动相比,导流板121引导冷凝液向导流板121沿气流流动方向的相对两侧流动,可以增加水幕的数量,以使湿热气流能够更加充分地与水幕接触,由此,可以进一步提高冷凝、过滤除屑效果。
需要说明的是,图5至图7中所示的导流组件12实际上是多个导流板121中的一部分导流板121引导冷凝液向导流板121沿气流流动方向的相对两侧流 动,另一部分导流板121引导冷凝液向导流板121沿气流流动方向的相对两侧的其中一侧流动,可以理解的是,在一些实施方式中,当导流组件12具有多个导流板121时,也可以是各导流板121均引导冷凝液向导流板121沿气流流动方向的相对两侧流动,还可以是各导流板121均引导冷凝液向导流板121沿气流流动方向的相对两侧的其中一侧流动。当导流组件12只有一个导流板121时,该导流板121既可以设置为引导冷凝液向导流板121沿气流流动方向的相对两侧流动,也可以设置为引导冷凝液向导流板121沿气流流动方向的相对两侧的其中一侧流动。
请参阅图6和图7,导流板121的导流面可以从位于气流流动方向下游的一侧朝位于气流流动方向上游的一侧向下倾斜设置,也就是说,湿热气流除了能够与水幕接触之外,还可以与导流面上的冷凝液接触,由此,也可以增加湿热气流与冷凝液的接触面积,以进一步提高冷凝、过滤除屑效果。
可以理解的是,导流面并不限于从位于气流流动方向下游的一侧朝位于气流流动方向上游的一侧向下倾斜设置,比如,在一些实施例中,导流面也可以水平设置。
一实施例中,请参阅图8,导流板121上还可以形成聚流槽121e,聚流槽121e可以汇聚冷凝液,由此,不仅可以减缓冷凝液的流速,还可以使沿气流流动路径流动的部分湿热气流能够与聚流槽121e内的冷凝液充分接触,由此,也可以提高冷凝、过滤除屑效果。
聚流槽121e的形成方式可以有多种,示例性地,请参阅图8,导流板121的导流面可以限定出聚流槽121e,也就是说,可以采用非平面的导流面来构造出聚流槽121e,比如,可以通过弯折导流板121来使导流面构造出聚流槽121e。具体地,图8所示的导流板121的导流面为向靠近导流板121的底端面弯曲的曲面,在一些实施例中,导流面也可以包括相互连接的第一斜面和第二斜面,第一斜面和第二斜面可以均为斜平面,可以是其中之一为斜平面,其中另一为斜曲面,第一斜面和第二斜面之间限定出聚流槽121e。
在一些实施例中,也可以是导流板121顶部的部分区域凹陷形成聚流槽 121e。
图8所示的导流组件12中,有三个导流板121上设置了聚流槽121e,沿冷凝液流动方向的最后一个导流板121没有设置聚流槽121e,可以理解的是,没有设置聚流槽121e的导流板121的设置位置、数量等均可以根据需要进行调整,在一些实施例中,也可以是所有的导流板121均设置聚流槽121e,还可以是所有的导流板121均不设置聚流槽121e。
导流板121与进水口11c的相对位置可以根据需要进行确定,只要从进水口11c流入冷凝管11内的冷凝液能够流到导流板121上即可,示例性地,请参阅图6,导流板121与进水口11c的相对位置可以为:进水口11c的轴向中心线穿过导流板121,即图6中第一导流板121a、第二导流板121b和第三导流板121c的设置方式,导流板121与进水口11c的相对位置也可以为:导流板121位于进水口11c的轴向中心线沿气流流动方向的相对两侧的其中一侧,即图6中第四导流板121d的设置方式。
多个导流板121在冷凝管11内间隔设置的方式也可以有多种,示例性地,请参阅图5至图7,各导流板121可以沿竖向分层设置,也就是说,各导流板121可以沿竖向依次间隔设置,以形成多层结构。
进一步地,请参阅图6至图11,对于多层结构的导流板121,至少部分竖向相邻的导流板121的相对位置可以满足:沿冷凝液流动方向,位于下游的导流板121可盛接从位于上游的导流板121上流下的至少部分冷凝液,也就是说,至少有两个竖向相邻的导流板121的相对位置为从一个导流板121上流下的冷凝液至少有部分可以流到位于该导流板121下侧且相邻的另一个导流板121上。
具体地,以图6和图7中的第一导流板121a和第二导流板121b为例,第一导流板121a和第二导流板121b沿竖向相邻设置,且第一导流板121a位于第二导流板121b沿冷凝液流动方向的上游,第一导流板121a的水平投影位于第二导流板121b的水平投影区域内,需要说明的是,水平投影是指在与竖向相垂直的水平面上的投影。也就是说,第一导流板121a上的冷凝液可以分别从第一导流板121a沿气流流动方向的相对两侧流到第二导流板121b上,相当于从第 一导流板121a上流下的冷凝液全部流到了第二导流板121b上,同样地,第二导流板121b和第三导流板121c沿竖向相邻设置,且第二导流板121b位于第三导流板121c沿冷凝液流动方向的上游,第二导流板121b的水平投影位于第三导流板121c的水平投影区域内,相当于从第二导流板121b上流下的冷凝液也全部流到了第三导流板121c上。请继续参阅图6和图7,第三导流板121c和第四导流板121d沿竖向相邻设置,且第三导流板121c位于第四导流板121d沿冷凝液流动方向的上游,第三导流板121c沿气流流动方向的相对两侧中,只有其中一侧的水平投影位于第四导流板121d的水平投影区域内,因此,从第三导流板121c上流下的冷凝液只有一部分流到第四导流板121d上,另一部分则不经过第四导流板121d,直接流向排水口11d,或者说,从第三导流板121c上流下的冷凝液只有一部分流到了第四导流板121d上。
需要说明的是,第一导流板121a、第二导流板121b和第三导流板121c并不仅限于采用图6和图7所示的布置形式,比如,在另一实施例中,请参阅图9,为便于描述,可以将导流板121沿气流流动方向的相对两侧分别称为第一侧和第二侧,图9中的第一侧位于第二侧沿气流流动方向的上游,在一些实施例中,第一侧也可以位于第二侧沿气流流动方向的下游,相当于第一侧和第二侧的位置可以互换。图9中的第一导流板121a的第一侧的水平投影位于第二导流板121b的水平投影区域内,第一导流板121a的第二侧的水平投影以及第二导流板121b的第二侧的水平投影均位于第三导流板121c的水平投影区域内,相当于从第一导流板121a的第一侧流下的冷凝液流到第二导流板121b上,从第一导流板121a的第二侧以及从第二导流板121b的第二侧流下的冷凝液均流到第三导流板121c上,而从第二导流板121b的第一侧流下的冷凝液则不流到第三导流板121c上,也就是说,位于冷凝液流动方向下游的导流板121可盛接从相邻的且位于上游的导流板121上流下的部分冷凝液。
图6和图9所示的导流组件12中,位于下游的导流板121均可以盛接相邻的且位于上游的导流板121上流下的至少部分冷凝液,另一实施例中,请参阅图10,第一导流板121a、第二导流板121b和第三导流板121c的相对位置也可 以为:第一导流板121a的第一侧的水平投影位于第二导流板121b的水平投影区域内,第一导流板121a的第二侧的水平投影位于第三导流板121c的水平投影区域内,第二导流板121b的第二侧的水平投影与第三导流板121c的第一侧的水平投影错开,也就是说,从第一导流板121a的第一侧流下的冷凝液流到第二导流板121b上,从第一导流板121a的第二侧流下的冷凝液流到第三导流板121c上,但是,从第二导流板121b的第二侧流下的冷凝液不流到第三导流板121c上,而是避开第三导流板121c继续向下流,也就是说,第二导流板121b可以盛接相邻的且位于上游的第一导流板121a上流下的部分冷凝液,但是,第三导流板121c不盛接相邻的且位于上游的第二导流板121b上流下的冷凝液,相当于多个导流板121中,只有部分竖向相邻的导流板121的相对位置满足:沿冷凝液流动方向,位于下游的导流板121可盛接从位于上游的导流板121上流下的至少部分冷凝液。
位于冷凝液流动方向下游的导流板121盛接相邻的且位于上游的导流板121上流下的至少部分冷凝液,不仅可以在相邻的两个导流板121之间形成水幕,还可以减缓冷凝液的流速,由此,也可以进一步提高冷凝、过滤除屑效果。特别是当多个导流板121中的至少部分导流板121还可以引导冷凝液向导流板121沿气流流动方向的相对两侧流动时,冷凝器10的冷凝、过滤除屑效果可以大幅提升。
另外,请参阅图10,虽然图10中的第三导流板121c没有盛接相邻的且位于上游的第二导流板121b上流下的冷凝液,但是,从第二导流板121b的第二侧流下的冷凝液也单独形成了一个的水幕,也就是说,与图6所示的导流组件12相比,图9所示的导流组件12增加了第三导流板121c下侧的水幕的数量,由此,也可以提升冷凝器10的冷凝、过滤除屑效果。
图5至图10所示的导流组件12所采用的多层结构是每层只设置一个导流板121,在另一实施例中,请参阅图11,导流组件12也可以是多个导流板121中的部分导流板121沿竖向分层设置,部分导流板121沿横向间隔设置,也就是说,图11所示的导流组件12同样采用的是多层结构,只是与图5至图10所 示的导流组件12相比,图11所示的导流组件12的至少其中一层可以设置至少两个导流板121,同一层的至少两个导流板121沿横向间隔设置。需要说明的是,图11所示的导流组件12可以采用前面任一实施例所述的导流板121,在此不再赘述。
一实施例中,筒体组件20包括内筒和外桶,内筒转动地设置于外桶内,上述的冷凝器10与外桶连接。
其中,内筒可以是无孔式内筒或有孔式内筒。当内筒为有孔式内筒时,依靠外桶盛水。当内筒为无孔式内筒时,依靠内筒自身盛水,也就是说,内筒内既能够盛水又能够容纳衣物,在洗涤过程中,内筒内的水不会进入外桶内,在排水过程中,会通过外桶排水。
需要说明的是,本申请实施例的衣物处理设备可以是干衣机、洗干一体机等,在此不做限制。衣物处理设备可以是滚筒式衣物处理设备,也可以是波轮式衣物处理设备。
本申请提供的各个实施例/实施方式在不产生矛盾的情况下可以相互组合。
以上所述仅为本申请的较佳实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均包含在本申请的保护范围之内。

Claims (13)

  1. 一种冷凝器,包括:
    冷凝管(11),所述冷凝管(11)具有进风口(11a)、出风口(11b)、进水口(11c)和排水口(11d),所述进风口(11a)和所述出风口(11b)之间形成沿横向延伸的气流通道(11e),所述进水口(11c)位于所述气流通道(11e)的上侧,所述排水口(11d)位于所述气流通道(11e)的下侧,所述进水口(11c)和所述排水口(11d)之间形成穿过所述气流通道(11e)的冷凝液流动路径。
  2. 根据权利要求1所述的冷凝器,所述进风口(11a)的最高点的设置高度高于或等于所述出风口(11b)的最低点的设置高度;
    所述进水口(11c)的最高点设置高度高于或等于所述出风口(11b)的最低点的设置高度。
  3. 根据权利要求1或2所述的冷凝器,所述冷凝管(11)内具有间隔壁(11f),所述间隔壁(11f)在所述冷凝管(11)内分隔出所述气流通道(11e)以及位于所述气流通道(11e)下侧的排水通道(11g),所述排水通道(11g)具有所述排水口(11d);
    所述间隔壁(11f)上设置有连通所述气流通道(11e)和所述排水通道(11g)的过水口;或,所述间隔壁(11f)的部分边缘与所述冷凝管(11)的内壁间隔设置,以在间隔处形成连通所述气流通道(11e)和所述排水通道(11g)的过水口。
  4. 根据权利要求3所述的冷凝器,所述冷凝液流动路径穿过所述气流通道(11e)的区域位于所述过水口沿气流流动方向的下游,所述间隔壁(11f)面向所述气流通道(11e)的一侧的部分区域形成引流面(11h),所述引流面(11h)引导所述冷凝液流动路径向所述过水口延伸。
  5. 根据权利要求1或2所述的冷凝器,所述气流通道(11e)具有第一延伸段(11e1)和第二延伸段(11e2);
    所述第二延伸段(11e2)与所述第一延伸段(11e1)连通且向所述第一延伸段(11e1)的一侧延伸,所述第一延伸段(11e1)远离所述第二延伸段(11e2)的一端具有所述进风口(11a),所述第二延伸段(11e2)远离所述第一延伸段(11e1)的一端具有所述出风口(11b),所述冷凝液流动路径穿过所述第一延伸段(11e1)。
  6. 根据权利要求1或2所述的冷凝器,所述冷凝器(10)还包括设置在所述气流通道(11e)内的导流组件(12),所述导流组件(12)位于所述冷凝液流动路径上,以对沿所述冷凝液流动路径流动的冷凝液进行导流。
  7. 根据权利要求6所述的冷凝器,导流组件(12)包括导流板(121),导流板(121)引导冷凝液向导流板(121)沿气流流动方向的相对两侧的至少其中一侧流动。
  8. 根据权利要求6所述的冷凝器,所述导流板(121)上形成聚流槽(121e)。
  9. 根据权利要求6所述的冷凝器,所述导流组件(12)包括多个所述导流板(121),各所述导流板(121)间隔设置。
  10. 根据权利要求9所述的冷凝器,各所述导流板(121)沿竖向分层设置;或,
    多个所述导流板(121)中的部分所述导流板(121)沿竖向分层设置,部分所述导流板(121)沿横向间隔设置。
  11. 根据权利要求10所述的冷凝器,多个所述导流板(121)中,至少部分竖向相邻的所述导流板(121)的相对位置满足:沿所述冷凝液流动方向,位于下游的所述导流板(121)可盛接从位于上游的所述导流板(121)上流下的至少部分冷凝液。
  12. 一种衣物处理设备,包括:
    筒体组件(20),所述筒体组件(20)设置有衣物处理腔以及与所述衣物处理腔连通的进气口和出气口;
    权利要求1-11任一项所述的冷凝器(10),所述冷凝器(10)设置在所述筒体组件(20)的顶部;
    过滤装置(30),所述过滤装置(30)连通所述出气口与所述进风口(11a);
    导风装置(40),所述导风装置(40)连通所述出风口(11b)和所述进气口。
  13. 根据权利要求12所述的衣物处理设备,所述气流通道(11e)沿所述筒体组件(20)的左右方向布置;和/或,
    所述排水口(11d)位于所述筒体组件(20)沿轴向的后侧。
PCT/CN2023/082609 2022-03-22 2023-03-20 一种冷凝器及衣物处理设备 WO2023179568A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210284855.6A CN114657740B (zh) 2022-03-22 2022-03-22 一种冷凝器及衣物处理设备
CN202210284855.6 2022-03-22

Publications (1)

Publication Number Publication Date
WO2023179568A1 true WO2023179568A1 (zh) 2023-09-28

Family

ID=82030480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082609 WO2023179568A1 (zh) 2022-03-22 2023-03-20 一种冷凝器及衣物处理设备

Country Status (2)

Country Link
CN (1) CN114657740B (zh)
WO (1) WO2023179568A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114737374A (zh) * 2022-03-22 2022-07-12 无锡小天鹅电器有限公司 一种冷凝装置及衣物处理设备
CN114703643B (zh) * 2022-03-22 2023-11-28 无锡小天鹅电器有限公司 一种冷凝组件及衣物处理设备
CN114657740B (zh) * 2022-03-22 2023-12-01 无锡小天鹅电器有限公司 一种冷凝器及衣物处理设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3866333A (en) * 1971-09-17 1975-02-18 Siemens Elektrogeraete Gmbh Dehumidifier for air utilized in laundry drying
CN204803583U (zh) * 2015-05-06 2015-11-25 博西华电器(江苏)有限公司 衣物护理机
CN106192325A (zh) * 2015-04-29 2016-12-07 博西华电器(江苏)有限公司 电动干衣机
CN112647263A (zh) * 2019-10-12 2021-04-13 佛山市云米电器科技有限公司 一种用于衣物护理的冷凝器、烘干装置及衣物护理装置
CN114657740A (zh) * 2022-03-22 2022-06-24 无锡小天鹅电器有限公司 一种冷凝器及衣物处理设备
CN114703643A (zh) * 2022-03-22 2022-07-05 无锡小天鹅电器有限公司 一种冷凝组件及衣物处理设备
CN114737374A (zh) * 2022-03-22 2022-07-12 无锡小天鹅电器有限公司 一种冷凝装置及衣物处理设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2148127C3 (de) * 1971-09-17 1982-05-06 Bosch-Siemens Hausgeräte GmbH, 7000 Stuttgart Wäschetrockner
DE2214618C3 (de) * 1971-09-17 1981-07-23 Bosch-Siemens Hausgeräte GmbH, 7000 Stuttgart Wäschetrockner
DE2931824C2 (de) * 1979-08-06 1982-04-22 Bosch-Siemens Hausgeräte GmbH, 7000 Stuttgart Haushalt-Wäschetrockner
CN207259818U (zh) * 2017-08-14 2018-04-20 苏州三星电子有限公司 一种滚筒洗衣机用冷凝器及烘干装置
CN212152849U (zh) * 2020-02-11 2020-12-15 青岛海尔滚筒洗衣机有限公司 衣物处理设备及其熔敷冷凝器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3866333A (en) * 1971-09-17 1975-02-18 Siemens Elektrogeraete Gmbh Dehumidifier for air utilized in laundry drying
CN106192325A (zh) * 2015-04-29 2016-12-07 博西华电器(江苏)有限公司 电动干衣机
CN204803583U (zh) * 2015-05-06 2015-11-25 博西华电器(江苏)有限公司 衣物护理机
CN112647263A (zh) * 2019-10-12 2021-04-13 佛山市云米电器科技有限公司 一种用于衣物护理的冷凝器、烘干装置及衣物护理装置
CN114657740A (zh) * 2022-03-22 2022-06-24 无锡小天鹅电器有限公司 一种冷凝器及衣物处理设备
CN114703643A (zh) * 2022-03-22 2022-07-05 无锡小天鹅电器有限公司 一种冷凝组件及衣物处理设备
CN114737374A (zh) * 2022-03-22 2022-07-12 无锡小天鹅电器有限公司 一种冷凝装置及衣物处理设备

Also Published As

Publication number Publication date
CN114657740A (zh) 2022-06-24
CN114657740B (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
WO2023179568A1 (zh) 一种冷凝器及衣物处理设备
WO2023179564A1 (zh) 一种冷凝装置及衣物处理设备
WO2023179573A1 (zh) 一种冷凝组件及衣物处理设备
CN106852673B (zh) 热泵式洗碗机
US9976249B2 (en) Dryer or washer dryer
CN108796976A (zh) 洗衣机
EP3252219A1 (en) Heat pump drying or washing-drying machine
CN215561394U (zh) 用于烘干设备的冷凝器及烘干设备
CN214300905U (zh) 一种干衣机排湿装置的外壳结构、排湿装置、干衣机
JP2023528841A (ja) 乾燥機器用の凝縮器及び乾燥機器
EP4296423A1 (en) Condenser for drying device, and drying device
CN106676859A (zh) 换热器清洗喷头、热泵干衣机清洗装置和热泵干衣机
CN110656479B (zh) 冷凝器及衣物处理装置
WO2022036841A1 (zh) 用于干衣机的风道壳和干衣机
CN114293355A (zh) 一种干衣机排湿装置的外壳结构、排湿装置、干衣机
CN217127825U (zh) 一种冷凝装置及衣物处理设备
JP2003135890A (ja) 洗濯乾燥機および水冷式熱交換器
CN112726158B (zh) 一种冷凝器及衣物处理设备
WO2023134460A1 (zh) 用于烘干设备的冷凝通道及烘干设备
CN217298378U (zh) 一种衣物处理设备
CN216585798U (zh) 用于衣物处理设备的过滤组件
CN220572166U (zh) 一种水汽分离装置、洗碗机内胆以及洗碗机
CN114075772B (zh) 用于干衣机的风道壳和干衣机
CN114075770B (zh) 用于干衣机的风道壳和干衣机
CN111088676B (zh) 基座及衣物处理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23773815

Country of ref document: EP

Kind code of ref document: A1