WO2023175836A1 - 構造物の基礎の建設方法 - Google Patents

構造物の基礎の建設方法 Download PDF

Info

Publication number
WO2023175836A1
WO2023175836A1 PCT/JP2022/012294 JP2022012294W WO2023175836A1 WO 2023175836 A1 WO2023175836 A1 WO 2023175836A1 JP 2022012294 W JP2022012294 W JP 2022012294W WO 2023175836 A1 WO2023175836 A1 WO 2023175836A1
Authority
WO
WIPO (PCT)
Prior art keywords
formwork
footing
pedestal
concrete
foundation
Prior art date
Application number
PCT/JP2022/012294
Other languages
English (en)
French (fr)
Inventor
芳行 高野
忠 程原
Original Assignee
日揮グローバル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮グローバル株式会社 filed Critical 日揮グローバル株式会社
Priority to PCT/JP2022/012294 priority Critical patent/WO2023175836A1/ja
Publication of WO2023175836A1 publication Critical patent/WO2023175836A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/01Flat foundations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/01Flat foundations
    • E02D27/02Flat foundations without substantial excavation

Definitions

  • the present invention relates to a method of constructing a foundation for a structure.
  • Patent Document 1 describes a construction method in which a mortar frame is formed by extruding concrete from an additive manufacturing device around reinforcing bars, and a concrete core is further formed inside the mortar frame.
  • An object of the present invention is to provide a method for constructing the foundation of a structure that can shorten the construction period, save labor, and improve quality stability when constructing the foundation of the structure.
  • a first aspect of the present invention is a method for constructing a foundation for a structure having a footing and a pedestal, wherein a formwork that becomes an integrated formwork for the footing and the pedestal is formed from concrete or mortar using a 3D printer. and a filling step of filling the inside of the formwork with concrete, and the formwork has a shape in which a horizontal cross-sectional area decreases from the footing side to the pedestal side.
  • a second aspect of the present invention is characterized in that in the first aspect, the concrete is filled using a 3D printer in the filling step.
  • a third aspect of the present invention in the first or second aspect, includes a reinforcing bar placement step of arranging reinforcing bars for the footing and the pedestal prior to the form forming step, and in the filling step, the reinforcing bars for the footing and the pedestal are arranged.
  • the method is characterized in that the reinforcing bars are embedded in the concrete filled inside the formwork.
  • a fourth aspect of the present invention is a connecting device according to any one of the first to third aspects, which allows structures placed above the pedestal to be connected by anchor bolts or welding prior to the filling step.
  • a member is installed, and in the filling step, a part of the joining member is embedded in concrete filled inside the formwork.
  • a fifth aspect of the present invention is a formwork embedding step according to any one of the first to fourth aspects, in which a embedding material is poured around the formwork and at least a part of the formwork is buried in the embedding material. It is characterized by having the following.
  • a sixth aspect of the present invention is characterized in that in the formwork embedding step in the fifth aspect, the embedding material is poured using a 3D printer.
  • a seventh aspect of the present invention in the fifth or sixth aspect, includes an outer frame forming step of forming an outer frame around the mold using a 3D printer, and in the mold embedding step, the The method is characterized in that the embedding material is poured into the inside of the outer frame.
  • the footing and the pedestal can be formed in an integrated process, improvements such as shortening the construction period, saving labor, and stabilizing quality can be achieved when constructing the foundation of the structure.
  • the second aspect by using a 3D printer to fill the formwork, it is possible to further improve the construction period, save labor, and stabilize quality.
  • the foundation can be reinforced by arranging reinforcing bars for the footing and pedestal and embedding them in concrete.
  • the joining member is more securely fixed. can do.
  • the fifth aspect by burying at least a portion of the formwork in the embedding material, it is possible to construct a foundation that can stably support a structure.
  • the seventh aspect by using a 3D printer to form the outer frame, further improvements such as shorter construction period, labor saving, and stable quality can be achieved.
  • the basic structure 15 shown in FIG. 6 has a shape in which a footing 15a and a pedestal 15b are integrated.
  • This basic structure 15 can be constructed through a step of arranging the reinforcing bars 11 shown in FIG. 1, a step of forming the formwork 12 shown in FIG. 2, and a step of filling the filler 14 shown in FIG. 4.
  • an upper structure (not shown) is constructed above the pedestal 15b.
  • the foundation structure 15 becomes the foundation of the superstructure.
  • the superstructure may be various structures or buildings. Examples include, but are not limited to, workplaces, offices, factories, warehouses, storage facilities, lodgings, passageways, and the like.
  • the structure of the superstructure is not particularly limited, and may be a building with walls or pillars, or may be a site capable of supporting loads such as people, luggage, materials, etc.
  • the structural material of the superstructure is not particularly limited, but examples include reinforced concrete construction, steel frame construction, reinforced steel concrete construction, wooden construction, stone construction, and brick construction.
  • the ground 20 at the height at which the foundation structure 15 is installed is preferably leveled by excavating the ground at the planned construction site before starting the construction process of the foundation structure 15. Ground improvement such as dewatering and compaction may be performed as necessary.
  • reinforcing bars 11 be placed inside the foundation structure 15.
  • the foundation structure 15 can have a reinforced concrete structure.
  • the reinforcing bar 11 shown in FIG. 1 has a footing portion 11a disposed close to the ground 20, and a pedestal portion 11b protruding upward from the center of the footing portion 11a.
  • the footing part 11a is a reinforcing bar for the footing 15a
  • the pedestal part 11b is a reinforcing bar for the pedestal 15b.
  • the pedestal portion 11b may be located eccentrically from the center of the footing portion 11a.
  • the shape and structure of the reinforcing bar 11 are not particularly limited, it generally means a bar-shaped steel material.
  • steel members such as frame-shaped, plate-shaped, column-shaped, net-shaped, and lattice-shaped may be used.
  • a structure similar to the reinforcing bars 11 may be formed by a combination of two or more of these.
  • the shape of the horizontal cross section of the footing portion 11a is not particularly limited, but may be circular, quadrangular, polygonal, or the like.
  • the pedestal portion 11b remains perpendicular to the ground 20.
  • the reinforcing bar 11 may have a reinforcing material 11c. Thereby, even if the reinforcing bars 11 are made of a simple structure or material, the pedestal portion 11b can be stably supported on the footing portion 11a.
  • the reinforcing member 11c may be inclined so as to connect the peripheral edge of the footing portion 11a and the upper portion of the pedestal portion 11b.
  • a plurality of reinforcing members 11c may be arranged evenly or at predetermined intervals around the pedestal portion 11b.
  • the footing 15a has a wider horizontal cross-sectional area than the pedestal 15b. Since the footing 15a contacts the ground 20 over a wider area, the load of the structure can be effectively transmitted to the ground and stability can be achieved. It is preferable that the shape of the footing 15a in contact with the ground 20 is uniform. For example, it is preferable to fill the space between the footing portion 11a and the ground 20 with the filler 14 in the filling process described below. Thereby, the footing 15a can be brought into close contact with the ground 20.
  • a spacer made of mortar, wood, stone, etc. may be partially placed under the footing 11a. Thereby, the filler 14 can be easily filled between the footing portion 11a of the reinforcing bar 11 and the ground 20.
  • the formwork 12 of the embodiment is an integrated formwork of a footing 15a and a pedestal 15b.
  • the formwork 12 includes a footing formwork 12a that serves as a formwork for the footing 15a, and a pedestal formwork 12b that serves as a formwork for the pedestal 15b.
  • the footing formwork 12a and the pedestal formwork 12b are integrally formed using the 3D printer 21.
  • the material for forming the formwork 12 is concrete or mortar.
  • the core portion of the foundation structure 15 is formed by filling the formwork 12 with a filler 14 such as concrete, as shown in FIG.
  • the footing 15a and the pedestal 15b are integrally formed using the form 12 in which the footing form 12a and the pedestal form 12b are integrally formed. This allows the construction period to be significantly shortened. Further, since the filler 14 forming the footing 15a and the filler 14 forming the pedestal 15b are cured integrally, poor bonding between the footing 15a and the pedestal 15b is less likely to occur.
  • the construction method of the embodiment includes (1-1) a formwork forming step of forming the footing formwork 12a and the pedestal formwork 12b in one step; (1-2) filling the inside of the formwork 12 with a filler 14; A filling process may be performed to form footing 15a and pedestal 15b.
  • step of forming the pedestal formwork 12b on the footing formwork 12a (2-3) a step of forming the formwork 12
  • the step of filling the inside of the footing 15a with the filler 14 to form the footing 15a and the pedestal 15b may be carried out in sequence.
  • the 3D printer 21 can form a tall structure by forming the discharged material into a layer having a certain thickness and sequentially stacking the layers.
  • the process of discharging the material from the 3D printer 21 may be performed continuously from the lower part of the footing formwork 12a to the upper part of the pedestal formwork 12b, but this is not limited to this case, and the process of discharging the material from the 3D printer 21 may be performed continuously during the process of forming the formwork 12. There may be an intervening period of interruption.
  • the material is interrupted during the process of forming the formwork 12, it is preferable to cure the material and take measures to suppress drying shrinkage. For example, if the work is interrupted while the lower part of the formwork 12 is being discharged from the 3D printer 21, a concrete curing agent may be applied or a setting retarder may be sprayed. When the remaining material is discharged after the material forming part of the formwork 12 is cured, the surface of the cured material may be subjected to chipping treatment, high-pressure water washing, adhesive application, etc.
  • the formwork 12 of the embodiment has a shape in which the horizontal cross-sectional area decreases from the footing 15a side to the pedestal 15b side. Thereby, when the footing formwork 12a and the pedestal formwork 12b are integrally formed, the difference between the shape of the footing 15a and the shape of the pedestal 15b can be reduced.
  • the pedestal formwork 12b has a tapered shape such as a conical shape or a pyramidal shape.
  • the footing formwork 12a in the illustrated example is formed perpendicular to the ground 20.
  • the footing formwork 12a may have a portion inclined with respect to the ground 20.
  • the illustrated pedestal formwork 12b has a shape that is inclined with respect to the ground 20, except for the upper part.
  • a portion of the pedestal formwork 12b may have a portion perpendicular to the ground 20.
  • the entire pedestal formwork 12b from the lower part to the upper part may have a shape inclined with respect to the ground 20.
  • the footing 15a and the pedestal 15b can be formed in an integrated process. It is possible to achieve improvements such as shortening of time, saving labor, and stabilizing quality.
  • the reinforcing bars 11 are installed on the ground 20 prior to the forming process of the formwork 12, as described above.
  • a formwork 12 may be formed around the reinforcing bars 11 using a 3D printer 21.
  • the reinforcing bars 11 are surrounded by the formwork 12 except for a part of the pedestal portion 11b.
  • a pedestal formwork 12b having a smaller horizontal cross-sectional area than the footing portion 11a of the reinforcing bar 11 can be formed.
  • the reinforcing bars of the footing 15a and the reinforcing bars of the pedestal 15b can be arranged integrally.
  • the foundation structure 15 is formed from reinforced concrete, the foundation structure 15 can be reinforced.
  • a mixture of cement, water, fine aggregate, coarse aggregate, etc. is used.
  • a mixture of cement, water, fine aggregate, etc. is used. Desired admixtures may be added to concrete or mortar as needed. Examples of the fine aggregate include sand, crushed sand, and the like. Examples of the coarse aggregate include gravel and crushed stone. Slag, recycled aggregate, etc. may be used as the aggregate. These are classified as fine aggregates or coarse aggregates depending on their particle size.
  • the material for the formwork 12 may be either concrete or mortar.
  • concrete or mortar is discharged in an uncured state.
  • the material of the formwork 12 in an uncured state after being discharged from the 3D printer 21 preferably has low fluidity.
  • the inclination angle at the portion of the formwork 12 where the horizontal cross-sectional area is reduced should be greater than 0°, but for example, it may be about 10°, about 15°, or about 20°. The angle may be about 25° or about 25°.
  • the 3D printer 21 may be used to fill the filler 14.
  • improvements such as shortening the construction period, saving labor, and stabilizing quality can be achieved.
  • a concrete pump truck or the like may be used to fill the filler 14.
  • the formation of the mold 12 using the 3D printer 21 and the filling of the filler 14 using other means may proceed simultaneously at different locations.
  • the concrete When filling the filler 14 into the formwork 12 using the 3D printer 21, concrete pump truck, etc., the concrete is discharged in an uncured state. It is preferable that the material of the filler 14 has high fluidity so that the filler 14 is supplied to every corner of the formwork 12 having a shape with a decreasing horizontal cross-sectional area.
  • self-compacting concrete so-called "high fluidity concrete”
  • high fluidity concrete a material that is blended with an appropriate chemical admixture to have both high fluidity and material separation resistance may be used.
  • Filler 14 may have a composition similar to that of concrete used when forming forms using conventional methods. Since the material of the formwork 12 has lower fluidity than the filler 14, chemical admixtures, fibers, etc. may be added thereto.
  • a superstructure (not shown) can be joined to the base structure 15.
  • the joining member 13 used for joining with the superstructure is embedded in the concrete of the filler material 14. Thereby, the foundation structure 15 and the upper structure can be easily joined.
  • the illustrated basic structure 15 has a joining member 13 above the pedestal 15b.
  • the joining member 13 may be installed after the formwork 12 is formed, as shown in FIG. 3, or may be installed before the formwork 12 is formed, as shown in FIG.
  • the joining member 13 can be used to join the upper structure by anchor bolts, welding, etc.
  • the joining member 13 may have the function of joining structural members such as steel frames, wood, columns, and outer walls used in the superstructure.
  • the joining member 13 may be a metal plate or the like that can be welded to the steel frame.
  • the reinforcing bars 11 may have a function of fixing the joining member 13. As shown in FIG. 3, when installing the joining member 13 after forming the formwork 12, a template 13a is installed between the formwork 12 and the joining member 13, and The positional relationship of the joining members 13 may be fixed.
  • An identifier may be given to the joining member 13 or the template 13a in order to identify information regarding joining of the upper structure, etc.
  • Examples of the identifier include a tag plate and RFID (Radio Frequency Identification).
  • the identifier may be data recognized through wireless communication, a code such as a bar code or two-dimensional code recognized by a machine, or a display such as letters, numbers, symbols, figures, etc. that can be recognized visually.
  • the joining member 13 When using the template 13a to hold the joining member 13, the joining member 13 does not need to be fixed to the reinforcing bars 11.
  • the template 13a can also be installed between the reinforcing bar 11 and the joining member 13.
  • the template 13a When installing the template 13a, it is preferable that the template 13a holds the position of the joining member 13 until a part of the joining member 13 is embedded in the filler 14. Although illustration of the template 13a is omitted in FIG. 4, it is preferable to maintain the state in which the template 13a is attached to the joining member 13 until the filler 14 hardens.
  • the template 13a is removed from the formwork 12 after the filler 14 has hardened. As a result, even if the template 13a having a simple structure with low strength is adopted, the influence of the template 13a on the structure can be ignored and the design can be facilitated. Considering the removal of the template 13a, it is preferable to install the template 13a above the joining member 13 so that the template 13a is not embedded in the filler 14.
  • the material of the template 13a is not particularly limited, and one or more of reinforcing steel, wood, resin, concrete, stone, brick, etc. can be used.
  • the template 13a may be molded using a 3D printer for resin (not shown).
  • the joining member 13 When fixing the template 13a to the formwork 12, the joining member 13 may be held so as not to come into contact with the reinforcing bars 11. Thereby, even if there is an error in the dimensions, shape, etc. of the reinforcing bars 11, the joining member 13 is positioned relative to the formwork 12 via the template 13a.
  • the joining member 13 When increasing the bonding strength between the joining member 13 and the reinforcing bars 11, the joining member 13 may be fixed to the reinforcing bars 11 using a device, adhesive, or the like.
  • a portion of the joining member 13 necessary for fixing to the joining member 13 is embedded in the filler 14.
  • the joint portion of the joining member 13 with the upper structure is projected above the filler 14 .
  • the joining member 13 only needs to be exposed upward, and does not need to protrude above the filler 14 or from the upper end of the formwork 12.
  • the plate of the joining member 13 may be embedded after welding and joining.
  • the anchor bolts used in the joining member 13 are preferably integrated with the concrete while being embedded in the uncured concrete supplied as the filler 14. Although not particularly shown, it is also possible to use post-installation type anchor bolts. In this case, the anchor bolt is installed after the filler 14 has hardened.
  • design data indicating the shape of the formwork 12 is prepared in advance.
  • the 3D printer 21 discharges material at a predetermined position according to design data to form a structure.
  • the formwork 12 can be repeatedly formed using the same design data.
  • the 3D printer 21 may be supported by a support such as a gantry 22, as shown in FIG.
  • the gantry 22 is guided by rails extending in a predetermined direction, and can guide the ejection position of the 3D printer 21 to a desired position within the range of the rails.
  • the 3D printer 21 may be operated using a robot arm, a crane, or the like.
  • the material, construction method, etc. of the outer frame 23 are not particularly limited, but the outer frame 23 may be formed using the 3D printer 21. By using the 3D printer 21, when forming the outer frame 23, improvements such as shortening of construction period, labor saving, and stable quality can be achieved.
  • the material for the outer frame 23 is not particularly limited, and examples thereof include concrete, mortar, and the like.
  • the outer frame 23 has a wall-like structure formed so as to prevent the buried material 24 from flowing out.
  • a buttress wall may be installed on the side surface of the outer frame 23, and a cantilever type bottom plate or the like may be installed at the lower part of the outer frame 23.
  • the relationship between the time of forming the outer frame 23 and the time of construction of the foundation structure 15 is not particularly limited. It may be done either after filling the inside with the filler 14 or after the filler 14 has hardened and the substructure 15 has been completed.
  • the foundation structure 15 is installed on the ground 20 located underground by digging. Furthermore, in order for the upper structure to be stably supported by the substructure 15, it is preferable to bury at least a portion of the substructure 15 in the embedding material 24.
  • the buried material 24 includes, but is not particularly limited to, concrete, mortar, soil, sand, and the like. You may use a mixture of two or more types of embedding materials 24. Earth and sand generated by excavating the ground 20 before construction may be used for at least a portion of the buried material 24.
  • the method for constructing the buried material 24 is not particularly limited, the buried material 24 may be poured using the 3D printer 21.
  • the 3D printer 21 By using the 3D printer 21, when burying the substructure 15, improvements such as shortening the construction period, saving labor, and stabilizing quality can be achieved.
  • a concrete pump truck or the like may be used to pour the buried material 24.
  • the filling material 24 may be poured after the filling material 14 has hardened and the foundation structure 15 has been completed. After the formwork 12 has hardened, it is possible to pour the embedding material 24 around the formwork 12 even before filling the inside of the formwork 12 with the filler material 14. By bringing forward the construction of the outer frame 23 and the buried material 24 before the completion of the foundation structure 15, the construction period can be further shortened.
  • the outer frame 23 and the buried material 24 may be placed at necessary locations around the formwork 12, and do not need to be placed over the entire area where the superstructure is constructed.
  • the outer frame 23 and the buried material 24 may not be placed at locations where piping, cables, etc. are to be placed, and space may be secured underground.
  • the depth to which the buried material 24 is poured inside the outer frame 23 may be equal to the height of the outer frame 23. Further, pouring of the buried material 24 may be finished at a position lower than the height of the outer frame 23.
  • paving material 25 may be laid on top of the buried material 24.
  • the paving material 25 may be made by discharging a fluid material such as concrete or mortar from the 3D printer 21 .
  • a fluid material such as concrete or mortar from the 3D printer 21 .
  • improvements such as shortening the construction period, saving labor, and stabilizing quality can be achieved.
  • the paving material 25 may have a slope in an appropriate direction to improve drainage.
  • illustration of the outer frame 23 is omitted, and an example is shown in which the paving material 25 is laid inside the foundation structure 15. Although not particularly illustrated, the paving material 25 may be laid until it reaches the outer frame 23.
  • foundation structure constructed according to the present invention is not particularly limited, but it can be applied to various structures and buildings at sites such as resource development and plant construction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Foundations (AREA)

Abstract

フーチングおよびペデスタルを有する構造物の基礎の建設方法であって、3Dプリンタを用いて前記フーチングおよび前記ペデスタルの一体型型枠となる型枠をコンクリートまたはモルタルから形成する型枠形成工程と、前記型枠の内部にコンクリートを充填する充填工程と、を有し、前記型枠は、前記フーチング側から前記ペデスタル側に向かって水平断面積が減少する形状を有する。

Description

構造物の基礎の建設方法
 本発明は、構造物の基礎の建設方法に関する。
 資源開発、プラント建設等の現場では種々の構造物を建設する必要がある。建築物等の構造物の建設には多額の初期投資と長い工期が必要であるため、全体の開発にも多大な影響を与える。また、市街地から離れた山間部、荒野等に構造物を建設する場合もあり、作業員や物資の輸送等にも費用と時間を要する上、熟練した作業員の確保が容易でない場合もある。このため、工期の短縮、省力化、品質の安定等の改善が求められている。
 例えば特許文献1には、鉄筋の周囲に付加製造装置からコンクリートを押し出してモルタル枠を形成し、さらに、モルタル枠の内側にコンクリート芯を形成する施工方法が記載されている。
日本国特開2020-111941号公報
 特許文献1の提案によれば、橋脚等の鉄筋コンクリート構造物を建設する際に、繊維入りモルタル枠を型枠とすることにより、型枠が解体されずにコンクリート芯と一体化しても、耐震性及び復旧性が向上することが示唆されている。しかし、構造物の基礎に関しては、特段の提案や示唆は示されていない。
 本発明の課題は、構造物の基礎の建設にあたり、工期の短縮、省力化、品質の安定等の改善を図ることが可能な構造物の基礎の建設方法を提供することである。
 本発明の第1の態様は、フーチングおよびペデスタルを有する構造物の基礎の建設方法であって、3Dプリンタを用いて前記フーチングおよび前記ペデスタルの一体型型枠となる型枠をコンクリートまたはモルタルから形成する型枠形成工程と、前記型枠の内部にコンクリートを充填する充填工程と、を有し、前記型枠は、前記フーチング側から前記ペデスタル側に向かって水平断面積が減少する形状を有することを特徴とする構造物の基礎の建設方法である。
 本発明の第2の態様は、第1の態様において、前記充填工程において、3Dプリンタを用いて、前記コンクリートを充填することを特徴とする。
 本発明の第3の態様は、第1または第2の態様において、前記型枠形成工程に先立って、前記フーチングおよび前記ペデスタルの鉄筋を配置する鉄筋配置工程を有し、前記充填工程において、前記型枠の内部に充填されるコンクリートに前記鉄筋を埋め込むことを特徴とする。
 本発明の第4の態様は、第1~3のいずれか1の態様において、前記充填工程に先立って、前記ペデスタルより上部に配置される構造物をアンカーボルトまたは溶接により接合可能とする接合用部材を設置し、前記充填工程において、前記型枠の内部に充填されるコンクリートに前記接合用部材の一部を埋め込むことを特徴とする。
 本発明の第5の態様は、第1~4のいずれか1の態様において、前記型枠の周囲に埋設材を流し込み、前記型枠の少なくとも一部を前記埋設材に埋設する型枠埋設工程を有することを特徴とする。
 本発明の第6の態様は、第5の態様において、前記型枠埋設工程において、3Dプリンタを用いて、前記埋設材を流し込むことを特徴とする。
 本発明の第7の態様は、第5または第6の態様において、前記型枠の周囲に3Dプリンタを用いて外枠を形成する外枠形成工程を有し、前記型枠埋設工程において、前記外枠の内側に前記埋設材を流し込むことを特徴とする。
 第1の態様によれば、フーチングおよびペデスタルを一体の工程で形成することができるので、構造物の基礎の建設にあたり、工期の短縮、省力化、品質の安定等の改善を図ることができる。
 第2の態様によれば、型枠の充填に3Dプリンタを用いることにより、工期の短縮、省力化、品質の安定等の一層の改善を図ることができる。
 第3の態様によれば、フーチングおよびペデスタルの鉄筋を配置してコンクリートに埋め込むことにより、基礎を補強することができる。
 第4の態様によれば、ペデスタルより上部に配置される構造物を接合可能とする接合用部材を設置し、接合用部材の一部をコンクリートに埋め込むことにより、接合用部材をより確実に固定することができる。
 第5の態様によれば、型枠の少なくとも一部を埋設材に埋設することにより、構造物を安定的に支持することが可能な基礎を建設することができる。
 第6の態様によれば、型枠の埋設に3Dプリンタを用いることにより、工期の短縮、省力化、品質の安定等の一層の改善を図ることができる。
 第7の態様によれば、外枠の形成に3Dプリンタを用いることにより、工期の短縮、省力化、品質の安定等の一層の改善を図ることができる。
鉄筋配置工程の一例を示す説明図である。 型枠形成工程の一例を示す説明図である。 接合用部材の設置工程の一例を示す説明図である。 充填工程の一例を示す説明図である。 接合用部材を鉄筋に固定した一例を示す説明図である。 基礎構造物の一例を示す説明図である。 外枠形成工程の一例を示す説明図である。 型枠埋設工程の一例を示す説明図である。 舗装工程の一例を示す説明図である。
 以下、好適な実施形態に基づいて、本発明を説明する。
<フーチングおよびペデスタルを有する基礎構造物>
 図6に示す基礎構造物15は、フーチング15aおよびペデスタル15bを一体化した形状を有する。この基礎構造物15は、概略として、図1に示す鉄筋11の配置工程、図2に示す型枠12の形成工程、図4に示す充填材14の充填工程を経て、建設することができる。特に図示しないが、ペデスタル15bより上部には、上部構造物(図示せず)が建設される。
 基礎構造物15は、上部構造物の基礎となる。上部構造物は、種々の構造物、建造物であってもよい。特に限定されないが、作業場、事務所、工場、倉庫、貯蔵設備、宿舎、通路等が挙げられる。上部構造物の構造は特に限定されず、壁または柱を有する建造物でもよく、人、荷物、資材等の荷重を支持することが可能な敷地であってもよい。上部構造物の構造素材は特に限定されないが、鉄筋コンクリート造、鉄骨造、鉄筋鉄骨コンクリート造、木造、石造、レンガ造等が挙げられる。
 基礎構造物15が設置される高さの地盤20は、基礎構造物15の建設工程を開始する前に建設予定地の地面を掘削して、水平に整備されていることが好ましい。必要に応じて、脱水、締固め等の地盤改良を施してもよい。
 地盤20の表面にコンクリートを打設して、基準面を形成することが好ましい。地盤20上に基礎構造物15等が配置される位置を特定するため、種々の基準線や記号等を表示することが好ましい。
 基礎構造物15の内部には、鉄筋11が配置されることが好ましい。鉄筋11が充填材14のコンクリートと一体化することにより、基礎構造物15を鉄筋コンクリート構造とすることができる。
 図1に示す鉄筋11は、地盤20に近接して配置されたフーチング部11aと、フーチング部11aの中央部から上方に突出するペデスタル部11bとを有する。フーチング部11aは、フーチング15a用の鉄筋であり、ペデスタル部11bは、ペデスタル15b用の鉄筋である。特に図示しないが、ペデスタル部11bがフーチング部11aの中央部から偏心した位置でもよい。
 鉄筋11の形状や構造は特に限定されないが、一般的には棒状の鋼材を意味する。鉄筋11の代わりに、または鉄筋11と組み合わせて、枠組状、板状、柱状、網状、格子状などの鋼製部材を用いてもよい。あるいはこれらのうち2種類以上の組み合わせで、鉄筋11に類する構造を形成してもよい。フーチング部11aの水平断面の形状は特に限定されないが、円形、四角形、多角形等であってもよい。
 ペデスタル部11bは地盤20に対して垂直を維持することが好ましい。接合用部材13の固定の際などにペデスタル部11bを補強するため、鉄筋11は、補強材11cを有してもよい。これにより、鉄筋11を簡易な構造または材料で作製しても、ペデスタル部11bをフーチング部11a上で安定的に支持することができる。補強材11cは、フーチング部11aの周縁部とペデスタル部11bの上部とを連絡するように、傾斜していてもよい。ペデスタル部11bの周囲において、補強材11cが均等に、あるいは所定の間隔を介して、複数配置されてもよい。
 フーチング15aはペデスタル15bよりも広い水平断面積を有する。フーチング15aがより広い面積で地盤20に接することにより、構造物の荷重を効果的に地盤へ伝達し、安定性を発揮することができる。フーチング15aが地盤20に接する形状は、均等であることが好ましい。例えば、後述する充填工程において、フーチング部11aと地盤20との間に充填材14を充填することが好ましい。これにより、フーチング15aが地盤20に密着することができる。
 特に図示しないが、鉄筋11のフーチング部11aと地盤20との間に隙間を保持するため、モルタル、木材、石材等のスペーサーをフーチング部11aの下で部分的に配置してもよい。これにより、鉄筋11のフーチング部11aと地盤20との間に容易に充填材14を充填することができる。
 実施形態の型枠12は、フーチング15aおよびペデスタル15bの一体型型枠である。具体的には、型枠12が、フーチング15aの型枠となるフーチング型枠12aと、ペデスタル15bの型枠となるペデスタル型枠12bとを備える。
 型枠12の形成工程では、図2に示すように、3Dプリンタ21を用いて、フーチング型枠12aおよびペデスタル型枠12bが一体的に形成される。型枠12の形成材料は、コンクリートまたはモルタルである。さらに、基礎構造物15の芯となる部分は、図4に示すように、コンクリート等の充填材14を型枠12の内部に充填して形成される。
 従来のフーチングとペデスタルを有する基礎構造物は、実施形態に用いる鉄筋11と同様に、逆T字状であることが多い。従来技術により逆T字状の構造物をコンクリートで形成する場合は、(a)フーチング型枠を形成する工程、(b)フーチング型枠にコンクリートを充填してフーチングを形成する工程、(c)フーチングの上にペデスタル型枠を形成する工程、(d)ペデスタル型枠にコンクリートを充填してペデスタルを形成する工程を順に経る必要があり、工期が短縮しにくいという問題があった。
 実施形態の基礎構造物15は、フーチング型枠12aおよびペデスタル型枠12bが一体的に形成された型枠12を用いて、フーチング15aとペデスタル15bを一体形に形成する。これにより、工期を大幅に短縮することができる。また、フーチング15aを形成する充填材14とペデスタル15bを形成する充填材14とが一体的に硬化するので、フーチング15aとペデスタル15bの接合不良等も起こりにくくなる。
 実施形態の建設方法では、(1-1)フーチング型枠12aおよびペデスタル型枠12bを一工程で形成する型枠形成工程、(1-2)型枠12の内部に充填材14を充填してフーチング15aおよびペデスタル15bを形成する充填工程を実施してもよい。
 また、(2-1)地盤20の上にフーチング型枠12aを形成する工程、(2-2)フーチング型枠12aの上にペデスタル型枠12bを形成する工程、(2-3)型枠12の内部に充填材14を充填してフーチング15aおよびペデスタル15bを形成する工程を順に実施してもよい。
 3Dプリンタ21は、吐出した材料を一定の厚みを有する層状に形成し、順次積層することで、高さのある構造物を形成することができる。3Dプリンタ21から材料を吐出する工程は、フーチング型枠12aの下部からペデスタル型枠12bの上部まで継続的に実施してもよいが、その場合に限らず、型枠12の形成工程中に作業が中断する時間が介在してもよい。
 型枠12の形成工程中に作業を中断する場合は、材料を養生して、乾燥収縮の抑制措置を施すことが好ましい。例えば、型枠12の下部が3Dプリンタ21から吐出されている段階で作業を中断する場合は、コンクリート養生剤を塗布したり、凝結遅延剤を散布したりしてもよい。型枠12の一部を形成する材料が硬化した後に残りの部分の材料を吐出する場合は、硬化した材料の表面にチッピング処理、高圧水洗浄、接着剤塗布等を実施してもよい。
 実施形態の型枠12は、フーチング15a側からペデスタル15b側に向かって水平断面積が減少する形状を有する。これにより、フーチング型枠12aとペデスタル型枠12bを一体的に形成するときに、フーチング15aの形状とペデスタル15bの形状との差異を縮小することができる。例えば、ペデスタル型枠12bが円錐状、角錐状等のテーパ形状を有することが好ましい。
 図示例のフーチング型枠12aは、地盤20に垂直に形成されている。特に図示しないが、フーチング型枠12aが地盤20に対して傾斜した部分を有してもよい。また、図示例のペデスタル型枠12bは、上部を除き、地盤20に対して傾斜した形状になっている。ペデスタル型枠12bの一部が、地盤20に垂直な部分を有してもよい。また、ペデスタル型枠12bの下部から上部までの全体が、地盤20に対して傾斜した形状になっていてもよい。
 フーチング型枠12aおよびペデスタル型枠12bが一体的に形成された型枠12を用いることにより、フーチング15aおよびペデスタル15bを一体の工程で形成することができるので、基礎構造物15の建設にあたり、工期の短縮、省力化、品質の安定等の改善を図ることができる。
 また、型枠12の上部が小さい水平断面積を有するため、鉄筋11は、上述のように、型枠12の形成工程に先立って、地盤20上に設置される。鉄筋11の周囲で、3Dプリンタ21を用いて型枠12を形成してもよい。この場合は、鉄筋11はペデスタル部11bの一部を除いて、型枠12に囲まれた状態となる。これにより、鉄筋11のフーチング部11aよりも水平断面積が小さいペデスタル型枠12bを形成することができる。
 特に図示しないが、別の場所で3Dプリンタ21を用いて形成した型枠12を鉄筋11の周囲まで運搬することで、型枠12を地盤20上に設置することも可能である。
 図4に示すように、充填材14の充填工程において、充填材14にコンクリートを用い、鉄筋11の鉄筋を埋め込むことにより、フーチング15aの鉄筋とペデスタル15bの鉄筋を一体的に配置することができる。基礎構造物15が鉄筋コンクリートから形成されるので、基礎構造物15を補強することができる。
 コンクリートとしては、セメント、水、細骨材、粗骨材等を混合したものが用いられる。モルタルとしては、セメント、水、細骨材等を混合したものが用いられる。コンクリートやモルタルには、必要に応じて、所望の混和材料を加えてもよい。細骨材としては、砂、砕砂等が挙げられる。粗骨材としては、砂利、砕石等が挙げられる。スラグ、再生骨材等を骨材と用いてもよい。これらは、粒径に応じて細骨材または粗骨材に分類される。
 型枠12の材料には、コンクリート、モルタルのいずれを用いてもよい。3Dプリンタ21を用いて型枠12を形成する際には、コンクリートまたはモルタルが未硬化の状態で吐出される。
 型枠12は地盤20に対して傾斜した部分を含むことから、3Dプリンタ21から吐出後の未硬化状態における型枠12の材料は、低い流動性を有することが好ましい。垂直方向を0°、水平方向を90°とするとき、型枠12の水平断面積が減少する形状の部分における傾斜角度は0°より大きければよいが、例えば10°程度、15°程度、20°程度、25°程度であってもよい。
 充填材14の施工方法は特に限定されないが、3Dプリンタ21を用いて充填材14の充填を実施してもよい。3Dプリンタ21を用いることにより、充填材14の充填にあたり、工期の短縮、省力化、品質の安定等の改善を図ることができる。3Dプリンタ21以外の手段として、例えばコンクリートポンプ車等を用いて、充填材14の充填を実施してもよい。3Dプリンタ21を用いた型枠12の形成と、他の手段を用いた充填材14の充填とを、異なる場所で同時に進行させてもよい。
 3Dプリンタ21、コンクリートポンプ車等を用いて型枠12の内部に充填材14を充填する際には、コンクリートが未硬化の状態で吐出される。水平断面積が減少する形状を有する型枠12の隅々まで充填材14が供給されるように、充填材14の材料は流動性が高いことが好ましい。
 型枠12の内部に充填した後で充填材14の締固めを不要にするため、充填材14として、自己充填コンクリート(いわゆる「高流動コンクリート」)を用いることが好ましい。自己充填コンクリートとしては、適宜の化学混和剤を配合して、高い流動性と材料分離抵抗性を兼ね備えるようにした材料を用いてもよい。
 充填材14と型枠12の材料に流動性の差をもたせるには、含水量、混和材料等に差を持たせてもよい。充填材14は従来の方法で型枠を形成したときに用いるコンクリートと同様の組成でもよい。型枠12の材料は、充填材14よりも流動性の低い材料とするため、化学混和剤、繊維等を添加してもよい。
 上述したように、基礎構造物15には上部構造物(図示せず)を接合することができる。このため、上部構造物との接合に用いられる接合用部材13が、充填材14のコンクリートに埋め込まれることが好ましい。これにより、基礎構造物15と上部構造物との接合を容易にすることができる。
 図示例の基礎構造物15は、ペデスタル15bの上部に接合用部材13を有する。接合用部材13の設置は、図3に示すように、型枠12を形成した後に実施してもよく、図5に示すように、型枠12を形成する前に実施してもよい。
 接合用部材13は、上部構造物をアンカーボルト、溶接等により接合するために用いることができる。接合用部材13は、上部構造物に使用される鉄骨、木材、柱、外壁等の構造部材を接合できる機能を有すればよい。上部構造物の鉄骨を基礎構造物15に接合する場合は、接合用部材13が鉄骨と溶接することが可能な金属プレート等であってもよい。
 鉄筋11は、接合用部材13を固定する機能を有してもよい。図3に示すように、型枠12を形成した後に接合用部材13を設置する場合は、型枠12と接合用部材13との間にテンプレート13aを設置して、鉄筋11または型枠12に対する接合用部材13の位置関係を固定してもよい。
 接合用部材13またはテンプレート13aには、上部構造物の接合等に関する情報を識別するため、識別子を付与してもよい。識別子としては、タグのプレートやRFID(Radio Frequency Identification)等が挙げられる。識別子は、無線等の通信で認識されるデータでもよく、機械で認識されるバーコード、二次元コード等のコードでもよく、目視で認識される文字、数字、記号、図形等の表示でもよい。
 接合用部材13の保持にテンプレート13aを用いる場合は、接合用部材13を鉄筋11に固定しなくてもよい。特に図示しないが、図6に示すように、型枠12を形成する前に接合用部材13を設置する場合も、鉄筋11と接合用部材13との間にテンプレート13aを設置することもできる。
 テンプレート13aを設置する場合は、接合用部材13の一部が充填材14に埋め込まれるまでの間、テンプレート13aが接合用部材13の位置を保持することが好ましい。図4では、テンプレート13aの図示を省略しているが、充填材14が硬化するまで、テンプレート13aを接合用部材13に取り付けた状態を維持することが好ましい。
 テンプレート13aは、充填材14が硬化した後に型枠12から取り外されることが好ましい。これにより、強度の低い簡易な構造のテンプレート13aを採用しても、構造物に対するテンプレート13aの影響を無視して、設計を容易にすることができる。テンプレート13aの取り外しを考慮すると、テンプレート13aが充填材14に埋め込まれないように、接合用部材13の上部にテンプレート13aを設置することが好ましい。
 テンプレート13aの材質は特に限定されず、鉄筋、木材、樹脂、コンクリート、石材、煉瓦等の1種または2種以上を用いることが可能である。テンプレート13aが樹脂製の場合は、樹脂用の3Dプリンタ(図示せず)を用いて、テンプレート13aを成形してもよい。
 テンプレート13aを型枠12に固定する場合は、接合用部材13が鉄筋11に接触しないように保持してもよい。これにより、鉄筋11の寸法、形状等に誤差があっても、接合用部材13がテンプレート13aを介して型枠12に対して位置決めされる。接合用部材13と鉄筋11との接合強度を高める場合は、鉄筋11に対して接合用部材13を器具、接着等により固定してもよい。
 接合用部材13は、接合用部材13に対する固定に必要な部分が充填材14に埋め込まれる。接合用部材13のうち上部構造物との接合部は、充填材14の上方に突出される。特に図示しないが、接合用部材13は上方に露出されていればよく、充填材14の上方に突出しなくてもよいし、型枠12の上端から突出しなくてもよい。溶接接合をした後に接合用部材13のプレートが埋め込まれてもよい。
 接合用部材13に使用されるアンカーボルトは、充填材14として供給された未硬化のコンクリートに埋め込まれたまま、コンクリートと一体化することが好ましい。特に図示しないが、あと施工タイプのアンカーボルトを用いることも可能である。この場合は、充填材14の硬化後にアンカーボルトが施工される。
 3Dプリンタ21を用いて型枠12を形成するときには、あらかじめ型枠12の形状を示す設計データが用意される。3Dプリンタ21は設計データに従って材料を所定の位置に吐出し、構造物を形成する。複数の基礎構造物15が同一の設計で建設される場合は、同一の設計データを用いて、繰り返し型枠12を形成することができる。
 3Dプリンタ21の吐出位置の管理を容易にするため、図6に示すように、3Dプリンタ21が、ガントリー22等の支持体に支持されてもよい。ガントリー22は所定の方向に延在するレールに案内されて、レールの範囲内で3Dプリンタ21の吐出位置を所望の位置に案内することができる。特に図示しないが、ロボットアーム、クレーン等を用いて3Dプリンタ21を操作してもよい。
<外枠の形成および型枠の埋設>
 型枠12を用いて形成した基礎構造物15を埋設するには、図7に示すように、型枠12の周囲に外枠23を形成した後、図8に示すように、外枠23の内側に3Dプリンタ21を用いて埋設材24を流し込んでもよい。型枠12を取り外す必要がないので、工期の短縮、省力化、品質の安定等の改善を図ることができる。なお、地盤20を掘り下げたときに形成される段差または法面の範囲まで埋設材24を流し込む場合は、外枠23の形成を省略してもよい。
 外枠23の素材、工法等は特に限定されないが、3Dプリンタ21を用いて外枠23を形成してもよい。3Dプリンタ21を用いることにより、外枠23の形成にあたり、工期の短縮、省力化、品質の安定等の改善を図ることができる。外枠23の材料は特に限定されないが、コンクリート、モルタル等が挙げられる。
 外枠23は、埋設材24の流出を抑止するように形成された壁状の構造であることが好ましい。外枠23を補強するため、外枠23の側面に控え壁、外枠23の下部に片持梁式の底板等を設置してもよい。
 基礎構造物15の建設時期に対する外枠23の形成時期の関係は、特に限定されず、型枠12を形成する前、型枠12の形成中、型枠12を形成した後、型枠12の内部に充填材14を充填した後、充填材14が硬化して基礎構造物15が完成した後のいずれでもよい。
 基礎構造物15は、掘り下げにより地下部に位置している地盤20の上に設置されていることが好ましい。さらに、上部構造物が基礎構造物15により安定的に支持されるためには、基礎構造物15の少なくとも一部を埋設材24に埋設することが好ましい。
 埋設材24としては、特に限定されないが、コンクリート、モルタル、土、砂等が挙げられる。2種以上の埋設材24を混合して使用してもよい。建設前に地盤20を掘削して発生した土砂を埋設材24の少なくとも一部に使用してもよい。
 埋設材24の施工方法は特に限定されないが、3Dプリンタ21を用いて埋設材24の流し込みを実施してもよい。3Dプリンタ21を用いることにより、基礎構造物15の埋設にあたり、工期の短縮、省力化、品質の安定等の改善を図ることができる。3Dプリンタ21以外の手段として、例えばコンクリートポンプ車等を用いて、埋設材24の流し込みを実施してもよい。
 埋設材24の流し込みは、充填材14が硬化して基礎構造物15が完成した後に実施してもよい。型枠12が硬化した後であれば、型枠12の内部に充填材14を充填する前であっても、型枠12の周囲に埋設材24を流し込むことが可能である。外枠23および埋設材24の施工を基礎構造物15の完成より前倒しすることにより、工期をより短縮することができる。
 外枠23および埋設材24は、型枠12の周囲で必要な箇所に配置されればよく、上部構造物が建設される範囲の全域に配置しなくてもよい。例えば、配管、ケーブル等を配置する箇所では、外枠23および埋設材24が配置されないで、地下に空間を確保してもよい。
 外枠23の内側に埋設材24を流し込む深さは、外枠23の高さと等しくてもよい。また、外枠23の高さより低い位置で、埋設材24の流し込みを終了してもよい。
 図9に示すように、埋設材24の上には、舗装材25を敷設してもよい。3Dプリンタ21からコンクリート、モルタル等の流動性材料を吐出して、舗装材25としもよい。これにより、舗装材25の敷設にあたり、工期の短縮、省力化、品質の安定等の改善を図ることができる。舗装材25は、水はけを良好にするため、適宜の方向に勾配を有してもよい。
 図9では、外枠23の図示を省略して、基礎構造物15の内側に舗装材25を敷設した例を示している。特に図示しないが、舗装材25が外枠23に達するまでを敷設してもよい。
 また、特に図示しないが、コンクリート、アスファルト、タイル、レンガ等を用いて埋設材24の上を舗装することも可能である。これらの舗装には、3Dプリンタ21とは異なる工法を用いてもよい。
 以上、本発明を好適な実施形態に基づいて説明してきたが、本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の改変が可能である。改変としては、各実施形態における構成要素の追加、置換、省略、その他の変更が挙げられる。
 本発明により建設された基礎構造物の用途は特に限定されないが、資源開発、プラント建設等の現場における各種の構造物、建造物に適用することができる。
11…鉄筋、11a…フーチング部、11b…ペデスタル部、11c…補強材、12…型枠、12a…フーチング型枠、12b…ペデスタル型枠、13…接合用部材、13a…テンプレート、14…充填材、15…基礎構造物、15a…フーチング、15b…ペデスタル、20…地盤、21…3Dプリンタ、22…ガントリー、23…外枠、24…埋設材、25…舗装材。

Claims (7)

  1.  フーチングおよびペデスタルを有する構造物の基礎の建設方法であって、
     3Dプリンタを用いて前記フーチングおよび前記ペデスタルの一体型型枠となる型枠をコンクリートまたはモルタルから形成する型枠形成工程と、
     前記型枠の内部にコンクリートを充填する充填工程と、
    を有し、
     前記型枠は、前記フーチング側から前記ペデスタル側に向かって水平断面積が減少する形状を有することを特徴とする構造物の基礎の建設方法。
  2.  前記充填工程において、3Dプリンタを用いて、前記コンクリートを充填することを特徴とする請求項1に記載の構造物の基礎の建設方法。
  3.  前記型枠形成工程に先立って、前記フーチングおよび前記ペデスタルの鉄筋を配置する鉄筋配置工程を有し、
     前記充填工程において、前記型枠の内部に充填されるコンクリートに前記鉄筋を埋め込むことを特徴とする請求項1または2に記載の構造物の基礎の建設方法。
  4.  前記充填工程に先立って、前記ペデスタルより上部に配置される構造物をアンカーボルトまたは溶接により接合可能とする接合用部材を設置し、
     前記充填工程において、前記型枠の内部に充填されるコンクリートに前記接合用部材の一部を埋め込むことを特徴とする請求項1~3のいずれか1項に記載の構造物の基礎の建設方法。
  5.  前記型枠の周囲に埋設材を流し込み、前記型枠の少なくとも一部を前記埋設材に埋設する型枠埋設工程を有することを特徴とする請求項1~4のいずれか1項に記載の構造物の基礎の建設方法。
  6.  前記型枠埋設工程において、3Dプリンタを用いて、前記埋設材を流し込むことを特徴とする請求項5に記載の構造物の基礎の建設方法。
  7.  前記型枠の周囲に3Dプリンタを用いて外枠を形成する外枠形成工程を有し、
     前記型枠埋設工程において、前記外枠の内側に前記埋設材を流し込むことを特徴とする請求項5または6に記載の構造物の基礎の建設方法。
PCT/JP2022/012294 2022-03-17 2022-03-17 構造物の基礎の建設方法 WO2023175836A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/012294 WO2023175836A1 (ja) 2022-03-17 2022-03-17 構造物の基礎の建設方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/012294 WO2023175836A1 (ja) 2022-03-17 2022-03-17 構造物の基礎の建設方法

Publications (1)

Publication Number Publication Date
WO2023175836A1 true WO2023175836A1 (ja) 2023-09-21

Family

ID=88022620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012294 WO2023175836A1 (ja) 2022-03-17 2022-03-17 構造物の基礎の建設方法

Country Status (1)

Country Link
WO (1) WO2023175836A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09228385A (ja) * 1996-02-23 1997-09-02 Mitsubishi Chem Corp 建築物用無筋コンクリート基礎
KR20180016100A (ko) * 2016-08-05 2018-02-14 한국해양대학교 산학협력단 3차원 콘크리트 프린트 시스템 및 그를 이용한 콘크리트 구조물 제조방법
JP2018199940A (ja) * 2017-05-26 2018-12-20 大成建設株式会社 積層構造物の施工方法、積層構造物および積層構造物施工装置
JP2019111777A (ja) * 2017-12-26 2019-07-11 前田建設工業株式会社 積層構造物の構築方法
KR20200017603A (ko) * 2018-08-02 2020-02-19 한양대학교 산학협력단 3d 프린팅을 이용한 철근 및 골재 콘크리트 적층 방법 및 장치
JP2020111941A (ja) * 2019-01-10 2020-07-27 清水建設株式会社 コンクリート構造物の施工方法
WO2021005787A1 (ja) * 2019-07-11 2021-01-14 日揮グローバル株式会社 基礎の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09228385A (ja) * 1996-02-23 1997-09-02 Mitsubishi Chem Corp 建築物用無筋コンクリート基礎
KR20180016100A (ko) * 2016-08-05 2018-02-14 한국해양대학교 산학협력단 3차원 콘크리트 프린트 시스템 및 그를 이용한 콘크리트 구조물 제조방법
JP2018199940A (ja) * 2017-05-26 2018-12-20 大成建設株式会社 積層構造物の施工方法、積層構造物および積層構造物施工装置
JP2019111777A (ja) * 2017-12-26 2019-07-11 前田建設工業株式会社 積層構造物の構築方法
KR20200017603A (ko) * 2018-08-02 2020-02-19 한양대학교 산학협력단 3d 프린팅을 이용한 철근 및 골재 콘크리트 적층 방법 및 장치
JP2020111941A (ja) * 2019-01-10 2020-07-27 清水建設株式会社 コンクリート構造物の施工方法
WO2021005787A1 (ja) * 2019-07-11 2021-01-14 日揮グローバル株式会社 基礎の製造方法

Similar Documents

Publication Publication Date Title
CN110747899B (zh) 地下室防水施工方法
KR20070108741A (ko) Pc기둥을 이용한 탑다운 공법
CN102505709A (zh) 基础预制混凝土模板施工方法
CN109648696A (zh) 钢筋连接的边坡预制格构梁及其制作方法和施工方法
CN110820455A (zh) 一种沥青混凝土公路改扩建路基搭接施工工艺
KR101370102B1 (ko) 현장타설형 팽이파일 및 그 시공방법
WO2023175836A1 (ja) 構造物の基礎の建設方法
CN217810304U (zh) 一种多功能道路施工预制板
CN116290572A (zh) 一种后注浆预制构造柱构件及其施工方法
CN114809000B (zh) 一种预制板砖胎模的快速施工方法
CN110306398B (zh) 一种分段设梁先张法交错对称张拉预应力筋叠合装配道路及其施工方法
KR102105771B1 (ko) 거푸집 일체형 지수재
CN216809966U (zh) 基坑内基础承台侧模施工结构
JPH10183642A (ja) 粘性土地盤への建造物基礎の構築方法
KR101530601B1 (ko) 무늬 콘크리트패널 제작방법 및 그 제작방법을 포함하는 옹벽 시공방법 및 그 무늬 콘크리트패널
CN112227125B (zh) 一种公路钢筋混凝土路面的路基施工方法
KR20060117642A (ko) 교량 슬래브의 무지보 시공방법
KR200417474Y1 (ko) 관로 받침대
CN221297634U (en) Structure of arched culvert for road
CN108643228A (zh) 一种装配式预制汽车箱通施工工艺
CN112900235B (zh) 装配式支撑栈桥及充填芯骨混凝土撑梁
CN112853849B (zh) 一种预制拼合型水泥稳定碎石路面及其施工工艺
JP3399924B2 (ja) 護岸法覆構造
JP2009114647A (ja) 基礎コンクリート成形用組立式捨て枠及び基礎コンクリート成形用組立式捨て枠工法
CN109826435B (zh) 一种高平整度钢筋混凝土楼板施工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931252

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024507348

Country of ref document: JP