WO2021005787A1 - 基礎の製造方法 - Google Patents
基礎の製造方法 Download PDFInfo
- Publication number
- WO2021005787A1 WO2021005787A1 PCT/JP2019/027535 JP2019027535W WO2021005787A1 WO 2021005787 A1 WO2021005787 A1 WO 2021005787A1 JP 2019027535 W JP2019027535 W JP 2019027535W WO 2021005787 A1 WO2021005787 A1 WO 2021005787A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- foundation
- plant
- manufacturing
- printer
- equipment
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 title claims abstract description 26
- 239000012530 fluid Substances 0.000 claims abstract description 13
- 239000000463 material Substances 0.000 claims description 24
- 239000004567 concrete Substances 0.000 claims description 17
- 239000011150 reinforced concrete Substances 0.000 claims description 17
- 239000000470 constituent Substances 0.000 claims description 12
- 239000007769 metal material Substances 0.000 claims description 6
- 238000005304 joining Methods 0.000 claims description 5
- 239000003949 liquefied natural gas Substances 0.000 description 17
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 14
- 238000010276 construction Methods 0.000 description 12
- 230000003014 reinforcing effect Effects 0.000 description 11
- 238000009415 formwork Methods 0.000 description 8
- 238000009434 installation Methods 0.000 description 8
- 239000003345 natural gas Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000002184 metal Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000004576 sand Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000005266 casting Methods 0.000 description 2
- 239000010779 crude oil Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 239000013461 intermediate chemical Substances 0.000 description 2
- 239000013067 intermediate product Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 238000005504 petroleum refining Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000010146 3D printing Methods 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D27/00—Foundations as substructures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/141—Processes of additive manufacturing using only solid materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D2300/00—Materials
- E02D2300/0004—Synthetics
- E02D2300/0018—Cement used as binder
- E02D2300/002—Concrete
Definitions
- the present invention relates to a technique for constructing a plant.
- Plants that process fluid include natural gas plants that liquefy natural gas, separate and recover natural gas liquid, petroleum refining plants that distill and desulfurize crude oil and various intermediate products, petroleum chemical products and intermediate chemicals.
- chemical plants that produce products and polymers.
- these plants include, for example, static equipment such as tower tanks and heat exchangers, dynamic equipment such as pumps, and a large number of equipment such as piping provided between these static equipment and dynamic equipment. It has a structure in which groups are arranged.
- the present invention provides a technique for efficiently and safely manufacturing a plant foundation.
- the method for manufacturing a foundation of the present invention is a method for manufacturing a foundation provided in a plant that processes a fluid.
- a foundation for supporting these equipment or the frame structure is provided by a 3D printer. It is characterized by including a step of forming.
- the method for manufacturing the foundation may have the following features.
- the foundation has an RC (Reinforced-Concrete) structure, and in the step of forming the foundation, the foundation of the RC structure is integrally formed by joining dissimilar materials of a concrete material and a metal material.
- RC Reinforced-Concrete
- a flow path through which the fluid handled by the plant flows is formed in the foundation.
- the flow path is made of a material different from the constituent material of the foundation, and the flow path is integrated in the foundation by joining different materials of the constituent material of the foundation and the constituent material of the flow path using a 3D printer.
- the inside of the foundation shall have a sparse structure in which members are combined in a geometric shape.
- this method manufactures foundations using a 3D printer, the manufacturing of each foundation is automated, and the work of construction personnel is reduced to improve safety while efficiently forming the foundation. Can be done.
- FIG. 1 is a perspective view showing the entire plant constructed by the 3D printer (additional manufacturing apparatus) 1.
- the 3D printer additional manufacturing apparatus
- this application describes an example of forming a foundation for supporting equipment installed in a plant and a foundation for supporting a frame structure for supporting equipment and piping by using a 3D printer 1.
- a technique for manufacturing large members such as conductor parts and wings of an airplane (for example, Japanese Patent No. 65135554) and building materials (for example, Japanese Patent No. 6378699) by a 3D printer has also been patented.
- the inventors of the present application have grasped that it is possible to provide a 3D printer capable of forming a large structure at the request of the consumer side through a development status survey of a 3D printer manufacturer or the like.
- the plant shown in FIG. 1 is, for example, a plant that manufactures liquefied natural gas (LNG: Liquefied Natural Gas), which is a fluid, and is equipped with a large number of devices 2 that perform pre-liquefaction treatment and liquefaction of natural gas after pretreatment. ing. Further, on the side of the installation area of each device 2, a pipe rack 3 which is a frame structure for supporting a pipe for transferring various fluids handled in the LNG plant between the devices 2 is provided. ..
- LNG Liquefied Natural Gas
- FIG. 3 is an enlarged view of a section designated by reference numeral A in FIG.
- a large number of devices 2 constituting the LNG plant are collectively arranged in the device rack 20 in the section.
- the equipment rack 20 is configured as a frame structure having multiple floors, and the equipment 2 constituting the LNG plant is arranged on these floors.
- large equipment 21 such as MCHE (Main Cryogenic Heat Exchanger) that liquefies and supercools natural gas and various distillation columns are arranged so as to penetrate a plurality of floors of the equipment rack 20 in the vertical direction, or the equipment rack 20. It may be placed outside. Further, the pipe rack 3 described above is also arranged in the section shown in FIG. 3A.
- MCHE Main Cryogenic Heat Exchanger
- FIG. 3B is a plan view schematically showing an arrangement example of the foundation 6 that supports the equipment rack 20, the large equipment 21, and the pipe rack 3.
- FIG. 3B is a plan view schematically showing an arrangement example of the foundation 6 that supports the equipment rack 20, the large equipment 21, and the pipe rack 3.
- a formwork is installed in a foundation hole dug in the ground, and after arranging reinforcing bars as needed, ready-mixed concrete is poured into the formwork and a casting operation is waited for the concrete to solidify.
- a formwork is installed in a foundation hole dug in the ground, and after arranging reinforcing bars as needed, ready-mixed concrete is poured into the formwork and a casting operation is waited for the concrete to solidify.
- a casting operation is waited for the concrete to solidify.
- the above-mentioned various foundations 6 are manufactured by using the 3D printer 1.
- the 3D printer 1 of this example includes a gate-shaped support portion 10 in which both ends of the beam portion 10B are supported by two support columns 10A.
- the support portion 10 is provided so as to be able to straddle the installation areas of the above-mentioned equipment rack 20, the pipe rack 3, and the large equipment 21 provided in the LNG plant, for example, from the upper side.
- a support portion moving mechanism 11 for moving the support portion 10 is provided at the lower end of the support portion 10.
- the support portion moving mechanism 11 is configured to be movable along a guide rail 12 provided on the ground so as to extend in a direction orthogonal to the direction in which the beam portion 10B is bridged.
- the beam portion 10B is provided with a moving body 42 configured to be movable along the beam portion 10B.
- the moving body 42 is provided with a shaft portion 41 extending downward, and a component material such as a foundation 6 is discharged downward to the lower end of the shaft portion 41 to execute 3D printing. Is provided.
- the support portion 10 moves along the guide rail 12, the moving body 42 moves along the beam portion 10B, and the printer main body 4 moves up and down along the shaft portion 41 to move back and forth.
- -It is configured to be movable in the horizontal and vertical directions.
- the 3D printer 1 may be provided with an arm moving body 43 that moves along the beam portion 10B.
- the arm moving body 43 is provided with a shaft portion 44 extending downward.
- an arm 45 that receives a member such as a piping material from the outside and conveys the member to the arrangement location is provided.
- the arm 45 is also configured to be movable in the front-back-left-right-up-down direction like the printer main body 4.
- the printer main body 4 uses a directed energy deposition method in which constituent materials such as ready-mixed concrete, metal powder, and resin discharged from a nozzle are laminated and stacked from the lower layer side can be exemplified.
- constituent materials such as ready-mixed concrete, metal powder, and resin discharged from a nozzle are laminated and stacked from the lower layer side
- the 3D printer 1 using a method different from the directed energy deposition method may be used.
- a plurality of 3D printers 1 can be supplied with different constituent materials and can be individually moved by the moving body 42 and the shaft 41.
- the printer main body 4 may be provided.
- the 3D printer 1 having the above configuration can be used for manufacturing various devices and structures provided in the LNG plant, but the following example describes an example of application to the manufacture of the foundation 6.
- FIGS. 5 to 7 are explanatory views showing a process of manufacturing the foundation 6 of the RC structure (hereinafter, also referred to as “RC structure foundation 61”).
- RC structure foundation 61 In the formation of the conventional RC structure foundation 61, the casting work such as the installation of the formwork, the arrangement of the reinforcing bar member 612 in the formwork, and the pouring of ready-mixed concrete into the formwork was carried out in sequence.
- the basic main body 611 And the reinforcing bar member 612 which is a reinforcing member, can be integrally formed.
- the concrete body part 4a is inserted into the foundation hole 60, and the foundation body 611 is formed from the bottom surface of the foundation hole 60.
- Concrete, which is a constituent member, is laminated (Fig. 5).
- the formation of the foundation body 611 is promoted while the concrete is solidified.
- the 3D printer 1 operates to form other foundations 6 during the period until the concrete immediately after laminating solidifies. You may do it.
- the metal material is supplied using the metal main body portion 4b at the forming position of the reinforcing bar member 612. Further, around the formation position of the reinforcing bar member 612, the formation of the foundation main body 611 using the concrete main body portion 4a is continued. By the above-mentioned operation, as shown in FIG. 6, the foundation main body 611 including the reinforcing bar member 612 is gradually formed (FIG. 6).
- the foundation main body 611 is stacked up to a preset height position above the ground, a connecting portion 613 with the legs of the pipe rack 3 and the equipment rack 20 is formed so as to protrude from the upper surface of the connecting portion 613.
- the reinforcing bar member 612 is formed.
- the RC structural foundation 61 reinforced by the reinforcing bar member 612 can be integrally formed.
- the gap between the RC structure foundation 61 and the side wall of the foundation hole 60 is filled with earth and sand and compacted to complete the installation of the RC structure foundation 61 (foundation 6).
- FIG. 8 is an enlarged plan view showing the arrangement of the base 6 of the equipment rack 20 and the large equipment 21 installed in the area designated by reference numeral B in FIG.
- the installation work of the pipe 5 arranged below the equipment rack 20 may be carried out in parallel with the installation of the foundation 6.
- the foundation 62 with a flow path in which the piping portion 622 is arranged at a preset position can be integrally formed.
- the foundation main body 621 is formed up to a preset height position.
- the metal material is supplied using the metal main body portion 4b.
- the formation of the foundation main body 621 using the concrete main body portion 4a is continued.
- the foundation main body 621 including the piping portion 622 is gradually formed (FIGS. 9A and 9B).
- the foundation main body 621 is further laminated and formed up to a preset height position on the upper side thereof.
- the foundation 62 with a flow path including the piping portion 622 can be integrally formed.
- the gap between the foundation 62 with a flow path and the side wall of the foundation hole 60 is filled with earth and sand, and compaction is performed, which is the same as the example of the RC structure foundation 61 described above.
- the pipe 5 can be installed without diverting to another arrangement position. Further, since the piping portion 622 is integrally formed with the foundation 62 with a flow path as described above, the foundation 62 with a flow path is compared with the case where the foundation 6 in a state where the pipe 5 prepared in advance is penetrated is placed. The shape forming work can be simplified.
- the piping portion 622 formed on the foundation 62 with a flow path corresponds to a flow path through which a fluid flows.
- the method of forming the flow path on the foundation 62 with the flow path is not limited to the case where the piping portion 622 is formed of a different material such as a metal material as in the example described with reference to FIGS. 9 and 10.
- a tubular cavity through which a fluid flows may be formed inside the foundation main body 621, and the cavity may be used as a flow path.
- the large equipment foundation 63 shown in the plan view of FIGS. 8 and 11 shows a configuration example of the foundation 6 which is not a solid structure.
- the large equipment foundation 63 shown in the figure has a plate-shaped liner portion 632 extending in the vertical direction and a corrugated truss-shaped portion 633 extending in the vertical direction inside the outer wall 631 forming the side wall surface thereof. It has a truss structure in which and are arranged alternately.
- the gap between the outer wall 631, the liner portion 632, and the truss-shaped portion 633 may be later filled with earth and sand.
- the foundation 6 is not limited to the truss structure described above, and the foundation 6 may be formed by combining members based on various geometric patterns such as a honeycomb structure and a lattice structure. ..
- the foundation 6 in which these members are geometrically combined can also be configured by laminating the constituent materials using the printer main body 4.
- the reinforcing bar member 612 shown in FIG. 7 and the piping portion 622 shown in FIG. 10 may be combined and formed on the basic body of the sparse structure.
- the manufacturing method of the foundation 6 of the LNG plant of this example since the foundation 6 is manufactured by using the 3D printer 1, the manufacturing of each foundation 6 is automated, the work by the construction personnel is reduced, and the safety is improved. While trying, the work of forming the foundation 6 can be carried out efficiently.
- the foundation 6 since the foundation 6 is a columnar structure extending in the vertical direction, it is suitable for manufacturing by a 3D printer 1 in which constituent materials are sequentially stacked from the lower layer side among the structures provided in the LNG plant.
- FIGS. 5 to 7, 9 and 10 an example in which the foundation 6 is manufactured directly in the foundation hole 60 without using a mold is shown. However, this does not deny the method of installing the mold in the foundation hole 60 as needed and forming the foundation 6 in the mold by the printer main body 4.
- each of the foundations 6 is not limited to the case of using a very large printer illustrated in FIGS. 1 and 4.
- Each foundation 6 may be manufactured using a medium-sized 3D printer 1 provided with a support portion large enough to straddle the upper region of the foundation hole 60.
- the foundation 6 manufactured by the production method of this example is a separation / recovery plant that separates and recovers natural gas liquid from natural gas, and distillation and desulfurization of crude oil and various intermediate products. It may be a variety of plants such as a petroleum refining plant that produces petroleum chemical products, intermediate chemical products, and a chemical plant that produces polymers. Further, when installing the equipment 2 on the above-mentioned foundation 6, for example, a module in which the equipment 2 is housed in the equipment rack 20 is constructed at another place, the module is transported to the installation site, and the modules are connected to each other to form a plant. You may try to build it.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mining & Mineral Resources (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Paleontology (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Optics & Photonics (AREA)
Abstract
Description
これらのプラントは、特許文献1に記載されているように例えば塔槽や熱交換器などの静機器、ポンプなどの動機器、これら静機器や動機器の間に設けられる配管などの多数の機器群を配置した構造となっている。
前記プラントに設けられる機器が設置される地盤、若しくは、前記機器または前記流体が流れる配管を支持する架構構造物が設置される地盤に、3Dプリンタにより、これらの機器または架構構造物を支える基礎を形成する工程を含むことを特徴とする。
(a)前記基礎は、RC(Reinforced-Concrete)構造であり、前記基礎を形成する工程では、コンクリート材料及び金属材料の異材接合により、前記RC構造の基礎を一体形成すること。
(b)前記基礎を形成する工程にて、前記基礎内に、前記プラントにて取り扱われる流体が流れる流路を形成すること。前記流路は、前記基礎の構成材料とは異なる材料により構成され、3Dプリンタを用いた前記基礎の構成材料と前記流路の構成材料との異材接合により、前記基礎内に前記流路を一体形成すること。
(c)基礎の内部は、幾何学的形状に部材を組み合わせたスパース構造となっていること。
なお現在は、飛行機の導体部分や翼(例えば日本国特許第6513554号)、建築資材(例えば日本国特許第6378699号)など、大型の部材を3Dプリンタによって製造する技術も特許化されている。また、本願発明者らは、需要者側の要請があれば大型の構造物を形成可能な3Dプリンタを提供可能であることを3Dプリンタメーカーの開発状況調査等により把握している。
図3は、図2中に符号Aを付した区画の拡大図である。図3(a)中に模式的に示すように、当該区画内にはLNGプラントを構成する多数の機器2が機器ラック20にまとめて配置される。例えば機器ラック20は、複数階のフロアを有する架構構造物として構成され、LNGプラントを構成する機器2は、これらのフロアに配置される。
さらに図3(a)に示す区画には、既述のパイプラック3も配置されている。
当該図に示すように、各種ラック20、3や大型機器21などを地盤に配置するためには、多数の基礎6を設ける必要がある。従来、これらの基礎6は、地盤に掘った基礎穴内に型枠を設置し、さらに必要に応じて鉄筋を配置した後、当該型枠内に生コンクリートを流し込み、コンクリートの固化を待つ打設作業によって形成されていた。
図1、4に示すように、本例の3Dプリンタ1は、梁部10Bの両端を2本の支持柱10Aで支持する門型の支持部10を備えている。支持部10は、例えばLNGプラントに設けられる既述の機器ラック20やパイプラック3、大型機器21の設置領域を上方側から跨ぐことができるように設けられている。また支持部10の下端には、当該支持部10を移動させるための支持部移動機構11が設けられている。支持部移動機構11は、前記梁部10Bが架け渡されている方向と直交する方向へ伸びるように、地盤上に設けられたガイドレール12に沿って移動自在に構成されている。
上述の構成を備える3Dプリンタ1は、LNGプラントに設けられる各種機器や、構造物の製造に用いることができるが、以下の例では基礎6の製造への適用例について説明する。
従来のRC構造基礎61の形成においては、型枠の設置、型枠内への鉄筋部材612の配置、型枠内への生コンクリートの流し込みといった打設作業を順次、実施していた。これに対して、複数種類のプリンタ本体部4(図5、6に記載のコンクリート用本体部4a、図7に記載の金属材料本体部4b)を用いた異材接合を利用すれば、基礎本体611と補強部材である鉄筋部材612とを一体形成することが可能となる。
上述の動作により、図6に示すように、鉄筋部材612を内包した基礎本体611が次第に形成されていく(図6)。
3Dプリンタ1を用いた上述の動作により、鉄筋部材612により補強されたRC構造基礎61を一体形成することができる。最後にRC構造基礎61と基礎穴60の側壁との隙間に土砂を充填し、締め固めなどを行い、RC構造基礎61(基礎6)の設置が完了する。
図8に示すようにLNGプラントの建設敷地においては、基礎6の設置と並行して、機器ラック20の下方に配置される配管5の設置作業が実施される場合がある。
例えば図9(a)、(b)に示すように、予め設定された高さ位置まで基礎本体621を形成する。しかる後、配管部622の形成位置においては金属用本体部4bを用いた金属材料の供給を実行する。また、配管部622の形成位置の周囲においては、コンクリート用本体部4aを用いた基礎本体621の形成を継続する。上述の動作により、図6に示すように、配管部622を内包した基礎本体621が次第に形成されていく(図9(a)、(b))。
図8、11の平面図に示す大型機器基礎63は、ソリッド構造ではない基礎6の構成例を示している。同図に示す大型機器基礎63は、その側壁面を構成する外郭壁631の内側に、上下方向に向けて伸びる板状のライナー部632と、同じく上下方向に延びる波板状のトラス状部633とを交互に配置したトラス構造となっている。外郭壁631、ライナー部632、トラス状部633の間の隙間は、後から土砂で埋めてもよい。
また、スパース構造の基礎本体に、図7に示す鉄筋部材612や、図10に示す配管部622を組み合わせて形成してもよい。
特に基礎6は、上下方向に伸びる柱状の構造物であるため、LNGプラント内に設けられる構造物の中でも、下層側から順次、構成材料を積み上げる3Dプリンタ1による製造に適している。
また上述の基礎6に機器2を設置するにあたっては、例えば他所で機器ラック20内に機器2を収納したモジュールを建造し、当該モジュールを設置現場に搬送し、モジュール同士を接続することによりプラントを建設するようにしてもよい。
2 機器
20 機器ラック
21 大型機器
3 パイプラック
4 プリンタ本体部
6 基礎
61 RC構造基礎
62 流路付基礎
63 大型機器基礎
Claims (5)
- 流体の処理を行うプラント内に設けられる基礎の製造方法であって、
前記プラントに設けられる機器が設置される地盤、若しくは、前記機器または前記流体が流れる配管を支持する架構構造物が設置される地盤に、3Dプリンタにより、これらの機器または架構構造物を支える基礎を形成する工程を含むことを特徴とする基礎の製造方法。 - 前記基礎は、RC(Reinforced-Concrete)構造であり、前記基礎を形成する工程では、コンクリート材料及び金属材料の異材接合により、前記RC構造の基礎を一体形成することを特徴とする請求項1に記載の基礎の製造方法。
- 前記基礎を形成する工程にて、前記基礎内に、前記プラントにて取り扱われる流体が流れる流路を形成することを特徴とする請求項1に記載の基礎の製造方法。
- 前記流路は、前記基礎の構成材料とは異なる材料により構成され、3Dプリンタを用いた前記基礎の構成材料と前記流路の構成材料との異材接合により、前記基礎内に前記流路を一体形成することを特徴とする請求項3に記載の基礎の製造方法。
- 前記基礎の内部は、幾何学的形状に部材を組み合わせたスパース構造となっていることを特徴とする請求項1に記載の基礎の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021530455A JP7282888B2 (ja) | 2019-07-11 | 2019-07-11 | 基礎の製造方法 |
AU2019456405A AU2019456405A1 (en) | 2019-07-11 | 2019-07-11 | Method for manufacturing foundation |
US17/442,606 US20220170228A1 (en) | 2019-07-11 | 2019-07-11 | Method for manufacturing foundation |
PCT/JP2019/027535 WO2021005787A1 (ja) | 2019-07-11 | 2019-07-11 | 基礎の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/027535 WO2021005787A1 (ja) | 2019-07-11 | 2019-07-11 | 基礎の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021005787A1 true WO2021005787A1 (ja) | 2021-01-14 |
Family
ID=74114495
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/027535 WO2021005787A1 (ja) | 2019-07-11 | 2019-07-11 | 基礎の製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220170228A1 (ja) |
JP (1) | JP7282888B2 (ja) |
AU (1) | AU2019456405A1 (ja) |
WO (1) | WO2021005787A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023175836A1 (ja) * | 2022-03-17 | 2023-09-21 | 日揮グローバル株式会社 | 構造物の基礎の建設方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5612472A (en) * | 1979-07-11 | 1981-02-06 | Mitsubishi Heavy Ind Ltd | Method of constructing plant |
JPS6057297A (ja) * | 1983-09-09 | 1985-04-03 | 株式会社東芝 | 機器の排水方法 |
JP2013087533A (ja) * | 2011-10-20 | 2013-05-13 | Nihon Kogyo Co Ltd | 軟弱地盤用基礎ブロック |
JP2016108801A (ja) * | 2014-12-05 | 2016-06-20 | 前田建設工業株式会社 | 3dプリンターを用いた複合構造物の構築装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3112790A4 (en) * | 2014-02-28 | 2018-01-31 | The Chugoku Electric Power Co., Inc. | Heat exchanging structure for power generating equipment |
JP6993794B2 (ja) * | 2017-05-26 | 2022-01-14 | 大成建設株式会社 | 積層構造物の施工方法、積層構造物および積層構造物施工装置 |
-
2019
- 2019-07-11 JP JP2021530455A patent/JP7282888B2/ja active Active
- 2019-07-11 AU AU2019456405A patent/AU2019456405A1/en active Pending
- 2019-07-11 WO PCT/JP2019/027535 patent/WO2021005787A1/ja active Application Filing
- 2019-07-11 US US17/442,606 patent/US20220170228A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5612472A (en) * | 1979-07-11 | 1981-02-06 | Mitsubishi Heavy Ind Ltd | Method of constructing plant |
JPS6057297A (ja) * | 1983-09-09 | 1985-04-03 | 株式会社東芝 | 機器の排水方法 |
JP2013087533A (ja) * | 2011-10-20 | 2013-05-13 | Nihon Kogyo Co Ltd | 軟弱地盤用基礎ブロック |
JP2016108801A (ja) * | 2014-12-05 | 2016-06-20 | 前田建設工業株式会社 | 3dプリンターを用いた複合構造物の構築装置 |
Non-Patent Citations (1)
Title |
---|
8 March 2017 (2017-03-08), Retrieved from the Internet <URL:https://www.hazardlab.jp/know/topics/detail/1/9/19432.html> [retrieved on 20190724] * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023175836A1 (ja) * | 2022-03-17 | 2023-09-21 | 日揮グローバル株式会社 | 構造物の基礎の建設方法 |
Also Published As
Publication number | Publication date |
---|---|
AU2019456405A1 (en) | 2021-09-30 |
JPWO2021005787A1 (ja) | 2021-01-14 |
JP7282888B2 (ja) | 2023-05-29 |
US20220170228A1 (en) | 2022-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20160340855A1 (en) | Modular construction mold apparatus and method for constructing concrete buildings and structures | |
EP3327214B1 (en) | Framework structure and construction method for same | |
CA2840062C (en) | Method for constructing low-temperature tank and low-temperature tank | |
KR101658648B1 (ko) | 보 관통형 기둥접합부 및 이를 이용한 건축물 상하부 병행 구축 공법 | |
US11946216B2 (en) | Additive manufacturing of support structures | |
CN102102443B (zh) | 大型冶金工业厂房钢骨混凝土柱的施工方法 | |
WO2014163514A1 (en) | A cabled pipe rack | |
CN105952061A (zh) | 预制剪力墙钢筋笼构件、柱钢筋笼构件及制造装配方法 | |
WO2021005787A1 (ja) | 基礎の製造方法 | |
US3878662A (en) | Method of constructing a remotely located drilling structure | |
JP2015048621A (ja) | 低温貯槽の建設方法及び低温貯槽 | |
CN102182309B (zh) | 大型冶金工业厂房钢骨混凝土梁的施工方法 | |
JP5095869B1 (ja) | 消波・魚礁ブロックの組立構造及び組立工法 | |
CN112814163A (zh) | 建筑免模板的施工方法 | |
JP6030274B1 (ja) | 架構構造及びその構築方法 | |
JP7238128B2 (ja) | プラントの建設方法 | |
JP4964346B1 (ja) | Pc地上タンクの施工方法 | |
JP4996370B2 (ja) | 架構組立方法および建物の架構 | |
JP2017128980A (ja) | PCa部分壁、PCa部分梁、RC建物及びRC建物の構築方法 | |
AU2017377663B2 (en) | Support module for a structure | |
JP5777060B2 (ja) | PCa部材およびPCa工法 | |
JP2011185013A (ja) | 高架橋の門型ラーメン構造の施工方法 | |
JP5665905B2 (ja) | 限定地域の多層建物の建設工法 | |
CN213773369U (zh) | 一种大斜度嵌岩桩基施工平台辅助工具 | |
KR20150041462A (ko) | R-h 구조물 및 그 거푸집과 시공 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19937139 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021530455 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019456405 Country of ref document: AU Date of ref document: 20190711 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19937139 Country of ref document: EP Kind code of ref document: A1 |