WO2021005787A1 - 基礎の製造方法 - Google Patents

基礎の製造方法 Download PDF

Info

Publication number
WO2021005787A1
WO2021005787A1 PCT/JP2019/027535 JP2019027535W WO2021005787A1 WO 2021005787 A1 WO2021005787 A1 WO 2021005787A1 JP 2019027535 W JP2019027535 W JP 2019027535W WO 2021005787 A1 WO2021005787 A1 WO 2021005787A1
Authority
WO
WIPO (PCT)
Prior art keywords
foundation
plant
manufacturing
printer
equipment
Prior art date
Application number
PCT/JP2019/027535
Other languages
English (en)
French (fr)
Inventor
洋晃 五十嵐
憲昭 寺久保
篤生 本位田
Original Assignee
日揮グローバル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮グローバル株式会社 filed Critical 日揮グローバル株式会社
Priority to JP2021530455A priority Critical patent/JP7282888B2/ja
Priority to AU2019456405A priority patent/AU2019456405A1/en
Priority to US17/442,606 priority patent/US20220170228A1/en
Priority to PCT/JP2019/027535 priority patent/WO2021005787A1/ja
Publication of WO2021005787A1 publication Critical patent/WO2021005787A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2300/00Materials
    • E02D2300/0004Synthetics
    • E02D2300/0018Cement used as binder
    • E02D2300/002Concrete

Definitions

  • the present invention relates to a technique for constructing a plant.
  • Plants that process fluid include natural gas plants that liquefy natural gas, separate and recover natural gas liquid, petroleum refining plants that distill and desulfurize crude oil and various intermediate products, petroleum chemical products and intermediate chemicals.
  • chemical plants that produce products and polymers.
  • these plants include, for example, static equipment such as tower tanks and heat exchangers, dynamic equipment such as pumps, and a large number of equipment such as piping provided between these static equipment and dynamic equipment. It has a structure in which groups are arranged.
  • the present invention provides a technique for efficiently and safely manufacturing a plant foundation.
  • the method for manufacturing a foundation of the present invention is a method for manufacturing a foundation provided in a plant that processes a fluid.
  • a foundation for supporting these equipment or the frame structure is provided by a 3D printer. It is characterized by including a step of forming.
  • the method for manufacturing the foundation may have the following features.
  • the foundation has an RC (Reinforced-Concrete) structure, and in the step of forming the foundation, the foundation of the RC structure is integrally formed by joining dissimilar materials of a concrete material and a metal material.
  • RC Reinforced-Concrete
  • a flow path through which the fluid handled by the plant flows is formed in the foundation.
  • the flow path is made of a material different from the constituent material of the foundation, and the flow path is integrated in the foundation by joining different materials of the constituent material of the foundation and the constituent material of the flow path using a 3D printer.
  • the inside of the foundation shall have a sparse structure in which members are combined in a geometric shape.
  • this method manufactures foundations using a 3D printer, the manufacturing of each foundation is automated, and the work of construction personnel is reduced to improve safety while efficiently forming the foundation. Can be done.
  • FIG. 1 is a perspective view showing the entire plant constructed by the 3D printer (additional manufacturing apparatus) 1.
  • the 3D printer additional manufacturing apparatus
  • this application describes an example of forming a foundation for supporting equipment installed in a plant and a foundation for supporting a frame structure for supporting equipment and piping by using a 3D printer 1.
  • a technique for manufacturing large members such as conductor parts and wings of an airplane (for example, Japanese Patent No. 65135554) and building materials (for example, Japanese Patent No. 6378699) by a 3D printer has also been patented.
  • the inventors of the present application have grasped that it is possible to provide a 3D printer capable of forming a large structure at the request of the consumer side through a development status survey of a 3D printer manufacturer or the like.
  • the plant shown in FIG. 1 is, for example, a plant that manufactures liquefied natural gas (LNG: Liquefied Natural Gas), which is a fluid, and is equipped with a large number of devices 2 that perform pre-liquefaction treatment and liquefaction of natural gas after pretreatment. ing. Further, on the side of the installation area of each device 2, a pipe rack 3 which is a frame structure for supporting a pipe for transferring various fluids handled in the LNG plant between the devices 2 is provided. ..
  • LNG Liquefied Natural Gas
  • FIG. 3 is an enlarged view of a section designated by reference numeral A in FIG.
  • a large number of devices 2 constituting the LNG plant are collectively arranged in the device rack 20 in the section.
  • the equipment rack 20 is configured as a frame structure having multiple floors, and the equipment 2 constituting the LNG plant is arranged on these floors.
  • large equipment 21 such as MCHE (Main Cryogenic Heat Exchanger) that liquefies and supercools natural gas and various distillation columns are arranged so as to penetrate a plurality of floors of the equipment rack 20 in the vertical direction, or the equipment rack 20. It may be placed outside. Further, the pipe rack 3 described above is also arranged in the section shown in FIG. 3A.
  • MCHE Main Cryogenic Heat Exchanger
  • FIG. 3B is a plan view schematically showing an arrangement example of the foundation 6 that supports the equipment rack 20, the large equipment 21, and the pipe rack 3.
  • FIG. 3B is a plan view schematically showing an arrangement example of the foundation 6 that supports the equipment rack 20, the large equipment 21, and the pipe rack 3.
  • a formwork is installed in a foundation hole dug in the ground, and after arranging reinforcing bars as needed, ready-mixed concrete is poured into the formwork and a casting operation is waited for the concrete to solidify.
  • a formwork is installed in a foundation hole dug in the ground, and after arranging reinforcing bars as needed, ready-mixed concrete is poured into the formwork and a casting operation is waited for the concrete to solidify.
  • a casting operation is waited for the concrete to solidify.
  • the above-mentioned various foundations 6 are manufactured by using the 3D printer 1.
  • the 3D printer 1 of this example includes a gate-shaped support portion 10 in which both ends of the beam portion 10B are supported by two support columns 10A.
  • the support portion 10 is provided so as to be able to straddle the installation areas of the above-mentioned equipment rack 20, the pipe rack 3, and the large equipment 21 provided in the LNG plant, for example, from the upper side.
  • a support portion moving mechanism 11 for moving the support portion 10 is provided at the lower end of the support portion 10.
  • the support portion moving mechanism 11 is configured to be movable along a guide rail 12 provided on the ground so as to extend in a direction orthogonal to the direction in which the beam portion 10B is bridged.
  • the beam portion 10B is provided with a moving body 42 configured to be movable along the beam portion 10B.
  • the moving body 42 is provided with a shaft portion 41 extending downward, and a component material such as a foundation 6 is discharged downward to the lower end of the shaft portion 41 to execute 3D printing. Is provided.
  • the support portion 10 moves along the guide rail 12, the moving body 42 moves along the beam portion 10B, and the printer main body 4 moves up and down along the shaft portion 41 to move back and forth.
  • -It is configured to be movable in the horizontal and vertical directions.
  • the 3D printer 1 may be provided with an arm moving body 43 that moves along the beam portion 10B.
  • the arm moving body 43 is provided with a shaft portion 44 extending downward.
  • an arm 45 that receives a member such as a piping material from the outside and conveys the member to the arrangement location is provided.
  • the arm 45 is also configured to be movable in the front-back-left-right-up-down direction like the printer main body 4.
  • the printer main body 4 uses a directed energy deposition method in which constituent materials such as ready-mixed concrete, metal powder, and resin discharged from a nozzle are laminated and stacked from the lower layer side can be exemplified.
  • constituent materials such as ready-mixed concrete, metal powder, and resin discharged from a nozzle are laminated and stacked from the lower layer side
  • the 3D printer 1 using a method different from the directed energy deposition method may be used.
  • a plurality of 3D printers 1 can be supplied with different constituent materials and can be individually moved by the moving body 42 and the shaft 41.
  • the printer main body 4 may be provided.
  • the 3D printer 1 having the above configuration can be used for manufacturing various devices and structures provided in the LNG plant, but the following example describes an example of application to the manufacture of the foundation 6.
  • FIGS. 5 to 7 are explanatory views showing a process of manufacturing the foundation 6 of the RC structure (hereinafter, also referred to as “RC structure foundation 61”).
  • RC structure foundation 61 In the formation of the conventional RC structure foundation 61, the casting work such as the installation of the formwork, the arrangement of the reinforcing bar member 612 in the formwork, and the pouring of ready-mixed concrete into the formwork was carried out in sequence.
  • the basic main body 611 And the reinforcing bar member 612 which is a reinforcing member, can be integrally formed.
  • the concrete body part 4a is inserted into the foundation hole 60, and the foundation body 611 is formed from the bottom surface of the foundation hole 60.
  • Concrete, which is a constituent member, is laminated (Fig. 5).
  • the formation of the foundation body 611 is promoted while the concrete is solidified.
  • the 3D printer 1 operates to form other foundations 6 during the period until the concrete immediately after laminating solidifies. You may do it.
  • the metal material is supplied using the metal main body portion 4b at the forming position of the reinforcing bar member 612. Further, around the formation position of the reinforcing bar member 612, the formation of the foundation main body 611 using the concrete main body portion 4a is continued. By the above-mentioned operation, as shown in FIG. 6, the foundation main body 611 including the reinforcing bar member 612 is gradually formed (FIG. 6).
  • the foundation main body 611 is stacked up to a preset height position above the ground, a connecting portion 613 with the legs of the pipe rack 3 and the equipment rack 20 is formed so as to protrude from the upper surface of the connecting portion 613.
  • the reinforcing bar member 612 is formed.
  • the RC structural foundation 61 reinforced by the reinforcing bar member 612 can be integrally formed.
  • the gap between the RC structure foundation 61 and the side wall of the foundation hole 60 is filled with earth and sand and compacted to complete the installation of the RC structure foundation 61 (foundation 6).
  • FIG. 8 is an enlarged plan view showing the arrangement of the base 6 of the equipment rack 20 and the large equipment 21 installed in the area designated by reference numeral B in FIG.
  • the installation work of the pipe 5 arranged below the equipment rack 20 may be carried out in parallel with the installation of the foundation 6.
  • the foundation 62 with a flow path in which the piping portion 622 is arranged at a preset position can be integrally formed.
  • the foundation main body 621 is formed up to a preset height position.
  • the metal material is supplied using the metal main body portion 4b.
  • the formation of the foundation main body 621 using the concrete main body portion 4a is continued.
  • the foundation main body 621 including the piping portion 622 is gradually formed (FIGS. 9A and 9B).
  • the foundation main body 621 is further laminated and formed up to a preset height position on the upper side thereof.
  • the foundation 62 with a flow path including the piping portion 622 can be integrally formed.
  • the gap between the foundation 62 with a flow path and the side wall of the foundation hole 60 is filled with earth and sand, and compaction is performed, which is the same as the example of the RC structure foundation 61 described above.
  • the pipe 5 can be installed without diverting to another arrangement position. Further, since the piping portion 622 is integrally formed with the foundation 62 with a flow path as described above, the foundation 62 with a flow path is compared with the case where the foundation 6 in a state where the pipe 5 prepared in advance is penetrated is placed. The shape forming work can be simplified.
  • the piping portion 622 formed on the foundation 62 with a flow path corresponds to a flow path through which a fluid flows.
  • the method of forming the flow path on the foundation 62 with the flow path is not limited to the case where the piping portion 622 is formed of a different material such as a metal material as in the example described with reference to FIGS. 9 and 10.
  • a tubular cavity through which a fluid flows may be formed inside the foundation main body 621, and the cavity may be used as a flow path.
  • the large equipment foundation 63 shown in the plan view of FIGS. 8 and 11 shows a configuration example of the foundation 6 which is not a solid structure.
  • the large equipment foundation 63 shown in the figure has a plate-shaped liner portion 632 extending in the vertical direction and a corrugated truss-shaped portion 633 extending in the vertical direction inside the outer wall 631 forming the side wall surface thereof. It has a truss structure in which and are arranged alternately.
  • the gap between the outer wall 631, the liner portion 632, and the truss-shaped portion 633 may be later filled with earth and sand.
  • the foundation 6 is not limited to the truss structure described above, and the foundation 6 may be formed by combining members based on various geometric patterns such as a honeycomb structure and a lattice structure. ..
  • the foundation 6 in which these members are geometrically combined can also be configured by laminating the constituent materials using the printer main body 4.
  • the reinforcing bar member 612 shown in FIG. 7 and the piping portion 622 shown in FIG. 10 may be combined and formed on the basic body of the sparse structure.
  • the manufacturing method of the foundation 6 of the LNG plant of this example since the foundation 6 is manufactured by using the 3D printer 1, the manufacturing of each foundation 6 is automated, the work by the construction personnel is reduced, and the safety is improved. While trying, the work of forming the foundation 6 can be carried out efficiently.
  • the foundation 6 since the foundation 6 is a columnar structure extending in the vertical direction, it is suitable for manufacturing by a 3D printer 1 in which constituent materials are sequentially stacked from the lower layer side among the structures provided in the LNG plant.
  • FIGS. 5 to 7, 9 and 10 an example in which the foundation 6 is manufactured directly in the foundation hole 60 without using a mold is shown. However, this does not deny the method of installing the mold in the foundation hole 60 as needed and forming the foundation 6 in the mold by the printer main body 4.
  • each of the foundations 6 is not limited to the case of using a very large printer illustrated in FIGS. 1 and 4.
  • Each foundation 6 may be manufactured using a medium-sized 3D printer 1 provided with a support portion large enough to straddle the upper region of the foundation hole 60.
  • the foundation 6 manufactured by the production method of this example is a separation / recovery plant that separates and recovers natural gas liquid from natural gas, and distillation and desulfurization of crude oil and various intermediate products. It may be a variety of plants such as a petroleum refining plant that produces petroleum chemical products, intermediate chemical products, and a chemical plant that produces polymers. Further, when installing the equipment 2 on the above-mentioned foundation 6, for example, a module in which the equipment 2 is housed in the equipment rack 20 is constructed at another place, the module is transported to the installation site, and the modules are connected to each other to form a plant. You may try to build it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mining & Mineral Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)

Abstract

【課題】効率的かつ安全にプラントの基礎を製造する技術を提供する。 【解決手段】流体の処理を行うプラント内に設けられる基礎6の製造方法であって、前記プラントに設けられる機器が設置される地盤、若しくは、前記機器または前記流体が流れる配管を支持する架構構造物が設置される地盤に、3Dプリンタにより、これらの機器または架構構造物を支える基礎を形成する工程を含む。

Description

基礎の製造方法
 本発明は、プラントを建設する技術に関する。
 流体の処理を行うプラントには、天然ガスの液化や天然ガス液の分離、回収などを行う天然ガスプラント、原油や各種中間製品の蒸留や脱硫などを行う石油精製プラント、石油化学製品や中間化学品、ポリマーなどの生産を行う化学プラントなどがある。 
 これらのプラントは、特許文献1に記載されているように例えば塔槽や熱交換器などの静機器、ポンプなどの動機器、これら静機器や動機器の間に設けられる配管などの多数の機器群を配置した構造となっている。
 プラントの建設作業の初期段階では、建設敷地の地盤に対し、上述の機器群が配置される架構や、直接配置される大型機器を地盤上に安定的に支持するための基礎を形成する。このため、できるだけ効率的に基礎の形成を行うことが、プラントの建設工期の短縮を図るうえでの最初のポイントとなる。また同時に、プラントの建設人員の低減や作業環境の安全性向上が求められている。
国際公開第2014/028961号
 本発明は、効率的かつ安全にプラントの基礎を製造する技術を提供する。
 本発明の基礎の製造方法は、流体の処理を行うプラント内に設けられる基礎の製造方法であって、
 前記プラントに設けられる機器が設置される地盤、若しくは、前記機器または前記流体が流れる配管を支持する架構構造物が設置される地盤に、3Dプリンタにより、これらの機器または架構構造物を支える基礎を形成する工程を含むことを特徴とする。
 前記基礎の製造方法は以下の特徴を備えてもよい。 
(a)前記基礎は、RC(Reinforced-Concrete)構造であり、前記基礎を形成する工程では、コンクリート材料及び金属材料の異材接合により、前記RC構造の基礎を一体形成すること。
(b)前記基礎を形成する工程にて、前記基礎内に、前記プラントにて取り扱われる流体が流れる流路を形成すること。前記流路は、前記基礎の構成材料とは異なる材料により構成され、3Dプリンタを用いた前記基礎の構成材料と前記流路の構成材料との異材接合により、前記基礎内に前記流路を一体形成すること。
(c)基礎の内部は、幾何学的形状に部材を組み合わせたスパース構造となっていること。
 本法は、3Dプリンタを用いて基礎を製造するので、各基礎の製造が自動化され、建設人員による作業を低減して安全性の向上を図りつつ、効率的に基礎の形成作業を実施することができる。
プラントの全体構成を示す斜視図である。 前記プラントのプロットプランの概要を示す平面図である。 前記プラントの一部領域のプロットプラン、及び基礎の配置の概要を示す平面図である。 プラントの基礎を製造する3Dプリンタの全体像を示す側面図である。 RC構造の基礎を製造する工程を示す第1の説明図である。 RC構造の基礎を製造する工程を示す第2の説明図である。 RC構造の基礎を製造する工程を示す第3の説明図である。 処理塔周辺の基礎の配置の例を示す平面図である。 流路付基礎を製造する工程を示す第1の説明図である。 流路付基礎を製造する工程を示す第2の説明図である。 処理塔を支持する処理塔基礎の構成例を示す平面図である。
 図1は、3Dプリンタ(付加製造装置)1により建設されたプラントの全体を示す斜視図である。図1に示すように、プラントを構成する機器や配管、架構の大部分を3Dプリンタ1により形成することが近い将来可能となる。その要素技術として、本願では、プラント内に設置される機器を支える基礎や、機器・配管を支持する架構構造物を支える基礎を、3Dプリンタ1を用いて形成する例について説明する。
 なお現在は、飛行機の導体部分や翼(例えば日本国特許第6513554号)、建築資材(例えば日本国特許第6378699号)など、大型の部材を3Dプリンタによって製造する技術も特許化されている。また、本願発明者らは、需要者側の要請があれば大型の構造物を形成可能な3Dプリンタを提供可能であることを3Dプリンタメーカーの開発状況調査等により把握している。
 図1に示すプラントは、例えば流体である液化天然ガス(LNG:Liquefied Natural Gas)の製造を行うプラントであり、液化前処理や、前処理後の天然ガスの液化を行う多数の機器2を備えている。また各機器2の設置領域の側方には、当該LNGプラント内で取り扱われる各種の流体を各機器2間で授受するための配管を支持する架構構造物であるパイプラック3が設けられている。
 図2の平面図に模式的に示すように、本例のLNGプラントは、建設敷地を複数に区画し、各区画に3Dプリンタ1を設置して当該領域内のLNGプラントの建設が行われる。 
 図3は、図2中に符号Aを付した区画の拡大図である。図3(a)中に模式的に示すように、当該区画内にはLNGプラントを構成する多数の機器2が機器ラック20にまとめて配置される。例えば機器ラック20は、複数階のフロアを有する架構構造物として構成され、LNGプラントを構成する機器2は、これらのフロアに配置される。
 また、天然ガスの液化・過冷却を行うMCHE(Main Cryogenic Heat Exchanger)や各種蒸留塔などの大型機器21は、機器ラック20の複数フロアを上下方向に貫くように配置され、または機器ラック20の外部に配置される場合もある。 
 さらに図3(a)に示す区画には、既述のパイプラック3も配置されている。
 これらの機器ラック20や大型機器21、パイプラック3は、建設敷地に設けられた基礎6を介して地盤によって支えられる。図3(b)は、これら機器ラック20や大型機器21、パイプラック3を支える基礎6の配置例を模式的に示した平面図である。 
 当該図に示すように、各種ラック20、3や大型機器21などを地盤に配置するためには、多数の基礎6を設ける必要がある。従来、これらの基礎6は、地盤に掘った基礎穴内に型枠を設置し、さらに必要に応じて鉄筋を配置した後、当該型枠内に生コンクリートを流し込み、コンクリートの固化を待つ打設作業によって形成されていた。
 しかしながら、LNGプラント全体に設置される基礎6は極めて多数に及び、これらの基礎6について上述の打設作業を繰り返すことはLNGプラントの建設スケジュールを短縮するうえでの大きな制約の一つとなっていた。また、型枠の設置、解体作業などには建設人員による作業も必要であった。
 そこで本実施の形態に係るLNGプラントにおいては、図4に示すように、3Dプリンタ1を用いて上述の各種基礎6を製造する。 
 図1、4に示すように、本例の3Dプリンタ1は、梁部10Bの両端を2本の支持柱10Aで支持する門型の支持部10を備えている。支持部10は、例えばLNGプラントに設けられる既述の機器ラック20やパイプラック3、大型機器21の設置領域を上方側から跨ぐことができるように設けられている。また支持部10の下端には、当該支持部10を移動させるための支持部移動機構11が設けられている。支持部移動機構11は、前記梁部10Bが架け渡されている方向と直交する方向へ伸びるように、地盤上に設けられたガイドレール12に沿って移動自在に構成されている。
 さらに梁部10Bには、梁部10Bに沿って移動自在に構成された移動体42が設けられている。また移動体42には、下方に向けて伸びる軸部41が設けられ、軸部41の下端には、下方に向けて基礎6などの構成材料を吐出し、3Dプリントを実行するプリンタ本体部4が設けられている。プリンタ本体部4は、ガイドレール12に沿って支持部10が移動し、梁部10Bに沿って移動体42が移動すると共に、軸部41に沿ってプリンタ本体部4が昇降することで、前後-左右-上下方向に移動自在に構成されている。
 また3Dプリンタ1には、梁部10Bに沿って移動するアーム移動体43が設けられていてもよい。アーム移動体43には、下方に向けて伸びる軸部44が設けられている。当該軸部44の下端には、配管材料などの部材を外部から受け取り、配置箇所まで搬送するアーム45が設けられている。アーム45もプリンタ本体部4と同様に前後-左右-上下方向に移動自在に構成されている。
 プリンタ本体部4は、例えばノズルから吐出される生コンクリートや金属粉、樹脂などの構成材料を下層側から積層して積み上げて形成する指向性エネルギー堆積法を用いる場合を例示することができる。但し、指向性エネルギー堆積法とは異なる手法を用いた3Dプリンタ1を用いてもよいことは勿論である。また、後述するコンクリート用本体部4a、金属用本体部4bのように、3Dプリンタ1には、異なる構成材料の供給を行い、移動体42、軸部41により個別に移動させることが可能な複数のプリンタ本体部4を設けてもよい。 
 上述の構成を備える3Dプリンタ1は、LNGプラントに設けられる各種機器や、構造物の製造に用いることができるが、以下の例では基礎6の製造への適用例について説明する。
 図5~7は、RC構造の基礎6(以下「RC構造基礎61」ともいう)を製造する工程を示す説明図である。 
 従来のRC構造基礎61の形成においては、型枠の設置、型枠内への鉄筋部材612の配置、型枠内への生コンクリートの流し込みといった打設作業を順次、実施していた。これに対して、複数種類のプリンタ本体部4(図5、6に記載のコンクリート用本体部4a、図7に記載の金属材料本体部4b)を用いた異材接合を利用すれば、基礎本体611と補強部材である鉄筋部材612とを一体形成することが可能となる。
 はじめに基礎本体611が設置される建設敷地の地盤に基礎穴60を掘って内部を固めた後、当該基礎穴60内にコンクリート用本体部4aを進入させ、基礎穴60の底面から基礎本体611の構成部材であるコンクリートを積層していく(図5)。そしてコンクリートの固化を進行させながら基礎本体611の形成を進める。このとき、図3(b)に示す多数の基礎6の製造を並行して実行することにより、積層直後のコンクリートが固化するまでの期間中、3Dプリンタ1は他の基礎6を形成する動作を実行してもよい。
 鉄筋部材612を形成する高さ位置に到達したら、鉄筋部材612の形成位置においては金属用本体部4bを用いた金属材料の供給を実行する。また、鉄筋部材612の形成位置の周囲においては、コンクリート用本体部4aを用いた基礎本体611の形成を継続する。
 上述の動作により、図6に示すように、鉄筋部材612を内包した基礎本体611が次第に形成されていく(図6)。
 そして地面の上方の予め設定された高さ位置まで基礎本体611が積みあがったら、パイプラック3や機器ラック20の脚部との接続部613を形成し、当該接続部613の上面から突出するように鉄筋部材612の形成を行う。 
 3Dプリンタ1を用いた上述の動作により、鉄筋部材612により補強されたRC構造基礎61を一体形成することができる。最後にRC構造基礎61と基礎穴60の側壁との隙間に土砂を充填し、締め固めなどを行い、RC構造基礎61(基礎6)の設置が完了する。
 次いで、他の種類の基礎6を製造する手法について、図8~11を参照しながら説明する。図8は、図3中に符号Bを付した領域に設置される機器ラック20及び大型機器21の基礎6の配置を示す拡大平面図である。 
 図8に示すようにLNGプラントの建設敷地においては、基礎6の設置と並行して、機器ラック20の下方に配置される配管5の設置作業が実施される場合がある。
 従来手法において、配管5の配置レイアウトが基礎6の配置位置と干渉するおそれがある場合には、打設作業中の基礎6から配管5を迂回させたり、予め準備した配管5を貫通させた状態で基礎6の打設作業を行ったりする必要があった。しかしながら前者の場合には、迂回に伴う余分な長さの配管5が必要となる。また後者の場合には型枠への配管5の配置作業が発生したり、配管5を貫通させた型枠から生コンクリートが漏れないようにするシール構造が必要となったりするなど、配管5を貫通させることに伴う特別な対応が必要となる。
 この点、異材接合を実施可能な3Dプリンタ1を用いる場合には、予め設定された位置に配管部622が配置された流路付基礎62を一体形成することができる。
 例えば図9(a)、(b)に示すように、予め設定された高さ位置まで基礎本体621を形成する。しかる後、配管部622の形成位置においては金属用本体部4bを用いた金属材料の供給を実行する。また、配管部622の形成位置の周囲においては、コンクリート用本体部4aを用いた基礎本体621の形成を継続する。上述の動作により、図6に示すように、配管部622を内包した基礎本体621が次第に形成されていく(図9(a)、(b))。
 そして予め設定された直径、及び長さを有する配管部622が形成されたら、さらにその上部側の予め設定された高さ位置まで基礎本体621を積層形成する。3Dプリンタ1を用いた上述の動作により、図10(a)、(b)に示すように配管部622を含んだ流路付基礎62を一体形成することができる。最後に流路付基礎62と基礎穴60の側壁との隙間に土砂を充填し、締め固めなどを行う点については、既述のRC構造基礎61の例と同様である。
 しかる後、流路付基礎62の配管部622に対して、配管5を接続することにより、他の配置位置へと迂回させることなく配管5の設置を行うことができる。また、上述のように配管部622は流路付基礎62と共に一体形成されるので、予め準備した配管5を貫通させた状態の基礎6を打設する場合と比較して、流路付基礎62の形形成作業を簡素化できる。
 流路付基礎62に形成される配管部622は、流体が流れる流路に相当する。なお、流路付基礎62に流路を形成する手法は、図9、10を用いて説明した例のように、金属材料などの異材によって配管部622を形成する場合に限定されない。例えば、コンクリート用本体部4aを用いてコンクリート製の基礎本体621を形成する際に、当該基礎本体621の内部に流体が流れる筒状の空洞を形成し、当該空洞を流路としてもよい。
 また、基礎6は、図7や図10に示すように基礎本体611、621の内部をその構成材料であるセメントで埋めたソリッド構造とする場合に限定されない。 
 図8、11の平面図に示す大型機器基礎63は、ソリッド構造ではない基礎6の構成例を示している。同図に示す大型機器基礎63は、その側壁面を構成する外郭壁631の内側に、上下方向に向けて伸びる板状のライナー部632と、同じく上下方向に延びる波板状のトラス状部633とを交互に配置したトラス構造となっている。外郭壁631、ライナー部632、トラス状部633の間の隙間は、後から土砂で埋めてもよい。
 ソリッド構造以外のスパース構造を採用する場合には、上述のトラス構造に限定されず、ハニカム構造やラティス構造などの種々の幾何学的パターンに基づいて部材を組み合わせた基礎6を形成してもよい。これらの幾何学的に部材を組み合わせた基礎6についても、プリンタ本体部4を用いて構成材料を積層させていくことにより構成することができる。 
 また、スパース構造の基礎本体に、図7に示す鉄筋部材612や、図10に示す配管部622を組み合わせて形成してもよい。
 本例のLNGプラントの基礎6の製造方法によれば、3Dプリンタ1を用いて基礎6を製造するので、各基礎6の製造が自動化され、建設人員による作業を低減して安全性の向上を図りつつ、効率的に基礎6の形成作業を実施することができる。 
 特に基礎6は、上下方向に伸びる柱状の構造物であるため、LNGプラント内に設けられる構造物の中でも、下層側から順次、構成材料を積み上げる3Dプリンタ1による製造に適している。
 ここで、図5~7、9、10に示した例では、型枠を用いずに、基礎穴60内に直接、基礎6を製造する例を示した。但し、必要に応じて基礎穴60内に型枠を設置し、プリンタ本体部4により当該型枠内に基礎6を形成する手法を否定するものではない。
 この他、各基礎6を製造する3Dプリンタ1は、図1、4に例示する非常に大型のものを利用する場合に限定されない。基礎穴60の上方領域を跨ぐ程度の大きさの支持部を備えた中型の3Dプリンタ1を用いて各基礎6を製造してもよい。
 また、本例の製造方法により製造される基礎6は、上述のLNGプラントの他、天然ガスからの天然ガス液の分離、回収などを行う分離・回収プラント、原油や各種中間製品の蒸留や脱硫などを行う石油精製プラント、石油化学製品や中間化学品、ポリマーなどの生産を行う化学プラントなど、各種のプラントであってよい。
 また上述の基礎6に機器2を設置するにあたっては、例えば他所で機器ラック20内に機器2を収納したモジュールを建造し、当該モジュールを設置現場に搬送し、モジュール同士を接続することによりプラントを建設するようにしてもよい。
1     3Dプリンタ
2     機器
20    機器ラック
21    大型機器
3     パイプラック
4     プリンタ本体部
6     基礎
61    RC構造基礎
62    流路付基礎
63    大型機器基礎
 
 

 

Claims (5)

  1.  流体の処理を行うプラント内に設けられる基礎の製造方法であって、
     前記プラントに設けられる機器が設置される地盤、若しくは、前記機器または前記流体が流れる配管を支持する架構構造物が設置される地盤に、3Dプリンタにより、これらの機器または架構構造物を支える基礎を形成する工程を含むことを特徴とする基礎の製造方法。
  2.  前記基礎は、RC(Reinforced-Concrete)構造であり、前記基礎を形成する工程では、コンクリート材料及び金属材料の異材接合により、前記RC構造の基礎を一体形成することを特徴とする請求項1に記載の基礎の製造方法。
  3.  前記基礎を形成する工程にて、前記基礎内に、前記プラントにて取り扱われる流体が流れる流路を形成することを特徴とする請求項1に記載の基礎の製造方法。
  4.  前記流路は、前記基礎の構成材料とは異なる材料により構成され、3Dプリンタを用いた前記基礎の構成材料と前記流路の構成材料との異材接合により、前記基礎内に前記流路を一体形成することを特徴とする請求項3に記載の基礎の製造方法。
  5.  前記基礎の内部は、幾何学的形状に部材を組み合わせたスパース構造となっていることを特徴とする請求項1に記載の基礎の製造方法。
     
PCT/JP2019/027535 2019-07-11 2019-07-11 基礎の製造方法 WO2021005787A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021530455A JP7282888B2 (ja) 2019-07-11 2019-07-11 基礎の製造方法
AU2019456405A AU2019456405A1 (en) 2019-07-11 2019-07-11 Method for manufacturing foundation
US17/442,606 US20220170228A1 (en) 2019-07-11 2019-07-11 Method for manufacturing foundation
PCT/JP2019/027535 WO2021005787A1 (ja) 2019-07-11 2019-07-11 基礎の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/027535 WO2021005787A1 (ja) 2019-07-11 2019-07-11 基礎の製造方法

Publications (1)

Publication Number Publication Date
WO2021005787A1 true WO2021005787A1 (ja) 2021-01-14

Family

ID=74114495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027535 WO2021005787A1 (ja) 2019-07-11 2019-07-11 基礎の製造方法

Country Status (4)

Country Link
US (1) US20220170228A1 (ja)
JP (1) JP7282888B2 (ja)
AU (1) AU2019456405A1 (ja)
WO (1) WO2021005787A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023175836A1 (ja) * 2022-03-17 2023-09-21 日揮グローバル株式会社 構造物の基礎の建設方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5612472A (en) * 1979-07-11 1981-02-06 Mitsubishi Heavy Ind Ltd Method of constructing plant
JPS6057297A (ja) * 1983-09-09 1985-04-03 株式会社東芝 機器の排水方法
JP2013087533A (ja) * 2011-10-20 2013-05-13 Nihon Kogyo Co Ltd 軟弱地盤用基礎ブロック
JP2016108801A (ja) * 2014-12-05 2016-06-20 前田建設工業株式会社 3dプリンターを用いた複合構造物の構築装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3112790A4 (en) * 2014-02-28 2018-01-31 The Chugoku Electric Power Co., Inc. Heat exchanging structure for power generating equipment
JP6993794B2 (ja) * 2017-05-26 2022-01-14 大成建設株式会社 積層構造物の施工方法、積層構造物および積層構造物施工装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5612472A (en) * 1979-07-11 1981-02-06 Mitsubishi Heavy Ind Ltd Method of constructing plant
JPS6057297A (ja) * 1983-09-09 1985-04-03 株式会社東芝 機器の排水方法
JP2013087533A (ja) * 2011-10-20 2013-05-13 Nihon Kogyo Co Ltd 軟弱地盤用基礎ブロック
JP2016108801A (ja) * 2014-12-05 2016-06-20 前田建設工業株式会社 3dプリンターを用いた複合構造物の構築装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
8 March 2017 (2017-03-08), Retrieved from the Internet <URL:https://www.hazardlab.jp/know/topics/detail/1/9/19432.html> [retrieved on 20190724] *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023175836A1 (ja) * 2022-03-17 2023-09-21 日揮グローバル株式会社 構造物の基礎の建設方法

Also Published As

Publication number Publication date
AU2019456405A1 (en) 2021-09-30
JPWO2021005787A1 (ja) 2021-01-14
JP7282888B2 (ja) 2023-05-29
US20220170228A1 (en) 2022-06-02

Similar Documents

Publication Publication Date Title
US20160340855A1 (en) Modular construction mold apparatus and method for constructing concrete buildings and structures
EP3327214B1 (en) Framework structure and construction method for same
CA2840062C (en) Method for constructing low-temperature tank and low-temperature tank
KR101658648B1 (ko) 보 관통형 기둥접합부 및 이를 이용한 건축물 상하부 병행 구축 공법
US11946216B2 (en) Additive manufacturing of support structures
CN102102443B (zh) 大型冶金工业厂房钢骨混凝土柱的施工方法
WO2014163514A1 (en) A cabled pipe rack
CN105952061A (zh) 预制剪力墙钢筋笼构件、柱钢筋笼构件及制造装配方法
WO2021005787A1 (ja) 基礎の製造方法
US3878662A (en) Method of constructing a remotely located drilling structure
JP2015048621A (ja) 低温貯槽の建設方法及び低温貯槽
CN102182309B (zh) 大型冶金工业厂房钢骨混凝土梁的施工方法
JP5095869B1 (ja) 消波・魚礁ブロックの組立構造及び組立工法
CN112814163A (zh) 建筑免模板的施工方法
JP6030274B1 (ja) 架構構造及びその構築方法
JP7238128B2 (ja) プラントの建設方法
JP4964346B1 (ja) Pc地上タンクの施工方法
JP4996370B2 (ja) 架構組立方法および建物の架構
JP2017128980A (ja) PCa部分壁、PCa部分梁、RC建物及びRC建物の構築方法
AU2017377663B2 (en) Support module for a structure
JP5777060B2 (ja) PCa部材およびPCa工法
JP2011185013A (ja) 高架橋の門型ラーメン構造の施工方法
JP5665905B2 (ja) 限定地域の多層建物の建設工法
CN213773369U (zh) 一种大斜度嵌岩桩基施工平台辅助工具
KR20150041462A (ko) R-h 구조물 및 그 거푸집과 시공 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937139

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021530455

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019456405

Country of ref document: AU

Date of ref document: 20190711

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19937139

Country of ref document: EP

Kind code of ref document: A1