WO2023173669A1 - 一种对称"金字塔"纳米氧化锌的制备方法、产品及应用 - Google Patents

一种对称"金字塔"纳米氧化锌的制备方法、产品及应用 Download PDF

Info

Publication number
WO2023173669A1
WO2023173669A1 PCT/CN2022/111615 CN2022111615W WO2023173669A1 WO 2023173669 A1 WO2023173669 A1 WO 2023173669A1 CN 2022111615 W CN2022111615 W CN 2022111615W WO 2023173669 A1 WO2023173669 A1 WO 2023173669A1
Authority
WO
WIPO (PCT)
Prior art keywords
preparation
zinc oxide
solution
tragacanth
pyramid
Prior art date
Application number
PCT/CN2022/111615
Other languages
English (en)
French (fr)
Inventor
李小娟
殷茂力
夏木潤
倪庆清
徐萍
孙妍妍
徐珍珍
Original Assignee
安徽工程大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽工程大学 filed Critical 安徽工程大学
Publication of WO2023173669A1 publication Critical patent/WO2023173669A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/42(bi)pyramid-like

Definitions

  • the present invention relates to the technical field of nano zinc oxide preparation, and in particular to a preparation method, product and application of a symmetrical "pyramid" nano zinc oxide.
  • Nano-zinc oxide belongs to Group II-VI metal oxide semiconductor materials and is a new type of inorganic multifunctional material. It has a stable hexagonal wurtzite structure at room temperature, with large surface activity, large specific surface area, good thermal stability and chemical stability, and exhibits good photocatalytic performance, UV shielding properties, antibacterial and anticorrosive properties, and other properties. Compared with popular nanomaterials such as TiO2 , it is easy to broaden its photoresponse range through doping modification to improve UV resistance and photocatalytic performance. At the same time, nanozinc oxide is non-toxic and harmless, and is an environmentally friendly new material.
  • Chinese patent CN 110862105 A discloses a fluorescence-enhanced pyramid-shaped zinc oxide nanoparticle and its preparation method and application. Zinc oxide nanoparticles are used as raw materials, and they are pressurized to increase the pressure and enhance the fluorescence;
  • Chinese patent CN103570055 B discloses a method for preparing a pyramid-shaped zinc oxide nanowire array, through breeding, preparation of reaction solvent, heating reaction and washing Pyramid zinc oxide nanowire arrays were prepared by a drying four-step method.
  • the purpose of the present invention is to provide a preparation method, product and application of symmetrical "pyramid" nano zinc oxide, which uses food-grade tragacanth as the reducing agent without adding any toxic chemicals and will not cause damage to the environment. It is a Environmentally friendly preparation method.
  • the invention provides a method for preparing symmetrical "pyramid” nanometer zinc oxide, which includes the following steps:
  • the zinc acetate solution is added dropwise to the tragacanth gum solution for hydrothermal reaction, followed by ultrasonic and centrifugal cleaning to obtain the symmetrical "pyramid" nano-zinc oxide.
  • the zinc acetate solution is a zinc acetate aqueous solution with a concentration of 0.5 to 3.0 mol/L.
  • the tragacanth gum solution is a tragacanth gum aqueous solution with a concentration of 10 to 40 g/L.
  • the tragacanth gum aqueous solution contains N,N-dimethylethanolamine.
  • the tragacanth gum in the tragacanth gum aqueous solution functions as a reducing agent, and N,N-dimethylethanolamine plays a role in catalyzing the experimental process.
  • the preparation method of the tragacanth gum aqueous solution includes the following steps:
  • the mass volume ratio of tragacanth gum and N,N-dimethylethanolamine in the tragacanth gum aqueous solution is 0.5-1.5g:0.5-1.5mL.
  • the mass ratio of zinc acetate to gum tragacanth in the zinc acetate solution and the gum tragacanth solution is 20 to 30:1.
  • hydrothermal reaction is specifically: hydrothermal reaction at 100-180°C for 4-10 hours.
  • the ultrasonic is specifically ultrasonic at 40 KHz power for 40 to 70 minutes.
  • the invention also provides symmetrical "pyramid” nano zinc oxide prepared by the above preparation method.
  • the present invention also provides the application of the above-mentioned symmetrical "pyramid" nano-zinc oxide in the preparation of oral medical hygiene materials, sewage treatment materials or ultraviolet shielding materials.
  • the method of the present invention uses food-grade gum tragacanth as the reducing agent without adding any toxic chemicals, will not cause damage to the environment, is simple to operate, green, and pollution-free, and the prepared symmetrical "pyramid" nano-zinc oxide is obtained High efficiency and less impurities. It provides experimental basis and theoretical support for the development of new green, pollution-free nanostructured materials.
  • the symmetrical "pyramid" nano-zinc oxide prepared by the present invention is expected to have excellent antibacterial properties, photocatalytic properties, and ultraviolet shielding properties, and has good application prospects in the fields of oral medical and health materials, sewage treatment materials, and ultraviolet shielding materials. .
  • Figure 1 is a reaction mechanism diagram for the preparation of symmetrical "pyramid" nano-zinc oxide according to the present invention
  • Figure 2 is a scanning electron microscope image of the symmetrical "pyramid" nano-zinc oxide prepared in Example 1 of the present invention
  • Figure 3 shows the UV-visible light transmission spectra of pure PU film and PU/ZnO composite film
  • Figure 4 is a photo of the transmittance of pure PU film and PU/ZnO composite film.
  • room temperature refers to 15 to 30°C unless otherwise specified.
  • Step 1 Dissolve 25g of zinc acetate in deionized water to prepare a solution with a concentration of 1.5 mol/L. Stir thoroughly for 30 minutes to completely dissolve the zinc acetate to obtain a zinc acetate solution;
  • Step 2 Dissolve 1g of tragacanth in deionized water to prepare a solution with a concentration of 20g/L. Stir at a constant speed at 60°C for 1 hour to completely dissolve tragacanth to obtain a transparent solution. Add 0.5 mL of N to the transparent solution. , N-dimethylethanolamine, to obtain a tragacanth gum aqueous solution;
  • Step 3 Add the zinc acetate solution prepared in step 1 dropwise to the tragacanth gum aqueous solution prepared in step 2 at a rate of 60 drops/minute, and stir at 80°C for 4 hours; then perform a hydrothermal reaction at 130°C in the reaction kettle. 8 hours, then naturally cooled to room temperature, ultrasonic dispersed at 40KHz power for 60 minutes, centrifuged and cleaned in a centrifuge (5000 rpm) for 5 minutes, and washed three times to obtain symmetrical "pyramid" nano-zinc oxide.
  • Step 1 Dissolve 45g of zinc acetate in deionized water to prepare a solution with a concentration of 2.5 mol/L. Stir thoroughly for 30 minutes to completely dissolve the zinc acetate to obtain a zinc acetate solution;
  • Step 2 Dissolve 1.5g of tragacanth in deionized water to prepare a solution with a concentration of 30g/L. Stir at a constant speed at 60°C for 1 hour to completely dissolve tragacanth to obtain a transparent solution. Add 1.5 to the transparent solution. mLN, N-dimethylethanolamine, to obtain gum tragacanth solution;
  • Step 3 Add the zinc acetate solution prepared in step 1 dropwise to the tragacanth solution prepared in step 2 at a rate of 60 drops/minute, and stir at 80°C for 4 hours; then perform a hydrothermal reaction at 130°C in the reaction kettle. 8 hours, then naturally cooled to room temperature, ultrasonic dispersed at 40KHz power for 60 minutes, centrifuged and cleaned in a centrifuge (5000 rpm) for 5 minutes, and washed three times to obtain symmetrical "pyramid" nano-zinc oxide.
  • the symmetrical "pyramid” nano-zinc oxide prepared in this example was tested in the same manner as in Example 1. The results show that the symmetrical "pyramid” nano-zinc oxide prepared in this example is evenly distributed, has basically the same size, and has a bottom-to-bottom symmetrical structure. pyramid shape.
  • Step 1 Dissolve 10g of zinc acetate in deionized water to prepare a solution with a concentration of 1.0 mol/L. Stir thoroughly for 30 minutes to completely dissolve the zinc acetate to obtain a zinc acetate solution;
  • Step 2 Dissolve 0.5g tragacanth gum in deionized water to prepare a solution with a concentration of 15g/L. Stir at a constant speed at 60°C for 1 hour to completely dissolve tragacanth gum into a transparent solution. Add 1.0 to the transparent solution. mLN, N-dimethylethanolamine, to obtain gum tragacanth solution;
  • Step 3 Add the zinc acetate solution prepared in step 1 dropwise to the tragacanth solution prepared in step 2 at a rate of 60 drops/minute, and stir at 80°C for 4 hours; then perform a hydrothermal reaction at 130°C in the reaction kettle. 8 hours, then naturally cooled to room temperature, ultrasonic dispersed at 40KHz power for 60 minutes, centrifuged and cleaned in a centrifuge (5000 rpm) for 5 minutes, and washed three times to obtain symmetrical "pyramid" nano-zinc oxide.
  • Example 2 The same as Example 1, the only difference is that the hydrothermal reaction step in step 3 is omitted.
  • nano-zinc oxide particles prepared in this comparative example were tested in the same manner as in Example 1, and the results showed that the nano-zinc oxide particles prepared in this comparative example were rod-shaped.
  • Example 2 Same as Example 1, the only difference is that the addition of gum tragacanth in step 2 is omitted, the gum tragacanth in step 2 is replaced with N,N-diethylethylamine, and the hydrothermal reaction step in step 3 is omitted.
  • Nano-zinc oxide prepared in this comparative example was prepared.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

本发明公开了一种对称"金字塔"纳米氧化锌的制备方法、产品及应用,涉及纳米氧化锌制备技术领域。本发明方法包括以下步骤:将醋酸锌溶液滴加到黄蓍胶溶液中进行水热反应,之后超声、离心清洗,得到所述对称"金字塔"纳米氧化锌。本发明方法以食品级黄蓍胶为还原剂且不添加任何有毒化学药品,不会对环境产生破坏,操作简单、绿色、无污染,且制备得到的对称"金字塔"纳米氧化锌得率高、杂质少。为开发新型绿色、无污染的纳米结构材料的制备提供了实验依据和理论支撑。

Description

一种对称“金字塔”纳米氧化锌的制备方法、产品及应用
本申请要求于2022年03月16日提交中国专利局、申请号为202210257459.4、发明名称为“一种对称“金字塔”纳米氧化锌的制备方法、产品及应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及纳米氧化锌制备技术领域,特别是涉及一种对称“金字塔”纳米氧化锌的制备方法、产品及应用。
背景技术
纳米氧化锌属于Ⅱ-Ⅵ族金属氧化物半导体材料,是一种新型无机多功能材料。室温下属于稳定的六方纤锌矿结构,表面活性大,比表面积大,且有良好的热稳定性和化学稳定性,表现出良好的光催化性能、紫外屏蔽特性以及抗菌防腐等性能,和其他热门的纳米材料如TiO 2相比,易于通过掺杂改性拓宽自身的光响应范围来提高抗紫外和光催化性能,同时纳米氧化锌无毒无害,是环境友好型的新型材料。
现有技术公开了许多不同形貌、不同制备手段的纳米氧化锌的制备方法,如中国专利CN 110862105 A公开了一种荧光增强型金字塔形氧化锌纳米颗粒及其制备方法和应用,以金字塔形氧化锌纳米颗粒为原料,对其进行加压,压力增加,荧光度增强;中国专利CN103570055 B公开了一种金字塔型氧化锌纳米线阵列的制备方法,通过育种、制备反应溶剂、加热反应及洗涤干燥四步法制备了金字塔型氧化锌纳米线阵列。
然而,对于对称“金字塔”型纳米氧化锌的制备方法,目前并没有相关报道。
发明内容
本发明的目的是提供一种对称“金字塔”纳米氧化锌的制备方法、产品及应用,以食品级黄蓍胶为还原剂且不添加任何有毒化学药品,不会对环境产生破坏,是一种环境友好型的制备方法。
为了实现以上目的,本发明提供了以下技术方案:
本发明提供了一种对称“金字塔”纳米氧化锌的制备方法,包括以下步骤:
将醋酸锌溶液滴加到黄蓍胶溶液中进行水热反应,之后超声、离心清洗,得到所述对称“金字塔”纳米氧化锌。
进一步地,所述醋酸锌溶液为浓度0.5~3.0mol/L的醋酸锌水溶液。
进一步地,所述黄蓍胶溶液为浓度10~40g/L的黄蓍胶水溶液。
进一步地,所述黄蓍胶水溶液中含有N,N-二甲基乙醇胺。
所述黄蓍胶水溶液中的黄蓍胶起还原剂的作用,N,N-二甲基乙醇胺起到催化实验进程的作用。
进一步地,所述黄蓍胶水溶液的制备方法包括以下步骤:
将黄蓍胶溶解于去离子水中,配制成浓度为10~40g/L的溶液,40~80℃条件下匀速搅拌30~90分钟,使黄蓍胶完全溶解得到透明溶液,向透明溶液中加入0.5~1.5mL N,N-二甲基乙醇胺,得到黄蓍胶水溶液。
进一步地,所述黄蓍胶水溶液中黄蓍胶与N,N-二甲基乙醇胺的质量体积比为0.5~1.5g:0.5~1.5mL。
进一步地,所述醋酸锌溶液与所述黄蓍胶溶液中醋酸锌与黄蓍胶的质量比为20~30:1。
进一步地,所述水热反应具体为:100~180℃水热反应4~10小时。
进一步地,所述超声具体为40KHz功率下超声40~70分钟。
本发明还提供了利用上述的制备方法制备得到的对称“金字塔”纳米氧化锌。
本发明还提供了上述所述的对称“金字塔”纳米氧化锌在制备口腔医疗卫生材料、污水处理材料或者紫外屏蔽材料中的应用。
本发明公开了以下技术效果:
(1)本发明方法以食品级黄蓍胶为还原剂且不添加任何有毒化学药品,不会对环境产生破坏,操作简单、绿色、无污染,且制备得到的对称“金字塔”纳米氧化锌得率高、杂质少。为开发新型绿色、无污染的纳米结构材料的制备提供了实验依据和理论支撑。
(2)本发明所制备的对称“金字塔”纳米氧化锌有望具有优异的抗菌性 能、光催化性能、紫外屏蔽性能,在口腔医疗卫生材料、污水处理材料、紫外屏蔽材料等领域有良好的应用前景。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明对称“金字塔”纳米氧化锌制备的反应机理图;
图2为本发明实施例1制备的对称“金字塔”纳米氧化锌的扫描电子显微镜图;
图3为纯PU膜以及PU/ZnO复合膜的紫外可见光透射光谱图;
图4为纯PU膜以及PU/ZnO复合膜的透过率照片。
具体实施方式
现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。
应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。
除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。本说明书中提到的所有文献通过引用并入,用以公开和描述与所述文献相关的方法和/或材料。在与任何并入的文献冲突时,以本说明书的内容为准。
在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本 发明的说明书得到的其他实施方式对技术人员而言是显而易见的。本发明说明书和实施例仅是示例性的。
关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。
本发明所述“室温”,如无特殊说明均指15~30℃。
本发明对称“金字塔”纳米氧化锌制备的反应机理如图1所示。
实施例1
步骤1、将25g醋酸锌溶解于去离子水中,配制成浓度为1.5mol/L的溶液,充分搅拌30分钟,使醋酸锌完全溶解,得到醋酸锌溶液;
步骤2、将1g黄蓍胶溶解于去离子水中,配制成浓度为20g/L的溶液,60℃条件下匀速搅拌1小时,使黄蓍胶完全溶解得到透明溶液,向透明溶液中加入0.5mLN,N-二甲基乙醇胺,得到黄蓍胶水溶液;
步骤3、将步骤1制备的醋酸锌溶液以60滴/分钟的速度滴加到步骤2制备的黄蓍胶水溶液中,80℃条件下搅拌4小时;之后依次于反应釜中130℃水热反应8小时,自然冷却至室温后40KHz功率下超声分散60分钟,离心机(5000转/分钟)离心清洗5分钟,清洗三次,得到对称“金字塔”纳米氧化锌。
实施例2
步骤1、将45g醋酸锌溶解于去离子水中,配制成浓度为2.5mol/L的溶液,充分搅拌30分钟,使醋酸锌完全溶解,得到醋酸锌溶液;
步骤2、将1.5g黄蓍胶溶解于去离子水中,配制成浓度为30g/L的溶液,60℃条件下匀速搅拌1小时,使黄蓍胶完全溶解得到透明溶液,向透明溶液中加入1.5mLN,N-二甲基乙醇胺,得到黄蓍胶溶液;
步骤3、将步骤1制备的醋酸锌溶液以60滴/分钟的速度滴加到步骤2制备的黄蓍胶溶液中,80℃条件下搅拌4小时;之后依次于反应釜中130℃水热反应8小时,自然冷却至室温后40KHz功率下超声分散60分钟,离心机(5000转/分钟)离心清洗5分钟,清洗三次,得到对称“金字塔”纳米氧化锌。
对本实施例制备的对称“金字塔”纳米氧化锌进行与实施例1相同的检测,结果表明,本实施例制备的对称“金字塔”纳米氧化锌分布均匀,尺 寸大小基本一致,为底对底对称结构的金字塔形状。
实施例3
步骤1、将10g醋酸锌溶解于去离子水中,配制成浓度为1.0mol/L的溶液,充分搅拌30分钟,使醋酸锌完全溶解,得到醋酸锌溶液;
步骤2、将0.5g黄蓍胶溶解于去离子水中,配制成浓度为15g/L的溶液,60℃条件下匀速搅拌1小时,使黄蓍胶完全溶解为透明溶液,向透明溶液中加入1.0mLN,N-二甲基乙醇胺,得到黄蓍胶溶液;
步骤3、将步骤1制备的醋酸锌溶液以60滴/分钟的速度滴加到步骤2制备的黄蓍胶溶液中,80℃条件下搅拌4小时;之后依次于反应釜中130℃水热反应8小时,自然冷却至室温后40KHz功率下超声分散60分钟,离心机(5000转/分钟)离心清洗5分钟,清洗三次,得到对称“金字塔”纳米氧化锌。
对比例1
与实施例1相同,区别仅在于,省略步骤3中水热反应的步骤。
对本对比例制备的纳米氧化锌颗粒进行与实施例1相同的检测,结果表明本对比例制备的纳米氧化锌颗粒为棒状。
对比例2
与实施例1相同,区别仅在于,省略步骤2中的黄蓍胶的添加,将步骤2中的黄蓍胶替换为N,N-二乙基乙胺,省略步骤3中水热反应的步骤。
对本对比例制备的纳米氧化锌。
以上所述仅是本发明的优选实施方式,应当指出的是,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (14)

  1. 一种对称“金字塔”纳米氧化锌的制备方法,其特征在于,包括以下步骤:
    将醋酸锌溶液滴加到黄蓍胶溶液中进行水热反应,之后超声、离心清洗,得到所述对称“金字塔”纳米氧化锌。
  2. 根据权利要求1所述的制备方法,其特征在于,所述滴加的速度为60滴/分钟。
  3. 根据权利要求1所述的制备方法,其特征在于,所述醋酸锌溶液为浓度0.5~3.0mol/L的醋酸锌水溶液。
  4. 根据权利要求1所述的制备方法,其特征在于,所述黄蓍胶溶液为浓度10~40g/L的黄蓍胶水溶液。
  5. 根据权利要求1或4所述的制备方法,其特征在于,所述黄蓍胶水溶液中含有N,N-二甲基乙醇胺。
  6. 根据权利要求4所述的制备方法,其特征在于,所述黄蓍胶水溶液的制备方法,包括以下步骤:
    将黄蓍胶溶解于去离子水中,配制成浓度为10~40g/L的溶液,40~80℃条件下匀速搅拌30~90分钟,使黄蓍胶完全溶解得到透明溶液,向透明溶液中加入0.5~1.5mLN,N-二甲基乙醇胺,得到黄蓍胶溶液。
  7. 根据权利要求6所述的制备方法,其特征在于,所述黄蓍胶水溶液中黄蓍胶与N,N-二甲基乙醇胺的质量体积比为0.5~1.5g:0.5~1.5mL。
  8. 根据权利要求1所述的制备方法,其特征在于,所述醋酸锌溶液与所述黄蓍胶溶液中醋酸锌与黄蓍胶的质量比为20~30:1。
  9. 根据权利要求1所述的制备方法,其特征在于,所述水热反应具体为:100~180℃水热反应4~10小时。
  10. 根据权利要求1所述的制备方法,其特征在于,所述超声具体为40KHz功率下超声40~70分钟。
  11. 根据权利要求1所述的制备方法,其特征在于,所述离心清洗的转速为5000rpm,时间为5min。
  12. 权利要求1~11任一项所述的制备方法制备得到的对称“金字塔”纳米氧化锌。
  13. 根据权利要求12所述的对称“金字塔”纳米氧化锌,其特征在于,所述对称“金字塔”纳米氧化锌为底对底对称结构的金字塔形状。
  14. 权利要求12所述的对称“金字塔”纳米氧化锌在制备口腔医疗卫生材料、污水处理材料或者紫外屏蔽材料中的应用。
PCT/CN2022/111615 2022-03-16 2022-08-11 一种对称"金字塔"纳米氧化锌的制备方法、产品及应用 WO2023173669A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210257459.4A CN114506874B (zh) 2022-03-16 2022-03-16 一种对称“金字塔”纳米氧化锌的制备方法、产品及应用
CN202210257459.4 2022-03-16

Publications (1)

Publication Number Publication Date
WO2023173669A1 true WO2023173669A1 (zh) 2023-09-21

Family

ID=81552952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111615 WO2023173669A1 (zh) 2022-03-16 2022-08-11 一种对称"金字塔"纳米氧化锌的制备方法、产品及应用

Country Status (3)

Country Link
CN (1) CN114506874B (zh)
WO (1) WO2023173669A1 (zh)
ZA (1) ZA202303950B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114506874B (zh) * 2022-03-16 2023-07-28 安徽工程大学 一种对称“金字塔”纳米氧化锌的制备方法、产品及应用
CN116282127A (zh) * 2023-02-28 2023-06-23 安徽工程大学 一种苦瓜型纳米氧化锌及其制备方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102515245A (zh) * 2011-11-25 2012-06-27 沈阳工业大学 一种溶剂热可控合成纳米氧化锌的方法
CN103288122A (zh) * 2013-05-28 2013-09-11 浙江大学 一种菱形氧化锌纳米棒阵列及其制备方法
CN104355331A (zh) * 2014-10-28 2015-02-18 常州市创捷防雷电子有限公司 一种生物绿色法制备单分散纳米氧化锌
MX2015017832A (es) * 2015-12-18 2017-06-19 Centro De Investig En Mat Avanzados S C Método de síntesis de nanoparticulas de óxido de zinc utilizando goma de mezquite.
CN110862105A (zh) * 2019-11-22 2020-03-06 郑州大学 一种荧光强度增强型金字塔形氧化锌纳米颗粒及其制备方法和应用
CN114506874A (zh) * 2022-03-16 2022-05-17 安徽工程大学 一种对称“金字塔”纳米氧化锌的制备方法、产品及应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101319371B (zh) * 2008-05-14 2010-12-15 陕西科技大学 一种纺锤形纳米ZnO单晶的制备方法
CN101774632A (zh) * 2010-03-18 2010-07-14 哈尔滨师范大学 一种纺锤状结构氧化锌的制备方法
JP2013245139A (ja) * 2012-05-28 2013-12-09 Chiba Inst Of Technology 酸化亜鉛結晶の生成方法
CN103570055B (zh) * 2013-11-11 2015-04-15 重庆工商大学 一种金字塔型氧化锌纳米线阵列的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102515245A (zh) * 2011-11-25 2012-06-27 沈阳工业大学 一种溶剂热可控合成纳米氧化锌的方法
CN103288122A (zh) * 2013-05-28 2013-09-11 浙江大学 一种菱形氧化锌纳米棒阵列及其制备方法
CN104355331A (zh) * 2014-10-28 2015-02-18 常州市创捷防雷电子有限公司 一种生物绿色法制备单分散纳米氧化锌
MX2015017832A (es) * 2015-12-18 2017-06-19 Centro De Investig En Mat Avanzados S C Método de síntesis de nanoparticulas de óxido de zinc utilizando goma de mezquite.
CN110862105A (zh) * 2019-11-22 2020-03-06 郑州大学 一种荧光强度增强型金字塔形氧化锌纳米颗粒及其制备方法和应用
CN114506874A (zh) * 2022-03-16 2022-05-17 安徽工程大学 一种对称“金字塔”纳米氧化锌的制备方法、产品及应用

Also Published As

Publication number Publication date
ZA202303950B (en) 2023-04-26
CN114506874A (zh) 2022-05-17
CN114506874B (zh) 2023-07-28

Similar Documents

Publication Publication Date Title
WO2023173669A1 (zh) 一种对称"金字塔"纳米氧化锌的制备方法、产品及应用
CN102107850B (zh) 一种表面包覆碳层的金红石单晶二氧化钛核壳结构纳米线阵列的制备方法
CN103599802A (zh) 一种磷酸银/石墨烯纳米复合材料的制备方法
WO2014117487A1 (zh) 一种分级混晶TiO2微纳米材料、制备方法及其用途
CN102674451A (zh) 一种{001}面暴露二氧化钛纳米晶的制备方法
CN105618153B (zh) 一种基于层级组装的硅‑二氧化钛‑聚吡咯三维仿生复合材料及应用
CN110240723B (zh) 一种紫外高屏蔽纤维素膜及其制备方法与应用
WO2019214079A1 (zh) 一种TiO2纳米柱-Au纳米粒子复合阵列、制备方法及其应用
CN103007912A (zh) 一种以云母为载体的一维纳米二氧化钛光催化剂及其制备方法
CN104638066A (zh) ZnO/ZnS/FeS2核壳结构阵列薄膜及制备方法
CN106887336A (zh) TiO2/BiVO4纳米阵列光电极的制备方法
CN106311100B (zh) 一种光催化复合微球的制作方法
CN106391056A (zh) ZnxCd1‑xS/TiO2纳米光催化材料及其制备
CN108640149B (zh) 二氧化钛纳米空心球及其制备方法
CN112420396B (zh) 一种银纳米颗粒修饰的SiO2@TiO2分层微球及其制备方法和应用
CN108993490B (zh) 一种纳米银/硅颗粒复合的二氧化钛光催化剂制备
CN103668089B (zh) 柔性基底上溅射二氧化钛纳米棒阵列的制备方法
CN107640788A (zh) 铌酸盐材料及其制备方法
CN107140843A (zh) 一种自清洁水性增透膜的制备方法
CN106076311A (zh) 一种二氧化钛/二氧化锡复合氧化物超细纳米颗粒的制备方法
Ma et al. Synthesis of TiO 2 nanotubes film and its light scattering property
TW201324796A (zh) 染料敏化太陽能電池及其光散射層製作方法
CN102324315B (zh) 一种染料敏化电池光阳极的制备方法
CN114790614A (zh) 钛酸钡@二氧化钛复合纳米纤维薄膜的静电纺丝制备方法
CN100411739C (zh) 纳米二氧化钛薄膜的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931691

Country of ref document: EP

Kind code of ref document: A1