CN112420396B - 一种银纳米颗粒修饰的SiO2@TiO2分层微球及其制备方法和应用 - Google Patents

一种银纳米颗粒修饰的SiO2@TiO2分层微球及其制备方法和应用 Download PDF

Info

Publication number
CN112420396B
CN112420396B CN202011159633.9A CN202011159633A CN112420396B CN 112420396 B CN112420396 B CN 112420396B CN 202011159633 A CN202011159633 A CN 202011159633A CN 112420396 B CN112420396 B CN 112420396B
Authority
CN
China
Prior art keywords
tio
sio
microspheres
layered
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011159633.9A
Other languages
English (en)
Other versions
CN112420396A (zh
Inventor
李村
孙骏晨
方敏
朱维菊
吴振玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University
Original Assignee
Anhui University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University filed Critical Anhui University
Priority to CN202011159633.9A priority Critical patent/CN112420396B/zh
Publication of CN112420396A publication Critical patent/CN112420396A/zh
Application granted granted Critical
Publication of CN112420396B publication Critical patent/CN112420396B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2036Light-sensitive devices comprising an oxide semiconductor electrode comprising mixed oxides, e.g. ZnO covered TiO2 particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hybrid Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种银纳米颗粒修饰的SiO2@TiO2分层微球及其制备方法和应用,其中SiO2@TiO2‑Ag分层微球是以SiO2为核层、以TiO2为壳层构成的核壳结构,并且在TiO2的壳层结构上修饰有银纳米颗粒。本发明SiO2@TiO2‑Ag分层微球能通过微球的散射作用和表面银纳米颗粒的等离子体共振效应的协同作用提高光阳极的光吸收和光生电荷分离,在P25的光阳极中掺杂2%的SiO2@TiO2‑Ag分层微球能够提高电池的电流密度和光电转换效率,短路电流密度从10.12mA cm‑2提高到15.97mA cm‑2,光电转换效率从4.3%提高到7.3%。

Description

一种银纳米颗粒修饰的SiO2@TiO2分层微球及其制备方法和 应用
技术领域
本发明属于太阳能电池(染料敏化太阳能电池电极材料)领域,具体涉及一种银纳米颗粒修饰的SiO2@TiO2分层微球及其制备方法和应用。
背景技术
环境和能源已经成为影响人类社会可持续发展的两个重要问题,因此作为最重要的环境友好型可再生能源,太阳能越来越受到社会的关注。合理高效地利用太阳能是解决上述问题的关键。虽然太阳能资源总量惊人,但太阳能的能量密度低,而且因地而异,因时而变,有的太阳能利用装置还存在成本偏高,效率较低的问题。
太阳能电池是人们获取太阳能的重要技术之一,它可以通过物理化学效应将太阳能直接转换成电能。半个多世纪以来,太阳能电池研究不断进步,已经发展出了包括单晶硅、多晶硅、非晶硅、化合物半导体、聚合物、染料敏化、量子点敏化和钙钛矿等类型的太阳能电池,其中染料敏化太阳能电池(DSSCs)因成本低、功耗小、工艺简单、理论效率高等特点逐渐成为第三代高效太阳能电池的有力竞争者。构建新型的光阳极复合结构,对开发更高效的太阳能电池具有重要意义。
发明内容
本发明旨在提供一种银纳米颗粒修饰的SiO2@TiO2分层微球及其制备方法和应用,所要解决的技术问题是通过微球设计合成能够增加光阳极的光吸收。
本发明银纳米颗粒修饰的SiO2@TiO2分层微球,简记为SiO2@TiO2-Ag分层微球,是以 SiO2为核层、以TiO2为壳层构成的核壳结构,并且在TiO2的壳层结构上修饰有银纳米颗粒。
其核层SiO2与壳层TiO2的质量比为1:2.0-2.5,修饰的银纳米颗粒的质量占微球质量的 1-1.5%。
本发明银纳米颗粒修饰的SiO2@TiO2分层微球的制备方法,包括如下步骤:
步骤1:称取0.12g粒径大小为300-400nm的二氧化硅粉末加入到由30mL乙腈和90mL 无水乙醇构成的混合溶液中,超声分散后,置于21℃水浴中,加入1mL氨水搅拌,随后缓慢向体系中加入0.9-1.2mL钛酸异丙酯,反应12h;反应结束后离心并干燥获得SiO2@TiO2微球;
步骤2:将步骤1获得的SiO2@TiO2微球0.35g加入30mL无水乙醇中,再加入1mL硅烷偶联剂,80℃下反应4小时,反应结束后离心、干燥,然后将所得氨基化SiO2@TiO2微球分散于30mL去离子水中,加入5.5-8.5mg硝酸银固体,溶解后升温至90℃,再加入至少0.04 g的柠檬酸钠,反应0.5h;反应结束后冷却至室温,离心分离、洗涤、干燥后得到目标产物银纳米颗粒修饰的SiO2@TiO2分层微球(SiO2@TiO2-Ag)。
本发明银纳米颗粒修饰的SiO2@TiO2分层微球的应用,是将所述银纳米颗粒修饰的SiO2@TiO2分层微球作为光吸收剂使用。
进一步地,将SiO2@TiO2-Ag分层微球和二氧化钛P25按质量比2:98的比例混合应用于光阳极材料,能够增加光阳极的光吸收,提高电池的短路电流密度,并且提高太阳能电池的光电转换效率。具体是将SiO2@TiO2-Ag分层微球按照2%的比例掺杂于P25TiO2光阳极中制成原型太阳能电池,短路电流从10.12mA cm-2提高到15.97mA cm-2,电池的光电转换效率从 4.3%提高到7.3%。
本发明SiO2@TiO2-Ag分层微球能提高光阳极的光吸收,通过紫外吸收光谱可检测光阳极的光吸收。在光电流密度-光电压测试中通过微球含量的变化来改变电池的电流密度,随着含量的增加而增加。在光阳极由SiO2@TiO2-Ag分层微球和二氧化钛按质量比2:98的比例混合构成的情况下,该光阳极组装的染料敏化太阳能电池的电流密度、光电转换效率有明显提升。
本发明SiO2@TiO2-Ag分层微球能通过微球的散射作用和表面银纳米颗粒的等离子体共振效应的协同作用提高光阳极的光吸收和光生电荷分离,光电流密度-光电压测试,在P25的光阳极中加掺杂入适量的SiO2@TiO2-Ag分层微球能够提高电池的电流密度和光电转换效率,加入2%分层微球的光阳极的太阳能电池的短路电流密度从10.12mA cm-2提高到15.97mA cm-2,电池的光电转换效率从4.3%提高到7.3%。
附图说明
图1为本发明合成路线示意图。
图2为本发明银纳米颗粒修饰的SiO2@TiO2分层微球(SiO2@TiO2-Ag)的X射线衍射图。
图3为本发明银纳米颗粒修饰的SiO2@TiO2分层微球(SiO2@TiO2-Ag)在透射电镜环境下的元素映射图。
图4为本发明银纳米颗粒修饰的SiO2@TiO2分层微球(SiO2@TiO2-Ag)在300nm至800nm 间的吸收强度与波长的关系。
图5为本发明银纳米颗粒修饰的SiO2@TiO2分层微球(SiO2@TiO2-Ag)在光阳极中不同掺杂含量时太阳能电池的光电流密度-光电压图。
具体实施方式
本发明通过以下的实施例对技术方案作进一步分析说明,但不仅仅局限于实施例。
实施例1:银纳米颗粒修饰的SiO2@TiO2分层微球(SiO2@TiO2-Ag)的制备与表征
1、称取0.12g粒径400nm的二氧化硅粉末加入到30mL乙腈和90mL无水乙醇混合溶液中,超声分散后,置于21℃水浴中,加入1mL氨水搅拌,随后缓慢向体系中加入1mL 钛酸异丙酯,反应12h,反应结束后离心并干燥得到SiO2@TiO2
2、将SiO2@TiO2加入到30mL无水乙醇中,再加入1mL硅烷偶联剂(3-氨丙基三乙氧基硅烷)在80℃反应4小时,反应结束后离心分离并干燥,然后将所得的氨基化SiO2@TiO2微球分散在30mL去离子水中,加入8mg硝酸银固体待溶解后,升温至90℃后再加入0.04 g的柠檬酸钠,反应0.5h结束后冷却至室温,离心分离、洗涤、干燥后得到目标产物银纳米颗粒修饰的SiO2@TiO2分层微球(SiO2@TiO2-Ag)。
图2为本发明银纳米颗粒修饰的SiO2@TiO2分层微球(SiO2@TiO2-Ag)的X射线衍射图。中间产物(SiO2@TiO2)的衍射图在25.3°、37.9°、48.1°、54.0°、55.2°、62.8°、70.3°和75.2°处出现宽峰,分别对应于锐钛矿型TiO2(JCPDS No.21-1272)的(101)、(004)、(200)、(105)、 (211)、(204)、(220)和(215)平面。银纳米颗粒修饰的SiO2@TiO2分层微球(SiO2@TiO2-Ag) 在37.9°、64.6°和77.5°处的衍射峰,分别对应于银的(111)、(220)和(311)面(JCPDS No.04–0783),37.9°处的衍射峰与中间产物的衍射峰重叠。
图3为银纳米颗粒修饰的SiO2@TiO2分层微球(SiO2@TiO2-Ag)在透射电镜环境下的元素映射图。从图3银纳米颗粒修饰的SiO2@TiO2分层微球(SiO2@TiO2-Ag)可以看出Ti、O、Si、Ag、C元素的存在和均匀分布,元素映射光谱进一步表明,硅信号以二氧化硅的形式存在于中心球体中,而银信号则主要分散在微球外表面上,证实了其分层状结构。
实施例2:银纳米颗粒修饰的SiO2@TiO2分层微球(SiO2@TiO2-Ag)在光阳极中的制备
分别用丙酮、乙醇和去离子水在超声波作用下清洗FTO玻璃烘干备用(2.2mm,14Ω/sq)。首先将含有0.5mL乙酰丙酮和0.1g SiO2@TiO2-Ag分层微球粉末的典型浆料分散并搅拌30 分钟,用刀片刮涂法将所得浆料涂布在一块面积为0.25cm2的干净FTO板上形成均匀的薄膜,在450℃下干燥和退火约30分钟后,得到光阳极薄膜。
图4显示了银纳米颗粒修饰的SiO2@TiO2分层微球(SiO2@TiO2-Ag)的紫外-可见光谱光吸收结果。中间产物微球(SiO2@TiO2)通过散射可以比二氧化钛增加更多的可见光区域的吸收,而SiO2@TiO2-Ag分层微球比中间产物在可见光的光吸收更多。结果表明,微球的掺杂能显著提高光阳极在可见光区的吸收,可见光区域的强吸收是银纳米粒子的局部表面等离子体共振(LSPR)的作用。
实施例3:银纳米颗粒修饰的SiO2@TiO2分层微球(SiO2@TiO2-Ag)光阳极染料敏化电池组装测试
首先将含有0.5mL乙酰丙酮和0.1g二氧化钛粉末的典型浆料分散并搅拌30分钟。分别配制质量百分比为1wt%、2wt%和3wt%的SiO2@TiO2-Ag微球浆料置换二氧化钛,得到三种不同含量的复合浆料,然后用刀片刮涂法将所得浆料涂布在一块面积为0.25cm2的干净FTO 板上,形成均匀的薄膜;在450℃下干燥和退火约30分钟后,这些光阳极分别被标记为1%微球、2%微球和3%微球。将36mg N719染料溶解于100mL乙醇中,在黑暗中搅拌24h。将退火后的光阳极置于N719溶液中,在黑暗中浸泡24h。结束后取出光阳极并干燥。将电池的光阳极作为负极,铂对电极作为正极,在标准光照下扫描得到电池的光电流密度-光电压曲线。
图5显示了基于四种光阳极膜组装的电池的光电流密度-光电压曲线。短路电流密度和转换效率随着微球掺杂量的增加而增加,然后随着微球的进一步增加而降低。结果表明,最佳的含量比为2wt%,将电流密度从10.12mA cm-2提高到15.97mA cm-2,电池的光电转换效率从4.3%提高到7.3%。

Claims (4)

1.一种银纳米颗粒修饰的SiO2@TiO2分层微球的应用,其特征在于:将所述银纳米颗粒修饰的SiO2@TiO2分层微球作为光吸收剂使用,将SiO2@TiO2-Ag分层微球和二氧化钛P25按质量比2:98的比例混合应用于光阳极材料,能够增加光阳极的光吸收,提高电池的短路电流密度,并且提高太阳能电池的光电转换效率;
所述银纳米颗粒修饰的SiO2@TiO2分层微球是以SiO2为核层、以TiO2为壳层构成的核壳结构,并且在TiO2的壳层结构上修饰有银纳米颗粒;
所述银纳米颗粒修饰的SiO2@TiO2分层微球通过包括如下步骤的方法制备获得:
步骤1:称取0.12 g粒径为300-400 nm的二氧化硅粉末加入混合溶液中,超声分散后,置于21℃水浴中,加入1 mL氨水搅拌,随后缓慢向体系中加入0.9-1.2 mL钛酸异丙酯,反应12 h;反应结束后离心并干燥获得SiO2@TiO2微球;
步骤1中,所述混合溶液是由30 mL乙腈和90 mL无水乙醇混合构成;
步骤2:将步骤1获得的SiO2@TiO2微球0.35g加入无水乙醇中,再加入1 mL硅烷偶联剂,80℃下反应4小时,反应结束后离心、干燥,然后将所得氨基化SiO2@TiO2微球分散于30 mL去离子水中,加入硝酸银固体,溶解后升温至90℃,再加入至少0.04 g的柠檬酸钠,反应0.5h;反应结束后冷却至室温,离心分离、洗涤、干燥后得到目标产物银纳米颗粒修饰的SiO2@TiO2分层微球。
2.根据权利要求1所述的应用,其特征在于:
核层SiO2与壳层TiO2的质量比为1:2.0-2.5,修饰的银纳米颗粒的质量占微球质量的1-1.5%。
3.根据权利要求1所述的应用,其特征在于:
步骤2中,硝酸银的添加量为5.5-8.5mg。
4.根据权利要求1所述的应用,其特征在于:
将SiO2@TiO2-Ag分层微球按照2wt%的比例掺杂于P25TiO2光阳极中制成原型太阳能电池,短路电流从10.12 mA cm-2提高到15.97 mA cm-2,电池的光电转换效率从4.3%提高到7.3%。
CN202011159633.9A 2020-10-27 2020-10-27 一种银纳米颗粒修饰的SiO2@TiO2分层微球及其制备方法和应用 Active CN112420396B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011159633.9A CN112420396B (zh) 2020-10-27 2020-10-27 一种银纳米颗粒修饰的SiO2@TiO2分层微球及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011159633.9A CN112420396B (zh) 2020-10-27 2020-10-27 一种银纳米颗粒修饰的SiO2@TiO2分层微球及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN112420396A CN112420396A (zh) 2021-02-26
CN112420396B true CN112420396B (zh) 2022-04-08

Family

ID=74841681

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011159633.9A Active CN112420396B (zh) 2020-10-27 2020-10-27 一种银纳米颗粒修饰的SiO2@TiO2分层微球及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112420396B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113318734A (zh) * 2021-05-31 2021-08-31 长江水利委员会长江科学院 一种水泥基净污涂层材料及其制备方法
CN114044521B (zh) * 2021-11-10 2024-01-30 河北工业大学 多相复合纳米粒子及制备摩擦起电薄膜的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102222574A (zh) * 2011-03-29 2011-10-19 彩虹集团公司 一种太阳能电池的Ag改性TiO2薄膜电极及制备方法
CN102254694A (zh) * 2011-04-20 2011-11-23 东南大学 基于静电喷雾法制备贵金属修饰的染料敏化太阳能电池光阳极的方法
CN103861657A (zh) * 2014-02-24 2014-06-18 浙江大学 纳米银负载多孔二氧化硅的制备方法
CN105195143A (zh) * 2015-09-21 2015-12-30 河海大学 一种介孔光催化材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102222574A (zh) * 2011-03-29 2011-10-19 彩虹集团公司 一种太阳能电池的Ag改性TiO2薄膜电极及制备方法
CN102254694A (zh) * 2011-04-20 2011-11-23 东南大学 基于静电喷雾法制备贵金属修饰的染料敏化太阳能电池光阳极的方法
CN103861657A (zh) * 2014-02-24 2014-06-18 浙江大学 纳米银负载多孔二氧化硅的制备方法
CN105195143A (zh) * 2015-09-21 2015-12-30 河海大学 一种介孔光催化材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A Versatile Kinetics-Controlled Coating Method To Construct Uniform Porous TiO2 Shells for Multifunctional Core–Shell Structures;Wei Li;《Journal of the American Chemical Society》;20120629;第134卷(第29期);正文第11864页右栏第1段、倒数第1段-第11865页左栏第1段、附图3,支持信息第S3页第2段 *
SiO2@TiO2-Ag复合纳米微球的制备及其抑菌活性研究;秦锐;《中国优秀博硕士学位论文全文数据库(硕士) 工程科技Ⅰ辑》;20180715(第07期);正文第29页第3.2.2节-第30页第3.3.1节 *

Also Published As

Publication number Publication date
CN112420396A (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
CN100539205C (zh) 二氧化钛纳米棒染料敏化太阳能电池及其制备方法
CN112420396B (zh) 一种银纳米颗粒修饰的SiO2@TiO2分层微球及其制备方法和应用
CN101819885B (zh) 用于染料敏化太阳能电池的稀土掺杂二氧化钛光阳极的制备方法
TW201119049A (en) Quantum dot dye-sensitized solar cell
Isah et al. Plasmonic effect of silver nanoparticles intercalated into mesoporous betalain-sensitized-TiO 2 film electrodes on photovoltaic performance of dye-sensitized solar cells
He et al. Preparation of hierarchical rutile TiO2 microspheres as scattering centers for efficient dye-sensitized solar cells
CN106277023A (zh) 双层结构CeO2纳米空心球的制备方法及其应用
Chen et al. A double-layered photoanode made of ZnO/TiO 2 composite nanoflowers and TiO 2 nanorods for high efficiency dye-sensitized solar cells
CN103646989A (zh) 一种p-n型Cu2O/TiO2纳米线阵列复合薄膜的制备方法
Wang et al. Design of SnO2@ Air@ TiO2 hierarchical urchin-like double-hollow nanospheres for high performance dye-sensitized solar cells
Zhang et al. Polyoxometalate modified all-weather solar cells for energy harvesting
CN102446632B (zh) 一种染料敏化太阳能电池用光阳极浆料及其制备方法、染料敏化太阳能电池用光阳极及染料敏化太阳能电池
CN104310794A (zh) 三维纳米棒花结构的多孔TiO2纳米晶薄膜、制备方法及应用
CN103739011B (zh) 一锅法制备三维多级微纳结构二氧化钛浆料的方法
CN102602989A (zh) 二氧化钛及其制备方法、太阳能电池浆料及其制备方法、太阳能电池
CN108878658B (zh) 一种基于金属离子掺杂二氧化钛间隔层的光稳定钙钛矿太阳电池及其制备方法
CN108993490B (zh) 一种纳米银/硅颗粒复合的二氧化钛光催化剂制备
Lee et al. Nanocrystalline TiO 2 thin film electrodes for dye-sensitized solar cell applications
Cui et al. Multi-functional 3D N-doped TiO 2 microspheres used as scattering layers for dye-sensitized solar cells
Liu et al. Enhanced photovoltaic performance of dye-sensitized solar cells with TiO 2 micro/nano-structures as light scattering layer
CN109574062B (zh) Na5Yb9F32:Ho3+上转换材料及其制备方法,光阳极膜及其制备方法及应用
CN110136963B (zh) 基于SnO2@Air@TiO2双中空核壳海胆微球的染料敏化太阳能电池及制备方法
Ali et al. Synthesis of TiO2/graphene quantum dots as photoanode to enhance power conversion efficiency for dye-sensitized solar cells
CN101656154B (zh) 碘掺杂钛基薄膜材料及其制备方法
CN103896330B (zh) 改性二氧化钛、其制备方法和用其形成的太阳能电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant