WO2023173559A1 - 一种用于锌基液流电池的磺酸基团功能化硅氧烯及其制备方法 - Google Patents

一种用于锌基液流电池的磺酸基团功能化硅氧烯及其制备方法 Download PDF

Info

Publication number
WO2023173559A1
WO2023173559A1 PCT/CN2022/091194 CN2022091194W WO2023173559A1 WO 2023173559 A1 WO2023173559 A1 WO 2023173559A1 CN 2022091194 W CN2022091194 W CN 2022091194W WO 2023173559 A1 WO2023173559 A1 WO 2023173559A1
Authority
WO
WIPO (PCT)
Prior art keywords
siloxene
sulfonic acid
zinc
acid group
group functionalized
Prior art date
Application number
PCT/CN2022/091194
Other languages
English (en)
French (fr)
Inventor
汪洋
叶志镇
黄靖云
罗斌
Original Assignee
浙江大学温州研究院
温州锌时代能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学温州研究院, 温州锌时代能源有限公司 filed Critical 浙江大学温州研究院
Publication of WO2023173559A1 publication Critical patent/WO2023173559A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/04Hydrides of silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8684Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention belongs to the technical field of battery electrode material preparation, and relates to a sulfonic acid group functionalized siloxene used in zinc-based liquid flow batteries and a preparation method thereof.
  • Using sulfonated siloxene/zinc composite foil as the negative electrode of zinc-based redox flow batteries can solve the serious side reaction problems such as zinc dendrite growth, accumulation, hydrogen evolution and dead zinc that exist during charging and discharging of current zinc-based redox flow batteries. , promoted the practical application of zinc-based flow batteries with high Coulombic efficiency and stable performance for distributed energy storage systems, and demonstrated the huge potential of zinc-based flow batteries in the field of energy storage.
  • flow batteries are considered to be the most promising grid-level energy storage technology due to their extremely high safety, charge and discharge efficiency, and flexibility.
  • the power density and energy density of flow batteries can be designed independently, and the electrolyte inside it is usually an inorganic aqueous solution.
  • the electrolyte usually circulates separately on the anode side and cathode side, and the anode and cathode are separated by an ion conductive membrane. It has the advantages of low cost and high safety, and is very suitable for large-scale energy storage device applications.
  • ZFBs zinc-based flow batteries
  • ZFBs zinc-based flow batteries
  • zinc-based flow battery technology has been relatively mature after decades of development, its common problems in the charging and discharging process have always hindered the further development of ZFBs.
  • zinc-based flow battery negative electrodes are prone to zinc dendrite growth and deposition on the electrode and membrane during the charge and discharge process.
  • the growing zinc dendrites will continue to grow and may eventually pierce the separator, causing the battery to eventually short-circuit and fail.
  • the zinc accumulated on the film will continue to accumulate, causing a sharp increase in the internal resistance of the battery and increasing unnecessary energy loss. Therefore, the design of new electrode materials that induce uniform zinc deposition is particularly important, which directly determines whether the contradiction between zinc dendrite growth and accumulation can be effectively resolved.
  • Siloxene is a new two-dimensional material.
  • Our research has found that the Si 6 rings in the corrugated two-dimensional skeleton of siloxene contain a large number of Si-O-Si and -OH zincophilic groups.
  • Siloxene is not only Zn 2+ or Zn(OH) 4 2- can be trapped inside the anode as a reservoir, suppressing dendrites while reducing active material loss, and the large number of oxygen-containing groups and defect sites on the surface of siloxene make it easy to Modification with further functional groups, such as sulfonic acid groups, further enhances the ability of siloxene to induce and anchor Zn 2+ , promotes uniform deposition of Zn 2+ , enhances the ability to modify the electrode/electrolyte interface, and reduces the occurrence of hydrogen evolution and side reactions. , improve the stability of the electrode.
  • further functional groups such as sulfonic acid groups
  • the present invention efficiently prepares sulfonic acid group functionalized grafted siloxene nanosheets.
  • the preparation method is simple to operate, the cost of raw materials is low, the raw materials used are environmentally friendly, and it is suitable for large-scale commercial preparation. It effectively solves the problem of zinc dendrite growth and accumulation in zinc-based flow batteries, achieves long-term safe and stable operation of zinc-based flow batteries, and plays a key role in achieving high Coulombic efficiency and stable performance of zinc-based liquids for distributed energy storage systems.
  • the practical application of flow batteries is of great significance.
  • the purpose of the present invention is to provide a sulfonic acid group functionalized siloxene for zinc-based liquid flow batteries and a preparation method thereof in the technical field of battery electrode material preparation.
  • the method adopted has the advantages of low cost and high efficiency.
  • the prepared sulfonated siloxene nanomaterials have a high grafting rate of functional groups and good stability, which greatly inhibits zinc dendrites, hydrogen evolution and passivation side reactions, effectively solving the current problems of zinc-based flow batteries. the problem we are facing.
  • a sulfonic acid group functionalized siloxene first uses calcium disilicide (CaSi 2 ) with a layered structure of silicon and calcium as the silicon source, and selects efficient and suitable topological reaction solvents and oxidants such as hydrochloric acid, phosphoric acid and boric acid. Siloxene nanosheets were obtained by decalcification and exfoliation of CaSi2 . Then select functional group grafting agents rich in sulfonic acid groups such as sulfamic acid and poly(4-styrenesulfonic acid) to effectively graft with siloxene nanosheets through a wet chemical reaction to obtain sulfonic acid groups. Group-functionalized siloxene nanosheets.
  • the nanosheet material can be used in zinc-based liquid flow batteries to solve the problem of zinc dendrite growth and accumulation in zinc-based liquid flow batteries.
  • a method for preparing sulfonic acid group functionalized siloxene includes the following steps:
  • step (2) Fully react the low-temperature mixed solution obtained in step (1) under ultrasonic conditions, and the reaction process maintains the low temperature of the reaction solution and maintains a constant temperature;
  • step (3) Collect the reaction solution obtained in step (2) by vacuum filtration, add the collected wet powder to the sulfonic acid grafting agent solution, and then use ultrasound to assist in dispersion and allow it to fully react, and finally centrifuge to remove the reaction solution and collect the precipitate. After freeze-drying, the sulfonic acid group-modified siloxene nanosheet powder can be obtained.
  • the monobasic or polybasic acid oxidizing agent is at least one of hydrochloric acid, phosphoric acid, and boric acid;
  • the molar ratio of monobasic acid oxidizing agent to calcium disilicide is 2:1 to 3:1; the molar ratio of polybasic acid oxidizing agent to calcium disilicide is 1.5:1 to 2.5:1;
  • the temperature of the reaction solution is always maintained at -10 ⁇ -20°C; at this temperature, the reaction process can be promoted to proceed mildly and orderly, so that the silicon layer in the calcium disilicide It can be fully peeled off to avoid uncontrollable peeling of siloxene nanosheets caused by excessive reaction temperature and insufficient peeling, which will lead to instability in the Coulombic efficiency of the zinc anode of zinc-based liquid flow batteries.
  • the operating power range of ultrasound during the topological chemical peeling process of calcium silicide is 300-600 watts (W); the operating time of ultrasound is 48-72 hours;
  • the sulfonic acid grafting agent used in step (3) is at least one of sulfamic acid, poly(4-styrenesulfonic acid), or corresponding salts;
  • the mass ratio of calcium disilicide and sulfonic acid grafting agent used in step (3) is 1:0.1 ⁇ 1:1.
  • the solvent of the sulfonic acid grafting agent solution in step (3) is at least one of absolute ethanol, methanol, ether, and acetone;
  • the concentration of the sulfonic acid grafting agent solution in step (3) is 0.1 to 1 mol L -1 ;
  • the power of ultrasonic dispersion is 200-300 watts (W), and the ultrasonic time is 12 to 24 hours;
  • step (3) the sample is pre-frozen before freeze-drying by liquid nitrogen freezing. Pre-freezing can fully freeze the sample and prevent agglomeration during the freeze-drying process;
  • a zinc-based redox flow battery negative electrode material is a slurry obtained by mixing the sulfonic acid group-modified siloxene nanosheets prepared in step (3) and a PVDF solution in a certain proportion; and then coating the mixed slurry Coating on the surface of zinc foil, it is best to air-dry the coated zinc foil to obtain a sulfonated siloxene-coated zinc negative electrode, which can be used as a zinc-based liquid flow battery negative electrode.
  • the mass ratio of sulfonic acid group-modified siloxene and PVDF is 1:1 to 5:1;
  • the concentration of the PVDF solution is 20 mg ml -1 to 80 mg ml -1 ;
  • the solvent of the PVDF solution is at least one of DMF and NMP;
  • the present invention prepares siloxene and studies surface functional modification technology through topological chemistry and wet chemistry methods, and can control the preparation of high-quality, uniform thickness sulfonic acid group functionalized siloxene for zinc negative electrodes of zinc-based liquid flow batteries. , further improve the ability of siloxene to induce and anchor Zn 2+ , and promote the uniform deposition performance of Zn 2+ .
  • This invention is the first time to modify sulfonic acid groups on the surface of siloxene through topological chemistry and wet chemical methods. It utilizes the synergistic effect of siloxene and its surface functionalized sulfonic acid group on Zn 2+ to induce Zn 2+ efficiently and effectively.
  • the implementation of the present invention aims to realize the efficient utilization of zinc metal negative electrodes in zinc-based liquid flow batteries and provide new ideas and methods for the modification of zinc-based liquid flow batteries.
  • the growth preparation operation is simple, fast and low-cost, and does not require expensive material growth equipment; this method can effectively peel off and efficiently graft CaSi 2 , and the preparation yield of sulfonated siloxene nanosheet materials is high; the prepared sulfonated siloxane Alkene has high stability and can be strongly and evenly coated on the surface of the negative electrode of zinc-based redox flow batteries without peeling off after multiple cycles; sulfonated siloxene-coated negative electrodes greatly inhibit the unavoidable damage caused by zinc-based redox flow batteries.
  • the problems of dendrite growth and accumulation demonstrate the feasibility of high-performance zinc-based flow batteries.
  • Figure 1 is a scanning electron microscope (SEM) picture of the silicon source (CaSi 2 ) used in Example 1;
  • Figure 2 is the sulfonic acid group functionalized siloxene solution prepared in Example 1;
  • Figure 3 is a scanning electron microscope (SEM) picture of the sulfonic acid group functionalized siloxene prepared in Example 1;
  • Figure 4 is a transmission electron microscope (TEM) picture of the sulfonic acid group functionalized siloxene prepared in Example 1;
  • Figure 5 is an EDS energy spectrum analysis picture of the sulfonic acid group functionalized siloxene prepared in Example 1;
  • Figure 6 is a transmission electron microscope (TEM) picture of the sulfonic acid group functionalized siloxene prepared in Example 2;
  • Figure 7 is a scanning electron microscope (SEM) picture of the sulfonic acid group functionalized siloxene prepared in Example 4.
  • Figure 8 is a battery Coulombic efficiency performance test of the sulfonic acid group functionalized siloxene-coated Zn electrode in Example 4.
  • Figure 9 is a transmission electron microscope (TEM) picture of the mixed slurry of sulfonic acid group functionalized siloxene nanosheets and PVDF prepared in Example 1;
  • Figure 10 is a transmission electron microscope (TEM) picture of the mixed slurry of sulfonic acid group functionalized siloxene nanosheets and PVDF prepared in Example 5;
  • Figure 11 is a comparison of the battery Coulombic efficiency performance test of the sulfonic acid group functionalized siloxene-coated Zn electrode and the uncoated commercial Zn electrode in Example 1.
  • Figure 12 shows the battery Coulombic efficiency performance test of the sulfonic acid group functionalized siloxene-coated Zn electrode under high current density and long cycle conditions in Example 1.
  • Example 2 The same steps as in Example 1 were used to prepare sulfonic acid group functionalized siloxene. The difference was that 100 ml of concentrated hydrochloric acid in step (2) of Example 1 was replaced with 50 ml of phosphoric acid solution (85 wt.% in H 2 O). Others The reaction conditions were unchanged.
  • the thickness of the siloxene nanosheets is significantly higher than that of the siloxene nanosheets prepared in Example 1, which shows that the efficiency of phosphoric acid as a topological chemical solvent and oxidant in stripping CaSi 2 is lower than that of hydrochloric acid as a topological chemical solvent. and oxidant to peel off CaSi 2 , but it can also be seen from the TEM picture that phosphoric acid also successfully peeled off the layered dense structure of CaSi 2 into independent sheet-like structure of siloxene nanosheets, indicating that phosphoric acid is also a suitable topological chemistry Solvents and oxidizing agents.
  • Example 2 The same steps as in Example 1 were used to prepare sulfonic acid group functionalized siloxene, except that the 0.5 mol L -1 sulfamic acid solution in step (5) of Example 1 was replaced with 0.5 mol L -1 poly(4). -styrenesulfonic acid) solution, and other reaction conditions were unchanged.
  • Example 2 The same steps as in Example 1 were used to prepare sulfonic acid group functionalized siloxene. The difference was that the pre-cooling in the -10°C ethanol bath in step (2) of Example 1 was replaced with the pre-cooling in a 10°C water bath. Heat to 10°C and keep other reaction conditions unchanged.
  • the peeling reaction of calcium disilicide must be maintained at a low temperature of -10°C to -20°C, so that the reaction process can proceed gently and orderly, and the silicon layer in calcium disilicide can be fully peeled off to obtain uniform silicon.
  • Oxylene nanosheets lay the foundation for subsequent modification of sulfonic acid groups.
  • Example 2 Take the same steps as Example 1 to prepare the zinc negative electrode coated with sulfonated siloxene. The difference is: weigh 80 mg of the sulfonic acid group functionalized siloxene sample in step (12) of Example 1, and add 1 ml of 20 mg The NMP solution of ml -1 PVDF was changed to weigh 100 mg of the sulfonic acid group functionalized siloxene sample, and 2 ml of 40 mg ml -1 PVDF NMP solution was added, and other reaction conditions were unchanged.
  • nanosheets after mixing the sulfonic acid group-functionalized siloxene nanosheets prepared in this example with PVDF are better than the nanosheets after mixing the sulfonic acid group-functionalized siloxene nanosheets prepared in Example 1 and PVDF.
  • the nanosheets are thicker, which is due to the increased proportion of PVDF.
  • Figure 4 is a TEM image of the sample of Example 1, indicating that the prepared sulfonated siloxene has a smooth and uniform two-dimensional structure with a lateral size of several microns.
  • TEM images show that the sheet-like sulfonated siloxene has high transparency, indicating that the thickness of its nanosheets is very thin.
  • EDS Energy Dispersive Spectrometer
  • Figure 5 is an EDS image of the sample of Example 1, which reveals that sulfur (S) atoms, the characteristic atomic signal of the sulfonic acid group, are present throughout the sulfonated siloxene nanosheets. Since the newly formed layered silicon nanosheets have very high High activity, so sulfonic acid groups can be quickly modified on the surface of siloxene nanosheets, proving that siloxene has been successfully modified with sulfonic acid, and sulfonic acid group functionalized siloxene has been obtained.
  • Sulfonic acid group functionalized siloxene is used for battery performance testing in zinc-based flow batteries
  • Figure 11 is a comparison of the battery Coulombic efficiency performance test of the sulfonic acid group functionalized siloxene-coated Zn electrode and the uncoated commercial Zn electrode in Example 1.
  • the test current condition is 1mA cm -2 and the zinc plating capacity is 1mAh. cm -2
  • the average Coulombic efficiency of the sulfonic acid group-functionalized siloxene-coated Zn electrode reaches over 99.2%, and no short circuit occurs after 200 cycles.
  • the uncoated commercial Zn electrode has a cycle rate of about 40 cycles.
  • the short-circuit phenomenon occurs because the surface of the Zn electrode lacks the protection of sulfonic acid group-functionalized siloxene, and zinc dendrites grow rapidly and pierce the separator, causing battery failure.
  • the topological chemistry method proposed in the present invention realizes the controlled preparation of siloxene nanosheets functionalized with sulfonic acid groups.
  • the zinc-based liquid flow battery that uses sulfonic acid group functionalized siloxene to coat the negative electrode greatly suppresses the occurrence of phenomena such as zinc dendrite growth and accumulation, demonstrates the excellent performance of long-term stable energy storage, and advances the zinc-based liquid flow battery.
  • Commercial application of batteries are examples of batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种用于锌基液流电池的磺酸基团功能化硅氧烯及其制备方法,属于电池电极材料制备技术领域。本发明将硅化物原料硅化钙通过拓扑化学法在一元或多元酸的拓扑化学溶剂和氧化剂中高效剥离获得硅氧烯纳米片,进一步使用磺酸接枝剂对硅氧烯纳米片进行磺酸基团功能化修饰,获得高质量磺酸化硅氧烯纳米片。使用磺酸化硅氧烯涂覆后的锌基液流电池负极可以有效解决锌枝晶生长和堆积等问题,实现稳定均匀的低过电位锌沉积/剥离,推进了锌基液流电池进一步商业化应用的发展。

Description

一种用于锌基液流电池的磺酸基团功能化硅氧烯及其制备方法 技术领域
本发明属于电池电极材料制备技术领域,涉及一种用于锌基液流电池的磺酸基团功能化硅氧烯及其制备方法。将磺酸化硅氧烯/锌复合箔片用于锌基液流电池负极,可解决当前锌基液流电池充放电时存在的锌枝晶生长、堆积、析氢和死锌等副反应严重的问题,推进了面向分布式储能系统的高库伦效率和稳定性能的锌基液流电池的实际应用,展现了锌基液流电池在储能领域的巨大潜力。
背景技术
随着化石能源等非再生能源的不断消耗,社会环境与能源问题日益突出,太阳能、风能等可再生能源在能源结构组成中的占比日益提高。然而,这些可再生能源不可避免的存在供应间断不稳定的问题。因此,要实现可再生能源的持续供应,必须要具备成熟稳定的电化学储能技术。
在目前已有的众多电化学储能技术中,液流电池(FBs)因其极高的安全性、充放电效率和灵活性而被认为是最有潜力的电网级储能技术。与其他技术相比,液流电池的功率密度和能量密度可以独立设计,并且其内部的电解液通常为无机水系溶液,电解质通常在阳极侧和阴极侧单独循环,阳极和阴极由离子导电膜隔开,具有成本低、安全性高的优点,非常适合于大规模储能装置应用。在众多体系的液流电池中,锌基液流电池(ZFBs)如锌溴液流电池、锌铁液流电池等早在1970年就被广泛研究,目前已有不少示范性应用工程。
虽然经过几十年发展的锌基液流电池技术已经较为成熟,但其在充放电过程中存在的共同问题一直阻碍着ZFBs进一步发展。与锂离子电池一样,锌基液流电池负极在充放电过程中极易发生锌枝晶生长与在电极和膜上的沉积现象。随着液流电池的运行,生长的锌枝晶会不断长大,最终可能刺穿隔膜导致电池最终短路失效。同时,膜上堆积的锌也会不断积累,导致电池内阻的急剧增大,增加了不必要的能量损耗。因此,诱导锌均匀沉积的新型电极材料的设计显得尤为重要,这直接决定了锌枝晶生长与积累的矛盾是否能被有效解决。
目前,对硅氧烯材料在锌基液流电池的锌负极方面的研究工作尚无。硅氧烯是一种新型二维材料,我们的研究发现,硅氧烯的波纹状二维骨架 中的Si 6环中含有大量Si-O-Si和-OH亲锌基团,硅氧烯不仅可以作为储层将Zn 2+或Zn(OH) 4 2-捕获在阳极内部,抑制枝晶的同时降低活性物质损失,并且硅氧烯表面大量的含氧基团和缺陷位点使其很容易被进一步官能团修饰,比如磺酸基团修饰,进一步提升硅氧烯诱导和锚定Zn 2+的能力,促进Zn 2+均匀沉积,修饰电极/电解质界面的能力增强,减少析氢和副反应的发生,提升电极的稳定性。
基于以上研究背景,本发明高效制备了磺酸基团功能化枝接的硅氧烯纳米片,制备方法操作简便,原材料成本低廉,所用原料环境友好,适用于大规模商业化制备。有效地解决了锌基液流电池锌枝晶生长与堆积问题,实现了锌基液流电池的长时安全稳定运行,对实现面向分布式储能系统的高库伦效率和稳定性能的锌基液流电池的实际应用具有重要意义。
发明内容
本发明目的是在电池电极材料制备技术领域提供一种用于锌基液流电池的磺酸基团功能化硅氧烯及其制备方法,所采用的方法具有低成本高效率的优点。制备的磺酸化硅氧烯纳米材料的功能化基团枝接率高、稳定性良好,极大程度的抑制了锌枝晶、析氢与钝化副反应,有效地解决了当前锌基液流电池面临的问题。
为实现上述目的,本发明所采用的技术方案是:
一种磺酸基团功能化硅氧烯,是首先以具有硅、钙分层结构的二硅化钙(CaSi 2)作为硅源,通过选择高效适宜的拓扑反应溶剂和氧化剂如盐酸、磷酸和硼酸对CaSi 2进行脱钙剥离获得硅氧烯纳米片。之后选择如磺胺酸、聚(4-苯乙烯磺酸)等富含磺酸基团的功能化基团接枝剂与硅氧烯纳米片通过湿化学反应进行有效枝接,从而获得磺酸基团功能化硅氧烯纳米片。该纳米片材料可用于锌基液流电池,解决锌基液流电池锌枝晶生长与堆积问题。
具体的,一种磺酸基团功能化硅氧烯的制备方法,包括以下步骤:
(1)以二硅化钙(CaSi 2)作为硅化物原料,将硅化物原料和一元或多元酸氧化剂充分混合,并将混合液在乙醇浴下降到-10~-20℃的低温条件;
(2)将步骤(1)得到的低温混合溶液在超声条件下进行充分反应,反应过程维持反应溶液所述低温且保持恒温;
(3)将步骤(2)所得反应溶液真空过滤收集,将收集到的湿粉末加入磺酸接枝剂溶液中,然后超声辅助分散并使其充分反应,最后离心去除反应 溶液,收集下沉淀,冷冻干燥后即可得到磺酸基团修饰硅氧烯纳米片粉末。
上述技术方案中,进一步的,所述步骤(1)中,所述一元或多元酸氧化剂为盐酸、磷酸、硼酸中的至少一种;
进一步的,所述步骤(1)中,一元酸氧化剂与二硅化钙的摩尔比例为2:1~3:1;多元酸氧化剂与二硅化钙的摩尔比例为1.5:1~2.5:1;
所述步骤(1)和步骤(2)中反应过程中始终维持反应溶液温度在-10~-20℃;在该温度下可以促进反应过程温和、有序进行,使得二硅化钙中的硅层能够被充分剥离开,避免反应温度过高导致硅氧烯纳米片的不可控剥离,出现剥离不充分的情况,从而导致锌基液流电池锌负极的库伦效率出现不稳定情况。
所述步骤(2)中硅化钙拓扑化学剥离过程中超声的工作功率范围为300-600瓦(W);超声工作时间为48~72h;
所述步骤(3)中所使用的磺酸接枝剂为磺胺酸、聚(4-苯乙烯磺酸)、或对应盐类中的至少一种;
所述步骤(3)中所使用的二硅化钙、磺酸接枝剂两者的质量比为1:0.1~1:1.
所述步骤(3)中磺酸接枝剂溶液的溶剂为无水乙醇、甲醇、乙醚、丙酮中的至少一种;
所述步骤(3)中磺酸接枝剂溶液的浓度为0.1~1mol L -1
所述步骤(3)中超声分散的功率为200-300瓦(W),超声时间为12~24h;
所述步骤(3)中冷冻干燥前对所述样品进行预冷冻,方式为液氮冷冻,预冷冻可使样品进行充分冷冻,防止冷冻干燥过程中出现团聚;
一种锌基液流电池负极材料,是将所述步骤(3)制得的磺酸基团修饰硅氧烯纳米片与PVDF溶液按照一定比例混合获得浆料;然后将混合后的浆料涂覆到锌箔表面,最好将涂覆的锌箔鼓风干燥,得到磺酸化硅氧烯涂覆后的锌负极,用于锌基液流电池负极。
上述方案中,磺酸基团修饰硅氧烯、PVDF两者的质量比为1:1~5:1;
所述PVDF溶液的浓度为20mg ml -1~80mg ml -1
所述PVDF溶液的溶剂为DMF、NMP中的至少一种;
本发明通过拓扑化学和湿化学方法制备硅氧烯与表面功能化修饰技术研究,可控制备出高质量、厚度均匀的用于锌基液流电池锌负极的磺酸基团功能化硅氧烯,进一步提升硅氧烯诱导和锚定Zn 2+的能力,促进Zn 2+ 均匀沉积性能。本发明属首次通过拓扑化学和湿化学方法在硅氧烯表面修饰磺酸基团,利用硅氧烯及其表面功能化的磺酸基团亲Zn 2+的协同作用,诱导Zn 2+高效、均匀沉积,从而提高锌基液流电池的库伦效率和循环稳定性能。本发明的实施旨在实现锌基液流电池中锌金属负极的高效利用,对锌基液流电池的改性提供新思路和新方法。
本方法的优势之处在于:
生长制备操作简单快捷、成本低,不需要价格高昂的材料生长设备;该方法能对CaSi 2有效剥离并高效枝接,磺酸化硅氧烯纳米片材料制备产率高;制备的磺酸化硅氧烯稳定性高,能强力平整的涂覆于锌基液流电池负极表面,经过多次循环也不会发生脱落剥离;磺酸化硅氧烯涂覆负极大幅抑制了锌基液流电池不可避免的枝晶生长和堆积问题,展现了高性能锌基液流电池的可行性。
附图说明
图1为实施例1中所使用的硅源(CaSi 2)的扫描电镜(SEM)图片;
图2为实施例1中制备的磺酸基团功能化硅氧烯溶液;
图3为实施例1中所制备的磺酸基团功能化硅氧烯扫描电镜(SEM)图片;
图4为实施例1中所制备的磺酸基团功能化硅氧烯透射电镜(TEM)图片;
图5为实施例1中所制备的磺酸基团功能化硅氧烯EDS能谱分析图片;
图6为实施例2中所制备的磺酸基团功能化硅氧烯透射电镜(TEM)图片;
图7为实施例4中所制备的磺酸基团功能化硅氧烯扫描电镜(SEM)图片;
图8为实施例4中磺酸基团功能化硅氧烯涂覆Zn电极的电池库伦效率性能测试。
图9为实施例1中所制备的磺酸基团功能化硅氧烯纳米片与PVDF混合浆料的透射电镜(TEM)图片;
图10为实施例5中所制备的磺酸基团功能化硅氧烯纳米片与PVDF混合浆料的透射电镜(TEM)图片;
图11为实施例1中磺酸基团功能化硅氧烯涂覆Zn电极与未涂覆的 商业化Zn电极的电池库伦效率性能测试对比。
图12为实施例1中磺酸基团功能化硅氧烯涂覆Zn电极在大电流密度、长循环条件下的电池库伦效率性能测试。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步的详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
实施例1:
(1)称量2g CaSi 2作为硅化物原料粉末置于500ml橙盖瓶中。
(2)取100ml浓盐酸(质量分数36%-38%)加入至(1)中橙盖瓶中获得绿色浑浊溶液,将溶液置于-10℃乙醇浴中预冷至-10℃。
(3)将(2)中预冷至-10℃的浑浊溶液,使用超声波破碎仪辅助反应,超声功率为300W,反应时间为48h,期间维持反应溶液的温度为-10℃。
(4)将(3)中的浑浊溶液真空抽滤,收集灰色湿粉末,获得形貌良好的硅氧烯纳米片。
(5)在无水乙醇溶剂中预配制浓度为0.5mol L -1的磺胺酸溶液。
(6)将(4)中收集到的湿粉末加入30ml(5)中已经配制好的磺酸胺的乙醇溶液,超声辅助分散,超声功率300W,超声时间12h。
(7)将(6)中制备的混合溶液离心,设置离心转速为12000rpm,离心时间为30min。
(8)收集(7)中离心沉淀物,加入100ml无水乙醇,超声清洗,超声功率300w,时间1h。
(9)将(8)中的混合溶液离心,设置离心转速为12000rpm,离心时间为30min。
(10)收集(9)中的离心沉淀物,用50ml液氮浇筑冷冻。
(11)将(10)中的冷冻物放入冷冻干燥机中,冷冻机设置温度为-50℃,冷冻干燥24h以获得磺酸基团功能化硅氧烯样品。
(12)称量(11)中的磺酸基团功能化硅氧烯样品80mg,加入1ml的20mg ml -1PVDF的NMP溶液,在磁力搅拌条件下混合,磁力搅拌转速为1500rpm,搅拌时间为12h,获得磺酸基团功能化硅氧烯的浆料。
(13)将(12)中的磺酸基团功能化硅氧烯浆料通过平板涂覆方式涂覆在锌箔表面,涂覆厚度为10μm,涂覆速度为10cm min -1
(14)将(13)中涂覆浆料的锌箔在鼓风干燥箱中干燥,干燥温度为60℃,干燥时间为12h,得到磺酸化硅氧烯涂覆后的锌负极,用于锌基液流电池负极。
实施例2:
采取与实施例1相同的步骤制备磺酸基团功能化硅氧烯,区别在于:将实例1步骤(2)中100ml浓盐酸更换为50ml的磷酸溶液(85wt.%in H 2O),其他反应条件均不作改变。
经过TEM表征,显示硅氧烯纳米片的厚度要明显高于实例1中所制备的硅氧烯纳米片,这说明磷酸作为拓扑化学溶剂和氧化剂剥离CaSi 2的效率要低于盐酸作为拓扑化学溶剂和氧化剂剥离CaSi 2,但是从TEM图片中也可以看出磷酸也成功地将层状致密结构的CaSi 2剥离成了独立片状结构的硅氧烯纳米片,说明磷酸也是一种合适的拓扑化学溶剂和氧化剂。
实施例3:
采取与实施例1相同的步骤制备磺酸基团功能化硅氧烯,区别在于:将实例1步骤(5)中0.5mol L -1的磺胺酸溶液更换为0.5mol L -1的聚(4-苯乙烯磺酸)溶液,其他反应条件均不作改变。
实施例4:
采取与实施例1相同的步骤制备磺酸基团功能化硅氧烯,区别在于:将实例1步骤(2)中-10℃乙醇浴中预冷至-10℃更换为10℃的水浴中预热至10℃,其他反应条件均不作改变。
经过SEM表征,显示本例中二硅化钙在10℃剥离温度下并没有被充分剥离,反应温度过高导致硅氧烯纳米片的不可控剥离,出现剥离不充分的情况。剥离不充分的硅氧烯纳米片在磺酸基团修饰后,涂覆在锌负极表面会导致锌基液流电池锌负极的库伦效率出现不稳定情况,如图8所示,测试电流条件为1mA cm -2,镀锌容量为1mAh cm -2,电池循环100圈左 右,库伦效率出现不稳定情况,可以看出本例中二硅化钙在10℃剥离温度下并没有被充分剥离,导致涂覆在锌表面的磺酸修饰硅氧烯纳米片无法充分抑制锌枝晶生长,导致电池失效。
因此,二硅化钙的剥离反应须维持在-10℃至-20℃低温条件,使得反应过程能够温和、有序地进行,促进二硅化钙中的硅层能够被充分剥离开,获得均匀的硅氧烯纳米片,为后续磺酸基团修饰奠定基础。
实施例5:
采取与实施例1相同的步骤制备磺酸化硅氧烯涂覆后的锌负极,区别在于:将实例1步骤(12)中称量磺酸基团功能化硅氧烯样品80mg,加入1ml的20mg ml -1PVDF的NMP溶液更改为称量磺酸基团功能化硅氧烯样品100mg,加入2ml 40mg ml -1PVDF的NMP溶液,其他反应条件均不作改变。
经过TEM表征,显示本例中制备的磺酸基团功能化硅氧烯纳米片与PVDF混合后的纳米片比实施例1中制备的磺酸基团功能化硅氧烯纳米片与PVDF混合后的纳米片要更厚,这是因为PVDF比例提高的原因。
实施例6:
透射电子显微镜(TEM)的表征和分析
使用透射电子显微镜来确定磺酸基团功能化硅氧烯的高分辨形貌。图4为实施例1样品的TEM图像,说明所制备的磺酸化硅氧烯具备光滑、均匀的二维结构,横向尺寸为几微米。此外,TEM图像显示出片状的磺酸化硅氧烯具有高透明度,表明其纳米片的厚度很薄。
实施例7:
能谱仪(EDS)的表征和分析
使用EDS来确定磺酸基团是否成功修饰在硅氧烯的结构中。图5为实施例1样品的EDS图像,它揭示了磺酸基团的特征原子信号硫(S)原子存在于整个磺酸化硅氧烯纳米片中,由于新形成的层状硅纳米片具有很高的活性,因此磺酸基团可以迅速修饰在硅氧烯纳米片表面,证明了硅氧烯被成功进行了磺酸修饰,获得了磺酸基团功能化硅氧烯。
实施例8:
磺酸基团功能化硅氧烯用于锌基液流电池中的电池性能测试
图11为实施例1磺酸基团功能化硅氧烯涂覆Zn电极与未涂覆的商业化Zn电极的电池库伦效率性能测试对比,测试电流条件为1mA cm -2,镀锌容量为1mAh cm -2,磺酸基团功能化硅氧烯涂覆Zn电极的平均库伦效率达到99.2%以上,循环200圈没有出现短路现象,未涂覆的商业化Zn电极在循环40圈左右的时候,出现短路现象,这是因为Zn电极表面缺乏磺酸基团功能化硅氧烯的保护,锌枝晶快速生长,刺穿隔膜,导致电池失效。同时,我们测试了实施例1磺酸基团功能化硅氧烯涂覆Zn电极在大电流、长循环条件下的镀锌/剥锌性能,如图12所示,以进一步揭示磺酸基团功能化硅氧烯在调控Zn 2+沉积,抑制锌枝晶方面的性能。如图12,测试电流条件为5mA cm -2,镀锌容量为1mAh cm -2,磺酸基团功能化硅氧烯涂覆Zn电极的平均库伦效率达到99.5%以上,循环1600圈没有出现短路现象,这揭示出锌基液流电池锌负极的磺酸基团功能化硅氧烯,提升了负极界面诱导和锚定Zn 2+的能力,促进Zn 2+均匀沉积性能,说明磺酸基团功能化硅氧烯复合锌电极可以有效解决锌基液流电池充放电时存在的锌枝晶生长、锌沉积过电势高等系列严重问题,推进了面向分布式储能系统的高库伦效率和稳定性能的锌基液流电池的实际应用。
综上,本发明提出的拓扑化学方法实现了磺酸基团功能化硅氧烯纳米片的调控制备。使用磺酸基团功能化硅氧烯涂覆负极的锌基液流电池大幅抑制了锌枝晶生长和堆积等现象的发生,展现出长时稳定储能的优异性能,推进了锌基液流电池的商业应用化。

Claims (10)

  1. 一种磺酸基团功能化硅氧烯的制备方法,其特征在于,该方法包括以下步骤:
    (1)将二硅化钙CaSi 2和一元或多元酸氧化剂充分混合,并将混合液在乙醇浴降温到低温条件;
    (2)将步骤(1)得到的低温混合溶液在超声波中进行拓扑化学剥离,反应过程维持反应溶液持续低温且恒温;
    (3)将步骤(2)所得反应溶液真空过滤收集,将收集到的湿粉末加入磺酸接枝剂溶液中,然后超声辅助分散并使其充分反应,最后离心去除反应溶液,收集沉淀,冷冻干燥后即可得到磺酸基团修饰硅氧烯纳米片粉末。
  2. 根据权利要求1所述的一种磺酸基团功能化硅氧烯的制备方法,其特征在于,步骤(1)中所述一元或多元酸氧化剂为盐酸、磷酸、硼酸中的至少一种。
  3. 根据权利要求1所述的一种磺酸基团功能化硅氧烯的制备方法,其特征在于,所述步骤(1)中,一元酸氧化剂与二硅化钙的摩尔比例为2:1~3:1;多元酸氧化剂与二硅化钙的摩尔比例为1.5:1~2.5:1。
  4. 根据权利要求1所述的一种磺酸基团功能化硅氧烯的制备方法,其特征在于,所述步骤(1)和步骤(2)中反应过程中始终维持反应溶液温度在-10~-20℃低温条件。
  5. 根据权利要求1所述的一种磺酸基团功能化硅氧烯的制备方法,其特征在于,所述步骤(2)中硅化钙拓扑化学剥离过程中超声功率范围为300-600瓦,超声工作时间为48~72h。
  6. 根据权利要求1所述的一种磺酸基团功能化硅氧烯的制备方法,其特征在于,所述步骤(3)中所使用的磺酸接枝剂为磺胺酸、聚(4-苯乙烯磺酸)及其相应盐类中的至少一种,磺酸接枝剂溶液的浓度为0.1~1mol L -1;二硅化钙、磺酸接枝剂两者的质量比为1:0.1~1:1。
  7. 根据权利要求1所述的一种磺酸基团功能化硅氧烯的制备方法,其特征在于,所述步骤(3)中超声分散的功率为200-300瓦,超声时间为12~24h;在所述冷冻干燥前将样品采用液氮冷冻进行预冷冻,使样品进行充分冷冻,防止冷冻干燥过程中出现团聚。
  8. 一种锌基液流电池的负极材料,其特征在于,将权利要求1-7任一项所述方法制得的磺酸基团修饰硅氧烯纳米片与PVDF溶液按照一定比例 混合获得浆料;然后将混合后的浆料涂覆到锌表面,干燥,得到磺酸化硅氧烯涂覆后的锌负极,用于锌基液流电池负极。
  9. 根据权利要求8所述的一种锌基液流电池的负极材料,其特征在于,所述磺酸基团修饰硅氧烯纳米片、PVDF两者的质量比为1:1~5:1。
  10. 一种锌基液流电池,其特征在于,含有如权利要求8所述的负极材料。
PCT/CN2022/091194 2022-03-14 2022-05-06 一种用于锌基液流电池的磺酸基团功能化硅氧烯及其制备方法 WO2023173559A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210250252.4A CN114684824B (zh) 2022-03-14 2022-03-14 一种用于锌基液流电池的磺酸基团功能化硅氧烯及其制备方法
CN202210250252.4 2022-03-14

Publications (1)

Publication Number Publication Date
WO2023173559A1 true WO2023173559A1 (zh) 2023-09-21

Family

ID=82140077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091194 WO2023173559A1 (zh) 2022-03-14 2022-05-06 一种用于锌基液流电池的磺酸基团功能化硅氧烯及其制备方法

Country Status (2)

Country Link
CN (1) CN114684824B (zh)
WO (1) WO2023173559A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106058232A (zh) * 2016-07-22 2016-10-26 中国科学院宁波材料技术与工程研究所 一种硅氧烯材料、硅基氧化物的制备方法及负极材料
CN111525089A (zh) * 2020-07-06 2020-08-11 长沙宝锋能源科技有限公司 一种兼顾能量密度和安全的低温锂离子电池
CN111518130A (zh) * 2020-05-28 2020-08-11 陕西科技大学 一种对称型长链硅氧烷磺酸基表面活性剂及其制备方法和应用
KR20200111877A (ko) * 2019-03-19 2020-10-05 전남대학교산학협력단 실록센 화합물을 포함하는 리튬-황 이차전지용 양극
CN111933912A (zh) * 2020-08-14 2020-11-13 华中科技大学 具有锌离子电导性界面修饰层的锌负极、电池以及制备方法
CN113078342A (zh) * 2020-01-03 2021-07-06 中国科学院大连化学物理研究所 一种碱性锌铁液流电池用功能性复合膜及其制备方法与应用
CN113991194A (zh) * 2021-10-29 2022-01-28 山东大学 一种液态金属改性二维硅氧烯负极及其制备方法与应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7359156B2 (ja) * 2018-11-02 2023-10-11 日産化学株式会社 活物質複合体形成用組成物、活物質複合体、および活物質複合体の製造方法
EP3930041A4 (en) * 2019-02-21 2022-11-16 Nissan Chemical Corporation BATTERY MATERIAL
WO2021035706A1 (zh) * 2019-08-30 2021-03-04 浙江大学 一种含硅烯量子点的硅氧烯及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106058232A (zh) * 2016-07-22 2016-10-26 中国科学院宁波材料技术与工程研究所 一种硅氧烯材料、硅基氧化物的制备方法及负极材料
KR20200111877A (ko) * 2019-03-19 2020-10-05 전남대학교산학협력단 실록센 화합물을 포함하는 리튬-황 이차전지용 양극
CN113078342A (zh) * 2020-01-03 2021-07-06 中国科学院大连化学物理研究所 一种碱性锌铁液流电池用功能性复合膜及其制备方法与应用
CN111518130A (zh) * 2020-05-28 2020-08-11 陕西科技大学 一种对称型长链硅氧烷磺酸基表面活性剂及其制备方法和应用
CN111525089A (zh) * 2020-07-06 2020-08-11 长沙宝锋能源科技有限公司 一种兼顾能量密度和安全的低温锂离子电池
CN111933912A (zh) * 2020-08-14 2020-11-13 华中科技大学 具有锌离子电导性界面修饰层的锌负极、电池以及制备方法
CN113991194A (zh) * 2021-10-29 2022-01-28 山东大学 一种液态金属改性二维硅氧烯负极及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Master's Thesis", 1 June 2020, HUNAN UNIVERSITY, CN, article MENG, QIN: "Study on Electrochemical Supercapacitor Electrodes Based on Siloxene and Its Composites", pages: 1 - 66, XP009548648, DOI: 10.27135/d.cnki.ghudu.2020.003663 *

Also Published As

Publication number Publication date
CN114684824A (zh) 2022-07-01
CN114684824B (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
Chen et al. Hollow core–shell structured silicon@ carbon nanoparticles embed in carbon nanofibers as binder-free anodes for lithium-ion batteries
WO2021213132A1 (zh) 一种含复合添加剂的锂金属电池电解液及其制备方法
CN108258241A (zh) 一种利用zif-8多孔碳材料抑制锂枝晶生长的锂电池负极
Zhao et al. A lithium carboxylate grafted dendrite-free polymer electrolyte for an all-solid-state lithium-ion battery
CN109830754A (zh) 一种基于碳纳米管膜的自加热电池及其制备方法
US20240145710A1 (en) Negative electrode sheet and battery applying same
CN114039051B (zh) 一种三维结构MXene/SnO2/C负极复合材料及其制备方法
CN108630916B (zh) 一种细菌纤维素负载钛铌氧复合材料及其制备方法和应用
WO2023240891A1 (zh) 氰基基团修饰Zr-Fe MOF、其制备方法及锌基液流电池锌负极材料
Matsuda et al. Composite cathode of NCM particles and Li3PS4-LiI electrolytes prepared using the SEED method for all-solid-state lithium batteries
WO2023173559A1 (zh) 一种用于锌基液流电池的磺酸基团功能化硅氧烯及其制备方法
CN111668492A (zh) 一种锂金属负极集流体及其制备方法、复合负极和锂金属二次电池
CN116646593A (zh) 一种全固态聚合物电解质及其制备方法与应用
CN111129455A (zh) 一种高首效硅基负极材料及其制备方法
WO2023138018A1 (zh) 一种复合负极片及其制备方法、锂金属二次电池
Zhao et al. Electrodeposited PbO2 thin films with different surface structure as positive plate in lead acid batteries
CN105226251A (zh) 一种纯碳复合负极材料及其制备方法
Zhang et al. A quasi-solid polymer electrolyte initiated by two-dimensional functional nanosheets for stable lithium metal batteries
CN114388731A (zh) 一种锂电池电极及其制备方法和应用
Li et al. Size effect on electrochemical performance of sodium terephthalate as anode material for sodium-ion batteries
Gang et al. Highly (002)-oriented ZnO in ZnO-NC microflakes coating layer for stable zinc anode in zinc-air batteries
CN114361391B (zh) 一种聚合物修饰纳米硅负极材料及其制备方法和应用
CN113555646B (zh) 一种凝剂型锂硫电池正极侧隔层材料的制备方法
US20240194874A1 (en) Negative electrode for lithium/sodium ion battery without surface lithium/sodium deposition phenomena and preparation method thereof
CN117913347B (zh) CoNi-MOFs@NiPc改性的PEO固体电解质及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931586

Country of ref document: EP

Kind code of ref document: A1