WO2023240891A1 - 氰基基团修饰Zr-Fe MOF、其制备方法及锌基液流电池锌负极材料 - Google Patents
氰基基团修饰Zr-Fe MOF、其制备方法及锌基液流电池锌负极材料 Download PDFInfo
- Publication number
- WO2023240891A1 WO2023240891A1 PCT/CN2022/128493 CN2022128493W WO2023240891A1 WO 2023240891 A1 WO2023240891 A1 WO 2023240891A1 CN 2022128493 W CN2022128493 W CN 2022128493W WO 2023240891 A1 WO2023240891 A1 WO 2023240891A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- zinc
- cyano group
- mof
- modified
- negative electrode
- Prior art date
Links
- 239000011701 zinc Substances 0.000 title claims abstract description 160
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 title claims abstract description 137
- 229910052725 zinc Inorganic materials 0.000 title claims abstract description 137
- 125000004093 cyano group Chemical group *C#N 0.000 title claims abstract description 94
- 238000002360 preparation method Methods 0.000 title claims abstract description 23
- 239000007773 negative electrode material Substances 0.000 title claims description 5
- 239000002135 nanosheet Substances 0.000 claims abstract description 69
- 239000011241 protective layer Substances 0.000 claims abstract description 26
- 239000003607 modifier Substances 0.000 claims abstract description 23
- 239000000243 solution Substances 0.000 claims description 33
- 238000006243 chemical reaction Methods 0.000 claims description 29
- 239000002244 precipitate Substances 0.000 claims description 16
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 15
- BHXFKXOIODIUJO-UHFFFAOYSA-N benzene-1,4-dicarbonitrile Chemical compound N#CC1=CC=C(C#N)C=C1 BHXFKXOIODIUJO-UHFFFAOYSA-N 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 14
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 12
- 239000011259 mixed solution Substances 0.000 claims description 9
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 7
- KTWOOEGAPBSYNW-UHFFFAOYSA-N ferrocene Chemical compound [Fe+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KTWOOEGAPBSYNW-UHFFFAOYSA-N 0.000 claims description 7
- 239000007788 liquid Substances 0.000 claims description 7
- DUNKXUFBGCUVQW-UHFFFAOYSA-J zirconium tetrachloride Chemical compound Cl[Zr](Cl)(Cl)Cl DUNKXUFBGCUVQW-UHFFFAOYSA-J 0.000 claims description 7
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 6
- 239000011230 binding agent Substances 0.000 claims description 6
- 239000007864 aqueous solution Substances 0.000 claims description 5
- 239000011248 coating agent Substances 0.000 claims description 5
- 238000000576 coating method Methods 0.000 claims description 5
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- 239000002002 slurry Substances 0.000 claims description 5
- 239000012670 alkaline solution Substances 0.000 claims description 4
- 239000002994 raw material Substances 0.000 claims description 4
- 239000002033 PVDF binder Substances 0.000 claims description 3
- 239000003513 alkali Substances 0.000 claims description 3
- 239000008367 deionised water Substances 0.000 claims description 3
- 229910021641 deionized water Inorganic materials 0.000 claims description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 239000011268 mixed slurry Substances 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 239000002585 base Substances 0.000 claims 1
- 238000007086 side reaction Methods 0.000 abstract description 8
- 238000004070 electrodeposition Methods 0.000 abstract description 7
- 238000004146 energy storage Methods 0.000 abstract description 7
- 238000011161 development Methods 0.000 abstract description 6
- ZRXYMHTYEQQBLN-UHFFFAOYSA-N [Br].[Zn] Chemical compound [Br].[Zn] ZRXYMHTYEQQBLN-UHFFFAOYSA-N 0.000 abstract description 4
- 239000013078 crystal Substances 0.000 abstract description 3
- 239000007772 electrode material Substances 0.000 abstract description 3
- 210000001787 dendrite Anatomy 0.000 description 14
- 238000011056 performance test Methods 0.000 description 12
- 239000003792 electrolyte Substances 0.000 description 10
- 238000005260 corrosion Methods 0.000 description 7
- 230000007797 corrosion Effects 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 5
- 230000001351 cycling effect Effects 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000007747 plating Methods 0.000 description 5
- 238000002604 ultrasonography Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 238000007333 cyanation reaction Methods 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000006911 nucleation Effects 0.000 description 3
- 238000010899 nucleation Methods 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000004807 desolvation Methods 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000003760 magnetic stirring Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- 208000032953 Device battery issue Diseases 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000003090 exacerbative effect Effects 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/18—Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8647—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
- H01M4/8657—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8825—Methods for deposition of the catalytic active composition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the rich pore structure can serve as a channel for rapid Zn 2+ transport.
- Zr-Fe MOF modified with cyano groups can improve the Zn affinity of the matrix and reduce the energy barrier for Zn nucleation, which is beneficial to the uniform deposition of Zn. Inhibit the growth of zinc dendrites and improve the cycle life of zinc-based flow batteries.
- the above-mentioned protective layer avoids direct contact between the zinc negative electrode and the aqueous electrolyte, weakens the corrosion reaction related to the electrolyte, and further improves the stability of the zinc negative electrode of zinc-based redox flow batteries.
- the present invention efficiently prepares a cyano group-modified Zr-Fe MOF nanosheet for the zinc negative electrode protective layer of zinc-based redox flow batteries.
- the synthesis method is simple, the cost is low, and it is easy to produce on a large scale.
- a new strategy to create an efficient protective layer for zinc anodes suitable for zinc-based redox flow batteries has been developed, which effectively solves the problems of dendrite growth and hydrogen evolution corrosion of zinc anodes, and is of great significance for zinc-based redox flow batteries with commercial application value. Provides valuable guidance in the design and development of
- cyano group-modified Zr-Fe MOF nanosheets to coat the surface of the zinc-bromine flow zinc negative electrode to build a protective layer can effectively solve the problems of dendrites and side reactions in zinc electrodeposition during zinc-based flow battery cycles.
- a cyano group modified Zr-Fe MOF nanosheet includes the following steps:
- the raw materials required for the preparation of Zr-Fe MOF nanosheets in step (1) are a mixed solution of anhydrous zirconium chloride, ferrocene dicarboxylic acid, and acetic acid, and the solvent is DMF.
- the molar ratio of anhydrous zirconium chloride, ferrocene dicarboxylic acid, and acetic acid is 1:1:50, and the concentration of anhydrous zirconium chloride is 0.03mol L -1 ;
- the molar ratio of the cyano group modifier and ferrocene dicarboxylic acid is 0.1:1 to 0.3:1;
- Zr-Fe MOF modified with cyano groups can improve the Zn affinity of the matrix and reduce the energy barrier for Zn nucleation, which is beneficial to the uniform deposition of Zn. Inhibit the growth of zinc dendrites and improve the cycle life of zinc-based flow batteries.
- the above-mentioned protective layer avoids direct contact between the zinc negative electrode and the aqueous electrolyte, weakens the corrosion reaction related to the electrolyte, and further improves the stability of the zinc negative electrode of zinc-based redox flow batteries.
- the growth preparation operation is simple, fast and low-cost, and does not require expensive material growth equipment; the cyano group-modified Zr-Fe MOF prepared by this method has stable morphology and high crystal quality.
- cyano group modified Zr-Fe MOF nanosheets to coat the surface of the zinc-bromine flow zinc negative electrode to build a protective layer, which can effectively solve the problems of dendrites and side reactions of zinc electrodeposition during zinc-based flow battery cycles and provide stability.
- the future development of zinc-based flow batteries provides practical strategies and further provides important guidance for zinc-based flow batteries with controllable zinc electrodeposition for large-scale energy storage applications.
- Figure 2 is a transmission electron microscope (TEM) picture of the cyano group-modified Zr-Fe MOF nanosheets prepared in Example 2;
- Figure 3 is an EDS energy spectrum picture of the cyano group-modified Zr-Fe MOF nanosheets prepared in Example 1;
- Figure 4 shows the Coulombic efficiency performance test of the Zn negative electrode with the cyano group-modified Zr-Fe MOF protective layer prepared in Example 1;
- Figure 5 shows the long cycle performance test of the cyano group-modified Zr-Fe MOF protective layer prepared in Example 1;
- Figure 6 shows the cycle performance test of a zinc anode coated with a non-cyanolated Zr-Fe MOF protective layer
- Figure 7 shows the cycle performance test of the exposed Zn anode without any protective layer
- Figure 8 shows the long cycle performance test of the Zn electrode with a cyano group-modified Zr-Fe MOF protective layer under high current density conditions in Example 1.
- Figure 9 shows the long cycle performance test of the Zn anode coated with a non-cyanolated Zr-Fe MOF protective layer under high current density conditions
- Figure 10 shows the long cycle performance test of an exposed Zn anode without any protective layer under high current density conditions
- Example 1 Take the same steps as Example 1 to prepare cyano group modified Zr-Fe MOF nanosheets, the difference is: replace the terephthalonitrile cyano group modifier in the step of Example 1 with terephthalonitrile cyanide, and other reactions No changes will be made to the conditions.
- EDS Energy Dispersive Spectrometer
- Example 2 The same steps as in Example 1 were taken to prepare the zinc anode coated with cyano group-modified Zr-Fe MOF nanosheets, except that the NMP solution of 10 mg ml -1 PAN in step (10) of Example 1 was changed to 10 mg ml - 1 NMP solution of PVDF, other reaction conditions remained unchanged.
- Figure 5 is the electrosymmetric battery cycle performance test of the zinc negative electrode coated with cyano group modified Zr-Fe MOF nanosheets in Example 1.
- the test current condition is 5mA cm -2
- the zinc plating capacity is 1mAh cm -2
- the cyano group The zinc anode coated with group-modified Zr-Fe MOF nanosheets has a cycle time of 1100 hours without any short circuit.
- the present invention also adopts the same method as in Example 1 (but does not add a cyano group modifier for cyanation, that is, the method is basically the same as Example 1 but does not perform steps (2) to (8))
- the prepared non-cyanolated Zr-Fe MOF nanosheet-coated zinc anode and the exposed zinc anode were tested under the same conditions for symmetrical battery cycle performance.
- Figure 6 the cycle performance of Zr-Fe MOF nanosheets coated with zinc anode without cyano group modification is shown.
- Figure 7 shows the symmetrical battery cycle performance of the exposed zinc anode.
- the polarization voltage of the battery increases significantly. This is because the exposed zinc anode lacks protection and severe corrosion occurs on the surface, resulting in an increase in internal resistance and cycle The stability becomes worse and the voltage polarization becomes larger. It can be seen that the zinc anode coated with Zr-Fe MOF nanosheets modified by the present invention has greatly improved the cycle performance of the electrosymmetric battery.
- Figure 9 shows the cycle performance of non-cyanolated Zr-Fe MOF nanosheets coated zinc anode under the same conditions.
- the battery has voltage fluctuations at 100h, and a short circuit occurs around 170h.
- Figure 10 shows the symmetrical battery cycle performance of the exposed zinc anode at high current density under the same conditions. Similarly, when the battery is cycled for nearly 50 hours, the polarization voltage of the battery increases significantly. This shows that the cyanolated Zr-Fe MOF protective layer on the surface of the zinc anode plays a prominent role in promoting uniform deposition of Zn, improving the Zn affinity of the matrix, and reducing the energy barrier for Zn nucleation.
- the present invention proposes a cyano group-modified Zr-Fe MOF protective layer for the zinc negative electrode of zinc-based redox flow batteries and its preparation method, which effectively inhibits the growth of zinc dendrites and the occurrence of hydrogen evolution side reactions.
- the prepared zinc anode exhibits long-term cycling stability. This method and strategy promotes the industrial application of zinc-based flow batteries and provides a basis for the commercial application of zinc-based flow batteries suitable for large-scale wind and photovoltaic energy storage. played an important and positive role.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明公开了一种用于锌基液流电池锌负极的氰基基团修饰Zr-Fe MOF保护层及其制备方法,属于电池电极材料制备技术领域。本发明在Zr-Fe MOF纳米片制备过程中引入氰基基团修饰剂,获得高质量氰基基团修饰Zr-Fe MOF纳米片。使用氰基基团修饰Zr-Fe MOF纳米片涂覆在锌溴液流锌负极表面构建保护层,有效解决锌基液流电池循环中锌电沉积存在的枝晶和副反应问题,为稳定锌基液流电池的未来发展提供了切实可行的策略,进一步为用于大规模储能应用的具有可控锌电沉积的锌基液流电池提供了机会。
Description
本发明属于电池电极材料制备技术领域,涉及一种用于锌基液流电池锌负极的氰基基团修饰Zr-Fe MOF保护层及其制备方法。将氰基基团修饰Zr-Fe MOF纳米片/涂覆在锌基液流电池锌负极表面,可解决尖锐锌枝晶的连续生长刺穿隔膜导致电池短路的问题,并且可以通过阻止沉积锌从负极表面剥落而形成死Zn,从而解决活性材料损失导致的电池容量降低问题,同时抑制锌负极表面与电解液的副反应等问题,从而进一步推动锌基液流电池的实际应用。
由于世界范围内对清洁和可再生能源的需求日益迫切,在这种情况下,利用可替代和可持续的能源类型至关重要。但清洁能源的高度波动性使清洁能源的利用变得更糟。在这方面,储能系统的发展对于为工业应用提供更通用和更稳定的能源供应至关重要。在当前所有的储能系统中,电池发挥着重要作用。
锌基液流电池是新一代廉价、安全的储能系统器件,与传统的锂离子电池不同,锌基液流电池的负极可直接由锌金属负极组成,有利于获得高容量。此外,金属锌与水性电解质的兼容性好,与锂离子电池离子导电性低、高度易燃的有机电解质相比,锌基液流电池具有更高的安全性和离子导电性。但电沉积过程中锌的不均匀性容易诱导锌枝晶的生长,随着反应的进行,锌枝晶的进一步沉积将会刺穿隔膜,导致电池的短路。刺穿后的脆性锌枝晶在电解液中会形成死晶,导致容量下降甚至电池失效。此外,在电池中裸露的锌负极直接接触水性电解液,这会导致锌负极长期遭受析氢腐蚀的问题,进一步加剧锌负极的容量损失、钝化等问题。因此对锌基液流电池的锌负极界面进行复合材料改性,深层次调控锌负极表面的均匀化镀锌,提高锌负极表面的析氢过电势以抑制副反应,对推动锌基液流电池的实际应用具有重要的意义。
目前,对氰基基团修饰Zr-Fe MOF在锌基液流电池锌负极方面的研究工作尚无。根据我们的研究,Zr-Fe MOF结构中的Zr和Fe金属节点可以均匀化锌表面电场,降低锌负极在充电过程中的表面电场起伏,均匀化 锌负极的表面电流密度。重要的是,通过氰基基团修饰,Zr-Fe MOF表面大量的氰基基团可以深度吸附扩散过来的Zn
2+,同时降低Zn
2+的脱溶剂化势垒,结合Zr-Fe MOF中丰富的孔道结构可以作为Zn
2+快速传输的通道这种结构优势,氰基基团修饰的Zr-Fe MOF可以提高基体的Zn亲和力、降低Zn成核的能垒,有利于Zn的均匀沉积,抑制锌枝晶的生长,提高锌基液流电池的循环寿命。同时上述保护层避免了锌负极与水性电解液的直接接触,削弱了与电解液相关的腐蚀反应,进一步提升锌基液流电池锌负极的稳定性。
基于以上研究背景,本发明高效制备了一种用于锌基液流电池锌负极保护层的氰基基团修饰Zr-Fe MOF纳米片,合成方法简单,成本低,易于规模化生产。开辟了一种为适用于锌基液流电池的锌负极制造高效保护层的新策略,有效地解决了锌负极枝晶生长与析氢腐蚀的问题,对具有商业化应用价值的锌基液流电池的设计和开发提供了有价值的指导。
发明内容
本发明目的是在电池电极材料制备技术领域提供一种用于锌基液流电池锌负极的氰基基团修饰Zr-Fe MOF保护层及其制备方法。合成的氰基基团修饰Zr-Fe MOF纳米材料的产率高、成本低,基于氰基基团修饰Zr-Fe MOF纳米片开发的锌负极保护层高效地抑制了锌基液流电池中锌枝晶生长、析氢腐蚀副反应问题,为稳定锌基液流电池的未来发展提供了切实可行的策略,进一步为用于大规模储能应用的具有可控锌电沉积的锌基液流电池提供了机会。
为实现上述目的,本发明所采用的技术方案是:
一种氰基基团修饰Zr-Fe MOF纳米片,首先在Zr-Fe MOF纳米片制备过程中引入氰基基团修饰剂如对苯二乙腈、对苯二腈对Zr-Fe MOF纳米片进行预氰基化,然后在此基础上继续使用氰基基团修饰剂如对苯二乙腈、对苯二腈对预氰基化Zr-Fe MOF纳米片进行稳定氰基修饰处理获得氰基基团修饰Zr-Fe MOF纳米片。使用氰基基团修饰Zr-Fe MOF纳米片涂覆在锌溴液流锌负极表面构建保护层,可有效解决锌基液流电池循环中锌电沉积存在的枝晶和副反应问题。
具体的,一种氰基基团修饰Zr-Fe MOF纳米片,包括以下步骤:
(1)在Zr-Fe MOF纳米片制备过程中加入氰基基团修饰剂,将Zr-Fe MOF纳米片制备所需的原料和氰基基团修饰剂充分混合,将混合溶液在 高温油浴条件下进行水热反应,反应过程维持反应溶液持续高温且恒温;
(2)将步骤(1)所得反应溶液离心收集沉淀,获得预氰基化Zr-Fe MOF纳米片,并将预氰基化Zr-Fe MOF纳米片与氰基基团修饰剂的强碱溶液按照一定比例超声混合,将混合溶液再次在高温油浴条件下进行水热反应,反应过程维持反应溶液高温且恒温;
(3)将步骤(2)所得反应溶液离心收集沉淀,并将沉淀物用去离子水清洗数次,再次离心收集沉淀,将沉淀物干燥后即获得氰基基团修饰Zr-Fe MOF纳米片。
上述技术方案中,进一步的,所述步骤(1)中所述Zr-Fe MOF纳米片制备所需原料为无水氯化锆、二茂铁二羧酸、乙酸混合的溶液,溶剂为DMF,且无水氯化锆、二茂铁二羧酸、乙酸的摩尔比例为1:1:50,无水氯化锆的浓度为0.03mol L
-1;
进一步的,所述步骤(1)中氰基基团修饰剂为对苯二乙腈、对苯二腈的至少一种。
所述步骤(1)中,氰基基团修饰剂与二茂铁二羧酸的摩尔比例为0.1:1~0.3:1;
所述步骤(1)中反应过程中始终维持反应溶液温度在100~130℃高温条件;
所述步骤(2)中强碱溶液为氢氧化钠水溶液、氢氧化钾水溶液的至少一种,强碱的浓度为1-2M;
所述步骤(2)中氰基基团修饰剂的强碱溶液中氰基基团修饰剂的浓度范围为0.1-0.3M;
所述步骤(2)中预氰基化Zr-Fe MOF纳米片与氰基基团修饰剂的质量比例为1:1~1:3;
所述步骤(2)中反应过程中始终维持反应溶液温度在140~160℃高温条件;
所述步骤(3)中沉淀物的干燥方式为真空干燥、鼓风干燥和冷冻干燥中的至少一种;
一种锌基液流电池锌负极材料,是将所述步骤(3)制得的氰基基团修饰Zr-Fe MOF纳米片与粘结剂PAN、PVDF溶液中的一种或多种按照一定比例混合获得浆料;并将混合后浆料涂覆到锌表面,干燥,得到具有Zr-Fe MOF涂覆保护层的锌负极,用于锌基液流电池负极。
上述方案中,氰基基团修饰Zr-Fe MOF纳米片、粘结剂两者的质量 比为1:1~8:1。
所述粘结剂溶液的浓度为10mg ml
-1~60mg ml
-1;
所述粘结剂溶液的溶剂为DMF、NMP中的至少一种;
本发明在Zr-Fe MOF纳米片制备过程中引入氰基基团修饰剂对Zr-Fe MOF纳米片进行预氰基化,然后在此基础上继续使用氰基基团修饰剂对预氰基化Zr-Fe MOF纳米片进行稳定氰基修饰处理获得可控制备、高质量的氰基基团修饰Zr-Fe MOF纳米片。使用氰基基团修饰Zr-Fe MOF纳米片涂覆在锌溴液流锌负极表面构建保护层,Zr-Fe MOF结构中的Zr和Fe金属节点可以均匀化锌表面电场,降低锌负极在充电过程中的表面电场起伏,均匀化锌负极的表面电流密度。重要的是,通过氰基基团修饰,Zr-Fe MOF表面大量的氰基基团可以深度吸附扩散过来的Zn
2+,同时降低Zn
2+的脱溶剂化势垒,结合Zr-Fe MOF中丰富的孔道结构可以作为Zn
2+快速传输的通道这种结构优势,氰基基团修饰的Zr-Fe MOF可以提高基体的Zn亲和力、降低Zn成核的能垒,有利于Zn的均匀沉积,抑制锌枝晶的生长,提高锌基液流电池的循环寿命。同时上述保护层避免了锌负极与水性电解液的直接接触,削弱了与电解液相关的腐蚀反应,进一步提升锌基液流电池锌负极的稳定性。
本方法的优势之处在于:
生长制备操作简单快捷、成本低,不需要价格高昂的材料生长设备;该方法制备的氰基基团修饰的Zr-Fe MOF形貌稳定、晶体质量高。使用氰基基团修饰Zr-Fe MOF纳米片涂覆在锌溴液流锌负极表面构建保护层,能有效解决锌基液流电池循环中锌电沉积存在的枝晶和副反应问题,为稳定锌基液流电池的未来发展提供了切实可行的策略,进一步为用于大规模储能应用的具有可控锌电沉积的锌基液流电池提供了重要指导意义。
图1为实施例1中所制备的氰基基团修饰Zr-Fe MOF纳米片的投射电镜(TEM)图片;
图2为实施例2中制备的氰基基团修饰Zr-Fe MOF纳米片的投射电镜(TEM)图片;
图3为实施例1中所制备的氰基基团修饰Zr-Fe MOF纳米片的EDS 能谱图片;
图4为实施例1中所制备的氰基基团修饰Zr-Fe MOF保护层的Zn负极的库伦效率性能测试;
图5为实施例1中所制备的氰基基团修饰Zr-Fe MOF保护层的的长循环性能测试;
图6为涂覆未氰基化Zr-Fe MOF保护层的锌负极的循环性能测试;
图7为未使用任何保护层的裸露Zn负极的循环性能测试;
图8为实施例1中氰基基团修饰Zr-Fe MOF保护层的Zn电极在大电流密度条件下的长循环性能测试。
图9为涂覆未氰基化Zr-Fe MOF保护层的Zn负极在大电流密度条件下的长循环性能测试;
图10为未使用任何保护层的裸露Zn负极在大电流密度条件下的长循环性能测试;
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步的详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
实施例1:
(1)取3mmol无水氯化锆、3mmol二茂铁二羧酸,和0.15mol乙酸溶解于100mL DMF中。
(2)取0.3mmol对苯二乙腈放入(1)中的混合溶液中,超声溶解,超声功率为100W,时间1h。
(3)将(2)中混合溶液,在120℃油浴高条件下恒温进行12h水热反应。
(4)将(3)中反应后的溶液离心,收集沉淀物,获得预氰基化的Zr-Fe MOF纳米片。
(5)预配制浓度为1M浓度的氢氧化钠水溶液。
(6)取30ml(5)中的氢氧化钠水溶液,加入对苯二乙腈,配制0.1M浓度的对苯二乙腈溶液。
(7)将(4)中收集得到的预氰基化Zr-Fe MOF纳米片全部加入(6)中的对苯二乙腈溶液,并超声辅助分散,超声功率200W,超声时间30min。
(8)将(7)得到的混合溶液在140℃油浴条件下进行反应,反应时间2h。
(9)将(8)中反应后的溶液离心收集沉淀,并将沉淀物用去离子水反复清洗3次,再次离心收集沉淀,将沉淀物在60℃真空干燥12h即获得氰基基团修饰Zr-Fe MOF纳米片。
(10)称量(9)中的氰基基团修饰Zr-Fe MOF纳米片60mg,加入1ml的10mg ml
-1PAN的NMP溶液,在磁力搅拌条件下混合,磁力搅拌转速为1000rpm,搅拌时间为24h,获得氰基基团修饰Zr-Fe MOF纳米片的PAN浆料。
(11)将(10)中的氰基基团修饰Zr-Fe MOF纳米片的PAN浆料通过真空平板涂覆机涂在100μm锌负极表面,涂覆厚度为15μm,涂覆速度为5cm min
-1。
(12)将(11)中涂覆浆料的锌负极在鼓风干燥箱中干燥,干燥温度为60℃,干燥时间为12h,得到具有氰基基团修饰Zr-Fe MOF纳米片保护层的锌负极,用于锌基液流电池负极。
实施例2:
采取与实施例1相同的步骤制备氰基基团修饰Zr-Fe MOF纳米片,区别在于:将实例1步骤中的对苯二乙腈氰基基团修饰剂换成对苯二腈氰,其他反应条件均不作改变。
经过TEM表征,显示氰基基团修饰Zr-Fe MOF纳米片的形貌与实例1中所制备的氰基基团修饰Zr-Fe MOF纳米片(如图1)相比,制备的纳米片横向尺寸稍大,除此之外没有其他实质性的区别,这说明两种氰基基团修饰剂都可以获得形貌均匀的氰基基团修饰Zr-Fe MOF纳米片。
实施例3:
采取与实施例1相同的步骤制备氰基基团修饰Zr-Fe MOF纳米片,区别在于:将实例1步骤(6)中0.1M浓度的对苯二乙腈溶液更改成0.3M浓度的对苯二乙腈溶液,其他反应条件均不作改变。
能谱仪(EDS)的表征和分析
使用EDS来确定氰基基团是否成功修饰在Zr-Fe MOF纳米片结构中。图3为实施例1样品的EDS图像,它揭示了氰基基团的特征原子信 号氮(N)原子存在于整个氰基基团修饰Zr-Fe MOF纳米片结构中,证明了氰基基团修饰Zr-Fe MOF纳米片的成功制备。
实施例4:
采取与实施例1相同的步骤制备氰基基团修饰Zr-Fe MOF纳米片涂覆的锌负极,区别在于:将实例1步骤(10)中10mg ml
-1PAN的NMP溶液更改为10mg ml
-1PVDF的NMP溶液,其他反应条件均不作改变。
用于锌基液流电池的氰基基团修饰Zr-Fe MOF纳米片涂覆锌负极的库伦效率性能测试
图4为实施例1氰基基团修饰Zr-Fe MOF纳米片涂覆的锌负极的电池库伦效率性能测试,测试电流条件为5mA cm
-2,镀锌容量为1mAh cm
-2,氰基基团修饰Zr-Fe MOF纳米片涂覆的锌负极平均库伦效率达到99.68%以上,循环1000圈没有出现短路现象。说明锌负极表面的氰基基团修饰Zr-Fe MOF纳米片保护层有效地抑制了锌负极在循环过程中锌枝晶生长的问题,提升了长周期循环过程中的镀锌/剥锌稳定性,并抑制了副反应发生,大幅提高了活性锌的有效利用率。
用于锌基液流电池的氰基基团修饰Zr-Fe MOF纳米片涂覆锌负极的对称电池循环性能测试。
图5为实施例1氰基基团修饰Zr-Fe MOF纳米片涂覆的锌负极的电对称电池循环性能测试,测试电流条件为5mA cm
-2,镀锌容量为1mAh cm
-2,氰基基团修饰Zr-Fe MOF纳米片涂覆的锌负极循环时间到达1100小时未出现短路现象。
此外,本发明中还采用和实施例1中相同的方法(但不加入氰基基团修饰剂进行氰基化,即方法与实施例1基本相同但不进行步骤(2)~(8))制备的未氰基化的Zr-Fe MOF纳米片涂覆的锌负极和裸露的锌负极在同样条件下来测试对称电池循环性能。如图6为未使用氰基基团修饰的Zr-Fe MOF纳米片涂覆锌负极的循环性能,我们发现电池在550h的时候出现了短路情况,这是因为锌枝晶生长刺穿了隔膜。图7为裸露锌负极的对称电池循环性能,在接近50h的时候,电池的极化电压大幅度增加, 这是因为裸露锌负极缺乏保护,表面出现了严重的腐蚀,导致内阻增大,循环稳定性变差,电压极化变大。可以看出,本发明通过采用氰基基团修饰Zr-Fe MOF纳米片涂覆的锌负极其电对称电池循环性能有极大提升。
为了进一步验证氰基基团修饰Zr-Fe MOF纳米片涂覆锌负极的循环稳定性,我们测试了大电流条件下的循环。图8为氰基基团修饰Zr-Fe MOF纳米片涂覆的锌负极在10mA cm
-2,镀锌容量为1mAh cm
-2条件下的对称电池循环性能测试。当电流密度增加到10mA cm
-2时,氰基基团修饰Zr-Fe MOF纳米片涂覆锌负极仍然能够稳定循环900h无枝晶,且充放电过电势维持在很低的水平(100mV vs.Zn
2+/Zn)。
图9为同条件下未氰基化的Zr-Fe MOF纳米片涂覆锌负极的循环性能,电池在100h的时候出现电压波动,170h左右出现短路情况。图10为同条件下裸露锌负极在大电流密度下对称电池循环性能,同样的,电池在循环接近50h的时候,电池的极化电压大幅度增加。这表明了锌负极表面的氰基化Zr-Fe MOF保护层在促进Zn均匀沉积,提高基体的Zn亲和力、降低Zn成核的能垒方面起到了突出作用。同时上述保护层避免了锌负极与水性电解液的直接接触,削弱了与电解液相关的腐蚀反应,进一步提升锌基液流电池锌负极的稳定性。
综上,本发明提出的一种用于锌基液流电池锌负极的氰基基团修饰Zr-Fe MOF保护层及其制备方法,高效地抑制了锌枝晶生长和析氢副反应的发生,所制备的锌负极展现出长周期循环稳定性能,这种方法策略促进了锌基液流电池的产业化应用,为适应于大规模风、光电储能的锌基液流电池的商业化应用做出了重要积极的推动作用。
Claims (10)
- 一种氰基基团修饰Zr-Fe MOF的制备方法,其特征在于,该方法包括以下步骤:(1)Fe将Zr-Fe MOF纳米片制备所需的原料和氰基基团修饰剂充分混合,将混合溶液在高温油浴条件下进行水热反应,反应过程维持反应溶液持续高温且恒温;(2)将步骤(1)所得反应溶液离心收集沉淀,获得预氰基化Zr-Fe MOF纳米片,并将预氰基化Zr-Fe MOF纳米片与氰基基团修饰剂的强碱溶液按照一定比例超声混合,将混合溶液再次在高温油浴条件下进行水热反应,反应过程维持反应溶液高温且恒温;(3)将步骤(2)所得反应溶液离心收集沉淀,并将沉淀物用去离子水清洗数次,再次离心收集沉淀,将沉淀物干燥后即获得氰基基团修饰Zr-Fe MOF纳米片。
- 根据权利要求1所述的一种氰基基团修饰Zr-Fe MOF的制备方法,其特征在于,步骤(1)中所述Zr-Fe MOF纳米片制备所需原料为无水氯化锆、二茂铁二羧酸、乙酸混合的溶液,溶剂为DMF,且无水氯化锆、二茂铁二羧酸、乙酸的摩尔比例为1:1:50,无水氯化锆的浓度为0.03mol L -1。
- 根据权利要求2所述的一种氰基基团修饰Zr-Fe MOF的制备方法,其特征在于,步骤(1)中所述氰基基团修饰剂为对苯二乙腈、对苯二腈的至少一种;Fe且氰基基团修饰剂与二茂铁二羧酸的摩尔比例为0.1:1~0.3:1。
- 根据权利要求1所述的氰基基团修饰Zr-Fe MOF的制备方法,其特征在于,所述步骤(1)中反应过程中始终维持反应溶液温度在100~130℃高温条件。
- 根据权利要求1所述的氰基基团修饰Zr-Fe MOF的制备方法,其特征在于,所述步骤(2)中强碱溶液为氢氧化钠水溶液、氢氧化钾水溶液的至少一种,强碱的浓度为1-2M;Fe氰基基团修饰剂的强碱溶液中氰基基团修饰剂的浓度范围为1-3M。
- 根据权利要求1所述的氰基基团修饰Zr-Fe MOF的制备方法,其特征在于,所述步骤(2)中预氰基化Zr-Fe MOF纳米片与氰基基团修饰剂的摩尔比例为1:1~1:3。
- 根据权利要求1所述的氰基基团修饰Zr-Fe MOF的制备方法,其特征在于,所述步骤(2)中反应过程中始终维持反应溶液温度在140~160℃高温条件。
- 一种锌基液流电池锌负极材料,其特征在于,将如权利要求1-7任一项所述方法制得的氰基基团修饰Zr-Fe MOF纳米片与粘结剂PAN、PVDF溶液中的一种或多种按照一定比例混合获得浆料;并将混合后浆料涂覆到锌表面,干燥,得到具有Zr-Fe MOF涂覆保护层的锌负极,用于锌基液流电池负极。
- 根据权利要求8所述的一种锌基液流电池锌负极材料,其特征在于,所述氰基基团修饰Zr-Fe MOF纳米片、粘结剂两者的质量比为1:1~8:1。
- 一种锌基液流电池,其特征在于,含有如权利要求8所述的锌负极材料。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210671797.2 | 2022-06-14 | ||
CN202210671797.2A CN115172774B (zh) | 2022-06-14 | 2022-06-14 | 氰基基团修饰Zr-Fe MOF、其制备方法及锌基液流电池锌负极材料 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023240891A1 true WO2023240891A1 (zh) | 2023-12-21 |
Family
ID=83485334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/128493 WO2023240891A1 (zh) | 2022-06-14 | 2022-10-31 | 氰基基团修饰Zr-Fe MOF、其制备方法及锌基液流电池锌负极材料 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115172774B (zh) |
WO (1) | WO2023240891A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115172774B (zh) * | 2022-06-14 | 2023-08-11 | 浙江大学 | 氰基基团修饰Zr-Fe MOF、其制备方法及锌基液流电池锌负极材料 |
CN116072866B (zh) * | 2022-12-19 | 2024-09-17 | 浙江大学温州研究院 | 一种用于稳定锌基电池负极的氰基化复合界面及其制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107887603A (zh) * | 2017-11-23 | 2018-04-06 | 齐鲁工业大学 | 一种金属有机框架mof‑5作为锌离子电池正极材料的制备方法 |
CN108807999A (zh) * | 2018-05-07 | 2018-11-13 | 同济大学 | 合成混晶相二氧化钛/共价有机骨架共生互锁结构的方法 |
CN109317210A (zh) * | 2018-10-17 | 2019-02-12 | 福州大学 | 一种双金属有机骨架材料及其制备方法与应用 |
CN110302758A (zh) * | 2019-05-07 | 2019-10-08 | 西南大学 | 一种除磷的双金属有机框架材料、其制备方法及应用 |
US20210126259A1 (en) * | 2018-04-30 | 2021-04-29 | The Johns Hopkins University | Lithium-sulfur and sodium-sulfur battery cathodes |
CN114614027A (zh) * | 2022-02-18 | 2022-06-10 | 三峡大学 | CoFe-S@3D-S-NCNT电极的制备方法和准固态锌-空气电池 |
CN115172774A (zh) * | 2022-06-14 | 2022-10-11 | 浙江大学 | 氰基基团修饰Zr-Fe MOF、其制备方法及锌基液流电池锌负极材料 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150044553A1 (en) * | 2013-08-07 | 2015-02-12 | Toyota Motor Engineering & Manufacturing North America, Inc. | Cathode active material for non-aqueous rechargeable magnesium battery |
US11715864B2 (en) * | 2017-02-07 | 2023-08-01 | Ford Cheer International Limited | Metal-organic-framework (MOF) coated composite separators for electrochemical devices and applications of same |
CN107256960A (zh) * | 2017-08-06 | 2017-10-17 | 长沙小新新能源科技有限公司 | 一种复合正极材料、其制备方法及包含该复合正极材料的锂离子电池 |
CN112707413B (zh) * | 2020-12-29 | 2022-11-04 | 佛山仙湖实验室 | 一种高结晶度普鲁士蓝微米花电极材料的制备方法及应用 |
CN113121836B (zh) * | 2021-03-04 | 2023-09-08 | 乌海瑞森新能源材料有限公司 | 一种纳米框架状超级结构Fe-Co-Ni金属有机框架及其制备方法与应用 |
CN113856635B (zh) * | 2021-10-25 | 2022-12-20 | 中国科学院长春应用化学研究所 | 一种宏尺寸连续mof膜材料、其制备方法及应用 |
-
2022
- 2022-06-14 CN CN202210671797.2A patent/CN115172774B/zh active Active
- 2022-10-31 WO PCT/CN2022/128493 patent/WO2023240891A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107887603A (zh) * | 2017-11-23 | 2018-04-06 | 齐鲁工业大学 | 一种金属有机框架mof‑5作为锌离子电池正极材料的制备方法 |
US20210126259A1 (en) * | 2018-04-30 | 2021-04-29 | The Johns Hopkins University | Lithium-sulfur and sodium-sulfur battery cathodes |
CN108807999A (zh) * | 2018-05-07 | 2018-11-13 | 同济大学 | 合成混晶相二氧化钛/共价有机骨架共生互锁结构的方法 |
CN109317210A (zh) * | 2018-10-17 | 2019-02-12 | 福州大学 | 一种双金属有机骨架材料及其制备方法与应用 |
CN110302758A (zh) * | 2019-05-07 | 2019-10-08 | 西南大学 | 一种除磷的双金属有机框架材料、其制备方法及应用 |
CN114614027A (zh) * | 2022-02-18 | 2022-06-10 | 三峡大学 | CoFe-S@3D-S-NCNT电极的制备方法和准固态锌-空气电池 |
CN115172774A (zh) * | 2022-06-14 | 2022-10-11 | 浙江大学 | 氰基基团修饰Zr-Fe MOF、其制备方法及锌基液流电池锌负极材料 |
Also Published As
Publication number | Publication date |
---|---|
CN115172774A (zh) | 2022-10-11 |
CN115172774B (zh) | 2023-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110649267B (zh) | 一种复合金属锂负极、制备方法及金属锂电池 | |
WO2021213132A1 (zh) | 一种含复合添加剂的锂金属电池电解液及其制备方法 | |
CN113054165B (zh) | 一种锌二次电池的负极极片及其制备方法与应用 | |
WO2023240891A1 (zh) | 氰基基团修饰Zr-Fe MOF、其制备方法及锌基液流电池锌负极材料 | |
CN102332572B (zh) | 一种负极材料及其制造方法、锂离子电池及其负极片 | |
CN111916744B (zh) | 一种锌离子电池液态金属复合负极及其制备方法和应用 | |
CN113258070B (zh) | 一种水系锌离子电池金属锌负极界面修饰方法 | |
CN112635698B (zh) | 一种锌二次电池的负极极片及其制备方法和用途 | |
CN108258241A (zh) | 一种利用zif-8多孔碳材料抑制锂枝晶生长的锂电池负极 | |
CN113690397B (zh) | 一种锌负极极片及其制备方法和应用 | |
CN108183269A (zh) | 一种水系高倍率钠离子电池的制备方法 | |
CN113889604A (zh) | 一种黑磷负极骨架材料、其制备方法及应用 | |
CN108987673B (zh) | 一种含导电保护薄膜的锂负极及其制备方法和应用 | |
CN116826314A (zh) | 一种锌碘电池隔膜及其电池 | |
CN115101730A (zh) | 一种硅基复合负极材料及其制备方法 | |
CN115588785A (zh) | 一种宽温域水系锌金属电池电解液及电池 | |
CN112234175B (zh) | 一种高可逆水系锌离子电池负极材料的制备方法 | |
CN109659475A (zh) | 一种高性能高压锂离子电池的制备方法 | |
CN116130795A (zh) | 一种电解液添加剂及其在水系锌离子电池中的应用 | |
CN115010941A (zh) | 一种离子型共价有机框架纳米片保护层电沉积制备方法和应用 | |
Li et al. | Strategies to inhibition the dendrites of the anode in zinc ion batteries | |
CN104022281B (zh) | 一种制备铅蓄电池负极的材料及其制备方法 | |
CN114203976B (zh) | 一种可提高金属锂负极稳定性的混合溶液及制备方法和应用 | |
WO2023173559A1 (zh) | 一种用于锌基液流电池的磺酸基团功能化硅氧烯及其制备方法 | |
WO2022147784A1 (zh) | 分子筛基固态电解质以及制备方法、一体化固态电解质-电极材料 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22946559 Country of ref document: EP Kind code of ref document: A1 |