WO2022147784A1 - 分子筛基固态电解质以及制备方法、一体化固态电解质-电极材料 - Google Patents

分子筛基固态电解质以及制备方法、一体化固态电解质-电极材料 Download PDF

Info

Publication number
WO2022147784A1
WO2022147784A1 PCT/CN2021/070936 CN2021070936W WO2022147784A1 WO 2022147784 A1 WO2022147784 A1 WO 2022147784A1 CN 2021070936 W CN2021070936 W CN 2021070936W WO 2022147784 A1 WO2022147784 A1 WO 2022147784A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
solid electrolyte
electrode
cathode
solid
Prior art date
Application number
PCT/CN2021/070936
Other languages
English (en)
French (fr)
Inventor
于吉红
迟茜文
徐吉静
邸建城
李玛琳
白璞
Original Assignee
吉林大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吉林大学 filed Critical 吉林大学
Priority to PCT/CN2021/070936 priority Critical patent/WO2022147784A1/zh
Publication of WO2022147784A1 publication Critical patent/WO2022147784A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes

Definitions

  • the application relates to a molecular sieve-based solid electrolyte and a preparation method, an integrated solid electrolyte-electrode material and a solid energy storage device, belonging to the technical field of battery electrolytes.
  • liquid organic electrolytes At present, most commercial energy storage systems used in portable electronic devices, electric vehicles, and smart grids use liquid organic electrolytes. However, the energy storage system using liquid organic electrolyte is prone to short circuit and liquid leakage, which will lead to safety accidents such as combustion and explosion.
  • Solid-state electrolytes not only need to have good chemical and electrochemical stability and high mechanical strength, but also need to have excellent ionic conductivity and ideal interfacial compatibility to meet the requirements of solid-state energy storage devices for electrochemical performance.
  • the solid electrolyte should have low electronic conductivity to avoid the nucleation of metal anode elements inside the electrolyte and the formation of dendrites during the electrochemical process, penetrating the solid electrolyte and causing the battery to short-circuit.
  • open energy storage systems such as metal-air batteries put forward higher requirements for solid electrolytes.
  • the electrolyte of solid-state metal-air batteries should also: 1 Highly stable to air components (oxygen, water, carbon dioxide, etc.) Operation requirements; 2 have high oxidation resistance to resist the corrosion of oxygen reduction intermediates.
  • garnet-type solid electrolytes are sensitive to water and carbon dioxide; perovskite-type solid-state electrolytes have poor stability and are sensitive to air, metal anodes, etc.; NASICON-type solid-state electrolytes are sensitive to metal anodes; sulfide solid-state electrolytes are sensitive to water and oxygen sensitive.
  • solid electrolytes are generally prepared by high-temperature solid-phase synthesis process, and the impedance of the grain interface and the interface between the electrolyte and the cathode and anode is relatively large.
  • solid-state energy storage systems based on existing solid-state electrolytes are still far from meeting the needs of practical production and applications.
  • the high preparation cost, complex process, and poor flexibility of existing inorganic solid electrolytes also greatly limit the large-scale production and application of solid-state energy storage devices.
  • a molecular sieve-based solid electrolyte is provided, and a molecular sieve membrane is used as the solid electrolyte to design an ultra-thin, flexible, integrated, and highly safe solid-state battery.
  • a molecular sieve-based solid electrolyte comprises a molecular sieve membrane or a molecular sieve sheet; there are movable cations in the molecular sieve pores.
  • the mobile cations present in the molecular sieve channels are matched with the type of the final assembled energy storage device.
  • the mobile cation is Li ion
  • solid-state lithium batteries can be assembled.
  • the molecular sieve in the molecular sieve membrane or molecular sieve sheet is a silica-alumina molecular sieve.
  • the content of movable cations in the pores of the silica-alumina molecular sieve is higher, and the ionic conductivity of the solid electrolyte is superior.
  • the silicon-alumina ratio in the silicon-alumina molecular sieve is 0.9-5; wherein, the silicon-aluminum ratio is a Si/Al molar ratio.
  • the types of silica-alumina molecular sieves include, but are not limited to, A, X, Y, ZSM-5, and the like.
  • the cations include but are not limited to any one of Li ions, Na ions, Mg ions, Ca ions, K ions, Zn ions, and protons. Different types of cations correspond to different types of batteries.
  • the cation when it is Li ion, it can be a solid-state lithium battery.
  • the solid-state lithium battery in this application refers to a solid-state battery whose charge carriers are lithium ions, such as a solid-state lithium-sulfur battery, a solid-state lithium-air battery, a solid-state lithium-oxygen battery, a solid-state lithium-carbon dioxide battery, and a solid-state lithium-ion battery. , solid-state lithium metal batteries, etc.
  • the cation When the cation is Na ion, it can be a solid-state sodium battery.
  • the cation When the cation is Mg ion, it can be a solid-state magnesium battery.
  • the cation When the cation is Ca ion, it can be a solid calcium battery.
  • the cation When the cation is K ion, it can be a solid-state potassium battery.
  • the cation When the cation is Zn ion, it can be a solid-state zinc battery.
  • the cation When the cation is a proton, it can be a solid state fuel cell.
  • solid-state sodium batteries, solid-state magnesium batteries, solid-state calcium batteries, solid-state potassium batteries, and solid-state zinc batteries are all similar to solid-state lithium batteries, and will not be repeated here.
  • the molecular sieve-based solid electrolyte further comprises a substrate; the molecular sieve membrane is grown on the substrate.
  • the substrate in this application only needs to be stable to the process of growing the molecular sieve membrane, and is not strictly limited.
  • the substrate includes any one of carbon-based porous material, metal mesh, metal foam, and polymer film.
  • the metal mesh includes but is not limited to any one of copper mesh, nickel mesh, and stainless steel mesh;
  • the metal foam includes but is not limited to any one of nickel foam and copper foam;
  • Another example is an all carbon-based carrier.
  • the molecular sieve membrane is obtained by an in-situ growth method, and the in-situ growth method includes a seed-assisted method, a dry gel conversion method, a microwave method, and an electrophoretic deposition method.
  • the molecular sieve-based solid electrolyte can be obtained by in-situ growth of the molecular sieve on the substrate.
  • an integrated solid-state electrolyte-electrode material comprising an electrode A and a molecular sieve membrane; the molecular sieve membrane is grown on the electrode A in situ; there are mobile cations in the molecular sieve channels ;
  • the electrode A can be a cathode or an anode; the electrode A is stable to the process of growing the molecular sieve membrane.
  • the electrode A is an anode; the molecular sieve membrane is grown on the anode in situ; the anode is stable to the process of growing the molecular sieve membrane.
  • the molecular sieve membrane is grown on the anode as a solid electrolyte in situ, which can make the solid electrolyte and the anode in close contact, which is beneficial to the mass transfer at the interface, the overall impedance of the energy storage device will also be reduced, and at the same time, the mechanical strength will also be improved.
  • the specific type of the anode is not limited, as long as the process of growing the molecular sieve membrane is stable.
  • the electrode A is a cathode, and the molecular sieve membrane is grown on the cathode in situ; the cathode is stable to the process of growing the molecular sieve membrane.
  • the molecular sieve membrane is grown on the cathode as a solid electrolyte in situ, which can make the solid electrolyte and the cathode in close contact, which is beneficial to the mass transfer at the interface, the overall impedance of the energy storage device will also be reduced, and at the same time, the mechanical strength will also be improved.
  • the specific type of the cathode is not limited, as long as the process of growing the molecular sieve membrane is stable.
  • the cathode includes a current collector and a cathode active material.
  • the cathode active material is sprayed or grown in situ on the current collector.
  • the cathode active material is carbon nanotube, graphene, noble metal, transition metal oxide.
  • carbon nanotubes As a common cathode active material, carbon nanotubes have high energy density and are stable to the process of growing molecular sieve films.
  • the cathode active material is nitrogen-doped carbon nanotubes.
  • Nitrogen doping can modulate the electronic structure and surface properties of carbon nanotubes, thereby enhancing the electrocatalytic activity, wettability and electron-donating ability of carbon nanotubes.
  • the loading amount of the molecular sieve membrane on the electrode A is 0.1-5 mg cm -2 .
  • a method for preparing the integrated solid electrolyte-electrode material is also provided.
  • the integrated solid electrolyte-electrode material can be obtained by in-situ growing a molecular sieve membrane on the electrode A as a solid electrolyte.
  • the in-situ growth method includes a seed-assisted method, a dry gel conversion method, a microwave method, and an electrophoretic deposition method.
  • the preparation method includes:
  • step S400 choose whether to perform step S400;
  • actual demand refers to "what kind of battery” (eg, solid-state lithium battery, solid-state sodium battery, etc.). If a solid-state sodium battery is required, ion exchange is not required (ie, step S400).
  • step S200 the preparation method of the molecular sieve seed crystal adopts the following steps:
  • the molecular sieve crystallization solution is prepared according to the molar ratio of the seed crystals. Then transferred to a 50 mL PTFE-lined stainless steel autoclave, heated at 60-80 °C for 5 h, and then heated at 90-100 °C for 3 h. After centrifugation and washing, and drying at 50-70° C. for 12-24 hours, the obtained molecular sieve seeds are stored in a desiccator to obtain molecular sieve seeds.
  • step S200 the obtained molecular sieve seed crystals are dispersed in secondary water to prepare the molecular sieve seed crystal-containing dispersion liquid.
  • step S200 in the dispersion liquid, the content of molecular sieve seed crystals is 0.04-0.2 g mL -1 .
  • the in-situ growth of the molecular sieve on the surface of the electrode includes: heating the cathode whose surface is coated with the molecular sieve seed dispersion liquid at 30-95° C. for 0.5-5 h, and at 150-200° C. for 0.5-5 h. Under heating for 0.5 ⁇ 2h.
  • the process of applying the molecular sieve seed dispersion to the substrate to make the seeds adhere is a physical adsorption with weak binding force.
  • the purpose of the step-by-step heating process is to gently remove the liquid phase components in the seed dispersion to prevent the liquid phase
  • the volatilization causes the desorption of the adsorbed seed crystals, and then the bonding force between the seed crystals and the substrate is enhanced by a higher temperature, and a nucleation site is provided in the subsequent growth process of the molecular sieve film.
  • step S300 the in-situ growth of the molecular sieve on the electrode surface includes:
  • the molecular sieve crystallizing solution in step S300-2 is prepared in the same manner as the molecular sieve crystallizing solution in the process of preparing the molecular sieve seed crystals, which will not be repeated here.
  • step S300-3 the conditions for hydrothermally synthesizing the molecular sieve membrane are: 90-100° C., 3-5 hours.
  • the preparation method includes:
  • the cathode active material is grown on the current collector in situ to obtain a cathode
  • step S400-1 choose whether to perform step S400-1;
  • the current collector includes but is not limited to any one of metal mesh and metal foam.
  • the selection of specific metal mesh and metal foam is similar to that of the above-mentioned substrate, and will not be repeated here.
  • step S100-1 the cathode active material is grown on the current collector in situ to obtain the cathode, and the method in the prior art can be used.
  • nitrogen-doped nanotubes were grown in situ on stainless steel meshes using chemical vapor deposition.
  • a solid state energy storage device comprising a cathode, an anode and a solid electrolyte between the cathode and the anode,
  • the solid electrolyte is the molecular sieve-based solid electrolyte described above.
  • the cathode can be carbon nanotubes, graphene, transition metal oxides, etc.
  • the anode can be lithium, sodium, potassium, graphite composite materials, etc.
  • the molecular sieve sheet and the anode pass through Including but not limited to heating the metal anode to above the melting point and then casting it on the solid electrolyte, or using a viscous material transition with ionic conductivity (such as polymer solid electrolyte), or a very small amount of ionic liquid (or electrolyte) infiltration, etc.
  • Mass transfer is realized; mass transfer can be realized between the molecular sieve sheet and the cathode by spraying the cathode active material mixed with the binder on the solid electrolyte. At this time, the solid electrolyte and the electrode have a non-integrated structure.
  • the cathode can be carbon nanotubes, graphene, transition metal oxides, etc.
  • the anode can be lithium, sodium, potassium, graphite composite materials, etc.
  • the substrate of the membrane) and the anode are formed by, including but not limited to, heating the metal anode above the melting point and then casting it on the solid electrolyte, or using a viscous material transition (such as a polymer solid electrolyte) with ionic conductivity, or a very small amount of ions.
  • Mass transfer can be realized by means of liquid (or electrolyte) infiltration; mass transfer can be realized between the solid electrolyte and the cathode by spraying the cathode active material mixed with the binder on the solid electrolyte. At this time, the solid electrolyte and the electrode have a non-integrated structure.
  • a solid-state energy storage device comprising an electrode B and the above-mentioned integrated solid-state electrolyte-electrode material, the electrode B and the integrated solid-state electrolyte-electrode material in the Electrode A constitutes an electrode pair.
  • the electrode B and the electrode A in the integrated solid electrolyte-electrode material form an electrode pair; any one of the electrode B and the electrode A is a cathode, and the other is an anode.
  • electrode B is lithium metal or a corresponding compound as the anode
  • electrode A is carbon nanotubes grown on nickel foam as the cathode.
  • the anode can be one of metal sodium, magnesium, calcium, potassium, etc. corresponding to the mobile cation species in the molecular sieve channels, and the electrode A is the cathode.
  • electrode B is a mixture of aluminum foil sprayed with acetylene black, lithium cobalt oxide and a binder as a cathode; electrode A is a graphite composite material as an anode.
  • the molecular sieve-based solid electrolyte in the present invention has high ionic conductivity, low electronic conductivity, good chemical and electrochemical stability and mechanical strength, and solves the problems of insufficient compatibility between the existing solid electrolyte and electrode interface, electronic conductivity High, chemical and electrochemical stability is poor, lack of flexibility, high cost problems.
  • the integrated design of the molecular sieve membrane solid-state electrolyte and the electrode material constructs a low-impedance, highly stable solid-state electrolyte-electrode interface.
  • the solid-state energy storage device has high safety and superior electrochemical performance, which is superior to other solid-state energy storage systems, and opens up a new direction for the design and development of new solid-state energy storage systems.
  • the solid-state energy storage device designed in the present invention can have an ultra-thin shape, excellent flexibility, and take into account the production requirements of environmental friendliness, low cost, and simple process, thereby expanding the application prospect of the solid-state energy storage system.
  • Fig. 1 is the electrochemical impedance spectrogram of molecular sieve membrane solid electrolyte in Example 1 of the present invention
  • Fig. 2 is the electronic conductivity diagram of molecular sieve membrane solid electrolyte in the embodiment of the present invention 1;
  • Fig. 3 is the electrochemical window test diagram of the solid electrolyte in Example 1 of the present invention.
  • Example 4 is a TEM image of the integrated solid electrolyte-cathode in Example 1 of the present invention.
  • Example 5 is a cross-sectional SEM image of the solid electrolyte and the anode in Example 1 of the present invention
  • Example 6 is a cycle curve of a solid-state lithium-air battery and a lithium-air battery containing an organic electrolyte after acupuncture test in Example 1 of the present invention
  • Example 7 is a capacity test diagram of a solid-state lithium-air battery in Example 1 of the present invention.
  • FIG. 8 is a comparison diagram of the test performance of the constant-current capacity-limited charge-discharge test of the solid-state lithium-air batteries in Embodiments 1 and 2 of the present invention.
  • Fig. 9 is a cycle performance comparison diagram of a solid-state lithium-air battery in Example 1 of the present invention, a solid-state lithium-air battery using LAGP as a solid-state electrolyte, and a lithium-air battery containing an organic electrolyte;
  • FIG. 10 is a test diagram of constant current and voltage limiting charging and discharging in Example 3 of the present invention
  • FIG. 11 is a test diagram of constant current and voltage limiting charging and discharging in Example 4 of the present invention
  • Example 12 is a photo showing the appearance of the ultra-thin, flexible, integrated solid-state battery of Example 1 of the present invention.
  • the chemical vapor deposition method grows nitrogen-doped nanotubes in situ on a stainless steel mesh (refer to CN106953101A) as a cathode.
  • the above-mentioned integrated solid electrolyte-cathode material is used to assemble the battery, and molten lithium is cast on one side of the molecular sieve membrane, which is directly used as the anode after cooling.
  • the integrated solid electrolyte-electrode material and the preparation method of the battery are integrated solid electrolyte-electrode material and the preparation method of the battery:
  • Figure 5 SEM obtained by JEOL JSM-7800F electron microscope.
  • the cathode was prepared by using Shanghai Sinopharm melamine (C 3 N 3 (NH 2 ) 3 ), stainless steel mesh from Changzhou Hangshuo Mesh Co., Ltd. 3-methylimidazoline bis(trifluoromethylsulfonyl)imide ([C 2 C 1 im][NTf 2 ]) was used to prepare ionic liquids.
  • Molecular sieves were prepared from Tianjin Guangfu sodium silicate (Na 2 SiO 3 ⁇ 9H 2 O), Shanghai Sinopharm sodium aluminate (Al 2 O 3 , 41%) and Shanghai Sinopharm sodium hydroxide.
  • Tianjin Guangfu (anhydrous) lithium chloride was used to prepare an aqueous solution for ion exchange (LiCl or LiCl ⁇ H 2 O) of molecular sieve membranes.
  • Nitrogen-doped nanotubes are grown in situ on the stainless steel mesh in step 1 by chemical vapor deposition as a cathode.
  • step 4 Disperse the molecular sieve crystals obtained in step 3 in secondary water to make a dispersion (0.1 g mL -1 ), then block the B side of the cathode in step 2, apply the dispersion lightly on the A side, and place the crystal
  • the pretreated samples were successively heated at 60°C and 200°C for 1 h and cooled to room temperature.
  • step 3 prepare the molecular sieve crystallization solution in the same steps, put it into a stainless steel autoclave together with the sample in step 4, heat at 95 ° C for 4 hours, and ultrasonically wash the obtained product (ie molecular sieve membrane-cathode material), 60 ° C Dry for 12h.
  • the sample is an ultra-thin, flexible, integrated solid-state battery, and its appearance display photo is shown in Figure 12.
  • the nitrogen-doped nanotubes were grown in situ on a 1000 mesh 304 sheet stainless steel mesh by chemical vapor deposition as a cathode.
  • the seed crystal was synthesized by hydrothermal method, and its molar composition was 4Na 2 O : Al 2 O 3 : 2.8SiO 2 : 152H 2 O.
  • the precursor was prepared according to the above molar composition, then transferred to a 50 mL PTFE-lined stainless steel autoclave, heated at 75 °C for 5 h, then heated at 95 °C for 3 h, washed by centrifugation, and dried at 60 °C for 12 h to obtain molecular sieve seeds. Store in a desiccator.
  • step 4 Disperse the molecular sieve crystals obtained in step 3 in secondary water to make a dispersion (0.1 g mL -1 ), then block the 500-mesh stainless steel mesh B side in step 4, and apply the dispersion on side A lightly
  • the pretreated samples were heated at 60 °C and 200 °C for 1 h in turn, and cooled to room temperature.
  • step 3 prepare molecular sieve crystallization solution in the same steps, put it into a stainless steel autoclave together with the sample in step 4, heat at 95°C for 4h, ultrasonically wash the obtained product, and dry at 60°C for 12h.
  • step 7 Assemble a 2025 button cell with the above solid electrolyte material, cast molten lithium on one side of the molecular sieve membrane, and directly use it as an anode after cooling; in step 2, the cathode is placed on the B side of the stainless steel mesh.
  • sample 2# A non-integrated solid-state lithium-air battery with a molecular sieve membrane as the solid-state electrolyte was obtained, denoted as sample 2#.
  • the seed crystal was synthesized by hydrothermal method, and its molar composition was 4Na 2 O:Al 2 O 3 : 2.8SiO 2 : 152H 2 O.
  • the precursor was prepared according to the above molar composition, and then transferred to 50 mL of polytetrafluoroethylene-lined stainless steel Autoclave, heated at 75°C for 5h, then heated at 95°C for 3h, centrifugally washed, and dried at 60°C for 12h to obtain molecular sieve seeds, which were stored in a desiccator.
  • step 3 Disperse the molecular sieve crystals obtained in step 1 in secondary water to make a dispersion (0.1 g mL -1 ), then block the B side of the anode in step 2, apply the dispersion lightly on the A side, and place the crystals on the A side.
  • the pretreated samples were successively heated at 60°C and 200°C for 1 h and cooled to room temperature.
  • step 1 prepare a molecular sieve crystallization solution in the same steps, put it into a stainless steel autoclave together with the sample in step 3, heat at 95°C for 4 hours, and ultrasonically wash the obtained product (ie, molecular sieve membrane-anode material) at 60°C Dry for 12h.
  • a lithium ion battery is assembled using the above-mentioned integrated solid electrolyte-anode material. Assemble a 2032 coin cell using a lithium-ion battery cathode that matches the lithium-ion battery anode in step 2. An integrated solid-state lithium-ion battery with a molecular sieve membrane as the solid-state electrolyte was obtained, which was designated as sample 3#.
  • the seed crystal was synthesized by hydrothermal method, and its molar composition was 4Na 2 O:Al 2 O 3 : 2.8SiO 2 : 152H 2 O.
  • the precursor was prepared according to the above molar composition, and then transferred to 50 mL of polytetrafluoroethylene-lined stainless steel Autoclave, heated at 75°C for 5h, then heated at 95°C for 3h, centrifugally washed, and dried at 60°C for 12h to obtain molecular sieve seeds, which were stored in a desiccator.
  • step 3 Disperse the molecular sieve crystals obtained in step 2 in secondary water to make a dispersion (0.1 g mL -1 ), then block the 500-mesh stainless steel mesh B side in step 3, and apply the dispersion on side A lightly
  • the pretreated samples were heated at 60 °C and 200 °C for 1 h in turn, and cooled to room temperature.
  • step 2 prepare the molecular sieve crystallization solution in the same steps, put it into a stainless steel autoclave together with the sample in step 3, heat at 95 °C for 4 hours, ultrasonically wash the obtained product, and dry it at 60 °C for 12 hours to obtain molecular sieve membrane sodium Ionic solid electrolyte.
  • a solid-state sodium-ion half-cell is assembled using the above-mentioned sodium-ion solid-state electrolyte.
  • a 2032 coin cell was assembled using sodium metal as the anode and Na 3 V 2 (PO 4 ) 3 /C as the cathode.
  • a non-integrated solid-state sodium-ion half-cell with molecular sieve membrane as solid-state electrolyte was obtained, which was designated as sample 4#.
  • Nitrogen-doped nanotubes are grown in situ on the stainless steel mesh in step 1 by chemical vapor deposition as a cathode.
  • the seed crystal was synthesized by hydrothermal method, and its molar composition was 4Na 2 O:Al 2 O 3 : 2.8SiO 2 : 200H 2 O.
  • the precursor was prepared according to the above molar composition, and then transferred to 50 mL of polytetrafluoroethylene-lined stainless steel Autoclave, heated at 75°C for 5h, then heated at 95°C for 3h, centrifugally washed, and dried at 60°C for 12h to obtain molecular sieve seeds, which were stored in a desiccator.
  • step 4 Disperse the molecular sieve seeds obtained in step 3 in secondary water to make a dispersion (0.1 g mL -1 ), then block the B side, apply the dispersion lightly on the A side, and pre-treat the seeds.
  • the samples were successively heated at 60 °C and 200 °C for 1 h and cooled to room temperature.
  • step 3 prepare a molecular sieve crystallization solution in the same steps, put it into a stainless steel autoclave together with the sample in step 4, heat at 95 °C for 4 hours, ultrasonically wash the obtained product, and dry it at 60 °C for 12 hours to obtain an integrated solid electrolyte. - Cathode material.
  • Electrochemical impedance tests were performed on the molecular sieve membrane solid electrolytes in Examples 1 to 5. Taking Example 1 as a typical representative, the test results are shown in Figure 1.
  • the ionic conductivity of the molecular sieve membrane is 2.7 ⁇ 10 -4 S cm -1 after fitting with the Zview software and calculating according to the above formula, indicating that the solid electrolyte of the molecular sieve membrane has a relatively high ionic conductivity. Ideal ionic conductivity.
  • the test results of Examples 2 to 3 are similar to the results of Example 1.
  • Example 1 Electron conductivity tests were performed on the molecular sieve membrane solid electrolytes in Examples 1 to 5. Taking Example 1 as a typical representative, the test results are shown in Figure 2. The electronic conductivity of the molecular sieve membrane is 1.5 ⁇ 10 -10 S cm -1 , indicating that the solid electrolyte of the molecular sieve membrane has good insulation and can fundamentally prevent the anode The metal nucleates and grows inside the solid electrolyte, forming dendrites. The test results of Examples 2 to 3 are similar to the results of Example 1.
  • Electrochemical window tests were performed on the molecular sieve membrane solid-state electrolytes in Examples 1 to 5 and the commercial solid-state electrolyte LAGP. Taking Example 1 as a typical representative, the test results are shown in Figure 3.
  • the electrochemical window of the molecular sieve membrane is 0-6.7V, while the electrochemical window of the commercial solid-state electrolyte LAGP is 1.5-3.6V.
  • the wide electrochemical window of the molecular sieve membrane solid electrolyte shows that it has good electrochemical stability, can not undergo redox reactions in a wide potential range, is highly stable to metal anodes, and can match the range of cathodes and energy storage systems. larger, expanding the application prospects of solid-state electrolytes.
  • the test results of Examples 2 to 3 are similar to the results of Example 1.
  • Example 1 The SEM test was carried out on the solid electrolyte-anode interface in Examples 1, 2, 4, and 5, with Example 1 as a typical representative, and the test results are shown in FIG. 5 .
  • Example 1 The 1# sample solid-state lithium-air battery obtained in Example 1 and the lithium-air battery containing the organic electrolyte were subjected to acupuncture experiments and then the cycle performance comparison test was carried out. The test results are shown in Figure 6.
  • the 1# sample solid-state lithium-air battery can still be charged and discharged normally after being punctured, and the lithium-air battery containing organic electrolyte has been completely damaged, and the charge and discharge process cannot be performed, indicating that the 1# sample solid-state lithium Air batteries have good safety and environmental adaptability.
  • the 1# sample integrated solid-state lithium-air battery obtained in Example 1 was subjected to a capacity test at a current density of 500 mA g ⁇ 1 , and the test results are shown in FIG. 7 .
  • the reversible specific capacity of the solid-state lithium-air battery is as high as 12,020 mAh g -1 .
  • Example 1 The 1# sample integrated solid-state lithium-air battery obtained in Example 1 and the 2# sample non-integrated solid-state lithium-air battery obtained in Example 2 were subjected to constant-current-limited charge-discharge tests for comparison, as shown in FIG. 8 .
  • the 1# sample solid-state lithium-air battery in Example 1 was tested for cycle performance under the conditions of a current density of 500mA g -1 , a limited capacity of 1000mAh g -1 , and a cut-off discharge voltage of 2V, and compared with the lithium-air battery containing organic electrolyte. , compared with solid-state lithium-air batteries using commercial solid-state electrolyte LAGP, and the test results are shown in Figure 9.
  • the solid-state lithium-air battery can run stably for 209 times in the air, and its cycle performance is far superior to that of the lithium-air battery with organic electrolyte (102 times) and the solid-state lithium-air battery using commercial solid-state electrolyte LAGP. battery (13 times), indicating that the synthesis strategy of using molecular sieve membrane as solid electrolyte and synthesizing integrated solid electrolyte-electrode material is very effective.
  • Example 3 The sample 3# obtained in Example 3 was subjected to a constant current charge-discharge test with a current of 8 mA in the voltage range of 2.5-4.35V, as shown in FIG. 10 .
  • the molecular sieve membrane prepared in Example 3 can be used as a solid electrolyte to make the lithium ion solid state battery operate normally.
  • a constant current charge-discharge test was performed on the sample 4# obtained in Example 4 at a voltage range of 3-0.01V at a current density of 160mA g -1 , as shown in FIG. 11 .
  • the molecular sieve membrane in Example 4 can be used as a solid electrolyte to make the sodium ion solid state half-cell operate normally.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本申请公开了一种分子筛基固态电解质以及制备方法、一体化固态电解质-电极材料。该分子筛基固态电解质包括分子筛膜或者分子筛片;分子筛孔道中存在可移动的阳离子。本申请基于分子筛基固态电解质,设计一种超薄、柔性、一体化、高度安全、长循环寿命的固态储能器件。

Description

分子筛基固态电解质以及制备方法、一体化固态电解质-电极材料 技术领域
本申请涉及一种分子筛基固态电解质以及制备方法、一体化固态电解质-电极材料和固态储能器件,属于电池电解质技术领域。
背景技术
目前,应用于便携式电子设备、电动汽车、智能电网的商业化储能体系多采用液态有机电解质。然而,采用液态有机电解质的储能体系易发生短路、漏液,进而引发燃烧、爆炸等安全事故。
为了解决液态有机电解质储能体系的问题,开发以固态电解质为核心元件的固态储能体系势在必行。固态电解质不仅需要具备良好的化学、电化学稳定性以及较高的机械强度,而且需要具有优越的离子电导率以及理想的界面相容性以满足固态储能器件对于电化学性能的要求。同时,固态电解质应该具有较低的电子电导率,避免电化学过程中金属阳极元素在电解质内部成核并形成枝晶,穿透固态电解质导致电池短路。另外,金属空气电池等敞开式储能体系对于固态电解质提出了更高的要求。相比于其他封闭体系(如锂离子电池、钠硫电池等),固态金属-空气电池的电解质还应:①对于空气组分(氧气、水、二氧化碳等)高度稳定,以满足电池在空气中运行的要求;②具有较高的抗氧化性,以抵抗氧还原中间体的腐蚀。
目前,较为常见的无机固态电解质一般都具有较为良好安全性、机械强度以及离子电导率,但其较差的稳定性严重影响了该类材料的实际应用。例如,石榴石型固态电解质对水和二氧化碳等敏感;钙钛矿型固态电解质自身稳定性较差,且对空气、金属阳极等敏感;NASICON型固态电解质对金属阳极敏感;硫化物固态电解质对水和氧气等敏感。此外,目前固态电解质一般采用高温固相合成工艺制备,晶粒界面以及电解质与阴阳极界面的阻抗较大。虽然目前在改善固态电解质界面相容性和稳定性方面取得了较大进展,但基于现有固态电解质的固态储能体系仍然远远不能满足实际生产与应用的需要。同时,现有无机固态电解质制备成本高、工艺复杂、柔性差等缺陷也大大限制了固态储能器件的大规模生产及应用。
综上所述,开发新一类性能优异、成本低廉、可加工性强的固态电解质及固态储能器件以满足多种固态储能体系的需求,对于能源存储领域的变革具有重大意义。
发明内容
根据本申请的一个方面,提供了一种分子筛基固态电解质,以分子筛膜作为固态电解质,设计一种超薄、柔性、一体化、高度安全的固态电池。
一种分子筛基固态电解质,所述分子筛基固态电解质包括分子筛膜或者分子筛片;分子筛孔道中存在可移动的阳离子。
本申请中,分子筛孔道中存在的可移动的阳离子是与最终组装的储能器件的种类相匹配的。例如,可移动的阳离子为Li离子,即可组装固态锂电池等。
可选地,所述分子筛膜或者分子筛片中的分子筛为硅铝分子筛。
采用硅铝分子筛,其孔道内部可移动的阳离子与其他分子筛相比含量较高,制备所述固态电解质的离子传导性较为优越。
可选地,所述硅铝分子筛中的硅铝比为0.9~5;其中,所述硅铝比为Si/Al摩尔比。
所述分子筛硅铝比越低,其孔道内部可移动的阳离子含量越高,即载流子浓度越大,有利于离子传输过程。
可选地,硅铝分子筛的类型包含但不限于A,X,Y,ZSM-5等。
可选地,所述阳离子包含但不限于Li离子、Na离子、Mg离子、Ca离子、K离子、Zn离子、质子中的任一种。不同类型的阳离子对应不同类型的电池。
阳离子为Li离子时,可以为固态锂电池。具体地,本申请中的固态锂电池是指载流子为锂离子的固态电池,例如固态锂硫电池、固态锂-空气电池、固态锂-氧气电池、固态锂-二氧化碳电池、固态锂离子电池、固态锂金属电池等等。
阳离子为Na离子时,可以为固态钠电池。
阳离子为Mg离子时,可以为固态镁电池。
阳离子为Ca离子时,可以为固态钙电池。
阳离子为K离子时,可以为固态钾电池。
阳离子为Zn离子时,可以为固态锌电池。
阳离子为质子时,可以为固态燃料电池。
本申请中,固态钠电池、固态镁电池、固态钙电池、固态钾电池、固态锌电池均与固态锂电池类似,此处不再赘述。
可选地,所述分子筛基固态电解质还包括基底;所述分子筛膜生长在所述基底上。
本申请中的基底满足对生长分子筛膜的过程稳定即可,不做严格限定。
可选地,所述基底包括碳基多孔材料、金属网、金属泡沫、聚合物膜中的任一种。
例如,金属网包括但不限于铜网、镍网、不锈钢网中的任一种;
又例如,金属泡沫包括但不限于泡沫镍、泡沫铜中的任一种;
再例如,全碳基载体。
根据本申请的第二方面,还提供了上述分子筛基固态电解质的制备方法,通过施加压力将分子筛制成分子筛片;或者,
通过原位生长的方法得到所述分子筛膜,所述原位生长的方法包括晶种辅助法、干胶转化法、微波法、电泳沉积法。
可选地,在基底上原位生长分子筛,即可得到所述分子筛基固态电解质。
根据本申请的第三方面,还提供了一种一体化固态电解质-电极材料,包括电极A和分子筛膜;所述分子筛膜原位生长在所述电极A上;分子筛孔道中存在可移动的阳离子;所述电极A可以为阴极或阳极;电极A对生长分子筛膜的过程稳定。
可选地,所述电极A为阳极;所述分子筛膜原位生长在所述阳极上;所述阳极对生长分子筛膜的过程稳定。
所述分子筛膜作为固态电解质原位生长在所述阳极上,能够使固态电解质与阳极接触紧密,利于界面处的传质,储能器件整体的阻抗也会减小,同时,也会提升机械强度。
本申请中,对阳极的具体类型不做限定,只要对生长分子筛膜的过程稳定即可。
可选地,所述电极A为阴极,所述分子筛膜原位生长在所述阴极上;所述阴极对生长分子筛膜的过程稳定。
所述分子筛膜作为固态电解质原位生长在所述阴极上,能够使固态电解质与阴极接触紧密,利于界面处的传质,储能器件整体的阻抗也会减小,同时,也会提升机械强度。
本申请中,对阴极的具体类型不做限定,只要对生长分子筛膜的过程稳定即可。
可选地,阴极包括集流体和阴极活性物质。阴极活性物质喷涂或原位生长在集流体上。
可选地,所述阴极活性物质为碳纳米管,石墨烯,贵金属,过渡金属氧化物。
碳纳米管作为一种常见的阴极活性物质,能量密度高,对生长分子筛膜的过程稳定。
优选地,所述阴极活性物质为氮掺杂碳纳米管。
氮掺杂可以调控碳纳米管的电子结构及表面性质,进而提升碳纳米管的电催化活性、润湿性及供电子能力。
可选地,所述分子筛膜在所述电极A上的负载量为0.1~5mg cm -2
分子筛膜在能够保证完全覆盖阴极的前提下厚度越低,载流子迁移路径越短、晶界阻抗越小、越有利于传质。
根据本申请的第四方面,还提供了所述一体化固态电解质-电极材料的制备方法,在电极A上原位生长分子筛膜作为固态电解质,即可得到所述一体化固态电解质-电极材料。
所述原位生长的方法包括晶种辅助法、干胶转化法、微波法、电泳沉积法。
所述制备方法包括:
S100、采用对生长分子筛膜过程稳定的电极;
S200、获得含有分子筛晶种的分散液;
S300、将所述分散液涂覆至所述电极的表面,进一步在表面上原位生长分子筛,得到分子筛膜-电极材料;
根据实际需要,选择是否进行步骤S400;
S400、对所述分子筛膜-电极材料进行离子交换,使分子筛孔道中存在所述可移动的阳离子,即可得到所述一体化固态电解质-电极材料。
本申请中,“实际需求”是指“哪一种电池”(例如,固态锂电池,固态钠电池等),若需要固态钠电池,则不需要进行离子交换(即步骤S400)。
可选地,在步骤S200中,所述分子筛晶种的制备方法采用以下步骤:
按照晶种的摩尔比组成(1-5)Na 2O:Al 2O 3:(1-10)SiO 2:(130-1000)H 2O,配制分子筛晶化液,合成分子筛晶种。
具体地,按照晶种的摩尔比组成配制分子筛晶化液。然后转移到50mL聚四氟乙烯衬里不锈钢高压釜,60~80℃加热5h,然后90~100℃加热3h。离心洗涤,50~70℃干燥12~24h后,得到分子筛晶种放入干燥器中保存,得到分子筛晶种。
可选地,步骤S200中,将得到的分子筛晶种分散在二次水中制备成所述含有分子筛晶种分散液。
可选地,步骤S200中,在分散液中,分子筛晶种的含量为0.04~0.2g mL -1
可选地,在步骤S300中,所述在电极表面上原位生长分子筛包括:将表面涂覆有分子筛晶种分散液的阴极依次在30~95℃下加热0.5~5h、在150~200℃下加热0.5~2h。
分子筛晶种分散液涂覆至基底使晶种粘附的过程属于结合力较弱的物理吸附,分步加热过程的目的在于先温和地去除晶种分散液中的液相组分,防止液相挥发造成已经吸附的晶种脱附,再通过较高温度增强晶种与基底的结合力,在后续分子筛膜生长过程提供成核位点。
具体地,在步骤S300中,所述在电极表面上原位生长分子筛包括:
S300-1、将表面涂覆有分散液的阴极依次在50~80℃下加热1~2h、在170~200℃下加热1~2h,得到晶种预处理样品;
S300-2、配制分子筛晶化液;
S300-3、将晶种预处理样品与分子筛晶化液一起放入不锈钢高压釜,水热条件下生长分子筛膜。
具体地,步骤S300-2中的分子筛晶化液与分子筛晶种制备过程中的分子筛晶化液的配制方式相同,此处不再赘述。
可选地,步骤S300-3中,水热合成分子筛膜的条件为:90~100℃,3~5h。
在一个具体的示例中,所述制备方法包括:
S100-1、阴极活性物质原位生长在所述集流体上,得到阴极;
S200-1、获得含有分子筛晶种的分散液;
S300-1、将所述分散液涂敷至所述阴极的表面,在表面上原位生长分子筛,得到分子筛膜-阴极材料;
根据实际需要,选择是否进行步骤S400-1;
S400-1、对所述分子筛膜-阴极材料进行离子交换,使分子筛孔道中存在所述可移动的阳离子,即可得到所述一体化固态电解质-阴极材料。
可选地,集流体包括但不限于金属网、金属泡沫中的任一种。具体金属网、金属泡沫的选择与上述基底类似,此处不再赘述。
本申请中,步骤S100-1中,阴极活性物质原位生长在所述集流体上,得到阴极,可以采用现有技术中的方法。例如,采用化学气相沉积法使氮掺杂的纳米管原位生长于不锈钢网。
根据本申请的第五方面,还提供了一种固态储能器件,包括阴极、阳极及位于所述阴极和阳极之间的固态电解质,
所述固态电解质为上述所述的分子筛基固态电解质。
具体地,当分子筛基固态电解质为分子筛片时,阴极可以为碳纳米管、石墨烯、过度金属氧化物等,阳极可以为锂、钠、钾、石墨复合材料等,分子筛片与阳极之间通过包括但不限于将金属阳极加热至熔点以上后浇铸于固态电解质上成型,或采用具有离子传导能力的粘性物质过渡(如聚合物固态电解质),或极少量离子液体(或电解液)浸润等方式实现传质;分子筛片与阴极之间可通过将阴极活性物质混合粘结剂一起喷在固态电解质上实现传质。此时,固态电解质与电极为非一体结构。
当分子筛基固态电解质由基底和分子筛膜组成时,阴极可以为碳纳米管、石墨烯、过度金属氧化物等,阳极可以为锂、钠、钾、石墨复合材料等,固态电解质(即附着有分子筛膜的基底)与阳极之间通过包括但不限于将金属阳极加热至熔点以上后浇铸于固态电解质上成型,或采用具有离子传导能力的粘性物质过渡(如聚合物固态电解质),或极少量离子液体(或电解液)浸润等方式实现传质;固态电解质与阴极之间可以通过将阴极活性物质混合粘结剂一起喷在固态电解质上实现传质。此时,固态电解质与电极为非一体结构。
根据本申请的第六方面,还提供了一种固态储能器件,包括电极B及上述所述的一体化固态电解质-电极材料,所述电极B与所述一体化固态电解质-电极材料中的电极A组成电极对。
具体地,所述电极B与所述一体化固态电解质-电极材料中的电极A组成电极对;所述电极B和电极A,其中任意一个为阴极,另一个为阳极。
在一个可能的示例中(固态锂空气电池),电极B为金属锂或相应化合物,作为阳极;电极A为泡沫镍上生长碳纳米管,作为阴极。
在另一些可能的示例中,阳极可以为与分子筛孔道中可移动阳离子种类相对应的金属钠、镁、钙、钾等中的一种,电极A为阴极。
又或者其他可能的示例中(固态锂离子电池),电极B为铝箔喷涂乙炔黑、钴酸锂与粘结剂的混合物,作为阴极;电极A为石墨复合类材料,作为阳极。
本申请能产生的有益效果包括:
1)本发明中的分子筛基固态电解质,具有高离子电导率、低电子电导和良好的化学及电化学稳定性以及机械强度,解决了现有固态电解质与电极界面相容性不足、电子电导率较高、化学及电化学稳定性较差、缺乏柔韧性、成本高等难题。
2)本发明中的固态储能器件中,分子筛膜固态电解质与电极材料的一体化设计,构筑了低阻抗、高度稳定的固态电解质-电极界面。该固态储能器件的安全性高、电化学性能优越,优于其他固态储能体系,为新型固态储能体系的设计与开发开辟了新的方向。
3)本发明设计的固态储能器件可具有超薄外形、优良柔性,并兼顾环境友好、成本低廉、工艺简单的生产需求,拓展了固态储能体系的应用前景。
附图说明
图1为本发明实施例1中分子筛膜固态电解质的电化学阻抗谱图;
图2为本发明实施例1中分子筛膜固态电解质的电子电导率图;
图3为本发明实施例1中固态电解质的电化学窗口测试图;
图4为本发明实施例1一体化固态电解质-阴极的TEM图;
图5为本发明实施例1固态电解质与阳极的截面SEM图;
图6为本发明实施例1固态锂空气电池和含有机电解液的锂空气电池经针刺测试后的循环曲线;
图7为本发明实施例1固态锂空气电池容量测试图;
图8为本发明实施例1、2固态锂空气电池恒流限容充放电测试性能对比图;
图9为本发明实施例1固态锂空气电池、以LAGP作为固态电解质的固态锂空气电池和含有机电解液的锂空气电池循环性能对比图;
图10为本发明实施例3恒流限压充放电测试图
图11为本发明实施例4恒流限压充放电测试图
图12为本发明实施例1超薄、柔性、一体化固态电池的外观展示照片。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
如无特别说明,本申请的实施例中的原料均通过商业途径购买。
本申请设计了一类新型的高度稳定的、电化学性能优异的固态电解质、一体化固态电解质-电极材料及固态储能器件。
在一个可能的示例中,一体化固态电解质-电极材料的制备方法:
1.化学气相沉积法使氮掺杂的纳米管原位生长于不锈钢网(参考CN106953101A),作为阴极。
2.在阴极单面(A面)涂抹晶种分散液,遮挡另一面(B面),在A面生长分子筛膜。
3.采用无机锂盐溶液进行离子交换,将分子筛孔道中的阳离子交换为锂离子,获得一体化固态电解质-阴极材料。
4.采用上述一体化固态电解质-阴极材料组装电池,在分子筛膜一侧铸熔融锂,冷却后直接作为阳极。
5.取极少量含0.5M双三氟甲烷磺酰亚胺锂的离子液体均匀涂抹在阴极一侧,使离 子液体在碳纳米管表面分散均匀。
在另一个可能的示例中,一体化固态电解质-电极材料以及电池的制备方法:
1.获得锂离子电池石墨阳极。
2.A面涂抹粒径晶种分散液,通过遮挡B面,在A面水热生长分子筛膜,使分子筛负载量为0.5~2mg cm -2
3.采用无机锂盐溶液进行离子交换,将分子筛孔道中的阳离子全部交换为锂离子,获得一体化固态电解质-阳极材料。
4.采用适当阴极与上述一体化固态电解质-阳极材料匹配,组装固态锂离子电池。
本申请中,图1电化学阻抗谱在CHI660E电化学工作站进行。
图2电子电导率在英国输力强1287电化学工作站进行。
图3电化学窗口在CHI660E电化学工作站进行。
图4 TEM图由JEM-2200FS电子显微镜获得。
图5 SEM由JEOL JSM-7800F电子显微镜获得。
图6~图11电化学性能测试在蓝电CT2001A多通道电池测试系统完成。
电导率计算公式:σ=d/(R×S)
采用上海国药三聚氰胺(C 3N 3(NH 2) 3),常州航硕网材有限公司不锈钢网制备阴极,采用阿拉丁试剂厂双三氟甲基磺酰亚胺锂(LiTFSI)和1-乙基-3-甲基咪唑啉双(三氟甲基磺酰基)亚胺([C 2C 1im][NTf 2])配制离子液体。
采用天津光复硅酸钠(Na 2SiO 3·9H 2O),上海国药铝酸钠(Al 2O 3,41%),上海国药氢氧化钠制备分子筛。采用天津光复(无水)氯化锂配制水溶液用于分子筛膜的离子交换(LiCl或LiCl·H 2O)。
实施例1 1#样品(以分子筛膜作为固态电解质的一体化固态锂空气电池)的制备
1.依次用洗涤剂、二次水、无水乙醇超声清洗1000目304席型不锈钢网,去除表面污渍与油脂,60℃干燥3h。
2.化学气相沉积法使氮掺杂的纳米管原位生长于步骤1中的不锈钢网上,作为阴极。
3.水热法合成晶种,其摩尔组成为4Na 2O:Al 2O 3:2.8SiO 2:152H 2O,首先,按上述摩尔组成配制前驱体,然后转移到50mL聚四氟乙烯衬里不锈钢高压釜,75℃加热5h,然后95℃加热3h,离心洗涤,60℃干燥12h后,得到分子筛晶种,放入干燥器 中保存。
4.将步骤3中得到的分子筛晶种分散在二次水中制成分散液(0.1g mL -1),然后遮挡步骤2中阴极B面,将分散液轻轻涂抹在A面上,将晶种预处理后的样品在60℃和200℃下依次加热1h,冷却至室温。
5.按照步骤3中摩尔组成以相同步骤配制分子筛晶化液,和步骤4中样品一起放进不锈钢高压釜,95℃加热4h,将所得产品(即分子筛膜-阴极材料)超声洗涤,60℃烘干12h。
6.对步骤5中的样品使用氯化锂溶液进行离子交换,60℃水浴间断慢速搅拌,每6h更换一次氯化锂溶液,重复5次以上(溶液浓度依次为0.5mol L -1,1mol L -1,1mol L -1,2mol L -1,2mol L -1,最后2~3次交换的氯化锂溶液可以重复使用),将分子筛孔道中的阳离子全部交换为锂离子,获得一体化固态电解质-阴极材料(即一体化固态电解质-电极材料)。
8.采用上述一体化固态电解质-阴极材料组装电池,在分子筛膜一侧铸熔融锂,冷却后直接作为阳极,得到以分子筛膜作为固态电解质的固态锂空气电池,记作样品1#。
该样品为超薄、柔性、一体化固态电池,其外观展示照片如图12所示。
实施例2 2#样品(以分子筛膜作为固态电解质的非一体化固态锂空气电池)的制备
1.依次用洗涤剂、二次水、无水乙醇超声清洗500目316L型不锈钢网与1000目304席型不锈钢网,去除表面污渍与油脂,60℃干燥3h。
2.化学气相沉积法使氮掺杂的纳米管原位生长于1000目304席型不锈钢网,作为阴极。
3.水热法合成晶种,其摩尔组成为4Na 2O:Al 2O 3:2.8SiO 2:152H 2O。首先,按上述摩尔组成配制前驱体,然后转移到50mL聚四氟乙烯衬里不锈钢高压釜中,75℃加热5h,然后95℃加热3h,离心洗涤,60℃干燥12h后,得到分子筛晶种,放入干燥器中保存。
4.将步骤3中得到的分子筛晶种分散在二次水中制成分散液(0.1g mL -1),然后遮挡步骤4中的500目不锈钢网B面,将分散液轻轻涂抹在A面上,将晶种预处理后的样品依次在60℃和200℃下加热1h,冷却至室温。
5.按照步骤3中摩尔组成以相同步骤配制分子筛晶化液,和步骤4中样品一起放进不锈钢高压釜,95℃加热4h,将所得产品超声洗涤,60℃烘干12h。
6.对步骤5中的样品使用氯化锂溶液进行离子交换,60℃水浴间断慢速搅拌,每6h更换一次氯化锂溶液,重复5次以上(浓度依次为0.5mol L -1,1mol L -1,1mol L -1,2mol L -1,2mol L -1,最后2-3次交换的氯化锂溶液可以重复使用),将分子筛孔道中的阳离子全部交换为锂离子,获得分子筛膜固态电解质材料。
7.将上述固态电解质材料组装2025扣式电池,在分子筛膜一侧铸熔融锂,冷却后直接作为阳极;步骤2中阴极置于不锈钢网B面一侧。
8.取5μL含0.5M双三氟甲烷磺酰亚胺锂的离子液体均匀涂抹在阴极一侧,将电池置于真空中保持30min,使离子液体在碳纳米管表面形成均匀薄层液膜,得到以分子筛膜作为固态电解质的非一体化固态锂空气电池,记作样品2#。
实施例3 3#样品(以分子筛膜作为固态电解质的一体化固态锂离子电池)的制备
1.水热法合成晶种,其摩尔组成为4Na 2O:Al 2O 3:2.8SiO 2:152H 2O,首先,按上述摩尔组成配制前驱体,然后转移到50mL聚四氟乙烯衬里不锈钢高压釜,75℃加热5h,然后95℃加热3h,离心洗涤,60℃干燥12h后,得到分子筛晶种,放入干燥器中保存。
2.获得锂离子电池石墨阳极。
3.将步骤1中得到的分子筛晶种分散在二次水中制成分散液(0.1g mL -1),然后遮挡步骤2中阳极B面,将分散液轻轻涂抹在A面上,将晶种预处理后的样品在60℃和200℃下依次加热1h,冷却至室温。
4.按照步骤1中摩尔组成以相同步骤配制分子筛晶化液,和步骤3中样品一起放进不锈钢高压釜,95℃加热4h,将所得产品(即分子筛膜-阳极材料)超声洗涤,60℃烘干12h。
5.对步骤4中的样品使用氯化锂溶液进行离子交换,60℃水浴间断慢速搅拌,每6h更换一次氯化锂溶液,重复5次以上(溶液浓度依次为0.5mol L -1,1mol L -1,1mol L -1,2mol L -1,2mol L -1,最后2~3次交换的氯化锂溶液可以重复使用),将分子筛孔道中的阳离子全部交换为锂离子,获得一体化固态电解质-阳极材料(即一体化固态电解质-电极材料)。
6.采用上述一体化固态电解质-阳极材料组装锂离子电池。采用与步骤2中锂离子电池阳极匹配的锂离子电池阴极,组装2032扣式电池。得到以分子筛膜作为固态电解质一体化固态锂离子电池,记作样品3#。
实施例4 4#样品(以分子筛膜作为固态电解质的非一体化固态钠离子半电池)的制备
1.依次用洗涤剂、二次水、无水乙醇超声清洗500目316L型不锈钢网,去除表面污渍与油脂,60℃干燥3h。
2.水热法合成晶种,其摩尔组成为4Na 2O:Al 2O 3:2.8SiO 2:152H 2O,首先,按上述摩尔组成配制前驱体,然后转移到50mL聚四氟乙烯衬里不锈钢高压釜,75℃加热5h,然后95℃加热3h,离心洗涤,60℃干燥12h后,得到分子筛晶种,放入干燥器中保存。
3.将步骤2中得到的分子筛晶种分散在二次水中制成分散液(0.1g mL -1),然后遮挡步骤3中的500目不锈钢网B面,将分散液轻轻涂抹在A面上,将晶种预处理后的样品依次在60℃和200℃下加热1h,冷却至室温。
4.按照步骤2中摩尔组成以相同步骤配制分子筛晶化液,和步骤3中样品一起放进不锈钢高压釜,95℃加热4h,将所得产品超声洗涤,60℃烘干12h,获得分子筛膜钠离子固态电解质。
5.采用上述钠离子固态电解质组装固态钠离子半电池。采用金属钠作为阳极,Na 3V 2(PO 4) 3/C作为阴极,组装2032扣式电池。得到以分子筛膜作为固态电解质的非一体化固态钠离子半电池,记作样品4#。
实施例5 5#样品(以分子筛膜作为固态电解质的一体化固态钠空气电池)的制备
1.依次用洗涤剂、二次水、无水乙醇超声清洗1000目304席型不锈钢网,去除表面污渍与油脂,60℃干燥3h。
2.化学气相沉积法使氮掺杂的纳米管原位生长于步骤1中的不锈钢网上,作为阴极。
3.水热法合成晶种,其摩尔组成为4Na 2O:Al 2O 3:2.8SiO 2:200H 2O,首先,按上述摩尔组成配制前驱体,然后转移到50mL聚四氟乙烯衬里不锈钢高压釜,75℃加热5h,然后95℃加热3h,离心洗涤,60℃干燥12h后,得到分子筛晶种,放入干燥器中保存。
4.将步骤3中得到的分子筛晶种分散在二次水中制成分散液(0.1g mL -1),然后遮挡B面,将分散液轻轻涂抹在A面上,将晶种预处理后的样品依次在60℃和200℃下加热1h,冷却至室温。
5.按照步骤3中摩尔组成以相同步骤配制分子筛晶化液,和步骤4中样品一起放进不锈钢高压釜,95℃加热4h,所得产品超声洗涤,60℃烘干12h,获得一体化固态电解质-阴极材料。
6.采用上述一体化固态电解质-阴极材料组装电池,在分子筛膜一侧铸熔融钠,冷却后直接作为阳极,得到以分子筛膜作为固态电解质的固态钠空气电池,记作样品5#。
实施例6 分子筛膜固态电解质材料的表征测试
对实施例1至5中的分子筛膜固态电解质进行电化学阻抗测试。以实施例1为典型代表测试结果如图1所示,经Zview软件拟合并按照上述公式计算获得分子筛膜的离子电导率为2.7×10 -4S cm -1,说明分子筛膜固态电解质具有较理想的离子传导能力。实施例2至3的测试结果与实施例1结果类似。
对实施例1至5中的分子筛膜固态电解质进行电子电导率测试。以实施例1为典型代表,测试结果如图2所示,分子筛膜的电子电导率为1.5×10 -10S cm -1,说明分子筛膜固态电解质具有良好的绝缘性,能够从根本上防止阳极金属在固态电解质内部中成核与生长,形成枝晶。实施例2至3的测试结果与实施例1结果类似。
对实施例1至5中的分子筛膜固态电解质和商用固态电解质LAGP进行电化学窗口测试。以实施例1为典型代表,测试结果如图3所示,分子筛膜的电化学窗口为0~6.7V,而商用固态电解质LAGP的电化学窗口为1.5~3.6V。分子筛膜固态电解质宽的电化学窗口表明其具有良好的电化学稳定性,能够在宽的电位范围内不发生氧化还原反应,对金属阳极高度稳定,并且,能够与其匹配的正极和储能体系范围更大,扩展了固态电解质的应用前景。实施例2至3的测试结果与实施例1结果类似。
实施例7 一体化固态电解质-电极材料界面的形貌测试
对实施例1、5中得到的一体化固态电解质-阴极材料进行TEM测试,以实施例1为典型代表,测试结果如图4所示。
由图4可以看出,碳纳米管外观完整,分子筛生长在碳纳米管上形成一体化结构,有利于传质并有效提升机械强度。
对实施例1、2、4、5中固态电解质-阳极处界面进行SEM测试,以实施例1为典型代表,测试结果如图5所示。
由图5可以看出,分子筛膜与金属锂阳极结合紧密,接触良好,具有理想的界面结构。
实施例8 电池安全性测试
分别对实施例1得到的1#样品固态锂空气电池与含有机电解液的锂空气电池进行针刺实验后进行循环性能对比测试,测试结果如图6所示。
由图6可以看出,1#样品固态锂空气电池经刺穿后仍能正常进行充放电过程,含有机电解液的锂空气电池已完全损坏,无法进行充放电过程,说明1#样品固态锂空气电池具有良好的安全性和环境适应性。
实施例9 固态电池性能测试
对实施例1中得到的1#样品一体化固态锂空气电池以500mA g -1电流密度进行容量测试,测试结果如图7所示。
由图7可以看出,该固态锂空气电池的可逆比容量高达12,020mAh g -1
对实施例1中得到的1#样品一体化固态锂空气电池以及实施例2中得到的2#样品非一体化固态锂空气电池进行恒流限容充放电测试对比,如图8所示。
由图8可以看出,该1#样品一体化固态锂空气电池的过电势较小,电池的可逆性由明显优于2#样品非一体化固态锂空气电池,说明一体化固态电解质-电极材料的合成策略能够有效提升固态电解质与电极材料的界面相容性,进而优化电化学性能。
对实施例1中的1#样品固态锂空气电池以500mA g -1电流密度、1000mAh g -1限容、截止放电电压为2V的条件进行循环性能测试,并与含有机电解液的锂空气电池、采用商用固态电解质LAGP的固态锂空气电池对比,测试结果如图9所示。
由图9可以看出,该固态锂空气电池可以在空气中稳定运行209次,其循环性能远远优于含有机电解液的锂空气电池(102次)和采用商用固态电解质LAGP的固态锂空气电池(13次),说明以分子筛膜作为固态电解质并合成一体化固态电解质-电极材料的合成策略是十分有效的。
对实施例3中得到的样品3#在2.5-4.35V电压区间内,以8mA电流进行恒流充放电测试,如图10所示。
由图10可以看出,实施例3中制备的分子筛膜可以作为固态电解质使锂离子固态电池正常运行。
对实施例4中得到的对样品4#在3-0.01V电压区间内,以160mA g -1电流密度进行恒流充放电测试,如图11所示。
由图11可以看出,实施例4中分子筛膜可以作为固态电解质使钠离子固态半电池正常运行。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (19)

  1. 一种分子筛基固态电解质,其特征在于,所述分子筛基固态电解质包括分子筛膜或者分子筛片;
    在分子筛孔道中存在可移动的阳离子。
  2. 根据权利要求1所述的分子筛基固态电解质,其特征在于,所述分子筛膜或者分子筛片中的分子筛为硅铝分子筛。
  3. 根据权利要求2所述的分子筛基固态电解质,其特征在于,所述硅铝分子筛中的硅铝比为0.9~5;
    其中,所述硅铝比为Si/Al摩尔比。
  4. 根据权利要求1所述的分子筛基固态电解质,其特征在于,所述阳离子包括Li离子、Na离子、Mg离子、Ca离子、K离子、Zn离子、质子中的任一种。
  5. 根据权利要求1所述的分子筛基固态电解质,其特征在于,所述分子筛基固态电解质还包括基底;
    所述分子筛膜生长在所述基底上。
  6. 根据权利要求5所述的分子筛基固态电解质,其特征在于,所述基底包括碳基多孔材料、金属网、金属泡沫、聚合物膜中的任一种。
  7. 权利要求1所述的分子筛基固态电解质的制备方法,其特征在于,
    所述分子筛基固态电解质的制备方法包括:
    通过施加压力将分子筛制备成分子筛片;或者
    通过原位生长的方法得到所述分子筛膜。
  8. 根据权利要求7所述的制备方法,其特征在于,在基底上原位生长分子筛,即可得到所述分子筛基固态电解质。
  9. 一种一体化固态电解质-电极材料,其特征在于,包括电极A和分子筛膜;
    所述分子筛膜原位生长在所述电极A上;
    分子筛孔道中存在可移动的阳离子;
    所述电极A为阴极或阳极;
    电极A对生长分子筛膜的过程稳定。
  10. 根据权利要求9所述的一体化固态电解质-电极材料,其特征在于,所述电极A为阳极;
    所述分子筛膜原位生长在所述阳极上;
    所述阳极对生长分子筛膜的过程稳定。
  11. 根据权利要求9所述的一体化固态电解质-电极材料,其特征在于,所述电极A为阴极;
    所述分子筛膜原位生长在所述阴极上;
    所述阴极对生长分子筛膜的过程稳定。
  12. 根据权利要求9所述的一体化固态电解质-电极材料,其特征在于,所述分子筛膜在所述电极A上的负载量为0.1~5mg cm -2
  13. 权利要求9至12任一项所述的一体化固态电解质-电极材料的制备方法,其特征在于,在电极A上原位生长分子筛膜,即可得到所述一体化固态电解质-电极材料。
  14. 根据权利要求13所述的制备方法,其特征在于,所述制备方法包括:
    S100、获得对生长分子筛膜稳定的电极;
    S200、获得含有分子筛晶种的分散液;
    S300、将所述分散液涂覆至所述电极的表面,进一步在表面上原位生长分子筛,得到分子筛膜-电极材料;
    根据实际需要,选择是否进行步骤S400;
    S400、对所述分子筛膜-电极材料进行离子交换,使分子筛孔道中存在所述可移动的阳离子,即可得到所述一体化固态电解质-电极材料。
  15. 根据权利要求14所述的制备方法,其特征在于,在步骤S200中,所述分子筛晶种的制备方法至少采用以下步骤:
    按照晶种的摩尔比组成(1-5)Na 2O:Al 2O 3:(1-10)SiO 2:(130-1000)H 2O,配制分子筛晶化液,合成分子筛晶种。
  16. 根据权利要求14所述的制备方法,其特征在于,在步骤S300中,所述在表面上原位生长分子筛包括:
    将表面涂覆有分子筛晶种分散液的电极依次在30~95℃下加热0.5~5h、在150~200℃下加热0.5~2h。
  17. 根据权利要求14所述的制备方法,其特征在于,所述制备方法包括:
    S100-1、阴极活性物质原位生长在所述集流体上,得到阴极;
    S200-1、获得含有分子筛晶种的分散液;
    S300-1、将所述分散液涂敷至所述阴极的表面,在表面上原位生长分子筛,得到分子筛膜-阴极材料;
    根据实际需要,选择是否进行步骤S400-1;
    S400-1、对所述分子筛膜-阴极材料进行离子交换,使分子筛孔道中存在所述可移动的阳离子,即可得到一体化固态电解质-阴极材料。
  18. 一种固态储能器件,其特征在于,包括阴极、阳极及位于所述阴极和阳极之间的固态电解质;
    所述固态电解质为权利要求1至6任一项所述的分子筛基固态电解质。
  19. 一种固态储能器件,其特征在于,包括电极B及权利要求9所述的一体化固态电解质-电极材料;
    所述电极B与所述一体化固态电解质-电极材料中的电极A组成电极对;
    所述电极B与所述一体化固态电解质-电极材料中的分子筛膜一侧相接。
PCT/CN2021/070936 2021-01-08 2021-01-08 分子筛基固态电解质以及制备方法、一体化固态电解质-电极材料 WO2022147784A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/070936 WO2022147784A1 (zh) 2021-01-08 2021-01-08 分子筛基固态电解质以及制备方法、一体化固态电解质-电极材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/070936 WO2022147784A1 (zh) 2021-01-08 2021-01-08 分子筛基固态电解质以及制备方法、一体化固态电解质-电极材料

Publications (1)

Publication Number Publication Date
WO2022147784A1 true WO2022147784A1 (zh) 2022-07-14

Family

ID=82357585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070936 WO2022147784A1 (zh) 2021-01-08 2021-01-08 分子筛基固态电解质以及制备方法、一体化固态电解质-电极材料

Country Status (1)

Country Link
WO (1) WO2022147784A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103035920A (zh) * 2011-09-30 2013-04-10 深圳市比克电池有限公司 一种锂离子电池及其制备方法
JP2015174816A (ja) * 2014-03-18 2015-10-05 日本碍子株式会社 Liゼオライト膜、板状物及びLiゼオライト膜を生産する方法
CN111755743A (zh) * 2020-06-10 2020-10-09 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) 复合固态电解质的制备方法、复合固态电解质、复合固态电池的制备方法以及复合固态电池
CN111755742A (zh) * 2020-06-10 2020-10-09 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) 固态电解质的制备方法、固态电解质、全电池的制备方法和全电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103035920A (zh) * 2011-09-30 2013-04-10 深圳市比克电池有限公司 一种锂离子电池及其制备方法
JP2015174816A (ja) * 2014-03-18 2015-10-05 日本碍子株式会社 Liゼオライト膜、板状物及びLiゼオライト膜を生産する方法
CN111755743A (zh) * 2020-06-10 2020-10-09 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) 复合固态电解质的制备方法、复合固态电解质、复合固态电池的制备方法以及复合固态电池
CN111755742A (zh) * 2020-06-10 2020-10-09 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) 固态电解质的制备方法、固态电解质、全电池的制备方法和全电池

Similar Documents

Publication Publication Date Title
Wu et al. Rocking-chair Na-ion hybrid capacitor: a high energy/power system based on Na 3 V 2 O 2 (PO 4) 2 F@ PEDOT core–shell nanorods
CN102479949B (zh) 一种锂离子电池的负极活性材料及其制备方法以及一种锂离子电池
CN108539171B (zh) 一种硫化锌与氧化石墨烯复合物的制备方法及其在锂硫电池正极材料中的应用
CN106450195B (zh) 一种锂硫电池用正极材料及其制备方法和含有该正极材料的锂硫电池
CN102394305B (zh) 一种泡沫铜氧化物/铜锂离子电池负极及其制备方法
CN107425185B (zh) 一种碳纳米管负载的碳化钼材料的制备方法及其在锂硫电池正极材料中的应用
CN112864456B (zh) 分子筛基固态电解质以及制备方法、一体化固态电解质-电极材料
CN111403658A (zh) 一种具有电催化功能隔膜的制备方法及其在锂硫电池中的应用
WO2019091067A1 (zh) 一种锂离子电池用氮硫共掺杂碳包覆锡/二硫化钼复合材料及其制备方法
Jiang et al. In situ growth of CuO submicro-sheets on optimized Cu foam to induce uniform Li deposition and stripping for stable Li metal batteries
CN109167035A (zh) 碳包覆的硫化亚铁负极材料、制备方法及其制备的钠离子电池
CN103531817A (zh) 一种锂离子电池用三维铜纳米线阵列集流体及其制备方法
CN111517374B (zh) 一种Fe7S8/C复合材料的制备方法
CN112038626A (zh) 锂离子电池负极用锡碳复合材料及制备方法
CN108258241A (zh) 一种利用zif-8多孔碳材料抑制锂枝晶生长的锂电池负极
CN109449376B (zh) 一种复合锂金属电极及其制备方法
CN109473637B (zh) 一种长循环寿命锂负极的保护方法
Qin et al. Electrochemical performance and Cu2+ modification of nickel metal organic framework derived tellurides for application in aluminum ion batteries
CN115911593A (zh) 一种用于高压的可逆无枝晶的电池及其制备方法和应用
WO2016202276A1 (zh) 正极材料及电池
WO2022147784A1 (zh) 分子筛基固态电解质以及制备方法、一体化固态电解质-电极材料
CN114023948B (zh) 硅碳负极材料及其制备方法、锂离子电池
CN109728298A (zh) 一种硅基高性能动力锂电池组及其制备方法
CN112768663B (zh) 一种纳米多孔硅/碳负极材料及其制备方法、锂离子电池
CN115241435A (zh) 一种层状Na3M2XO6氧化物包覆改性的锰酸钠正极材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21916839

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21916839

Country of ref document: EP

Kind code of ref document: A1