WO2019091067A1 - 一种锂离子电池用氮硫共掺杂碳包覆锡/二硫化钼复合材料及其制备方法 - Google Patents

一种锂离子电池用氮硫共掺杂碳包覆锡/二硫化钼复合材料及其制备方法 Download PDF

Info

Publication number
WO2019091067A1
WO2019091067A1 PCT/CN2018/086105 CN2018086105W WO2019091067A1 WO 2019091067 A1 WO2019091067 A1 WO 2019091067A1 CN 2018086105 W CN2018086105 W CN 2018086105W WO 2019091067 A1 WO2019091067 A1 WO 2019091067A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfur
nitrogen
salt
doped carbon
tin
Prior art date
Application number
PCT/CN2018/086105
Other languages
English (en)
French (fr)
Inventor
何苗
冯叶锋
王成民
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Publication of WO2019091067A1 publication Critical patent/WO2019091067A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of lithium ion batteries, and particularly relates to a nitrogen-sulfur co-doped carbon-coated tin/molybdenum disulfide composite material for a lithium ion battery and a preparation method thereof.
  • Lithium-ion batteries have the advantages of high open circuit voltage, long cycle life, high energy density and no memory effect, making lithium-ion batteries widely used in portable digital products, electric vehicles and energy storage.
  • Due to the shortcomings of low-capacity and low-rate performance of commercial graphite anodes the application of lithium-ion batteries in electric vehicles and large-scale energy storage is limited.
  • improving the specific capacity of lithium ion battery anode materials has become an important research direction of lithium ion batteries.
  • metal tin As a widely studied anode material for lithium ion batteries, metal tin has a theoretical specific capacity of up to 990 mA h g -1 , and the lithium potential of metal tin is about 0.5 V, so metal tin is an ideal lithium ion battery. Anode material. However, due to the excessive expansion of the metal tin during charge and discharge, the metal tin is directly used as the anode material of the lithium ion battery, and the cycle performance and the rate performance are very poor. In order to solve this shortcoming of metal tin anodes, researchers have adopted a number of methods to improve their electrochemical performance. The nanomaterialization of materials, the design of various nanostructures, and the construction of various composite materials have greatly improved the electrochemical performance of metal tin anodes.
  • molybdenum disulfide As a typical graphene-like interlayer transition metal sulfide, molybdenum disulfide has attracted extensive attention in the fields of tribology, energy, electronic devices and optoelectronics due to its unique electrical, thermal and mechanical properties. In recent years, molybdenum disulfide has also attracted the interest of researchers as a negative electrode material for lithium ion batteries. As a negative electrode material for lithium ion batteries, molybdenum disulfide has a theoretical specific capacity of 669 mA h g -1 .
  • molybdenum disulfide itself is poor in electrical conductivity and easy to re-stack, it loses good electrical connection and lithium ion path during the cycle, eventually leading to a rapid decline in capacity during the cycle.
  • the construction of molybdenum disulfide composite is a very effective method.
  • the technical problem to be solved by the present invention is to provide a nitrogen-sulfur co-doped carbon-coated tin/molybdenum disulfide composite material for a lithium ion battery and a preparation method thereof, and the nitrogen-sulfur co-doped carbon package provided by the present invention
  • the Sn/MoS 2 composite has excellent electrochemical performance and exhibits excellent rate performance and cycle stability.
  • the invention provides a preparation method of a nitrogen-sulfur co-doped carbon-coated tin/molybdenum disulfide composite material for a lithium ion battery, comprising the following steps:
  • step D) freezing the mixed solution of step C) and then freeze-drying to obtain a powder material
  • the powder material is sintered and dried under an inert atmosphere to obtain a nitrogen-sulfur co-doped carbon-coated tin/molybdenum disulfide composite material for a lithium ion battery.
  • the tin salt is selected from one or more of tin tetrachloride, stannous sulfate and stannous nitrate, and the concentration of the tin salt in the mixed salt solution is 0.5 to 2 mol/L;
  • the molybdenum salt is selected from one or more of sodium molybdate, potassium molybdate and ammonium molybdate, and the concentration of the molybdenum salt in the mixed salt solution is 0.5 to 2 mol/L;
  • the sulfur source compound is selected from one or more of thiourea, potassium sulfide, sodium sulfide and ammonium sulfide, and the concentration of the sulfur source compound in the mixed salt solution is 0.5 to 2 mol/L;
  • the alkali metal salt is selected from one or more of sodium sulfide, potassium chloride, sodium sulfate and potassium sulfate, and the concentration of the alkali metal salt in the mixed salt solution is 0.5 to 2 mol/L.
  • the organic carbon source is selected from one or more of citric acid, glycine and glucose, and the organic carbon source accounts for 1% by weight to 50% by weight of the total mass of the tin salt and the molybdenum salt.
  • the nitrogen source is selected from the group consisting of melamine and/or hydrazine hydrate, and the nitrogen source is from 1 wt% to 10 wt% of the mass of the organic carbon source;
  • the sulfur source compound is selected from one or more of thiourea, trithiocyanate and thiourea, and the sulfur source is from 1% by weight to 10% by weight based on the mass of the organic carbon source.
  • the heating temperature is 50-80 ° C, the mixing and stirring time is 0.5 to 1 hour; in step C), the heating temperature is 50-80 ° C, the mixing The stirring time is 0.5 to 1 hour.
  • the freezing temperature is -10 ° C to -20 ° C
  • the freezing time is 10 to 24 hours
  • the freeze drying time is 10 to 24 hours.
  • the inert gas condition is a nitrogen atmosphere condition or an argon atmosphere condition.
  • the sintering is: from 1 to 5 ° C / min from 25 ° C to 500 ⁇ 900 ° C for 10 ⁇ 24h.
  • the invention also provides a nitrogen-sulfur co-doped carbon-coated tin/molybdenum disulfide composite material for a lithium ion battery prepared by the above preparation method, wherein the mass fraction of the metal Sn is 90-99%, and the mass of the MoS 2 The fraction is 1 to 10%, and the mass fraction of nitrogen-sulfur co-doped carbon is 1 to 10%.
  • the present invention provides a method for preparing a nitrogen-sulfur co-doped carbon-coated tin/molybdenum disulfide composite material for a lithium ion battery, comprising the following steps: A) tin salt, molybdenum salt, alkali Mixing a metal salt, a sulfur source compound and water to obtain a mixed salt solution; B) mixing and stirring the organic carbon source and the mixed salt solution under heating to obtain a mixed solution; C) combining the nitrogen source and the sulfur source compound The mixed solution in the step B) is mixed and stirred under heating to obtain a mixed solution; D) the mixed solution of the step C) is frozen and then freeze-dried to obtain a powder material; E) the powder material is obtained under an inert atmosphere.
  • the invention combines three kinds of components by synthesizing nitrogen-sulfur co-doped carbon, metal tin (Sn) and molybdenum disulfide (MoS 2 ), and the nitrogen-sulfur co-doped carbon can increase the electronic conductivity of the material and Lithium ion diffusion rate, while inhibiting metal tin (Sn) volume expansion and molybdenum disulfide (MoS 2 ) agglomeration.
  • the prepared nitrogen-sulfur co-doped carbon-coated Sn/MoS 2 composite material has excellent electrochemical performance and exhibits excellent rate performance and cycle stability.
  • the method is simple in process, low in cost and environmentally friendly, and is suitable for large-scale industrial production.
  • Example 1 is an XRD pattern of a nitrogen-sulfur co-doped carbon-coated Sn/MoS 2 composite prepared in Example 1;
  • Example 2 is an SEM image of a nitrogen-sulfur co-doped carbon-coated Sn/MoS 2 composite prepared in Example 1;
  • Example 3 is a cycle curve of a nitrogen-sulfur co-doped carbon-coated Sn/MoS 2 composite prepared in Example 1.
  • the invention provides a preparation method of a nitrogen-sulfur co-doped carbon-coated tin/molybdenum disulfide composite material for a lithium ion battery, comprising the following steps:
  • step C) mixing the nitrogen source and the sulfur source compound with the mixed solution in step B) under heating to obtain a mixed solution
  • step D) freezing the mixed solution of step C) and then freeze-drying to obtain a powder material
  • the powder material is sintered and dried under an inert atmosphere to obtain a nitrogen-sulfur co-doped carbon-coated tin/molybdenum disulfide composite material for a lithium ion battery.
  • the present invention firstly mixes a tin salt, a molybdenum salt, an alkali metal salt, a sulfur source compound, and water to obtain a mixed salt solution.
  • the tin salt is one or more selected from the group consisting of tin tetrachloride, stannous sulfate and stannous nitrate, and the concentration of the tin salt in the mixed salt solution is 0.5 to 2 mol/L, preferably 1.0 to 1.5 mol. /L;
  • the molybdenum salt is selected from one or more of sodium molybdate, potassium molybdate and ammonium molybdate, and the concentration of the molybdenum salt in the mixed salt solution is 0.5 to 2 mol/L, preferably 1.0 to 1.5 mol/L. ;
  • the sulfur source compound is selected from one or more of thiourea, potassium sulfide, sodium sulfide and ammonium sulfide, and the concentration of the sulfur source compound in the mixed salt solution is 0.5 to 2 mol/L, preferably 1.0 to 1.5 mol. /L;
  • the alkali metal salt is selected from one or more of sodium sulfide, potassium chloride, sodium sulfate and potassium sulfate, and the concentration of the alkali metal salt in the mixed salt solution is 0.5 to 2 mol/L, preferably 1.0 to 1.5. Mol/L.
  • the organic carbon source and the mixed salt solution are mixed and stirred under heating to obtain a mixed solution.
  • the organic carbon source it is preferred to add the organic carbon source to the mixed salt solution and mix and stir under heating to obtain a mixed solution.
  • the organic carbon source is one or more selected from the group consisting of citric acid, glycine and glucose, and the organic carbon source comprises from 1% by weight to 50% by weight, preferably 5% by weight, based on the total mass of the tin salt and the molybdenum salt. 45 wt%, more preferably 10 wt% to 40 wt%.
  • the heating temperature is 50 to 80 ° C, preferably 60 to 70 ° C, and the mixing and stirring time is 0.5 to 1 hour.
  • the nitrogen source and the sulfur source compound are mixed with the mixed solution under heating to obtain a mixed solution.
  • a nitrogen source and a sulfur source compound are added to the mixed solution, and the mixture is stirred under heating to obtain a mixed solution.
  • the nitrogen source is selected from the group consisting of melamine and/or hydrazine hydrate, and the nitrogen source is from 1% by weight to 10% by weight, preferably from 3% by weight to 7% by weight, based on the mass of the organic carbon source;
  • the sulfur source compound is selected from one or more of thiourea, trithiocyanate and thiourea, and the sulfur source is 1 wt% to 10 wt%, preferably 3 wt% to 7 wt% of the mass of the organic carbon source. %.
  • the heating temperature is 50 to 80 ° C, preferably 60 to 70 ° C, and the mixing and stirring time is 0.5 to 1 hour.
  • the mixed solution was frozen and then freeze-dried to obtain a powdery material.
  • the freezing temperature is -10 ° C to 20 ° C
  • the freezing time is 10 to 24 hours, preferably 12 to 18 hours, and after freezing, the mixed solution is completely solid.
  • the solid matter is freeze-dried, and the freeze-drying time is 10 to 24 hours, preferably 12 to 18 hours, and after lyophilization, the moisture is completely removed to obtain a powder material.
  • the powder material is sintered and dried under an inert atmosphere to obtain a nitrogen-sulfur co-doped carbon-coated tin/molybdenum disulfide composite material for a lithium ion battery.
  • the inert atmosphere condition is preferably a nitrogen atmosphere condition or an argon atmosphere condition.
  • the specific conditions for the sintering of the powder material are: from 1 to 5 ° C / min from 25 ° C to 500 ⁇ 900 ° C for 10 ⁇ 24h.
  • the heating rate is preferably 2 to 4 ° C / min
  • the sintering temperature is preferably 600 to 800 ° C
  • the heat retention time is preferably 12 to 18 hours.
  • the sintered product was washed after cooling, and the washing liquid used for the washing was deionized water, and the number of washings was completely washed off with an alkali metal salt.
  • the washed product is dried to obtain a nitrogen-sulfur co-doped carbon-coated tin/molybdenum disulfide composite material for a lithium ion battery.
  • the invention also provides a nitrogen-sulfur co-doped carbon-coated tin/molybdenum disulfide composite material for a lithium ion battery prepared by the above preparation method.
  • the mass fraction of the metal Sn is 90% to 99%, preferably 92% to 97%; the mass fraction of MoS 2 is 1% to 10%, preferably 3 wt% to 7 wt%; nitrogen-sulfur co-doped carbon
  • the mass fraction is from 1% to 10%, preferably from 3% to 7% by weight.
  • the mass ratio of nitrogen, sulfur and carbon is (0.5% to 1%): (0.5% to 1%): (98% to 99%).
  • the composite material prepared by the invention is coated with nitrogen-sulfur co-doped carbon on the surface of tin/molybdenum disulfide, and the composite material is a substance having a porous structure.
  • the invention combines three kinds of components by synthesizing nitrogen-sulfur co-doped carbon, metal tin (Sn) and molybdenum disulfide (MoS 2 ), and the nitrogen-sulfur co-doped carbon can increase the electronic conductivity of the material and Lithium ion diffusion rate, while inhibiting metal tin (Sn) volume expansion and molybdenum disulfide (MoS 2 ) agglomeration. Therefore, the prepared nitrogen-sulfur co-doped carbon-coated Sn/MoS 2 composite material has excellent electrochemical performance and exhibits excellent rate performance and cycle stability.
  • the method is simple in process, low in cost and environmentally friendly, and is suitable for large-scale industrial production.
  • the mixed solution obtained in the step 3) was placed in a refrigerator at -20 ° C for 10 h, and after completely solidified, it was freeze-dried for 10 h to completely remove the water.
  • the dried powder material is heated from 25 ° C to 500 ° C for 1 h at 1 ° C / min under argon atmosphere, and naturally cooled to room temperature.
  • the mixture is washed three times with deionized water to completely wash off the alkali salt and dry.
  • a nitrogen-sulfur co-doped carbon-coated Sn/MoS 2 composite material is obtained.
  • the nitrogen-sulfur co-doped carbon-coated Sn/MoS 2 composite obtained in Example 1 was subjected to XRD analysis and SEM analysis, and the results are shown in Fig. 1 and Fig. 2.
  • 1 is an XRD pattern of a nitrogen-sulfur co-doped carbon-coated Sn/MoS 2 composite prepared in Example 1.
  • the XRD pattern shows that the prepared nitrogen-sulfur co-doped carbon-coated Sn/MoS 2 is a composite material. There is no effect on the structure of each other between the three components.
  • the nitrogen-sulfur co-doped carbon coats the Sn/MoS 2 and forms a porous structure.
  • the prepared nitrogen-sulfur co-doped carbon-coated Sn/MoS 2 composite material, acetylene black, and the binder PVDF were dissolved in N-methylpyrrolidone for stirring in the ratio of 8:1:1. .
  • the resulting slurry was coated on an aluminum foil and vacuum dried in vacuum drying for 12 h to obtain a positive electrode sheet.
  • the battery assembly is then carried out in an argon-filled glove box.
  • the positive electrode is a nitrogen-sulfur co-doped carbon-coated Sn/MoS 2 composite material
  • the negative electrode is a lithium plate
  • the separator is a polypropylene
  • the electrolyte is LiPF 6 .
  • the button cell will be assembled for electrochemical performance testing.
  • FIG. 3 is a cycle curve of a nitrogen-sulfur co-doped carbon-coated Sn/MoS 2 composite prepared in Example 1. It can be seen from Fig. 3 that the cyclic curve composite of the nitrogen-sulfur co-doped carbon-coated Sn/MoS 2 composite exhibits good cycle stability, and the capacity retention rate of the cycle of 70 times can reach 95% at 1C rate.
  • the mixed solution obtained in the step 3) was placed in a refrigerator at -20 ° C for 12 h, and after being completely solidified, freeze-dried for 12 h to completely remove the water.
  • the dried powder material is heated from 25 ° C to 600 ° C for 2 h at 2 ° C / min under argon atmosphere, and naturally cooled to room temperature.
  • the mixture is washed three times with deionized water to completely wash off the alkali salt and dry.
  • a nitrogen-sulfur co-doped carbon-coated Sn/MoS 2 composite material is obtained.
  • the prepared nitrogen-sulfur co-doped carbon-coated Sn/MoS 2 composite material, acetylene black, and the binder PVDF were dissolved in N-methylpyrrolidone for stirring in the ratio of 8:1:1. .
  • the resulting slurry was coated on an aluminum foil and vacuum dried in vacuum drying for 12 h to obtain a positive electrode sheet.
  • the battery assembly was carried out in an argon-filled glove box.
  • the positive electrode was a nitrogen-sulfur co-doped carbon-coated Sn/MoS2 composite material
  • the negative electrode was a lithium plate
  • the separator was a polypropylene
  • the electrolyte was LiPF 6 .
  • the electrochemical performance test was carried out at 25 ° C between 0.01 and 2.5 V. The results show that the nitrogen-sulfur co-doped carbon-coated Sn/MoS 2 composite prepared by the implementation of 2 has similar rate performance and cycle stability as in the first embodiment. Sex.
  • the mixed solution obtained in the step 3) was placed in a refrigerator at -20 ° C for freezing for 17 hours. After being completely solidified, it was freeze-dried for 17 hours to completely remove the water.
  • the dried powder material is heated from 25 ° C to 700 ° C for 7 h at 3 ° C / min under argon atmosphere, and naturally cooled to room temperature.
  • the mixture is washed three times with deionized water to completely wash off the alkali salt and dry.
  • a nitrogen-sulfur co-doped carbon-coated Sn/MoS2 composite material was obtained.
  • the prepared nitrogen-sulfur co-doped carbon-coated Sn/MoS 2 composite material, acetylene black, and the binder PVDF were dissolved in N-methylpyrrolidone for stirring in the ratio of 8:1:1. .
  • the resulting slurry was coated on an aluminum foil and vacuum dried in vacuum drying for 12 h to obtain a positive electrode sheet.
  • the battery assembly is then carried out in an argon-filled glove box.
  • the positive electrode is a nitrogen-sulfur co-doped carbon-coated Sn/MoS 2 composite material
  • the negative electrode is a lithium plate
  • the separator is a polypropylene
  • the electrolyte is LiPF 6 .
  • the electrochemical performance test was carried out at 25 ° C between 0.01 and 2.5 V. The results show that the nitrogen-sulfur co-doped carbon-coated Sn/MoS 2 composite prepared by the implementation of 3 has similar rate performance and cycle stability as in the first embodiment. Sex.
  • the mixed solution obtained in the step 3) was placed in a refrigerator at -20 ° C for 20 h, and after being completely solidified, it was freeze-dried for 20 h to completely remove the water.
  • the dried powder material is heated from 25 ° C to 800 ° C for 4 h at 4 ° C / min under argon atmosphere, and naturally cooled to room temperature.
  • the mixture is washed three times with deionized water to completely wash off the alkali salt and dry.
  • a nitrogen-sulfur co-doped carbon-coated Sn/MoS 2 composite material is obtained.
  • the prepared nitrogen-sulfur co-doped carbon-coated Sn/MoS 2 composite material, acetylene black, and the binder PVDF were dissolved in N-methylpyrrolidone for stirring in the ratio of 8:1:1. .
  • the resulting slurry was coated on an aluminum foil and vacuum dried in vacuum drying for 12 h to obtain a positive electrode sheet.
  • the battery assembly is then carried out in an argon-filled glove box.
  • the positive electrode is a nitrogen-sulfur co-doped carbon-coated Sn/MoS 2 composite material
  • the negative electrode is a lithium plate
  • the separator is a polypropylene
  • the electrolyte is LiPF 6 .
  • the electrochemical performance test was carried out at 25 ° C between 0.01 and 2.5 V. The results show that the nitrogen-sulfur co-doped carbon-coated Sn/MoS 2 composite prepared by the implementation of 4 has similar rate performance and cycle stability as in the first embodiment. Sex.
  • the mixed solution obtained in the step 3) was placed in a refrigerator at -20 ° C for freezing for 24 hours. After being completely solidified, it was freeze-dried for 24 hours to completely remove the water.
  • the dried powder material is heated from 25 ° C to 900 ° C for 5 h at 5 ° C / min under argon atmosphere, and naturally cooled to room temperature.
  • the mixture is washed three times with deionized water to completely wash off the alkali salt and dry.
  • a nitrogen-sulfur co-doped carbon-coated Sn/MoS 2 composite material is obtained.
  • the prepared nitrogen-sulfur co-doped carbon-coated Sn/MoS 2 composite material, acetylene black, and the binder PVDF were dissolved in N-methylpyrrolidone for stirring in the ratio of 8:1:1. .
  • the resulting slurry was coated on an aluminum foil and vacuum dried in vacuum drying for 12 h to obtain a positive electrode sheet.
  • the battery assembly was then carried out in an argon-filled glove box.
  • the positive electrode was a nitrogen-sulfur co-doped carbon-coated Sn/MoS 2 composite material
  • the negative electrode was a lithium plate
  • the separator was a polypropylene
  • the electrolyte was LiPF6.
  • the electrochemical performance test was carried out at 25 ° C between 0.01 and 2.5 V. The results show that the nitrogen-sulfur co-doped carbon-coated Sn/MoS 2 composite prepared by the method 5 has similar rate performance and cycle stability as in the first embodiment. Sex.

Abstract

本发明提供了一种锂离子电池用氮硫共掺杂碳包覆锡/二硫化钼复合材料的制备方法。本发明通过将氮硫共掺杂碳,金属锡(Sn)和二硫化钼 (MoS2) 进行复合,三种组分之间产生协同效应,氮硫共掺杂碳能够增加材料电子电导率和锂离子扩散速率,同时抑制了金属锡 (Sn) 体积膨胀和二硫化钼(MoS2) 团聚。因此,所制备氮硫共掺杂碳包覆 Sn/MoS2 复合材料具有优异电化学性能,表现出优异倍率性能和循环稳定性。该方法工艺简单,成本低,环境友好,适用于大规模工业生产。

Description

一种锂离子电池用氮硫共掺杂碳包覆锡/二硫化钼复合材料及其制备方法
本申请要求于2017年11月08日提交中国专利局、申请号为201711089820.2、发明名称为“一种锂离子电池用氮硫共掺杂碳包覆锡/二硫化钼复合材料及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于锂离子电池技术领域,具体涉及一种锂离子电池用氮硫共掺杂碳包覆锡/二硫化钼复合材料及其制备方法。
背景技术
由锂离子电池具有开路电压高、循环寿命长、能量密度高以及无记忆效应等优点,使得锂电子电池在便携数码产品,电动汽车以及储能领域得到广泛的应用。但是由于目前商业化石墨负极存在比容量低和倍率性能差等缺点,限制了锂离子电池在电动汽车及大规模储能领域的应用。为了满足人们对高能量密度锂离子电池的需求,提高锂离子电池负极材料的比容量成为锂离子电池的重要研究方向。
作为一种研究广泛的锂离子电池负极材料,金属锡具有高达990mA h g -1的理论比容量,另外金属锡的脱嵌锂电位在0.5V左右,因此金属锡是一种非常理想的锂离子电池负极材料。但是由于金属锡在充放电过程中体积膨胀过大,使得金属锡直接作为锂离子电池负极材料时,循环性能和倍率性能非常的差。为了解决金属锡负极的这一缺点,研究者采用了非常多的方法来提高其电化学性能。材料纳米化、各种纳米结构的设计以及各种复合材料的构建使得金属锡负极的电化学性能得到了很大的提高。
二硫化钼作为一种典型的类石墨烯层间过渡金属硫化物,以其独特优异的电学、热学、力学等性能,在摩擦学、能源、电子器件和光电等领域受到了广泛关注。近年来,二硫化钼作为锂离子电池负极材料研究也引起了研究者们的兴趣。二硫化钼作为锂离子电池负极材料,容具有669mA h g -1的理论比容量。但是,由于二硫化钼自身导电性差,而且容易重新堆叠,在循环过程中会失去良好的电连接和锂离子通路,最终导致循环过程中容量迅速下降。为了能够很好的解决这一问题,构建二硫化钼复合材料是一种非常有效的方法。
发明内容
有鉴于此,本发明要解决的技术问题在于提供一种锂离子电池用氮硫共掺杂碳包覆锡/二硫化钼复合材料及其制备方法,本发明提供的氮硫共掺杂碳包覆Sn/MoS 2复合材料具有优异电化学性能,表现出优异倍率性能和循环稳定性。
本发明提供了一种锂离子电池用氮硫共掺杂碳包覆锡/二硫化钼复合材料的制备方法,包括以下步骤:
A)将锡盐、钼盐、碱金属盐、硫源化合物和水混合,得到混合盐溶液;
B)将有机碳源与所述混合盐溶液在加热条件下混合搅拌,得到混合溶液;
C)将氮源和硫源化合物与步骤B)中的混合溶液在加热条件下混合搅拌,得到混合溶液;
D)将步骤C)的混合溶液冷冻后再冷冻干燥,得到粉末材料;
E)在惰性气氛条件下,将所述粉末材料烧结后洗涤干燥,得到锂离子电池用氮硫共掺杂碳包覆锡/二硫化钼复合材料。
优选的,步骤A)中,所述锡盐选自四氯化锡、硫酸亚锡和硝酸亚锡中一种或多种,所述混合盐溶液中锡盐的浓度为0.5~2mol/L;
所述钼盐选自钼酸钠,钼酸钾和钼酸铵中的一种或多种,所述混合盐溶液中钼盐的浓度为0.5~2mol/L;
所述硫源化合物选自硫脲,硫化钾,硫化钠和硫化铵中的一种或多种,所述混合盐溶液中硫源化合物的浓度为0.5~2mol/L;
所述碱金属盐选自硫化钠,氯化钾,硫酸钠和硫酸钾中的一种或多种,所述混合盐溶液中碱金属盐的浓度为0.5~2mol/L。
优选的,所述有机碳源选自柠檬酸,甘氨酸和葡萄糖中的一种或多种,所述有机碳源占所述锡盐和钼盐总质量的1wt%~50wt%。
优选的,步骤C)中,所述氮源选自三聚氰胺和/或水合肼,所述氮源为所述有机碳源质量的1wt%~10wt%;
所述硫源化合物选自硫脲,三聚硫氰酸和硫脲中的一种或多种,所述硫源为所述有机碳源质量的1wt%~10wt%。
优选的,步骤B)中,所述加热的温度为50~80℃,所述混合搅拌的时间 为0.5~1小时;步骤C)中,所述加热的温度为50~80℃,所述混合搅拌的时间为0.5~1小时。
优选的,步骤D)中,所述冷冻的温度为-10℃~-20℃,所述冷冻的时间为10~24小时;所述冷冻干燥的时间为10~24小时。
优选的,步骤E)中,所述惰性气体条件为氮气气氛条件或氩气气氛条件。
优选的,所述烧结为:以1~5℃/min从25℃升到500~900℃保温10~24h。
本发明还提供了一种上述制备方法制备得到的锂离子电池用氮硫共掺杂碳包覆锡/二硫化钼复合材料,所述金属Sn的质量分数为90~99%,MoS 2的质量分数为1~10%,氮硫共掺杂碳的质量分数为1~10%。
与现有技术相比,本发明提供了一种锂离子电池用氮硫共掺杂碳包覆锡/二硫化钼复合材料的制备方法,包括以下步骤:A)将锡盐、钼盐、碱金属盐、硫源化合物和水混合,得到混合盐溶液;B)将有机碳源与所述混合盐溶液在加热条件下混合搅拌,得到混合溶液;C)将所述氮源和硫源化合物与步骤B)中的混合溶液在加热条件下混合搅拌,得到混合溶液;D)将步骤C)的混合溶液冷冻后再冷冻干燥,得到粉末材料;E)在惰性气氛条件下,将所述粉末材料烧结后洗涤干燥,得到锂离子电池用氮硫共掺杂碳包覆锡/二硫化钼复合材料。本发明通过将氮硫共掺杂碳,金属锡(Sn)和二硫化钼(MoS 2)进行复合,三种组分之间产生协同效应,氮硫共掺杂碳能够增加材料电子电导率和锂离子扩散速率,同时抑制了金属锡(Sn)体积膨胀和二硫化钼(MoS 2)团聚。因此,所制备氮硫共掺杂碳包覆Sn/MoS 2复合材料具有优异电化学性能,表现出优异倍率性能和循环稳定性。该方法工艺简单,成本低,环境友好,适用于大规模工业生产。
附图说明
图1为实施例1制备的氮硫共掺杂碳包覆Sn/MoS 2复合材料的XRD图;
图2为实施例1制备的氮硫共掺杂碳包覆Sn/MoS 2复合材料的SEM图;
图3为实施例1制备的氮硫共掺杂碳包覆Sn/MoS 2复合材料的循环曲线。
具体实施方式
本发明提供了一种锂离子电池用氮硫共掺杂碳包覆锡/二硫化钼复合材料 的制备方法,包括以下步骤:
A)将锡盐、钼盐、碱金属盐、硫源化合物和水混合,得到混合盐溶液;
B)将有机碳源与所述混合盐溶液在加热条件下混合搅拌,得到混合溶液;
C)将所述氮源和硫源化合物与步骤B)中的混合溶液在加热条件下混合搅拌,得到混合溶液;
D)将步骤C)的混合溶液冷冻后再冷冻干燥,得到粉末材料;
E)在惰性气氛条件下,将所述粉末材料烧结后洗涤干燥,得到锂离子电池用氮硫共掺杂碳包覆锡/二硫化钼复合材料。
本发明首先将锡盐、钼盐、碱金属盐、硫源化合物和水混合,得到混合盐溶液。
其中,所述锡盐选自四氯化锡、硫酸亚锡和硝酸亚锡中一种或多种,所述混合盐溶液中锡盐的浓度为0.5~2mol/L,优选为1.0~1.5mol/L;
所述钼盐选自钼酸钠,钼酸钾和钼酸铵中的一种或多种,所述混合盐溶液中钼盐的浓度为0.5~2mol/L,优选为1.0~1.5mol/L;
所述硫源化合物选自硫脲,硫化钾,硫化钠和硫化铵中的一种或多种,所述混合盐溶液中硫源化合物的浓度为0.5~2mol/L,优选为1.0~1.5mol/L;
所述碱金属盐选自硫化钠,氯化钾,硫酸钠和硫酸钾中的一种或多种,所述混合盐溶液中碱金属盐的浓度为0.5~2mol/L,优选为1.0~1.5mol/L。
得到混合盐溶液后,将所述有机碳源与所述混合盐溶液在加热条件下混合搅拌,得到混合溶液。
在本发明中,优选将所述有机碳源加入至所述混合盐溶液中,在加热条件下混合搅拌,得到混合溶液。
其中,所述有机碳源选自柠檬酸,甘氨酸和葡萄糖中的一种或多种,所述有机碳源占所述锡盐和钼盐总质量的1wt%~50wt%,优选为5wt%~45wt%,更优选为10wt%~40wt%。
所述加热的温度为50~80℃,优选为60~70℃,所述混合搅拌的时间为0.5~1小时。
得到混合溶液后,将氮源和硫源化合物与所述混合溶液在加热条件下混合搅拌,得到混合溶液。
在本发明的一些具体实施方式中,将氮源和硫源化合物加入至所述混合溶液中,在加热条件下混合搅拌,得到混合溶液。
其中,所述氮源选自三聚氰胺和/或水合肼,所述氮源为所述有机碳源质量的1wt%~10wt%,优选为3wt%~7wt%;
所述硫源化合物选自硫脲,三聚硫氰酸和硫脲中的一种或多种,所述硫源为所述有机碳源质量的1wt%~10wt%,优选为3wt%~7wt%。
所述加热的温度为50~80℃,优选为60~70℃,所述混合搅拌的时间为0.5~1小时。
得到混合溶液后,将所述混合溶液冷冻后再冷冻干燥,得到粉末材料。
在本发明中,所述冷冻的温度为-10℃-20℃,所述冷冻的时间为10~24小时,优选为12~18小时,经过冷冻后,混合溶液完全成为固态物质。
接着,将所述固态物质冷冻干燥,所述冷冻干燥的时间为10~24小时,优选为12~18小时,冷冻干燥后,水分完全被去除,得到粉末材料。
在惰性气氛条件下,将所述粉末材料烧结后洗涤干燥,得到锂离子电池用氮硫共掺杂碳包覆锡/二硫化钼复合材料。
其中,所述惰性气氛条件优选为氮气气氛条件或氩气气氛条件。
所述粉末材料进行烧结的具体条件为:以1~5℃/min从25℃升到500~900℃保温10~24h。
所述升温速率优选为2~4℃/min,所述烧结的温度优选为600~800℃,所述保温的时间优选为12~18小时。
将烧结后的产物降温后进行洗涤,所述洗涤所用的洗涤液为去离子水,所述洗涤的次数以碱金属盐被完全洗去为标准。
将洗涤后的产物进行干燥,得到锂离子电池用氮硫共掺杂碳包覆锡/二硫化钼复合材料。
本发明还提供了一种采用上述制备方法制备得到的锂离子电池用氮硫共掺杂碳包覆锡/二硫化钼复合材料。
其中,所述金属Sn的质量分数为90%~99%,优选为92%~97%;MoS 2的质量分数为1%~10%,优选为3wt%~7wt%;氮硫共掺杂碳的质量分数为1%~10%,优选为3wt%~7wt%。
所述氮硫共掺杂碳中,氮、硫和碳的质量比为(0.5%~1%):(0.5%~1%):(98%~99%)。
本发明制备得到的复合材料为氮硫共掺杂碳包覆于锡/二硫化钼表面,所述复合材料为具有多孔结构的物质。
本发明通过将氮硫共掺杂碳,金属锡(Sn)和二硫化钼(MoS 2)进行复合,三种组分之间产生协同效应,氮硫共掺杂碳能够增加材料电子电导率和锂离子扩散速率,同时抑制了金属锡(Sn)体积膨胀和二硫化钼(MoS 2)团聚。因此,所制备氮硫共掺杂碳包覆Sn/MoS 2复合材料具有优异电化学性能,表现出优异倍率性能和循环稳定性。该方法工艺简单,成本低,环境友好,适用于大规模工业生产。
为了进一步理解本发明,下面结合实施例对本发明提供的锂离子电池用氮硫共掺杂碳包覆锡/二硫化钼复合材料及其制备方法进行说明,本发明的保护范围不受以下实施例的限制。
实施例1
1.称取四氯化锡,钼酸铵,氯化钾和硫脲溶解在去离子水中,配制成原料浓度均为0.5mol/L盐溶液;
2.将1g葡萄糖加入步骤1)所得盐溶液中,在50℃下搅拌0.5h,得混合溶液;
3.将0.5g三聚氰胺和0.5g硫脲加入步骤2)所得盐溶液中,在50℃下搅拌0.5h,得混合溶液;
4.将步骤3)所得混合溶液置于-20℃冰箱里进行冷冻10h,待完全凝固后,冷冻干燥10h,使得水份完全去除。
5.干燥后的粉体材料在氩气气氛下以1℃/min从25℃升到500℃保温10h,自然冷却至室温,得到混合物用去离子水洗三次,使得碱盐被完全洗去,干燥,得到氮硫共掺杂碳包覆Sn/MoS 2复合材料。
对实施例1所得的氮硫共掺杂碳包覆Sn/MoS 2复合材料进行XRD分析和SEM分析,结果见图1和图2。图1为实施例1制备的氮硫共掺杂碳包覆Sn/MoS 2复合材料的XRD图,由XRD图可知,所制备的氮硫共掺杂碳包覆Sn/MoS 2是复合材料,三种组分之间不会对彼此结构产生影响。本实施例1氮 硫共掺杂碳包覆Sn/MoS 2复合材料的SEM图,如图2所示,氮硫共掺杂碳包覆Sn/MoS 2,并且形成多孔结构。
将实施例1按照8:1:1的比例将制备好的氮硫共掺杂碳包覆Sn/MoS 2复合材料,乙炔黑,粘结剂PVDF溶解在N-甲基砒咯烷酮进行搅拌。所得的浆料涂覆在铝箔上,并且在真空干燥里真空干燥12h,获得正极片。然后在充满氩气的手套箱中进行电池组装,正极为氮硫共掺杂碳包覆Sn/MoS 2复合材料,负极为锂片,隔膜为聚丙烯,电解液为LiPF 6。将组装好扣式电池进行电化学性能测试。
图3为实施例1制备的氮硫共掺杂碳包覆Sn/MoS 2复合材料的循环曲线。通过图3能够看出氮硫共掺杂碳包覆Sn/MoS 2复合材料的循环曲线复合材料表现较好循环稳定性,在1C倍率下循环70次容量保持率可以达到95%。
实施例2
1.称取硫酸亚锡,钼酸钾,氯化钠和硫化钾溶解在去离子水中,配制成原料浓度均为0.5mol/L盐溶液
2.将2g葡萄糖入步骤1)所得盐溶液中,在70℃下搅拌0.6h,得混合溶液;
3.将1g三聚硫氰酸和1g硫源加入步骤2)所得盐溶液中,在70℃下搅拌0.6h,得混合溶液;
4.将步骤3)所得混合溶液置于-20℃冰箱里进行冷冻12h,待完全凝固后,冷冻干燥12h,使得水份完全去除。
5.干燥后的粉体材料在氩气气氛下以2℃/min从25℃升到600℃保温12h,自然冷却至室温,得到混合物用去离子水洗三次,使得碱盐被完全洗去,干燥,得到氮硫共掺杂碳包覆Sn/MoS 2复合材料。
将实施例2按照8:1:1的比例将制备好的氮硫共掺杂碳包覆Sn/MoS 2复合材料,乙炔黑,粘结剂PVDF溶解在N-甲基砒咯烷酮进行搅拌。所得的浆料涂覆在铝箔上,并且在真空干燥里真空干燥12h,获得正极片。然后在充满氩气的手套箱中进行电池组装,正极为氮硫共掺杂碳包覆Sn/MoS2复合材料,负极为锂片,隔膜为聚丙烯,电解液为LiPF 6。在25℃下,在0.01-2.5V间进行电化学性能测试,结果表明实施2所制备的氮硫共掺杂碳包覆Sn/MoS 2 复合材料具有与实施例1相近的倍率性能和循环稳定性。
实施例3
1.称取硝酸亚锡,钼酸钾,硫酸钠和硫化钾溶解在去离子水中,配制成原料浓度均为1.25mol/L盐溶液
2.将3g甘氨酸加入步骤1)所得盐溶液中,在65℃下搅拌1.25h,得混合溶液;
3.将1.5g水合肼和1.5g硫脲入步骤2)所得盐溶液中,在65℃下搅拌1.25h,得混合溶液;
4.将步骤3)所得混合溶液置于-20℃冰箱里进行冷冻17h,待完全凝固后,冷冻干燥17h,使得水份完全去除。
5.干燥后的粉体材料在氩气气氛下以3℃/min从25℃升到700℃保温17h,自然冷却至室温,得到混合物用去离子水洗三次,使得碱盐被完全洗去,干燥,得到氮硫共掺杂碳包覆Sn/MoS2复合材料。
将实施例3按照8:1:1的比例将制备好的氮硫共掺杂碳包覆Sn/MoS 2复合材料,乙炔黑,粘结剂PVDF溶解在N-甲基砒咯烷酮进行搅拌。所得的浆料涂覆在铝箔上,并且在真空干燥里真空干燥12h,获得正极片。然后在充满氩气的手套箱中进行电池组装,正极为氮硫共掺杂碳包覆Sn/MoS 2复合材料,负极为锂片,隔膜为聚丙烯,电解液为LiPF 6。在25℃下,在0.01-2.5V间进行电化学性能测试,结果表明实施3所制备的氮硫共掺杂碳包覆Sn/MoS 2复合材料具有与实施例1相近的倍率性能和循环稳定性。
实施例4
1.称取硫酸亚锡,钼酸铵,硫酸钾和硫化钾溶解在去离子水中,配制成原料浓度均为1mol/L盐溶液
2.将4g甘氨酸加入步骤1)所得盐溶液中,在70℃下搅拌0.8h,得混合溶液;
3.将2g三聚氰胺和2g硫化钠加入步骤2)所得盐溶液中,在70℃下搅拌0.8h,得混合溶液;
4.将步骤3)所得混合溶液置于-20℃冰箱里进行冷冻20h,待完全凝固后,冷冻干燥20h,使得水份完全去除。
5.干燥后的粉体材料在氩气气氛下以4℃/min从25℃升到800℃保温20h,自然冷却至室温,得到混合物用去离子水洗三次,使得碱盐被完全洗去,干燥,得到氮硫共掺杂碳包覆Sn/MoS 2复合材料。
将实施例4按照8:1:1的比例将制备好的氮硫共掺杂碳包覆Sn/MoS 2复合材料,乙炔黑,粘结剂PVDF溶解在N-甲基砒咯烷酮进行搅拌。所得的浆料涂覆在铝箔上,并且在真空干燥里真空干燥12h,获得正极片。然后在充满氩气的手套箱中进行电池组装,正极为氮硫共掺杂碳包覆Sn/MoS 2复合材料,负极为锂片,隔膜为聚丙烯,电解液为LiPF 6。在25℃下,在0.01~2.5V间进行电化学性能测试,结果表明实施4所制备的氮硫共掺杂碳包覆Sn/MoS 2复合材料具有与实施例1相近的倍率性能和循环稳定性。
实施例5
1.称取四氯化锡,钼酸钾,氯化钾和硫化铵溶解在去离子水中,配制成原料浓度均为2mol/L盐溶液
2.将5g葡萄糖加入步骤1)所得盐溶液中,在80℃下搅拌1h,得混合溶液;
3.将2.5g水合肼和2.5g硫脲加入步骤2)所得盐溶液中,在80℃下搅拌1h,得混合溶液;
4.将步骤3)所得混合溶液置于-20℃冰箱里进行冷冻24h,待完全凝固后,冷冻干燥24h,使得水份完全去除。
5.干燥后的粉体材料在氩气气氛下以5℃/min从25℃升到900℃保温24h,自然冷却至室温,得到混合物用去离子水洗三次,使得碱盐被完全洗去,干燥,得到氮硫共掺杂碳包覆Sn/MoS 2复合材料。
将实施例5按照8:1:1的比例将制备好的氮硫共掺杂碳包覆Sn/MoS 2复合材料,乙炔黑,粘结剂PVDF溶解在N-甲基砒咯烷酮进行搅拌。所得的浆料涂覆在铝箔上,并且在真空干燥里真空干燥12h,获得正极片。然后在充满氩气的手套箱中进行电池组装,正极为氮硫共掺杂碳包覆Sn/MoS 2复合材料,负极为锂片,隔膜为聚丙烯,电解液为LiPF6。在25℃下,在0.01-2.5V间进行电化学性能测试,结果表明实施5所制备的氮硫共掺杂碳包覆Sn/MoS 2复合材料具有与实施例1相近的倍率性能和循环稳定性。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (9)

  1. 一种锂离子电池用氮硫共掺杂碳包覆锡/二硫化钼复合材料的制备方法,其特征在于,包括以下步骤:
    A)将锡盐、钼盐、碱金属盐、硫源化合物和水混合,得到混合盐溶液;
    B)将有机碳源与所述混合盐溶液在加热条件下混合搅拌,得到混合溶液;
    C)将氮源和硫源化合物与步骤B)中的混合溶液在加热条件下混合搅拌,得到混合溶液;
    D)将步骤C)的混合溶液冷冻后再冷冻干燥,得到粉末材料;
    E)在惰性气氛条件下,将所述粉末材料烧结后洗涤干燥,得到锂离子电池用氮硫共掺杂碳包覆锡/二硫化钼复合材料。
  2. 根据权利要求1所述的制备方法,其特征在于,步骤A)中,所述锡盐选自四氯化锡、硫酸亚锡和硝酸亚锡中一种或多种,所述混合盐溶液中锡盐的浓度为0.5~2mol/L;
    所述钼盐选自钼酸钠,钼酸钾和钼酸铵中的一种或多种,所述混合盐溶液中钼盐的浓度为0.5~2mol/L;
    所述硫源化合物选自硫脲,硫化钾,硫化钠和硫化铵中的一种或多种,所述混合盐溶液中硫源化合物的浓度为0.5~2mol/L;
    所述碱金属盐选自硫化钠,氯化钾,硫酸钠和硫酸钾中的一种或多种,所述混合盐溶液中碱金属盐的浓度为0.5~2mol/L。
  3. 根据权利要求1所述的制备方法,其特征在于,所述有机碳源选自柠檬酸,甘氨酸和葡萄糖中的一种或多种,所述有机碳源占所述锡盐和钼盐总质量的1wt%~50wt%。
  4. 根据权利要求1所述的制备方法,其特征在于,步骤C)中,所述氮源选自三聚氰胺和/或水合肼,所述氮源为所述有机碳源质量的1wt%~10wt%;
    所述硫源化合物选自硫脲,三聚硫氰酸和硫脲中的一种或多种,所述硫源为所述有机碳源质量的1wt%~10wt%。
  5. 根据权利要求1所述的制备方法,其特征在于,步骤B)中,所述加热的温度为50~80℃,所述混合搅拌的时间为0.5~1小时;步骤C)中,所述 加热的温度为50~80℃,所述混合搅拌的时间为0.5~1小时。
  6. 根据权利要求1所述的制备方法,其特征在于,步骤D)中,所述冷冻的温度为-10℃~-20℃,所述冷冻的时间为10~24小时;所述冷冻干燥的时间为10~24小时。
  7. 根据权利要求1所述的制备方法,其特征在于,步骤E)中,所述惰性气体条件为氮气气氛条件或氩气气氛条件。
  8. 根据权利要求1所述的制备方法,其特征在于,所述烧结为:以1~5℃/min从25℃升到500~900℃保温10~24h。
  9. 一种如权利要求1~8任意一项所述的制备方法制备得到的锂离子电池用氮硫共掺杂碳包覆锡/二硫化钼复合材料,其特征在于,所述金属Sn的质量分数为90~99%,MoS 2的质量分数为1~10%,氮硫共掺杂碳的质量分数为1~10%。
PCT/CN2018/086105 2017-11-08 2018-05-09 一种锂离子电池用氮硫共掺杂碳包覆锡/二硫化钼复合材料及其制备方法 WO2019091067A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711089820.2 2017-11-08
CN201711089820.2A CN107910517B (zh) 2017-11-08 2017-11-08 一种锂离子电池用氮硫共掺杂碳包覆锡/二硫化钼复合材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2019091067A1 true WO2019091067A1 (zh) 2019-05-16

Family

ID=61843608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086105 WO2019091067A1 (zh) 2017-11-08 2018-05-09 一种锂离子电池用氮硫共掺杂碳包覆锡/二硫化钼复合材料及其制备方法

Country Status (2)

Country Link
CN (1) CN107910517B (zh)
WO (1) WO2019091067A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110371934A (zh) * 2019-06-06 2019-10-25 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种碳基硫硒化钼复合材料的制备方法
CN112408358A (zh) * 2020-11-17 2021-02-26 浙江理工大学 一种氮掺杂碳/硒化钼/石墨烯纳米盒材料、制备方法及应用

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107910517B (zh) * 2017-11-08 2020-08-11 广东工业大学 一种锂离子电池用氮硫共掺杂碳包覆锡/二硫化钼复合材料及其制备方法
CN109004186A (zh) * 2018-06-15 2018-12-14 陕西科技大学 一种多重异原子掺杂三维石墨烯的制备方法
CN109728260A (zh) * 2018-11-28 2019-05-07 广西大学 氮硫掺杂碳包覆的碳化铁复合电极材料的制备方法
CN109560280B (zh) * 2018-12-10 2022-05-20 包头市石墨烯材料研究院有限责任公司 一种纳米锡-二硫化钼复合物负极材料及其制备方法和应用
CN109786691B (zh) * 2018-12-24 2020-10-20 肇庆市华师大光电产业研究院 一种钾离子电池负极材料及其制备方法
CN109873149B (zh) * 2019-03-13 2020-07-03 中国石油大学(华东) 二硫化钼和双碳层共修饰的硫化亚锡纳米球及其制备方法
CN111268671B (zh) * 2020-01-20 2022-05-13 广东工业大学 一种石墨烯负载锡掺杂的二硫化钴复合材料及其制备方法和应用
CN112499631A (zh) * 2020-12-09 2021-03-16 三峡大学 Fe3C/C复合材料及其应用
CN113675382B (zh) * 2021-07-07 2022-11-29 扬州大学 一种Sn/MoS2@C复合材料及其制备方法和应用
CN113725436A (zh) * 2021-08-31 2021-11-30 江苏科技大学 磷基复合材料及制法、钠离子二次电池负极及二次电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140107833A (ko) * 2013-02-28 2014-09-05 한국과학기술원 나트륨 이차전지용 금속산화물이 코팅된 황화 몰리브덴 전극활물질 및 그 제조방법
CN105742602A (zh) * 2016-03-27 2016-07-06 华南理工大学 一种钠离子电池负极用Sn/MoS2/C复合材料及其制备方法
CN106299270A (zh) * 2016-08-22 2017-01-04 天津大学 三维石墨烯网状结构负载氧化锡纳米颗粒和二硫化钼纳米片材料的制备与应用
CN107910517A (zh) * 2017-11-08 2018-04-13 广东工业大学 一种锂离子电池用氮硫共掺杂碳包覆锡/二硫化钼复合材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104399508B (zh) * 2014-11-20 2017-01-18 华南理工大学 一种具有电催化氧还原活性的氮硫共掺杂碳材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140107833A (ko) * 2013-02-28 2014-09-05 한국과학기술원 나트륨 이차전지용 금속산화물이 코팅된 황화 몰리브덴 전극활물질 및 그 제조방법
CN105742602A (zh) * 2016-03-27 2016-07-06 华南理工大学 一种钠离子电池负极用Sn/MoS2/C复合材料及其制备方法
CN106299270A (zh) * 2016-08-22 2017-01-04 天津大学 三维石墨烯网状结构负载氧化锡纳米颗粒和二硫化钼纳米片材料的制备与应用
CN107910517A (zh) * 2017-11-08 2018-04-13 广东工业大学 一种锂离子电池用氮硫共掺杂碳包覆锡/二硫化钼复合材料及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110371934A (zh) * 2019-06-06 2019-10-25 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种碳基硫硒化钼复合材料的制备方法
CN112408358A (zh) * 2020-11-17 2021-02-26 浙江理工大学 一种氮掺杂碳/硒化钼/石墨烯纳米盒材料、制备方法及应用

Also Published As

Publication number Publication date
CN107910517B (zh) 2020-08-11
CN107910517A (zh) 2018-04-13

Similar Documents

Publication Publication Date Title
WO2019091067A1 (zh) 一种锂离子电池用氮硫共掺杂碳包覆锡/二硫化钼复合材料及其制备方法
Yang et al. One dimensional graphene nanoscroll-wrapped MnO nanoparticles for high-performance lithium ion hybrid capacitors
CN102522530B (zh) 一种稀土锂硫电池用纳米硫复合正极材料及其制备方法
Zhang et al. Effect of nanosized Mg0. 8Cu0. 2O on electrochemical properties of Li/S rechargeable batteries
CN111403658A (zh) 一种具有电催化功能隔膜的制备方法及其在锂硫电池中的应用
CN106654221A (zh) 用于锂离子电池负极的三维多孔碳包覆硒化锌材料及其制备方法
CN107069001B (zh) 一种蜂窝状硫化锌/碳复合负极材料及其制备方法
CN106920936B (zh) 一种高性能有机锂离子电池正极材料及其制备方法
CN105355877A (zh) 一种石墨烯-金属氧化物复合负极材料及其制备方法
Li et al. Study of copper foam-supported Sn thin film as a high-capacity anode for lithium-ion batteries
WO2021004150A1 (zh) 一种锂离子电池负极材料SnS/ND-CN的制备方法
CN109585804A (zh) 一种FeSx/C/CNT复合负极材料的制备方法及应用
WO2023151459A1 (zh) 补锂添加剂及其制备方法和应用
CN106450423B (zh) 一种高比能柔性一体化电极及其制备方法
Li et al. Ni-less cathode with 3D free-standing conductive network for planar Na-NiCl2 batteries
CN102969493B (zh) 用于非水二次电池的负极材料的制备方法、非水二次电池负极和非水二次电池
CN104810515A (zh) 一种掺杂钛酸锂负极材料的制备方法
CN107611378A (zh) 一种锌基电池用含氮复合材料及其制备方法
CN108598405B (zh) 一种三维石墨烯氧化锡碳复合负极材料的制备方法
CN108110231B (zh) 一种碳包覆Fe4N纳米复合材料、制备方法及其应用
WO2019104948A1 (zh) 一种钼掺杂改性的锰酸锂复合材料、其制备方法及锂离子电池
WO2023226550A1 (zh) 高导电性磷酸铁锂的制备方法及其应用
Li et al. Chemical presodiation of alloy anodes with improved initial coulombic efficiencies for the advanced sodium-ion batteries
CN109817899B (zh) 一种杂元素掺杂碳纳米管封装金属硫化物复合负极材料的制备方法与应用
CN109244417B (zh) 一种纳米片层状结构锂硫电池复合正极材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875906

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18875906

Country of ref document: EP

Kind code of ref document: A1