CN112499631A - Fe3C/C复合材料及其应用 - Google Patents

Fe3C/C复合材料及其应用 Download PDF

Info

Publication number
CN112499631A
CN112499631A CN202011432356.4A CN202011432356A CN112499631A CN 112499631 A CN112499631 A CN 112499631A CN 202011432356 A CN202011432356 A CN 202011432356A CN 112499631 A CN112499631 A CN 112499631A
Authority
CN
China
Prior art keywords
composite material
nitrogen
sulfur
temperature
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011432356.4A
Other languages
English (en)
Inventor
高林
马腾辉
刘洋
杨学林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Three Gorges University CTGU
Original Assignee
China Three Gorges University CTGU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Three Gorges University CTGU filed Critical China Three Gorges University CTGU
Priority to CN202011432356.4A priority Critical patent/CN112499631A/zh
Publication of CN112499631A publication Critical patent/CN112499631A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/318Preparation characterised by the starting materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明提供的一种Fe3C/C复合材料,具体为氮硫双掺杂碳包覆的Fe3C/C复合材料制备方法,三聚氰胺为氮源,硫脲为硫源,硝酸铁为铁源,葡萄糖为碳源,研磨均匀后干燥,高温碳化分解,获得氮硫共掺杂碳包覆的Fe3C复合材料。经该方法制得的复合材料作为锂离子电池的负极材料,具有优异的循环稳定性、高比容量的特点。这种Fe3C/C复合材料在4 A g‑1电流密度下具有260.9 mAh g‑1比容量,且在1 A g‑1时经循环400圈后仍具有649.5 mA h g‑1的比容量。经筛选,这种Fe3C/C复合材料与商业三元LiNi1/3Co1/3MnO1/3正极材料组装成的全电池在0.2 A g‑1电流密度下经过100圈循环后具有271.1 mAh g‑1比容量,具有优异的电化学性能。

Description

Fe3C/C复合材料及其应用
技术领域
本发明属于锂离子电池负极材料领域,具体涉及一种氮硫共掺杂碳包覆的Fe3C锂离子电池负极材料制备方法及应用。
技术背景
锂离子电池因其高能量密度、优异的循环性能、低污染等优点在生活中得到了广泛应用。然而,随着锂离子电池的应用拓展到电动汽车等领域,人们对其能量密度和功率密度提出了更高的要求。现研发出的新型负极材料主要有碳材料、合金材料、过度金属氧化物/硫化物材料等。在这些负极材料中,碳材料由于资源丰富、价格便宜等优点得到了较大关注。负极材料在循环过程中普遍存在体积效应,这会使纳米颗粒团聚、粉化或者从集流体脱落,进而造成电化学性能衰减。最近研究发现一些催化剂,如Fe、Ni、Fe3C,可催化固体电解质膜的可逆形成与分解,并带来额外容量,对循环性能及倍率性能有较大改善。目前,Fe3C基复合材料的研究主要在传感器、催化剂方面,在锂离子电池方面的研究较少。现有的Fe3C和掺杂碳材料与Fe3C的复合技术制备方法一般较复杂,原料昂贵,不适合工业化生产。
发明内容
本发明的目的在于针对现有的合成工艺,提供制备工艺简单,低耗能、低成本的氮硫共掺杂碳包覆的Fe3C复合材料及其制备方法,适合于大规模工业化生产。经该方法制得的氮硫共掺杂碳包覆的Fe3C复合材料作为锂离子电池的负极材料,具有优异的循环稳定性和高容量的特点。
所述的Fe3C/C复合材料为Fe3C均匀分布并被包裹于N、S共掺杂的无定型碳材料中,Fe3C质量百分比为20-30wt%。
作为实施的优选方案,Fe3C质量百分比为22.6wt%。
本发明还提供一种氮硫共掺杂碳包覆的Fe3C复合材料制备方法,三聚氰胺做为氮源,硫脲为硫源,硝酸铁为铁源,葡萄糖为碳源,研磨均匀后干燥,高温碳化获得氮硫共掺杂Fe3C/C复合材料。
所述Fe3C/C复合材料的制备方法, 包括以下各步骤 :
(1)称取三聚氰胺,硫脲,硝酸铁和葡萄糖,研磨10-30 min;所述硫脲,三聚氰胺,硝酸铁和葡萄糖的质量比为1:0.8-1:1-1.2:2-4,作为优选实施方案包括1:1:1:4、1:1:1:3、1:1:1:2.5、1:1:1:2。
(2)将上述干燥的混合物在N2氛围中,在500-600℃ 煅烧1-2 h,接着在700-900℃煅烧1-2 h;
(3)将产品用去离子水和乙醇冲洗多次,过滤干燥,获得最终产品。
与现有合成技术相比,本发明的有益效果:
(1)原料成本低:本发明利用以三聚氰胺作为氮源,硫脲为硫源,硝酸铁为铁源,葡萄糖为碳源,原料来源丰富、成本低;(2)工艺简单:采用三聚氰胺作为软模板而省去后面的除模板工艺,原料通过混合后干燥,一步高温煅烧获得氮硫共掺杂碳包覆的Fe3C复合材料;(3)本发明获得复合材料是氮硫共掺杂碳材料包裹的Fe3C颗粒形貌,氮硫双掺杂有利于增加碳材料的活性位点及提高电导率,而且Fe3C纳米粒子对SEI膜具有催化作用,使得SEI膜的部分还原产物可逆,提高电化学性能。(4)这种Fe3C/C复合材料与商业LiNi1/3Co1/3MnO1/3组装成的全电池具有优异的电化学性能。
附图说明
图1为实施例1制备的氮硫共掺杂Fe3C/C复合材料的XRD图。
图2为实施例1制备的氮硫共掺杂Fe3C/C复合材料的SEM图。
图3为实施例1制备的氮硫共掺杂Fe3C/C复合材料的C1s高分辨XPS图谱
图4为实施例1制备的氮硫共掺杂Fe3C/C复合材料作为锂离子电池负极材料的倍率性能图。
图5为实施例1制备的氮硫共掺杂Fe3C/C复合材料作为锂离子电池负极材料,在电流密度为1 A g-1时的400次循环性能。
图6为实施例2制备的氮硫共掺杂C材料的SEM图。
图7为实施例2制备的氮硫共掺杂C材料的XRD图。
图8为实施例2制备的氮硫共掺杂C材料的倍率性能图。
图9为实施例2制备的氮硫共掺杂C材料作为锂离子电池负极材料,在电流密度为1A g-1时的600次循环性能。
图10为实施例1制备的氮硫共掺杂Fe3C/C负极材料与商业三元LiNi1/3Co1/3MnO1/3正极材料组装成的锂离子全电池在不同电流密度下的充放电曲线。
图11为实施例1制备的氮硫共掺杂Fe3C/C负极材料与商业三元LiNi1/3Co1/3MnO1/3正极材料组装成的锂离子全电池在电流密度为0.2 A g-1时的循环性能。
具体实施方案
实施例1
称取质量比为1:1:1:2.5的硝酸铁、硫脲、葡萄糖和三聚氰胺在研磨中混合均匀,在研磨过程中不用加入其他溶剂。将在50℃烘干的前驱体转移至坩埚中,置于管式炉中的中心位置,在N2 保护下将前驱体以3℃ min-1从室温升温至550℃煅烧2 h,然后以5℃ min-1在800℃煅烧2 h。待冷却至室温后,将获得的材料用去离子水和乙醇冲洗至中性,然后在80℃ 干燥获得氮硫双掺杂碳包裹的Fe3C复合材料,其中,Fe3C质量百分比为22.6wt%。
从图1中可看出所制备的材料的衍射峰符合Fe3C的标准卡片(JCPDS No . 074-0418),在25℃左右是无定型碳的峰,表明成功合成了氮硫双掺杂碳包裹的Fe3C复合材料。从图2可知,氮硫双掺杂碳包裹的Fe3C复合材料是由片层堆积而成的结构。由图3可知,对Fe3C外包覆的碳材料C1s XPS高分辨图谱进行分峰,分别可以得到C-S和C-N化学键,进一步说明我们成功制备得到了N、S掺杂碳包裹的Fe3C复合材料。对实施例1制备的材料进行电化学性能测试:将活性物质(氮硫共掺杂碳包覆的Fe3C复合材料),乙炔黑,聚偏氟乙烯(PVDF)按质量比8:1:1置于研钵中混合、研磨均匀,然后滴入N-甲基吡咯烷酮溶剂(NMP)研磨至浆状,将其均匀涂于铜箔上,烘干切成圆形的电极片(直径14 mm),而后放入120 ℃的真空干燥箱中干燥12 h。将干燥后的电极片作为正极,金属锂为负极,电解液为LiPF6、/(EC+DMC) (体积比为1:1),隔膜(Celgard 2400),在充满氩气的手套箱中组装CR2025扣式电池。从图4可知,其具有优异的倍率性能,在 4 A g-1电流密度下具有260.9 mAh g-1比容量。从图5可知,在1 A g-1时经循环400圈后仍保持在649.5 mA h g-1,表现出优异的循环稳定性。
实施例2
称取质量比为1:1:2.5的硫脲、葡萄糖和三聚氰胺在研磨中混合均匀,在研磨过程中不用加入其他溶剂。将在50℃烘干的混合物转移到陶坩埚中,置于管式炉中的中心位置,在N2 保护下进行升温反应。将混合物先以3 ℃ min-1从室温升温到550℃煅烧2 h,然后以5℃ min-1在800℃煅烧2 h。待反应冷却到室温后,把获得的材料粉用去离子水和以纯冲洗到中性,80 ℃干燥,获得氮硫共掺杂碳材料。图6为制备得到碳材料的SEM图,与氮硫双掺杂碳包裹的Fe3C复合材料形貌相似,为片层形貌。图7中XRD图为典型的无定型碳材料XRD图谱,说明不加硝酸铁制备得到的材料为无定形碳材料。由图8和图9可知,在1 A g-1时,无定形碳材料倍率性能较差,且经循环600次后容量仅为260 mA h g-1,与图4和图5对比可知,Fe3C对氮硫共掺杂碳材料性能的提升显著。
实施例3
对实施例1制备的材料与三元LiNi1/3Co1/3Mn1/3O2进行全电池组装测试,其中,Fe3C复合材料与三元LiNi1/3Co1/3MnO1/3正极材料的质量比为1:3。正极电极片的制备:将正极材料(LiNi1/3Co1/3Mn1/3O2),乙炔黑和聚偏氟乙烯 (PVDF)按质量比8:1:1置于研钵中混合并研磨均匀,然后滴入N-甲基吡咯烷酮溶剂(NMP)研磨至浆状,将其均匀涂于铝箔上,烘干切成圆形的电极片(直径14 mm),而后放入120 ℃的真空干燥箱中干燥12 h。负极电极片的制备:将负极材料(实施例1制备得到的氮硫共掺杂Fe3C/C复合材料),乙炔黑,聚偏氟乙烯(PVDF)按质量比8:1:1置入研钵中混合、研磨均匀,然后滴入N-甲基吡咯烷酮溶剂(NMP)研磨至浆状,将其均匀涂于铜箔上,烘干切成圆形的电极片(直径14 mm),而后放入120 ℃的真空干燥箱中干燥12 h。负极材料预锂化:先在小电流下充放电三圈。电解液为LiPF6、/(EC+DMC) (体积比为1:1),隔膜(Celgard 2400),在充满氩气的手套箱中组装CR2025扣式电池。从图10和图11可知,组装的全电池在0.2,0.4,0.8和1 A g-1 电流密度下在2.5 V左右具有明显的放电平台。且在电流密度为0.2 A g-1时,经循环140次后仍具有271.1 mA h g-1比容量,具有优异的电化学性能。
实施例4
对实施例1制备的材料与三元LiNi1/3Co1/3Mn1/3O2进行全电池组装测试,其中,Fe3C复合材料与三元LiNi1/3Co1/3MnO1/3正极材料的质量比为1:4。正极电极片的制备:将正极材料(LiNi1/3Co1/3Mn1/3O2),乙炔黑和聚偏氟乙烯 (PVDF)按质量比8:1:1置于研钵中混合并研磨均匀,然后滴入N-甲基吡咯烷酮溶剂(NMP)研磨至浆状,将其均匀涂于铝箔上,烘干切成圆形的电极片(直径14 mm),而后放入120 ℃的真空干燥箱中干燥12 h。负极电极片的制备:将负极材料(实施例1制备得到的氮硫共掺杂Fe3C/C复合材料),乙炔黑,聚偏氟乙烯(PVDF)按质量比8:1:1置入研钵中混合、研磨均匀,然后滴入N-甲基吡咯烷酮溶剂(NMP)研磨至浆状,将其均匀涂于铜箔上,烘干切成圆形的电极片(直径14 mm),而后放入120 ℃的真空干燥箱中干燥12 h。负极材料预锂化:先在小电流下充放电三圈。电解液为LiPF6、/(EC+DMC) (体积比为1:1),隔膜(Celgard 2400),在充满氩气的手套箱中组装CR2025扣式电池。在电流密度为0.2 A g-1时,经循环100次后仍具有160.1 mA h g-1比容量,具有优异的电化学性能。
实施例5
称取质量比为1:1:1:3的硝酸铁、硫脲、葡萄糖和三聚氰胺研磨混合均匀,在研磨过程中不用加入其他溶剂。将在50℃烘干的混合物转移到陶坩埚中,置于管式炉中的中心位置,在N2 保护下进行升温反应。将混合物先以3℃min-1从室温升温到550℃煅烧2 h,然后在以5℃min-1在900℃煅烧2 h。待反应冷却到室温后,把获得的材料粉用去离子水和乙醇冲洗到中性,然后在80℃干燥,获得氮硫共掺杂碳包裹的Fe3C复合材料,Fe3C质量比为21.2%。在1 A g-1时经循环400圈后仍保持在223.5 mA h g-1
实施例6
称取质量比为1:1:1:3的硝酸铁、硫脲、葡萄糖和三聚氰胺研磨混合均匀,在研磨过程中不用加入其他溶剂。将在50℃烘干的混合物转移到陶坩埚中,置于管式炉中的中心位置,在N2 保护下进行升温反应。将混合物先以3℃min-1从室温升温到550℃煅烧2 h,然后在以5℃min-1在800℃煅烧2 h。待反应冷却到室温后,把获得的材料粉用去离子水和乙醇冲洗到中性,80℃干燥,获得氮硫共掺杂碳包裹的Fe3C复合材料。Fe3C质量比为19.5%,在1 Ag-1时经循环400圈后仍保持在300.5 mA h g-1
实施例7
称取质量比为1:1:1:2的硝酸铁、硫脲、葡萄糖和三聚氰胺研磨混合均匀,在研磨过程中不用加入其他溶剂。将在50℃烘干的混合物转移到陶坩埚中,置于管式炉中的中心位置,在N2 保护下进行升温反应。将混合物先以3 ℃ min-1从室温升温到550℃煅烧2 h,然后在以5℃min-1在800℃煅烧2 h。待反应冷却到室温后,把获得的材料粉用去离子水和乙醇冲洗到中性,80 ℃干燥,获得氮硫共掺杂碳包裹的Fe3C复合材料,Fe3C质量比为30.3%。在1A g-1时经循环400圈后仍保持在260.5 mA h g-1
实施例8
称取质量比为1:1:1:2.5硝酸铁、硫脲、葡萄糖和三聚氰胺研磨混合均匀,在研磨过程中不用加入其他溶剂。将在50℃烘干的混合物转移到陶坩埚中,置于管式炉中的中心位置,在N2 保护下进行升温反应。将混合物先以3℃min-1从室温升温到550℃煅烧2h,然后在以5℃ min-1在900℃煅烧2 h。待反应冷却到室温后,把获得的材料粉用去离子水和乙醇纯冲洗到中性,然后在80℃干燥,获得氮硫共掺杂碳包裹的Fe3C复合材料,Fe3C质量比为25.3%。在1 A g-1时经循环400圈后仍保持在320.5 mA h g-1
实施例9
称取质量比为1:1:1:2.5的硝酸铁、硫脲、葡萄糖和三聚氰胺在研磨中混合均匀,在研磨过程中不用加入其他溶剂。将在50℃烘干的混合物转移到陶坩埚中,置于管式炉中的中心位置,在N2 保护下进行升温反应。将混合物先以5℃ min-1从室温升温到800℃煅烧2h。待反应冷却到室温后,把获得的材料粉用去离子水和乙醇冲洗到中性,然后在80℃min-1干燥,获得氮硫双掺杂碳包裹的Fe3C复合材料,Fe3C质量比为20.5%。在1 A g-1时经循环400圈后仍保持在260.5 mA h g-1

Claims (10)

1.一种Fe3C/C复合材料,为氮硫共掺杂碳包覆的Fe3C复合材料,其特征在于,Fe3C均匀分布并被包裹于N、S共掺杂的无定型碳材料中,Fe3C质量百分比为20-30wt%。
2.根据权利要求1所述的Fe3C/C复合材料,其特征在于,Fe3C质量百分比为22.6wt%。
3.根据权利要求1或2所述的Fe3C/C复合材料的制备方法,其特征在于,将硫脲,三聚氰胺,硝酸铁和葡萄糖研磨均匀;其次将研磨均匀的混合物干燥后在氮气保护气氛下进行高温碳化得到氮硫共掺杂碳包覆的Fe3C复合材料,即为Fe3C/C复合材料。
4.根据权利要求3所述的Fe3C/C复合材料的制备方法,其特征在于,所述硫脲,三聚氰胺,硝酸铁和葡萄糖的质量比为1:0.8-1:1-1.2:2-4。
5.根据权利要求4所述的Fe3C/C复合材料的制备方法,其特征在于,所述硫脲,三聚氰胺,硝酸铁和葡萄糖的质量比为1:1:1:4、或1:1:1:3、或1:1:1:2.5、或1:1:1:2。
6.根据权利要求3所述的Fe3C/C复合材料的制备方法,其特征在于,所述复合材料的干燥是在50-80 oC的烘箱中干燥,所述干燥时间为5-24 h,优选在50 oC烘箱中干燥12 h。
7.根据权利要求3所述的Fe3C/C复合材料的制备方法,其特征在于,将干燥后的材料置于N2气气氛管进行程序升温碳化,以5℃min-1的速率升温到700-900℃,在此温度下煅烧1-2h待自然冷却至室温;以3℃ min-1的速率升温到500-600℃并煅烧1-2 h,接着以5℃min-1速率升温至700-900℃煅烧1-2 h,待自然冷却至室温即可。
8.根据权利要求3所述的Fe3C/C复合材料的制备方法,其特征在于,将获得的黑色粉末利用乙醇和去离子水进行清洗,将清洗后的材料于80 oC烘箱干燥3-4 h。
9.权利要求1或2所述的Fe3C复合材料作为负极材料上的应用。
10.根据权利要求9所述的应用,其特征在于,将权利要求1或2所述的Fe3C复合材料与三元LiNi1/3Co1/3MnO1/3正极材料组装成的全电池正负极活性材料上的应用,其中Fe3C复合材料与三元LiNi1/3Co1/3MnO1/3正极材料的质量比为3-4:1。
CN202011432356.4A 2020-12-09 2020-12-09 Fe3C/C复合材料及其应用 Pending CN112499631A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011432356.4A CN112499631A (zh) 2020-12-09 2020-12-09 Fe3C/C复合材料及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011432356.4A CN112499631A (zh) 2020-12-09 2020-12-09 Fe3C/C复合材料及其应用

Publications (1)

Publication Number Publication Date
CN112499631A true CN112499631A (zh) 2021-03-16

Family

ID=74970228

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011432356.4A Pending CN112499631A (zh) 2020-12-09 2020-12-09 Fe3C/C复合材料及其应用

Country Status (1)

Country Link
CN (1) CN112499631A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113070089A (zh) * 2021-04-02 2021-07-06 中国矿业大学 一种氮铁共掺杂碳负载的Ni基催化剂的制备方法和应用
CN113690413A (zh) * 2021-07-09 2021-11-23 郑州大学 一种高效钠离子电池负极碳复合材料的制备方法
US20220376230A1 (en) * 2021-05-10 2022-11-24 Guangdong University Of Technology Fe3C-DOPED GRADED POROUS CARBON POLYMER POTASSIUM ION ANODE MATERIAL, PREPARATION METHOD AND APPLICATION THEREOF

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002170560A (ja) * 2000-09-25 2002-06-14 Sumitomo Metal Ind Ltd 非水系二次電池用負極材料とその製造方法
CN107895778A (zh) * 2017-08-15 2018-04-10 东莞东阳光科研发有限公司 一种氮硫共掺杂碳表面修饰磷酸铁锂正极材料、其制备方法及用途
CN107910517A (zh) * 2017-11-08 2018-04-13 广东工业大学 一种锂离子电池用氮硫共掺杂碳包覆锡/二硫化钼复合材料及其制备方法
CN108529619A (zh) * 2018-05-21 2018-09-14 桂林电子科技大学 一种氮硫共掺杂多孔碳材料及其制备方法和应用
CN109728260A (zh) * 2018-11-28 2019-05-07 广西大学 氮硫掺杂碳包覆的碳化铁复合电极材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002170560A (ja) * 2000-09-25 2002-06-14 Sumitomo Metal Ind Ltd 非水系二次電池用負極材料とその製造方法
CN107895778A (zh) * 2017-08-15 2018-04-10 东莞东阳光科研发有限公司 一种氮硫共掺杂碳表面修饰磷酸铁锂正极材料、其制备方法及用途
CN107910517A (zh) * 2017-11-08 2018-04-13 广东工业大学 一种锂离子电池用氮硫共掺杂碳包覆锡/二硫化钼复合材料及其制备方法
CN108529619A (zh) * 2018-05-21 2018-09-14 桂林电子科技大学 一种氮硫共掺杂多孔碳材料及其制备方法和应用
CN109728260A (zh) * 2018-11-28 2019-05-07 广西大学 氮硫掺杂碳包覆的碳化铁复合电极材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAIJUN CHEN ET AL: "《Journal of Alloys and Compounds》", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113070089A (zh) * 2021-04-02 2021-07-06 中国矿业大学 一种氮铁共掺杂碳负载的Ni基催化剂的制备方法和应用
CN113070089B (zh) * 2021-04-02 2022-05-17 中国矿业大学 一种氮铁共掺杂碳负载的Ni基催化剂的制备方法和应用
US20220376230A1 (en) * 2021-05-10 2022-11-24 Guangdong University Of Technology Fe3C-DOPED GRADED POROUS CARBON POLYMER POTASSIUM ION ANODE MATERIAL, PREPARATION METHOD AND APPLICATION THEREOF
CN113690413A (zh) * 2021-07-09 2021-11-23 郑州大学 一种高效钠离子电池负极碳复合材料的制备方法
CN113690413B (zh) * 2021-07-09 2023-03-14 郑州大学 一种高效钠离子电池负极碳复合材料的制备方法

Similar Documents

Publication Publication Date Title
CN107732220B (zh) 氮掺杂介孔碳包覆的锂离子电池三元正极材料的制备方法
CN106450195B (zh) 一种锂硫电池用正极材料及其制备方法和含有该正极材料的锂硫电池
CN112499631A (zh) Fe3C/C复合材料及其应用
CN108658119B (zh) 一种低温硫化技术用于制备硫化铜纳米片及其复合物的方法和应用
CN104733714B (zh) 锂离子电池正极材料的改性方法
CN107946564B (zh) 富钠锰基Na4Mn2O5/Na0.7MnO2复合材料及其制备方法和应用
CN114590838B (zh) 一种无定型金属硫化物包覆改性二元锰基钠电前驱体及其制备方法
CN112054174A (zh) 一种钾离子电池负极材料及其制备方法和应用
CN109279663B (zh) 一种硼酸盐类钠离子电池负极材料及其制备和应用
CN109286002B (zh) 一种千层树皮生物质碳负载红磷钠离子电池负极材料及其制备方法
CN105958027A (zh) 一种锰基复合正极材料及其制备方法
CN110459744B (zh) 一种硅碳硫化钴复合物、锂离子电池负极材料及其制备方法
KR20120123821A (ko) 리튬이온 이차전지용 리튬망간옥사이드 양극 활물질의 제조방법, 이에 의해 제조된 양극 활물질 및 이것을 포함하는 리튬이온 이차전지
CN114604896B (zh) 一种MXene复合改性的二元锰基钠电前驱体及其制备方法
CN116014104A (zh) 富锂镍系正极材料及其制备方法、正极片与二次电池
CN115548290A (zh) 一种表面修饰改性的富锂锰基正极材料及其制备方法
CN114906882A (zh) 一种铌基双金属氧化物负极材料的制备方法及其应用
CN111883746B (zh) 一种改性的富锂锰基氧化物正极材料及其制备方法和应用
CN105375004B (zh) 一种长寿命高能锂二次电池正极材料及其制备方法
CN109461897B (zh) 一种纺锤形碳包覆钒基正极材料的制备方法
CN112678874A (zh) N掺杂FeMnO3电极材料的制备方法及其应用
CN117317200B (zh) 一种正极材料及其制备方法和钠离子电池
CN114242982B (zh) 石墨烯包覆二维金属化合物电极材料及其制备方法和应用
CN113173603B (zh) 混合价锰基氧化物复合材料的合成方法及应用
CN113753972B (zh) 多元金属氧化物包覆改性镍钴锰三元正极材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210316