WO2023171454A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2023171454A1
WO2023171454A1 PCT/JP2023/007142 JP2023007142W WO2023171454A1 WO 2023171454 A1 WO2023171454 A1 WO 2023171454A1 JP 2023007142 W JP2023007142 W JP 2023007142W WO 2023171454 A1 WO2023171454 A1 WO 2023171454A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor device
region
trench
insulating film
source region
Prior art date
Application number
PCT/JP2023/007142
Other languages
English (en)
French (fr)
Inventor
賢樹 長田
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2023171454A1 publication Critical patent/WO2023171454A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Definitions

  • the present disclosure relates to a semiconductor device.
  • a horizontal semiconductor device in which a drain region and a source region are formed on one main surface of a substrate is known (for example, see Patent Document 1).
  • a semiconductor device includes: a semiconductor layer having a surface; a source region and a drain region spaced apart in a first direction on the surface when viewed from a thickness direction perpendicular to the surface; a channel region formed between the source region and the drain region on the surface and adjacent to the source region; a gate electrode disposed on the channel region with a gate insulating film interposed therebetween; a drift region formed between the drain region, a trench formed between the source region and the drain region, an insulating film provided on an inner wall of the trench, and an insulating film provided inside the trench, a buried electrode surrounded by the insulating film.
  • withstand voltage can be ensured.
  • FIG. 1 is a schematic plan view of an exemplary semiconductor device according to one embodiment.
  • FIG. 2 is a sectional view taken along line 2-2 of the semiconductor device in FIG.
  • FIG. 3 is a sectional view taken along line 3-3 of the semiconductor device in FIG.
  • FIG. 4 is a schematic cross-sectional view of an exemplary semiconductor device according to a modification.
  • FIG. 5 is a schematic plan view of an exemplary semiconductor device according to a modification.
  • FIG. 6 is a schematic plan view of an exemplary semiconductor device according to a modification.
  • FIG. 7 is a schematic plan view of an exemplary semiconductor device according to a modification.
  • FIG. 8 is a schematic plan view of an exemplary semiconductor device according to a modification.
  • FIG. 9 is a schematic plan view of an exemplary semiconductor device according to a modification.
  • FIG. 10 is a schematic plan view of an exemplary semiconductor device according to a modification.
  • FIG. 11 is a schematic plan view of an exemplary semiconductor device according to a modification.
  • FIG. 12 is a schematic plan view of an exemplary semiconductor device according to a modification.
  • FIG. 13 is a schematic plan view of an exemplary semiconductor device according to a modification.
  • FIG. 14 is a schematic cross-sectional view of an exemplary semiconductor device according to a modification.
  • FIG. 15 is a schematic cross-sectional view of an exemplary semiconductor device according to a modification.
  • FIG. 1 is a schematic plan view of an exemplary semiconductor device according to one embodiment.
  • FIG. 2 is a sectional view taken along line 2-2 of the semiconductor device in FIG.
  • FIG. 3 is a sectional view taken along line 3-3 of the semiconductor device in FIG.
  • the semiconductor device 10 may include a semiconductor substrate 11, an insulating layer 12, and a semiconductor layer 13.
  • the semiconductor substrate 11 may be a silicon (Si) substrate.
  • the semiconductor substrate 11 includes a first surface 11u and a second surface 11r located on the opposite side of the first surface 11u.
  • the semiconductor substrate 11 may be a p-type substrate (referred to as "p-sub") containing p-type impurities.
  • p-sub p-type substrate
  • a substrate made of silicon carbide (SiC) or the like can be used, for example.
  • the insulating layer 12 is provided on the first surface 11u of the semiconductor substrate 11.
  • the insulating layer 12 includes a first surface 12u and a second surface 12r located on the opposite side of the first surface 12u. In the example of FIGS. 2 and 3, the second surface 12r of the insulating layer 12 is in contact with the first surface 11u of the semiconductor substrate 11.
  • the insulating layer 12 is formed of a material containing SiO 2 , for example.
  • the insulating layer 12 may be a layer formed by oxidizing the surface of the semiconductor substrate 11.
  • the insulating layer 12 may be formed of, for example, a buried oxide film (BOX).
  • the semiconductor layer 13 is formed on the first surface 12u of the insulating layer 12.
  • the semiconductor layer 13 includes a first surface 13u and a second surface 13r located on the opposite side to the first surface 13u.
  • the first surface 13u corresponds to the surface of the semiconductor layer 13.
  • the second surface 13r of the semiconductor layer 13 is in contact with the first surface 12u of the insulating layer 12.
  • the second surface 13r of the semiconductor layer 13 is formed to cover the entire first surface 12u of the insulating layer 12, for example.
  • the semiconductor layer 13 may be formed of an epitaxial layer, for example.
  • the semiconductor layer 13 is made of a material containing Si.
  • Semiconductor layer 13 contains n-type impurities.
  • the semiconductor layer 13 may be, for example, a layer bonded to the semiconductor substrate 11 with the insulating layer 12 in between.
  • This semiconductor device 10 can be said to have an SOI structure in which a semiconductor layer 13 is formed on a semiconductor substrate 11 with an insulating layer 12 interposed therebetween.
  • the direction perpendicular to the first surface 13u of the semiconductor layer 13 is the thickness direction of the semiconductor device 10. This thickness direction is defined as the Z direction.
  • Two directions that are orthogonal to the Z direction and mutually orthogonal are referred to as the X direction and the Y direction, respectively.
  • the X direction and the Y direction are directions parallel to the first surface 13u of the semiconductor layer 13.
  • the X direction corresponds to the "first direction”.
  • the Y direction corresponds to the "second direction”.
  • the semiconductor device 10 includes a buffer region 21, a drain region 22, a body region 23, a source region 24, and a contact region 25.
  • the buffer region 21 is formed on the first surface 13u of the semiconductor layer 13.
  • Buffer region 21 is an n-type region containing n-type impurities. As shown in FIG. 1, the body region 23 extends in the Y direction when viewed from the Z direction perpendicular to the first surface 13u of the semiconductor layer 13.
  • drain region 22 is formed in the buffer region 21.
  • Drain region 22 contains n-type impurities. Drain region 22 has a higher impurity concentration than body region 23 . Drain region 22 is an n+ type region. As shown in FIG. 1, the drain region 22 extends in the Y direction when viewed from the Z direction.
  • the body region 23 is formed on the first surface 13u of the semiconductor layer 13.
  • Body region 23 is arranged apart from buffer region 21 in the X direction.
  • Body region 23 is a p-type region containing p-type impurities. As shown in FIG. 1, the body region 23 extends in the Y direction when viewed from the Z direction.
  • the source region 24 is formed in the body region 23.
  • Source region 24 contains n-type impurities.
  • Source region 24 may have an impurity concentration equal to that of drain region 22, for example.
  • Source region 24 is an n+ type region. As shown in FIG. 1, the source region 24 extends in the Y direction when viewed from the Z direction.
  • the contact region 25 is formed in the body region 23.
  • Contact region 25 is arranged on the opposite side of drain region 22 with respect to source region 24 .
  • Contact region 25 is provided so as to be in contact with source region 24 .
  • Contact region 25 contains p-type impurities.
  • Contact region 25 has an impurity concentration higher than that of body region 23, for example.
  • Contact region 25 is a p+ type region. As shown in FIG. 1, the contact region 25 extends in the Y direction when viewed from the Z direction.
  • the semiconductor layer 13 between the buffer region 21 and the body region 23 functions as a drift region 13a.
  • a gate electrode 32 is arranged on the first surface 13u of the semiconductor layer 13 with a gate insulating film 31 interposed therebetween. As shown in FIG. 1, the gate electrode 32 extends in the Y direction. As shown in FIGS. 2 and 3, the gate insulating film 31 and the gate electrode 32 are formed to cover the body region 23 between the source region 24 and the semiconductor layer 13 in the X direction. Furthermore, the gate insulating film 31 and the gate electrode 32 are formed to cover a portion of the source region 24 and adjacent to the body region 23 .
  • the gate insulating film 31 and the gate electrode 32 are formed to cover a portion of the semiconductor layer 13 adjacent to the body region 23 .
  • the gate insulating film 31 is made of an insulating material such as silicon oxide (SiO 2 ) or silicon nitride (SiN), for example.
  • the gate electrode 32 is made of, for example, a material containing conductive polysilicon or the like.
  • the portion of the body region 23 that faces the gate electrode 32 with the gate insulating film 31 in between functions as a channel region 23a in which an inversion layer (channel) is formed.
  • the semiconductor device 10 includes a trench 41, an insulating film 42, and a buried electrode 43.
  • the trench 41 is formed between the source region 24 and the drain region 22.
  • the semiconductor device 10 of this embodiment includes a plurality of trenches 41. Each trench 41 is formed between the gate electrode 32 and the buffer region 21 when viewed from the Z direction. Each trench 41 extends in the X direction when viewed from the Z direction. As shown in FIG. 1, the plurality of trenches 41 are arranged in the Y direction. It can be said that the plurality of trenches 41 are arranged in the Y direction orthogonal to the X direction in which each trench 41 extends.
  • the plurality of trenches 41 and the plurality of semiconductor layers 13 are arranged in the Y direction perpendicular to the X direction. It can be said that they are arranged alternately.
  • Each trench 41 has a width W1 in the Y direction that is shorter than a length L1 in the X direction.
  • the plurality of trenches 41 are arranged at intervals W2 in the Y direction. For example, in the Y direction, the interval W2 between the two trenches 41 is larger than the width W1 of the trenches 41.
  • the trench 41 penetrates the semiconductor layer 13 from the first surface 13u of the semiconductor layer 13 to the second surface 13r of the semiconductor layer 13.
  • the second surface 13r of the semiconductor layer 13 is in contact with the first surface 12u of the insulating layer 12. Therefore, it can be said that the trench 41 penetrates the semiconductor layer 13 from the first surface 13u of the semiconductor layer 13 to the insulating layer 12.
  • the end of the trench 41 in this embodiment on the source region 24 side is located at the same position as the end of the gate electrode 32 on the drain region 22 side when viewed from the Z direction. In other words, it can be said that the end of the trench 41 on the source region 24 side coincides with the end of the gate electrode 32 on the drain region 22 side.
  • the end of the trench 41 in this embodiment on the drain region 22 side is in contact with the buffer region 21 when viewed from the Z direction. In other words, it can be said that the end of the trench 41 on the drain region 22 side coincides with the end of the buffer region 21 on the source region 24 side.
  • the trench 41 has inner walls 411 to 414.
  • the first inner wall 411 and the second inner wall 412 extend in the X direction.
  • the first inner wall 411 and the second inner wall 412 face each other in the Y direction.
  • the third inner wall 413 and the fourth inner wall 414 extend in the Y direction.
  • the third inner wall 413 and the fourth inner wall 414 face each other in the X direction.
  • the insulating film 42 covers the inner walls 411 to 414 of the trench 41.
  • the insulating film 42 includes a first insulating film 421 that covers the first inner wall 411 , a second insulating film 422 that covers the second inner wall 412 , a third insulating film 423 that covers the third inner wall 413 , and a fourth insulating film 423 that covers the fourth inner wall 414 . It has an insulating film 424.
  • Each insulating film 421-424 is in contact with a corresponding inner wall 411-414.
  • the insulating film 42 is made of silicon oxide or the like, for example.
  • the embedded electrode 43 is formed within the trench 41. As shown in FIGS. 1 and 2, the embedded electrode 43 has a first surface 43u, a second surface 43r, and side surfaces 431 to 434.
  • the first surface 43u faces the same direction as the first surface 13u of the semiconductor layer 13.
  • the second surface 43r faces the opposite side to the first surface 43u.
  • the second surface 43r of the embedded electrode 43 is in contact with the first surface 12u of the insulating layer 12.
  • the first side surface 431 and the second side surface 432 face opposite to each other in the Y direction.
  • the third side surface 433 and the fourth side surface 434 face opposite to each other in the X direction.
  • Each side surface 431-434 is in contact with a corresponding insulating film 421-424.
  • the buried electrode 43 is made of, for example, a material containing conductive polysilicon or the like. Note that the embedded electrode 43 may be made of a material containing tungsten (W) or the like.
  • the film thickness T1 of the first insulating film 421 is equal to the film thickness T2 of the second insulating film 422, and the film thickness T3 of the third insulating film 423 is equal to the film thickness T2 of the second insulating film 422. It is equal to the film thickness T4 of the insulating film 424.
  • the film thicknesses T1 and T2 correspond to "first film thickness”.
  • the film thicknesses T3 and T4 correspond to "second film thickness”.
  • the film thicknesses T1 to T4 of the respective insulating films 421 to 424 are equal to each other.
  • each trench 41 has a buried electrode 43 arranged therein. Therefore, it can be said that the semiconductor device 10 has a plurality of trenches 41, embedded electrodes 43, and a plurality of semiconductor layers 13 (drift regions 13a) alternately arranged in the Y direction when viewed from the Z direction.
  • semiconductor layers 13 drift regions 13a
  • the semiconductor device 10 includes terminals 51-54.
  • the drain region 22 is connected to the terminal (D) 51 by a wiring member 61.
  • the gate electrode 32 is connected to the terminal (G) 52 by a wiring member 62.
  • the embedded electrode 43 is connected to the gate electrode 32 by a wiring member 64.
  • the source region 24 is connected to the terminal (S) 53 by a wiring member 63.
  • Source region 24 is connected to contact region 25 by wiring member 65 .
  • the terminals 51 to 53 can be, for example, pads (electrodes) to which wires or the like can be connected to the semiconductor device 10.
  • the wiring members 61 to 65 can be conductors formed in one or more wiring layers in the semiconductor device 10.
  • the conductor is made of, for example, a material containing a conductive material such as aluminum (Al) or copper (Cu).
  • the semiconductor substrate 11 is connected to a terminal (sub) 54.
  • the terminal 54 can be, for example, a pad (electrode) configured to connect the semiconductor device 10 to a die pad or the like.
  • a gate voltage equal to or higher than the threshold voltage is applied to the gate electrode 32.
  • a channel (inversion layer) is formed in the body region 23 (channel region 23a) facing the gate electrode 32 in the Z direction. Electrons flow from the source region 24 to the semiconductor layer 13 through this inversion layer. Then, the semiconductor device 10 enters an on state in which a drift current flows from the drain region 22 to the source region 24 due to the electric field between the drain region 22 and the source region 24 .
  • the embedded electrode 43 is connected to the gate electrode 32. Therefore, the above gate voltage is applied to the buried electrode 43. Due to this gate voltage, electrons are accumulated in the portion of the semiconductor layer 13 that faces the buried electrode 43 with the insulating film 42 in between. Accumulating electrons in this manner has substantially the same effect as increasing the impurity concentration in the semiconductor layer 13 (drift region 13a) around the trench 41 in which the buried electrode 43 is disposed. Thereby, the on-resistance in the semiconductor device 10 can be reduced.
  • a gate voltage lower than the threshold voltage for example, a voltage equal to that of the source region 24, is applied to the gate electrode 32.
  • the voltage between the drain region 22 and the source region 24 puts the pn junction between the p-type body region 23 and the n-type semiconductor layer 13 in a reverse biased state, so a depletion layer spreads from the pn junction. .
  • a gate voltage to the buried electrode 43 connected to the gate electrode 32 a depletion layer spreads to a portion of the semiconductor layer 13 that faces the buried electrode 43 with the insulating film 42 in between.
  • the semiconductor device 10 has high breakdown voltage characteristics.
  • the semiconductor device 10 has a semiconductor layer 13 having a first surface 13u and is spaced apart in the X direction (first direction) at the first surface 13u when viewed from the Z direction (thickness direction) perpendicular to the first surface 13u. It has a source region 24 and a drain region 22 arranged as follows. The semiconductor device 10 is formed between a source region 24 and a drain region 22 on a first surface 13u, and a channel region 23a adjacent to the source region 24, and a gate insulating film 31 disposed over the channel region 23a. and a gate electrode 32.
  • the semiconductor device 10 includes a trench 41 formed between the source region 24 and the drain region 22, an insulating film 42 provided on the inner walls 411 to 414 of the trench 41, and an insulating film 42 provided inside the trench 41.
  • a buried electrode 43 surrounded by a film 42 is included.
  • a gate voltage equal to or higher than the threshold voltage is applied to the gate electrode 32.
  • a channel (inversion layer) is formed in the body region 23 (channel region 23a) facing the gate electrode 32 in the Z direction. Electrons flow from the source region 24 to the semiconductor layer 13 through this inversion layer. Then, the semiconductor device 10 enters an on state in which a drift current flows from the drain region 22 to the source region 24 due to the electric field between the drain region 22 and the source region 24 .
  • the embedded electrode 43 is connected to the gate electrode 32. Therefore, the above gate voltage is applied to the buried electrode 43. Due to this gate voltage, electrons are accumulated in the portion of the semiconductor layer 13 that faces the buried electrode 43 with the insulating film 42 in between. Accumulating electrons in this manner has substantially the same effect as increasing the impurity concentration in the semiconductor layer 13 (drift region 13a) around the trench 41 in which the buried electrode 43 is disposed. Thereby, the on-resistance in the semiconductor device 10 can be reduced.
  • the voltage between the drain region 22 and the source region 24 puts the pn junction between the p-type body region 23 and the n-type semiconductor layer 13 in a reverse biased state, so a depletion layer spreads from the pn junction. .
  • a gate voltage to the buried electrode 43 connected to the gate electrode 32 a depletion layer spreads to a portion of the semiconductor layer 13 that faces the buried electrode 43 with the insulating film 42 in between.
  • the semiconductor device 10 has high breakdown voltage characteristics. That is, in the semiconductor device 10, the breakdown voltage can be ensured.
  • the buried electrode 43 may be connected to the source region 24, as shown in FIG. In this case, a depletion layer is formed as in the off state where a gate voltage equal to or lower than the threshold voltage is applied to the gate electrode 32. Thereby, withstand voltage can be ensured.
  • the trench 41 may be formed so that the end on the drain region 22 side is separated from the buffer region 21 when viewed from the Z direction.
  • the trench 41 may be formed such that the end on the drain region 22 side overlaps the buffer region 21 when viewed from the Y direction.
  • the trench 41 may be formed so that the end on the source region 24 side is separated from the gate electrode 32 when viewed from the Z direction.
  • the insulating film 42 may be formed such that the thickness T3 of the third insulating film 423 and the thickness T4 of the fourth insulating film 424 are different from each other.
  • the trench 41 may be formed so that the end on the source region 24 side overlaps with the gate electrode 32 when viewed from the Z direction.
  • the insulating film 42 may be formed such that the thickness T3 of the third insulating film 423 and the thickness T4 of the fourth insulating film 424 are different from each other.
  • the trench 41 may be formed such that the end on the source region 24 side is in contact with the body region 23 when viewed from the Z direction.
  • the insulating film 42 may be formed such that the thickness T3 of the third insulating film 423 and the thickness T4 of the fourth insulating film 424 are different from each other.
  • the buried electrode 43 is preferably formed so as not to overlap the gate electrode 32 when viewed from the Z direction.
  • the trench 41 may be formed so that the end on the source region 24 side overlaps the body region 23 when viewed from the Y direction.
  • the insulating film 42 may be formed such that the thickness T3 of the third insulating film 423 and the thickness T4 of the fourth insulating film 424 are different from each other.
  • the buried electrode 43 is preferably formed so as not to overlap the gate electrode 32 when viewed from the Z direction.
  • the trench 41 when viewed from the Z direction, the trench 41 may be formed such that the width W1 of the trench 41 is larger than the interval W2 between two adjacent trenches 41 in the Y direction. . Further, the trench 41 may be formed so that the width W1 of the trench 41 is equal to the interval W2 between two adjacent trenches 41 in the Y direction.
  • the film thicknesses T1 to T4 of the insulating film 42 (421 to 424) covering each inner wall 411 to 414 of the trench 41 may be changed as appropriate when viewed from the Z direction.
  • the film thicknesses T1 to T4 may be formed to be larger than the width W3 of the buried electrode 43.
  • the thickness T1 of the first insulating film 421 and the thickness T2 of the second insulating film 422 are equal to the thickness T3 of the third insulating film 423 and the thickness T3 of the fourth insulating film 424.
  • the film may be formed to have a thickness smaller than T4. Further, in the insulating film 42, the thickness T1 of the first insulating film 421 and the thickness T2 of the second insulating film 422 are larger than the thickness T3 of the third insulating film 423 and the thickness T4 of the fourth insulating film 424. It may be formed as follows.
  • the embedded electrode 43 may be separated from the insulating layer 12.
  • An insulating film 42 is interposed between the second surface 43r of the buried electrode 43 and the insulating layer 12.
  • the trench 41 may be separated from the insulating layer 12 in the Z direction. That is, the trench 41 does not need to penetrate the semiconductor layer 13.
  • the buffer area 21 may be omitted.
  • the embedded electrode 43 may be connected to a terminal provided in the semiconductor device. This terminal can be a pad (electrode) configured to connect a wire or the like to the semiconductor device.
  • the term “on” includes both “on” and “above” unless the context clearly indicates otherwise.
  • the phrase “the first layer is formed on the second layer” refers to the fact that in some embodiments the first layer may be directly disposed on the second layer in contact with the second layer, but in other embodiments. It is contemplated that the first layer may be placed above the second layer without contacting the second layer. That is, the term “on” does not exclude structures in which other layers are formed between the first layer and the second layer.
  • the Z-axis direction used in the present disclosure does not necessarily need to be a vertical direction, nor does it need to completely coincide with the vertical direction. Accordingly, various structures according to the present disclosure (e.g., the structure shown in FIG. 1) are different from each other in that "upper” and “lower” in the Z-axis direction described herein are “upper” and “lower” in the vertical direction. Not limited to one thing.
  • the X-axis direction may be a vertical direction
  • the Y-axis direction may be a vertical direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

半導体装置は、表面を有する半導体層と、表面と直交する厚さ方向から視て、表面において第1方向に離隔して配置されたソース領域およびドレイン領域と、表面におけるソース領域とドレイン領域との間に形成され、ソース領域に隣り合うチャネル領域と、チャネル領域の上にゲート絶縁膜を介して配置されたゲート電極とを含む。さらに、半導体装置は、ソース領域とドレイン領域との間に形成されたトレンチと、トレンチの内壁に設けられた絶縁膜と、トレンチの内部に設けられ、絶縁膜に囲まれた埋め込み電極とを含む。

Description

半導体装置
 本開示は、半導体装置に関する。
 従来、パワー半導体装置として、基板の一主面にドレイン領域とソース領域とが形成された横型半導体装置は知られている(たとえば、特許文献1参照)。
特開2000-286417号公報
 ところで、横型半導体装置において、耐圧の確保が望まれている。
 本開示の一態様である半導体装置は、表面を有する半導体層と、前記表面と直交する厚さ方向から視て、前記表面において第1方向に離隔して配置されたソース領域およびドレイン領域と、前記表面における前記ソース領域と前記ドレイン領域との間に形成され、前記ソース領域に隣り合うチャネル領域と、前記チャネル領域の上にゲート絶縁膜を介して配置されたゲート電極と、前記チャネル領域と前記ドレイン領域との間に形成されたドリフト領域と、前記ソース領域および前記ドレイン領域の間に形成されたトレンチと、前記トレンチの内壁に設けられた絶縁膜と、前記トレンチの内部に設けられ、前記絶縁膜に囲まれた埋め込み電極と、を有する。
 本開示の一態様である半導体装置によれば、耐圧を確保することができる。
図1は、一実施形態に係る例示的な半導体装置の概略平面図である。 図2は、図1の半導体装置の2-2線断面図である。 図3は、図1の半導体装置の3-3線断面図である。 図4は、変更例に係る例示的な半導体装置の概略断面図である。 図5は、変更例に係る例示的な半導体装置の概略平面図である。 図6は、変更例に係る例示的な半導体装置の概略平面図である。 図7は、変更例に係る例示的な半導体装置の概略平面図である。 図8は、変更例に係る例示的な半導体装置の概略平面図である。 図9は、変更例に係る例示的な半導体装置の概略平面図である。 図10は、変更例に係る例示的な半導体装置の概略平面図である。 図11は、変更例に係る例示的な半導体装置の概略平面図である。 図12は、変更例に係る例示的な半導体装置の概略平面図である。 図13は、変更例に係る例示的な半導体装置の概略平面図である。 図14は、変更例に係る例示的な半導体装置の概略断面図である。 図15は、変更例に係る例示的な半導体装置の概略断面図である。
 以下、添付図面を参照して本開示の半導体装置の実施形態を説明する。
 なお、説明を簡単かつ明確にするために、図面に示される構成要素は必ずしも一定の縮尺で描かれていない。また、理解を容易にするために、断面図では、ハッチング線が省略されている場合がある。添付の図面は、本開示の実施形態を例示するに過ぎず、本開示を制限するものとみなされるべきではない。本開示における「第1」、「第2」、「第3」等の用語は、単に対象物を区別するために用いられており、対象物を順位づけするものではない。
 以下の詳細な記載は、本開示の例示的な実施形態を具体化する装置、システム、および方法を含む。この詳細な記載は本来説明のためのものに過ぎず、本開示の実施形態またはこのような実施形態の適用および使用を限定することを意図しない。
 (半導体装置の概略構成)
 図1は、一実施形態に係る例示的な半導体装置の概略平面図である。図2は、図1の半導体装置の2-2線断面図である。図3は、図1の半導体装置の3-3線断面図である。
 図2、図3に示すように、半導体装置10は、半導体基板11、絶縁層12、半導体層13を含んでいてもよい。
 半導体基板11は、シリコン(Si)基板であってよい。半導体基板11は、第1面11uと、第1面11uとは反対側に位置する第2面11rとを含む。半導体基板11は、p型不純物を含むp型基板(p-substrate:「p-sub」と表記)であってよい。半導体基板11は、たとえば炭化シリコン(SiC)等により形成された基板を用いることができる。
 絶縁層12は、半導体基板11の第1面11u上に設けられている。絶縁層12は、第1面12uと、第1面12uとは反対側に位置する第2面12rとを含む。図2、図3の例では、絶縁層12の第2面12rは、半導体基板11の第1面11uに接している。絶縁層12は、たとえばSiOを含む材料によって形成される。絶縁層12は、半導体基板11の表面の酸化により形成された層であってもよい。絶縁層12としては、たとえば埋め込み酸化膜(BOX:Buried Oxide)により形成され得る。
 半導体層13は、絶縁層12の第1面12u上に形成されている。半導体層13は、第1面13uと、第1面13uとは反対側に位置する第2面13rとを含む。第1面13uは、半導体層13の表面に相当する。図2、図3の例では、半導体層13の第2面13rは、絶縁層12の第1面12uに接している。半導体層13の第2面13rは、たとえば、絶縁層12の第1面12uの全面を覆うように形成されている。
 半導体層13は、たとえばエピタキシャル層により形成され得る。半導体層13は、Siを含む材料により形成されている。半導体層13は、n型不純物を含む。半導体層13は、たとえば絶縁層12を挟んで半導体基板11に張り合わされた層であってもよい。この半導体装置10は、半導体基板11上に絶縁層12を介して半導体層13が形成されたSOI構造を有しているということができる。
 半導体層13の第1面13uと直交する方向は半導体装置10の厚さ方向である。この厚さ方向をZ方向とする。Z方向と直交するとともに互いに直交する2つの方向をそれぞれX方向およびY方向とする。X方向およびY方向は、半導体層13の第1面13uと平行な方向である。X方向は「第1方向」に対応する。Y方向は「第2方向」に対応する。
 (ソース領域、ドレイン領域、ゲート電極)
 図1~図3に示すように、半導体装置10は、バッファ領域21、ドレイン領域22、ボディ領域23、ソース領域24、コンタクト領域25を含む。
 バッファ領域21は、半導体層13の第1面13uに形成されている。バッファ領域21は、n型不純物を含むn型領域である。図1に示すように、ボディ領域23は、半導体層13の第1面13uと直交するZ方向から視て、Y方向に延びている。
 図2、図3に示すように、ドレイン領域22は、バッファ領域21に形成されている。ドレイン領域22は、n型不純物を含む。ドレイン領域22はボディ領域23の不純物濃度よりも高い不純物濃度を有している。ドレイン領域22は、n+型領域である。図1に示すように、ドレイン領域22は、Z方向から視て、Y方向に延びている。
 図2、図3に示すように、ボディ領域23は、半導体層13の第1面13uに形成されている。ボディ領域23は、X方向において、バッファ領域21から離れて配置されている。ボディ領域23は、p型不純物を含むp型領域である。図1に示すように、ボディ領域23は、Z方向から視て、Y方向に延びている。
 図2、図3に示すように、ソース領域24は、ボディ領域23に形成されている。ソース領域24は、n型不純物を含む。ソース領域24は、たとえば、ドレイン領域22の不純物濃度と等しい不純物濃度を有しているとすることができる。ソース領域24は、n+型領域である。図1に示すように、ソース領域24は、Z方向から視て、Y方向に延びている。
 図2、図3に示すように、コンタクト領域25は、ボディ領域23に形成されている。コンタクト領域25は、ソース領域24に対して、ドレイン領域22とは反対側に配置されている。コンタクト領域25は、ソース領域24に接するように設けられている。コンタクト領域25は、p型不純物を含む。コンタクト領域25は、たとえばボディ領域23の不純物濃度より高い不純物濃度を有している。コンタクト領域25は、p+型領域である。図1に示すように、コンタクト領域25は、Z方向から視て、Y方向に延びている。
 図3に示すように、バッファ領域21とボディ領域23との間の半導体層13は、ドリフト領域13aとして機能する。
 図2、図3に示すように、半導体層13の第1面13u上には、ゲート絶縁膜31を介してゲート電極32が配置されている。図1に示すように、ゲート電極32は、Y方向に延びている。図2、図3に示すように、ゲート絶縁膜31およびゲート電極32は、X方向において、ソース領域24と半導体層13との間のボディ領域23を覆うように形成されている。また、ゲート絶縁膜31およびゲート電極32は、ソース領域24の一部であってボディ領域23に隣り合う部分を覆うように形成されている。また、ゲート絶縁膜31およびゲート電極32は、半導体層13の一部であってボディ領域23に隣り合う部分を覆うように形成されている。ゲート絶縁膜31は、たとえば、酸化シリコン(SiO)や窒化シリコン(SiN)等の絶縁材料により構成されている。ゲート電極32は、たとえば、導電性を有するポリシリコン等を含む材料により構成されている。
 図2、図3に示すように、ボディ領域23において、ゲート絶縁膜31を挟んでゲート電極32と対向する部分は、反転層(チャネル)が形成されるチャネル領域23aとして機能する。
 (トレンチおよび埋め込み電極)
 図1、図2に示すように、半導体装置10は、トレンチ41、絶縁膜42、埋め込み電極43を含む。
 トレンチ41は、ソース領域24とドレイン領域22との間に形成されている。本実施形態の半導体装置10は、複数のトレンチ41を含む。各トレンチ41は、Z方向から視て、ゲート電極32とバッファ領域21との間に形成されている。各トレンチ41は、Z方向から視て、X方向に延びている。図1に示すように、複数のトレンチ41は、Y方向に配列されている。複数のトレンチ41は、各トレンチ41が延びるX方向に対して直交するY方向に配列されているといえる。したがって、半導体装置10は、Z方向から視て、複数のトレンチ41が延びるX方向に対して、X方向と直交するY方向に複数のトレンチ41と複数の半導体層13(ドリフト領域13a)とが交互に配置されているといえる。
 各トレンチ41は、X方向の長さL1に対して、Y方向の幅W1が短い。複数のトレンチ41は、Y方向に間隔W2を空けて配列されている。たとえば、Y方向において、2つのトレンチ41の間の間隔W2は、トレンチ41の幅W1よりも大きい。
 図2に示すように、トレンチ41は、半導体層13の第1面13uから半導体層13の第2面13rまで、半導体層13を貫通している。半導体層13の第2面13rは、絶縁層12の第1面12uに接している。したがって、トレンチ41は、半導体層13の第1面13uから絶縁層12まで、半導体層13を貫通しているといえる。
 図1に示すように、本実施形態のトレンチ41におけるソース領域24の側の端部は、Z方向から視て、ゲート電極32におけるドレイン領域22の側の端部と同じ位置にある。つまり、トレンチ41におけるソース領域24の側の端部は、ゲート電極32におけるドレイン領域22の側の端部と一致しているといえる。本実施形態のトレンチ41におけるドレイン領域22の側の端部は、Z方向から視て、バッファ領域21と接している。つまり、トレンチ41におけるドレイン領域22の側の端部は、バッファ領域21におけるソース領域24の側の端部と一致しているといえる。
 図1に示すように、トレンチ41は、内壁411~414を有している。第1内壁411および第2内壁412は、X方向に延びている。第1内壁411および第2内壁412は、Y方向において互いに対向している。第3内壁413および第4内壁414は、Y方向に延びている。第3内壁413および第4内壁414は、X方向において互いに対向している。
 絶縁膜42は、トレンチ41の内壁411~414を被覆している。絶縁膜42は、第1内壁411を覆う第1絶縁膜421、第2内壁412を覆う第2絶縁膜422、第3内壁413を覆う第3絶縁膜423、および第4内壁414を覆う第4絶縁膜424を有している。各絶縁膜421~424は、対応する内壁411~414に接している。絶縁膜42は、たとえば、酸化シリコン等により形成されている。
 埋め込み電極43は、トレンチ41内に形成されている。図1、図2に示すように、埋め込み電極43は、第1面43u、第2面43r、側面431~434を有している。第1面43uは、半導体層13の第1面13uと同じ方向を向く。第2面43rは、第1面43uとは反対側を向く。本実施形態において、埋め込み電極43の第2面43rは、絶縁層12の第1面12uと接している。第1側面431と第2側面432は、Y方向において互いに反対側を向く。第3側面433および第4側面434は、X方向において互いに反対側を向く。各側面431~434は、対応する絶縁膜421~424に接している。埋め込み電極43は、たとえば、導電性を有するポリシリコン等を含む材料により構成されている。なお、埋め込み電極43は、タンスステン(W)等を含む材料により構成されてもよい。
 図1に示すように、本実施形態において、第1絶縁膜421の膜厚T1は、第2絶縁膜422の膜厚T2と等しい、また、第3絶縁膜423の膜厚T3は、第4絶縁膜424の膜厚T4と等しい。膜厚T1,T2は「第1膜厚」に対応する。膜厚T3,T4は「第2膜厚」に対応する。また、本実施形態において、各絶縁膜421~424の膜厚T1~T4は、互いに等しい。
 上記したように、各トレンチ41には埋め込み電極43が配置されている。したがって、半導体装置10は、Z方向から視て、Y方向に複数のトレンチ41および埋め込み電極43と複数の半導体層13(ドリフト領域13a)とが交互に配置されているといえる。
 (配線および端子)
 図2、図3に示すように、半導体装置10は、端子51~54を含む。ドレイン領域22は、配線部材61により端子(D)51に接続されている。ゲート電極32は、配線部材62により端子(G)52に接続されている。埋め込み電極43は、配線部材64によりゲート電極32に接続されている。ソース領域24は、配線部材63により端子(S)53に接続されている。ソース領域24は、配線部材65によりコンタクト領域25に接続されている。端子51~53は、たとえば、半導体装置10に対してワイヤ等を接続可能に構成されるパッド(電極)とすることができる。配線部材61~65は、半導体装置10において、1つまたは複数の配線層に形成される導電体とすることができる。導電体は、たとえば、アルミニウム(Al)、銅(Cu)等の導電性材料を含む材料により構成される。半導体基板11は、端子(sub)54に接続されている。端子54は、たとえば、半導体装置10をダイパッド等に接続可能に構成されるパッド(電極)とすることができる。
 (作用)
 次に、上記の半導体装置10の作用を説明する。
 半導体装置10は、ドレイン領域22とソース領域24との間に電圧が印加される。半導体装置10は、ゲート電極32に印加されるゲート電圧により、ドレイン領域22とソース領域24との間に流れる電流のオン・オフが制御される。
 ゲート電極32には、しきい値電圧以上のゲート電圧が印加される。ゲート電極32とZ方向において対向するボディ領域23(チャネル領域23a)にチャネル(反転層)が形成される。この反転層を通してソース領域24から半導体層13に電子が流れる。そして、半導体装置10は、ドレイン領域22とソース領域24との間の電界により、ドレイン領域22からソース領域24にドリフト電流が流れるオン状態となる。
 埋め込み電極43は、ゲート電極32に接続されている。したがって、埋め込み電極43には上記のゲート電圧が印加される。このゲート電圧により、埋め込み電極43と絶縁膜42を挟んで対向する半導体層13の部分に電子が蓄積される。このように電子が蓄積されることは、埋め込み電極43が配置されたトレンチ41の周囲の半導体層13(ドリフト領域13a)における不純物濃度を高くすることと実質的に等しい効果を奏する。これにより、半導体装置10におけるオン抵抗を小さくすることができる。
 一方、ゲート電極32には、しきい値電圧以下のゲート電圧、たとえばソース領域24と等しい電圧が印加される。ドレイン領域22とソース領域24との間の電圧により、p型のボディ領域23とn型の半導体層13との間のpn接合が逆バイアスされた状態となるため、pn接合から空乏層が広がる。そして、ゲート電極32に接続された埋め込み電極43に対してゲート電圧が印加されることにより、埋め込み電極43と絶縁膜42を介して対向する半導体層13の部分に空乏層が広がる。これにより、半導体装置10は、高耐圧特性を有することとなる。
 (効果)
 以上記述したように、本実施形態によれば、以下の効果を奏する。
 (1)半導体装置10は、第1面13uを有する半導体層13と、第1面13u直交するZ方向(厚さ方向)から視て、第1面13uにおいてX方向(第1方向)に離隔して配置されたソース領域24およびドレイン領域22と、を有する。半導体装置10は、第1面13uにおけるソース領域24とドレイン領域22との間に形成され、ソース領域24に隣り合うチャネル領域23aと、チャネル領域23aの上にゲート絶縁膜31を介して配置されたゲート電極32と、を有する。さらに、半導体装置10は、ソース領域24とドレイン領域22との間に形成されたトレンチ41と、トレンチ41の内壁411~414に設けられた絶縁膜42と、トレンチ41の内部に設けられ、絶縁膜42に囲まれた埋め込み電極43と、を有する。
 ゲート電極32には、しきい値電圧以上のゲート電圧が印加される。ゲート電極32とZ方向において対向するボディ領域23(チャネル領域23a)にチャネル(反転層)が形成される。この反転層を通してソース領域24から半導体層13に電子が流れる。そして、半導体装置10は、ドレイン領域22とソース領域24との間の電界により、ドレイン領域22からソース領域24にドリフト電流が流れるオン状態となる。
 埋め込み電極43は、ゲート電極32に接続されている。したがって、埋め込み電極43には上記のゲート電圧が印加される。このゲート電圧により、埋め込み電極43と絶縁膜42を挟んで対向する半導体層13の部分に電子が蓄積される。このように電子が蓄積されることは、埋め込み電極43が配置されたトレンチ41の周囲の半導体層13(ドリフト領域13a)における不純物濃度を高くすることと実質的に等しい効果を奏する。これにより、半導体装置10におけるオン抵抗を小さくすることができる。
 (2)ゲート電極32には、しきい値電圧以下のゲート電圧、たとえばソース領域24と等しい電圧が印加される。ドレイン領域22とソース領域24との間の電圧により、p型のボディ領域23とn型の半導体層13との間のpn接合が逆バイアスされた状態となるため、pn接合から空乏層が広がる。そして、ゲート電極32に接続された埋め込み電極43に対してゲート電圧が印加されることにより、埋め込み電極43と絶縁膜42を介して対向する半導体層13の部分に空乏層が広がる。これにより、半導体装置10は、高耐圧特性を有することとなる。つまり、半導体装置10において、耐圧を確保することができる。
 (変更例)
 上記実施形態は例えば以下のように変更できる。上記実施形態と以下の各変更例は、技術的な矛盾が生じない限り、互いに組み合せることができる。なお、以下の変更例において、上記実施形態と共通する部分については、上記実施形態と同一の符号を付してその説明を省略する。
 ・上記実施形態に対し、図4に示すように、埋め込み電極43は、ソース領域24に接続されてもよい。この場合、しきい値電圧以下のゲート電圧がゲート電極32に印加されるオフ状態と同様に、空乏層が形成される。これにより、耐圧を確保することができる。
 ・図5に示すように、トレンチ41は、Z方向から視て、ドレイン領域22側の端部がバッファ領域21から離隔するように形成されていてもよい。
 ・図6に示すように、トレンチ41は、ドレイン領域22側の端部がバッファ領域21に対してY方向から視て重なるように形成されていてもよい。
 ・図7に示すように、トレンチ41は、Z方向から視て、ソース領域24側の端部がゲート電極32から離隔するように形成されていてもよい。この場合、第3絶縁膜423の膜厚T3と第4絶縁膜424の膜厚T4とが互いに異なるように絶縁膜42が形成されてもよい。
 ・図8に示すように、トレンチ41は、Z方向から視て、ソース領域24側の端部がゲート電極32と重なるように形成されていてもよい。この場合、第3絶縁膜423の膜厚T3と第4絶縁膜424の膜厚T4とが互いに異なるように絶縁膜42が形成されてもよい。
 ・図9に示すように、トレンチ41は、Z方向から視て、ソース領域24側の端部がボディ領域23と接するように形成されていてもよい。この場合、第3絶縁膜423の膜厚T3と第4絶縁膜424の膜厚T4とが互いに異なるように絶縁膜42が形成されてもよい。埋め込み電極43は、Z方向から視て、ゲート電極32と重ならないように形成されることが好ましい。
 ・図10に示すように、トレンチ41は、ソース領域24側の端部がボディ領域23に対してY方向から視て重なるように形成されていてもよい。この場合、第3絶縁膜423の膜厚T3と第4絶縁膜424の膜厚T4とが互いに異なるように絶縁膜42が形成されてもよい。埋め込み電極43は、Z方向から視て、ゲート電極32と重ならないように形成されることが好ましい。
 ・図11に示すように、Z方向から視て、トレンチ41は、トレンチ41の幅W1が、Y方向において隣り合う2つのトレンチ41の間の間隔W2よりも大きいように形成されていてもよい。また、トレンチ41は、トレンチ41の幅W1が、Y方向において隣り合う2つのトレンチ41の間の間隔W2と等しいように形成されていてもよい。
 ・図12に示すように、Z方向から視て、トレンチ41の各内壁411~414を覆う絶縁膜42(421~424)の膜厚T1~T4は、適宜変更されてもよい。たとえば、膜厚T1~T4は、埋め込み電極43の幅W3よりも大きいように形成されていてもよい。
 ・図13に示すように、絶縁膜42は、第1絶縁膜421の膜厚T1および第2絶縁膜422の膜厚T2が、第3絶縁膜423の膜厚T3および第4絶縁膜424の膜厚T4よりも小さいように形成されていてもよい。また、絶縁膜42は、第1絶縁膜421の膜厚T1および第2絶縁膜422の膜厚T2が、第3絶縁膜423の膜厚T3および第4絶縁膜424の膜厚T4よりも大きいように形成されていてもよい。
 ・図14に示すように、埋め込み電極43は、絶縁層12から離隔していてもよい。埋め込み電極43の第2面43rと絶縁層12との間には、絶縁膜42が介在される。
 ・図15に示すように、トレンチ41は、Z方向において、絶縁層12から離隔していても良い。つまり、トレンチ41は、半導体層13を貫通していなくてもよい。
 ・バッファ領域21は省略されてもよい。
 ・埋め込み電極43は、半導体装置に設けられる端子に接続されてもよい。この端子は、半導体装置に対してワイヤ等を接続可能に構成されるパッド(電極)とすることができる。
 本開示で使用される「~上に」という用語は、文脈によって明らかにそうでないことが示されない限り、「~上に」と「~の上方に」との双方の意味を含む。したがって、「第1層が第2層上に形成される」という表現は、或る実施形態では第1層が第2層に接触して第2層上に直接配置され得るが、他の実施形態では第1層が第2層に接触することなく第2層の上方に配置され得ることが意図される。すなわち、「~上に」という用語は、第1層と第2層との間に他の層が形成される構造を排除しない。
 本開示で使用されるZ軸方向は必ずしも鉛直方向である必要はなく、鉛直方向に完全に一致している必要もない。したがって、本開示による種々の構造(たとえば、図1に示される構造)は、本明細書で説明されるZ軸方向の「上」および「下」が鉛直方向の「上」および「下」であることに限定されない。たとえば、X軸方向が鉛直方向であってもよく、またはY軸方向が鉛直方向であってもよい。
 以上の説明は単に例示である。本開示の技術を説明する目的のために列挙された構成要素および方法(製造プロセス)以外に、より多くの考えられる組み合わせおよび置換が可能であることを当業者は認識し得る。本開示は、特許請求の範囲を含む本開示の範囲内に含まれるすべての代替、変形、および変更を包含することが意図される。
 10 半導体装置
 11 半導体基板
 11r 第2面
 11u 第1面
 12 絶縁層
 12r 第2面
 12u 第1面
 13 半導体層
 13a ドリフト領域
 13r 第2面
 13u 第1面
 21 バッファ領域
 22 ドレイン領域
 23 ボディ領域
 23a チャネル領域
 24 ソース領域
 25 コンタクト領域
 31 ゲート絶縁膜
 32 ゲート電極
 41 トレンチ
 411 第1内壁
 412 第2内壁
 413 第3内壁
 414 第4内壁
 42 絶縁膜
 421 第1絶縁膜
 422 第2絶縁膜
 423 第3絶縁膜
 424 第4絶縁膜
 43 埋め込み電極
 43r 第2面
 43u 第1面
 431 第1側面
 432 第2側面
 433 第3側面
 434 第4側面
 51~54 端子
 61~65 配線部材
 L1 長さ
 T1~T4 膜厚
 W1 幅
 W2 間隔
 W3 幅

Claims (20)

  1.  表面を有する半導体層と、
     前記表面と直交する厚さ方向から視て、前記表面において第1方向に離隔して配置されたソース領域およびドレイン領域と、
     前記表面における前記ソース領域と前記ドレイン領域との間に形成され、前記ソース領域に隣り合うチャネル領域と、
     前記チャネル領域の上にゲート絶縁膜を介して配置されたゲート電極と、
     前記ソース領域と前記ドレイン領域との間に形成されたトレンチと、
     前記トレンチの内壁に設けられた絶縁膜と、
     前記トレンチの内部に設けられ、前記絶縁膜に囲まれた埋め込み電極と、
     を有する、半導体装置。
  2.  前記トレンチは、前記厚さ方向及び前記第1方向の双方と直交する方向を第2方向として、前記第1方向に延びている、
     請求項1に記載の半導体装置。
  3.  前記ドレイン領域が形成されたバッファ領域を有し、
     前記トレンチの前記ドレイン領域側の端部は、前記バッファ領域と接している、
     請求項2に記載の半導体装置。
  4.  前記ドレイン領域が形成されたバッファ領域を有し、
     前記トレンチの前記ドレイン領域側の端部は、前記バッファ領域から離隔している、
     請求項2に記載の半導体装置。
  5.  前記ドレイン領域が形成されたバッファ領域を有し、
     前記トレンチの前記ドレイン領域側の端部は、前記第2方向から視て、前記バッファ領域と重なっている、
     請求項2に記載の半導体装置。
  6.  前記トレンチの前記ソース領域側の端部は、前記厚さ方向から視て、前記ゲート電極における前記ドレイン領域側の端部と同じ位置にある、
     請求項2から請求項5のいずれか一項に記載の半導体装置。
  7.  前記トレンチの前記ソース領域側の端部は、前記厚さ方向から視て、前記ゲート電極よりも前記ドレイン領域の側に位置している、
     請求項2から請求項5のいずれか一項に記載の半導体装置。
  8.  前記トレンチの前記ソース領域側の端部は、前記厚さ方向から視て、前記ゲート電極と重なるように位置している、
     請求項2から請求項5のいずれか一項に記載の半導体装置。
  9.  前記トレンチの前記ソース領域側の端部は、前記チャネル領域に接している、
     請求項2から請求項5のいずれか一項に記載の半導体装置。
  10.  前記埋め込み電極は、前記厚さ方向から視て、前記ゲート電極と重なっていない、
     請求項2から請求項9のいずれか一項に記載の半導体装置。
  11.  前記厚さ方向から視て、前記第1方向における前記埋め込み電極と前記トレンチの内壁との間の前記絶縁膜の第1膜厚は、前記第2方向における前記埋め込み電極と前記トレンチの内壁との間の前記絶縁膜の第2膜厚よりも大きい、
     請求項2から請求項10のいずれか一項に記載の半導体装置。
  12.  前記第1膜厚は、前記第2方向における前記埋め込み電極の厚さよりも大きい、
     請求項11に記載の半導体装置。
  13.  複数の前記トレンチを有し、
     前記複数のトレンチは、前記第2方向に間隔を空けて配列されている、
     請求項2から請求項12のいずれか一項に記載の半導体装置。
  14.  前記第2方向に隣り合う2つの前記トレンチの間の間隔は、前記第2方向における前記トレンチの幅よりも広い、
     請求項13に記載の半導体装置。
  15.  前記第2方向に隣り合う2つの前記トレンチの間の間隔は、前記第2方向における前記トレンチの幅よりも狭い、
     請求項13に記載の半導体装置。
  16.  半導体基板と、
     前記半導体基板の上に設けられた絶縁層と、
     を備え、
     前記半導体層は、前記絶縁層の上に設けられている、
     請求項1から請求項15のいずれか一項に記載の半導体装置。
  17.  前記トレンチは、前記半導体層の前記表面から前記絶縁層まで前記半導体層を貫通している、
     請求項16に記載の半導体装置。
  18.  前記埋め込み電極は、前記絶縁層に接している、
     請求項16または請求項17に記載の半導体装置。
  19.  前記埋め込み電極と前記ソース領域とを接続する配線部材を有する、
     請求項1から請求項18のいずれか一項に記載の半導体装置。
  20.  前記埋め込み電極と前記ゲート電極とを接続する配線部材を有する、
     請求項1から請求項18のいずれか一項に記載の半導体装置。
PCT/JP2023/007142 2022-03-08 2023-02-27 半導体装置 WO2023171454A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022035080 2022-03-08
JP2022-035080 2022-03-08

Publications (1)

Publication Number Publication Date
WO2023171454A1 true WO2023171454A1 (ja) 2023-09-14

Family

ID=87935258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007142 WO2023171454A1 (ja) 2022-03-08 2023-02-27 半導体装置

Country Status (1)

Country Link
WO (1) WO2023171454A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001044424A (ja) * 1999-07-29 2001-02-16 Toshiba Corp 高耐圧半導体装置
US20100323485A1 (en) * 2007-01-04 2010-12-23 Fairchild Semiconductor Corporation Pn junction and mos capacitor hybrid resurf transistor
JP2014212203A (ja) * 2013-04-18 2014-11-13 ルネサスエレクトロニクス株式会社 半導体装置
JP2016048727A (ja) * 2014-08-27 2016-04-07 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
US9553188B1 (en) * 2015-11-16 2017-01-24 United Microelectronics Corp. High-voltage semiconductor device with finger-shaped insulation structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001044424A (ja) * 1999-07-29 2001-02-16 Toshiba Corp 高耐圧半導体装置
US20100323485A1 (en) * 2007-01-04 2010-12-23 Fairchild Semiconductor Corporation Pn junction and mos capacitor hybrid resurf transistor
JP2014212203A (ja) * 2013-04-18 2014-11-13 ルネサスエレクトロニクス株式会社 半導体装置
JP2016048727A (ja) * 2014-08-27 2016-04-07 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
US9553188B1 (en) * 2015-11-16 2017-01-24 United Microelectronics Corp. High-voltage semiconductor device with finger-shaped insulation structure

Similar Documents

Publication Publication Date Title
US20230112583A1 (en) Semiconductor device and semiconductor package
US8884364B2 (en) Semiconductor device with field-plate electrode
JP5701913B2 (ja) 半導体装置
JP7223543B2 (ja) 半導体装置
JP6941502B2 (ja) 半導体装置および半導体パッケージ
JP2011086746A (ja) 半導体装置
JP7319072B2 (ja) 半導体装置
US20220123142A1 (en) Semiconductor device with lateral transistor
JP5694285B2 (ja) 半導体装置
US20200251581A1 (en) Semiconductor device
WO2023171454A1 (ja) 半導体装置
JP7164497B2 (ja) 半導体装置
JP7352360B2 (ja) 半導体装置
JP2019140152A (ja) 半導体装置
WO2020246230A1 (ja) 半導体装置
JP7370781B2 (ja) 半導体装置
JP7404601B2 (ja) 半導体集積回路
JP7295052B2 (ja) 半導体装置
US20240153996A1 (en) Semiconductor device
JP7000912B2 (ja) 半導体装置
JP7471250B2 (ja) 半導体装置
JP7160167B2 (ja) 半導体装置
WO2023135896A1 (ja) 半導体装置
WO2021085437A1 (ja) 半導体集積回路
JP2023058221A (ja) 半導体装置およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766632

Country of ref document: EP

Kind code of ref document: A1