WO2023159524A1 - 显示面板、显示装置及拼接显示装置 - Google Patents

显示面板、显示装置及拼接显示装置 Download PDF

Info

Publication number
WO2023159524A1
WO2023159524A1 PCT/CN2022/078098 CN2022078098W WO2023159524A1 WO 2023159524 A1 WO2023159524 A1 WO 2023159524A1 CN 2022078098 W CN2022078098 W CN 2022078098W WO 2023159524 A1 WO2023159524 A1 WO 2023159524A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
segment
edge
line
line segment
Prior art date
Application number
PCT/CN2022/078098
Other languages
English (en)
French (fr)
Inventor
王莉莉
刘超
翟明
王静
冯莎
贾明明
郭少飞
付宝
孟秋华
齐琪
时凌云
孙海威
Original Assignee
京东方科技集团股份有限公司
京东方晶芯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 京东方晶芯科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202280000331.8A priority Critical patent/CN116964660A/zh
Priority to PCT/CN2022/078098 priority patent/WO2023159524A1/zh
Publication of WO2023159524A1 publication Critical patent/WO2023159524A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a display panel, a display device and a spliced display device.
  • Micro Light Emitting Diode (Micro Light Emitting Diode, Micro LED for short) is called the third generation display technology. Under the technical pressure of mass transfer and dead pixel repair, Micro LED display devices cannot realize the production of super-large-scale (such as luxury display wall) products. Therefore, for such super-large display products, the best solution at present is small-size display splicing.
  • a display panel including: a backplane, a plurality of light emitting devices, a plurality of first electrodes, and a plurality of first electrodes.
  • the backplane includes a first surface, a second surface opposite to the first surface, and multiple sides connecting the first surface and the second surface, wherein at least one of the multiple sides is a selected side.
  • Multiple light emitting devices are arranged on the first surface.
  • a plurality of first electrodes are disposed on the first surface and close to the selected side.
  • Each connecting trace includes a first-segment trace, a second-segment trace, and a third-segment trace connected in sequence, the first-segment trace is arranged on the first surface, and the first-segment trace is connected with a plurality of first-segment traces
  • One of the electrodes is electrically connected, the second section of wiring is arranged on the selected side surface, the third section of wiring is arranged on the second surface, and the third section of wiring is electrically connected to the flexible circuit board.
  • first surface and the second surface are mutually parallel planes, and the side or selected side can be a plane, can be an arc surface, and can also be formed by adjoining combinations of at least one plane and at least one arc
  • a side surface is composed of a plane part and two arcuate parts, wherein the plane part is perpendicular to the plane where the first surface is located, and one of the two arcuate parts is used to connect the plane part and the first surface, and the two arcuate parts The other one is used to connect the planar portion and the second surface, which is not limited in the present disclosure.
  • the third segment of routing includes a first sub-segment, a second sub-segment and a third sub-segment connected in sequence, and the first sub-segment is close to the selected side.
  • the first sub-line segments of multiple connecting lines are arranged side by side, and the third sub-line segments of multiple connecting lines are set side by side; the extending direction of the first sub-line segment intersects the extending direction of the second sub-line segment, and the extending direction of the second sub-line segment Intersects with the extending direction of the third sub-line segment; the angle formed between the extending direction of the first sub-line segment and the extending direction of the second sub-line segment ranges from 90° to 180°.
  • the first sub-line segment and the second sub-line segment are connected through a first connecting portion.
  • the first connecting part includes a first inner side and a first outer side opposite to each other, the orthographic projection of the first inner side on the backboard is the first inner side, and the orthographic projection of the first outer side on the backboard is the first outside.
  • the first sub-segment includes the inner side of the first sub-segment and the outer side of the first sub-segment.
  • the orthographic projection on the backplane is the outer side of the first sub-line.
  • the second sub-segment includes the inner side of the second sub-segment and the outer side of the second sub-segment.
  • the orthographic projection on the backplane is the outer edge of the second sub-segment.
  • the first inner edge is connected to the inner edge of the first sub-line segment and the inner edge of the second sub-line segment
  • the first outer edge is connected to the outer edge of the first sub-line segment and the outer edge of the second sub-line segment.
  • the first inner edge is curved; and/or, the first outer edge is curved.
  • the first inner edge is an arc; and/or, the first outer edge is an arc.
  • the first inner edge includes a plurality of polyline segments connected end to end, and one polyline segment connected to the inner side of the first sub-line segment among the polyline segments of the first inner edge is connected to the first sub-line segment
  • the angle formed between the inner sides is in the range of 170° to 177°.
  • An angle formed between two connected broken line segments in the plurality of broken line segments of the first inner edge ranges from 170° to 177°.
  • An angle formed between a polyline segment connected to the inner side of the second sub-segment and the inner side of the second sub-segment among the plurality of polyline segments of the first inner side ranges from 170° to 177°.
  • the first outer edge includes a plurality of polyline segments connected end to end, and one of the polyline segments of the first outer edge connected to the outer side of the first sub-line segment is connected to the outer edge of the first sub-line segment.
  • the angle formed between the sides ranges from 170° to 177°.
  • An angle formed between two connected broken line segments among the plurality of broken line segments on the first outer edge ranges from 170° to 177°.
  • An angle formed between a polyline segment connected to the outer edge of the second sub-line segment and the outer edge of the second sub-line segment among the plurality of polyline segments on the first outer edge ranges from 170° to 177°.
  • the angle formed between the extending direction of the third sub-line segment and the extending direction of the second sub-line segment ranges from 90° to 180°.
  • the third sub-line segment is connected to the second sub-line segment through a second connecting portion.
  • the second connecting portion includes a second inner side and a second outer side opposite to each other, the orthographic projection of the second inner side on the backboard is the second inner side, and the orthographic projection of the second outer side on the backboard is the second outside.
  • the third sub-segment includes the inner side of the third sub-segment and the outer side of the third sub-segment.
  • the orthographic projection on the backplane is the outside edge of the third sub-line.
  • the second sub-segment includes the inner side of the second sub-segment and the outer side of the second sub-segment.
  • the orthographic projection on the backplane is the outer edge of the second sub-segment.
  • the second inner edge is connected with the inner edge of the third sub-segment and the inner edge of the second sub-segment
  • the third outer edge is connected with the outer edge of the third sub-segment and the outer edge of the second sub-segment.
  • the second inner edge is curved; and/or, the second outer edge is curved.
  • the second inner edge is an arc, and/or, the second outer edge is an arc.
  • the second inner edge includes a plurality of polyline segments connected end to end, and one polyline segment connected to the inner side of the third sub-line segment among the polyline segments of the second inner edge is connected to the third sub-line segment
  • the angle formed between the inner sides is in the range of 170° to 177°.
  • An angle formed between two connected broken line segments in the plurality of broken line segments of the second inner side ranges from 170° to 177°.
  • An angle formed between a polyline segment connected to the inner side of the second sub-segment and the inner side of the second sub-segment among the plurality of polyline segments of the second inner side ranges from 170° to 177°.
  • the second outer edge includes a plurality of polyline segments connected end to end, and one of the polyline segments of the second outer edge that is connected to the outer edge of the third sub-line segment is connected to the outer edge of the third sub-line segment.
  • the angle formed between the sides ranges from 170° to 177°.
  • An angle formed between two connected polyline segments among the plurality of polyline segments on the second outer edge ranges from 170° to 177°.
  • An angle formed between a polyline segment connected to the outer edge of the second sub-line segment and the outer edge of the second sub-line segment among the polyline segments of the second outer edge ranges from 170° to 177°.
  • the plurality of connection traces are divided into at least one connection trace group, and each connection trace group includes at least two connection traces.
  • each connecting routing group the extension direction of the first sub-segment is the same as that of the third sub-segment, and the outer edge of the third sub-segment of the third sub-segment of the two farthest connecting routings The distance is smaller than the distance between the outer sides of the first sub-segment of the first sub-segment of the two farthest connecting traces.
  • the distance between two adjacent third sub-line segments is smaller than the distance between two adjacent first sub-line segments.
  • the distance between adjacent two 3rd sub-segments is, the 3rd sub-segment outer side of a 3rd sub-segment, and the spacing of the 3rd sub-segment inner side of another 3rd sub-segment; And one The outer edge of the third sub-line segment and the inner edge of the third sub-line segment of another third sub-line segment are close to each other.
  • the distance between two adjacent first sub-segments is the distance between the outer side of the first sub-segment of one first sub-segment and the inner side of the first sub-segment of the other first sub-segment;
  • the outer side of the first sub-segment of the sub-line and the inner side of the first sub-segment of another first sub-segment are close to each other.
  • the distance between the outer sides of the third sub-segment of the two closest connecting wires is greater than 1000 ⁇ m.
  • the junction of the second surface with each of the plurality of sides forms an edge, wherein the junction of the second surface with the selected side forms a selected edge; adjacent to the selected edge
  • the two edges are the first edge and the second edge; among multiple connecting traces, the distance between the third sub-line segment of the connecting trace closest to the first edge and the first edge is greater than or Equal to 100 ⁇ m.
  • the distance between the third sub-line segment of the connecting trace closest to the second edge and the second edge is greater than or equal to 100 ⁇ m.
  • the distance between the first sub-line segments of two adjacent connecting wires is 10 ⁇ 60 ⁇ m.
  • the distance between the third sub-segments of two adjacent connecting wires is greater than or equal to 10 ⁇ m.
  • the ratio of the dimension of the first electrode along the direction perpendicular to its extending direction to the dimension of the connection trace electrically connected to the first electrode along the direction perpendicular to its extending direction is between 1 and 3. value.
  • the angle formed between the extending direction of the first sub-line segment and the extending direction of the second sub-line segment ranges from 100° to 180°, and the extending direction of the third sub-line segment and the extending direction of the second sub-line segment The angle formed between the extending directions ranges from 100° to 180°; the dimension of the second sub-line segment along its extending direction is greater than or equal to 100um.
  • the second surface includes a binding area
  • the third sub-line segment extends into the binding area
  • the third sub-line segment is configured to bind the flexible circuit board in the binding area
  • the multiple third-segment traces include multiple straight line segments arranged side by side.
  • a selected edge is formed where the second surface meets the selected side; the two adjacent edges to the selected edge are the first edge and the second edge.
  • the distance between the third segment of the connecting trace closest to the first edge and the first edge is greater than or equal to 100 ⁇ m.
  • the distance between the third segment of the connecting trace closest to the second edge and the second edge is greater than or equal to 100 ⁇ m.
  • the display panel and the driving circuit board provided in any one embodiment of the above aspect.
  • the driving circuit board is arranged on the second surface of the backplane of the display panel, and the driving circuit board is electrically connected to the multiple first electrodes of the display panel through the flexible circuit board and multiple connecting wires of the display panel.
  • a spliced display device in yet another aspect, includes: a plurality of display devices as provided in the above aspect, and the plurality of display devices are spliced and assembled.
  • FIG. 1 is a structural diagram of a display surface side of a display panel provided by some embodiments of the present disclosure
  • FIG. 2 is a structural diagram of a non-display surface side of a display panel provided by some embodiments of the present disclosure
  • Fig. 3 is a cross-sectional view of a display panel provided by some embodiments of the present disclosure.
  • FIG. 4 is a cross-sectional view of another display panel provided by some embodiments of the present disclosure.
  • FIG. 5 is a partial structural diagram of another display panel on the non-display surface side provided by some embodiments of the present disclosure.
  • FIG. 6 is a structural diagram of a third section of wiring provided by some embodiments of the present disclosure.
  • Fig. 7 is a side structure diagram of the third section of the wiring in Fig. 6 in the A-A direction;
  • Fig. 8 is a side structure diagram of the third section of the wiring in Fig. 6 in the B-B direction;
  • FIG. 9 is an orthographic view of the side of the third section of wiring on the backplane provided by some embodiments of the present disclosure.
  • Fig. 10 is another orthographic projection view of the side of the third section of wiring on the backplane provided by some embodiments of the present disclosure.
  • Fig. 11 is an orthographic view of the side of the first connecting part of the third section of the wiring on the backplane according to some embodiments of the present disclosure
  • Fig. 12 is an orthographic view of the side of the second connecting part of the third section of the wiring on the backplane according to some embodiments of the present disclosure
  • Fig. 13 is a structural diagram of a non-display side of another display panel provided by some embodiments of the present disclosure.
  • FIG. 14 is an enlarged view of the third segment of the wiring on the non-display side of the display panel in FIG. 13;
  • Fig. 15 is another structural diagram of a non-display side of another display panel provided by some embodiments of the present disclosure.
  • FIG. 16 is an enlarged view of the third segment of the wiring on the non-display side of the display panel in FIG. 15;
  • Fig. 17 is a partial structural view of the non-display surface side of the display panel provided by some embodiments of the present disclosure.
  • FIG. 18 is a structural diagram of another display panel on the non-display surface side provided by some embodiments of the present disclosure.
  • FIG. 19 is a cross-sectional view of connecting wires provided by some embodiments of the present disclosure.
  • Fig. 20A is a cross-sectional view of the first protective layer and the second protective layer of the display panel provided by some embodiments of the present disclosure
  • 20B is another cross-sectional view of the first protective layer and the second protective layer of the display panel provided by some embodiments of the present disclosure
  • Fig. 21A is a structural diagram of a display side of a display device provided by some embodiments of the present disclosure.
  • Fig. 21B is a structural diagram of a non-display side of a display device provided by some embodiments of the present disclosure.
  • Fig. 22 is a structural diagram of a spliced display device provided by some embodiments of the present disclosure.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality” means two or more.
  • the expressions “coupled” and “connected” and their derivatives may be used.
  • the term “connected” may be used in describing some embodiments to indicate that two or more elements are in direct physical or electrical contact with each other.
  • the term “coupled” may be used when describing some embodiments to indicate that two or more elements are in direct physical or electrical contact.
  • the terms “coupled” or “communicatively coupled” may also mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited by the context herein.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and both include the following combinations of A, B and C: A only, B only, C only, A and B A combination of A and C, a combination of B and C, and a combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • the term “if” is optionally interpreted to mean “when” or “at” or “in response to determining” or “in response to detecting,” depending on the context.
  • the phrases “if it is determined that " or “if [the stated condition or event] is detected” are optionally construed to mean “when determining ! or “in response to determining ! depending on the context Or “upon detection of [stated condition or event]” or “in response to detection of [stated condition or event]”.
  • Exemplary embodiments are described herein with reference to cross-sectional and/or plan views that are idealized exemplary drawings.
  • the thickness of layers and regions are exaggerated for clarity. Accordingly, variations in shape from the drawings as a result, for example, of manufacturing techniques and/or tolerances are contemplated.
  • example embodiments should not be construed as limited to the shapes of regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing. For example, an etched region illustrated as a rectangle will, typically, have curved features.
  • the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the actual shape of a region of a device and are not intended to limit the scope of example embodiments.
  • FIG. 1 a structural diagram of a display device 1000
  • FIG. 2 is a structural diagram of the rear of the display device 1000
  • the display device 1000 includes a display panel 100 and a driving circuit board 200 .
  • the drive circuit board 200 is configured as a drive integrated circuit (IC, Integrated Circuit) that drives the display panel 100 to display.
  • the drive circuit board 200 includes, for example, a gate drive circuit, a source drive circuit, a timing controller, and a power supply circuit. 200 is electrically connected to the display panel 100 and is configured to output corresponding signals to control the display panel 100 to display.
  • the display panel 100 includes a display area AA and a peripheral area BB disposed at least on one side of the display area.
  • the peripheral area BB may be located on one side, two sides or three sides of the display area AA, or , the peripheral area BB may be disposed around the display area AA.
  • a plurality of pixels P arranged in an array and a plurality of signal lines 90 are arranged in the display area AA, and the plurality of signal lines 90 are electrically connected to the plurality of pixels p.
  • Each pixel p includes at least one light emitting device 20, for example, the light emitting device 20 can be an inorganic light emitting diode, and the size of the inorganic light emitting diode is below 500 microns, or below 100 microns.
  • FIG. 3 is a cross-sectional view of the display device 1000 shown in FIG. 1 .
  • the display panel 100 includes a backplane 10 , a plurality of light emitting devices 20 , a plurality of first electrodes 30 , a plurality of connecting wires 40 and a plurality of second electrodes 50 .
  • the backplane 10 includes a first surface 10a, a second surface 10b opposite to the first surface 10a, and a plurality of sides 10c connecting the first surface 10a and the second surface 10b, at least one of which is a selected side 10cc,
  • the backplane 10 may be a glass substrate.
  • Each connecting wire 40 in the plurality of connecting wires 40 includes a first segment of wire 40 a , a second segment of wire 40 b and a third segment of wire 40 c that are sequentially connected.
  • the first trace 40a is disposed on the first surface 10a
  • the second trace 40b is disposed on the selected side surface 10cc
  • the third trace 40c is disposed on the second surface 10b.
  • a plurality of first electrodes 30 are disposed on the first surface 10a and close to the selected side 10cc.
  • the first electrode 30 is configured to be electrically connected to the light emitting device 20 and the first segment of the wire 40a.
  • a plurality of second electrodes 50 are disposed on the second surface 10b, which is close to the selected side surface 10cc.
  • the positions of the plurality of first electrodes 30 correspond to the positions of the plurality of second electrodes 50, and the second electrodes 50 are configured as It is electrically connected with the third segment of the wiring 40c and the flexible circuit board 80 (Flexible Printed Circuit, FPC)/driver circuit board 200. That is to say, the connecting wiring 40 connects the first electrode 30 and the second electrode 50 , so as to realize the connection between the first surface 10 a and the second surface 10 b of the backplane 10 .
  • FPC Flexible Printed Circuit
  • the driving circuit board 200 is bound to the non-display surface side of the display panel 100 , that is to say, the driving circuit board 200 is bound to the second surface 10 b of the backplane 10 .
  • the light emitting device 20 located on the display surface side of the display panel 100 (the first surface 10a of the backplane 10 ) is electrically connected to the driving circuit board 200 through the connecting wiring 40 . In this way, the frame of the display device 1000 can be reduced, and the screen ratio of the display device can be increased.
  • the light emitting device 20 is Mini LED (mini Light-Emitting Diode, mini light-emitting diode) or Micro LED (Micro Light-Emitting Diode, micro light-emitting diode).
  • Mini LED mini Light-Emitting Diode, mini light-emitting diode
  • Micro LED Micro Light-Emitting Diode, micro light-emitting diode
  • the light emitting device 20 on the first surface 10a of the backplane 10 is electrically connected to the driving circuit board 200 on the second surface 10b through the first section of wiring 40a, the second section of wiring 40b and the third section of wiring 40c.
  • the frame width of the display device 1000 is reduced, and the screen ratio of the display device 1000 is increased, so as to facilitate the realization of seamless splicing effect.
  • the first electrode 30 on the first surface 10a of the backplane 10 and the second electrode 50 on the second surface 10b of the backplane 10 are formed by electroplating, vapor deposition, printing silver glue or wet etching. Prepared by other processes. In this preparation process, after completing the manufacturing process of each film layer on the first surface 10a of the backplane 10, the backplane 10 needs to be turned over, and then the corresponding film layer structure is made on the second surface 10b. In the actual production process, the backplane 10 needs to be turned over during processing, which will inevitably cause the first surface 10a to contact the equipment base, and the first surface 10a will inevitably be scratched or dirty. Scratches or dirt can cause short circuits or short circuits, affecting product yield and quality.
  • some embodiments of the present disclosure provide a display panel, a display device, and a spliced display device.
  • the display panel is made by a single-sided process
  • the second electrode is The wires are electrically connected to the flexible circuit board, and there is no need to turn over the backplane during processing, preventing the backplane from being scratched and dirty when it contacts the equipment, thereby improving product yield and quality.
  • the display panel, the display device and the spliced display device provided by the present disclosure are respectively introduced below.
  • a display panel 100 includes: a backplane 10 , a plurality of light emitting devices 20 , a plurality of first electrodes 30 and a plurality of connecting wires 40 .
  • the arrangement positions and connection relationships of the plurality of light emitting devices 20 , the plurality of first electrodes 30 and the plurality of connecting wires 40 refer to the above description, and will not be repeated here.
  • the third line 40c includes a first sub-segment 40ca , a second sub-segment 40cb and a third sub-segment 40cc connected in sequence, and the first sub-segment 40ca is close to the selected side 10cc.
  • the first sub-segments 40ca of the plurality of connecting traces 40 are arranged in parallel, and the third sub-segments 40cc of the plurality of connecting traces 40 are arranged in parallel. As shown in FIG.
  • the extending direction of the first sub-segment 40ca intersects the extending direction of the second sub-segment 40cb
  • the extending direction of the second sub-segment 40cb intersects the extending direction of the third sub-segment 40cc.
  • the angle range of the angle ⁇ formed between the extension direction of the first sub-line segment 40ca and the extension direction of the second sub-line segment 40cb is 90° ⁇ 180°
  • the extension direction of the third sub-line segment 40cc and the extension direction of the second sub-line segment 40cb The angle ⁇ formed between the directions ranges from 90° to 180°.
  • the first sub-line segment 40ca , the second sub-line segment 40cb and the third sub-line segment 40cc are all straight line segments.
  • the first sub-line segment 40ca and the third sub-line segment 40cc are parallel, and the two ends of the second sub-line segment 40cb are respectively connected with the first sub-line segment 40ca and the third sub-line segment 40cc.
  • the angle ⁇ formed between the extension direction of the first sub-segment 40ca and the extension direction of the second sub-segment 40cb satisfies: 90° ⁇ ⁇ 180°; the angle ⁇ formed between the extending direction of the third sub-line segment 40cc and the extending direction of the second sub-line segment 40cb satisfies: 90° ⁇ 180°.
  • the angle range of the angle ⁇ and the angle range of the angle ⁇ are designed to be 100° ⁇ 180°, the minimum value of the angle ⁇ and the angle ⁇ is close to 100°, and the extension direction of the first sub-line segment 40ca is the same as that of the second sub-line segment 40ca.
  • the deflection angle (supplementary angle of the angle ⁇ ) of the third sub-segment 40cc relative to the second sub-segment 40cb, and the third segment is prepared by laser technology
  • the conductive film layer on the first surface causes damage, and the laser beam needs to stop at the intersection position of the two sub-line segments to deflect the direction of travel. The shorter the length, the smaller the damage to the non-target film layer. Setting the angle range of the angle ⁇ and the angle range of the angle ⁇ can reduce the damage of the laser to the non-target film layer and improve the yield of the display panel.
  • connection wiring 40 located on the second surface 10b of the display panel 100 By directly connecting the part of the connection wiring 40 located on the second surface 10b of the display panel 100 with the flexible circuit board 80, that is to say, the various layer structures of the display panel 100 located on the first surface 10a can be prepared first, and then through the side process
  • the connecting traces 40 are prepared, since the connecting traces 40 extend to the second surface 10 b of the backplane 10 , it is possible to avoid damage to each layer structure on the first surface 10 a when preparing a film layer on the second surface 10 b.
  • the production process is simplified, for example, the number of patterning processes can be reduced, the number of masks required can be reduced, and the steps and materials for removing the scratch-resistant protective layer can be omitted, thus reducing product manufacturing costs and improving Product competitiveness.
  • the backplane 10 can reduce the corrosion of devices or lines due to the contamination caused by repeated contact with the equipment base, and can increase the lifespan of the display panel 100 .
  • a plurality of third-segment traces 40c are electrically connected to at least one flexible circuit board 80, and at least two third-segment traces 40c connected to the same flexible circuit board 80 are related to The line of symmetry S perpendicular to the selected side 10cc is symmetrically arranged. At least two third-segment traces 40c connected to the same flexible circuit board 80 are called a group, and a group of third-segment traces 40c corresponds to a symmetrical line S.
  • the direction of the plurality of third-segment routings 40c is to approach the line of symmetry S, forming the first-segment routing 40ca
  • the convergence trend of 40cc is going to the third section.
  • FIG. 6 is a structural diagram of a third section of wiring 40c, and the connecting wiring 40 further includes a first connecting portion 40d, a first sub-section 40ca and a second sub-section 40cb. are connected by the first connecting portion 40d.
  • Fig. 7 is a structural diagram obtained from the direction A-A of the third section of the line 40c in Fig. 6, and Fig. 8 is a diagram showing the structure of the third section of the line 40c obtained from the direction B-B in Fig. 6
  • FIG. 9 is an orthographic projection of the two opposite sides of the third section of wiring 40c on the backplane 10.
  • the first connecting portion 40d includes a first inner side d1 and a first outer side d2 opposite to each other.
  • the first inner side d1 is relatively close to the first outer side d2, and is connected to the first connecting portion 40d.
  • the orthographic projection of the first inner side d1 on the backboard 10 is the first inner side d1'
  • the orthographic projection of the first outer side d2 on the backboard is the first outer side d2'.
  • the first sub-segment 40ca includes an inner side ca1 of the first sub-segment and an outer side ca2 of the first sub-segment.
  • the inner side ca1 of the first sub-segment is close to the outer side ca2 of the first sub-segment, and the symmetry line S related to the first sub-segment 40ca (the one where the first sub-segment 40ca is located)
  • the symmetry line S corresponding to the line 40c of the third segment of the group).
  • the orthographic projection of the inner side ca1 of the first sub-segment on the backplane 10 is the inner side ca1' of the first sub-segment
  • the orthographic projection of the outer side ca2 of the first sub-segment on the backplane 10 is the outer side ca2 of the first sub-segment '.
  • the second sub-segment 40cb includes an opposite second sub-segment inner side cb1 and a second sub-segment outer side cb2, and in a second sub-segment 40cb, the second sub-segment inner side cb1 is relatively close to the second sub-segment outer side cb2,
  • the symmetry line S related to the second sub-line segment 40cb (the symmetry line S corresponding to the group of third-segment traces 40c where the second sub-line segment 40cb is located).
  • the orthographic projection of the inner side cb1 of the second sub-segment on the backplane 10 is the inner side cb1' of the second sub-segment
  • the orthographic projection of the outer side cb2 of the second sub-segment on the backplane 10 is the outer side cb2 of the second sub-segment '.
  • the first inner edge d1' is connected with the inner edge ca1' of the first sub-line segment and the inner edge connection cb1' of the second sub-line segment
  • the first outer edge d2' is connected with the outer edge of the first sub-line segment ca2' is connected with the outer edge cb2' of the second sub-line segment.
  • the angle ⁇ formed between the extending direction of the first sub-line segment 40ca and the extending direction of the second sub-line segment 40cb ranges from 100° to 180°, That is, the angle ⁇ satisfies: 100° ⁇ 180°, for example, the angle ⁇ may be 100°, 150° or 170°.
  • the connection between the first sub-line segment 40ca and the second sub-line segment 40cb is realized through the first connecting portion 40d.
  • the first connecting portion 40d, the first sub-segment 40ca and the second sub-segment 40cb all belong to the connection routing 40, and the first sub-segment 40ca, the first connecting portion 40d and the second sub-segment 40cb are sequentially connected and integrally formed.
  • the first inner edge d1' is a curve; and/or, the first outer edge d2' is a curve.
  • the first inner side d1' is an arc; and/or, the first outer side d2' is an arc, for example, the opposite first inner side d1' and the first outer side d2' are arcs.
  • the first inner edge d1' is tangent to the inner edge ca1' of the first sub-line segment and the first inner edge d1' is tangent to the inner edge connection cb1' of the second sub-line segment.
  • the first outer edge d2' is tangent to the first sub-segment outer edge ca2' and the first outer edge d2' is connected to the second sub-segment outer edge cb2'.
  • the first inner side d1' is an S-shaped curve; and/or, the first outer side d2' is an S-shaped curve, for example, the opposite first inner side d1' and The first outer sides d2' are all S-shaped curves.
  • the first inner edge d1' is smoothly connected with the inner edge ca1' of the first sub-line segment, and the first inner edge d1' is smoothly connected with the inner edge connection cb1' of the second sub-line segment.
  • the first outer edge d2' is smoothly connected with the outer edge ca2' of the first sub-line segment, and the first outer edge d2' is smoothly connected with the outer edge cb2' of the second sub-line segment.
  • a metal plating layer is prepared on the first surface, the selected side surface and the second surface 10b of the backplane, and the metal plating layer is etched by a laser to be patterned to obtain a plurality of connecting wires.
  • the laser etching process it is critical to ensure that no damage is caused to non-target film layers during the entire process.
  • the laser energy may penetrate the backplane and damage the film layer on the first surface of the backplane, causing problems such as circuit breakage. Whether the non-target film layer will be damaged is directly related to the laser absorption of the material of the non-target film layer, the energy of the laser, and the residence time of the laser on the metal coating.
  • the laser beam can be controlled to travel at a constant speed along a path parallel to the extension direction of the first sub-line segment 40ca for etching; however, the first sub-line segment 40ca is relatively
  • the second sub-line segment 40cb has an included angle, which is 100° to 180°, that is, the direction of travel of the laser beam will be deflected, and the laser needs to stop at the intersection of the two to adjust the direction of travel; therefore, in order to ensure that the laser beam travels in the entire
  • the laser beam at the end of the first sub-line segment 40ca closest to the second sub-line segment 40cb, it is necessary to control the laser beam to travel in a smooth curved path so as to gradually change to the direction parallel to the extension
  • the first inner edge d1' includes a plurality of polyline segments connected end to end in sequence, and among the polyline segments of the first inner edge d1' and the inner edge ca1 of the first sub-line segment
  • the angle ⁇ 1 formed between the connected polyline segment and the inner side ca1 of the first sub-line segment ranges from 170° to 177°.
  • the angle ⁇ 2 formed between two connected broken line segments among the multiple broken line segments of the first inner edge d1' ranges from 170° to 177°.
  • the angle ⁇ 3 formed between a polyline segment connected to the inner side cb1' of the second sub-line segment and the inner side cb1' of the second sub-line segment has an angle range of 170° ° to 177°.
  • the angle ⁇ 1 formed between a polyline segment connected to the inner side ca1' of the first sub-line segment among the multiple polyline segments of the first inner side d1' and the inner side ca1' of the first sub-line segment can be 170°, 175° or 177°.
  • the angle ⁇ 2 formed between two connected broken line segments among the multiple broken line segments of the first inner edge d1', the angle ⁇ 2 can be 170°, 175° or 177°.
  • the angle ⁇ 3 formed between a polyline segment connected to the inner side cb1' of the second sub-line segment and the inner side cb1' of the second sub-line segment can be 170°, 175° or 177°.
  • angle ⁇ 1, angle ⁇ 2 and angle ⁇ 3 as an example of 170° and the angle ⁇ formed between the inner side ca1' of the first sub-line segment and the inner side cb1' of the second sub-line segment to be 150° as an example, that is to say , the inner edge cb1' of the second sub-segment is deflected by 40° relative to the inner edge ca1' of the first sub-segment, and the polyline segments of the first inner edge d1' are deflected multiple times, each deflection angle is 10°, and the first The inner side d1' becomes a relatively smooth transition part between the inner side ca1' of the first sub-segment and the inner side cb1' of the second sub-segment, and correspondingly, the first inner side d1 becomes the inner side ca1 of the first sub-segment The relatively smooth transition part between the second sub-line and the inner side cb1 of the second sub-line segment.
  • the first outer edge d2' includes a plurality of polyline segments connected end to end in sequence, and among the polyline segments of the first outer edge d2', the outer edge ca2' of the first sub-line segment is The angle ⁇ 1 formed between a connected polyline segment and the outer side ca2' of the first sub-line segment ranges from 170° to 177°. The angle ⁇ 2 formed between two connected broken line segments among the multiple broken line segments of the first outer edge d2' ranges from 170° to 177°.
  • the angle ⁇ 3 formed between a polyline segment connected to the outer side cb2' of the second sub-line segment and the outer side cb2' of the second sub-line segment has an angle range of 170° to 177°.
  • the angle ⁇ 1 formed between a polyline segment connected to the outer side ca2' of the first sub-segment and the outer side ca2' of the first sub-segment among the plurality of polyline segments of the first outer side d2' can be 170°, 175° or 177°.
  • the angle ⁇ 2 formed between two connected broken line segments among the multiple broken line segments of the first outer edge d2', the angle ⁇ 2 can be 170°, 175° or 177°.
  • an angle ⁇ 3 formed between a polyline segment connected to the outer edge cb2' of the second sub-line segment and the outer edge cb2' of the second sub-line segment is 170°, 175° or 177°.
  • the angle ⁇ 1 the angle ⁇ 2 and the angle ⁇ 3 all being 170° and the angle ⁇ formed between the outer edge ca2' of the first sub-line segment and the outer edge cb2' of the second sub-line segment being 150° as an example, that is to say , the outer edge cb2' of the second sub-segment is deflected by 40° relative to the outer edge ca2' of the first sub-segment, and the multiple polyline segments of the first outer edge d2' are deflected multiple times, and each deflection angle is 10°.
  • the first outer side d2' becomes a relatively smooth transition part between the outer side ca2' of the first sub-segment and the outer side cb2' of the second sub-segment, and accordingly, the first outer side d2 becomes the outer side of the first sub-segment A relatively smooth transition part between ca2 and the outer side cb2 of the second sub-line segment.
  • the first connecting portion 40d is connected between the first sub-line segment 40ca and the second sub-line segment 40cb.
  • the first inner side d1' of the first connecting part 40d is deflected by 3°-10° multiple times through multiple broken line segments, so as to realize the connection between the inner side ca1' of the first sub-line segment and the inner side cb1' of the second sub-line segment. Deflection from 0 to 80°.
  • the first inner side d1 becomes a relatively smooth transition part between the inner side ca1 of the first sub-line segment and the inner side cb1 of the second sub-line segment.
  • the first outer edge d2' of the first connecting part 40d is deflected by multiple times of 3°-10° through multiple broken line segments, so as to realize the deflection between the outer edge ca2' of the first sub-line segment and the outer edge cb2' of the second sub-line segment
  • the angle is the supplementary angle of the angle ⁇ , and the supplementary angle of the angle ⁇ ranges from 0° to 80°, that is, the traveling direction of the laser beam will be deflected from 0° to 80°.
  • the first outer side d2 becomes a relatively smooth transition part between the outer side ca2 of the first sub-line segment and the outer side cb2 of the second sub-line segment.
  • the first connecting part 40d becomes a transition part between the first sub-line segment 40ca and the second sub-line segment 40cb, and satisfies the first sub-line segment Based on the deflection of 100° to 180° between the line segment 40ca and the second sub-line segment 40cb, a relatively smooth transition connection is realized.
  • the laser forward path may not be possible to control the laser forward path to be a perfect arc or a smooth curve.
  • the forward route of the laser is the same as the first inner edge d1' or the first outer edge d2 'Multiple broken lines with the same path, and at the corner position of the laser on the adjacent broken lines, because the deflection angle is extremely low, for example, the deflection angle is 3° to 10°, the laser needs to pause for a short time due to the adjustment of the direction of travel.
  • the target film layer will not cause damage or the damage is within an acceptable range.
  • the connecting trace 40 further includes a second connecting portion 40e, and the third sub-line segment 40cc and the second sub-line segment 40cb are connected through the second connecting portion 40e.
  • the second connecting portion 40e includes a second inner side e1 and a second outer side e2 opposite to each other.
  • the second inner side e1 is opposite to the second outer side e1.
  • the two outer surfaces e2 are close to the symmetry line S related to the second connection portion 40e (the symmetry line S corresponding to the group of third-segment traces 40c where the second connection portion 40e is located).
  • the orthographic projection of the second inner surface e1 on the backplane 10 is the second inner edge e1', and the orthographic projection of the second outer surface e2 on the backplane 10 is the second outer edge e2'.
  • the third sub-segment 40cc includes the opposite inner side cc1 of the third sub-segment and the outer side cc2 of the third sub-segment. In a third sub-segment 40cc, the inner side cc1 of the third sub-segment is closer to the outer side cc2 of the third sub-segment.
  • the symmetry line S related to the third sub-line segment 40cc (the symmetry line S corresponding to the group of third-segment traces 40c where the third sub-line segment 40cc is located).
  • the orthographic projection of the inner side cc1 of the third sub-segment on the backplane 10 is the inner side cc1' of the third sub-segment
  • the orthographic projection of the outer side cc2 of the third sub-segment on the backplane 10 is the outer side cc2 of the third sub-segment '.
  • the second inner edge e1' is connected with the inner edge cc1' of the third sub-line segment and the inner edge cc2' of the second sub-line segment
  • the second outer edge e2' is connected with the outer edge cc2 of the third sub-line segment ' is connected with the outer edge cb2' of the second sub-line segment.
  • the angle ⁇ formed between the extension direction of the third sub-line segment 40cc and the extension direction of the second sub-line segment 40cb satisfies: 100° ⁇ 180°, for example, the angle ⁇ can be 100°, 150° or 170°.
  • the angle ⁇ formed between the extending direction of the third sub-line segment 40cc and the extending direction of the second sub-line segment 40cb as an example of 150°, the third sub-line segment 40cc and the second sub-line segment 40cb are connected through the second Section 40e realizes the connection.
  • the second connection part 40e, the third sub-line segment 40cc and the second sub-line segment 40cb all belong to the connection routing 40, and the third sub-line segment 40cc, the second connection part 40e and the second sub-line segment 40cb are sequentially connected and integrally formed.
  • the second inner edge e1' is a curve; and/or, the second outer edge e2' is a curve.
  • the second inner edge e1' is an arc; and/or, the second outer edge e2' is an arc.
  • the second inner edge e1' is tangent to the inner edge cc1' of the third sub-line segment and the second inner edge e1' is tangent to the inner edge connection cb1' of the second sub-line segment.
  • the second outer edge e2' is tangent to the third sub-segment outer edge cc2' and the second outer edge e2' is connected to the second sub-segment outer edge cb2'.
  • the second inner edge e1' is an S-shaped curve; and/or, the second outer edge e2' is an S-shaped curve.
  • the second inner edge e1' is smoothly connected with the inner edge cc1' of the third sub-line segment, and the second inner edge e1' is smoothly connected with the inner edge cb1' of the second sub-line segment.
  • the second outer edge e2' is smoothly connected with the outer edge cc2' of the third sub-line segment, and the second outer edge e2' is smoothly connected with the outer edge cb2' of the second sub-line segment.
  • the second inner side e1' and the second outer side e2' of the second connecting part 40e are arcs or smooth curves.
  • the laser keeps moving at a constant speed during the processing of the second connecting part 40e, which can avoid laser Stay in one place for too long to avoid damage to non-target film layers.
  • the laser beam can be controlled to travel at a constant speed along a path parallel to the extending direction of the second sub-line segment 40cb for etching; however, the third sub-line segment 40cc is relatively
  • the deflection angle of the second sub-line segment 40cb is the supplementary angle of the angle ⁇ , and the range of the supplementary angle of the angle ⁇ is 0 to 80°, that is, the traveling direction of the laser beam will be deflected from 0 to 80°, and the laser needs to be at the intersection position of the two Pause and then adjust the direction of travel; therefore, in order to ensure that the laser travels at a constant speed throughout the moving process, at the end of the second sub-line segment 40cb closest to the third sub-line segment 40cc, it is necessary to control the laser beam to travel in a smooth curved path, thereby gradually Change to the direction of travel parallel to the direction of extension of the third sub-
  • the second inner edge e1' includes a plurality of polyline segments connected end to end in sequence, and among the polyline segments of the second inner edge e1', the inner edge cc1 of the third sub-line segment
  • the angle ⁇ 1 formed between a polyline segment connected with ' and the inner edge cc1 of the third sub-line segment ranges from 170° to 177°.
  • the angle ⁇ 2 formed between two connected broken line segments among the multiple broken line segments of the second inner edge e1' ranges from 170° to 177°.
  • the angle ⁇ 1 formed between a polyline segment connected to the inner side cc1' of the third sub-segment and the inner side cc1' of the third sub-segment among the multiple polyline segments of the second inner side e1' The angle can be 170°, 175° or 177°.
  • the angle ⁇ 2 formed between two connected broken line segments among the multiple broken line segments of the second inner edge e2' can be 170°, 175° or 177°.
  • the angle ⁇ 3 formed may be 170°, 175° or 177°.
  • each deflection angle is 10°
  • the second inner side e1' becomes a relatively smooth transition part between the inner side cc1' of the third sub-segment and the inner side cb1' of the second sub-segment, and accordingly, the second inner side e1 becomes the inner side of the third sub-segment A relatively smooth transition part between cc1 and the inner side cb1 of the second sub-line segment.
  • the second outer edge e2' includes multiple broken line segments connected end to end in sequence, and among the multiple broken line segments of the second outer edge e2', the outer edge cc2' of the third sub-line segment
  • the angle ⁇ 1 formed between a connected polyline segment and the outer side cc2' of the third sub-line segment ranges from 170° to 177°.
  • the angle ⁇ 2 formed between two connected broken line segments among the multiple broken line segments of the second outer edge e2' ranges from 170° to 177°.
  • a polyline segment connected to the outer edge cb2' of the second sub-line segment, and the angle ⁇ 3 formed between the outer edge cb2' of the second sub-line segment has an angle range of 170° to 177°.
  • the angle ⁇ 1 formed between a polyline segment connected to the outer edge cc2' of the third sub-line segment and the outer edge cc2' of the third sub-line segment among the multiple polyline segments of the second outer edge e2' The angle can be 170°, 175° or 177°.
  • the angle ⁇ 2 formed between two connected broken line segments among the multiple broken line segments of the second outer edge e2' can be 170°, 175° or 177°.
  • a polyline segment connected to the outer side cb2' of the second sub-line segment, and the angle ⁇ 3 formed between the outer side cb2' of the second sub-line segment is 170°, 175° or 177°.
  • the angle ⁇ 1 the angle ⁇ 2 and the angle ⁇ 3 all being 170° and the angle ⁇ formed between the outer edge cc2' of the third sub-line segment and the outer edge cb2' of the second sub-line segment being 150° as an example, that is to say , the outer edge cc2' of the third sub-segment is deflected by 40° relative to the outer edge cb2' of the second sub-segment.
  • the outer edge e2' becomes a relatively smooth transition part between the outer edge cc2' of the third sub-line segment and the outer edge cb2' of the second sub-line segment, and accordingly, the first outer side d2 becomes the outer edge cc2 of the third sub-line segment and the relatively smooth transition part between the outer surface cb2 of the second sub-line segment.
  • the second connecting portion 40e is connected between the third sub-line segment 40cc and the second sub-line segment 40cb.
  • the second inner side e1' of the second connection part 40e is deflected by 3°-10° multiple times through multiple broken line segments, so as to realize the connection between the inner side cc1' of the third sub-line segment and the inner side cb1' of the second sub-line segment 100° to 180° deflection.
  • the second inner side e1 becomes a relatively smooth transition part between the inner side cc1 of the third sub-segment and the inner side cb1 of the second sub-segment.
  • the second outer edge e2' of the second connecting portion 40e is deflected multiple times by 3° to 10° through multiple broken line segments, so as to realize 100° between the outer edge cc2' of the third sub-line segment and the outer edge cb2' of the second sub-line segment. ° to 180° deflection.
  • the second outer surface e2 becomes a relatively smooth transition part between the inner surface cc2 of the third sub-segment and the outer surface cb2 of the second sub-segment.
  • the second connecting part 40e becomes a transition part between the third sub-line segment 40cc and the second sub-line segment 40cb, and satisfies the third sub-line segment
  • a pair of smooth transition connections is realized.
  • the first inner side d1' and the first outer side d2' of the second connection part 40e adopt multiple fold lines, and the included angle between adjacent fold lines is extremely small.
  • the edge Ae is formed where the second surface 10 b meets each side 10 c of the plurality of side surfaces 10 c.
  • There are a plurality of edges Ae and each edge of the second surface 10b is provided with an edge Ae.
  • the junction of the second surface 10b and the selected side 10cc forms a selected edge Ae'; the two adjacent edges Ae to the selected edge Ae' are the first edge Ae1 and the second edge Ae2.
  • the second surface 10b includes a binding area CC
  • the third sub-line segment 40cc extends into the binding area CC
  • the third sub-line segment 40cc is configured to be bound in the binding area CC.
  • the length for example, the length of the third sub-line segment 40cc in its extending direction is 1.1-1.5 times, for example about 1.3 times, the length of the golden finger. As shown in FIG. 14 and FIG.
  • the distance between the outer side cc2' of the third sub-trace of the connecting trace 40 closest to the first edge Ae1 and the first edge Ae1 The distance L1 is greater than or equal to 100 ⁇ m.
  • the distance L2 between the outer side cc2' of the third sub-trace of the connecting trace 40 closest to the second edge Ae2 and the second edge Ae2 is greater than or equal to 100 ⁇ m.
  • the distance between the binding region CC and the selected edge Ae' is greater than or equal to 500 ⁇ m and less than or equal to 10 mm, for example, it can be 680 ⁇ m, or 700 ⁇ m, or 9 mm.
  • the error is ⁇ 100 ⁇ m, and there may be misalignment when the flexible circuit board and multiple third-segment traces are bonded, or, when bonding
  • anisotropic conductive film (Anisotropic Conductive Film, ACF) is usually used to connect multiple third-section traces and the flexible circuit board 80.
  • ACF isotropic Conductive Film
  • the position of the anisotropic conductive film has an error of ⁇ 150 ⁇ m , if the distance L1 and distance L2 are too small, it may not be able to meet the process requirements and equipment accuracy requirements, and problems such as binding dislocation and position errors of various components may occur.
  • the distance L1 and the distance L2 are greater than or equal to 100 ⁇ m, which can meet the current process requirements and equipment capabilities.
  • the distance L1 between the outer side cc2' of the third sub-trace 40 of the connection trace 40 closest to the first edge Ae1 and the first edge Ae1 can be 100 ⁇ m, 110 ⁇ m and 120 ⁇ m .
  • the distance L2 between the outer edge cc2' of the third sub-trace 40 of the connection trace 40 closest to the second edge Ae2 and the second edge Ae2 can be 100 ⁇ m, 110 ⁇ m and 120 ⁇ m.
  • the distance L3 between the first edge Ae1 and the first edge Ae1 may be less than 100 ⁇ m.
  • the distance L4 between the outer side cc2' of the first sub-track of the connection track 40 closest to the second edge Ae2 and the second edge Ae2 may be less than 100 ⁇ m.
  • the plurality of connecting traces 40 are divided into at least one connecting trace group G, and each connecting trace group G includes at least two connecting traces. Line 40.
  • the extension direction of the first sub-segment 40ca and the extension direction of the third sub-segment 40cc are the same, and the third sub-segment of the third sub-segment 40cc of the two connection routings 40 that is farthest apart
  • the distance L8 between the outer sides cc2' is smaller than the distance L9 between the outer sides ca2' of the first sub-segment 40ca of the first sub-segment 40ca of the two farthest connecting traces 40 .
  • the multiple connecting wires 40 on the backplane 10 are a connecting wire group G
  • the outermost two third sub-lines of the connecting wire group G are The distance L8 between the sides cc2' is smaller than the distance L9 between the outer sides ca2' of the two outermost first sub-line segments.
  • one connecting wiring group G is electrically connected to one flexible circuit board 80 . That is to say, in each connection routing group G, the plurality of third sub-line segments are closed relative to the plurality of first sub-line segments, and in the direction perpendicular to the extension direction of the third sub-line segments, the Overall size reduction.
  • the plurality of connecting wires 40 on the backplane 10 are divided into two connecting wire groups G, and the two outermost wires 40 in each connecting wire group G are The distance L8 between the outer sides cc2' of the three sub-segments is smaller than the distance L9 between the outer sides ca2' of the two outermost first sub-segments.
  • each connecting wiring group G is electrically connected to a flexible circuit board 80 . That is to say, in each connection routing group G, the plurality of third sub-line segments are closed relative to the plurality of first sub-line segments, and in the direction perpendicular to the extension direction of the third sub-line segments, the Overall size reduction.
  • two flexible circuit boards 80 can be used. That is to say, the size of each flexible circuit board 80 can be reduced, which facilitates the binding of the flexible circuit board 80 to the connecting wiring group G and the plugging with the driving circuit board.
  • the distance L5 between the outer sides cc2' of the third sub-segment of the two closest connection routings is greater than 1000 ⁇ m, for example, may be 1010 ⁇ m, 1100 ⁇ m, or 1200 ⁇ m.
  • an alignment mark is respectively set at the positions between the outer sides cc2' of the third sub-line segment of the two closest connection routings, and the two alignment marks (mark) is used for alignment when the flexible circuit board 80 is bound.
  • the distance L5 is greater than 1000 ⁇ m, which can meet the processing accuracy requirements and equipment capacity requirements. Moreover, controlling the minimum value of the distance L5 can also avoid the problem of stacking of adjacent flexible circuit boards 80 due to their large outer contours.
  • the two alignment marks at the position between the outer sides cc2' of the third sub-line segment of the two closest connection routings should be of different shapes and sizes. , such as a cross alignment mark and a circular alignment mark, or share an alignment mark at the middle position between the outer sides cc2' of the third sub-line segment of the two closest connecting traces.
  • the outer edge cc2 of the third sub-line of one connecting wire 40 ', and the distance between the inner side cc1' of the third sub-segment connecting the routing 40 is the distance L7 between two adjacent third sub-segments 40cc; the outer side of the first sub-segment connecting the routing 40
  • the distance between ca2 ′, and the inner edge ca1 ′ of the first sub-segment connecting the trace 40 is the distance L6 between two adjacent first sub-segments 40ca.
  • the distance L7 between two adjacent third sub-line segments 40cc is smaller than the distance L6 between the two adjacent first sub-line segments 40ca.
  • the pitch of the inner edge ca1' may be 10 ⁇ m ⁇ 60 ⁇ m, for example, 10 ⁇ m, 40 ⁇ m or 60 ⁇ m.
  • the distance between the outer side cc2' of the third sub-segment connecting the wiring 40 and the inner side cc1' of the third sub-segment connecting the wiring 40 is greater than or equal to 10 ⁇ m, for example, it can be 10 ⁇ m, 30 ⁇ m or 50 ⁇ m.
  • each connecting routing group G the distance L8 is smaller than the distance L9, and the distance L7 is smaller than the distance L6, and the connecting routing group G is at the position of the third sub-routing 40cc, compared to the position of the first routing group 40cashrinking inwards, such a design can provide sufficient space for the distance L1 and the distance L2 to be greater than or equal to 100 ⁇ m, so as to facilitate the bonding of the flexible circuit board.
  • the dimension Wca of the first sub-segment 40ca along the direction perpendicular to its extending direction is greater than or equal to 60 ⁇ m.
  • a dimension Wcc of the third sub-segment 40cc along a direction perpendicular to its extending direction is greater than or equal to 60 ⁇ m.
  • a dimension Wcb of the second sub-segment 40cb along a direction perpendicular to its extending direction is smaller than or equal to a dimension Wca of the first sub-line segment 40ca along a direction perpendicular to its extending direction.
  • the dimension Wca of the first sub-line segment 40ca along the direction perpendicular to its extending direction is 60 ⁇ m, 80 ⁇ m or 90 ⁇ m.
  • the dimension Wcc of the third sub-segment 40cc along the direction perpendicular to its extending direction is 60 ⁇ m, 65 ⁇ m or 75 ⁇ m.
  • the dimension Wcb of the second sub-segment 40cb in a direction perpendicular to the extending direction thereof may be 60 ⁇ m, 70 ⁇ m or 80 ⁇ m.
  • the dimension Lca along the extending direction of the first sub-line segment 40ca is greater than or equal to 50 ⁇ m.
  • the angle between the extending direction of the first sub-line segment 40ca and the extending direction of the second sub-line segment 40cb is greater than 100°, and/or, the angle between the extending direction of the third sub-line segment 40cc and the extending direction of the second sub-line segment 40cb greater than 100°; under this condition, the dimension Lcb of the second sub-line segment 40cb along its extending direction is greater than or equal to 100 ⁇ m.
  • the dimension Lcc of the third sub-segment 40cc along its extending direction is greater than or equal to 600 ⁇ m.
  • the dimensions of the first sub-segment 40ca, the second sub-segment 40cb and the third sub-segment 40ca of a connecting trace 40 in their extending direction are respectively as follows: Lca can be 50 ⁇ m, 60 ⁇ m and 90 ⁇ m.
  • the dimension Lcb of the second sub-line segment 40cb in the extending direction thereof may be 100 ⁇ m, 120 ⁇ m, and 140 ⁇ m.
  • the dimension Lcc of the third sub-segment 40cc along its extending direction may be 600 ⁇ m, 700 ⁇ m and 800 ⁇ m.
  • the size of the first sub-segment 40ca along its extending direction is the length Lca of the first sub-segment
  • the dimension of the second sub-segment 40cb along its extending direction is the length Lcb of the second sub-segment
  • the third sub-segment 40cc The dimension along its extension direction is the length Lcc of the third sub-line segment
  • the dimension of the first sub-line segment 40ca in the direction perpendicular to its extension direction is the width Wca of the first sub-line segment
  • the second sub-line segment 40cb is along the direction of its extension
  • the dimension in the vertical direction is the width Wcb of the second sub-segment
  • the dimension in the direction perpendicular to the extending direction of the third sub-segment 40cc is the width Wcc of the third sub-segment.
  • the widths of the three sub-segments of the third-segment trace 40c gradually decrease.
  • the width of the first sub-segment 40ca is greater than or equal to the width of the second sub-segment 40cb, and the width of the second sub-segment 40cb is greater than or equal to the width of the third sub-segment 40cc.
  • the width of the third routing 40c can be represented by an average width AWc.
  • the average width AWc of the third segment 40c is the weighted sum of the width Wca of the first sub-segment 40ca, the width Wcb of the second sub-segment 40cb and the width Wcc of the third sub-segment 40cc, the first The weight of the width Wca of the sub-segment 40ca is the ratio of the length Lca of the first sub-segment 40ca to the total length of the third line 40c, and the weight of the width Wcb of the second sub-segment 40cb is the weight of the second sub-segment 40cb
  • the ratio of the length Lcb of the length Lcb to the total length of the third line 40c, the weight of the width Wcc of the third sub-segment 40cc is the ratio of the length L
  • the length Lca of the first sub-line segment 40ca may be 50 ⁇ m, and the width Wca of the first sub-line segment 40ca may be 80 ⁇ m.
  • the length Lcb of the second sub-line segment may be 100 ⁇ m, and the width Wcb of the second sub-line segment may be 70 ⁇ m.
  • the length Lcc of the third sub-line segment may be 600 ⁇ m, and the width Wcc of the third sub-line segment may be 60 ⁇ m.
  • the average width AWc of the third wire 40c is 62.67 ⁇ m.
  • the size of the first section of the line 40a along its extending direction is the length La of the first section of the line
  • the dimension of the second section of the line 40b along its extending direction is the length Lb of the second section of the line.
  • the dimension of the third section of wiring 40c along its extending direction is the length Lc of the third section of wiring
  • the dimension of the first section of wiring 40a in a direction perpendicular to its extending direction is the width Wa of the first section of wiring
  • the dimension of the first section of wiring 40a is the width Wa of the first section of wiring.
  • the dimension of the second section of wiring 40b along the direction perpendicular to its extending direction is the width Wb of the second section of wiring
  • the dimension of the third section of wiring 40c along the direction perpendicular to its extending direction is the width Wc of the third section of wiring .
  • the width of the first section of wiring 40a, the width of the second section of wiring 40b and the width of the third section of wiring 40c included in a connecting wiring 40 are not equal, so the width of the connecting wiring 40 Expressed by the average width AW.
  • the average width AW of the connecting trace 40 is the weighted summation of the width Wa of the first segment, the width Wb of the second segment, and the width Wc of the third segment, and the width Wa of the first segment occupies
  • the weight of the weight is the ratio of the length La of the first section of the wiring to the total length of the connecting wiring 40
  • the weight of the width Wb of the second section of the wiring is the ratio of the length Lb of the second section of the wiring to the total length of the connecting wiring 40.
  • the ratio of the length, the weight of the width Wc of the third section of the line is the ratio of the length Lc of the third section of the line to the total length of the connecting line 40:
  • the dimension La of the first section of wiring 40a along its extending direction is ⁇ 200 ⁇ m; the dimension of the second section of wiring 40b along its extending direction is Lb ⁇ 200 ⁇ m; the third section of wiring 40c is along its extending direction The upper dimension Lc ⁇ 1200 ⁇ m.
  • FIG. 17 is a front partial structural view of the display panel 100 provided in the present disclosure.
  • the average widths of different connecting wires 40 are not equal, and the average width of the connecting wires 40 and, and the connection
  • the width of the first electrode 30 electrically connected to the trace 40 is related.
  • the dimension of the first electrode 30 along the direction perpendicular to its extending direction and the dimension of the connection trace 40 electrically connected to the first electrode 30 along the direction perpendicular to its extending direction The ratio takes a value between 1 and 3.
  • the dimension of the first electrode 30 along the direction perpendicular to its extending direction is the width W30 of the first electrode
  • the dimension of the connecting trace 40 along the direction perpendicular to its extending direction is the average width AW of the connecting trace 40 .
  • the width W30 of the first electrode is proportional to the average width AW of the connecting wire 40, and the ratio ranges from 1 to 3, namely:
  • the first electrode 30 may be configured to transmit a VGB signal, a VR signal or a constant voltage signal (GND signal), and the first electrode 30 is electrically connected to the signal line 90 located on the first surface of the backplane.
  • the signal line 90 is used to connect the first electrode 30 and the light emitting device 20.
  • the width of the first electrode 30 is related to, for example, proportional to the width of the signal line 90 to which it is electrically connected. According to the electrical performance evaluation, the edge of the different signal line 90 and its extending direction The theoretical values of the dimensions in the vertical direction are different, and the dimension of the signal line transmitting the constant voltage signal is the largest in the direction perpendicular to its extending direction. Therefore, different signal lines 90 have different widths, different first electrodes 30 have different widths, and different connection traces 30 have different average widths, and the average width of a connection trace 30 is directly proportional to the width of the signal line 90 electrically connected to it.
  • the multiple third-segment traces 40c include multiple straight-line segments arranged side by side.
  • a selected edge Ae' is formed where the second surface 10b meets the selected side surface, and the two adjacent edges Ae' are the first edge Ae1 and the second edge Ae2.
  • the distance between the third segment trace 40 c of the connecting trace 40 closest to the first edge Ae1 and the first edge Ae1 is greater than or equal to 100 ⁇ m.
  • the distance between the third segment 40 c of the connecting trace 40 closest to the second edge Ae2 and the second edge Ae2 is greater than or equal to 100 ⁇ m.
  • the third segment traces 40c are all straight segments, and the plurality of third segment traces 40c are electrically connected to at least one flexible circuit board 80, and those connected to the same flexible circuit board 80. At least two third-segment traces 40c have a symmetrical line S perpendicular to the selected side, and at least two third-segment traces 40c connected to the same flexible circuit board 80 are called a group, and a group of third-segment traces 40c corresponds to a line S of symmetry.
  • Each third-segment trace 40c includes two opposite sides: the third-segment trace inner surface c1 and the third-segment trace outer surface c2, the third-segment trace inner surface c1 is opposite to the third-segment trace outer surface c2 Close to, the symmetry line S related to the third-segment trace 40c (the symmetry line S corresponding to the group of third-segment traces 40c where the third-segment trace 40c is located).
  • the orthographic projection of the inner side c1 of the third section of the line on the second surface 10b is the inner side c1' of the third section of the line
  • the orthographic projection of the outer side c2 of the third section of the line on the second surface 10b is the third section of the line Inner edge c2'.
  • the distance between the third trace 40c of the connecting trace 40 closest to the first edge Ae1 and the first edge Ae1 is greater than or equal to 100 ⁇ m, that is, the distance between the first edge Ae1 and the closest
  • the distance K1 of the outer edge c2' of the third segment of the trace is greater than or equal to 100 ⁇ m.
  • the distance between the third section of wiring 40c connecting the wiring 40 closest to the second edge Ae2 and the second edge Ae2 is greater than or equal to 100 ⁇ m, that is, the distance between the second edge Ae2 and the third closest
  • the distance K2 of the outer edge c2' of the segment trace is greater than or equal to 100 ⁇ m.
  • the third section of wiring 40c extends into the bonding area and is electrically connected to the flexible circuit board.
  • the flexible circuit board 80 has a tolerance, for example, the tolerance is ⁇ 100 ⁇ m, and the flexible circuit board may be misaligned when binding multiple third-segment traces, or, usually, different The Anisotropic Conductive Film (ACF) connects multiple third-section traces and the flexible circuit board 80 , and there is an error of ⁇ 150 ⁇ m in the position of the Anisotropic Conductive Film during the attaching process. Therefore, in the direct bonding process of the third sub-segment 40c and the flexible circuit board 80, the distance K1 and the distance K2 need to be greater than or equal to 100 ⁇ m to meet the current process requirements and equipment capabilities.
  • ACF Anisotropic Conductive Film
  • connection trace 40 is formed by performing a laser etching process on the metal layer. Specifically, the portion of the first surface 10a of the backplane 10 close to the selected side 10c, the portion of the second surface 10b close to the selected side 10c, and the selected side are formed by sputtering to form a metal layer, and then removed by laser etching. The required metal layer part forms the connection trace 40 in this way.
  • Laser etching process is used to process connecting wires, and laser etching can be performed after forming a metal layer by sputtering. Compared with wet etching process, laser etching process is simple and convenient, and has high production efficiency. In addition, there is no need to turn over the display panel. On the surface, it can reduce production materials such as protective layers, further reduce production costs, improve product competitiveness, and reduce scratches or dirt caused by contact between display panels and equipment, which is conducive to improving product yield.
  • the connecting wire 40 includes a first buffer conductive pattern t1 , a main conductive pattern t2 and a second buffer conductive pattern t3 which are sequentially stacked.
  • the first buffer conductive pattern t1 is closer to the backplane 10 than the main conductive pattern t2 .
  • the first buffer conductive pattern t1 is close to the backplane 10 , and the material of the layer of the first buffer conductive pattern t1 includes at least one of molybdenum and titanium.
  • the material of the main conductive pattern t2 includes at least one of copper and aluminum.
  • the material of the second buffer conductive pattern t3 includes at least one of molybdenum, titanium and indium tin oxide.
  • the display panel 100 further includes a first protection layer 60, and the first protection layer 60 covers a plurality of first electrodes 30, a first section of wiring 40a, a second section of wiring Line 40b and the portion of the third section of trace 40c that is close to the selected side 10cc.
  • the first protective layer 60 fills the gaps between the plurality of first electrodes 30 and the pattern gaps of the first segment of the wiring 40a, the pattern gap of the second segment of the routing 40b, and the part of the third segment of the routing 40c near the selected side. pattern gap.
  • a metal layer is formed on a partial area of the first surface 10a close to the selected side 10c, a partial area of the second surface 10b close to the selected side 10c, and the selected side 10c, and the metal layer is patterned by a laser etching process, A plurality of connection traces 40 are obtained.
  • a first protective layer 60 covering the part of the first section of wiring 40a, the second section of wiring 40b and the third section of wiring 40c close to the selected side 10cc is formed, and at the same time, the first The protection layer 60 also covers the part of the first electrode 30 connected to the connection wire 40 .
  • the first protective layer 60 is an insulating material with high corrosion resistance and adhesion.
  • the first protective layer 60 can be OC (over coating) glue.
  • the material of the first protective layer 60 can include dark OC glue, or dark ink.
  • the ink has high hardness and good corrosion resistance, which can protect multiple connecting traces.
  • the display panel 100 further includes a second protective layer 70A, and the second protective layer 70A covers the plurality of light emitting devices 20 and the first protective layer 60 located on the first surface. 10a, and the second protection layer 70A fills the area between the light emitting devices 20 and between the light emitting device 20 and the first electrode 30.
  • material selection and thickness setting should be carried out on the basis of not affecting the set brightness of the light emitting devices 20 .
  • a protective film is attached to the non-display surface side of the display panel 100 (the protective film is removed in a subsequent process), and then the light-emitting device is completed on the display surface side of the display panel 100 20 preparation, such as binding the LED chip and binding the micro control chip, the micro control chip is used to control the light emission of the LED chip.
  • the second protective layer 70A is pasted on the part of the light emitting device 20 and the first protective layer 60 located on the first surface 10a.
  • the second protection layer 70A covers the plurality of light emitting devices 20 , and fills gaps between the plurality of light emitting devices 20 and areas between the light emitting devices 20 and the first electrode 30 .
  • the second protective layer 70A can be OC (over coating) glue, for example, the material of the second protective layer 70A can include dark OC glue or dark ink.
  • the side of the second protective layer 70A away from the backplane 10 is a flat surface.
  • the second protective layer 70A is configured to protect the plurality of light emitting devices 20, and play a role of electrical insulation and waterproofing against oxygen corrosion, so as to prevent the plurality of light emitting devices 20 from being damaged by the outside world, such as bumps, peeling off, or oxidation.
  • the light emitting performance of the light emitting device 20 is guaranteed.
  • the display panel 100 may further include a third protective layer 70B, and the third protective layer 70B covers at least the part of the first protective layer 60 located on the side 10c and the second surface 10b and a plurality of strips.
  • the third segment of the wire 40c connecting the wire 40 may be further included in the display panel 100.
  • the third protection layer 70B covers the portion of the first protection layer 60 located on the side surface 10c and the second surface 10b , the third section of the wiring 40c connecting the wirings 40 , and the entire second surface 10b.
  • the flexible circuit board 80 is bound to the third sub-route of the third section of the wiring 40c, for example, the flexible circuit board 80 and the third sub-wiring of the third section of the wiring 40c
  • the three sub-wires are bonded by thermal compression process, and then the side of the first protection layer 60 away from the side 10c and the side of the third section of the wire 40c away from the second surface 10b are coated with a third protection layer 70B.
  • the third protective layer 70B can be a fluorinating agent layer, and a fluorinating agent can be used.
  • the third protective layer 70B covers the part of the first protective layer 60 located on the side 10c and the second surface 10b and the connection between the wiring 40 and the flexible circuit board 80. part, and at the same time cover the part where the flexible circuit board 80 is bound to the third sub-wiring.
  • the third protective layer 70B can further protect the display side and the non-display side of the display panel, and prevent the multiple connection traces 40 and the part connected between the connection traces 40 and the flexible circuit board 80 from being damaged by the outside world and water. Oxygen corrosion affects the stability of the connection.
  • some embodiments of the present disclosure also provide a display device 1000, including the display panel 100 and the driving circuit board 200 provided in any one of the above embodiments, and the driving circuit board 200 is arranged on the display On the second surface 10 b of the backplane 10 of the panel 100 , the driving circuit board 200 is electrically connected to the plurality of first electrodes 30 of the display panel 100 through the flexible circuit board and the plurality of connecting traces 40 of the display panel 100 .
  • the other end of the flexible circuit board is connected to the third sub-segment 40c of the plurality of connecting traces 40 in the bonding area CC.
  • the display device 1000 adopts the display panel 100 provided by the above-mentioned embodiment, and has the same technical effect as that of the above-mentioned display panel 100 , which will not be repeated here.
  • some embodiments of the present disclosure also provide a spliced display device 10000 , including the display device 1000 provided in the above embodiments, and multiple display devices 1000 are spliced and assembled.
  • the spliced display device 10000 adopts the display device 1000 provided in the above-mentioned embodiments, and has the same technical effect as the above-mentioned display device 1000 , which will not be repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示面板(100),包括:背板(10)、多个发光器件(20)、多个第一电极(30)和多条连接走线(40)。背板(10)包括第一表面(10a)、与第一表面(10a)相对的第二表面(10b)以及连接第一表面(10a)和第二表面(10b)的多个侧面(10c),其中,多个侧面(10c)中的至少一个为选定侧面(10cc)。多个发光器件(20)设置于第一表面(10a)上。多个第一电极(30)设置于第一表面(10a)上,且靠近选定侧面(10cc)。每条连接走线(40)包括依次连接的第一段走线(40a)、第二段走线(40b)和第三段走线(40c),第一段走线(40a)设置于第一表面(10a)上,且第一段走线(40a)与多个第一电极(30)中的一个电连接,第二段走线(40b)设置于选定侧面(10cc)上,第三段走线(40c)设置于第二表面(10b)上,第三段走线(40c)与柔性线路板(80)电连接。

Description

显示面板、显示装置及拼接显示装置 技术领域
本公开涉及显示技术领域,尤其涉及一种显示面板、显示装置及拼接显示装置。
背景技术
微型发光二极管(Micro Light Emitting Diode,简称Micro LED)被称为第三代显示技术。Micro LED显示装置在巨量转移与坏点修复等技术压力下,无法实现超大尺寸(例如豪华显示墙)产品的制作。因此对于此类超大显示屏的产品,目前最佳方案是小尺寸显示屏拼接。
发明内容
一方面,提供一种显示面板,包括:背板、多个发光器件、多个第一电极和多个第一电极。其中,背板包括第一表面、与第一表面相对的第二表面以及连接第一表面和第二表面的多个侧面,其中,多个侧面中的至少一个为选定侧面。多个发光器件设置于第一表面上。多个第一电极设置于第一表面上,且靠近选定侧面。每条连接走线包括依次连接的第一段走线、第二段走线和第三段走线,第一段走线设置于第一表面上,且第一段走线与多个第一电极中的一个电连接,第二段走线设置于选定侧面上,第三段走线设置于第二表面上,第三段走线与柔性线路板电连接。
可以理解的是,第一表面和第二表面为相互平行的平面,而侧面或选定侧面可以为平面,可以为弧面,也可以为至少一个平面和至少一个弧面的相互邻接组合构成的面,例如侧面由一个平面部和两个弧面部组成,其中平面部与第一表面所在的平面垂直,而两个弧面部中的一个用于连接该平面部与第一表面,两个弧面部中的另一个用于连接该平面部与第二表面,本公开对此不做限定。
在一些实施例中,第三段走线包括依次连接的第一子线段、第二子线段和第三子线段,第一子线段靠近选定侧面。多条连接走线的第一子线段并列设置,多条连接走线的第三子线段并列设置;第一子线段的延伸方向与第二子线段的延伸方向相交,第二子线段的延伸方向和第三子线段的延伸方向相交;第一子线段的延伸方向与第二子线段的延伸方向之间所形成的角的角度范围为90°~180°。
在一些实施例中,第一子线段和第二子线段之间通过第一连接部连接。其中,第一连接部包括相对的第一内侧面和第一外侧面,第一内侧面在背板 上的正投影为第一内边,第一外侧面在背板上的正投影为第一外边。第一子线段包括相对的第一子线段内侧面和第一子线段外侧面,第一子线段内侧面在背板上的正投影为第一子线段内侧边,第一子线段外侧面在背板上的正投影为第一子线段外侧边。第二子线段包括相对的第二子线段内侧面和第二子线段外侧面,第二子线段内侧面在背板上的正投影为第二子线段内侧边,第二子线段外侧面在背板上的正投影为第二子线段外侧边。第一内边与第一子线段内侧边和第二子线段内侧边连接,第一外边与第一子线段外侧边和第二子线段外侧边连接。
在一些实施例中,第一内边为曲线;和/或,第一外边为曲线。
在一些实施例中,第一内边为弧线;和/或,第一外边为弧线。
在一些实施例中,第一内边包括首尾依次连接的多条折线段,且第一内边的多条折线段中与第一子线段内侧边连接的一条折线段,与第一子线段内侧边之间所形成的角的角度范围为170°至177°。第一内边的多条折线段中相连接的两条折线段之间所形成的角的角度范围为170°至177°。第一内边的多条折线段中与第二子线段内侧边连接的一条折线段,与第二子线段内侧边之间所形成的角的角度范围为170°至177°。
在一些实施例中,第一外边包括首尾依次连接的多条折线段,且第一外边的多条折线段中与第一子线段外侧边连接的一条折线段,与第一子线段外侧边之间所形成的角的角度范围为170°至177°。第一外边的多条折线段中相连接的两条折线段之间所形成的角的角度范围为170°至177°。第一外边的多条折线段中与第二子线段外侧边连接的一条折线段,与第二子线段外侧边之间所形成的角的角度范围为170°至177°。
在一些实施例中,第三子线段的延伸方向与第二子线段的延伸方向之间所形成的角的角度范围为90°~180°。
在一些实施例中,第三子线段和第二子线段之间通过第二连接部连接。其中,第二连接部包括相对的第二内侧面和第二外侧面,第二内侧面在背板上的正投影为第二内边,第二外侧面在背板上的正投影为第二外边。第三子线段包括相对的第三子线段内侧面和第三子线段外侧面,第三子线段内侧面在背板上的正投影为第三子线段内侧边,第三子线段外侧面在背板上的正投影为第三子线段外侧边。第二子线段包括相对的第二子线段内侧面和第二子线段外侧面,第二子线段内侧面在背板上的正投影为第二子线段内侧边,第二子线段外侧面在背板上的正投影为第二子线段外侧边。第二内边与第三子线段内侧边和第二子线段内侧边连接,第三外边与第三子线段外侧边和第二 子线段外侧边连接。
在一些实施例中,第二内边为曲线;和/或,第二外边为曲线。
在一些实施例中,第二内边为弧线,和/或,第二外边为弧线。
在一些实施例中,第二内边包括首尾依次连接的多条折线段,且第二内边的多条折线段中与第三子线段内侧边连接的一条折线段,与第三子线段内侧边之间所形成的角的角度范围为170°至177°。第二内边的多条折线段中相连接的两条折线段之间所形成的角的角度范围为170°至177°。第二内边的多条折线段中与第二子线段内侧边连接的一条折线段,与第二子线段内侧边之间所形成的角的角度范围为170°至177°。
在一些实施例中,第二外边包括首尾依次连接的多条折线段,且第二外边的多条折线段中与第三子线段外侧边连接的一条折线段,与第三子线段外侧边之间所形成的角的角度范围为170°至177°。第二外边的多条折线段中相连接的两条折线段之间所形成的角的角度范围为170°至177°。第二外边的多条折线段中与第二子线段外侧边连接的一条折线段,与第二子线段外侧边之间所形成的角的角度范围为170°至177°。
在一些实施例中,多条连接走线分为至少一个连接走线组,每个连接走线组包括至少两条连接走线。每个连接走线组中,第一子线段的延伸方向和第三子线段的延伸方向相同,且相距最远的两条连接走线的第三子线段的第三子线段外侧边之间的距离,小于相距最远的两条连接走线的第一子线段的第一子线段外侧边之间的距离。
在一些实施例中,在同一个连接走线组中的相邻两条连接走线中,相邻两条第三子线段之间的距离小于相邻两条第一子线段之间的距离。其中,相邻两条第三子线段之间的距离为,一条第三子线段的第三子线段外侧边,和另一条第三子线段的第三子线段内侧边的间距;且一条第三子线段第三子线段外侧边和另一条第三子线段的第三子线段内侧边相互靠近。相邻两条第一子线段之间的距离为,一条第一子线段的第一子线段外侧边,和另一条第一子线段的第一子线段内侧边的间距;且一条第一子线段第一子线段外侧边和另一条第一子线段的第一子线段内侧边相互靠近。
在一些实施例中,相邻两个连接走线组中,相距最近的两条连接走线的第三子线段外侧边之间的距离大于1000μm。
在一些实施例中,第二表面与多个侧面中的每个侧面相接处形成棱边,其中,第二表面与选定侧面相接处形成选定棱边;与选定棱边相邻的两条棱边为第一棱边和第二棱边;多条连接走线中,与第一棱边距离最近的连接走 线的第三子线段与第一棱边之间的距离大于或等于100μm。多条连接走线中,与第二棱边距离最近的连接走线的第三子线段与第二棱边之间的距离大于或等于100μm。
在一些实施例中,连接走线组中,相邻两条连接走线的第一子线段之间的距离为10~60μm。
在一些实施例中,连接走线组中,相邻两条连接走线的第三子线段之间的距离大于或等于10μm。
在一些实施例中,第一电极沿与其延伸方向垂直的方向上的尺寸,和与第一电极电连接的连接走线沿与其延伸方向垂直的方向上的尺寸的比值在1至3之间取值。
在一些实施例中,第一子线段的延伸方向与第二子线段的延伸方向之间所形成的角的角度范围为100°~180°,第三子线段的延伸方向与第二子线段的延伸方向之间所形成的角的角度范围为100°~180°;第二子线段沿其延伸方向上的尺寸大于或等于100um。
在一些实施例中,第二表面包括绑定区,第三子线段延伸至绑定区内,第三子线段被配置为在绑定区内绑定柔性线路板。
在另一些实施例中,多条第三段走线包括并列设置的多条直线段。第二表面与选定侧面相接处形成选定棱边;与选定棱边相邻的两条棱边为第一棱边和第二棱边。多条连接走线中,与第一棱边距离最近的连接走线的第三段走线与第一棱边之间的距离大于或等于100μm。多条连接走线中,与第二棱边距离最近的连接走线的第三段走线与第二棱边之间的距离大于或等于100μm。
如上述一方面中任一项实施例提供的显示面板和驱动电路板。驱动电路板设置于显示面板的背板的第二表面上,驱动电路板通过柔性线路板和显示面板的多条连接走线与显示面板的多个第一电极电连接。
又一方面,提供一种拼接显示装置,拼接显示装置包括:多个如上述另一方面中提供的显示装置,多个显示装置拼接组装。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流 程、信号的实际时序等的限制。
图1为本公开的一些实施例提供的一种显示面板的显示面侧的结构图;
图2为本公开的一些实施例提供的一种显示面板的非显示面侧的结构图;
图3为本公开的一些实施例提供的一种显示面板的截面图;
图4为本公开的一些实施例提供的另一种显示面板的截面图;
图5为本公开的一些实施例提供的另一种显示面板的非显示面侧的部分结构图;
图6为本公开的一些实施例提供的第三段走线的结构图;
图7为图6中第三段走线在A-A方向的侧面结构图;
图8为图6中第三段走线在B-B方向的侧面结构图;
图9为本公开的一些实施例提供的一种第三段走线的侧面在背板上的正投影图;
图10为本公开的一些实施例提供的另一种第三段走线的侧面在背板上的正投影图;
图11为本公开的一些实施例提供的再一种第三段走线的第一连接部侧面在背板上的正投影图;
图12为本公开的一些实施例提供的再一种第三段走线的第二连接部侧面在背板上的正投影图;
图13为本公开的一些实施例提供的另一种显示面板的非显示侧面的结构图;
图14为图13中显示面板的非显示侧面的第三段走线的放大图;
图15为本公开的一些实施例提供的再一种显示面板的非显示侧面的另一种结构图;
图16为图15中显示面板的非显示侧面的第三段走线的放大图;
图17为本公开的一些实施例提供的显示面板的非显示面侧的局部结构图;
图18为本公开的一些实施例提供的又一种显示面板的非显示面侧的结构图;
图19为本公开的一些实施例提供的连接走线的截面图;
图20A为本公开的一些实施例提供的显示面板的第一保护层和第二保护层的一种截面图;
图20B为本公开的一些实施例提供的显示面板的第一保护层和第二保护层的另一种截面图;
图21A为本公开的一些实施例提供的显示装置的显示侧面的结构图;
图21B为本公开的一些实施例提供的显示装置的非显示侧面的结构图;
图22为本公开的一些实施例提供的拼接显示装置的结构图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
如本文中所使用,根据上下文,术语“如果”任选地被解释为意思是“当……时”或“在……时”或“响应于确定”或“响应于检测到”。类似地,根据上下文,短语“如果确定……”或“如果检测到[所陈述的条件或事件]”任选地被解释为是指“在确定……时”或“响应于确定……”或“在检测到[所陈述的条件或事件]时”或“响应于检测到[所陈述的条件或事件]”。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
如图1和图2所示,提供了一种显示装置1000的结构图,其中,图1为显示装置1000的正面的结构图,图2为显示装置1000的背面的结构图。显示装置1000包括显示面板100和驱动电路板200。驱动电路板200被配置为驱动显示面板100显示的驱动集成电路(IC,Integrated Circuit),驱动电路板200例如包括栅极驱动电路、源极驱动电路、时序控制器以及电源电路等,驱动电路板200与显示面板100电连接,被配置为输出相应的信号,以控制显示面板100进行显示。
如图1和图17所示,显示面板100包括显示区AA和至少设置于显示区一侧的周边区BB,例如:周边区BB可以位于显示区AA的一侧、两侧或三侧,或者,周边区BB可以围绕显示区AA设置。在显示区AA中设置有阵列排列的多个像素P和多条信号线90,多条信号线90与多个像素p电连接。每 个像素p包括至少一个发光器件20,该发光器件20例如可以为无机发光二极管,无机发光二极管的尺寸在500微米以下,或者100微米以下。
如图3所示,图3是图1所示的显示装置1000的截面图。显示面板100包括背板10、多个发光器件20、多个第一电极30、多条连接走线40和多个第二电极50。背板10包括第一表面10a、与第一表面10a相对的第二表面10b以及连接第一表面10a和第二表面10b的多个侧面10c,多个侧面中的至少一个为选定侧面10cc,背板10可以为玻璃基板。多条连接走线40中的每条连接走线40包括依次连接的第一段走线40a、第二段走线40b和第三段走线40c。第一段走线40a设置于第一表面10a上,第二段走线40b设置于选定侧面10cc上,第三段走线40c设置于第二表面10b上。多个第一电极30设置在第一表面10a,且靠近选定侧面10cc。第一电极30被配置为与发光器件20和第一段走线40a电连接。多个第二电极50设置于在第二表面10b,其靠近选定侧面10cc,示例性地,多个第一电极30和多个第二电极50的位置相对应,第二电极50被配置为与第三段走线40c和柔性线路板80(Flexible Printed Circuit,FPC)/驱动电路板200电连接。也就是说,连接走线40连接第一电极30和第二电极50,从而实现背板10的第一表面10a和第二表面10b连接。
如图2和图3所示,驱动电路板200被绑定至显示面板100的非显示面侧,也就是说驱动电路板200被绑定至背板10的第二表面10b。位于显示面板100的显示面侧(背板10的第一表面10a)的发光器件20与驱动电路板200通过连接走线40实现电连接。如此,可减小显示装置1000的边框,增大显示装置的屏占比。
在一些示例中,发光器件20为Mini LED(mini Light-Emitting Diode,迷你发光二极管)或者Micro LED(Micro Light-Emitting Diode,微型发光二极管)。在现有的工艺能力和成本因素等压力下,无法直接制作大尺寸显示面板,目前的方案是采用多个小尺寸显示面板拼接的方式来实现大尺寸。如图3所示,显示装置1000的驱动电路板200绑定至背板10的第二表面10b。位于背板10的第一表面10a的发光器件20与位于第二表面10b的驱动电路板200通过第一段走线40a、第二段走线40b和第三段走线40c实现电连接。如此减小显示装置1000的边框宽度,增大显示装置1000的屏占比,便于实现无缝拼接效果。
在一些实施例中,位于背板10的第一表面10a的第一电极30和背板10的第二表面10b的第二电极50采用通过电镀、蒸镀、移印银胶或者湿法刻蚀等工艺制备得到。该制备过程中,在完成背板10第一表面10a的各个膜层的 制程后,需要将背板10翻面,再在第二表面10b制作对应的膜层结构。在实际生产过程中,背板10在加工过程中需要翻面,会不可避免造成第一表面10a与设备基台接触,第一表面10a被划伤或者脏污也难以避免。划伤或者脏污会导致短路或者短路,影响产品的良率和品质。
基于此,本公开的一些实施例提供了一种显示面板、显示装置和拼接显示装置,该显示面板采用单面工艺制成,去除了第二电极,通过设置于第二表面的第三段走线与柔性线路板电连接,在加工过程中无需对背板进行翻面,防止背板接触设备产生划伤和脏污等,进而提升产品良率和品质。
以下对本公开提供的显示面板、显示装置和拼接显示装置分别进行介绍。
在本公开中,如图4所示,显示面板100包括:背板10、多个发光器件20、多个第一电极30和多条连接走线40。多个发光器件20、多个第一电极30和多条连接走线40的设置位置和连接关系参见上述描述,此处不做赘述。
其中,如图5所示,第三段走线40c包括依次连接的第一子线段40ca、第二子线段40cb和第三子线段40cc,第一子线段40ca靠近选定侧面10cc。多条连接走线40的第一子线段40ca平行设置,多条连接走线40的第三子线段40cc平行设置。如图6所示,第一子线段40ca的延伸方向与第二子线段40cb的延伸方向相交,第二子线段40cb的延伸方向和第三子线段40cc的延伸方向相交。第一子线段40ca的延伸方向与第二子线段40cb的延伸方向之间所形成的角α的角度范围为90°~180°,第三子线段40cc的延伸方向与第二子线段40cb的延伸方向之间所形成的角β的角度范围为90°~180°。
在一些示例中,如图5和图6所示,第一子线段40ca、第二子线段40cb和第三子线段40cc均为直线段。其中,第一子线段40ca和第三子线段40cc平行,第二子线段40cb的两端分别与第一子线段40ca和第三子线段40cc连接。当第一子线段40ca和第三子线段40cc平行但不处于同一直线时,第一子线段40ca的延伸方向与第二子线段40cb的延伸方向之间所形成的角α满足:90°<α<180°;第三子线段40cc的延伸方向与第二子线段40cb的延伸方向之间所形成的角β满足:90°<β<180°。
在另一些示例中,角α的角度范围和角β的角度范围设计为100°~180°,角α和角β的最小值为接近100°,第一子线段40ca的延伸方向与第二子线段40cb的延伸方向之间所形成的角α越大,第二子线段40cb相对于第一子线段40ca的偏转角度(角α的补角)越小,第三子线段40cc的延伸方向与第二子线段40cb的延伸方向之间所形成的角β越大,第三子线段40cc相对于第二子线段40cb的偏转角度(角β的补角)越小,在采用激光工艺制备第三段走线 的过程中,通过控制激光光束在加工过程中保持匀速移动,可以避免激光在某一处停留时间过长而累计辐射出过大的能量,进而避免对非目标膜层(例如位于背板第一表面上的导电膜层)造成损伤,激光光束在两个子线段的交接位置需要停顿,进行行进方向偏转,激光光束的行进偏转角度(即相邻子线段的偏转角度)越小,停顿时间越短,对非目标膜层造成的损伤越小,设置角α的角度范围和角β的角度范围可以降低激光对非目标膜层的损伤,提高显示面板的良率。
通过将连接走线40位于显示面板100的第二表面10b的部分与柔性线路板80直接连接,也就是说,可以先制备显示面板100位于第一表面10a上的各层结构,再通过侧面工艺制备连接走线40,由于连接走线40延伸至背板10的第二表面10b,即可以避免在第二表面10b制备膜层时对第一表面10a上的各层结构造成损伤。
一方面,简化了生产工艺,例如,能够减少图案化工艺次数,减少所需要的掩膜版数量,可以省略防划伤剐蹭的保护层再揭掉的步骤及物料,如此降低产品制造成本,提升产品的竞争力。
另一方面,背板10与设备基台接触的次数减少,显示面板100可降低因信号线断裂形成的部分器件失效从而无法正常工作的情况,利于提升产品良率。长远地说,背板10可减少因多次接触设备基台造成脏污从而导致器件或线路受到腐蚀,可提升显示面板100的寿命。
在一些实施例中,如图5所示,多条第三段走线40c与至少一个柔性线路板80电连接,与同一个柔性线路板80连接的至少两条第三段走线40c,关于与选定侧面10cc相垂直的对称线S轴对称设置。称与同一个柔性线路板80连接的至少两条第三段走线40c为一组,一组第三段走线40c对应一条对称线S。示例性地,以第三段走线40c中第二子线段40cb的延伸方向的朝向为基准,多条第三段走线40c的走向为向对称线S靠近,形成由第一段走线40ca向第三段走线40cc的收拢趋势。
在一些实施例中,如图6所示,图6为一个第三段走线40c的结构图,连接走线40还包括第一连接部40d,第一子线段40ca和第二子线段40cb之间通过第一连接部40d连接。其中,如图7、图8和图9所示,图7为图6中第三段走线40c由A-A方向得到的结构图,图8为图6中第三段走线40c由B-B方向得到的结构图,图9为第三段走线40c的两个相对侧面在背板10上的正投影。第一连接部40d包括相对的第一内侧面d1和第一外侧面d2,在一条第一连接部40d中,第一内侧面d1相对第一外侧面d2靠近,与该条第一 连接部40d相关的对称线S。第一内侧面d1在背板10上的正投影为第一内边d1’,第一外侧面d2在所述背板上的正投影为第一外边d2’。
如图7、图8和图9所示,第一子线段40ca包括相对的第一子线段内侧面ca1和第一子线段外侧面ca2。在一条第一子线段40ca中,第一子线段内侧面ca1相对第一子线段外侧面ca2靠近,与该条第一子线段40ca相关的对称线S(该条第一子线段40ca所在的一组第三段走线40c对应的对称线S)。第一子线段内侧面ca1在背板10上的正投影为第一子线段内侧边ca1’,第一子线段外侧面ca2在背板10上的正投影为第一子线段外侧边ca2’。第二子线段40cb包括相对的第二子线段内侧面cb1和第二子线段外侧面cb2,在一条第二子线段40cb中,第二子线段内侧面cb1相对第二子线段外侧面cb2靠近,与该条第二子线段40cb相关的对称线S(该条第二子线段40cb所在的一组第三段走线40c对应的对称线S)。第二子线段内侧面cb1在背板10上的正投影为第二子线段内侧边cb1’,第二子线段外侧面cb2在背板10上的正投影为第二子线段外侧边cb2’。其中,如图9所示,第一内边d1’与第一子线段内侧边ca1’和第二子线段内侧边连接cb1’连接,第一外边d2’与第一子线段外侧边ca2’和第二子线段外侧边cb2’连接。
在一些示例中,如图6所示,连接走线40中,第一子线段40ca的延伸方向与第二子线段40cb的延伸方向之间形成的角α的角度范围为100°~180°,即角α满足:100°<α<180°,例如角α可以100°、150°或170°。第一子线段40ca与第二子线段40cb之间通过第一连接部40d实现连接。该第一连接部40d与第一子线段40ca和第二子线段40cb均属于连接走线40,第一子线段40ca、第一连接部40d和第二子线段40cb依次连接且一体成型。
在一些实施例中,如图9和图10所示,第一内边d1’为曲线;和/或,第一外边d2’为曲线。
在一些示例中,如图9所示,第一内边d1’为弧线;和/或,所述第一外边d2’为弧线,例如,相对的第一内边d1’和第一外边d2’均为弧线。其中,第一内边d1’与第一子线段内侧边ca1’相切以及第一内边d1’与第二子线段内侧边连接cb1’相切。第一外边d2’与第一子线段外侧边ca2’相切以及第一外边d2’与第二子线段外侧边cb2’连接。
在另一些示例中,如图10所示,第一内边d1’为S形曲线;和/或,所述第一外边d2’为S形曲线,例如,相对的第一内边d1’和第一外边d2’均为S形曲线。其中,第一内边d1’与第一子线段内侧边ca1’平滑连接,第一内边d1’与第二子线段内侧边连接cb1’平滑连接。第一外边d2’与第一子线段外侧边 ca2’平滑连接,第一外边d2’与第二子线段外侧边cb2’平滑连接。
示例性地,在背板的第一表面、选定侧表面和第二表面10b制备金属镀层,利用激光对金属镀层进行刻蚀以图案化,得到多条连接走线。在激光刻蚀工艺过程中,关键的是确保在整个过程中不会造成,对非目标膜层的损伤例如,在形成连接走线的第三段走线的过程中,激光对位于背板的第二表面10b的金属镀层进行刻蚀,激光能量可能会穿透背板而损伤位于背板的第一表面的膜层,造成例如线路断裂等问题。非目标膜层是否会损伤,与非目标膜层的材料对激光的吸收性、激光的能量、激光在金属镀层上停留时间等有直接的关系。
通过控制激光光束在加工过程中保持匀速移动,可以避免激光在某一处停留时间过长,避免对非目标膜层造成损伤。具体地,在形成第一子线段40ca和第二子线段40cb的过程中,可以控制激光光束按照与第一子线段40ca的延伸方向平行的路径匀速行进进行刻蚀;但是第一子线段40ca相对第二子线段40cb具有夹角,该夹角为100°至180°,即激光光束的行进方向会发生偏转,激光需要在二者交接位置处停顿进而调整行进方向;因此,为了保证激光在整个移动过程中的匀速行进,在第一子线段40ca最靠近第二子线段40cb的端部,需要控制激光光束以光滑曲线的路径行进,从而逐渐变化至平行于第二子线段40cb的延伸方向的行进方向上。
在一些实施例中,如图11所示,第一内边d1’包括首尾依次连接的多条折线段,且第一内边d1’的多条折线段中与第一子线段内侧边ca1’连接的一条折线段,与第一子线段内侧边ca1’之间所形成的角θ1的角度范围为170°至177°。第一内边d1’的多条折线段中相连接的两条折线段之间所形成的角θ2的角度范围为170°至177°。第一内边d1’的多条折线段中与第二子线段内侧边cb1’连接的一条折线段,与第二子线段内侧边cb1’之间所形成的角θ3的角度范围为170°至177°。
在一些示例中,第一内边d1’的多条折线段中与第一子线段内侧边ca1’连接的一条折线段,与第一子线段内侧边ca1’之间所形成的角θ1,角θ1的角度可以为170°、175°或177°。第一内边d1’的多条折线段中相连接的两条折线段之间所形成的角θ2,角θ2的角度可以为170°、175°或177°。第一内边d1’的多条折线段中与第二子线段内侧边cb1’连接的一条折线段,与第二子线段内侧边cb1’之间所形成的角θ3,角θ3的角度可以为170°、175°或177°。以角θ1、角θ2和角θ3均为170°以及第一子线段内侧边ca1’与第二子线段内侧边cb1’之间形成的角α的角度为150°为例,也就是说,第二子线段内侧边cb1’相对 第一子线段内侧边ca1’偏转40°,第一内边d1’的多条折线段通过多次偏转,每次偏转角度为10°,第一内边d1’成为了第一子线段内侧边ca1’和第二子线段内侧边cb1’之间相对平滑的过渡部分,相应地,第一内侧面d1成为了第一子线段内侧面ca1和第二子线段内侧面cb1之间相对平滑的过渡部分。
在另一些实施例中,如图11所示,第一外边d2’包括首尾依次连接的多条折线段,且第一外边d2’的多条折线段中与第一子线段外侧边ca2’连接的一条折线段,与第一子线段外侧边ca2’之间所形成的角Ф1的角度范围为170°至177°。第一外边d2’的多条折线段中相连接的两条折线段之间所形成的角Ф2的角度范围为170°至177°。第一外边d2’的多条折线段中与第二子线段外侧边cb2’连接的一条折线段,与第二子线段外侧边cb2’之间所形成的角Ф3的角度范围为170°至177°。
在一些示例中,第一外边d2’的多条折线段中与第一子线段外侧边ca2’连接的一条折线段,与第一子线段外侧边ca2’之间所形成的角Ф1,角Ф1的角度可以为170°、175°或177°。第一外边d2’的多条折线段中相连接的两条折线段之间所形成的角Ф2,角Ф2的角度可以为170°、175°或177°。第一外边d2’的多条折线段中与第二子线段外侧边cb2’连接的一条折线段,与第二子线段外侧边cb2’之间所形成的角Ф3,角Ф3的角度为170°、175°或177°。以角Ф1、角Ф2和角Ф3均为170°以及第一子线段外侧边ca2’与第二子线段外侧边cb2’之间形成的角α的角度为150°为例,也就是说,第二子线段外侧边cb2’相对第一子线段外侧边ca2’偏转40°,第一外边d2’的多条折线段通过多次偏转,每次偏转角度为10°。第一外边d2’成为了第一子线段外侧边ca2’和第二子线段外侧边cb2’之间相对平滑的过渡部分,相应地,第一外侧面d2成为了第一子线段外侧面ca2和第二子线段外侧面cb2之间相对平滑的过渡部分。
结合上述的示例,第一连接部40d连接于第一子线段40ca和第二子线段40cb之间。第一连接部40d的第一内边d1’通过多条折线段进行多次3°~10°的偏转,实现第一子线段内侧边ca1’与第二子线段内侧边cb1’之间0至80°的偏转。第一内侧面d1成为了第一子线段内侧面ca1和第二子线段内侧面cb1相对平滑的过渡部分。
第一连接部40d的第一外边d2’通过多条折线段进行多次3°~10°的偏转,实现第一子线段外侧边ca2’与第二子线段外侧边cb2’之间偏转角度为角α的补角,角α的补角范围为0至80°,即激光光束的行进方向会发生0至80°偏转。第一外侧面d2成为了第一子线段外侧面ca2和第二子线段外侧面cb2相对平滑的过渡部分。
在第一内侧面d1和第一外侧面d2成为相对平滑过渡部分的基础上,第一连接部40d成为了第一子线段40ca和第二子线段40cb之间的过渡部分,在满足第一子线段40ca和第二子线段40cb之间100°至180°的偏转的基础上,实现相对平滑过渡连接。
在实际加工过程中,可能无法控制激光前行路线为完美弧线或光滑曲线。第一内边d1’和第一外边d2’采用多条折线,且相邻折线之间的夹角极小的情况下,激光的前行路线是与第一内边d1’或第一外边d2’路径一致的多条折线,且在激光在相邻折线的转角位置处,因偏转角度极低,例如偏转角度为3°至10°,激光因行进方向调整而需要停顿时间较短,对非目标膜层不会造成损伤或者损伤在可接受的范围内。
在一些实施例中,如图6所示,连接走线40还包括第二连接部40e,第三子线段40cc和第二子线段40cb之间通过第二连接部40e连接。其中,如图7、图8和图9所示,第二连接部40e包括相对的第二内侧面e1和第二外侧面e2,在一条第二连接部40e中,第二内侧面e1相对第二外侧面e2靠近,与该条第二连接部40e相关的对称线S(该条第二连接部40e所在的一组第三段走线40c对应的对称线S)。第二内侧面e1在背板10上的正投影为第二内边e1’,第二外侧面e2在背板10上的正投影为第二外边e2’。第三子线段40cc包括相对的第三子线段内侧面cc1和第三子线段外侧面cc2,在一条第三子线段40cc中,第三子线段内侧面cc1相对第三子线段外侧面cc2靠近,与该条第三子线段40cc相关的对称线S(该条第三子线段40cc所在的一组第三段走线40c对应的对称线S)。第三子线段内侧面cc1在背板10上的正投影为第三子线段内侧边cc1’,第三子线段外侧面cc2在背板10上的正投影为第三子线段外侧边cc2’。如图9所示,第二内边e1’与第三子线段内侧边cc1’和第二子线段内侧边cc2’连接,第二外边e2’与所述第三子线段外侧边cc2’和所述第二子线段外侧边cb2’连接。
在一些示例中,当第三子线段40cc的延伸方向与第二子线段40cb的延伸方向之间所形成的角β满足:100°<β<180°,例如角β可以100°、150°或170°。以第三子线段40cc的延伸方向与第二子线段40cb的延伸方向之间所形成的角β的角度为150°为例,第三子线段40cc与第二子线段40cb之间通过第二连接部40e实现连接。该第二连接部40e与第三子线段40cc和第二子线段40cb均属于连接走线40,第三子线段40cc、第二连接部40e和第二子线段40cb依次连接且一体成型。
在一些实施例中,如图9和图10所示,第二内边e1’为曲线;和/或,所 述第二外边e2’为曲线。
在一些示例中,如图9所示,第二内边e1’为弧线;和/或,所述第二外边e2’为弧线。其中,第二内边e1’与第三子线段内侧边cc1’相切以及第二内边e1’与第二子线段内侧边连接cb1’相切。第二外边e2’与第三子线段外侧边cc2’相切以及第二外边e2’与第二子线段外侧边cb2’连接。
在另一些示例中,如图10所示,第二内边e1’为S形曲线;和/或,所述第二外边e2’为S形曲线。其中,第二内边e1’与第三子线段内侧边cc1’平滑连接,第二内边e1’与第二子线段内侧边cb1’连接平滑连接。第二外边e2’与第三子线段外侧边cc2’平滑连接,第二外边e2’与第二子线段外侧边cb2’平滑连接。
第二连接部40e的第二内边e1’和第二外边e2’为弧线或者平滑曲线,在激光刻蚀工艺中,激光在加工第二连接部40e的过程中保持匀速移动,可以避免激光在某一处停留时间过长,避免对非目标膜层造成损伤。具体地,在形成第二子线段40cb和第三子线段40cc的过程中,可以控制激光光束按照与第二子线段40cb的延伸方向平行的路径匀速行进进行刻蚀;但是第三子线段40cc相对第二子线段40cb的偏转角度为角β的补角,角β的补角范围为0至80°,即激光光束的行进方向会发生0至80°的偏转,激光需要在二者交接位置处停顿进而调整行进方向;因此,为了保证激光在整个移动过程中的匀速行进,在第二子线段40cb最靠近第三子线段40cc的端部,需要控制激光光束以光滑曲线的路径行进,从而逐渐变化至平行于第三子线段40cc的延伸方向的行进方向上。
在一些实施例中,如图12所示,第二内边e1’包括首尾依次连接的多条折线段,且第二内边e1’的多条折线段中与第三子线段内侧边cc1’连接的一条折线段,与第三子线段内侧边cc1’之间所形成的角δ1的角度范围为170°至177°。第二内边e1’的多条折线段中相连接的两条折线段之间所形成的角δ2的角度范围为170°至177°。第二内边e1’的多条折线段中与第二子线段内侧边cb1’连接的一条折线段,与所述第二子线段内侧边cb1’之间所形成的角δ3的角度范围为170°至177°。
在一些示例中,第二内边e1’的多条折线段中与第三子线段内侧边cc1’连接的一条折线段,与第三子线段内侧边cc1’之间所形成的角δ1的角度可以为170°、175°或177°。第二内边e2’的多条折线段中相连接的两条折线段之间所形成的角δ2的角度可以为170°、175°或177°。第二内边d1’的多条折线段中与第二子线段内侧边cb1’连接的一条折线段,与第一内边d1’的多条折线段中 相连接的两条折线段之间所形成的角δ3的角度可以为170°、175°或177°。以角δ1、角δ2和角δ3均为170°以及第三子线段内侧边cc1’与第二子线段内侧边cb1’之间形成的角β的角度为150°为例,也就是说,第三子线段内侧边cc1’相对第二子线段内侧边cb1’偏转40°,第一内边d1’的多条折线段通过多次偏转,每次偏转角度为10°,第二内边e1’成为了第三子线段内侧边cc1’和第二子线段内侧边cb1’之间相对平滑的过渡部分,相应地,第二内侧面e1成为了第三子线段内侧边cc1和第二子线段内侧面cb1之间相对平滑的过渡部分。
在另一些实施例中,如图12所示,第二外边e2’包括首尾依次连接的多条折线段,且第二外边e2’的多条折线段中与第三子线段外侧边cc2’连接的一条折线段,与第三子线段外侧边cc2’之间所形成的角γ1的角度范围为170°至177°。第二外边e2’的多条折线段中相连接的两条折线段之间所形成的角γ2的角度范围为170°至177°。第二外边e2’的多条折线段中与第二子线段外侧边cb2’连接的一条折线段,与第二子线段外侧边cb2’之间所形成的角γ3的角度范围为170°至177°。
在一些示例中,第二外边e2’的多条折线段中与第三子线段外侧边cc2’连接的一条折线段,与第三子线段外侧边cc2’之间所形成的角γ1的角度可以为170°、175°或177°。第二外边e2’的多条折线段中相连接的两条折线段之间所形成的角γ2的角度可以为170°、175°或177°。第二外边e2’的多条折线段中与第二子线段外侧边cb2’连接的一条折线段,与第二子线段外侧边cb2’之间所形成的角γ3的角度为170°、175°或177°。以角γ1、角γ2和角γ3均为170°以及第三子线段外侧边cc2’与第二子线段外侧边cb2’之间形成的角β的角度为150°为例,也就是说,第三子线段外侧边cc2’相对第二子线段外侧边cb2’偏转40°,第二外边e2’的多条折线段通过多次偏转,每次偏转的角度为10°,第二外边e2’成为了第三子线段外侧边cc2’和第二子线段外侧边cb2’之间相对平滑的过渡部分,相应地,第一外侧面d2成为了第三子线段外侧边cc2和第二子线段外侧面cb2之间相对平滑的过渡部分。
结合上述的示例,第二连接部40e连接于第三子线段40cc和第二子线段40cb之间。第二连接部40e的第二内边e1’通过多条折线段进行多次3°~10°的偏转,实现第三子线段内侧边cc1’与第二子线段内侧边cb1’之间100°至180°的偏转。第二内侧面e1成为了第三子线段内侧面cc1和第二子线段内侧面cb1相对平滑的过渡部分。
第二连接部40e的第二外边e2’通过多条折线段进行多次3°~10°的偏转,实现第三子线段外侧边cc2’与第二子线段外侧边cb2’之间100°至180°的偏转。 第二外侧面e2成为了第三子线段内侧面cc2和第二子线段外侧面cb2相对平滑的过渡部分。
在第二内侧面e1和第二外侧面e2成为相对平滑过渡部分的基础上,第二连接部40e成为了第三子线段40cc和第二子线段40cb之间的过渡部分,在满足第三子线段40ca和第二子线段40cb之间100°至180°的偏转的基础上,实现昂对平滑过渡连接。
第二连接部40e的第一内边d1’和第一外边d2’采用多条折线,相邻折线之间的夹角极小,激光的前行路线是与第二内边e1’或第二外边e2’路径一致的多条折线,且在激光在相邻折线的转角位置处,因夹角极低,例如夹角为3°至10°,激光因行进方向调整而需要停顿时间较短,对非目标膜层不会造成损伤或者损伤在可接受的范围内。
如图13、图14、图15和图16可知,第二表面10b与多个侧面10c中的每个侧面10c相接处形成棱边Ae。棱边Ae有多个,第二表面10b的每个边缘各设置有一个棱边Ae。第二表面10b与选定侧面10cc相接处形成选定棱边Ae’;与选定棱边Ae’相邻的两条棱边Ae为第一棱边Ae1和第二棱边Ae2。
在一些实施例中,如图13所示,第二表面10b包括绑定区CC,第三子线段40cc延伸至绑定区CC内,第三子线段40cc被配置为在绑定区CC内绑定柔性线路板80或驱动电路板;具体地,第三子线段40cc可以与柔性线路板80的金手指结构一一对应且连接,第三子线段40cc在其延伸方向上的长度大于金手指的长度,例如第三子线段40cc在其延伸方向上的长度为金手指的长度的1.1-1.5倍,例如为1.3倍左右。如图14和图15所示,多条连接走线40中,与第一棱边Ae1距离最近的连接走线40的第三子走线外侧边cc2’与第一棱边Ae1之间的距离L1大于或等于100μm。多条连接走线40中,与第二棱边Ae2距离最近的连接走线40的第三子走线外侧边cc2’与第二棱边Ae2之间的距离L2大于或等于100μm。而绑定区CC与选定棱边Ae’之间的间距大于或等于500μm,小于等于10mm,例如可以为680μm,或700μm,或9mm。
考虑现阶段工艺水平和设备精度,例如:柔性线路板80自身尺寸存在误差,例如误差为±100μm,柔性线路板和多个第三段走线绑定时可能会出现错位,或者,在绑定工艺中,通常采用异方性导电胶膜(Anisotropic Conductive Film,ACF)连接多个第三段走线和柔性线路板80,在贴附过程中,异方性导电胶膜的位置存在±150μm误差,若距离L1和距离L2过小,可能无法满足工艺要求和设备精度要求,出现绑定错位、各部件位置误差等问题。第三子线段40cc与柔性线路板80直接绑定工艺中,距离L1和距离L2大于或等于 100μm,可满足目前的工艺要求和设备能力。
示例性地,在第二表面10b,与第一棱边Ae1距离最近的连接走线40的第三子走线外侧边cc2’,和第一棱边Ae1间距L1可以为100μm、110μm和120μm。与第二棱边Ae2距离最近的连接走线40的第三子走线外侧边cc2’,和第二棱边Ae2间距L2可以为100μm、110μm和120μm。与第一棱边Ae1距离最近的连接走线40的第一子走线外侧边cc2’,和第一棱边Ae1间距L3可以小于100μm。与第二棱边Ae2距离最近的连接走线40的第一子走线外侧边cc2’,和第二棱边Ae2间距L4可以小于100μm。
在一些实施例中,如图13、图14、图15和图16所示,多条连接走线40分为至少一个连接走线组G,每个连接走线组G包括至少两条连接走线40。每个连接走线组G中,第一子线段40ca的延伸方向和第三子线段40cc的延伸方向相同,且相距最远的两条连接走线40的第三子线段40cc的第三子线段外侧边cc2’之间的距离L8,小于相距最远的两条连接走线40的第一子线段40ca的第一子线段外侧边ca2’之间的距离L9。
在一些示例中,如图13和图14所示,背板10上的多条连接走线40为一个连接走线组G,该连接走线组G的最外侧的两个第三子线段外侧边cc2’之间的距离L8,小于最外侧的两个第一子线段外侧边ca2’之间的距离L9。其中,一个连接走线组G与一条柔性线路板80电连接。也就是说,每个连接走线组G中,多条第三子线段相对于多条第一子线段收拢,在垂直于第三子线段的延伸方向的方向上,多个第三子线段的总尺寸缩减。
在另一些示例中,如图15和图16所示,背板10上的多条连接走线40分为两个连接走线组G,每个连接走线组G中最外侧的两个第三子线段外侧边cc2’之间的距离L8,小于最外侧的两个第一子线段外侧边ca2’之间的距离L9。其中,每个连接走线组G与一条柔性线路板80电连接。也就是说,每个连接走线组G中,多条第三子线段相对于多条第一子线段收拢,在垂直于第三子线段的延伸方向的方向上,多个第三子线段的总尺寸缩减。
采用两个连接走线组G,则可以使用两个柔性线路板80。也就是说,每个柔性线路板80的尺寸可以减小,便于柔性线路板80与连接走线组G的绑定,以及与驱动电路板的插接。
在一些实施例中,如图15和图16所示,相邻两个连接走线组G中,相距最近的两条连接走线的第三子线段外侧边cc2’之间的距离L5大于1000μm,例如可以为1010μm、1100μm、或1200μm。
相邻两个连接走线组中,相距最近的两条连接走线的第三子线段外侧边 cc2’之间的位置处分别设置有一个对位标记(mark),这两个对位标记(mark)用于柔性线路板80绑定时进行对位。距离L5大于1000μm,可满足加工精度要求和设备的能力要求。并且,控制距离L5的最小值,还可以避免相邻的柔性线路板80的外轮廓较大,出现堆叠的问题。示例性地,相邻两个连接走线组中,相距最近的两条连接走线的第三子线段外侧边cc2’之间的位置处的两个对位标记应选择不同形状和尺寸的,例如一个十字对位标记和一个圆形对位标记,或者是在相距最近的两条连接走线的第三子线段外侧边cc2’之间的中间位置共用一个对位标记。
在一些实施例中,如图14和图16所示,在同一个连接走线组G中的相邻两条所述连接走线40,一条连接走线40的第三子线段外侧边cc2’,和另一条连接走线40的第三子线段内侧边cc1’的间距为相邻两条第三子线段40cc之间的距离L7;一条连接走线40的第一子线段外侧边ca2’,和另一条连接走线40的第一子线段内侧边ca1’的间距为相邻两条第一子线段40ca之间的距离L6。相邻两条第三子线段40cc之间的距离L7小于所述相邻两条第一子线段40ca之间的距离L6。
在一些示例中,同一个连接走线组G的相邻两条连接走线中,一条连接走线40的第一子线段外侧边ca2’,和另一条连接走线40的第一子线段内侧边ca1’的间距可以为10μm~60μm,例如可以为10μm、40μm或60μm。一条连接走线40的第三子线段外侧边cc2’,和另一条连接走线40的第三子线段内侧边cc1’的间距大于或等于10μm,例如可以为10μm、30μm或50μm。
每个连接走线组G中,距离L8小于距离L9,且距离L7小于距离L6,连接走线组G在第三子走线40cc的位置处,相对于在第一走线组40ca的位置处向内收缩,这样设计,可以为距离L1和距离L2大于或等于100μm提供充足的空间,方便柔性线路板的绑定。
在一些实施例中,如图6所示,第一子线段40ca沿与其延伸方向垂直的方向上的尺寸Wca大于或等于60μm。第三子线段40cc沿与其延伸方向垂直的方向上的尺寸Wcc大于或等于60μm。第二子线段40cb沿与其延伸方向垂直的方向上的尺寸Wcb小于或等于第一子线段40ca沿与其延伸方向垂直的方向上的尺寸Wca。
示例性地,第一子线段40ca沿与其延伸方向垂直的方向上的尺寸Wca为60μm、80μm或90μm。第三子线段40cc沿与其延伸方向垂直的方向上的尺寸Wcc为60μm、65μm或75μm。第二子线段40cb沿与其延伸方向垂直的方向上的尺寸Wcb可以为60μm、70μm或80μm。
在一些实施例中,如图6所示,第一子线段40ca沿其延伸方向上的尺寸Lca≥50μm。第一子线段40ca的延伸方向与第二子线段40cb的延伸方向之间的角度大于100°,和/或,第三子线段40cc的延伸方向与第二子线段40cb的延伸方向之间的角度大于100°;在该条件下,第二子线段40cb沿其延伸方向上的尺寸Lcb≥100μm。第三子线段40cc沿其延伸方向上的尺寸Lcc≥600μm。
示例性地,一条连接走线40的第一子线段40ca、第二子线段40cb和第三子线段40ca在其延伸方向上的尺寸分别如下:第一子线段40ca在沿其延伸方向上的尺寸Lca可以为50μm、60μm和90μm。第二子线段40cb在沿其延伸方向上的尺寸Lcb可以为100μm、120μm和140μm。第三子线段40cc在沿其延伸方向上的尺寸Lcc可以为600μm、700μm和800μm。
以下称第一子线段40ca在沿其延伸方向上的尺寸为第一子线段的长度Lca,第二子线段40cb沿其延伸方向上的尺寸为第二子线段的长度Lcb,第三子线段40cc沿其延伸方向上的尺寸为第三子线段的长度Lcc,第一子线段40ca在沿与其延伸方向垂直的方向上的尺寸为第一子线段的宽度Wca,第二子线段40cb沿与其延伸方向垂直的方向上的尺寸为第二子线段的宽度Wcb,第三子线段40cc沿与其延伸方向垂直的方向上的尺寸为第三子线段的宽度Wcc。
在一些实施例中,第三段走线40c的三个子线段的宽度逐步减小。
示例性地,第一子线段40ca的宽度大于或等于第二子线段40cb的宽度,第二子线段40cb的宽度大于或等于第三子线段40cc的宽度。
由于第三段走线40c中三个子线段的宽度不等,第三段走线40c的宽度可以用平均宽度AWc来表示。在一些实施例中,第三段走线40c的平均宽度AWc为第一子线段40ca的宽度Wca、第二子线段40cb的宽度Wcb和第三子线段40cc的宽度Wcc进行加权求和,第一子线段40ca的宽度Wca所占的权重为第一子线段40ca的长度Lca占第三段走线40c的总长度的比值,第二子线段40cb的宽度Wcb所占的权重为第二子线段40cb的长度Lcb占第三段走线40c的总长度的比值,第三子线段40cc的宽度Wcc所占的权重为第三子线段40cc的长度Lcc占第三段走线40c的总长度的比值,可参见如下公式:
Figure PCTCN2022078098-appb-000001
例如:第一子线段40ca的长度Lca可以为50μm,第一子线段40ca的宽度Wca可以为80μm。第二子线段的长度Lcb可以为100μm,第二子线段的宽度Wcb可以为70μm。第三子线段的长度Lcc可以为600μm,第三子线段的宽度Wcc可以为60μm。
第三段走线40c的平均宽度AWc:
Figure PCTCN2022078098-appb-000002
也就是说,该第三段走线40c的平均宽度AWc为62.67μm。
以下称第一段走线40a在沿其延伸方向上的尺寸为第一段走线的长度La,第二段走线40b沿其延伸方向上的尺寸为第二段走线的长度Lb,第三段走线40c沿其延伸方向上的尺寸为第三段走线的长度Lc,第一段走线40a在沿与其延伸方向垂直的方向上的尺寸为第一段走线的宽度Wa,第二段走线40b沿与其延伸方向垂直的方向上的尺寸为第二段走线的宽度Wb,第三段走线40c沿与其延伸方向垂直的方向上的尺寸为第三段走线的宽度Wc。
在一些实施例中,一条连接走线40所包括的第一段走线40a的宽度、第二段走线40b的宽度和第三段走线40c的宽度不等,因此连接走线40的宽度用平均宽度AW来表示。其中连接走线40的平均宽度AW为第一段线段的宽度Wa、第二段走线的宽度Wb和第三段走线的宽度Wc进行加权求和,第一段走线的宽度Wa所占的权重为第一段走线的长度La占连接走线40的总长度的比值,第二段走线的宽度Wb所占的权重为第二段走线的长度Lb占连接走线40的总长度的比值,第三段走线的宽度Wc所占的权重为第三段走线的长度Lc占连接走线40的总长度的比值:
Figure PCTCN2022078098-appb-000003
在一些实施例中,第一段走线40a沿其延伸方向上的尺寸La≥200μm;第二段走线40b沿其延伸方向上的尺寸Lb≥200μm;第三段走线40c沿其延伸方向上的尺寸Lc≥1200μm。
在一些实施例中,如图17所示,图17为本公开提供显示面板100的正面部分结构图,不同连接走线40的平均宽度不等,连接走线40的平均宽度与,和该连接走线40电连接的第一电极30的宽度有关。
在一些实施例中,具体地说,第一电极30沿与其延伸方向垂直的方向上的尺寸,和与该第一电极30电连接的连接走线40沿与其延伸方向垂直的方向上的尺寸的比值在1至3之间取值。其中,第一电极30沿与其延伸方向垂直的方向上的尺寸为第一电极的宽度W30,连接走线40沿与其延伸方向垂直的方向上的尺寸为连接走线40的平均宽度AW。第一电极的宽度W30和连接走线40的平均宽度AW成正比,该比例范围为:1至3,即:
Figure PCTCN2022078098-appb-000004
示例性地,第一电极30可以被配置为传输VGB信号、VR信号或恒定电压信号(GND信号),第一电极30与位于背板的第一表面的信号线90电连接,示例性地,信号线90用于连接第一电极30和发光器件20,第一电极30的宽度与其电连接的信号线90的宽度有关,例如成正比,依据电学性能评估,不同信号线90的沿与其延伸方向垂直的方向上的尺寸理论值不同,其中传输恒定电压信号的信号线沿与其延伸方向垂直的方向上的尺寸最大。因此,不同信号线90的宽度不同,不同第一电极30的宽度,不同连接走线30的平均宽度也不同,且连接走线30的平均宽度和与其电连接的信号线90的宽度称正比。
作为一种可能的设计,如图18所示,多条第三段走线40c包括并列设置的多条直线段。第二表面10b与选定侧面相接处形成选定棱边Ae’,与选定棱边Ae’相邻的两条棱边Ae为第一棱边Ae1和第二棱边Ae2。多条连接走线40中,与第一棱边Ae1距离最近的连接走线40的第三段走线40c与第一棱边Ae1之间的距离大于或等于100μm。多条连接走线40中,与第二棱边Ae2距离最近的连接走线40的第三段走线40c与第二棱边Ae2之间的距离大于或等于100μm。
示例性地,多条连接走线40中,第三段走线40c均为直线段,多条第三段走线40c与至少一个柔性线路板80电连接,与同一个柔性线路板80连接的至少两条第三段走线40c具有与选定侧面垂直的对称线S,称与同一个柔性线路板80连接的至少两条第三段走线40c为一组,一组第三段走线40c对应一条对称线S。
每条第三段走线40c包括相对的两个侧面:第三段走线内侧面c1和第三段走线外侧面c2,第三段走线内侧面c1相对第三段走线外侧面c2靠近,与该条第三段走线40c相关的对称线S(该条第三段走线40c所在的一组第三段走线40c对应的对称线S)。第三段走线内侧面c1在第二表面10b的正投影为第三段走线内侧边c1’,第三段走线外侧面c2在第二表面10b的正投影为第三段走线内侧边c2’。其中,与第一棱边Ae1距离最近的连接走线40的第三段走线40c与第一棱边Ae1之间的距离大于或等于100μm,也就是说,第一棱边Ae1与其距离最近的第三段走线外侧边c2’的距离K1大于或等于100μm。与第二棱边Ae2距离最近的连接走线40的第三段走线40c与第二棱边Ae2之间的距离大于或等于100μm,也就是说,第二棱边Ae2与其距离最近的第三段走线外侧边c2’的距离K2大于或等于100μm。
第三段走线40c延伸至绑定区内与柔性线路板电连接。在目前的加工工 艺限制和设备精度的要求下,柔性线路板80存在公差,例如公差为±100μm,柔性线路板和多个第三段走线绑定时可能会出现错位,或者,通常采用异方性导电胶膜(Anisotropic Conductive Film,ACF)连接多个第三段走线和柔性线路板80,在贴附过程中,异方性导电胶膜的位置存在±150μm误差。因此,第三子线段40c与柔性线路板80直接绑定工艺中,需要距离K1和距离K2大于或等于100μm,方可满足当前的工艺要求和设备能力。
在一些实施例中,连接走线40是对金属层进行激光刻蚀工艺生成。具体地说,背板10的第一表面10a靠近选定侧面10c的部分、第二表面10b靠近选定侧面10c的部分和选定侧面通过溅射形成金属层,然后通过激光刻蚀工艺去除不需要的金属层部分,如此形成连接走线40。
采用激光刻蚀工艺加工连接走线,可通过溅射形成金属层后进行激光刻蚀,与湿法刻蚀工艺相比,激光刻蚀工艺简单便捷,生产效率高,另外无需对显示面板进行翻面,可减少保护层等生产物料,进一步降低生产成本,提高产品竞争力,可减少显示面板与设备接触产生划伤或脏污,利于提升产品良率。
在一些实施例中,如图19所示,连接走线40包括依次层叠设置的第一缓冲导电图案t1、主导电图案t2和第二缓冲导电图案t3。其中,第一缓冲导电图案t1相对主导电图案t2靠近背板10。
示例性地,第一缓冲导电图案t1靠近背板10,该层第一缓冲导电图案t1的材料包括钼和钛中的至少一种。主导电图案t2的材料包括铜和铝中的至少一种。第二缓冲导电图案t3的材料包括钼、钛和氧化铟锡中的至少一种。
在一些实施例中,如图20A和图20B所示,显示面板100还包括第一保护层60,第一保护层60覆盖多个第一电极30、第一段走线40a、第二段走线40b和第三段走线40c中靠近选定侧面10cc的部分。第一保护层60填充多个第一电极30之间的间隙以及第一段走线40a的图案间隙、第二段走线40b的图案间隙和第三段走线40c中靠近选定侧面的部分的图案间隙。
示例性地,在第一表面10a靠近选定侧面10c的部分区域、第二表面10b靠近选定侧面10c的部分区域以及选定侧面10c形成金属层,通过激光刻蚀工艺对金属层图案化,得到多条连接走线40。为对连接走线40进行保护,形成覆盖第一段走线40a、第二段走线40b和第三段走线40c中靠近选定侧面10cc的部分的第一保护层60,同时,第一保护层60还覆盖第一电极30的与连接走线40连接的部分。
第一保护层60为耐腐蚀性能以及粘附力较高的绝缘材料,示例性地,第 一保护层60可以为OC(over coating)胶,例如第一保护层60的材质可以包括深色OC胶,或者深色油墨。油墨具有较高的硬度和良好的抗腐蚀性能,能够保护多条连接走线。
在一些实施例中,如图20A或图20B所示,显示面板100还包括第二保护层70A,所述第二保护层70A覆盖多个发光器件20和第一保护层60中位于第一表面10a的部分,且第二保护层70A填充发光器件20之间以及发光器件20与第一电极30之间的区域。
第二保护层70A覆盖在多个发光器件20上的部分,应以不影响发光器件20的设定出光亮度为准进行材料选择和厚度设置。
示例性地,在完成第一保护层60涂覆后,对显示面板100的非显示面侧贴附保护膜(后续工艺中去除该保护膜),之后在显示面板100的显示面侧完成发光器件20制备,例如进行LED芯片的绑定以及微型控制芯片的绑定,微型控制芯片用于控制LED芯片发光。完成上述工艺后,在发光器件20和第一保护层60中位于第一表面10a的部分贴附第二保护层70A。第二保护层70A覆盖多个发光器件20,且在多个发光器件20之间的缝隙中以及发光器件20与第一电极30之间的区域完成填充。第二保护层70A可以为OC(over coating)胶,例如第二保护层70A的材质可以包括深色OC胶,或者深色油墨。第二保护层70A在远离背板10的一侧为平整面。
第二保护层70A被配置为保护多个发光器件20,并起到电气绝缘、以及防水氧腐蚀的作用,避免多个发光器件20受到外界损伤,例如受到磕碰出现剥落,或者受到氧化等问题,保证发光器件20的发光性能。
在另一些实施例中,如图20B所示,显示面板100还可以包括第三保护层70B,第三保护层70B至少覆盖第一保护层60位于侧面10c和第二表面10b的部分以及多条连接走线40的第三段走线40c。
在一些示例中,第三保护层70B覆盖第一保护层60位于侧面10c和第二表面10b的部分、多条连接走线40的第三段走线40c,以及整个第二表面10b。
示例性地,完成第二保护层70A贴附后,将柔性线路板80与第三段走线40c的第三子走线绑定,例如,柔性线路板80和第三段走线40c的第三子走线通过热压工艺进行绑定,然后在第一保护层60远离侧面10c的一侧,以及第三段走线40c远离第二表面10b的一侧涂覆第三保护层70B。第三保护层70B可以为氟化剂层,可以采用氟化剂,第三保护层70B覆盖第一保护层60位于侧面10c和第二表面10b的部分以及连接走线40和柔性线路板80连接的部分,同时覆盖柔性线路板80与第三子走线绑定的部分。
第三保护层70B能够对显示面板的显示侧面和非显示侧面起到进一步防护作用,避免多条连接走线40、以及连接走线40与柔性线路板80相连接的部分受到外界损伤,以及水氧腐蚀,影响连接稳固性。
如图21A和图21B所示,本公开的一些实施例还提供了一种显示装置1000,包括如上述任一项实施例提供的显示面板100和驱动电路板200,驱动电路板200设置于显示面板100的背板10的第二表面10b上,驱动电路板200通过柔性线路板和显示面板100的多条连接走线40与显示面板100的多个第一电极30电连接。
示例性地,驱动电路板200与柔性线路板的一端连接后,柔性线路板的另一端和多条连接走线40的第三子线段40c在绑定区CC连接。
显示装置1000采用上述实施例提供的显示面板100,具有与上述显示面板100相同的技术效果,在此不做赘述。
如图22所示,本公开的一些实施例还提供了一种拼接显示装置10000,包括如上述实施例提供的显示装置1000,多个显示装置1000拼接组装。
拼接显示装置10000采用上述实施例提供的显示装置1000,具有与上述显示装置1000相同的技术效果,在此不做赘述。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (23)

  1. 一种显示面板,包括:
    背板,所述背板包括第一表面、与第一表面相对的第二表面以及连接第一表面和第二表面的多个侧面,其中,所述多个侧面中的至少一个为选定侧面;
    多个发光器件,设置于所述第一表面上;
    多个第一电极,设置于所述第一表面上,且靠近所述选定侧面;
    多条连接走线,每条连接走线包括依次连接的第一段走线、第二段走线和第三段走线,所述第一段走线设置于所述第一表面上,且所述第一段走线与所述多个第一电极中的一个电连接,所述第二段走线设置于所述选定侧面上,所述第三段走线设置于所述第二表面上,所述第三段走线与柔性线路板电连接。
  2. 根据权利要求1所述的显示面板,其中,所述第三段走线包括依次连接的第一子线段、第二子线段和第三子线段,所述第一子线段靠近所述选定侧面;
    所述多条连接走线的第一子线段并列设置,所述多条连接走线的第三子线段并列设置;所述第一子线段的延伸方向与所述第二子线段的延伸方向相交,所述第二子线段的延伸方向和所述第三子线段的延伸方向相交;所述第一子线段的延伸方向与所述第二子线段的延伸方向之间所形成的角的角度范围为90°~180°。
  3. 根据权利要求2所述的显示面板,其中,所述第一子线段和第二子线段之间通过第一连接部连接;
    其中,所述第一连接部包括相对的第一内侧面和第一外侧面,所述第一内侧面在所述背板上的正投影为第一内边,所述第一外侧面在所述背板上的正投影为第一外边,
    所述第一子线段包括相对的第一子线段内侧面和第一子线段外侧面,所述第一子线段内侧面在所述背板上的正投影为第一子线段内侧边,所述第一子线段外侧面在所述背板上的正投影为第一子线段外侧边;
    所述第二子线段包括相对的第二子线段内侧面和第二子线段外侧面,所述第二子线段内侧面在所述背板上的正投影为第二子线段内侧边,所述第二子线段外侧面在所述背板上的正投影为第二子线段外侧边;
    所述第一内边与所述第一子线段内侧边和所述第二子线段内侧边连接,所述第一外边与所述第一子线段外侧边和所述第二子线段外侧边连接。
  4. 根据权利要求3所述的显示面板,其中,所述第一内边为曲线;和/ 或,所述第一外边为曲线。
  5. 根据权利要求4所述的显示面板,其中,所述第一内边为弧线,和/或,所述第一外边为弧线。
  6. 根据权利要求3所述的显示面板,其中,所述第一内边包括首尾依次连接的多条折线段,且所述第一内边的多条折线段中与所述第一子线段内侧边连接的一条折线段,与所述第一子线段内侧边之间所形成的角的角度范围为170°至177°;
    所述第一内边的多条折线段中相连接的两条折线段之间所形成的角的角度范围为170°至177°;
    所述第一内边的多条折线段中与所述第二子线段内侧边连接的一条折线段,与所述第二子线段内侧边之间所形成的角的角度范围为170°至177°;
    和/或,
    所述第一外边包括首尾依次连接的多条折线段,且所述第一外边的多条折线段中与所述第一子线段外侧边连接的一条折线段,与所述第一子线段外侧边之间所形成的角的角度范围为170°至177°;
    所述第一外边的多条折线段中相连接的两条折线段之间所形成的角的角度范围为170°至177°;
    所述第一外边的多条折线段中与所述第二子线段外侧边连接的一条折线段,与所述第二子线段外侧边之间所形成的角的角度范围为170°至177°。
  7. 根据权利要求2至6任一项权利要求所述的显示面板,其中,所述第三子线段的延伸方向与所述第二子线段的延伸方向之间所形成的角的角度范围为90°~180°。
  8. 根据权利要求7所述的显示面板,其中,所述第三子线段和第二子线段之间通过第二连接部连接;
    其中,所述第二连接部包括相对的第二内侧面和第二外侧面,所述第二内侧面在所述背板上的正投影为第二内边,所述第二外侧面在所述背板上的正投影为第二外边,
    所述第三子线段包括相对的第三子线段内侧面和第三子线段外侧面,所述第三子线段内侧面在所述背板上的正投影为第三子线段内侧边,所述第三子线段外侧面在所述背板上的正投影为第三子线段外侧边;
    所述第二子线段包括相对的第二子线段内侧面和第二子线段外侧面,所述第二子线段内侧面在所述背板上的正投影为第二子线段内侧边,所述第二子线段外侧面在所述背板上的正投影为第二子线段外侧边;
    所述第二内边与所述第三子线段内侧边和所述第二子线段内侧边连接,所述第三外边与所述第三子线段外侧边和所述第二子线段外侧边连接。
  9. 根据权利要求8所述的显示面板,其中,所述第二内边为曲线;和/或,所述第二外边为曲线。
  10. 根据权利要求9所述的显示面板,其中,所述第二内边为弧线,和/或,所述第二外边为弧线。
  11. 根据权利要求8所述的显示面板,其中,
    所述第二内边包括首尾依次连接的多条折线段,且所述第二内边的多条折线段中与所述第三子线段内侧边连接的一条折线段,与所述第三子线段内侧边之间所形成的角的角度范围为170°至177°;
    所述第二内边的多条折线段中相连接的两条折线段之间所形成的角的角度范围为170°至177°;
    所述第二内边的多条折线段中与所述第二子线段内侧边连接的一条折线段,与所述第二子线段内侧边之间所形成的角的角度范围为170°至177°;
    和/或,
    所述第二外边包括首尾依次连接的多条折线段,且所述第二外边的多条折线段中与所述第三子线段外侧边连接的一条折线段,与所述第三子线段外侧边之间所形成的角的角度范围为170°至177°;
    所述第二外边的多条折线段中相连接的两条折线段之间所形成的角的角度范围为170°至177°;
    所述第二外边的多条折线段中与所述第二子线段外侧边连接的一条折线段,与所述第二子线段外侧边之间所形成的角的角度范围为170°至177°。
  12. 根据权利要求8至11任一项权利要求所述的显示面板,其中,
    所述多条连接走线分为至少一个连接走线组,每个连接走线组包括至少两条连接走线;
    每个连接走线组中,所述第一子线段的延伸方向和所述第三子线段的延伸方向相同,且相距最远的两条连接走线的第三子线段的所述第三子线段外侧边之间的距离,小于所述相距最远的两条连接走线的第一子线段的所述第一子线段外侧边之间的距离。
  13. 根据权利要求12所述的显示面板,其中,在同一个所述连接走线组中的相邻两条所述连接走线中,相邻两条第三子线段之间的距离小于相邻两条所述第一子线段之间的距离;
    其中,所述相邻两条第三子线段之间的距离为,一条所述第三子线段的 第三子线段外侧边,和另一条所述第三子线段的第三子线段内侧边的间距;且一条所述第三子线段第三子线段外侧边和另一条所述第三子线段的第三子线段内侧边相互靠近;
    所述相邻两条第一子线段之间的距离为,一条所述第一子线段的第一子线段外侧边,和另一条所述第一子线段的第一子线段内侧边的间距;且一条所述第一子线段第一子线段外侧边和另一条所述第一子线段的第一子线段内侧边相互靠近。
  14. 根据权利要求13所述的显示面板,其中,相邻两个连接走线组中,相距最近的两条连接走线的第三子线段外侧边之间的距离大于1000μm。
  15. 根据权利要求2至14任一项权利要求所述的显示面板,其中,所述第二表面与所述多个侧面中的每个侧面相接处形成棱边,其中,所述第二表面与所述选定侧面相接处形成选定棱边;与所述选定棱边相邻的两条棱边为第一棱边和第二棱边;
    所述多条连接走线中,与所述第一棱边距离最近的连接走线的第三子线段与所述第一棱边之间的距离大于或等于100μm;
    所述多条连接走线中,与所述第二棱边距离最近的连接走线的第三子线段与所述第二棱边之间的距离大于或等于100μm。
  16. 根据权利要求15所述的显示面板,其中,所述连接走线组中,相邻两条连接走线的第一子线段之间的距离为10~60μm。
  17. 根据权利要求15所述的显示面板,其中,所述连接走线组中,相邻两条连接走线的第三子线段之间的距离大于或等于10μm。
  18. 根据权利要求2至17任一项权利要求所述的显示面板,其中,所述第一电极沿与其延伸方向垂直的方向上的尺寸,和与所述第一电极电连接的连接走线沿与其延伸方向垂直的方向上的尺寸的比值在1至3之间取值。
  19. 根据权利要求2至18任一项权利要求所述的显示面板,其中,所述第一子线段的延伸方向与所述第二子线段的延伸方向之间所形成的角的角度范围为100°~180°;和/或,所述第三子线段的延伸方向与所述第二子线段的延伸方向之间所形成的角的角度范围为100°~180°;所述第二子线段沿其延伸方向上的尺寸大于或等于100um。
  20. 根据权利要求2至19任一项权利要求所述的显示面板,其中,所述第二表面包括绑定区,所述第三子线段延伸至所述绑定区内,所述第三子线段被配置为在所述绑定区内绑定所述柔性线路板。
  21. 根据权利要求1所述的显示面板,其中,多条所述第三段走线包括 并列设置的多条直线段;
    所述第二表面与所述选定侧面相接处形成选定棱边;与所述选定棱边相邻的两条棱边为第一棱边和第二棱边;
    所述多条连接走线中,与所述第一棱边距离最近的连接走线的第三段走线与所述第一棱边之间的距离大于或等于100μm;
    所述多条连接走线中,与所述第二棱边距离最近的连接走线的第三段走线与所述第二棱边之间的距离大于或等于100μm。
  22. 一种显示装置,包括:
    如权利要求1~21中任一项所述的显示面板;
    驱动电路板,所述驱动电路板设置于所述显示面板的背板的第二表面上,所述驱动电路板通过柔性线路板和所述显示面板的多条连接走线与所述显示面板的多个第一电极电连接。
  23. 一种拼接显示装置,包括:多个如权利要求22所述的显示装置,所述多个显示装置拼接组装。
PCT/CN2022/078098 2022-02-25 2022-02-25 显示面板、显示装置及拼接显示装置 WO2023159524A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280000331.8A CN116964660A (zh) 2022-02-25 2022-02-25 显示面板、显示装置及拼接显示装置
PCT/CN2022/078098 WO2023159524A1 (zh) 2022-02-25 2022-02-25 显示面板、显示装置及拼接显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/078098 WO2023159524A1 (zh) 2022-02-25 2022-02-25 显示面板、显示装置及拼接显示装置

Publications (1)

Publication Number Publication Date
WO2023159524A1 true WO2023159524A1 (zh) 2023-08-31

Family

ID=87764326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078098 WO2023159524A1 (zh) 2022-02-25 2022-02-25 显示面板、显示装置及拼接显示装置

Country Status (2)

Country Link
CN (1) CN116964660A (zh)
WO (1) WO2023159524A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3633456B2 (ja) * 2000-07-31 2005-03-30 セイコーエプソン株式会社 電気光学装置
CN207938613U (zh) * 2018-03-30 2018-10-02 纳晶科技股份有限公司 一种显示器件及其电子设备
CN109460165A (zh) * 2018-11-12 2019-03-12 京东方科技集团股份有限公司 触控基板及制作方法、显示面板及制作方法、基板组件
CN110161740A (zh) * 2019-06-28 2019-08-23 云谷(固安)科技有限公司 一种显示面板及其制作方法、显示装置
CN110211973A (zh) * 2019-06-12 2019-09-06 京东方科技集团股份有限公司 一种显示面板及制作方法
JP2020056951A (ja) * 2018-10-03 2020-04-09 株式会社ジャパンディスプレイ 表示装置
CN111383554A (zh) * 2019-11-06 2020-07-07 上海中航光电子有限公司 显示面板及显示装置
CN112068367A (zh) * 2019-06-10 2020-12-11 群创光电股份有限公司 电子装置及拼接式电子装置
CN212256800U (zh) * 2020-09-24 2020-12-29 京东方科技集团股份有限公司 显示面板、显示装置及拼接显示装置
CN113946077A (zh) * 2020-07-15 2022-01-18 荣耀终端有限公司 一种显示面板和显示装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3633456B2 (ja) * 2000-07-31 2005-03-30 セイコーエプソン株式会社 電気光学装置
CN207938613U (zh) * 2018-03-30 2018-10-02 纳晶科技股份有限公司 一种显示器件及其电子设备
JP2020056951A (ja) * 2018-10-03 2020-04-09 株式会社ジャパンディスプレイ 表示装置
CN109460165A (zh) * 2018-11-12 2019-03-12 京东方科技集团股份有限公司 触控基板及制作方法、显示面板及制作方法、基板组件
CN112068367A (zh) * 2019-06-10 2020-12-11 群创光电股份有限公司 电子装置及拼接式电子装置
CN110211973A (zh) * 2019-06-12 2019-09-06 京东方科技集团股份有限公司 一种显示面板及制作方法
CN110161740A (zh) * 2019-06-28 2019-08-23 云谷(固安)科技有限公司 一种显示面板及其制作方法、显示装置
CN111383554A (zh) * 2019-11-06 2020-07-07 上海中航光电子有限公司 显示面板及显示装置
CN113946077A (zh) * 2020-07-15 2022-01-18 荣耀终端有限公司 一种显示面板和显示装置
CN212256800U (zh) * 2020-09-24 2020-12-29 京东方科技集团股份有限公司 显示面板、显示装置及拼接显示装置

Also Published As

Publication number Publication date
CN116964660A (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
JP6780028B2 (ja) 駆動回路キャリア、ディスプレイパネル、タブレットディスプレイ及び製造方法
KR20200000508A (ko) 표시 패널, 이를 포함하는 전자 장치, 및 이의 제조 방법
CN110568681B (zh) 显示面板及液晶显示器
WO2020181634A1 (zh) Oled 显示装置及制备方法
WO2022062723A1 (zh) 显示面板及其制备方法、显示装置及拼接显示装置
TWI697709B (zh) 畫素陣列基板
WO2019228036A1 (zh) 用于显示装置的柔性组件及显示装置
WO2020118990A1 (zh) 显示面板
TW201635123A (zh) 觸控裝置
TWI737520B (zh) 顯示面板
KR20180061856A (ko) 플렉서블 표시장치
WO2023159524A1 (zh) 显示面板、显示装置及拼接显示装置
WO2023241303A1 (zh) 一种布线基板、背板和电子装置
US11690174B2 (en) Display device and manufacturing method thereof
US20200411562A1 (en) Array substrate and fabrication method thereof, display panel and display module
TWI680331B (zh) 電子裝置
TWI696244B (zh) 玻璃基板邊緣線路配置結構及其製造方法
KR20210102524A (ko) 표시 장치
US20220330430A1 (en) Bonding pad structure
US20230069670A1 (en) Display substrate, tiled display panel and display device
US20240097085A1 (en) Display panel and method for manufacturing the same, display device, and tiled display device
WO2024087192A1 (zh) 显示模组及其制备方法、显示装置
JP3554215B2 (ja) 液晶装置
TWI790627B (zh) 顯示裝置及其製造方法
WO2023108847A1 (zh) 显示面板及显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280000331.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18007404

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22927807

Country of ref document: EP

Kind code of ref document: A1