WO2023153532A1 - 디스플레이 장치 - Google Patents

디스플레이 장치 Download PDF

Info

Publication number
WO2023153532A1
WO2023153532A1 PCT/KR2022/001937 KR2022001937W WO2023153532A1 WO 2023153532 A1 WO2023153532 A1 WO 2023153532A1 KR 2022001937 W KR2022001937 W KR 2022001937W WO 2023153532 A1 WO2023153532 A1 WO 2023153532A1
Authority
WO
WIPO (PCT)
Prior art keywords
color conversion
color
pixel
sub
light
Prior art date
Application number
PCT/KR2022/001937
Other languages
English (en)
French (fr)
Inventor
유영길
백승미
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to PCT/KR2022/001937 priority Critical patent/WO2023153532A1/ko
Publication of WO2023153532A1 publication Critical patent/WO2023153532A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the embodiment relates to a display device.
  • Display devices are employed in various fields.
  • the display field for a TV but also the field of an augmented reality (AR)-based display field or the field of a vehicle head-up display (HUD: Head-Up Display) have received great attention.
  • AR augmented reality
  • HUD Head-Up Display
  • 1 is a cross-sectional view showing a conventional display device.
  • light emitting diodes 2 emitting light of the same color are disposed in each sub-pixel of a lower substrate 1 .
  • a light emitting diode 2 is used as a light source.
  • a color conversion layer 3 and a color filter 5 are disposed in each sub-pixel of the upper substrate 7, and barrier ribs 4 and 6 are disposed between these sub-pixels.
  • the lower substrate 1 and the upper substrate 7 are positioned to face each other and then bonded to each other.
  • a light emitting diode 2 In a conventional display device, a light emitting diode 2, a color conversion layer 3, and a color filter 5 are disposed in order in each sub-pixel. After the light of the light emitting diode 2 is color-converted by the color conversion layer 3, light corresponding to a wavelength of a specific band is emitted by the color filter 5.
  • the area of the color conversion layer 3 disposed in each sub-pixel is the same.
  • the light emitting diode 2 may emit blue light. Since blue light has a higher intensity than green light or red light, a high color temperature appears when implementing white light. In addition, the blue light of the light emitting diode 2 is converted into red light and green light in the color conversion layer 3 corresponding to each sub-pixel. At this time, the light conversion efficiency is different from each other depending on the material characteristics of the color conversion layer 3 corresponding to each sub-pixel.
  • the color temperature was adjusted by reducing the emission intensity of blue light with relatively high luminance by performing gamma adjustment to lower the peak value of each of the red signal or green signal having relatively low brightness for each color.
  • the conventional gamma correction method does not use 255 gradations required to express the highest brightness of each of red, green, and blue constituting white, a decrease in luminance due to compulsory gamma adjustment is inevitable.
  • the conventional gamma correction method has a problem in that a step phenomenon occurs in expressing an image that gradually brightens or gradually darkens when realizing an image.
  • Embodiments are aimed at solving the foregoing and other problems.
  • Another object of the embodiments is to provide a display device capable of solving problems caused by gamma correction.
  • Another object of the embodiments is to provide a display device capable of simplifying an arithmetic circuit by performing color temperature correction at the panel level.
  • Another object of the embodiments is to provide a display device capable of improving luminance.
  • a display device includes a substrate including a first sub-pixel, a second sub-pixel, and a third sub-pixel; at least one semiconductor light emitting device in each of the first subpixel, the second subpixel, and the third subpixel; a first color conversion pattern disposed on the at least one semiconductor element corresponding to the first sub-pixel and including first color conversion particles; a second color conversion pattern disposed on the at least one semiconductor device corresponding to the second sub-pixel and including second color conversion particles; and a light transmission pattern on the at least one semiconductor element corresponding to the third sub-pixel, wherein an area of the first color conversion pattern, an area of the second color conversion pattern, and an area of the light transmission pattern are different.
  • the semiconductor light emitting devices of each of the first subpixel, the second subpixel, and the third subpixel may generate light of the same color.
  • the semiconductor light emitting device generates first color light, the first color conversion pattern converts the first color light into second color light, and the second color conversion pattern converts the first color light into a third color light. converted into light, and the light transmission pattern may pass the first color light.
  • An area of the second color conversion pattern may be greater than an area of the first color conversion pattern.
  • An area of the first color conversion pattern may be greater than an area of the light transmission pattern.
  • the area of the first color conversion pattern is 26 ⁇ 5% of the total area
  • the area of the second color conversion pattern is 67 ⁇ 5% of the total area
  • the area of the light transmission pattern is of the total area. 7 ⁇ 5%
  • the total area may be the sum of the area of the first color conversion pattern, the area of the second color conversion pattern, and the area of the light transmission pattern.
  • a first width of each of the first color conversion pattern, the second color conversion pattern, and the light transmission pattern along a first direction is the same, and the first color conversion pattern, the second color conversion pattern along a second direction, and The second width of each of the light transmission patterns may be different.
  • a second width of the second color conversion pattern may be greater than a second width of the first color conversion pattern.
  • a second width of the first color conversion pattern may be greater than a second width of the light transmission pattern.
  • the display device may include a bank between each of the first color conversion pattern, the second color conversion pattern, and the light transmission pattern.
  • the display device may include a first color filter on the first color conversion pattern; a second color filter on the second color conversion pattern; a third color filter on the light transmission pattern; and a light blocking pattern between each of the first color filter, the second color filter, and the third color filter.
  • An area of the second color filter may be greater than an area of the first color filter, and an area of the first color filter may be greater than an area of the third color filter.
  • the pass wavelength band of the first color filter is set within the wavelength range of red light
  • the pass wavelength band of the second color filter is set within the wavelength range of green light
  • the pass wavelength band of the third color filter is set within the range of blue light. It can be set to a wavelength band range.
  • the first color filter and the second color filter may be set to transmit light in a yellow wavelength band.
  • the display device may include first and second assembling wires in each of the first sub-pixel, the second sub-pixel, and the third sub-pixel; and barrier ribs disposed on the first and second assembly lines and having at least one assembly hole in each of the first sub-pixel, the second sub-pixel, and the third sub-pixel.
  • the display device may include an insulating layer on the barrier rib and the at least one semiconductor light emitting element; and an electrode wire disposed on the insulating layer and connected to one side of the at least one semiconductor light emitting device, wherein at least one assembly wire among the first and second assembly wires is the at least one semiconductor light emitting device. It can be connected to the other side of.
  • At least one semiconductor light emitting device 161 and the first color conversion pattern 341 are disposed in the first sub-pixel PX1 and at least one in the second sub-pixel PX2.
  • One or more semiconductor light emitting devices 162 and the second color conversion pattern 342 may be disposed, and at least one semiconductor light emitting device 163 and a light transmission pattern 343 may be disposed in the third sub-pixel PX3 .
  • At least one semiconductor light emitting element 161 , 162 , 163 disposed in each of the first sub-pixel PX1 , the second sub-pixel PX2 , and the third sub-pixel PX3 emits light of the same color, for example, blue light. can do.
  • the semiconductor light emitting devices 161, 162, and 163 may have a size of less than a micrometer.
  • the first color conversion pattern 341 may convert blue light from at least one semiconductor light emitting device 161 to output red light.
  • the second color conversion pattern 342 may convert blue light from at least one semiconductor light emitting device 162 to output green light.
  • the light transmission pattern may output blue light from at least one semiconductor light emitting device 163 as it is.
  • Each of the first sub-pixel PX1 , the second sub-pixel PX2 , and the third sub-pixel PX3 may have different areas.
  • Areas A1 , A2 , and A3 of the first color conversion pattern 341 , the second color conversion pattern 342 , and the light transmission pattern 343 may be different from each other.
  • the area A2 of the second color conversion pattern 342 is larger than the area A1 of the first color conversion pattern 341
  • the area A1 of the first color conversion pattern 341 is the light transmission pattern 343.
  • the second widths W12, W22, and W32 of the two color conversion patterns 342 and the light transmission pattern 343 may be different.
  • the second width W22 of the second color conversion pattern 342 is greater than the second width W12 of the first color conversion pattern 341, and the second width W12 of the first color conversion pattern 341 is ) may be greater than the second width W32 of the light transmission pattern 343 .
  • gamma adjustment is performed as in the prior art. Not only can the calculation circuit be simplified because there is no need for it, but also reliability can be improved through high image quality because the luminance is remarkably improved.
  • the luminance in white color is changed to the conventional one.
  • the luminance in white color is changed to the conventional one.
  • the first color filter 361 and the second color filter 362 may be set to transmit light of the same wavelength band.
  • the first color filter 361 and the second color filter 362 may be set to transmit light in a yellow wavelength band.
  • the third color filter 363 may be omitted.
  • red light 420 of a lower wavelength band is output by the first color filter 361
  • green light 430 of a higher wavelength band is output by the second color filter 362
  • the blue light 410 is directly output from the light transmission pattern 343 of the converter 340, the color temperature can be lowered and the color purity can be improved.
  • 1 is a cross-sectional view showing a conventional display device.
  • FIG. 2 illustrates a living room of a house in which a display device according to an exemplary embodiment is disposed.
  • FIG. 3 is a schematic block diagram of a display device according to an exemplary embodiment.
  • FIG. 4 is a circuit diagram showing an example of a pixel of FIG. 3 .
  • FIG. 5 is an enlarged view of a first panel area in the display device of FIG. 2 .
  • FIG. 6 is an enlarged view of area A2 of FIG. 5 .
  • FIG. 7 is a view showing an example in which a light emitting device according to an embodiment is assembled to a substrate by a self-assembly method.
  • FIG. 8 is a plan view schematically illustrating a display device according to an exemplary embodiment.
  • FIG. 9 is a cross-sectional view schematically illustrating a display device according to an exemplary embodiment.
  • FIG. 10 is a cross-sectional view of the display device according to the first embodiment.
  • FIG. 11A to 11D are diagrams for explaining manufacturing processes of the display device according to the first embodiment.
  • FIG. 12 is a cross-sectional view of a display device according to a second embodiment.
  • FIGS. 13A to 13C are diagrams for explaining a manufacturing process of a display device according to a second embodiment.
  • the display device described in this specification includes a TV, a Shinage, a mobile phone, a smart phone, a head-up display (HUD) for a car, a backlight unit for a laptop computer, a display for VR or AR, and the like.
  • a TV a Shinage
  • a mobile phone a smart phone
  • a head-up display HUD
  • a backlight unit for a laptop computer
  • a display for VR or AR and the like.
  • the configuration according to the embodiment described in this specification can be applied to a device capable of displaying even a new product type to be developed in the future.
  • FIG. 1 illustrates a living room of a house in which a display device according to an exemplary embodiment is disposed.
  • the display device 100 of the embodiment may display the status of various electronic products such as a washing machine 101, a robot cleaner 102, and an air purifier 103, and may display the status of each electronic product and an IOT based and can control each electronic product based on the user's setting data.
  • various electronic products such as a washing machine 101, a robot cleaner 102, and an air purifier 103
  • the display device 100 may include a flexible display fabricated on a thin and flexible substrate.
  • a flexible display can be bent or rolled like paper while maintaining characteristics of a conventional flat panel display.
  • a unit pixel means a minimum unit for implementing one color.
  • a unit pixel of the flexible display may be implemented by a light emitting device.
  • the light emitting device may be a Micro-LED or a Nano-LED, but is not limited thereto.
  • FIG. 3 is a block diagram schematically illustrating a display device according to an exemplary embodiment
  • FIG. 4 is a circuit diagram illustrating an example of a pixel of FIG. 3 .
  • a display device may include a display panel 10 , a driving circuit 20 , a scan driving unit 30 and a power supply circuit 50 .
  • the display device 100 may drive a light emitting element in an active matrix (AM) method or a passive matrix (PM) method.
  • AM active matrix
  • PM passive matrix
  • the driving circuit 20 may include a data driver 21 and a timing controller 22 .
  • the display panel 10 may be formed in a rectangular shape, but is not limited thereto. That is, the display panel 10 may be formed in a circular or elliptical shape. At least one side of the display panel 10 may be formed to be bent with a predetermined curvature.
  • the display panel 10 may be divided into a display area DA and a non-display area NDA disposed around the display area DA.
  • the display area DA is an area where the pixels PX are formed to display an image.
  • the display panel 10 includes data lines (D1 to Dm, where m is an integer greater than or equal to 2), scan lines (S1 to Sn, where n is an integer greater than or equal to 2) crossing the data lines (D1 to Dm), and a high potential voltage.
  • pixels PXs connected to the high potential voltage line VDDL supplied, the low potential voltage line VSSL supplied with the low potential voltage, and the data lines D1 to Dm and the scan lines S1 to Sn can include
  • Each of the pixels PX may include a first sub-pixel PX1 , a second sub-pixel PX2 , and a third sub-pixel PX3 .
  • the first sub-pixel PX1 emits light of a first color of a first main wavelength
  • the second sub-pixel PX2 emits light of a second color of a second main wavelength
  • the third sub-pixel PX3 emits light of a second color.
  • a third color light having a third main wavelength may be emitted.
  • the first color light may be red light
  • the second color light may be green light
  • the third color light may be blue light, but are not limited thereto.
  • FIG. 3 it is illustrated that each of the pixels PX includes three sub-pixels, but is not limited thereto. That is, each of the pixels PX may include four or more sub-pixels.
  • Each of the first sub-pixel PX1 , the second sub-pixel PX2 , and the third sub-pixel PX3 includes at least one of the data lines D1 to Dm, at least one of the scan lines S1 to Sn, and a high voltage signal. It can be connected to the upper voltage line (VDDL).
  • the first sub-pixel PX1 may include light emitting elements LD, a plurality of transistors for supplying current to the light emitting elements LD, and at least one capacitor Cst.
  • each of the first sub-pixel PX1 , the second sub-pixel PX2 , and the third sub-pixel PX3 may include only one light emitting element LD and at least one capacitor Cst. may be
  • Each of the light emitting elements LD may be a semiconductor light emitting diode including a first electrode, a plurality of conductive semiconductor layers, and a second electrode.
  • the first electrode may be an anode electrode and the second electrode may be a cathode electrode, but is not limited thereto.
  • the light emitting device LD may be one of a horizontal light emitting device, a flip chip type light emitting device, and a vertical light emitting device.
  • the plurality of transistors may include a driving transistor DT supplying current to the light emitting elements LD and a scan transistor ST supplying a data voltage to a gate electrode of the driving transistor DT, as shown in FIG. 4 .
  • the driving transistor DT has a gate electrode connected to the source electrode of the scan transistor ST, a source electrode connected to the high potential voltage line VDDL to which a high potential voltage is applied, and first electrodes of the light emitting elements LD.
  • a connected drain electrode may be included.
  • the scan transistor ST has a gate electrode connected to the scan line (Sk, k is an integer satisfying 1 ⁇ k ⁇ n), a source electrode connected to the gate electrode of the driving transistor DT, and data lines Dj, j an integer that satisfies 1 ⁇ j ⁇ m).
  • the capacitor Cst is formed between the gate electrode and the source electrode of the driving transistor DT.
  • the storage capacitor Cst charges a difference between the gate voltage and the source voltage of the driving transistor DT.
  • the driving transistor DT and the scan transistor ST may be formed of thin film transistors.
  • the driving transistor DT and the scan transistor ST have been mainly described as being formed of P-type MOSFETs (Metal Oxide Semiconductor Field Effect Transistors), but the present invention is not limited thereto.
  • the driving transistor DT and the scan transistor ST may be formed of N-type MOSFETs. In this case, positions of the source and drain electrodes of the driving transistor DT and the scan transistor ST may be changed.
  • each of the first sub-pixel PX1 , the second sub-pixel PX2 , and the third sub-pixel PX3 includes one driving transistor DT, one scan transistor ST, and one capacitor ( 2T1C (2 Transistor - 1 capacitor) having Cst) is illustrated, but the present invention is not limited thereto.
  • Each of the first sub-pixel PX1 , the second sub-pixel PX2 , and the third sub-pixel PX3 may include a plurality of scan transistors ST and a plurality of capacitors Cst.
  • the second sub-pixel PX2 and the third sub-pixel PX3 may be expressed with substantially the same circuit diagram as the first sub-pixel PX1 , a detailed description thereof will be omitted.
  • the driving circuit 20 outputs signals and voltages for driving the display panel 10 .
  • the driving circuit 20 may include a data driver 21 and a timing controller 22 .
  • the data driver 21 receives digital video data DATA and a source control signal DCS from the timing controller 22 .
  • the data driver 21 converts the digital video data DATA into analog data voltages according to the source control signal DCS and supplies them to the data lines D1 to Dm of the display panel 10 .
  • the timing controller 22 receives digital video data DATA and timing signals from the host system.
  • the timing signals may include a vertical sync signal, a horizontal sync signal, a data enable signal, and a dot clock.
  • the host system may be an application processor of a smart phone or tablet PC, a monitor, a system on chip of a TV, and the like.
  • the timing controller 22 generates control signals for controlling operation timings of the data driver 21 and the scan driver 30 .
  • the control signals may include a source control signal DCS for controlling the operation timing of the data driver 21 and a scan control signal SCS for controlling the operation timing of the scan driver 30 .
  • the driving circuit 20 may be disposed in the non-display area NDA provided on one side of the display panel 10 .
  • the driving circuit 20 may be formed of an integrated circuit (IC) and mounted on the display panel 10 using a chip on glass (COG) method, a chip on plastic (COP) method, or an ultrasonic bonding method.
  • COG chip on glass
  • COP chip on plastic
  • ultrasonic bonding method The present invention is not limited to this.
  • the driving circuit 20 may be mounted on a circuit board (not shown) instead of the display panel 10 .
  • the data driver 21 may be mounted on the display panel 10 using a chip on glass (COG) method, a chip on plastic (COP) method, or an ultrasonic bonding method, and the timing controller 22 may be mounted on a circuit board. there is.
  • COG chip on glass
  • COP chip on plastic
  • the scan driver 30 receives the scan control signal SCS from the timing controller 22 .
  • the scan driver 30 generates scan signals according to the scan control signal SCS and supplies them to the scan lines S1 to Sn of the display panel 10 .
  • the scan driver 30 may include a plurality of transistors and be formed in the non-display area NDA of the display panel 10 .
  • the scan driver 30 may be formed as an integrated circuit, and in this case, it may be mounted on a gate flexible film attached to the other side of the display panel 10 .
  • the circuit board may be attached to pads provided on one edge of the display panel 10 using an anisotropic conductive film. Due to this, the lead lines of the circuit board may be electrically connected to the pads.
  • the circuit board may be a flexible printed circuit board, a printed circuit board, or a flexible film such as a chip on film. The circuit board may be bent under the display panel 10 . Accordingly, one side of the circuit board may be attached to one edge of the display panel 10 and the other side may be disposed under the display panel 10 and connected to a system board on which a host system is mounted.
  • the power supply circuit 50 may generate voltages necessary for driving the display panel 10 from the main power supplied from the system board and supply the voltages to the display panel 10 .
  • the power supply circuit 50 generates a high potential voltage (VDD) and a low potential voltage (VSS) for driving the light emitting elements (LD) of the display panel 10 from the main power supply to generate the display panel 10. can be supplied to the high potential voltage line (VDDL) and the low potential voltage line (VSSL).
  • the power supply circuit 50 may generate and supply driving voltages for driving the driving circuit 20 and the scan driving unit 30 from the main power.
  • FIG. 5 is an enlarged view of a first panel area in the display device of FIG. 3;
  • the display device 100 of the embodiment may be manufactured by mechanically and electrically connecting a plurality of panel areas such as the first panel area A1 by tiling.
  • the first panel area A1 may include a plurality of semiconductor light emitting devices 150 arranged for each unit pixel (PX in FIG. 3 ).
  • the unit pixel PX may include a first sub-pixel PX1 , a second sub-pixel PX2 , and a third sub-pixel PX3 .
  • a plurality of red semiconductor light emitting elements 150R are disposed in the first sub-pixel PX1
  • a plurality of green semiconductor light emitting elements 150G are disposed in the second sub-pixel PX2
  • a plurality of blue semiconductor light emitting elements 150B may be disposed in the third sub-pixel PX3.
  • the unit pixel PX may further include a fourth sub-pixel in which the semiconductor light emitting device is not disposed, but is not limited thereto.
  • FIG. 6 is an enlarged view of area A2 of FIG. 5 .
  • a display device 100 may include a substrate 200 , assembled wires 201 and 202 , an insulating layer 206 , and a plurality of semiconductor light emitting devices 150 . More components than this may be included.
  • the assembly line may include a first assembly line 201 and a second assembly line 202 spaced apart from each other.
  • the first assembling wire 201 and the second assembling wire 202 may be provided to generate a dielectrophoretic force (DEP force) for assembling the semiconductor light emitting device 150 .
  • the semiconductor light emitting device 150 may be one of a horizontal semiconductor light emitting device, a flip chip semiconductor light emitting device, and a vertical semiconductor light emitting device.
  • the semiconductor light emitting device 150 may include a red semiconductor light emitting device 150, a green semiconductor light emitting device 150G, and a blue semiconductor light emitting device 150B0 to form a sub-pixel, but is not limited thereto.
  • red phosphor and green phosphor may be provided to implement red and green, respectively.
  • the substrate 200 may be a support member for supporting components disposed on the substrate 200 or a protection member for protecting components.
  • the substrate 200 may be a rigid substrate or a flexible substrate.
  • the substrate 200 may be formed of sapphire, glass, silicon or polyimide.
  • the substrate 200 may include a flexible material such as polyethylene naphthalate (PEN) or polyethylene terephthalate (PET).
  • PEN polyethylene naphthalate
  • PET polyethylene terephthalate
  • the substrate 200 may be a transparent material, but is not limited thereto.
  • the substrate 200 may function as a support substrate in a display panel, and may function as a substrate for assembly when self-assembling a light emitting device.
  • the substrate 200 may be a backplane provided with circuits in the sub-pixels PX1, PX2, and PX3 shown in FIGS. 3 and 4, for example, transistors ST and DT, capacitors Cst, and signal wires. However, it is not limited thereto.
  • the insulating layer 206 may include an insulating and flexible organic material such as polyimide, PAC, PEN, PET, polymer, etc., or an inorganic material such as silicon oxide (SiO2) or silicon nitride series (SiNx), and may include a substrate. 200 and may form a single substrate.
  • an insulating and flexible organic material such as polyimide, PAC, PEN, PET, polymer, etc.
  • an inorganic material such as silicon oxide (SiO2) or silicon nitride series (SiNx)
  • the insulating layer 206 may be a conductive adhesive layer having adhesiveness and conductivity, and the conductive adhesive layer may have flexibility and thus enable a flexible function of the display device.
  • the insulating layer 206 may be an anisotropic conductive film (ACF) or a conductive adhesive layer such as an anisotropic conductive medium or a solution containing conductive particles.
  • the conductive adhesive layer may be a layer that is electrically conductive in a direction perpendicular to the thickness but electrically insulating in a direction horizontal to the thickness.
  • the insulating layer 206 may include an assembly hole 203 into which the semiconductor light emitting device 150 is inserted. Therefore, during self-assembly, the semiconductor light emitting device 150 can be easily inserted into the assembly hole 203 of the insulating layer 206 .
  • the assembly hole 203 may be called an insertion hole, a fixing hole, an alignment hole, or the like.
  • the assembly hole 203 may also be called a hole.
  • the assembly hole 203 may be called a hole, groove, groove, recess, pocket, or the like.
  • the assembly hole 203 may be different according to the shape of the semiconductor light emitting device 150 .
  • each of a red semiconductor light emitting device, a green semiconductor light emitting device, and a blue semiconductor light emitting device may have a different shape, and may have an assembly hole 203 having a shape corresponding to the shape of each of these semiconductor light emitting devices.
  • the assembly hole 203 may include a first assembly hole for assembling a red semiconductor light emitting device, a second assembly hole for assembling a green semiconductor light emitting device, and a third assembly hole for assembling a blue semiconductor light emitting device. there is.
  • the red semiconductor light emitting device has a circular shape
  • the green semiconductor light emitting device has a first elliptical shape having a first minor axis and a second major axis
  • the blue semiconductor light emitting device has a second elliptical shape having a second minor axis and a second major axis. may, but is not limited thereto.
  • the second major axis of the elliptical shape of the blue semiconductor light emitting device may be greater than the second major axis of the elliptical shape of the green semiconductor light emitting device, and the second minor axis of the elliptical shape of the blue semiconductor light emitting device may be smaller than the first minor axis of the elliptical shape of the green semiconductor light emitting device.
  • a method of mounting the semiconductor light emitting device 150 on the substrate 200 may include, for example, a self-assembly method (FIG. 7) and a transfer method.
  • FIG. 7 is a view showing an example in which a light emitting device according to an embodiment is assembled to a substrate by a self-assembly method.
  • the assembly substrate 200 described below may also function as a panel substrate 200a in a display device after assembling a light emitting device, but the embodiment is not limited thereto.
  • the semiconductor light emitting device 150 may be put into a chamber 1300 filled with a fluid 1200, and the semiconductor light emitting device 150 may be assembled by a magnetic field generated from the assembly device 1100. 200) can be moved. At this time, the light emitting device 150 adjacent to the assembly hole 207H of the assembly board 200 may be assembled into the assembly hole 207H by the DEP force generated by the electric field of the assembly lines.
  • the fluid 1200 may be water such as ultrapure water, but is not limited thereto.
  • a chamber may also be called a water bath, container, vessel, or the like.
  • the assembly substrate 200 may be disposed on the chamber 1300 .
  • the assembly substrate 200 may be put into the chamber 1300 .
  • the semiconductor light emitting device 150 may be implemented as a vertical semiconductor light emitting device, but is not limited thereto, and a horizontal light emitting device may be employed.
  • the semiconductor light emitting device 150 may include a magnetic layer (not shown) having a magnetic material.
  • the magnetic layer may include a metal having magnetism, such as nickel (Ni). Since the semiconductor light emitting device 150 injected into the fluid includes a magnetic layer, it can move to the assembly substrate 200 by a magnetic field generated from the assembly device 1100 .
  • the magnetic layer may be disposed above or below or on both sides of the light emitting element.
  • the semiconductor light emitting device 150 may include a passivation layer surrounding top and side surfaces.
  • the passivation layer may be formed using an inorganic insulator such as silica or alumina through PECVD, LPCVD, sputtering deposition, or the like.
  • the passivation layer may be formed through a method of spin coating an organic material such as a photoresist or a polymer material.
  • the semiconductor light emitting device 150 may include a first conductivity type semiconductor layer, a second conductivity type semiconductor layer, and an active layer disposed therebetween.
  • the first conductivity type semiconductor layer may be an n-type semiconductor layer
  • the second conductivity type semiconductor layer may be a p-type semiconductor layer, but is not limited thereto.
  • the first conductivity type semiconductor layer, the second conductivity type semiconductor layer, and the active layer disposed therebetween may constitute a light emitting unit.
  • the light emitting portion may be called a light emitting layer, a light emitting region, or the like.
  • a first electrode (layer) may be disposed below the first conductivity type semiconductor layer, and a second electrode (layer) may be disposed on the second conductivity type semiconductor layer.
  • a partial region of the first conductivity type semiconductor layer or the second conductivity type semiconductor layer may be exposed to the outside. Accordingly, in a manufacturing process of a display device after the semiconductor light emitting device 150 is assembled to the assembly substrate 200 , a portion of the passivation layer may be etched.
  • the first electrode may include at least one or more layers.
  • the first electrode may include an ohmic layer, a reflective layer, a magnetic layer, a conductive layer, an anti-oxidation layer, an adhesive layer, and the like.
  • the ohmic layer may include Au or AuBe.
  • the reflective layer may include Al, Ag, or the like.
  • the magnetic layer may include Ni, Co, or the like.
  • the conductive layer may include Cu or the like.
  • the anti-oxidation layer may include Mo or the like.
  • the adhesive layer may include Cr, Ti, or the like.
  • the second electrode may include a transparent conductive layer.
  • the second electrode 154b may include ITO, IZO, or the like.
  • the assembly device 1100 applying a magnetic field may move along the assembly substrate 200 .
  • Assembling device 1100 may be a permanent magnet or an electromagnet.
  • the assembly device 1100 may move in a state of being in contact with the assembly substrate 200 in order to maximize the area of the magnetic field into the fluid 1200 .
  • the assembly device 1100 may include a plurality of magnetic bodies or may include magnetic bodies having a size corresponding to that of the assembly substrate 200 . In this case, the moving distance of the assembling device 1100 may be limited within a predetermined range.
  • the semiconductor light emitting device 150 in the chamber 1300 may move toward the assembly device 1100 and the assembly substrate 200 by the magnetic field generated by the assembly device 1100 .
  • the semiconductor light emitting device 150 may enter into the assembly hole 207H and be fixed by a DEP force generated by an electric field between the assembly wires 201 and 202 while moving toward the assembly device 1100 .
  • the first and second assembled wires 201 and 202 form an electric field by AC power, and a DEP force may be formed between the assembled wires 201 and 202 by the electric field.
  • the semiconductor light emitting device 150 can be fixed to the assembly hole 207H on the assembly substrate 200 by this DEP force.
  • a predetermined solder layer (not shown) is formed between the light emitting element 150 assembled on the assembly hole 207H of the assembly board 200 and the assembly wires 201 and 202 to increase the bonding strength of the light emitting element 150. can improve
  • a molding layer (not shown) may be formed in the assembly hole 207H of the assembly substrate 200 .
  • the molding layer may be a transparent resin or a resin containing a reflective material or a scattering material.
  • FIG. 8 is a plan view schematically illustrating a display device according to an exemplary embodiment.
  • 9 is a cross-sectional view schematically illustrating a display device according to an exemplary embodiment.
  • a display device may include a light source 160 and a color converter 340 .
  • the light source 160 may generate light and provide the light to the color converter 340 .
  • the light generated by the light source 160 may be blue light 410, but is not limited thereto.
  • the light generated by the light source 160 may be light of a wavelength band lower than that of the blue light 410, for example, blue light or purple light, but is not limited thereto.
  • the color converter 340 may convert the blue light 410 to output other color light.
  • the other color lights may be red light 420 and green light 430 .
  • a plurality of pixels may be arranged.
  • a plurality of pixels may be arranged in a matrix.
  • a plurality of pixels may be arranged along a first direction (x), and a plurality of pixels may be arranged along a second direction (y).
  • Each of the plurality of pixels may implement a plurality of colors.
  • Each of the plurality of pixels may include a plurality of sub-pixels.
  • Each of the plurality of sub-pixels may emit light of different colors.
  • An image may be displayed by light of different colors emitted from each of a plurality of sub-pixels.
  • each of the plurality of sub-pixels may include a first sub-pixel PX1 , a second sub-pixel PX2 , and a third sub-pixel PX3 .
  • the first sub-pixel PX1 emits red light 420
  • the second sub-pixel PX2 emits green light 430
  • the third sub-pixel PX3 emits blue light 410.
  • the light source 160 may include a plurality of semiconductor light emitting devices 161 , 162 , and 163 .
  • Each of the plurality of semiconductor light emitting devices 161 , 162 , and 163 may emit blue light 410 .
  • the first sub-pixel PX1 may include at least one semiconductor light emitting device 161 .
  • the second sub-pixel PX2 may include at least one semiconductor light emitting device 162 .
  • the third sub-pixel PX3 may include at least one semiconductor light emitting device 163 .
  • the color converter 340 may include a first color conversion pattern 341 , a second color conversion pattern 342 and a light transmission pattern 343 .
  • the light transmission pattern 343 may be omitted.
  • Each of the first color conversion pattern 341 and the second color conversion pattern 342 may include color conversion particles.
  • the first color conversion pattern 341 may include red conversion particles
  • the second color conversion pattern 342 may include green conversion particles.
  • the color conversion particles may include, for example, phosphors or quantum dots.
  • Each phosphor or quantum dot may include fluorescent particles or quantum particles.
  • each of the first color conversion pattern 341 , the second color conversion pattern 342 , and/or the light transmission pattern 343 may include a scattering agent capable of scattering light.
  • the scattering agent may include scattering particles.
  • the first color conversion pattern 341 may be disposed on the first sub-pixel PX1 to convert blue light 410 of the semiconductor light emitting device 161 to output red light 420 .
  • the first color conversion pattern 341 may shift light of a blue wavelength band of the semiconductor light emitting device 161 to light of a red wavelength band, and output the shifted light of the red wavelength band.
  • the second color conversion pattern 342 may be disposed on the second sub-pixel PX2 to output blue light 410 of the semiconductor light emitting device 162 to green light 430 .
  • the second color conversion pattern 342 may shift light of a blue wavelength band of the semiconductor light emitting device 162 to light of a green wavelength band, and output the shifted light of the green wavelength band.
  • the light transmission pattern 343 may be disposed in the third sub-pixel PX3 to pass the blue light 410 of the semiconductor light emitting device 163 .
  • the third sub-pixel PX3 may pass the light of the blue wavelength band of the semiconductor light emitting device 163 and output the light of the blue wavelength band as it is.
  • Blue light 410 may be referred to as a first color light, red light 420 as a second color light, and green light 430 as a third color light.
  • the first sub-pixel PX1 includes at least one semiconductor light-emitting device 161 and the first color conversion pattern 341
  • the second sub-pixel PX2 includes at least one semiconductor light-emitting device 162 and The second color conversion pattern 342 is included
  • the third sub-pixel PX3 may include at least one semiconductor light emitting device 163 and a light transmission pattern 343 .
  • the first color conversion pattern 341 has a shape or area corresponding to the first sub-pixel PX1
  • the second color conversion pattern 342 has a shape or area corresponding to the second sub-pixel PX2.
  • the light transmission pattern 343 may have a shape or area corresponding to the third sub-pixel PX3 .
  • the blue light 410 is equivalent to the red light 420 or the green light 430 in terms of emission intensity.
  • color conversion efficiencies are different from each other due to material characteristics of the color conversion layer 3 disposed in each sub-pixel, so color temperature adjustment is required.
  • gamma correction was performed to adjust the color temperature.
  • the luminance of each of red, green, and blue is equal to 173.16 cd/m 2 .
  • the luminance in white appears as high as 201 cd/m 2 .
  • the luminance of red may be 68.89201 cd/m 2
  • the luminance of green may be 173.16 cd/m 2
  • the luminance of blue may be 99 cd/m 2 .
  • the luminance in white was 99201 cd/m 2 , significantly lower than the luminance in white before gamma adjustment.
  • the above technical problem can be solved by varying the areas A1 , A2 , and A3 of the first color conversion pattern 341 , the second color conversion pattern 342 , and the light transmission pattern 343 .
  • the area A2 of the second color conversion pattern 342 is larger than the area A1 of the first color conversion pattern 341, and the area A1 of the first color conversion pattern 341 is a light transmission pattern ( 343) may be larger than the area A3.
  • the area A1 of the first color conversion pattern 341 is 26 ⁇ 5% of the total area
  • the area A2 of the second color conversion pattern 342 is 67 ⁇ 5% of the total area
  • the area A3 of the light transmission pattern 343 may be 7 ⁇ 5% of the total area.
  • the total area may be the sum (A1+A2+A3) of the area of the first color conversion pattern 341, the area of the second color conversion pattern 342, and the area of the light transmission pattern 343.
  • the area A3 of the light transmission pattern 343 through which the blue light 410 is output is the smallest, and the area A2 of the second color conversion pattern 342 having the poorest color conversion efficiency is the largest. By doing so, as shown in Table 2, the luminance can be remarkably improved.
  • the luminance is also the highest at 345 cd/m 2 .
  • the area ratio of the light transmission pattern 343 through which the blue light 410 having the highest brightness intensity is transmitted is 7.1%
  • the luminance is as low as 37 cd/m 2 .
  • the first widths W11, W21, and W31 of the first color conversion pattern 341, the second color conversion pattern 342, and the light transmission pattern 343 along the second direction y are the same, and the first widths W11, W21, and W31 are the same.
  • the second widths W12 , W22 , and W32 of the first color conversion pattern 341 , the second color conversion pattern 342 , and the light transmission pattern 343 along one direction (x) may be different.
  • the second width W22 of the second color conversion pattern 342 is greater than the second width W12 of the first color conversion pattern 341, and the second width W12 of the first color conversion pattern 341 is ) may be greater than the second width W32 of the light transmission pattern 343 .
  • the second width W12 of the one color conversion pattern 341 is 26 ⁇ 5% of the entire width
  • the second width W22 of the second color conversion pattern 342 is 67 ⁇ 5% of the entire width
  • the second width W32 of the light transmission pattern 343 may be 7 ⁇ 5% of the entire width.
  • the total width is the sum (W12+W22+W32) of the second width of the first color conversion pattern 341, the second width of the second color conversion pattern 342, and the second width of the light transmission pattern 343.
  • the first widths W11, W21, and W31 of the first color conversion pattern 341, the second color conversion pattern 342, and the light transmission pattern 343 along the second direction y are different, , the second widths W12 , W22 , and W32 of the first color conversion pattern 341 , the second color conversion pattern 342 , and the light transmission pattern 343 along the first direction (x) may be the same.
  • the first widths W11, W21, and W31 of the first color conversion pattern 341, the second color conversion pattern 342, and the light transmission pattern 343 along the second direction y are different, , the second widths W12, W22, and W32 of the first color conversion pattern 341, the second color conversion pattern 342, and the light transmission pattern 343 along the first direction (x) may be different.
  • FIGS. 1 and 2 a detailed structure of the above-described display device ( FIGS. 1 and 2 ) will be described in detail with reference to FIGS. 10 to 13C . Descriptions omitted in the following description can be easily understood from the previously described display device ( FIGS. 1 and 2 ).
  • FIG. 10 is a cross-sectional view of the display device according to the first embodiment.
  • the display device according to the first embodiment is an in-cell type display device, and the light source 160 and the color converter 340 may be manufactured on the same substrate.
  • the display device 300 includes a first substrate 310, a plurality of insulating layers 311, 321, and 330, first and second assembled wires 312 and 313,
  • the barrier rib 320, the light source 160, the electrode wiring 322, the color converter 340, the bank 350, the color filter layer 360, the light blocking pattern 370, and the second substrate 380 may be included. .
  • the light source 160 may include a plurality of semiconductor feet and elements 161 , 162 , and 163 .
  • the color converter 340 may include a first color conversion pattern 341 , a second color conversion pattern 342 and a light transmission pattern 343 . Since the light source 160 and the color converter 340 have been previously described, a detailed description thereof will be omitted.
  • the semiconductor light emitting devices 161 , 162 , and 163 have a size of less than a micrometer, it is very difficult to mount them on the first substrate 310 .
  • the semiconductor light emitting devices 161 , 162 , and 163 may be easily assembled on the first substrate 310 using a self-assembly method.
  • a first substrate 310 As a structure for the self-assembly method, a first substrate 310, a plurality of insulating layers 311, 321, and 330, first and second assembly wires 312 and 313, and barrier ribs 320 may be provided, Since these components have been previously described, a detailed description thereof will be omitted.
  • first and second assembled wires 312 and 313 are disposed on different layers, they may be disposed on the same layer. As shown in FIG. 10 , the first assembly line 312 may be disposed under the insulating layer 311 , and the second assembly line 313 may be disposed on the insulating layer 311 . Although not shown, the first and second assembled wires 312 and 313 may be disposed between the first substrate 310 and the insulating layer 311 .
  • the semiconductor light emitting devices 161, 162, and 163 in the fluid are moved along one direction by a magnetic field, and semiconductor light is emitted by the DEP force formed between the first and second assembly lines 312 and 313.
  • the elements 161 , 162 , and 163 may be inserted into and fixed to the assembly hole 320H of the partition wall 320 .
  • the assembly hole 320H of the barrier rib 320 is different in the first sub-pixel PX1 , the second sub-pixel PX2 , and the third sub-pixel PX3 , and the first sub-pixel PX1 and the second sub-pixel PX1 have different assembly holes 320H.
  • Each of the semiconductor light emitting devices 161 , 162 , and 163 of the sub-pixel PX2 and the third sub-pixel PX3 may have a shape corresponding to a shape of the assembly hole 320H that is different from each other.
  • the semiconductor light emitting device 161 corresponding to the assembly hole 320H of each of the first sub-pixel PX1 , the second sub-pixel PX2 , and the third sub-pixel PX3 using the self-assembly method. , 162, 163) can be assembled simultaneously.
  • the semiconductor light emitting elements 161 , 162 , and 163 of the first sub-pixel PX1 , the second sub-pixel PX2 , and the third sub-pixel PX3 respectively are the first sub-pixel PX1 and the second sub-pixel PX1 . It may be individually assembled to the pixel PX2 and the third sub-pixel PX3, but is not limited thereto.
  • first sub-pixel PX1 and the second sub-pixel PX1 are provided.
  • One semiconductor light emitting device 161 , 162 , and 163 is disposed in each of the sub-pixel PX2 and the third sub-pixel PX3 , but the first sub-pixel PX1 , the second sub-pixel PX2 , and the third sub-pixel PX2 are disposed.
  • Two or more assembly holes 320H are provided in each pixel PX3, and two or more semiconductor light emitting devices ( 161, 162, 163) may be arranged.
  • the number of semiconductor light emitting elements 161 , 162 , and 163 disposed in each of the first sub-pixel PX1 , the second sub-pixel PX2 , and the third sub-pixel PX3 is Sizes of each of the sub-pixel PX2 and the third sub-pixel PX3, the size of the semiconductor light emitting devices 161, 162, and 163, the first sub-pixel PX1, the second sub-pixel PX2, and the third sub-pixel (PX3) may vary according to the maximum luminance value required in each.
  • an electrode wire 322 is disposed on the semiconductor light emitting devices 161, 162, and 163 to electrically connect one side of the semiconductor light emitting devices 161, 162, and 163.
  • the second assembly wiring 313 since the second assembly wiring 313 is electrically connected to the other side of the semiconductor light emitting devices 161 , 162 , and 163 , the second assembly wiring 313 may be used as an electrode wiring.
  • the second assembled wiring 313 may be referred to as a first electrode wiring
  • the electrode wiring 322 may be referred to as a second electrode wiring.
  • Blue light 410 may be emitted from the semiconductor light emitting devices 161 , 162 , and 163 by power applied to the second assembled wiring 313 and the electrode wiring 322 .
  • the electrode wiring 322 may be commonly connected to the semiconductor light emitting devices 161 , 162 , and 163 of the first sub-pixel PX1 , the second sub-pixel PX2 , and the third sub-pixel PX3 , respectively.
  • the luminance of the semiconductor light emitting devices 161 , 162 , and 163 may vary according to the intensity of power applied to the second assembled wiring 313 .
  • the first sub-pixel PX1 and the second sub-pixel PX1 emit light.
  • the intensity of the power applied to the second assembly line 313 disposed in each of the (PX2) and the third sub-pixel (PX3) is the same.
  • the semiconductor light emitting devices 161 , 162 , and 163 are disposed in each of the first sub-pixel PX1 , the second sub-pixel PX2 , and the third sub-pixel PX3 by the self-assembly process, the first sub-pixel PX1
  • the second assembly line 313 disposed in each of the sub-pixel PX1 , the second sub-pixel PX2 , and the third sub-pixel PX3 may be connected in common, but is not limited thereto.
  • the first assembling wire 312 may also be electrically connected to the other side of the semiconductor light emitting devices 161 , 162 , and 163 .
  • the color converter 340 may be disposed on the light source 160 , that is, the plurality of semiconductor light emitting devices 161 , 162 , and 163 .
  • the first color conversion pattern 341 is disposed on the first sub-pixel PX1
  • the second color conversion pattern 342 is disposed on the second sub-pixel PX2
  • the transparent pattern is disposed on the third sub-pixel (PX3).
  • a bank 350 may be disposed between each of the first color conversion pattern 341 , the second color conversion pattern 342 , and the transparent pattern.
  • the bank 350 may be a guide member for forming the first color conversion pattern 341 , the second color conversion pattern 342 , and the transparent pattern.
  • the bank 350 generates red light 420 output from the first color conversion pattern 341, green light 430 output from the second color conversion pattern 342, and blue light transmitted through the light transmission pattern 343 ( 410) It may be a color mixing prevention member that prevents color mixing between livers.
  • the plurality of insulating layers 311, 321, and 330 may include an organic material or an inorganic material.
  • the first insulating layer 311 is disposed between the first assembly line 312 and the second assembly line 313 to electrically insulate the first assembly line 312 and the second assembly line 313 and During the self-assembly process, it can contribute to the formation of DEP forces.
  • the second insulating layer 321 is disposed on the semiconductor light emitting devices 161, 162, and 163 to protect the semiconductor light emitting devices 161, 162, and 163 from external impact, foreign matter, moisture, and the like. may be absent.
  • the second insulating layer 321 may be a planarization layer for easily forming the electrode wiring 322 .
  • the second insulating layer 321 is disposed on the barrier rib 320 as well as the semiconductor light emitting devices 161, 162, and 163, and may have a top surface parallel to the ground.
  • the electrode wiring 322 is made of metal and is formed on the second insulating layer 321 through a deposition process. When a curve is formed on the upper surface of the second insulating layer 321, an electrical disconnection may occur. Therefore, by forming the upper surface of the second insulating layer 321 parallel to the ground, metal is formed on the second insulating layer 321 without electrical disconnection, and then the semiconductor light emitting devices 161, 162, and 163 are formed through a pattern process. ) It may be an electrode wire 322 electrically connected to one side of.
  • the third insulating layer 330 may be disposed between the electrode wiring 322 and the color converter 340 .
  • the third insulating layer 3330 When the third insulating layer 3330 is omitted and the color converter 340 is in contact with the electrode wiring 322, power is applied to the electrode wiring 322 for light emission of the semiconductor light emitting elements 161, 162, and 163. Heat is generated in the electrode wiring 322, and this heat affects the material properties of the color converter 340, so that the color converter 340, that is, the first color conversion pattern 341 and the second color conversion pattern 342 ), the color conversion efficiency in each may be lowered. Accordingly, since the third insulating layer 330 is disposed between the electrode wiring 322 and the color converter 340, this problem can be solved.
  • the color converter 340 may be disposed on the third insulating layer 330 .
  • the color converter 340 may include a first color conversion pattern 341 , a second color conversion pattern 342 and a light transmission pattern 343 .
  • the area A1 of the first color conversion pattern 341 , the area A2 of the second color conversion pattern 342 , and the area A3 of the light transmission pattern 343 may be different.
  • the area A2 of the second color conversion pattern 342 is larger than the area A1 of the first color conversion pattern 341, and the area A1 of the first color conversion pattern 341 is the light transmission pattern 343.
  • the luminance in white color is remarkably increased, and image quality can be improved.
  • a color filter layer 360 may be disposed on the color converter 340 .
  • the color filter layer 360 may include a first color filter 361 , a second color filter 362 , and a third color filter 363 .
  • the first color filter 361 may pass and output target red light among the red light 420 output from the first color conversion pattern 341 .
  • the second color filter 362 may pass and output target green light among the green light 430 output from the second color conversion pattern 342 .
  • the third color filter 363 may pass and output target blue light among the blue light 410 output from the light transmission pattern 343 . Accordingly, the pass wavelength band of the first color filter 361 is set within the wavelength band of the red light 420 output from the first color conversion pattern 341, and the pass wavelength band of the second color filter 362 is It is set within the wavelength band of the green light 430 output from the second color conversion pattern 342, and the pass wavelength band of the third color filter 363 is the wavelength of the blue light 410 output from the light transmission pattern 343. It may be set within the band, but is not limited thereto.
  • the first color filter 361 When the wavelength band of the red light 420 output from the first color conversion pattern 341 is the same as the wavelength band of the target red light, the first color filter 361 may be omitted.
  • the second color filter 362 When the wavelength band of the green light 430 output from the second color conversion pattern 342 is the same as the wavelength band of the target green light, the second color filter 362 may be omitted.
  • the third color filter 363 When the wavelength band of the blue light 410 output from the light transmission pattern 343 is the same as the wavelength band of the target blue light, the third color filter 363 may be omitted.
  • the first color filter 361 is disposed on the first color conversion pattern 341, the second color filter 362 is disposed on the second color conversion pattern 342, and the third color filter 363 is disposed on the second color conversion pattern 342.
  • the first color filter 361 is disposed to correspond to the first color conversion pattern 341
  • the second color filter 362 is disposed to correspond to the second color conversion pattern 342
  • the third color filter is disposed to correspond to the second color conversion pattern 342.
  • 363 may be disposed to correspond to the light transmission pattern 343 .
  • the area of the first color filter 361 is the same as the area A1 of the first color conversion pattern 341, and the area of the second color filter 362 is the area of the second color conversion pattern 342. It is the same as (A2), and the area of the third color filter 363 may be the same as the area A3 of the light transmission pattern 343, but is not limited thereto.
  • the area A2 of the second color filter 362 is greater than the area A1 of the first color filter 361, and the area A1 of the first color filter 361 is the third color filter 363. may be greater than the area A3 of
  • the first color filter 361 and the second color filter 362 may be set to transmit light of the same wavelength band.
  • the first color filter 361 and the second color filter 362 may be set to transmit light in a yellow wavelength band.
  • the third color filter 363 may be omitted.
  • red light 420 of a lower wavelength band is output by the first color filter 361
  • green light 430 of a higher wavelength band is output by the second color filter 362
  • the blue light 410 is directly output from the light transmission pattern 343 of the converter 340, the color temperature can be lowered and the color purity can be improved.
  • the light blocking pattern 370 may be disposed between each of the first color filter 361 , the second color filter 362 , and the third color filter 363 .
  • the light blocking pattern 370 includes the red light 420 output from the first color filter 361, the green light 430 output from the second color filter 362, and the blue light output from the third color filter 363. (410) can prevent interference or color mixing between them.
  • the light blocking pattern 370 may be referred to as a black matrix.
  • the second substrate 380 may serve to protect the color converter 340 and the color filter layer 360 .
  • the second substrate 380 may include a rigid material such as glass or a soft material such as epoxy.
  • 11A to 11D are diagrams for explaining manufacturing processes of the display device according to the first embodiment.
  • 11A to 11D show a process of manufacturing a display device corresponding to the first sub-pixel, but a display device corresponding to each of the second and third sub-pixels is also shown in FIGS. 11A to 11D. It may be manufactured through the same process as manufacturing the display device corresponding to the sub-pixel.
  • the semiconductor light emitting device 161 may be assembled on the first substrate 310 using a self-assembly process.
  • the semiconductor light emitting device 161 may be assembled to a first sub-pixel of the first substrate 310 .
  • the semiconductor light emitting device 161 may be assembled into an assembly hole 320H formed in the barrier rib 320 corresponding to the first sub-pixel of the first substrate 310 .
  • the semiconductor light emitting devices 161 move in the fluid by the magnetic field, the semiconductor light emitting devices 161 are moved by the DEP force formed between the first and second assembly lines 312 and 313 provided in the first subpixel. One of the semiconductor light emitting devices 161 may be pulled out and assembled into the corresponding assembly hole 320H.
  • the insulating layer 321 is formed on the semiconductor light emitting element 161 and the barrier rib 320, the insulating layer 321 is partially etched to expose the top of the semiconductor light emitting element 161. A contact hole may be formed.
  • the electrode wiring 322 may be formed.
  • the electrode wiring 322 may be electrically connected to an upper side of the semiconductor light emitting device 161 .
  • the second assembly wiring 313 is exposed in the assembly hole 320H and the semiconductor light emitting device 161 is assembled in the assembly hole 320H, so that the second assembly wiring 313 is formed of the semiconductor light emitting device 161. It can be electrically connected to the lower side.
  • the second assembly wiring 313 may also be used as an electrode wiring. Accordingly, the semiconductor light emitting device 161 may emit light by the power applied to the electrode wiring 322 and the second assembly wiring 313 .
  • the semiconductor light emitting devices (161 and 162 in FIG. , 163, blue light 410 may be emitted.
  • an insulating layer 330 may be formed on the electrode wiring 322 .
  • a bank 350 and a color converter 340 may be formed on the insulating layer 330 .
  • a bank 350 may be formed along the circumference of the first subpixel.
  • a groove may be formed in the central region of the first subpixel by the cutout layer 330 and the bank 350 .
  • the first color conversion pattern 341 of the color converter 340 may be formed in the corresponding groove.
  • color conversion particles may be included in the first color conversion pattern 341 .
  • the color conversion particles may include red conversion particles capable of converting blue light 410 of the semiconductor light emitting device 161 into red light 420 .
  • the second color conversion pattern 342 of the color converter 340 is formed in the groove of the second sub-pixel, and the light transmission pattern 343 of the color converter 340 is formed in the groove of the third sub-pixel.
  • Green conversion particles capable of converting blue light 410 of the semiconductor light emitting device ( 162 of FIG. 10 ) into green light 430 may be included in the second color conversion pattern 342 .
  • the light transmission pattern 343 may not include color conversion particles. Accordingly, the blue light 410 of the semiconductor light emitting device ( 163 in FIG. 10 ) may pass through the light transmission pattern 343 and be output forward.
  • the area A1 of the first color conversion pattern, the area A2 of the second color conversion pattern 342 and the area A3 of the light transmission pattern 343 may be different. Accordingly, the areas of the first subpixel, the second subpixel, and the third subpixel may also be different.
  • the area of the second subpixel may be greater than that of the first subpixel, and the area of the first subpixel may be greater than that of the third subpixel. Since the bank 350 is formed along the perimeter of each of the first subpixel, the second subpixel, and the third subpixel, and the area of each of the first subpixel, the second subpixel, and the third subpixel is different, the first subpixel, the second subpixel, and the third subpixel have different areas. Grooves formed by the banks 350 may be different in each of the subpixel, the second subpixel, and the third subpixel.
  • the area A1 of each of the first color conversion pattern 341, the second color conversion pattern 342, and the light transmission pattern 343 formed in the grooves of the first subpixel, the second subpixel, and the third subpixel. , A2, A3) can also be different.
  • the area A2 of the second color conversion pattern 342 is larger than the area A1 of the first color conversion pattern 341, and the area A1 of the first color conversion pattern 341 is the light transmission pattern 343.
  • a light blocking pattern 370 may be formed on the bank 350 and a color filter layer 360 may be formed on the color converter 340 .
  • the color filter layer 360 may include a first color filter 361 , a second color filter 362 , and a third color filter 363 .
  • the first color filter 361 is formed on the first color conversion pattern 341
  • the second color filter 362 is formed on the second color conversion pattern 342
  • the third color filter ( 363 may be formed on the light transmission pattern 343 .
  • the width (or area) of the light blocking pattern 370 is shown to be the same as the width (or area) of the bank 350 in the drawing, the width (or area) of the light blocking pattern 370 is equal to the width (or area) of the bank 350. or area) may be larger or smaller than
  • the width (or area) of the first color filter 361 is equal to the width (or area) of the first color conversion pattern 341, and the width (or area) of the second color filter 362 is second.
  • the same as the width (or area) of the color conversion pattern 342 and the width (or area) of the third color filter 363 are illustrated as being the same as the width (or area) of the light transmission pattern 343, but may be different. may be
  • a second substrate 380 may be formed on the light blocking pattern 370 and the color filter layer 360 .
  • FIG. 12 is a cross-sectional view of a display device according to a second embodiment.
  • the display device is a remote display device, and after the light source 160 and the color converter 340 are manufactured on each of the first substrates 310 that are different from each other, the light source 160 and the color converter 340 may be bonded to face each other.
  • a display device 301 may include a lower substrate 303 , an adhesive member 390 and an upper substrate 304 .
  • the lower substrate 303 includes a first substrate 310 , insulating layers 311 , 321 , and 330 , first and second assembly wires 311 and 312 , barrier ribs 320 , a light source 160 , and electrode wires 322 . ), and since these components have been described in detail in the first embodiment, detailed descriptions thereof will be omitted.
  • the upper substrate 304 may include a second substrate 380 , a light blocking pattern 370 , a color filter layer 360 , a bank 350 , a color converter 340 , and insulating layers 391 and 392 .
  • the adhesive member 390 may serve to bond the lower substrate 303 and the upper substrate 304 together.
  • the adhesive member 390 may be referred to as an adhesive layer, an adhesive material, an adhesive, an insulating layer, or an insulating member.
  • the display device 301 may be manufactured by bonding the lower substrate 303 and the upper substrate 304 together through the adhesive member 390 .
  • a manufacturing process of the display device according to the second embodiment will be described in more detail with reference to FIGS. 13A to 13C.
  • the barrier rib 320 having the first and second assembly lines 312 and 313 and the assembly hole 320H is formed on the first substrate 310, a self-assembly process is performed.
  • the semiconductor light emitting devices 161, 162, and 163 may be assembled into the assembly hole 320H.
  • the lower substrate 303 may be manufactured through a post process by forming the electrode wiring 322 or the like.
  • the light blocking pattern 370 and the color filter layer 360 are formed on the second substrate 380, the bank 350 is formed on the light blocking pattern 370, and the color filter layer 360 ), the upper substrate 304 may be manufactured by forming the color converter 340 on the upper substrate 304 .
  • An insulating layer 292 may be formed between the light blocking pattern 370 and the bank 350 and between the color filter layer 360 and the color converter 340 .
  • An insulating layer 291 may be formed on the bank 350 and the color converter 340 .
  • an adhesive member 390 may be formed on the insulating layer 330 of the lower substrate 303 and/or the insulating layer 291 of the upper substrate 304 .
  • the lower substrate 303 or the upper substrate 304 is flipped 180°, the lower substrate 303 or the upper substrate 304 is thermally bonded and cooled, thereby manufacturing a remote type display device.
  • the display device according to the first embodiment (300 in FIG. 10) and the display device (301 in FIG. 12) according to the second embodiment may be display panels. That is, in an embodiment, a display device and a display panel may be understood as the same meaning.
  • a display device in a practical sense may include a display panel and a controller (or processor) capable of controlling the display panel to display an image.
  • the embodiment may be adopted in the display field for displaying images or information.
  • the embodiment can be adopted in the field of display displaying images or information using a semiconductor light emitting device.
  • the semiconductor light-emitting device may be a micro-level semiconductor light-emitting device or a nano-level semiconductor light-emitting device.
  • the embodiment may be adopted for a TV, signage, smart phone, mobile phone, mobile terminal, automobile HUD, notebook backlight unit, VR or AR display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

디스플레이 장치는 적어도 하나 이상의 반도체 발광 소자, 제1 컬러 변환 패턴, 제2 컬러 변환 패턴 및 투광 패턴을 포함한다. 적어도 하나 이상의 반도체 발광 소자는 제1 서브 픽셀, 제2 서브 픽셀 및 제3 서브 픽셀 각각에 배치된다. 제1 컬러 변환 패턴은 제1 서브 픽셀에 대응하는 적어도 하나 이상의 반도체 소자 상에 배치되고, 제1 컬러 변환 입자들을 포함한다. 제2 컬러 변환 패턴은 제2 서브 픽셀에 대응하는 적어도 하나 이상의 반도체 소자 상에 배치되고, 제2 컬러 변환 입자들을 포함한다. 투광 패턴은 제3 서브 픽셀에 대응하는 상기 적어도 하나 이상의 반도체 소자 상에 배치된다. 제1 컬러 변환 패턴의 면적, 제2 컬러 변환 패턴의 면적 및 투광 패턴의 면적은 상이하다.

Description

디스플레이 장치
실시예는 디스플레이 장치에 관한 것이다.
다양한 분야에 디스플레이 장치가 채용되고 있다. 특히, 최근 들어 TV용 디스플레이 분야뿐만 아니라 증강 현실(AR: Augmented Reality) 기반 디스플레이 분야나 차량용 헤드업 디스플레이(HUD: Head-Up Display) 분야가 크게 주목받고 있다.
이들 AR용이나 HUD용 디스플레이 장치는 초 고해상도가 요구되고 있다. 이를 위해, 휘도가 높고 사이즈가 작은 발광 다이오드를 화소의 광원으로 이용하여 영상을 디스플레이하는 디스플레이 장치가 각광받고 있다.
도 1은 종래의 디스플레이 장치를 도시한 단면도이다.
도 1을 참조하면, 하부 기판(1)의 각 서브 화소에 동일한 컬러 광을 발광하는 발광 다이오드(2)가 배치된다. 발광 다이오드(2)가 광원으로 사용된다. 상부 기판(7)의 각 서브 화소에 컬러 변환층(3) 및 컬러 필터(5)가 배치되고, 이들 서브 화소 사이에 격벽(4, 6)이 배치된다. 이러한 경우, 하부 기판(1)과 상부 기판(7)이 서로 마주보도록 위치된 후 서로 합착된다.
종래의 디스플레이 장치에서, 각 서브 화소에 발광 다이오드(2), 컬러 변환층(3) 및 컬러 필터(5)의 순서로 배치된다. 발광 다이오드(2)의 광이 컬러 변환층(3)에 의해 컬러 변환된 후, 컬러 필터(5)에 의해 특정 대역의 파장에 해당하는 광이 출사된다.
종래의 디스플레이 장치에서, 각 서브 화소에 배치된 컬러 변환층(3)의 면적은 동일하다.
발광 다이오드(2)는 청색 광을 발광할 수 있다. 청색 광은 녹색 광이나 적색 광에 비해 세기가 크기 때문에 백색 구현시 색온도가 높게 나타난다. 아울러, 발광 다이오드(2)의 청색 광이 각 서브 화소에 대응하는 컬러 변환층(3)에서 적색 광 및 녹색 광으로 변환된다. 이때, 각 서브 화소에 대응하는 컬러 변환층(3)의 물질 특성 등에 의해 광 변환 효율이 서로 상이하다.
이에 따라, 각 서브 화소 간의 색 온도차가 발생하므로, 이를 극복하기 이해 종래에는 감마 보정법을 이용하였다. 즉, 상대적으로 낮은 밝기를 갖는 적색 신호나 녹색 신호 각각의 피크값을 색상 별로 낮추도록 감마 조정을 함으로써, 상대적으로 높은 휘도의 청색 광을 발광 강도를 감소시켜 색온도를 조정하였다.
하지만, 종래의 감마 보정법은 백색을 구성하는 적색, 녹색 및 청색 각각의 최고 밝기를 표현하는데 필요한 255개의 계조를 사용하지 않기 때문에, 강제적인 감마 조정에 의한 휘도 저하가 불가피하다. 아울러, 종래의 감마 보정법은 영상 구현시 서시히 밝아지거나 서서히 어두워지는 영상을 표현하는데 있어서 계단 현상이 발생되는 문제점이 있다.
실시예는 전술한 문제 및 다른 문제를 해결하는 것을 목적으로 한다.
실시예의 다른 목적은 디스플레이 장치를 감마 보정에 의한 문제를 해결할 수 있는 디스플레이 장치를 제공하는 것이다.
또한, 실시예의 또 다른 목적은 패널 단에서 색온도 보정을 함으로써, 연산 회로를 단순화할 수 있는 디스플레이 장치를 제공하는 것이다.
또한 실시예의 또 다른 목적은 휘도를 향상시킬 수 있는 디스플레이 장치를 제공하는 것이다.
실시예의 기술적 과제는 본 항목에 기재된 것에 한정되지 않으며, 발명의 설명을 통해 파악될 수 있는 것을 포함한다.
상기 또는 다른 목적을 달성하기 위해 실시예의 일 측면에 따르면, 디스플레이 장치는, 제1 서브 픽셀, 제2 서브 픽셀 및 제3 서브 픽셀을 포함하는 기판; 상기 제1 서브 픽셀, 상기 제2 서브 픽셀 및 상기 제3 서브 픽셀 각각에 적어도 하나 이상의 반도체 발광 소자; 상기 제1 서브 픽셀에 대응하는 상기 적어도 하나 이상의 반도체 소자 상에 배치되고, 제1 컬러 변환 입자들을 포함하는 제1 컬러 변환 패턴; 상기 제2 서브 픽셀에 대응하는 상기 적어도 하나 이상의 반도체 소자 상에 배치되고, 제2 컬러 변환 입자들을 포함하는 제2 컬러 변환 패턴; 및 상기 제3 서브 픽셀에 대응하는 상기 적어도 하나 이상의 반도체 소자 상에 투광 패턴;을 포함하고, 상기 제1 컬러 변환 패턴의 면적, 상기 제2 컬러 변환 패턴의 면적 및 상기 투광 패턴의 면적은 상이하다.
상기 제1 서브 픽셀, 상기 제2 서브 픽셀 및 상기 제3 서브 픽셀 각각의 반도체 발광 소자는 동일한 컬러 광을 생성할 수 있다.
상기 반도체 발광 소자는 제1 컬러 광을 생성하고, 상기 제1 컬러 변환 패턴은 상기 제1 컬러 광을 제2 컬러 광으로 변환하고, 상기 제2 컬러 변환 패턴은 상기 제1 컬러 광을 제3 컬러 광으로 변환하며, 상기 투광 패턴은 상기 제1 컬러 광을 통과시킬 수 있다.
상기 제2 컬러 변환 패턴의 면적은 상기 제1 컬러 변환 패턴의 면적보다 클 수 있다.
상기 제1 컬러 변환 패턴의 면적은 상기 투광 패턴의 면적보다 클 수 있다.
상기 제1 컬러 변환 패턴의 면적은 전체 면적에 대해 26±5%이고, 상기 제2 컬러 변환 패턴의 면적은 상기 전체 면적에 대해 67±5%이며, 상기 투광 패턴의 면적은 상기 전체 면적에 대해 7±5%이며, 상기 전체 면적은 상기 제1 컬러 변환 패턴의 면적, 상기 제2 컬러 변환 패턴의 면적 및 상기 투광 패턴의 면적의 합일 수 있다.
제1 방향에 따른 상기 제1 컬러 변환 패턴, 상기 제2 컬러 변환 패턴 및 상기 투광 패턴 각각의 제1 폭은 동일하고, 제2 방향에 따른 상기 제1 컬러 변환 패턴, 상기 제2 컬러 변환 패턴 및 상기 투광 패턴 각각의 제2 폭은 상이할 수 있다.
상기 제2 컬러 변환 패턴의 제2 폭은 상기 제1 컬러 변환 패턴의 제2 폭보다 클 수 있다.
상기 제1 컬러 변환 패턴의 제2 폭은 상기 투광 패턴의 제2 폭보다 클 수 있다.
디스플레이 장치는, 상기 제1 컬러 변환 패턴, 상기 제2 컬러 변환 패턴 및 상기 투광 패턴 각각의 사이에 뱅크;을 포함할 수 있다
디스플레이 장치는, 상기 제1 컬러 변환 패턴 상에 제1 컬러 필터; 상기 제2 컬러 변환 패턴 상에 제2 컬러 필터; 상기 투광 패턴 상에 제3 컬러 필터; 및 상기 제1 컬러 필터, 상기 제2 컬러 필터 및 상기 제3 컬러 필터 각각의 사이에 차광 패턴;을 포함할 수 있다.
상기 제2 컬러 필터의 면적은 상기 제1 컬러 필터의 면적보다 크고, 상기 제1 컬러 필터의 면적은 상기 제3 컬러 필터의 면적보다 클 수 있다.
상기 제1 컬러 필터의 통과 파장 대역은 적색 광의 파장 대역 범위 내로 설정되고, 상기 제2 컬러 필터의 통과 파장 대역은 녹색 광의 파장 대역 범위로 설정되며, 상기 제3 컬러 필터의 통과 파장 대역은 청색 광의 파장 대역 범위로 설정될 수 있다.
상기 제1 컬러 필터와 상기 제2 컬러 필터는 황색 파장 대역의 광을 투과하도록 설정될 수 있다.
디스플레이 장치는, 상기 제1 서브 픽셀, 상기 제2 서브 픽셀 및 상기 제3 서브 픽셀 각각에 제1 및 제2 조립 배선; 및 상기 및 제2 조립 배선 상에 배치되고, 상기 제1 서브 픽셀, 상기 제2 서브 픽셀 및 상기 제3 서브 픽셀 각각에 적어도 하나 이상의 조립 홀을 갖는 격벽;을 포함할 수 있다.
디스플레이 장치는, 상기 격벽 및 상기 적어도 하나 이상의 반도체 발광 소자 상에 절연층; 및 상기 절연층 상에 배치되고, 상기 적어도 하나 이상의 반도체 발광 소자의 일측에 연결되는 전극 배선;을 포함하고, 상기 제1 및 제2 조립 배선 중 적어도 하나의 조립 배선은 상기 적어도 하나 이상의 반도체 발광 소자의 타측에 연결될 수 있다.
도 8 및 도 9에 도시한 바와 같이, 제1 서브 화소(PX1)에 적어도 하나 이상의 반도체 발광 소자(161) 및 제1 컬러 변환 패턴(341)이 배치되고, 제2 서브 화소(PX2)에 적어도 하나 이상의 반도체 발광 소자(162) 및 제2 컬러 변환 패턴(342)가 배치되며, 제3 서브 화소(PX3)에 적어도 하나 이상의 반도체 발광 소자(163) 및 투광 패턴(343)이 배치될 수 있다.
제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3) 각각에 배치된 적어도 하나 이상의 반도체 발광 소자(161, 162, 163)은 동일 컬러 광, 예컨대 청색 광을 발광할 수 있다. 반도체 발광 소자(161, 162, 163)가 마이크로미터 이하의 사이즈를 가질 수 있다.
예컨대, 제1 컬러 변환 패턴(341)은 적어도 하나 이상의 반도체 발광 소자(161)의 청색 광을 변환하여 적색 광을 출력할 수 있다. 예컨대, 제2 컬러 변환 패턴(342)은 적어도 하나 이상의 반도체 발광 소자(162)의 청색 광을 변환하여 녹색 광을 출력할 수 있다. 예컨대, 투광 패턴은 적어도 하나 이상의 반도체 발광 소자(163)의 청색 광을 그대로 출력할 수 있다.
제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3) 각각의 면적이 상이할 수 있다.
제1 컬러 변환 패턴(341), 제2 컬러 변환 패턴(342) 및 투광 패턴(343) 각각의 면적(A1, A2, A3)이 상이할 수 있다. 예컨대, 제2 컬러 변환 패턴(342)의 면적(A2)이 제1 컬러 변환 패턴(341)의 면적(A1)보다 크고, 제1 컬러 변환 패턴(341)의 면적(A1)이 투광 패턴(343)의 면적(A3)보다 클 수 있다.
예컨대, 제1 컬러 변환 패턴(341), 제2 컬러 변환 패턴(342) 및 투광 패턴(343) 각각의 제1 폭(W11, W21, W31) 및/또는 제1 컬러 변환 패턴(341), 제2 컬러 변환 패턴(342) 및 투광 패턴(343) 각각의 제2 폭(W12, W22, W32)이 상이할 수 있다. 예컨대, 제2 컬러 변환 패턴(342)의 제2 폭(W22)은 제1 컬러 변환 패턴(341)의 제2 폭(W12)보다 크고, 제1 컬러 변환 패턴(341)의 제2 폭(W12)은 투광 패턴(343)의 제2 폭(W32)보다 클 수 있다.
이상과 같이 제1 컬러 변환 패턴(341), 제2 컬러 변환 패턴(342) 및 투광 패턴(343)을 포함하는 컬러 컨버터(340)의 구조, 즉 면적이나 폭을 변경함으로써, 종래와 같이 감마 조정할 필요가 없어 연산 회로를 단순화할 수 있을 뿐만 아니라 휘도가 현저히 향상되어 높은 화질을 통한 신뢰성을 제고할 수 있다.
또한, 제1 컬러 변환 패턴(341), 제2 컬러 변환 패턴(342) 및 투광 패턴(343)을 포함하는 컬러 컨버터(340)의 구조, 즉 면적이나 폭을 변경함으로써, 백색에서의 휘도를 종래 대비 5배 이상 향상시켜 화질을 현저하게 개선할 수 있다.
한편, 제1 컬러 필터(361) 및 제2 컬러 필터(362)는 동일한 파장 대역의 광이 투과되도록 설정될 수 있다. 예컨대, 제1 컬러 필터(361) 및 제2 컬러 필터(362)는 황색 파장 대역의 광이 투과되도록 설정될 수 있다. 이때, 제3 컬러 필터(363)는 생략될 수 있다. 이러한 경우, 제1 컬러 필터(361)에 의해 보다 더 낮아진 파장 대역의 적색 광(420)이 출력되고, 제2 컬러 필터(362)에 의해 보다 더 높아진 파장 대역의 녹색 광(430)이 출력되며, 컨버터(340)의 투광 패턴(343)에서 청색 광(410)이 직접 출력됨으로써, 색온도가 낮아지고 색순도가 향상될 수 있다.
실시예의 적용 가능성의 추가적인 범위는 이하의 상세한 설명으로부터 명백해질 것이다. 그러나 실시예의 사상 및 범위 내에서 다양한 변경 및 수정은 당업자에게 명확하게 이해될 수 있으므로, 상세한 설명 및 바람직한 실시예와 같은 특정 실시예는 단지 예시로 주어진 것으로 이해되어야 한다.
도 1은 종래의 디스플레이 장치를 도시한 단면도이다.
도 2은 실시예에 따른 디스플레이 장치가 배치된 주택의 거실을 도시한다.
도 3는 실시예에 따른 디스플레이 장치를 개략적으로 보여주는 블록도이다.
도 4는 도 3의 화소의 일 예를 보여주는 회로도이다.
도 5은 도 2의 디스플레이 장치에서 제1 패널영역의 확대도이다.
도 6은 도 5의 A2 영역의 확대도이다.
도 7는 실시예에 따른 발광 소자가 자가 조립 방식에 의해 기판에 조립되는 예를 나타내는 도면이다.
도 8은 실시예에 따른 디스플레이 장치를 개략적으로 도시한 평면도이다.
도 9는 실시예에 따른 디스플레이 장치를 개략적으로 도시한 단면도이다.
도 10은 제1 실시예에 따른 디스플레이 장치를 도시한 단면도이다.
도 11a 내지 도 11d는 제1 실시예에 따른 디스플레이 장치의 제조 공정을 설명하는 도면이다.
도 12는 제2 실시예에 따른 디스플레이 장치를 도시한 단면도이다.
도 13a 내지 도 13c는 제2 실시예에 따른 디스플레이 장치의 제조 공정을 설명하는 도면이다.
도면들에 도시된 구성 요소들의 크기, 형상, 수치 등은 실제와 상이할 수 있다. 또한, 동일한 구성 요소들에 대해서 도면들 간에 서로 상이한 크기, 형상, 수치 등으로 도시되더라도, 이는 도면 상의 하나의 예시일 뿐이며, 동일한 구성 요소들에 대해서는 도면들 간에 서로 동일한 크기, 형상, 수치 등을 가질 수 있다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 '모듈' 및 '부'는 명세서 작성의 용이함이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 첨부된 도면은 본 명세서에 개시된 실시예를 쉽게 이해할 수 있도록 하기 위한 것이며, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되는 것은 아니다. 또한, 층, 영역 또는 기판과 같은 요소가 다른 구성요소 '상(on)'에 존재하는 것으로 언급될 때, 이것은 직접적으로 다른 요소 상에 존재하거나 또는 그 사이에 다른 중간 요소가 존재할 수도 있는 것을 포함한다.
본 명세서에서 설명되는 디스플레이 장치에는 TV, 샤이니지, 휴대폰, 스마트 폰(smart phone), 자동차용 HUD(head-Up Display), 노트북 컴퓨터(laptop computer)용 백라이트 유닛, VR이나 AR용 디스플레이 등이 포함될 수 있다. 그러나, 본 명세서에 기재된 실시예에 따른 구성은 추후 개발되는 새로운 제품형태이라도, 디스플레이가 가능한 장치에도 적용될 수 있다.
이하 실시예에 따른 발광 소자 및 이를 포함하는 디스플레이 장치에 대해 설명한다.
도 1은 실시예에 따른 디스플레이 장치가 배치된 주택의 거실을 도시한다.
도 1을 참조하면, 실시예의 디스플레이 장치(100)는 세탁기(101), 로봇 청소기(102), 공기 청정기(103) 등의 각종 전자 제품의 상태를 표시할 수 있고, 각 전자 제품들과 IOT 기반으로 통신할 수 있으며 사용자의 설정 데이터에 기초하여 각 전자 제품들을 제어할 수도 있다.
실시예에 따른 디스플레이 장치(100)는 얇고 유연한 기판 위에 제작되는 플렉서블 디스플레이(flexible display)를 포함할 수 있다. 플렉서블 디스플레이는 기존의 평판 디스플레이의 특성을 유지하면서, 종이와 같이 휘어지거나 말릴 수 있다.
플렉서블 디스플레이에서 시각정보는 매트릭스 형태로 배치되는 단위 화소(unit pixel)의 발광이 독자적으로 제어됨에 의하여 구현될 수 있다. 단위 화소는 하나의 색을 구현하기 위한 최소 단위를 의미한다. 플렉서블 디스플레이의 단위 화소는 발광 소자에 의하여 구현될 수 있다. 실시예에서 발광 소자는 Micro-LED나 Nano-LED일 수 있으나 이에 한정되는 것은 아니다.
도 3는 실시예에 따른 디스플레이 장치를 개략적으로 보여주는 블록도이고, 도 4는 도 3의 화소의 일 예를 보여주는 회로도이다.
도 3 및 도 4를 참조하면, 실시예에 따른 디스플레이 장치는 디스플레이 패널(10), 구동 회로(20), 스캔 구동부(30) 및 전원 공급 회로(50)를 포함할 수 있다.
실시예의 디스플레이 장치(100)는 액티브 매트릭스(AM, Active Matrix)방식 또는 패시브 매트릭스(PM, Passive Matrix) 방식으로 발광 소자를 구동할 수 있다.
구동 회로(20)는 데이터 구동부(21)와 타이밍 제어부(22)를 포함할 수 있다.
디스플레이 패널(10)은 직사각형으로 이루어질 수 있지만, 이에 대해서는 한정하지 않는다. 즉, 디스플레이 패널(10)은 원형 또는 타원형으로 형성될 수 있다. 디스플레이 패널(10)의 적어도 일 측은 소정의 곡률로 구부러지도록 형성될 수 있다.
디스플레이 패널(10)은 표시 영역(DA)과 표시 영역(DA)의 주변에 배치된 비표시 영역(NDA)으로 구분될 수 있다. 표시 영역(DA)은 화소(PX)들이 형성되어 영상을 디스플레이하는 영역이다. 디스플레이 패널(10)은 데이터 라인들(D1~Dm, m은 2 이상의 정수), 데이터 라인들(D1~Dm)과 교차되는 스캔 라인들(S1~Sn, n은 2 이상의 정수), 고전위 전압이 공급되는 고전위 전압 라인(VDDL), 저전위 전압이 공급되는 저전위 전압 라인(VSSL) 및 데이터 라인들(D1~Dm)과 스캔 라인들(S1~Sn)에 접속된 화소(PX)들을 포함할 수 있다.
화소(PX)들 각각은 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3)를 포함할 수 있다. 제1 서브 화소(PX1)는 제1 주 파장의 제1 컬러 광을 발광하고, 제2 서브 화소(PX2)는 제2 주 파장의 제2 컬러 광을 발광하며, 제3 서브 화소(PX3)는 제3 주 파장의 제3 컬러 광을 발광할 수 있다. 제1 컬러 광은 적색 광, 제2 컬러 광은 녹색 광, 제3 컬러 광은 청색 광일 수 있으나, 이에 한정되지 않는다. 또한, 도 3에서는 화소(PX)들 각각이 3 개의 서브 화소들을 포함하는 것을 예시하였으나, 이에 한정되지 않는다. 즉, 화소(PX)들 각각은 4 개 이상의 서브 화소들을 포함할 수 있다.
제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3) 각각은 데이터 라인들(D1~Dm) 중 적어도 하나, 스캔 라인들(S1~Sn) 중 적어도 하나 및 고전위 전압 라인(VDDL)에 접속될 수 있다. 제1 서브 화소(PX1)는 도 4과 같이 발광 소자(LD)들과 발광 소자(LD)들에 전류를 공급하기 위한 복수의 트랜지스터들과 적어도 하나의 커패시터(Cst)를 포함할 수 있다.
도면에 도시되지 않았지만, 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3) 각각은 단지 하나의 발광 소자(LD)와 적어도 하나의 커패시터(Cst)를 포함할 수도 있다.
발광 소자(LD)들 각각은 제1 전극, 복수의 도전형 반도체층 및 제2 전극을 포함하는 반도체 발광 다이오드일 수 있다. 여기서, 제1 전극은 애노드 전극, 제2 전극은 캐소드 전극일 수 있지만, 이에 대해서는 한정하지 않는다.
발광 소자(LD)는 수평형 발광 소자, 플립칩형 발광 소자 및 수직형 발광 소자 중 하나일 수 있다.
복수의 트랜지스터들은 도 4와 같이 발광 소자(LD)들에 전류를 공급하는 구동 트랜지스터(DT), 구동 트랜지스터(DT)의 게이트 전극에 데이터 전압을 공급하는 스캔 트랜지스터(ST)를 포함할 수 있다. 구동 트랜지스터(DT)는 스캔 트랜지스터(ST)의 소스 전극에 접속되는 게이트 전극, 고전위 전압이 인가되는 고전위 전압 라인(VDDL)에 접속되는 소스 전극 및 발광 소자(LD)들의 제1 전극들에 접속되는 드레인 전극을 포함할 수 있다. 스캔 트랜지스터(ST)는 스캔 라인(Sk, k는 1≤k≤n을 만족하는 정수)에 접속되는 게이트 전극, 구동 트랜지스터(DT)의 게이트 전극에 접속되는 소스 전극 및 데이터 라인(Dj, j는 1≤j≤m을 만족하는 정수)에 접속되는 드레인 전극을 포함할 수 있다.
커패시터(Cst)는 구동 트랜지스터(DT)의 게이트 전극과 소스 전극 사이에 형성된다. 스토리지 커패시터(Cst)는 구동 트랜지스터(DT)의 게이트 전압과 소스 전압의 차이값을 충전한다.
구동 트랜지스터(DT)와 스캔 트랜지스터(ST)는 박막 트랜지스터(thin film transistor)로 형성될 수 있다. 또한, 도 4에서는 구동 트랜지스터(DT)와 스캔 트랜지스터(ST)가 P 타입 MOSFET(Metal Oxide Semiconductor Field Effect Transistor)으로 형성된 것을 중심으로 설명하였으나, 본 발명은 이에 한정되지 않는다. 구동 트랜지스터(DT)와 스캔 트랜지스터(ST)는 N 타입 MOSFET으로 형성될 수도 있다. 이 경우, 구동 트랜지스터(DT)와 스캔 트랜지스터(ST)들 각각의 소스 전극과 드레인 전극의 위치는 변경될 수 있다.
또한, 도 4에서는 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3) 각각이 하나의 구동 트랜지스터(DT), 하나의 스캔 트랜지스터(ST) 및 하나의 커패시터(Cst)를 갖는 2T1C (2 Transistor - 1 capacitor)를 포함하는 것을 예시하였으나, 본 발명은 이에 한정되지 않는다. 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3) 각각은 복수의 스캔 트랜지스터(ST)들과 복수의 커패시터(Cst)들을 포함할 수 있다.
제2 서브 화소(PX2)와 제3 서브 화소(PX3)는 제1 서브 화소(PX1)와 실질적으로 동일한 회로도로 표현될 수 있으므로, 이들에 대한 자세한 설명은 생략한다.
구동 회로(20)는 디스플레이 패널(10)을 구동하기 위한 신호들과 전압들을 출력한다. 이를 위해, 구동 회로(20)는 데이터 구동부(21)와 타이밍 제어부(22)를 포함할 수 있다.
데이터 구동부(21)는 타이밍 제어부(22)로부터 디지털 비디오 데이터(DATA)와 소스 제어 신호(DCS)를 입력 받는다. 데이터 구동부(21)는 소스 제어 신호(DCS)에 따라 디지털 비디오 데이터(DATA)를 아날로그 데이터 전압들로 변환하여 디스플레이 패널(10)의 데이터 라인들(D1~Dm)에 공급한다.
타이밍 제어부(22)는 호스트 시스템으로부터 디지털 비디오 데이터(DATA)와 타이밍 신호들을 입력받는다. 타이밍 신호들은 수직동기신호(vertical sync signal), 수평동기신호(horizontal sync signal), 데이터 인에이블 신호(data enable signal) 및 도트 클럭(dot clock)을 포함할 수 있다. 호스트 시스템은 스마트폰 또는 태블릿 PC의 어플리케이션 프로세서, 모니터, TV의 시스템 온 칩 등일 수 있다.
타이밍 제어부(22)는 데이터 구동부(21)와 스캔 구동부(30)의 동작 타이밍을 제어하기 위한 제어신호들을 생성한다. 제어신호들은 데이터 구동부(21)의 동작 타이밍을 제어하기 위한 소스 제어 신호(DCS)와 스캔 구동부(30)의 동작 타이밍을 제어하기 위한 스캔 제어 신호(SCS)를 포함할 수 있다.
구동 회로(20)는 디스플레이 패널(10)의 일 측에 마련된 비표시 영역(NDA)에서 배치될 수 있다. 구동 회로(20)는 집적회로(integrated circuit, IC)로 형성되어 COG(chip on glass) 방식, COP(chip on plastic) 방식, 또는 초음파 접합 방식으로 디스플레이 패널(10) 상에 장착될 수 있으나, 본 발명은 이에 한정되지 않는다. 예를 들어, 구동 회로(20)는 디스플레이 패널(10)이 아닌 회로 보드(미도시) 상에 장착될 수 있다.
데이터 구동부(21)는 COG(chip on glass) 방식, COP(chip on plastic) 방식, 또는 초음파 접합 방식으로 디스플레이 패널(10) 상에 장착되고, 타이밍 제어부(22)는 회로 보드 상에 장착될 수 있다.
스캔 구동부(30)는 타이밍 제어부(22)로부터 스캔 제어 신호(SCS)를 입력 받는다. 스캔 구동부(30)는 스캔 제어 신호(SCS)에 따라 스캔 신호들을 생성하여 디스플레이 패널(10)의 스캔 라인들(S1~Sn)에 공급한다. 스캔 구동부(30)는 다수의 트랜지스터들을 포함하여 디스플레이 패널(10)의 비표시 영역(NDA)에 형성될 수 있다. 또는, 스캔 구동부(30)는 집적 회로로 형성될 수 있으며, 이 경우 디스플레이 패널(10)의 다른 일 측에 부착되는 게이트 연성 필름 상에 장착될 수 있다.
회로 보드는 이방성 도전 필름(anisotropic conductive film)을 이용하여 디스플레이 패널(10)의 일 측 가장자리에 마련된 패드들 상에 부착될 수 있다. 이로 인해, 회로 보드의 리드 라인들은 패드들에 전기적으로 연결될 수 있다. 회로 보드는 연성 인쇄 회로 보드(flexible printed circuit board), 인쇄 회로 보드(printed circuit board) 또는 칩온 필름(chip on film)과 같은 연성 필름(flexible film)일 수 있다. 회로 보드는 디스플레이 패널(10)의 하부로 벤딩(bending)될 수 있다. 이로 인해, 회로 보드의 일 측은 디스플레이 패널(10)의 일 측 가장자리에 부착되며, 타 측은 디스플레이 패널(10)의 하부에 배치되어 호스트 시스템이 장착되는 시스템 보드에 연결될 수 있다.
전원 공급 회로(50)는 시스템 보드로부터 인가되는 메인 전원으로부터 디스플레이 패널(10)의 구동에 필요한 전압들을 생성하여 디스플레이 패널(10)에 공급할 수 있다. 예를 들어, 전원 공급 회로(50)는 메인 전원으로부터 디스플레이 패널(10)의 발광 소자(LD)들을 구동하기 위한 고전위 전압(VDD)과 저전위 전압(VSS)을 생성하여 디스플레이 패널(10)의 고전위 전압 라인(VDDL)과 저전위 전압 라인(VSSL)에 공급할 수 있다. 또한, 전원 공급 회로(50)는 메인 전원으로부터 구동 회로(20)와 스캔 구동부(30)를 구동하기 위한 구동 전압들을 생성하여 공급할 수 있다.
도 5은 도3의 디스플레이 장치에서 제1 패널영역의 확대도이다.
도 5을 참조하면, 실시예의 디스플레이 장치(100)는 제1 패널영역(A1)과 같은 복수의 패널영역들이 타일링에 의해 기구적, 전기적 연결되어 제조될 수 있다.
제1 패널영역(A1)은 단위 화소(도 3의 PX) 별로 배치된 복수의 반도체 발광 소자(150)를 포함할 수 있다.
예컨대, 단위 화소(PX)는 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3)를 포함할 수 있다. 예컨대, 복수의 적색 반도체 발광 소자(150R)가 제1 서브 화소(PX1)에 배치되고, 복수의 녹색 반도체 발광 소자(150G)가 제2 서브 화소(PX2)에 배치되며, 복수의 청색 반도체 발광 소자(150B)가 제3 서브 화소(PX3)에 배치될 수 있다. 단위 화소(PX)는 반도체 발광 소자가 배치되지 않는 제4 서브 화소를 더 포함할 수도 있지만, 이에 대해서는 한정하지 않는다.
도 6은 도 5의 A2 영역의 확대도이다.
도 6을 참조하면, 실시예의 디스플레이 장치(100)는 기판(200), 조립 배선(201, 202), 절연층(206) 및 복수의 반도체 발광 소자(150)를 포함할 수 있다. 이보다 더 많은 구성 요소들이 포함될 수 있다.
조립 배선은 서로 이격된 제1 조립 배선(201) 및 제2 조립 배선(202)을 포함할 수 있다. 제1 조립 배선(201) 및 제2 조립 배선(202)은 반도체 발광 소자(150)를 조립하기 위해 유전영동 힘(DEP force)을 생성하기 위해 구비될 수 있다. 예컨대, 반도체 발광 소자(150)는 수평형 반도체 발광 소자, 플립칩형 반도체 발광 소자 및 수직형 반도체 발광 소자 중 하나일 수 있다.
반도체 발광 소자(150)는 각각 단위 화소(sub-pixel)를 이루기 위하여 적색 반도체 발광 소자(150), 녹색 반도체 발광 소자(150G) 및 청색 반도체 발광 소자(150B0를 포함할 수 있으나 이에 한정되는 것은 아니며, 적색 형광체와 녹색 형광체 등을 구비하여 각각 적색과 녹색을 구현할 수도 있다.
기판(200)은 그 기판(200) 상에 배치되는 구성 요소들을 지지하는 지지 부재이거나 구성 요소들을 보호하는 보호 부재일 수 있다.
기판(200)은 리지드(rigid) 기판이거나 플렉서블(flexible) 기판일 수 있다. 기판(200)은 사파이어, 유리, 실리콘이나 폴리이미드(Polyimide)로 형성될 수 있다. 또한 기판(200)은 PEN(Polyethylene Naphthalate), PET(Polyethylene Terephthalate) 등의 유연성 있는 재질을 포함할 수 있다. 또한, 기판(200)은 투명한 재질일 수 있으나 이에 한정되는 것은 아니다. 기판(200)은 디스플레이 패널에서의 지지 기판으로 기능할 수 있으며, 발광 소자의 자가 조립시 조립용 기판으로 기능할 수도 있다.
기판(200)은 도 3 및 도 4에 도시된 서브 화소(PX1, PX2, PX3) 내의 회로, 예컨대 트랜지스터(ST, DT), 커패시터(Cst), 신호 배선 등이 구비된 백플레인(backplane)일 수 있지만, 이에 대해서는 한정하지 않는다.
절연층(206)은 폴리이미드, PAC, PEN, PET, 폴리머 등과 같이 절연성과 유연성 있는 유기물 재질이나 실리콘 옥사이드(SiO2)나 실리콘 나이트라이드 계열(SiNx) 등을 같은 무기물 재질을 포함할 수 있으며, 기판(200)과 일체로 이루어져 하나의 기판을 형성할 수도 있다.
절연층(206)은 접착성과 전도성을 가지는 전도성 접착층일 수 있고, 전도성 접착층은 연성을 가져서 디스플레이 장치의 플렉서블 기능을 가능하게 할 수 있다. 예를 들어, 절연층(206)은 이방성 전도성 필름(ACF, anisotropy conductive film)이거나 이방성 전도매질, 전도성 입자를 함유한 솔루션(solution) 등의 전도성 접착층일 수 있다. 전도성 접착층은 두께에 대해 수직방향으로는 전기적으로 전도성이나, 두께에 대해 수평방향으로는 전기적으로 절연성을 가지는 레이어일 수 있다.
절연층(206)은 반도체 발광 소자(150)가 삽입되기 위한 조립 홀(203)을 포함할 수 있다. 따라서, 자가 조립시, 반도체 발광 소자(150)가 절연층(206)의 조립 홀(203)에 용이하게 삽입될 수 있다. 조립 홀(203)은 삽입 홀, 고정 홀, 정렬 홀 등으로 불릴 수 있다. 조립 홀(203)은 홀로 불릴 수도 있다.
조립 홀(203)은 홀, 홈, 그루브, 리세스, 포켓 등으로 불릴 수 있다.
조립 홀(203)은 반도체 발광 소자(150)의 형상에 따라 상이할 수 있다. 예컨대, 적색 반도체 발광 소자, 녹색 반도체 발광 소자 및 청색 반도체 발광 소자 각각은 상이한 형상을 가지며, 이들 반도체 발광 소자 각각의 형상에 대응하는 형상을 갖는 조립 홀(203)을 가질 수 있다. 예컨대, 조립 홀(203)은 적색 반도체 발광 소자가 조립되기 위한 제1 조립 홀, 녹색 반도체 발광 소자가 조립되기 위한 제2 조립 홀 및 청색 반도체 발광 소자가 조립되기 위한 제3 조립 홀을 포함할 수 있다. 예컨대, 적색 반도체 발광 소자는 원형을 가지고, 녹색 반도체 발광 소자는 제1 단축과 제2 장축을 갖는 제1 타원형을 가지며, 청색 반도체 발광 소자는 제2 단축과 제2 장축을 갖는 제2 타원형을 가질 수 있지만, 이에 대해서는 한정하지 않는다. 청색 반도체 발광 소자의 타원형의 제2 장축은 녹색 반도체 발광 소자의 타원형의 제2 장축보다 크고, 청색 반도체 발광 소자의 타원형의 제2 단축은 녹색 반도체 발광 소자의 타원형의 제1 단축보다 작을 수 있다.
한편, 반도체 발광 소자(150)를 기판(200) 상에 장착하는 방식은 예컨대, 자가 조립 방식(도 7)과 전사 방식 등이 있을 수 있다.
도 7은 실시예에 따른 발광 소자가 자가조립 방식에 의해 기판에 조립되는 예를 나타내는 도면이다.
도 7을 바탕으로 실시예에 따른 반도체 발광 소자를 전자기장을 이용한 자가조립 방식에 의해 디스플레이 패널에 조립되는 예를 설명하기로 한다.
이후 설명되는 조립 기판(200)은 발광 소자의 조립 후에 디스플레이 장치에서 패널 기판(200a)의 기능도 할 수 있으나, 실시예가 이에 한정되는 것은 아니다.
도 7을 참조하면, 반도체 발광 소자(150)는 유체(1200)가 채워진 챔버(1300)에 투입될 수 있으며, 조립 장치(1100)로부터 발생하는 자기장에 의해 반도체 발광 소자(150)는 조립 기판(200)으로 이동할 수 있다. 이때 조립 기판(200)의 조립 홀(207H)에 인접한 발광 소자(150)는 조립 배선들의 전기장에 의한 DEP force에 의해 조립 홀(207H)에 조립될 수 있다. 유체(1200)는 초순수 등의 물일 수 있으나 이에 한정되는 것은 아니다. 챔버는 수조, 컨테이너, 용기 등으로 불릴 수 있다.
반도체 발광 소자(150)가 챔버(1300)에 투입된 후, 조립 기판(200)이 챔버(1300) 상에 배치될 수 있다. 실시 예에 따라, 조립 기판(200)은 챔버(1300) 내로 투입될 수도 있다.
반도체 발광 소자(150)는 도시된 바와 같이 수직형 반도체 발광 소자로 구현될 수 있으나 이에 한정되지 않고 수평형 발광 소자가 채용될 수 있다.
반도체 발광 소자(150)는 자성체를 갖는 자성층(미도시)을 포함할 수 있다. 자성층은 니켈(Ni) 등 자성을 갖는 금속을 포함할 수 있다. 유체 내로 투입된 반도체 발광 소자(150)는 자성층을 포함하므로, 조립 장치(1100)로부터 발생하는 자기장에 의해 조립 기판(200)로 이동할 수 있다. 자성층은 발광 소자의 상측 또는 하측 또는 양측에 모두 배치될 수 있다.
반도체 발광 소자(150)는 상면 및 측면을 둘러싸는 패시베이션층을 포함할 수 있다. 패시베이션층은 실리카, 알루미나 등의 무기물 절연체를 PECVD, LPCVD, 스퍼터링 증착법 등을 통해 형성될 수 있다. 또한 패시베이션층은 포토레지스트, 고분자 물질과 같은 유기물을 스핀 코팅하는 방법을 통해 형성될 수 있다.
반도체 발광 소자(150)는 제1 도전형 반도체층, 제2 도전형 반도체층 및 그 사이에 배치되는 활성층을 포함할 수 있다. 제1 도전형 반도체층은 n형 반도체층일 수 있고, 제2 도전형 반도체층은 p형 반도체층일 수 있으나 이에 한정되는 것은 아니다. 제1 도전형 반도체층, 제2 도전형 반도체층 및 그 사이에 배치되는 활성층는 발광부를 구성할 수 있다. 발광부는 발광층, 발광 영역 등으로 불릴 수 있다.
제1 전극(층)이 제1 도전형 반도체층 아래에 배치될 수 있고, 제2 전극(층)이 제2 도전형 반도체층 상에 배치될 수 있다. 이를 위해서는 제1 도전형 반도체층 또는 제2 도전형 반도체층의 일부 영역이 외부로 노출될 수 있다. 이에 따라 반도체 발광 소자(150)가 조립 기판(200)에 조립된 후에 디스플레이 장치의 제조 공정에서, 패시베이션층 중 일부 영역이 식각될 수 있다.
제1 전극은 적어도 하나 이상의 층을 포함할 수 있다. 예컨대, 제1 전극은 오믹층, 반사층, 자성층, 전도층, 산화 방지층, 접착층 등을 포함할 수 있다. 오믹층은 Au, AuBe 등을 포함할 수 있다. 반사층은 Al, Ag 등을 포함할 수 있다. 자성층은 Ni, Co 등을 포함할 수 있다. 도전층은 Cu 등을 포함할 수 있다. 산화 방지층은 Mo 등을 포함할 수 있다. 접착층은 Cr, Ti 등을 포함할 수 있다.
제2 전극은 투명한 도전층을 포함할 수 있다. 예컨대, 제2 전극(154b)는 ITO, IZO 등을 포함할 수 있다.
조립 기판(200)이 챔버에 배치된 후에 자기장을 가하는 조립 장치(1100)가 조립 기판(200)을 따라 이동할 수 있다. 조립 장치(1100)는 영구 자석이거나 전자석일 수 있다.
조립 장치(1100)는 자기장이 미치는 영역을 유체(1200) 내로 최대화하기 위해, 조립 기판(200)과 접촉한 상태로 이동할 수 있다. 실시예에 따라서는, 조립 장치(1100)가 복수의 자성체를 포함하거나, 조립 기판(200)과 대응하는 크기의 자성체를 포함할 수도 있다. 이 경우, 조립 장치(1100)의 이동 거리는 소정 범위 이내로 제한될 수도 있다.
조립 장치(1100)에 의해 발생하는 자기장에 의해 챔버(1300) 내의 반도체 발광 소자(150)는 조립 장치(1100) 및 조립 기판(200)을 향해 이동할 수 있다.
반도체 발광 소자(150)는 조립 장치(1100)를 향해 이동 중 조립 배선(201, 202) 사이의 전기장에 의해 형성되는 DEP force에 의해 조립 홀(207H)로 진입하여 고정될 수 있다.
구체적으로 제1, 제2 조립 배선(201, 202)은 교류 전원에 의해 전기장을 형성하고, 이 전기장에 의해 DEP force이 조립 배선(201, 202) 사이에 형성될 수 있다. 이 DEP force에 의해 조립 기판(200) 상의 조립 홀(207H)에 반도체 발광 소자(150)를 고정시킬 수 있다.
이때 조립 기판(200)의 조립 홀(207H) 상에 조립된 발광 소자(150)와 조립 배선(201, 202) 사이에 소정의 솔더층(미도시)이 형성되어 발광 소자(150)의 결합력을 향상시킬 수 있다.
또한 조립 후 조립 기판(200)의 조립 홀(207H)에 몰딩층(미도시)이 형성될 수 있다. 몰딩층은 투명 레진이거나 또는 반사물질, 산란물질이 포함된 레진일 수 있다.
상술한 전자기장을 이용한 자가조립 방식에 의해, 반도체 발광 소자들 각각이 기판에 조립되는 데 소요되는 시간을 급격히 단축시킬 수 있으므로, 대면적 고화소 디스플레이를 보다 신속하고 경제적으로 구현할 수 있다.
도 8은 실시예에 따른 디스플레이 장치를 개략적으로 도시한 평면도이다. 도 9는 실시예에 따른 디스플레이 장치를 개략적으로 도시한 단면도이다.
도 8 및 도 9를 참조하면, 실시예에 따른 디스플레이 장치는 광원(160) 및 컬러 컨버터(340)를 포함할 수 있다.
광원(160)은 광을 생성하여 컬러 컨버터(340)로 제공할 수 있다. 예컨대, 광원(160)에서 생성된 광은 청색 광(410)일 수 있지만, 이에 대해서는 한정하지 않는다. 예컨대, 광원(160)에서 생성된 광은 청색 광(410)의 파장 대역보다 낮은 파장 대역의 광, 예컨대 남색 광이나 자주색 광일 수 있지만, 이에 대해서는 한정하지 않는다. 컬러 컨버터(340)는 청색 광(410)을 변환하여 다른 컬러 광을 출력할 수 있다. 예컨대, 다른 컬러 광은 적색 광(420) 및 녹색 광(430)일 수 있다.
한편, 복수의 화소가 배열될 수 있다. 복수의 화소는 매트릭스로 배열될 수 있다. 예컨대, 복수의 화소는 제1 방향(x)을 따라 배열되고, 복수의 화소는 제2 방향(y)을 따라 배열될 수 있다.
복수의 화소 각각은 복수의 컬러 구현이 가능할 수 있다. 복수의 화소 각각은 복수의 서브 화소를 포함할 수 있다. 복수의 서브 화소 각각은 서로 상이한 컬러 광을 출사할 수 있다. 복수의 서브 화소 각각에서 출사된 서로 상이한 컬러 광에 의해 영상이 디스플레이될 수 있다.
예컨대, 복수의 서브 화소 각각은 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3)를 포함할 수 있다.
예컨대, 제1 서브 화소(PX1)는 적색 광(420)을 출사하고, 제2 서브 화소(PX2)는 녹색 광(430)을 출사하며, 제3 서브 화소(PX3)는 청색 광(410)을 출사할 수 있다.
한편, 광원(160)은 복수의 반도체 발광 소자(161, 162, 163)를 포함할 수 있다. 복수의 반도체 발광 소자(161, 162, 163) 각각은 청색 광(410)을 발광할 수 있다.
제1 서브 화소(PX1)는 적어도 하나 이상의 반도체 발광 소자(161)를 포함할 수 있다. 제2 서브 화소(PX2)는 적어도 하나 이상의 반도체 발광 소자(162)를 포함할 수 있다. 제3 서브 화소(PX3)는 적어도 하나 이상의 반도체 발광 소자(163)를 포함할 수 있다.
컬러 컨버터(340)는 제1 컬러 변환 패턴(341), 제2 컬러 변환 패턴(342) 및 투광 패턴(343)을 포함할 수 있다. 투광 패턴(343)은 생략될 수 있다.
제1 컬러 변환 패턴(341) 및 제2 컬러 변환 패턴(342) 각각은 컬러 변환 입자들을 포함할 수 있다. 예컨대, 제1 컬러 변환 패턴(341)에는 적색 변환 입자들이 포함되고, 제2 컬러 변환 패턴(342)에는 녹색 변환 입자들이 포함될 수 있다. 컬러 변환 입자들은 예컨대, 형광체나 양자점을 포함할 수 있다. 형광체나 양자점 각각은 형광 입자들이나 양자 입자들을 포함할 수 있다.
다른 예로서, 제1 컬러 변환 패턴(341), 제2 컬러 변환 패턴(342) 및/또는 투광 패턴(343) 각각은 광을 산란시킬 수 있는 산란제를 포함할 수 있다. 산란제는 산란 입자들을 포함할 수 있다.
제1 컬러 변환 패턴(341)은 제1 서브 화소(PX1)에 배치되어, 반도체 발광 소자(161)의 청색 광(410)을 변환하여 적색 광(420)을 출력할 수 있다. 예컨대, 제1 컬러 변환 패턴(341)은 반도체 발광 소자(161)의 청색 파장 대역의 광을 적색 파장 대역의 광으로 쉬프트하여, 상기 쉬프트된 적색 파장 대역의 광을 출력할 수 있다. 제2 컬러 변환 패턴(342)은 제2 서브 화소(PX2)에 배치되어, 반도체 발광 소자(162)의 청색 광(410)을 녹색 광(430)을 출력할 수 있다. 예컨대, 제2 컬러 변환 패턴(342)은 반도체 발광 소자(162)의 청색 파장 대역의 광을 녹색 파장 대역의 광으로 쉬프트하여, 상기 쉬프트된 녹색 파장 대역의 광을 출력할 수 있다. 투광 패턴(343)은 제3 서브 화소(PX3)에 배치되어, 반도체 발광 소자)163)의 청색 광(410)을 통과시킬 수 있다. 예컨대, 제3 서브 화소(PX3)는 반도체 발광 소자(163)의 청색 파장 대역의 광을 통과시켜 청색 파장 대역의 광을 그대로 출력할 수 있다.
청색 광(410)은 제1 컬러 광으로, 적색 광(420)은 제2 컬러 광으로 그리고 녹색 광(430)은 제3 컬러 광으로 명명될 수 있다.
따라서, 제1 서브 화소(PX1)는 적어도 하나 이상의 반도체 발광 소자(161) 및 제1 컬러 변환 패턴(341)을 포함하고, 제2 서브 화소(PX2)는 적어도 하나 이상의 반도체 발광 소자(162) 및 제2 컬러 변환 패턴(342)을 포함하며, 제3 서브 화소(PX3)는 적어도 하나 이상의 반도체 발광 소자(163) 및 투광 패턴(343)을 포함할 수 있다.
제1 컬러 변환 패턴(341)은 제1 서브 화소(PX1)에 대응하는 형상이나 면적을 가지고, 제2 컬러 변환 패턴(342)은 제2 서브 화소(PX2)에 대응하는 형상이나 면적을 가지며, 투광 패턴(343)은 제3 서브 화소(PX3)에 대응하는 형상이나 면적을 가질 수 있다.
앞서 기술한 바와 같이, 종래에는 각 서브 화소에 배치된 컬러 변환층(도 1의 3)의 면적이 동일한 경우, 발광 세기 측면에서 청색 광(410)이 적색 광(420)이나 녹색 광(430)보다 클 뿐만 아니라 각 서브 화소에 배치된 컬러 변환층(3)의 물질 특성으로 인해 컬러 변환 효율이 서로 상이하여, 색온도 조정이 필요하다.
따라서, 표 1에 도시한 바와 같이, 색온도 조정을 위해 감마 보정을 수행하였다. 감마 보정하기 전에는 적색, 녹색 및 청색 각각의 휘도를 173. 16cd/m2로 동일하다. 이러한 경우, 백색에서의 휘도는 201cd/m2로 높게 나타난다.
하지만, 감마 보정을 한 경우, 적색의 휘도는 68.89201cd/m2이고, 녹색의 휘도는 173.16cd/m2이며, 청색의 휘도는 99cd/m2일 수 있다. 이러한 경우, 백색에서의 휘도는 99201cd/m2로서, 감마 조정하기 전의 백색에서의 휘도보다 현저히 낮아졌다.
Color 휘도 (cd/m2) 면적비(%)
White Balance
조정 전
Red 173.16 100
Green 173.16 100
Blue 173.16 100
White 201
White Balance
조정 후
(감마 조정)
Red 68.89 100
reen 173.16 100
lue 18.42 100
hite 99
표 1에 나타낸 바와 같이, 색온도차를 극복하기 위해 감마 보정을 하는 경우 백색에서의 휘도가 현저히 낮아지고, 이는 화질 저하로 이어질 수 있는 시급히 해결해야 할 기술적 과제이다.
실시예에 따르면, 제1 컬러 변환 패턴(341), 제2 컬러 변환 패턴(342) 및 투광 패턴(343)의 면적(A1, A2, A3)을 달리함으로써, 상술한 기술적 과제를 해결할 수 있다.
구체적으로, 제2 컬러 변환 패턴(342)의 면적(A2)는 제1 컬러 변환 패턴(341)의 면적(A1)보다 크고, 제1 컬러 변환 패턴(341)이 면적(A1)은 투광 패턴(343)의 면적(A3)보다 클 수 있다.
예컨대, 제1 컬러 변환 패턴(341)의 면적(A1)은 전체 면적에 대해 26±5%이고, 제2 컬러 변환 패턴(342)의 면적(A2)은 전체 면적에 대해 67±5%이며, 투광 패턴(343)의 면적(A3)은 전체 면적에 대해 7±5%일 수 있다. 여기서, 전체 면적은 제1 컬러 변환 패턴(341)의 면적, 제2 컬러 변환 패턴(342)의 면적 및 투광 패턴(343)의 면적의 합(A1+A2+A3)일 수 있다.
상술한 바와 같이, 청색 광(410)이 출력되는 투광 패턴(343)의 면적(A3)을 가장 작게 하고, 컬러 변환 효율이 가장 열악한 제2 컬러 변환 패턴(342)의 면적(A2)을 가장 크게 함으로써, 표 2에 나타낸 바와 같이 휘도가 현저히 향상될 수 있다.
Color 휘도 (cd/m2) 면적비(%)
Red 138 26.4
Green 345 66.5
Blue 37 7.1
White 520
표 2에 나타낸 바와 같이, 제2 컬러 변환 패턴(342)의 면적 비가 66.5%로서 가장 크므로, 휘도 또한 345cd/m2로서 가장 크다. 밝기 강도가 가장 큰 청색 광(410)이 투과되는 투광 패턴(343)의 면적 비를 7.1%로 함으로써, 휘도가 37cd/m2로 약하다. 이와 같이, 제1 컬러 변환 패턴(341)의 면적(A1), 제2 컬러 변환 패턴(342)의 면적(A2) 및 투광 패턴(343)의 면적(A3)을 달리함으로써, 종래에 감마 조정 후에 백색에서의 휘도 대비 5배 이상 증가되었다.
따라서, 제1 컬러 변환 패턴(341)의 면적(A1), 제2 컬러 변환 패턴(342)의 면적(A2) 및 투광 패턴(343)의 면적(A3)을 달리함으로써, 종래와 같이 감마 조정할 필요가 없어 연산 회로를 단순화할 수 있을 뿐만 아니라 휘도가 현저히 향상되어 높은 화질을 통한 신뢰성을 제고할 수 있다.
한편, 제2 방향(y)에 따른 제1 컬러 변환 패턴(341), 제2 컬러 변환 패턴(342) 및 투광 패턴(343) 각각의 제1 폭(W11, W21, W31)은 동일하고, 제1 방향(x)에 따른 제1 컬러 변환 패턴(341), 제2 컬러 변환 패턴(342) 및 투광 패턴(343) 각각의 제2 폭(W12, W22, W32)은 상이할 수 있다. 예컨대, 제2 컬러 변환 패턴(342)의 제2 폭(W22)은 제1 컬러 변환 패턴(341)의 제2 폭(W12)보다 크고, 제1 컬러 변환 패턴(341)의 제2 폭(W12)은 투광 패턴(343)의 제2 폭(W32)보다 클 수 있다. 예컨대, 제2 방향(y)에 따른 제1 컬러 변환 패턴(341), 제2 컬러 변환 패턴(342) 및 투광 패턴(343) 각각의 제1 폭(W11, W21, W31)이 동일한 경우, 제1 컬러 변환 패턴(341)의 제2 폭(W12)은 전체 폭에 대해 26±5%이고, 제2 컬러 변환 패턴(342)의 제2 폭(W22)은 전체 폭에 대해 67±5%이며, 투광 패턴(343)의 제2 폭(W32)은 전체 폭에 대해 7±5%일 수 있다. 여기서, 전체 폭은 제1 컬러 변환 패턴(341)의 제2 폭, 제2 컬러 변환 패턴(342)의 제2 폭 및 투광 패턴(343)의 제2 폭의 합(W12+W22+W32)일 수 있다.
도시되지 않았지만, 제2 방향(y)에 따른 제1 컬러 변환 패턴(341), 제2 컬러 변환 패턴(342) 및 투광 패턴(343) 각각의 제1 폭(W11, W21, W31)은 상이하고, 제1 방향(x)에 따른 제1 컬러 변환 패턴(341), 제2 컬러 변환 패턴(342) 및 투광 패턴(343) 각각의 제2 폭(W12, W22, W32)은 동일할 수 있다.
도시되지 않았지만, 제2 방향(y)에 따른 제1 컬러 변환 패턴(341), 제2 컬러 변환 패턴(342) 및 투광 패턴(343) 각각의 제1 폭(W11, W21, W31)은 상이하고, 제1 방향(x)에 따른 제1 컬러 변환 패턴(341), 제2 컬러 변환 패턴(342) 및 투광 패턴(343) 각각의 제2 폭(W12, W22, W32)은 상이할 수 있다.
이하에서 앞서 기술한 디스플레이 장치(도 1 및 도 2)에 대한 상세한 구조를 도 10 내지 도 13c를 참조하여 상세히 설명한다. 이하의 설명에서 누락된 설명은 앞서 기술한 디스플레이 장치(도 1 및 도 2)로부터 용이하게 이해될 수 있다.
[제1 실시예]
도 10은 제1 실시예에 따른 디스플레이 장치를 도시한 단면도이다.
제1 실시예에 따른 디스플레이 장치는 인 셀(in-cell) 방식 디스플레이 장치로서, 동일한 기판 상에서 광원(160)과 컬러 컨버터(340)가 제조될 수 있다.
도 10을 참조하면, 제1 실시예에 따른 디스플레이 장치(300)는 제1 기판(310), 복수의 절연층(311, 321, 330), 제1 및 제2 조립 배선(312, 313), 격벽(320), 광원(160), 전극 배선(322), 컬러 컨버터(340), 뱅크(350), 컬러 필터층(360), 차광 패턴(370) 및 제2 기판(380)을 포함할 수 있다.
광원(160)은 복수의 반도체 발과 소자(161, 162, 163)을 포함할 수 있다. 컬러 컨버터(340)는 제1 컬러 변환 패턴(341), 제2 컬러 변환 패턴(342) 및 투광 패턴(343)을 포함할 수 있다. 광원(160) 및 컬러 컨버터(340)는 앞서 기술한 바 있으므로, 상세한 설명을 생략한다.
반도체 발광 소자(161, 162, 163)는 마이크로미터 이하의 사이즈를 가지므로, 제1 기판(310) 상에 장착하기가 매우 어렵다.
실시예에서는 자가 조립 방식을 이용하여 반도체 발광 소자(161, 162, 163)가 제1 기판(310) 상에 용이하게 조립될 수 있다.
자가 조립 방식을 위한 구조로서, 제1 기판(310), 복수의 절연층(311, 321, 330), 제1 및 제2 조립 배선(312, 313) 및 격벽(320)가 구비될 수 있고, 이들 구성 요소들은 앞서 기술한 바 있으므로 상세한 설명을 생략한다.
도면에는 제1 및 제2 조립 배선(312, 313)이 서로 상이한 층에 배치되는 것으로 도시되고 있지만, 서로 동일한 층에 배치될 수 있다. 도 10에 도시한 바와 같이, 제1 조립 배선(312)은 절연층(311) 아래에 배치되고, 제2 조립 배선(313)은 절연층(311) 상에 배치될 수 있다. 도시되지 않았지만, 제1 및 제2 조립 배선(312, 313)은 제1 기판(310)과 절연층(311) 사이에 배치될 수 있다.
자가 조립 공정을 수행하여 자기장에 의해 유체 속의 반도체 발광 소자(161, 162, 163)들이 일 방향을 따라 이동되고, 제1 및 제2 조립 배선(312, 313) 사이에 형성된 DEP force에 의해 반도체 발광 소자(161, 162, 163)가 격벽(320)의 조립 홀(320H)에 삽입되어 고정될 수 있다. 예컨대, 격벽(320)의 조립 홀(320H)은 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3)에서 상이하고, 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3) 각각의 반도체 발광 소자(161, 162, 163)는 서로 상이한 조립 홀(320H)의 형상에 대응하는 형상을 가질 수 있다. 이와 같은 구조에 의해, 자가 조립 방식을 이용하여 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3) 각각의 조립 홀(320H)에 대응하는 반도체 발광 소자(161, 162, 163)가 동시에 조립될 수 있다. 이와 달리, 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3) 각각의 반도체 발광 소자(161, 162, 163)가 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3)에 개별적으로 조립될 수도 있지만, 이에 대해서는 한정하지 않는다.
편의상, 도면에는 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3) 각각에 하나의 조립 홀(320H)이 구비되므로, 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3) 각각에 하나의 반도체 발광 소자(161, 162, 163)가 배치되지만, 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3) 각각에 2개 이상의 조립 홀(320H)이 구비되어, 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3) 각각에 2개 이상의 반도체 발광 소자(161, 162, 163)가 배치될 수도 있다. 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3) 각각에 배치되는 반도체 발광 소자(161, 162, 163)의 개수는 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3) 각각의 사이즈, 반도체 발광 소자(161, 162, 163)의 사이즈, 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3) 각각에서 요구되는 최대 휘도값 등에 따라 달라질 수 있다.
반도체 발광 소자(161, 162, 163)가 조립된 후, 전극 배선(322)이 반도체 발광 소자(161, 162, 163) 상에 배치되어 반도체 발광 소자(161, 162, 163)의 일측에 전기적으로 연결될 수 있다. 아울러, 제2 조립 배선(313)이 반도체 발광 소자(161, 162, 163)의 타측에 전기적으로 연결되므로, 제2 조립 배선(313)은 전극 배선으로 사용될 수 있다. 예컨대, 제2 조립 배선(313)은 제1 전극 배선으로 명명되고, 전극 배선(322)은 제2 전극 배선으로 명명될 수 있다. 제2 조립 배선(313)과 전극 배선(322)에 인가된 전원에 의해 반도체 발광 소자(161, 162, 163)에서 청색 광(410)이 발광될 수 있다.
한편, 전극 배선(322)은 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3) 각각의 반도체 발광 소자(161, 162, 163)에 공통으로 연결될 수 있다. 이러한 경우, 제2 조립 배선(313)에 인가된 전원의 세기에 따라 반도체 발광 소자(161, 162, 163)의 휘도가 달라질 수 있다.
제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3) 각각에서 동일한 휘도의 청색 광(410)이 발광되는 경우, 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3) 각각에 배치된 제2 조립 배선(313)에 인가된 전원의 세기가 동일하다. 이에 따라, 자가 조립 공정에 의해 반도체 발광 소자(161, 162, 163)가 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3) 각각에 배치된 후, 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3) 각각에 배치된 제2 조립 배선(313)이 공통으로 연결될 수도 있지만, 이에 대해서는 한정하지 않는다.
도시되지 않았지만, 자가 조립 공정에 의해 반도체 발광 소자(161, 162, 163)가 제1 서브 화소(PX1), 제2 서브 화소(PX2) 및 제3 서브 화소(PX3) 각각에 배치된 후, 전기적 연결 공정을 통해 제1 조립 배선(312) 또한 반도체 발광 소자(161, 162, 163)의 타측에 전기적으로 연결될 수도 있다.
광원(160), 즉 복수의 반도체 발광 소자(161, 162, 163) 상에 컬러 컨버터(340)가 배치될 수 있다. 구체적으로, 제1 컬러 변환 패턴(341)은 제1 서브 화소(PX1)에 배치되고, 제2 컬러 변환 패턴(342)은 제2 서브 화소(PX2)에 배치되며, 투명 패턴은 제3 서브 화소(PX3)에 배치될 수 있다.
제1 컬러 변환 패턴(341), 제2 컬러 변환 패턴(342) 및 투명 패턴 각각의 사이에 뱅크(350)가 배치될 수 있다. 뱅크(350)는 제1 컬러 변환 패턴(341), 제2 컬러 변환 패턴(342) 및 투명 패턴을 형성하기 이한 가이드 부재일 수 있다. 뱅크(350)는 제1 컬러 변환 패턴(341)에서 출력된 적색 광(420), 제2 컬러 변환 패턴(342)에서 출력된 녹색 광(430) 및 투광 패턴(343)을 투과한 청색 광(410) 간의 혼색을 방지하는 혼색 방지 부재일 수 있다.
복수의 절연층(311, 321, 330)은 유기물 재질이나 무기물 재질을 포함할 수 있다.
예컨대, 제1 절연층(311)은 제1 조립 배선(312)과 제2 조립 배선(313) 사이에 배치되어, 제1 조립 배선(312)과 제2 조립 배선(313)을 전기적으로 절연시키고 자가 조립 공정시 DEP force의 형성에 기여할 수 있다. 예컨대, 제2 절연층(321)은 반도체 발광 소자(161, 162, 163) 상에 배치되어, 반도체 발광 소자(161, 162, 163)를 외부의 충격, 이물질, 수분 등으로부터 보호할 수 있는 보호 부재일 수 있다. 또한, 제2 절연층(321)은 전극 배선(322)이 용이하게 형성되도록 하기 위한 평탄화층일 수 있다. 이를 위해, 제2 절연층(321)은 반도체 발광 소자(161, 162, 163)뿐만 아니라 격벽(320) 상에 배치되되, 지면에 평행한 상면을 가질 수 있다. 전극 배선(322)은 금속으로 이루어지며, 증착 공정으로 제2 절연층(321) 상에 형성되는데, 제2 절연층(321)의 상면에 굴곡이 형성되는 경우, 전기적 단선이 발생될 수 있다. 따라서, 제2 절연층(321)의 상면을 지면에 평행하도록 형성함으로써, 금속이 전기적 단선 없이 제2 절연층(321) 상에 형성되어, 이후 패턴 공정을 통해 반도체 발광 소자(161, 162, 163)의 일측에 전기적으로 연결된 전극 배선(322)이 될 수 있다.
제3 절연층(330)은 전극 배선(322)과 컬러 컨버터(340) 사이에 배치될 수 있다. 제3 절연층(3330)이 생략되어, 컬러 컨버터(340)가 전극 배선(322)과 접하는 경우, 반도체 발광 소자(161, 162, 163)의 발광을 위해 전극 배선(322)에 전원이 인가되므로 전극 배선(322)에 열이 발생되고, 이러한 열이 컬러 컨버터(340)의 물질 특성에 영향을 주어, 컬러 컨버터(340), 즉 제1 컬러 변환 패턴(341) 및 제2 컬러 변환 패턴(342) 각각에서의 컬러 변환 효율이 저하될 수 있다. 이에 따라, 제3 절연층(330)이 전극 배선(322)과 컬러 컨버터(340) 사이에 배치됨으로써, 이러한 문제가 해결될 수 있다.
한편, 컬러 컨버터(340)가 제3 절연층(330) 상에 배치될 수 있다. 컬러 컨버터(340)는 제1 컬러 변환 패턴(341), 제2 컬러 변환 패턴(342) 및 투광 패턴(343)을 포함할 수 있다.
실시예에 따르면, 제1 컬러 변환 패턴(341)의 면적(A1), 제2 컬러 변환 패턴(342)의 면적(A2) 및 투광 패턴(343)의 면적(A3)이 상이할 수 있다. 예컨대, 제2 컬러 변환 패턴(342)의 면적(A2)은 제1 컬러 변환 패턴(341)의 면적(A1)보다 크고, 제1 컬러 변환 패턴(341)의 면적(A1)은 투광 패턴(343)의 면적(A3)보다 클 수 있다. 이와 같은 구조에 의해, 백색에서의 휘도가 현저히 증가되어 화질을 개선할 수 있다.
컬러 필터층(360)이 컬러 컨버터(340) 상에 배치될 수 있다. 컬러 필터층(360)은 제1 컬러 필터(361), 제2 컬러 필터(362) 및 제3 컬러 필터(363)를 포함할 수 있다.
제1 컬러 필터(361)는 제1 컬러 변환 패턴(341)에서 출력된 적색 광(420) 중 목표 적색 광을 통과시켜 출력할 수 있다. 제2 컬러 필터(362)는 제2 컬러 변환 패턴(342)에서 출력된 녹색 광(430) 중 목표 녹색 광을 통과시켜 출력할 수 있다. 제3 컬러 필터(363)는 투광 패턴(343)에서 출력된 청색 광(410) 중 목표 청색 광을 통과시켜 출력할 수 있다. 이에 따라, 제1 컬러 필터(361)의 통과 파장 대역은 제1 컬러 변환 패턴(341)에서 출력된 적색 광(420)의 파장 대역 내로 설정되고, 제2 컬러 필터(362)의 통과 파장 대역은 제2 컬러 변환 패턴(342)에서 출력된 녹색 광(430)의 파장 대역 내로 설정되며, 제3 컬러 필터(363)의 통과 파장 대역은 투광 패턴(343)에서 출력된 청색 광(410)의 파장 대역 내로 설정될 수 있지만, 이에 대해서는 한정하지 않는다.
제1 컬러 변환 패턴(341)에서 출력된 적색 광(420)의 파장 대역이 목표 적색 광의 파장 대역과 동일한 경우, 제1 컬러 필터(361)는 생략될 수 있다. 제2 컬러 변환 패턴(342)에서 출력된 녹색 광(430)의 파장 대역이 목표 녹색 광의 파장 대역과 동일한 경우, 제2 컬러 필터(362)는 생략될 수 있다. 투광 패턴(343)에서 출력된 청색 광(410)의 파장 대역이 목표 청색 광의 파장 대역과 동일한 경우, 제3 컬러 필터(363)는 생략될 수 있다.
예컨대, 제1 컬러 필터(361)는 제1 컬러 변환 패턴(341) 상에 배치되고, 제2 컬러 필터(362)는 제2 컬러 변환 패턴(342) 상에 배치되며, 제3 컬러 필터(363)는 투광 패턴(343) 상에 배치될 수 있다. 예컨대, 제1 컬러 필터(361)는 제1 컬러 변환 패턴(341)에 대응되어 배치되고, 제2 컬러 필터(362)는 제2 컬러 변환 패턴(342)에 대응되어 배치되며, 제3 컬러 필터(363)는 투광 패턴(343)에 대응되어 배치될 수 있다. 이러한 경우, 제1 컬러 필터(361)의 면적은 제1 컬러 변환 패턴(341)의 면적(A1)과 동일하고, 제2 컬러 필터(362)의 면적은 제2 컬러 변환 패턴(342)의 면적(A2)과 동일하며, 제3 컬러 필터(363)의 면적은 투광 패턴(343)이 면적(A3)과 동일할 수 있지만, 이에 대해서는 한정하지 않는다.
예컨대, 제2 컬러 필터(362)의 면적(A2)은 제1 컬러 필터(361)의 면적(A1)보다 크고, 제1 컬러 필터(361)의 면적(A1)은 제3 컬러 필터(363)의 면적(A3)보다 클 수 있다.
한편, 제1 컬러 필터(361) 및 제2 컬러 필터(362)는 동일한 파장 대역의 광이 투과되도록 설정될 수 있다. 예컨대, 제1 컬러 필터(361) 및 제2 컬러 필터(362)는 황색 파장 대역의 광이 투과되도록 설정될 수 있다. 이때, 제3 컬러 필터(363)는 생략될 수 있다. 이러한 경우, 제1 컬러 필터(361)에 의해 보다 더 낮아진 파장 대역의 적색 광(420)이 출력되고, 제2 컬러 필터(362)에 의해 보다 더 높아진 파장 대역의 녹색 광(430)이 출력되며, 컨버터(340)의 투광 패턴(343)에서 청색 광(410)이 직접 출력됨으로써, 색온도가 낮아지고 색순도가 향상될 수 있다.
한편, 차광 패턴(370)은 제1 컬러 필터(361), 제2 컬러 필터(362), 및 제3 컬러 필터(363) 각각의 사이에 배치될 수 있다. 차광 패턴(370)은 제1 컬러 필터(361)에서 출력된 적색 광(420), 제2 컬러 필터(362)에서 출력된 녹색 광(430) 및 제3 컬러 필터(363)에서 출력된 청색 광(410) 간의 간섭이나 혼색을 방지할 수 있다. 차광 패턴(370)은 블랙 매트릭스로 불릴 수 있다.
한편, 제2 기판(380)은 컬러 컨버터(340) 및 컬러 필터층(360)을 보호하는 역할을 할 수 있다. 제2 기판(380)은 유리와 같은 리지드(rigid) 재질이나 에폭시와 같은 소프트(soft) 재질을 포함할 수 있다.
도 11a 내지 도 11d는 제1 실시예에 따른 디스플레이 장치의 제조 공정을 설명하는 도면이다. 도 11a 내지 도 11d에서는 제1 서브 픽셀에 대응하는 디스플레이 장치를 제조하는 공정을 도시하고 있지만, 제2 서브 픽셀 및 제3 서브 픽셀 각각에 대응하는 디스플레이 장치 또한 도 11a 내지 도 11d에 도시된 제1 서브 픽셀에 대응하는 디스플레이 장치를 제조하는 공정과 동일한 공정으로 제조될 수 있다.
도 11a 및 도 11b에 도시한 바와 같이, 자가 조립 공정을 이용하여 반도체 발광 소자(161)가 제1 기판(310) 상에 조립될 수 있다. 예컨대, 반도체 발광 소자(161)는 제1 기판(310)의 제1 서브 픽셀에 조립될 수 있다. 예컨대, 반도체 발광 소자(161)는 제1 기판(310)의 제1 서브 픽셀에 대응하는 격벽(320)에 형성된 조립 홀(320H)에 조립될 수 있다.
앞서 기술한 바와 같이, 자기장에 의해 반도체 발광 소자(161)들이 유체 내에서 이동하다가 제1 서브 픽셀에 구비된 제1 및 제2 조립 배선(312, 313) 사에 형성된 DEP force에 의해 반도체 발광 소자(161)들 중 하나의 반도체 발광 소자가 당겨져, 해당 조립 홀(320H)에 조립될 수 있다.
도 11c에 도시한 바와 같이, 반도체 발광 소자(161) 및 격벽(320) 상에 절연층(321)이 형성된 후, 절연층(321)이 부분적으로 식각되어 반도체 발광 소자(161)의 상측이 노출되는 컨택홀이 형성될 수 있다.
이후, 절연층(321) 상에 금속막을 형성하고 식각함으로써, 전극 배선(322)이 형성될 수 있다. 전극 배선(322)은 반도체 발광 소자(161)의 상측에 전기적으로 연결될 수 있다. 한편, 제2 조립 배선(313)이 조립 홀(320H)에 노출되고, 조립 홀(320H)에 반도체 발광 소자(161)이 조립됨으로써, 제2 조립 배선(313)이 반도체 발광 소자(161)의 하측에 전기적으로 연결될 수 있다. 이때, 제2 조립 배선(313) 또한 전극 배선으로 사용될 수 있다. 따라서, 전극 배선(322) 및 제2 조립 배선(313)에 인가된 전원에 의해 반도체 발광 소자(161)이 발광될 수 있다.
앞서 기술한 바와 같이, 제1 기판(310) 상에 정의된 복수의 제1 서브 픽셀, 복수의 제2 서브 픽셀 및 복수의 제3 서브 픽셀 각각에 배치된 반도체 발광 소자(도 10의 161, 162, 163)에서 청색 광(410)이 발광될 수 있다.
이후, 전극 배선(322) 상에 절연층(330)이 형성될 수 있다.
도 11d에 도시한 바와 같이, 절연층(330) 상에 뱅크(350) 및 컬러 컨버터(340)가 형성될 수 있다.
먼저 제1 서브 픽셀 둘레를 따라 뱅크(350)가 형성될 수 있다. 이러한 경우, 제1 서브 픽셀의 중심 영역에 절여층(330)와 뱅크(350)에 의해 홈이 형성될 수 있다.
이후, 해당 홈에 컬러 컨버터(340)의 제1 컬러 변환 패턴(341)이 형성될 수 있다. 앞서 기술한 바와 같이, 제1 컬러 변환 패턴(341)에 컬러 변환 입자들이 포함될 수 있다. 예컨대, 컬러 변환 입자들은 반도체 발광 소자(161)의 청색 광(410)을 적색 광(420)으로 변환할 수 있는 적색 변환 입자들을 포함할 수 있다. 도시되지 않았지만, 제2 서브 픽셀의 홈에 컬러 컨버터(340)의 제2 컬러 변환 패턴(342)이 형성되고, 제3 서브 픽셀의 홈에 컬러 컨버터(340)의 투광 패턴(343)이 형성될 수 있다. 제2 컬러 변환 패턴(342)에 반도체 발광 소자(도 10의 162)의 청색 광(410)을 녹색 광(430)으로 변환할 수 있는 녹색 변환 입자들이 포함될 수 있다. 투광 패턴(343)은 컬러 변환 입자들이 포함되지 않을 수 있다. 이에 따라, 반도체 발광 소자(도 10이 163)의 청색 광(410)이 투광 패턴(343)을 투과하여 전방으로 출력될 수 있다.
한편, 실시예에서, 제1 컬러 변환 패턴의 면적(A1), 제2 컬러 변환 패턴(342)의 면적(A2) 및 투광 패턴(343)의 면적(A3)은 상이할 수 있다. 이에 따라, 제1 서브 픽셀, 제2 서브 픽셀 및 제3 서브 픽셀 각각의 면적 또한 상이할 수 있다.
예컨대, 제2 서브 픽셀의 면적이 제1 서브 픽셀의 면적보다 크고, 제1 서브 픽셀의 면적은 제3 서브 픽셀의 면적보다 클 수 있다. 뱅크(350)가 제1 서브 픽셀, 제2 서브 픽셀 및 제3 서브 픽셀 각각의 둘레를 따라 형성되고, 제1 서브 픽셀, 제2 서브 픽셀 및 제3 서브 픽셀 각각의 면적이 상이하므로, 제1 서브 픽셀, 제2 서브 픽셀 및 제3 서브 픽셀 각각에서 뱅크(350)에 의해 형성된 홈이 상이할 수 있다. 이에 따라, 제1 서브 픽셀, 제2 서브 픽셀 및 제3 서브 픽셀 각각의 홈에 형성된 제1 컬러 변환 패턴(341), 제2 컬러 변환 패턴(342) 및 투광 패턴(343) 각각의 면적(A1, A2, A3) 또한 상이할 수 있다. 예컨대, 제2 컬러 변환 패턴(342)의 면적(A2)은 제1 컬러 변환 패턴(341)의 면적(A1)보다 크고, 제1 컬러 변환 패턴(341)의 면적(A1)은 투광 패턴(343)의 면적(A3)보다 클 수 있다.
상술한 바와 같이, 제1 컬러 변환 패턴(341), 제2 컬러 변환 패턴(342) 및 투광 패턴(343) 각각의 면적(A1, A2, A3)을 달리함으로써, 종래와 같이 감마 조정할 필요가 없어 연산 회로를 단순화할 수 있을 뿐만 아니라 휘도가 현저히 향상되어 높은 화질을 통한 신뢰성을 제고할 수 있다.
이후, 뱅크(350) 상에 차광 패턴(370)이 형성되고, 컬러 컨버터(340) 상에 컬러 필터층(360)이 형성될 수 있다. 컬러 필터층(360)은 제1 컬러 필터(361), 제2 컬러 필터(362) 및 제3 컬러 필터(363)를 포함할 수 있다. 이러한 경우, 제1 컬러 필터(361)는 제1 컬러 변환 패턴(341) 상에 형성되고, 제2 컬러 필터(362)는 제2 컬러 변환 패턴(342) 상에 형성되며, 제3 컬러 필터(363)는 투광 패턴(343) 상에 형성될 수 있다.
도면에는 차광 패턴(370)의 폭(또는 면적)이 뱅크(350)의 폭(또는 면적)과 동일하게 도시되고 있지만, 차광 패턴(370)의 폭(또는 면적)은 뱅크(350)의 폭(또는 면적)보다 크거나 작을 수도 있다.
도면에는 제1 컬러 필터(361)의 폭(또는 면적)은 제1 컬러 변환 패턴(341)의 폭(또는 면적)과 동일하고, 제2 컬러 필터(362)의 폭(또는 면적)은 제2 컬러 변환 패턴(342)의 폭(또는 면적)과 동일하며, 제3 컬러 필터(363)의 폭(또는 면적)은 투광 패턴(343)의 폭(또는 면적)과 동일한 것으로 도시되고 있지만, 상이할 수도 있다.
한편, 차광 패턴(370) 및 컬러 필터층(360) 상에 제2 기판(380)이 형성될 수 있다.
[제2 실시예]
도 12는 제2 실시예에 따른 디스플레이 장치를 도시한 단면도이다.
제1 실시예에 따른 디스플레이 장치는 리모트(remote) 방식 디스플레이 장치로서, 서로 상이한 제1 기판(310) 각각에 광원(160)과 컬러 컨버터(340)가 제조된 후, 광원(160)과 컬러 컨버터(340)가 서로 마주보도록 합착될 수 있다.
제2 실시예에서 제1 실시예와 동일한 형상, 구조 및/또는 기능을 갖는 도면 부호에 대해서는 동일한 도면 부호를 부여하고 상세한 설명을 생략한다.
도 12를 참조하면, 제2 실시예에 따른 디스플레이 장치(301)는 하부 기판(303), 접착 부재(390) 및 상부 기판(304)를 포함할 수 있다.
하부 기판(303)은 제1 기판(310), 절연층(311, 321, 330), 제1 및 제2 조립 배선(311, 312), 격벽(320), 광원(160) 및 전극 배선(322)을 포함할 수 있는데, 이러한 구성 요소들은 제1 실시예에서 상세히 설명된 바 있으므로 상세한 설명은 생략한다.
상부 기판(304)은 제2 기판(380), 차광 패턴(370), 컬러 필터층(360), 뱅크(350), 컬러 컨버터(340) 및 절연층(391, 392)을 포함할 수 있다.
접착 부재(390)는 하부 기판(303)과 상부 기판(304)를 합착시키는 역할을 할 수 있다. 접착 부재(390)은 접착층, 접착 물질, 접착제, 절연층, 절연 부재 등으로 불릴 수 있다.
접착 부재(390)를 매개로 하여 하부 기판(303)과 상부 기판(304)이 합착됨으로써, 디스플레이 장치(301)가 제조될 수 있다.
제2 실시예에 따른 디스플레이 장치의 제조 공정을 도 13a 내지 도 13c를 참조하여 보다 상세히 설명한다.
도 13a에 도시한 바와 같이, 제1 기판(310) 상에 제1 및 제2 조립 배선(312, 313)과 조립 홀(320H)을 갖는 격벽(320)이 형성된 후, 자가 조립 공정을 수행하여 반도체 발광 소자(161, 162, 163)가 조립 홀(320H)에 조립될 수 있다. 이후, 전극 배선(322) 등이 형성됨으로써, 후공정을 통해 하부 기판(303)이 제조될 수 있다.
도 13b에 도시한 바와 같이, 제2 기판(380) 상에 차광 패턴(370) 및 컬러 필터층(360)이 형성되고, 차광 패턴(370) 상에 뱅크(350)가 형성되고, 컬러 필터층(360) 상에 컬러 컨버터(340)가 형성됨으로써, 상부 기판(304)이 제조될 수 있다. 절연층(292)이 차광 패턴(370) 및 뱅크(350) 사이 그리고 컬러 필터층(360)과 컬러 컨버터(340) 사이에 형성될 수 있다. 절연층(291)이 뱅크(350) 및 컬러 컨버터(340) 상에 형성될 수 있다.
도 13c에 도시한 바와 같이, 하부 기판(303)의 절연층(330) 및/또는 상부 기판(304)의 절연층(291) 상에 접착 부재(390)가 형성될 수 있다.
이후, 하부 기판(303) 또는 상부 기판(304)을 180° 뒤집은 후, 하부 기판(303) 또는 상부 기판(304)을 열합착 후 냉각시킴으로써, 리모트 방식 디스플레이 장치가 제조될 수 있다.
한편, 제1 실시예에 따른 디스플레이 장치(도 10의 300)와 제2 실시예에 따른 디스플레이 장치(도 12의 301)은 디스플레이 패널일 수 있다. 즉, 실시예에서, 디스플레이 장치와 디스플레이 패널은 동일한 의미로 이해될 수 있다. 실시예에서, 실질적인 의미에서의 디스플레이 장치는 디스플레이 패널과 영상을 디스플레이하기 위해 디스플레이 패널을 제어할 수 있는 컨트롤러(또는 프로세서)를 포함할 수 있다.
상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 실시예의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 실시예의 등가적 범위 내에서의 모든 변경은 실시예의 범위에 포함된다.
실시예는 영상이나 정보를 디스플레이하는 디스플레이 분야에 채택될 수 있다. 실시예는 반도체 발광 소자를 이용하여 영상이나 정보를 디스플레이하는 디스플레이 분야에 채택될 수 있다. 반도체 발광 소자는 마이크로급 반도체 발광 소자나 나노급 반도체 발광 소자일 수 있다.
예컨대, 실시예는 TV, 사이니지, 스마트 폰, 모바일 폰, 이동 단말기, 자동차용 HUD, 노트북용 백라이트 유닛, VR이나 AR용 디스플레이 장치에 채택될 수 있다.

Claims (18)

  1. 제1 서브 픽셀, 제2 서브 픽셀 및 제3 서브 픽셀을 포함하는 기판;
    상기 제1 서브 픽셀, 상기 제2 서브 픽셀 및 상기 제3 서브 픽셀 각각에 적어도 하나 이상의 반도체 발광 소자;
    상기 제1 서브 픽셀에 대응하는 상기 적어도 하나 이상의 반도체 소자 상에 배치되고, 제1 컬러 변환 입자들을 포함하는 제1 컬러 변환 패턴;
    상기 제2 서브 픽셀에 대응하는 상기 적어도 하나 이상의 반도체 소자 상에 배치되고, 제2 컬러 변환 입자들을 포함하는 제2 컬러 변환 패턴; 및
    상기 제3 서브 픽셀에 대응하는 상기 적어도 하나 이상의 반도체 소자 상에 투광 패턴;을 포함하고,
    상기 제1 컬러 변환 패턴의 면적, 상기 제2 컬러 변환 패턴의 면적 및 상기 투광 패턴의 면적은 상이한
    디스플레이 장치.
  2. 제1항에 있어서,
    상기 제1 서브 픽셀, 상기 제2 서브 픽셀 및 상기 제3 서브 픽셀 각각의 반도체 발광 소자는 동일한 컬러 광을 생성하는
    디스플레이 장치.
  3. 제1항에 있어서,
    상기 반도체 발광 소자는 제1 컬러 광을 생성하고,
    상기 제1 컬러 변환 패턴은 상기 제1 컬러 광을 제2 컬러 광으로 변환하고,
    상기 제2 컬러 변환 패턴은 상기 제1 컬러 광을 제3 컬러 광으로 변환하며,
    상기 투광 패턴은 상기 제1 컬러 광을 통과시키는
    디스플레이 장치.
  4. 제3항에 있어서,
    상기 제1 컬러 광은 청색 광을 포함하고,
    상기 제2 컬러 광은 적색 광을 포함하며,
    상기 제3 컬러 광은 녹색 광을 포함하는
    디스플레이 장치.
  5. 제1항에 있어서,
    상기 제2 컬러 변환 패턴의 면적은 상기 제1 컬러 변환 패턴의 면적보다 큰
    디스플레이 장치.
  6. 제5항에 있어서,
    상기 제1 컬러 변환 패턴의 면적은 상기 투광 패턴의 면적보다 큰
    디스플레이 장치.
  7. 제1항에 있어서,
    상기 제1 컬러 변환 패턴의 면적은 전체 면적에 대해 26±5%이고,
    상기 제2 컬러 변환 패턴의 면적은 상기 전체 면적에 대해 67±5%이며,
    상기 투광 패턴의 면적은 상기 전체 면적에 대해 7±5%이며,
    상기 전체 면적은 상기 제1 컬러 변환 패턴의 면적, 상기 제2 컬러 변환 패턴의 면적 및 상기 투광 패턴의 면적의 합인
    디스플레이 장치.
  8. 제1항에 있어서,
    제1 방향에 따른 상기 제1 컬러 변환 패턴, 상기 제2 컬러 변환 패턴 및 상기 투광 패턴 각각의 제1 폭은 동일하고,
    제2 방향에 따른 상기 제1 컬러 변환 패턴, 상기 제2 컬러 변환 패턴 및 상기 투광 패턴 각각의 제2 폭은 상이한
    디스플레이 장치.
  9. 제8항에 있어서,
    상기 제2 컬러 변환 패턴의 제2 폭은 상기 제1 컬러 변환 패턴의 제2 폭보다 큰
    디스플레이 장치.
  10. 제9항에 있어서,
    상기 제1 컬러 변환 패턴의 제2 폭은 상기 투광 패턴의 제2 폭보다 큰
    디스플레이 장치.
  11. 제1항에 있어서,
    상기 제1 컬러 변환 패턴, 상기 제2 컬러 변환 패턴 및 상기 투광 패턴 각각의 사이에 뱅크;을 포함하는
    디스플레이 장치.
  12. 제1항에 있어서,
    상기 제1 컬러 변환 패턴 상에 제1 컬러 필터;
    상기 제2 컬러 변환 패턴 상에 제2 컬러 필터;
    상기 투광 패턴 상에 제3 컬러 필터; 및
    상기 제1 컬러 필터, 상기 제2 컬러 필터 및 상기 제3 컬러 필터 각각의 사이에 차광 패턴;을 포함하는
    디스플레이 장치.
  13. 제11항에 있어서,
    상기 제2 컬러 필터의 면적은 상기 제1 컬러 필터의 면적보다 크고,
    상기 제1 컬러 필터의 면적은 상기 제3 컬러 필터의 면적보다 큰
    디스플레이 장치.
  14. 제13항에 있어서,
    상기 제1 컬러 필터의 통과 파장 대역은 적색 광의 파장 대역 범위 내로 설정되고,
    상기 제2 컬러 필터의 통과 파장 대역은 녹색 광의 파장 대역 범위로 설정되며,
    상기 제3 컬러 필터의 통과 파장 대역은 청색 광의 파장 대역 범위로 설정되는
    디스플레이 장치.
  15. 제13항에 있어서,
    상기 제1 컬러 필터와 상기 제2 컬러 필터는 황색 파장 대역의 광을 투과하도록 설정되는
    디스플레이 장치.
  16. 제1항에 있어서,
    상기 제1 서브 픽셀, 상기 제2 서브 픽셀 및 상기 제3 서브 픽셀 각각에 제1 및 제2 조립 배선; 및
    상기 및 제2 조립 배선 상에 배치되고, 상기 제1 서브 픽셀, 상기 제2 서브 픽셀 및 상기 제3 서브 픽셀 각각에 적어도 하나 이상의 조립 홀을 갖는 격벽;을 포함하는
    디스플레이 장치.
  17. 제16항에 있어서,
    상기 적어도 하나 이상의 반도체 발광 소자는 각각 상기 적어도 하나 이상의 조립 홀에 배치되는
    디스플레이 장치.
  18. 제17항에 있어서,
    상기 격벽 및 상기 적어도 하나 이상의 반도체 발광 소자 상에 절연층; 및
    상기 절연층 상에 배치되고, 상기 적어도 하나 이상의 반도체 발광 소자의 일측에 연결되는 전극 배선;을 포함하고,
    상기 제1 및 제2 조립 배선 중 적어도 하나의 조립 배선은 상기 적어도 하나 이상의 반도체 발광 소자의 타측에 연결되는
    디스플레이 장치.
PCT/KR2022/001937 2022-02-08 2022-02-08 디스플레이 장치 WO2023153532A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2022/001937 WO2023153532A1 (ko) 2022-02-08 2022-02-08 디스플레이 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2022/001937 WO2023153532A1 (ko) 2022-02-08 2022-02-08 디스플레이 장치

Publications (1)

Publication Number Publication Date
WO2023153532A1 true WO2023153532A1 (ko) 2023-08-17

Family

ID=87564610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/001937 WO2023153532A1 (ko) 2022-02-08 2022-02-08 디스플레이 장치

Country Status (1)

Country Link
WO (1) WO2023153532A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190085892A (ko) * 2019-07-01 2019-07-19 엘지전자 주식회사 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
KR20200083813A (ko) * 2018-12-28 2020-07-09 삼성디스플레이 주식회사 표시 장치
KR20200104451A (ko) * 2019-02-26 2020-09-04 삼성디스플레이 주식회사 표시장치
KR20210031586A (ko) * 2019-09-11 2021-03-22 삼성디스플레이 주식회사 표시 장치
KR20210149666A (ko) * 2018-06-29 2021-12-09 삼성디스플레이 주식회사 표시장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210149666A (ko) * 2018-06-29 2021-12-09 삼성디스플레이 주식회사 표시장치
KR20200083813A (ko) * 2018-12-28 2020-07-09 삼성디스플레이 주식회사 표시 장치
KR20200104451A (ko) * 2019-02-26 2020-09-04 삼성디스플레이 주식회사 표시장치
KR20190085892A (ko) * 2019-07-01 2019-07-19 엘지전자 주식회사 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
KR20210031586A (ko) * 2019-09-11 2021-03-22 삼성디스플레이 주식회사 표시 장치

Similar Documents

Publication Publication Date Title
WO2015060506A1 (en) Display device using semiconductor light emitting device
WO2019151550A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치 및 이의 제조방법
WO2020166777A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조 방법
WO2020179989A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치
WO2020009279A1 (ko) 디스플레이 장치 및 그 구동 방법
WO2023157987A1 (ko) 디스플레이 장치의 제조 장치
WO2023153532A1 (ko) 디스플레이 장치
WO2022004926A1 (ko) 마이크로 led를 이용한 디스플레이 장치
WO2023027217A1 (ko) 디스플레이 장치
WO2022045379A1 (ko) 디스플레이 장치
WO2023027214A1 (ko) 디스플레이 장치
WO2024075876A1 (ko) 디스플레이 장치
WO2022149735A1 (ko) 반도체 발광 소자 패키지 및 디스플레이 장치
WO2024143569A1 (ko) 백플레인 기판 및 디스플레이 장치
WO2023033212A1 (ko) 디스플레이 장치
WO2023167350A1 (ko) 반도체 발광 소자 및 디스플레이 장치
WO2020122695A2 (ko) 반도체 발광소자를 이용한 디스플레이 장치 및 이의 제조방법
WO2023042926A1 (ko) 반도체 발광 소자 및 디스플레이 장치
WO2023054764A1 (ko) 디스플레이 장치
WO2023158094A1 (ko) 발광 소자 패키지 및 디스플레이 장치
WO2023085473A1 (ko) 디스플레이 장치
WO2024034697A1 (ko) 반도체 발광 소자 및 디스플레이 장치
WO2023063457A1 (ko) 반도체 발광 소자 및 디스플레이 장치
WO2024024998A1 (ko) 디스플레이 장치
WO2022102794A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926131

Country of ref document: EP

Kind code of ref document: A1