WO2020009279A1 - 디스플레이 장치 및 그 구동 방법 - Google Patents

디스플레이 장치 및 그 구동 방법 Download PDF

Info

Publication number
WO2020009279A1
WO2020009279A1 PCT/KR2018/012317 KR2018012317W WO2020009279A1 WO 2020009279 A1 WO2020009279 A1 WO 2020009279A1 KR 2018012317 W KR2018012317 W KR 2018012317W WO 2020009279 A1 WO2020009279 A1 WO 2020009279A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
semiconductor light
current
emitting devices
driving
Prior art date
Application number
PCT/KR2018/012317
Other languages
English (en)
French (fr)
Inventor
김성환
박성진
권오경
Original Assignee
엘지전자 주식회사
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사, 한양대학교 산학협력단 filed Critical 엘지전자 주식회사
Priority to US17/258,069 priority Critical patent/US11289016B2/en
Publication of WO2020009279A1 publication Critical patent/WO2020009279A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/03Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes specially adapted for displays having non-planar surfaces, e.g. curved displays
    • G09G3/035Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes specially adapted for displays having non-planar surfaces, e.g. curved displays for flexible display surfaces
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2014Display of intermediate tones by modulation of the duration of a single pulse during which the logic level remains constant
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2230/00Details of flat display driving waveforms
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/043Compensation electrodes or other additional electrodes in matrix displays related to distortions or compensation signals, e.g. for modifying TFT threshold voltage in column driver
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0267Details of drivers for scan electrodes, other than drivers for liquid crystal, plasma or OLED displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/027Details of drivers for data electrodes, the drivers handling digital grey scale data, e.g. use of D/A converters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0272Details of drivers for data electrodes, the drivers communicating data to the pixels by means of a current
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/029Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/028Generation of voltages supplied to electrode drivers in a matrix display other than LCD
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2354/00Aspects of interface with display user
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2380/00Specific applications
    • G09G2380/02Flexible displays

Definitions

  • the present invention relates to a display device and a driving method thereof.
  • LCD Liguid Crystal Display
  • AMOLED Active Matrix Organic Light Emitting Diodes
  • LED Light Emitting Diode
  • LED is a well-known semiconductor light emitting device that converts current into light.
  • red LEDs using GaAsP compound semiconductors were commercialized. It has been used as a light source for display images of electronic devices including communication devices. Therefore, a method of solving the above problems by implementing a flexible display using the semiconductor light emitting device can be presented.
  • the general touch screen driving is driven by dividing the display driving time and the touch driving time.
  • the touch circuit is not driven because the display panel noise is induced by the touch sensor and thus the probability of failure in touch recognition is high.
  • the touch driving time the display driving is not performed to recognize the touch.
  • the emission time in the unit frame is reduced and the display maximum luminance is reduced.
  • the display apparatus requires a saw tooth wave signal by driving a digital panel based on analog pulse width modulation (PWM), and an analog comparator in a micro integrated furnace for driving pixels. Since the size of the micro integrated circuit has been increased.
  • PWM pulse width modulation
  • DAC digital to analog converter
  • PWM pulse width modulation
  • An object of the present invention is to provide a display device and a method of driving the same, which compensate for a current deviation between a plurality of semiconductor light emitting diodes (LEDs) applied to a subpixel in a display panel driven by digital PWM (pulse width modulation). There is.
  • LEDs semiconductor light emitting diodes
  • Another object of the present invention is to provide a display apparatus and a method of driving the same, which compensate for a current deviation between a current flowing through a semiconductor light emitting element applied to a subpixel in a display panel driven by a digital PWM method and a reference current.
  • the display device based on the plurality of semiconductor light emitting device and the digital pulse width modulation (PWM) signal applied to the sub-pixels included in the pixel of the display panel
  • a driving unit driving a plurality of semiconductor light emitting devices, wherein the driving unit is configured to sense a current value flowing through at least one of the plurality of semiconductor light emitting devices, and the plurality of semiconductor light emitting devices based on the current value sensed by the sensing unit.
  • a display device further comprises a current compensator for compensating for current variation between semiconductor light emitting devices.
  • the driving unit is connected to each of the plurality of semiconductor light emitting device, and includes a switching unit for switching a plurality of semiconductor light emitting device according to the digital PWM signal, the current compensation unit between the switching unit and the ground And a compensator configured to compensate for a current deviation between the plurality of semiconductor light emitting devices.
  • the present invention may further include an operational amplifier configured to apply a difference between a voltage applied to the plurality of semiconductor light emitting devices and a set voltage to the driving unit, wherein the current compensator is configured to the current value sensed by the current sensing unit.
  • the apparatus may further include a variable reference generator configured to change the set voltage.
  • the current sensing unit may be connected to the subpixel and the variable reference generator, and may transfer a current equal to a current flowing in at least one of the semiconductor light emitting devices applied to the subpixel to the variable reference generator.
  • variable reference generator may change the set voltage according to a deviation between a current flowing through at least one of the semiconductor light emitting devices applied to the subpixel and a reference current.
  • the variable reference generator may increase the set voltage when the current flowing in at least one of the semiconductor light emitting devices applied to the subpixel is smaller than the reference current, and at least one of the semiconductor light emitting devices applied to the subpixel. When the current flowing in is greater than the reference current, the set voltage can be reduced.
  • the compensator may include a first resistor connected in series to a first switching part for switching a first semiconductor light emitting device among the plurality of semiconductor light emitting devices, and a point between the first switching part and the first resistor; A second resistor electrically connected between an input terminal of the operational amplifier, a third resistor connected in series to a second switching unit for switching a second semiconductor light emitting device among the plurality of semiconductor light emitting devices, and the second switching part; A fourth resistor may be electrically connected between a point between the third resistor and an input terminal of the operational amplifier.
  • the driver may include a PWM generator for generating the digital PWM signal.
  • the current compensator may compensate for the current deviation and determine a value of current flowing through the plurality of semiconductor light emitting devices.
  • the driving unit may be a micro integrated circuit
  • the micro integrated circuit may drive a plurality of pixels
  • each of the plurality of pixels may include a plurality of sub pixels.
  • the driving apparatus of the LED display according to the embodiments of the present invention can improve the image quality of the display by compensating for the current deviation between the plurality of semiconductor light emitting elements applied to the subpixels in the display panel.
  • the driving apparatus of the LED display according to the embodiments of the present invention may further improve the image quality of the display by compensating for the current deviation between the current flowing through the semiconductor light emitting element applied to the subpixel in the display panel and the reference current.
  • the driving apparatus of the LED display by driving the digital panel in a digital PWM method, using the serial digital data as it is, backplane (Oxide and LTPS (Low temperature poly Silicon, etc.) substrate) There is no need to compensate for the driving thin film transistor (TFT) which was necessary in the process, and the power supply voltage ELVDD for driving the pixel may be lowered.
  • backplane Oxide and LTPS (Low temperature poly Silicon, etc.) substrate
  • the driving device of the LED display by driving the digital panel in a digital PWM method, using the serial digital data as it is, it is possible to input data at a low voltage.
  • silicon-based transistors having high mobility can be used, and power consumption when data is applied can be reduced.
  • the driving apparatus of the LED display according to embodiments of the present invention does not require a digital to analog converter (DAC) for converting digital data into analog data in a data driver.
  • DAC digital to analog converter
  • the driving apparatus of the LED display according to the exemplary embodiments of the present invention does not require a digital to analog converter (DAC) in the data driver, thereby reducing the size of the data driver.
  • DAC digital to analog converter
  • the driving apparatus of the LED display according to the embodiments of the present invention can secure a wide current range and can be applied to a tiling display.
  • FIG. 1 is a conceptual diagram illustrating an embodiment of a display device using the semiconductor light emitting device of the present invention.
  • FIG. 2 is an enlarged view of a portion A of FIG. 1, and FIGS. 3A and 3B are cross-sectional views taken along the lines B-B and C-C of FIG. 2.
  • FIG. 4 is a conceptual diagram illustrating the flip chip type semiconductor light emitting device of FIG. 3A.
  • 5A through 5C are conceptual views illustrating various forms of implementing colors in connection with a flip chip type semiconductor light emitting device.
  • FIG. 6 is a cross-sectional view illustrating a method of manufacturing a display device using the semiconductor light emitting device of the present invention.
  • FIG. 7 is a perspective view showing another embodiment of a display device using the semiconductor light emitting device of the invention.
  • FIG. 8 is a cross-sectional view taken along the line C-C of FIG. 7.
  • FIG. 9 is a conceptual diagram illustrating the vertical semiconductor light emitting device of FIG. 8.
  • FIG. 10 is a diagram illustrating a display apparatus using a semiconductor light emitting diode (LED) according to an exemplary embodiment of the present invention.
  • LED semiconductor light emitting diode
  • FIG. 11 is a configuration diagram illustrating a driving device of an LED display using a driving unit (eg, micro-IC) for driving digital pulse width modulation (PWM) according to an embodiment of the present invention.
  • a driving unit eg, micro-IC
  • PWM digital pulse width modulation
  • FIG. 12 is a block diagram illustrating a driving device of an LED display using a driving unit (eg, micro-IC) for driving digital pulse width modulation (PWM) according to another embodiment of the present invention.
  • a driving unit eg, micro-IC
  • PWM digital pulse width modulation
  • FIG. 13 is an exemplary view schematically illustrating a manufacturing method for a driving device of a light emitting diode (LED) display of FIG. 11.
  • LED light emitting diode
  • FIG. 14 is an exemplary view schematically illustrating a manufacturing method for a driving device of a light emitting diode (LED) display of FIG. 12.
  • LED light emitting diode
  • 15 and 16 are diagrams illustrating a driving device of an LED display compensating for current flowing in a plurality of light emitting devices (LEDs) applied to subpixels included in a display panel according to another exemplary embodiment of the present invention.
  • LEDs light emitting devices
  • FIG. 17 is a block diagram illustrating a driving device of an LED display compensating for a current deviation between a plurality of light emitting devices (LEDs) applied to subpixels included in a display panel according to another exemplary embodiment of the present invention.
  • LEDs light emitting devices
  • 18A to 18C are configuration diagrams illustrating a driving device of an LED display having an average value of different R SETs .
  • V ASET according to a current flowing in a sub-pixel A graph showing a change in value.
  • 20 is a timing chart illustrating an embodiment of performing current compensation for each line.
  • FIG. 21 is an exemplary view illustrating an operation of a compensator for compensating a current deviation between a plurality of light emitting devices (LEDs) applied to subpixels included in a display panel according to another exemplary embodiment of the present invention.
  • LEDs light emitting devices
  • the display device described herein includes a mobile phone, a smart phone, a laptop computer, a digital broadcasting terminal, a personal digital assistant (PDA), a portable multimedia player (PMP), navigation, and a slate PC. , Tablet PC, Ultra Book, digital TV, desktop computer.
  • PDA personal digital assistant
  • PMP portable multimedia player
  • slate PC slate PC
  • Tablet PC Ultra Book
  • digital TV desktop computer
  • FIG. 1 is a conceptual diagram illustrating an embodiment of a display device using the semiconductor light emitting device of the present invention.
  • the information processed by the controller of the display apparatus 100 may be displayed using a flexible display.
  • the flexible display includes a display that can be bent, bent, twisted, foldable, or rollable by external force.
  • a flexible display can be a display fabricated on a thin, flexible substrate that can be bent, bent, folded, or rolled like a paper while maintaining the display characteristics of a conventional flat panel display.
  • the display area of the flexible display becomes flat.
  • the display area may be a curved surface in a state in which the first state is bent by an external force (for example, a state having a finite radius of curvature, hereinafter referred to as a second state).
  • the information displayed in the second state may be visual information output on a curved surface.
  • Such visual information is implemented by independently controlling light emission of a sub-pixel disposed in a matrix form.
  • the unit pixel refers to a minimum unit for implementing one color formed by a combination of R (Red), G (Green), and B (Blue).
  • the unit pixel of the flexible display may be implemented by a semiconductor light emitting device.
  • a light emitting diode LED
  • the light emitting diode is formed to have a small size, thereby enabling it to serve as a unit pixel even in the second state.
  • FIG. 2 is an enlarged view of a portion A of FIG. 1
  • FIGS. 3A to 3B are cross-sectional views taken along the line BB of FIG. 2
  • FIG. 4 is a conceptual view illustrating the flip chip type semiconductor light emitting device of FIG. 3
  • FIG. 5A. 5C are conceptual views illustrating various forms of implementing colors in connection with a flip chip type semiconductor light emitting device.
  • a display device 100 using a passive matrix (PM) type semiconductor light emitting device is illustrated as a display device 100 using a semiconductor light emitting device.
  • PM passive matrix
  • AM active matrix
  • the display apparatus 100 includes a substrate 110, a first electrode 120, a conductive adhesive layer 130, a second electrode 140, and a plurality of semiconductor light emitting devices 150.
  • the substrate 110 may be a flexible substrate.
  • the substrate 110 may include glass or polyimide (PI).
  • PI polyimide
  • any material such as polyethylene naphthalate (PEN) or polyethylene terephthalate (PET) may be used as long as it is an insulating and flexible material.
  • the substrate 110 may be either a transparent material or an opaque material.
  • the substrate 110 may be a wiring board on which the first electrode 120 is disposed, and thus the first electrode 120 may be positioned on the substrate 110.
  • the insulating layer 160 may be disposed on the substrate 110 on which the first electrode 120 is disposed, and the auxiliary electrode 170 may be positioned on the insulating layer 160.
  • a state in which the insulating layer 160 is stacked on the substrate 110 may be one wiring board.
  • the insulating layer 160 is made of an insulating and flexible material such as polyimide (PI, Polyimide), PET, and PEN, and can be formed integrally with the substrate 110 to form one substrate.
  • the auxiliary electrode 170 is an electrode that electrically connects the first electrode 120 and the semiconductor light emitting device 150.
  • the auxiliary electrode 170 is disposed on the insulating layer 160 and disposed to correspond to the position of the first electrode 120.
  • the auxiliary electrode 170 may have a dot shape and may be electrically connected to the first electrode 120 by an electrode hole 171 passing through the insulating layer 160.
  • the electrode hole 171 may be formed by filling a via material with a conductive material.
  • the conductive adhesive layer 130 is formed on one surface of the insulating layer 160, but the present invention is not necessarily limited thereto.
  • a layer is formed between the insulating layer 160 and the conductive adhesive layer 130 or a structure in which the conductive adhesive layer 130 is disposed on the substrate 110 without the insulating layer 160. It is also possible.
  • the conductive adhesive layer 130 may serve as an insulating layer.
  • the conductive adhesive layer 130 may be a layer having adhesiveness and conductivity.
  • the conductive adhesive layer 130 may be mixed with a conductive material and an adhesive material.
  • the conductive adhesive layer 130 is flexible, thereby enabling a flexible function in the display device.
  • the conductive adhesive layer 130 may be an anisotropic conductive film (ACF), an anisotropic conductive paste, a solution containing conductive particles, or the like.
  • ACF anisotropic conductive film
  • the conductive adhesive layer 130 allows electrical interconnection in the Z direction through the thickness, but may be configured as a layer having electrical insulation in the horizontal X-Y direction. Therefore, the conductive adhesive layer 130 may be referred to as a Z-axis conductive layer (however, hereinafter referred to as a 'conductive adhesive layer').
  • the anisotropic conductive film is a film in which an anisotropic conductive medium is mixed with an insulating base member. When the heat and pressure are applied, only the specific portion is conductive by the anisotropic conductive medium.
  • the heat and pressure is applied to the anisotropic conductive film, other methods are possible in order for the anisotropic conductive film to be partially conductive. Such a method can be, for example, only one of the heat and pressure applied or UV curing or the like.
  • the anisotropic conductive medium may be, for example, conductive balls or conductive particles.
  • the anisotropic conductive film in this example is a film in which the conductive ball is mixed with the insulating base member, and only a specific portion of the conductive ball is conductive when heat and pressure are applied.
  • the anisotropic conductive film may be in a state in which a core of a conductive material contains a plurality of particles covered by an insulating film made of a polymer material, and in this case, a portion subjected to heat and pressure becomes conductive by the core as the insulating film is destroyed. .
  • the shape of the core may be deformed to form a layer in contact with each other in the thickness direction of the film.
  • heat and pressure are applied to the anisotropic conductive film as a whole, and the electrical connection in the Z-axis direction is partially formed by the height difference of the counterpart bonded by the anisotropic conductive film.
  • the anisotropic conductive film may be in a state containing a plurality of particles coated with a conductive material on the insulating core.
  • the portion to which the heat and pressure are applied is deformed (pressed) to have conductivity in the thickness direction of the film.
  • the conductive material may penetrate the insulating base member in the Z-axis direction and have conductivity in the thickness direction of the film. In this case, the conductive material may have a pointed end.
  • the anisotropic conductive film may be a fixed array anisotropic conductive film (fixed array ACF) consisting of a conductive ball inserted into one surface of the insulating base member.
  • the insulating base member is formed of an adhesive material, and the conductive ball is concentrated on the bottom portion of the insulating base member, and deforms with the conductive ball when heat and pressure are applied to the base member. Therefore, it has conductivity in the vertical direction.
  • the present invention is not necessarily limited thereto, and the anisotropic conductive film has a form in which conductive balls are randomly mixed in an insulating base member or a plurality of layers, in which a conductive ball is disposed in one layer (double- ACF) etc. are all possible.
  • the anisotropic conductive paste is a combination of a paste and a conductive ball, and may be a paste in which conductive balls are mixed with an insulating and adhesive base material.
  • a solution containing conductive particles may be a solution in the form of conductive particles or nanoparticles.
  • the second electrode 140 is positioned on the insulating layer 160 spaced apart from the auxiliary electrode 170. That is, the conductive adhesive layer 130 is disposed on the insulating layer 160 on which the auxiliary electrode 170 and the second electrode 140 are located.
  • the semiconductor light emitting device 150 is connected in a flip chip form by applying heat and pressure. In this case, the semiconductor light emitting device 150 is electrically connected to the first electrode 120 and the second electrode 140.
  • the semiconductor light emitting device may be a flip chip type light emitting device.
  • the semiconductor light emitting device may include a p-type electrode 156, a p-type semiconductor layer 155 on which the p-type electrode 156 is formed, an active layer 154 formed on the p-type semiconductor layer 155, and an active layer ( The n-type semiconductor layer 153 formed on the 154 and the n-type electrode 152 disposed horizontally spaced apart from the p-type electrode 156 on the n-type semiconductor layer 153.
  • the p-type electrode 156 may be electrically connected to the auxiliary electrode 170 by the conductive adhesive layer 130, and the n-type electrode 152 may be electrically connected to the second electrode 140.
  • the auxiliary electrode 170 is formed to be long in one direction, and one auxiliary electrode may be electrically connected to the plurality of semiconductor light emitting devices 150.
  • the p-type electrodes of the left and right semiconductor light emitting devices around the auxiliary electrode may be electrically connected to one auxiliary electrode.
  • the semiconductor light emitting device 150 is press-fitted into the conductive adhesive layer 130 by heat and pressure, and thus, between the p-type electrode 156 and the auxiliary electrode 170 of the semiconductor light emitting device 150. Only the portion and the portion between the n-type electrode 152 and the second electrode 140 of the semiconductor light emitting device 150 have conductivity, and the rest of the semiconductor light emitting device does not have a press-fitted conductivity. As such, the conductive adhesive layer 130 not only couples the semiconductor light emitting device 150 and the auxiliary electrode 170 and between the semiconductor light emitting device 150 and the second electrode 140 but also forms an electrical connection.
  • the plurality of semiconductor light emitting devices 150 constitute an array of light emitting devices, and a phosphor layer 180 is formed on the light emitting device array.
  • the light emitting device array may include a plurality of semiconductor light emitting devices having different luminance values. Each semiconductor light emitting device 150 is combined (or grouped) to form a unit pixel, and is electrically connected to the first electrode 120. For example, a plurality of first electrodes 120 may be provided, the semiconductor light emitting devices may be arranged in several rows, and the semiconductor light emitting devices may be electrically connected to any one of the plurality of first electrodes.
  • semiconductor light emitting devices are connected in a flip chip form, semiconductor light emitting devices grown on a transparent dielectric substrate may be used.
  • the semiconductor light emitting devices may be, for example, nitride semiconductor light emitting devices. Since the semiconductor light emitting device 150 has excellent brightness, individual unit pixels may be configured with a small size.
  • the partition wall 190 may be formed between the semiconductor light emitting devices 150.
  • the partition wall 190 may serve to separate the semiconductor light emitting devices from each other, and may be integrally formed with the conductive adhesive layer 130.
  • the base member of the anisotropic conductive film may form the partition wall.
  • the partition 190 may have reflective properties and contrast may be increased.
  • a reflective partition may be separately provided as the partition 190.
  • the partition 190 may include a black or white insulator according to the purpose of the display device.
  • the partition wall of the white insulator is used, the reflectivity may be improved, and when the partition wall of the black insulator is used, the contrast may be increased at the same time.
  • the phosphor layer 180 may be located on the outer surface of the semiconductor light emitting device 150.
  • the semiconductor light emitting device 150 is a blue semiconductor light emitting device that generates blue (B) light
  • the phosphor layer 180 performs a function of converting the blue (B) light into the color of a unit pixel.
  • the phosphor layer 180 may be a red phosphor 181 or a green phosphor 182 constituting individual pixels.
  • a red phosphor 181 capable of converting blue light into red (R) light may be stacked on the blue semiconductor light emitting element 151 at a position forming a red unit pixel, and a position forming a green unit pixel.
  • a green phosphor 182 capable of converting blue light into green (G) light may be stacked on the blue semiconductor light emitting device 151.
  • only the blue semiconductor light emitting device 151 may be used alone in a portion of the blue unit pixel.
  • the unit pixels of red (R), green (G), and blue (B) may form one pixel. More specifically, phosphors of one color may be stacked along each line of the first electrode 120. Therefore, one line in the first electrode 120 may be an electrode for controlling one color. That is, red (R), green (G), and blue (B) may be sequentially disposed along the second electrode 140, and thus, a unit pixel may be implemented.
  • the present invention is not necessarily limited thereto, and instead of the phosphor, a unit pixel that emits red (R), green (G), and blue (B) by combining the semiconductor light emitting device 150 and the quantum dot (QD) Can be implemented.
  • a black matrix 191 may be disposed between the respective phosphor layers in order to improve contrast. That is, the black matrix 191 may improve contrast of the contrast.
  • the present invention is not necessarily limited thereto, and other structures for implementing blue, red, and green may be applied.
  • each semiconductor light emitting device 150 is mainly made of gallium nitride (GaN), and indium (In) and / or aluminum (Al) is added together to emit light of various colors including blue. It can be implemented as an element.
  • the semiconductor light emitting devices 150 may be red, green, and blue semiconductor light emitting devices, respectively, to form a sub-pixel.
  • the red, green, and blue semiconductor light emitting devices R, G, and B are alternately disposed, and the red, green, and blue unit pixels are arranged by the red, green, and blue semiconductor light emitting devices. These pixels constitute one pixel, and thus, a full color display may be implemented.
  • the semiconductor light emitting device may include a white light emitting device W having a yellow phosphor layer for each individual device.
  • a red phosphor layer 181, a green phosphor layer 182, and a blue phosphor layer 183 may be provided on the white light emitting device W.
  • a unit pixel may be formed by using a color filter in which red, green, and blue are repeated on the white light emitting device W.
  • the red phosphor layer 181, the green phosphor layer 182, and the blue phosphor layer 183 may be provided on the ultraviolet light emitting device UV.
  • the semiconductor light emitting device can be used not only for visible light but also for ultraviolet light (UV) in all areas, and can be extended in the form of a semiconductor light emitting device in which ultraviolet light (UV) can be used as an excitation source of the upper phosphor. .
  • the semiconductor light emitting device 150 is positioned on the conductive adhesive layer 130 to constitute a unit pixel in the display device. Since the semiconductor light emitting device 150 has excellent brightness, individual unit pixels may be configured with a small size.
  • the size of the individual semiconductor light emitting device 150 may be 80 ⁇ m or less in length of one side, and may be a rectangular or square device. In the case of a rectangle, the size may be 20 ⁇ 80 ⁇ m or less.
  • the display device using the semiconductor light emitting device described above may be manufactured by a new type of manufacturing method. Hereinafter, the manufacturing method will be described with reference to FIG. 6.
  • FIG. 6 is a cross-sectional view illustrating a method of manufacturing a display device using the semiconductor light emitting device of the present invention.
  • the conductive adhesive layer 130 is formed on the insulating layer 160 on which the auxiliary electrode 170 and the second electrode 140 are located.
  • the insulating layer 160 is stacked on the first substrate 110 to form a single substrate (or a wiring substrate), and the first electrode 120, the auxiliary electrode 170, and the second electrode 140 are formed on the wiring substrate. Is placed.
  • the first electrode 120 and the second electrode 140 may be disposed in a direction perpendicular to each other.
  • the first substrate 110 and the insulating layer 160 may each include glass or polyimide (PI).
  • the conductive adhesive layer 130 may be implemented by, for example, an anisotropic conductive film.
  • an anisotropic conductive film may be applied to a substrate on which the insulating layer 160 is located.
  • the semiconductor light emitting device 150 may include a second substrate 112 corresponding to the positions of the auxiliary electrodes 170 and the second electrodes 140 and on which the plurality of semiconductor light emitting devices 150 constituting individual pixels are located. ) Is disposed to face the auxiliary electrode 170 and the second electrode 140.
  • the second substrate 112 may be a growth substrate for growing the semiconductor light emitting device 150, and may be a sapphire substrate or a silicon substrate.
  • the semiconductor light emitting device When the semiconductor light emitting device is formed in a wafer unit, the semiconductor light emitting device may be effectively used in the display device by having a gap and a size capable of forming the display device.
  • the wiring board and the second board 112 are thermocompressed.
  • the wiring board and the second substrate 112 may be thermocompressed by applying an ACF press head.
  • the thermocompression bonding the wiring substrate and the second substrate 112 are bonded. Only a portion between the semiconductor light emitting device 150, the auxiliary electrode 170, and the second electrode 140 has conductivity due to the property of the conductive anisotropic conductive film by thermocompression bonding.
  • the device 150 may be electrically connected.
  • the semiconductor light emitting device 150 is inserted into the anisotropic conductive film, through which a partition wall may be formed between the semiconductor light emitting device 150.
  • the second substrate 112 is removed.
  • the second substrate 112 may be removed using a laser lift-off (LLO) or chemical lift-off (CLO).
  • LLO laser lift-off
  • CLO chemical lift-off
  • a transparent insulating layer (not shown) may be formed by coating silicon oxide (SiOx) on the wiring board to which the semiconductor light emitting device 150 is coupled.
  • the method may further include forming a phosphor layer on one surface of the semiconductor light emitting device 150.
  • the semiconductor light emitting device 150 is a blue semiconductor light emitting device that generates blue (B) light, and a red phosphor or a green phosphor for converting the blue (B) light into the color of a unit pixel emits the blue semiconductor light.
  • a layer may be formed on one surface of the device.
  • the manufacturing method or structure of the display device using the semiconductor light emitting device described above may be modified in various forms.
  • a vertical semiconductor light emitting device may also be applied to the display device described above.
  • a vertical structure will be described with reference to FIGS. 5 and 6.
  • FIG. 7 is a perspective view showing another embodiment of a display device using the semiconductor light emitting device of the present invention
  • FIG. 8 is a cross-sectional view taken along the line CC of FIG. 7
  • FIG. 9 is a vertical semiconductor light emitting device of FIG. Conceptual diagram.
  • the display device may be a display device using a passive semiconductor light emitting device of a passive matrix (PM) type.
  • PM passive matrix
  • the display device includes a substrate 210, a first electrode 220, a conductive adhesive layer 230, a second electrode 240, and a plurality of semiconductor light emitting devices 250.
  • the substrate 210 is a wiring substrate on which the first electrode 220 is disposed, and may include polyimide (PI) in order to implement a flexible display device.
  • PI polyimide
  • any material that is insulating and flexible may be used.
  • the first electrode 220 is positioned on the substrate 210 and may be formed as an electrode having a bar shape that is long in one direction.
  • the first electrode 220 may be formed to serve as a data electrode.
  • the conductive adhesive layer 230 is formed on the substrate 210 on which the first electrode 220 is located. Like a display device to which a flip chip type light emitting device is applied, the conductive adhesive layer 230 is a solution containing an anisotropic conductive film (ACF), anisotropic conductive paste, and conductive particles. ), Etc. However, this embodiment also illustrates a case where the conductive adhesive layer 230 is implemented by the anisotropic conductive film.
  • ACF anisotropic conductive film
  • Etc Etc
  • the semiconductor light emitting device 250 After placing the anisotropic conductive film in a state where the first electrode 220 is positioned on the substrate 210, the semiconductor light emitting device 250 is connected to the semiconductor light emitting device 250 by applying heat and pressure. It is electrically connected to the electrode 220. In this case, the semiconductor light emitting device 250 may be disposed on the first electrode 220.
  • the electrical connection is created because, as described above, in the anisotropic conductive film is partially conductive in the thickness direction when heat and pressure are applied. Therefore, in the anisotropic conductive film is divided into a portion 231 having conductivity and a portion 232 having no conductivity in the thickness direction.
  • the conductive adhesive layer 230 implements not only electrical connection but also mechanical coupling between the semiconductor light emitting device 250 and the first electrode 220.
  • the semiconductor light emitting device 250 is positioned on the conductive adhesive layer 230, thereby forming individual pixels in the display device. Since the semiconductor light emitting device 250 has excellent brightness, individual unit pixels may be configured with a small size.
  • the size of the individual semiconductor light emitting device 250 may be 80 ⁇ m or less in length of one side, and may be a rectangular or square device. In the case of a rectangle, the size may be 20 ⁇ 80 ⁇ m or less.
  • the semiconductor light emitting device 250 may have a vertical structure.
  • a plurality of second electrodes 240 disposed in a direction crossing the length direction of the first electrode 220 and electrically connected to the vertical semiconductor light emitting device 250 are positioned.
  • the vertical semiconductor light emitting device includes a p-type electrode 256, a p-type semiconductor layer 255 formed on the p-type electrode 256, and an active layer 254 formed on the p-type semiconductor layer 255. ), An n-type semiconductor layer 253 formed on the active layer 254, and an n-type electrode 252 formed on the n-type semiconductor layer 253.
  • the lower p-type electrode 256 may be electrically connected by the first electrode 220 and the conductive adhesive layer 230, and the upper n-type electrode 252 may be the second electrode 240 described later.
  • a phosphor layer 280 may be formed on one surface of the semiconductor light emitting device 250.
  • the semiconductor light emitting device 250 is a blue semiconductor light emitting device 251 for generating blue (B) light
  • the phosphor layer 280 for converting the blue (B) light into the color of a unit pixel is provided.
  • the phosphor layer 280 may be a red phosphor 281 and a green phosphor 282 constituting individual pixels.
  • a red phosphor 281 capable of converting the blue light into the red (R) light may be stacked on the blue semiconductor light emitting element 251, and the position forming the green unit pixel.
  • a green phosphor 282 capable of converting blue light into green (G) light may be stacked on the blue semiconductor light emitting device 251.
  • only the blue semiconductor light emitting device 251 may be used alone in a portion of the blue unit pixel. In this case, the unit pixels of red (R), green (G), and blue (B) may form one pixel.
  • the present invention is not necessarily limited thereto, and as described above in the display device to which the flip chip type light emitting device is applied, other structures for implementing blue, red, and green may be applied.
  • the second electrode 240 is positioned between the semiconductor light emitting devices 250 and is electrically connected to the semiconductor light emitting devices 250.
  • the semiconductor light emitting devices 250 may be arranged in a plurality of columns, and the second electrode 240 may be positioned between the columns of the semiconductor light emitting devices 250.
  • the second electrode 240 may be positioned between the semiconductor light emitting devices 250.
  • the second electrode 240 may be formed as an electrode having a bar shape that is long in one direction, and may be disposed in a direction perpendicular to the first electrode.
  • the second electrode 240 and the semiconductor light emitting device 250 may be electrically connected by a connection electrode protruding from the second electrode 240.
  • the connection electrode may be an n-type electrode of the semiconductor light emitting device 250.
  • the n-type electrode is formed of an ohmic electrode for ohmic contact, and the second electrode covers at least a portion of the ohmic electrode by printing or deposition.
  • the second electrode 240 and the n-type electrode of the semiconductor light emitting device 250 may be electrically connected to each other.
  • the second electrode 240 may be located on the conductive adhesive layer 230.
  • a transparent insulating layer (not shown) including silicon oxide (SiOx) may be formed on the substrate 210 on which the semiconductor light emitting device 250 is formed.
  • SiOx silicon oxide
  • the second electrode 240 is positioned after the transparent insulating layer is formed, the second electrode 240 is positioned on the transparent insulating layer.
  • the second electrode 240 may be formed to be spaced apart from the conductive adhesive layer 230 or the transparent insulating layer.
  • the present invention has the advantage of not having to use a transparent electrode such as ITO by placing the second electrode 240 between the semiconductor light emitting devices 250. Therefore, the light extraction efficiency can be improved by using a conductive material having good adhesion with the n-type semiconductor layer as a horizontal electrode without being limited to the selection of a transparent material.
  • a transparent electrode such as indium tin oxide (ITO)
  • the partition wall 290 may be located between the semiconductor light emitting devices 250. That is, the partition wall 290 may be disposed between the vertical semiconductor light emitting devices 250 to isolate the semiconductor light emitting devices 250 forming individual pixels. In this case, the partition wall 290 may serve to separate individual unit pixels from each other, and may be integrally formed with the conductive adhesive layer 230. For example, when the semiconductor light emitting device 250 is inserted into the anisotropic conductive film, the base member of the anisotropic conductive film may form the partition wall.
  • the partition wall 290 may have reflective properties and contrast may be increased.
  • a reflective partition may be separately provided.
  • the partition wall 290 may include a black or white insulator according to the purpose of the display device.
  • the partition wall 290 is disposed between the vertical semiconductor light emitting device 250 and the second electrode 240. It can be located in between. Accordingly, the individual unit pixels may be configured even with a small size by using the semiconductor light emitting device 250, and the distance between the semiconductor light emitting devices 250 is relatively large enough so that the second electrode 240 is connected to the semiconductor light emitting device 250. ), And a flexible display device having HD image quality can be implemented.
  • a black matrix 291 may be disposed between the respective phosphors in order to improve contrast. That is, this black matrix 291 can improve contrast of the contrast.
  • the semiconductor light emitting device 250 is positioned on the conductive adhesive layer 230, thereby forming individual pixels in the display device. Since the semiconductor light emitting device 250 has excellent brightness, individual unit pixels may be configured with a small size. Accordingly, a full color display in which the semiconductor light emitting devices of red (R), green (G), and blue (B) form a unit pixel (or pixel) may be implemented by the semiconductor light emitting device.
  • FIG. 10 is a diagram illustrating a display apparatus using a semiconductor light emitting diode (LED) to which a display panel driving apparatus according to an exemplary embodiment of the present invention is applied.
  • LED semiconductor light emitting diode
  • a display device using a semiconductor light emitting diode (LED) includes an image processor 201, a timing controller 202, a data driver 203, and a scan driver. 204 and a display panel 205 including a plurality of light emitting diodes (LEDs).
  • LEDs light emitting diodes
  • the image processor 201 receives a vertical synchronization signal, a horizontal synchronization signal, a data enable signal, a clock signal, and red, green, and blue signals RGB (hereinafter referred to as RGB) from the outside.
  • the image processor 201 converts the RGB signal RGB into red, green, blue, and white signals RGBW (hereinafter referred to as RGBW) and outputs the same to the timing controller 202.
  • the image processor 201 varies a gamma voltage to implement peak luminance according to an average image level by using an RGB signal RGB included in one frame data supplied from the outside.
  • the image processing unit 201 processes various frame data received from the outside, and a detailed description thereof is omitted since it is a known technique.
  • the timing controller 202 receives a vertical synchronization signal, a horizontal synchronization signal, a data enable signal, a clock signal, and an RGBW signal RGBW from the image processor 201.
  • the timing controller 202 controls timing of operation of the data driver 203 and the scan driver 204 using timing signals such as a vertical synchronization signal, a horizontal synchronization signal, a data enable signal, and a clock signal. Since the timing controller 202 may determine the frame period by counting the data enable signal of one horizontal period, the vertical synchronization signal and the horizontal synchronization signal supplied from the outside may be omitted.
  • the control signals generated by the timing controller 202 include a gate timing control signal GDC for controlling the operation timing of the scan driver 204 and a data timing control signal DDC for controlling the operation timing of the data driver 203. ) Is included.
  • the gate timing control signal GDC includes a gate start pulse, a gate shift clock, a gate output enable signal, and the like.
  • the data timing control signal DDC includes a source start pulse, a source sampling clock, a source output enable signal, and the like.
  • the data driver 203 samples and latches the RGBW signal RGBW supplied from the timing controller 202 in response to the data timing control signal DDC received from the timing controller 202 to convert the data into the data of the parallel data system. .
  • the data driver 203 converts the RGBW signal RGBW into analog data according to a gamma voltage when converting the data into a parallel data system. In this case, converting the digital data into analog data is performed by a digital to anlog converter (DAC) included in the data driver 203.
  • DAC digital to anlog converter
  • the data driver 203 supplies the image signal DATA converted through the data lines DL1 to DLn to the subpixels SPr, SPg, SPb, and SPw included in the display panel 205.
  • the scan driver 204 may operate transistors of the subpixels SPr, SPg, SPb, and SPw included in the display panel 205 in response to the gate timing control signal GDC supplied from the timing controller 202.
  • the scan signal is sequentially generated while the signal level is shifted by the swing width of the gate driving voltage.
  • the scan driver 204 supplies the scan signals generated through the scan lines SL1 to SLm to the subpixels SPr, SPg, SPb, and SPw included in the display panel 205.
  • the display panel 205 is formed of an organic light emitting display panel including sub pixels SPr, SPg, SPb, and SPw arranged in a matrix.
  • the subpixels SPr, SPg, SPb, and SPw include a red subpixel SPr, a green subpixel SPg, a blue subpixel SPb, and a white subpixel SPw, which are one pixel P. Becomes
  • a PM (Passive Matrix) method and an AM (Active Matrix) method are used.
  • the AM method remembers the value of each pixel until the end of one frame and the light is maintained.
  • the PM method lights up sequentially in units of lines and uses a visual afterimage (lasting about 1/10 sec.) To look like
  • a driving device of an LED display using a driving unit for example, micro-IC
  • a driving unit for example, micro-IC
  • PWM digital pulse width modulation
  • FIG. 11 is a configuration diagram illustrating a driving device of an LED display using a driving unit (eg, micro-IC) for driving digital pulse width modulation (PWM) according to an embodiment of the present invention.
  • a driving unit eg, micro-IC
  • PWM digital pulse width modulation
  • a driving apparatus of an LED display using a driving unit for example, micro-IC
  • a driving unit for example, micro-IC
  • digital PWM pulse width modulation
  • a driving unit 1103 for driving in a digital pulse width modulation (PWM) scheme and driving a plurality of light emitting elements (LEDs) 1104 based on the serial digital data and the driving signal.
  • PWM digital pulse width modulation
  • the driver 1103 is a micro-IC and includes a pulse width modulation (PWM) generator.
  • PWM pulse width modulation
  • the data driver 1101 applies luminance information (serial digital data) of the plurality of light emitting devices (LEDs) 1104 to the plurality of light emitting devices (LEDs) 1104 through the driver 1103.
  • luminance information serial digital data
  • the gate driver 1102 controls the current magnitude of the micro-IC, selects an input order of data, and counts emission times of the plurality of light emitting devices (LEDs) 1104.
  • the data driver 1101 is a digital to analog converter (DAC) for converting digital data into analog data by applying serial digital data to the plurality of light emitting devices (LEDs) 1104 through the driver 1103 as it is. ) Is unnecessary.
  • DAC digital to analog converter
  • a micro-IC 1103 transmits serial digital data to a plurality of light emitting devices (LEDs) 1104 in digital manner, and digital data thereof. Since a digital comparator using data as it is is used, the size of the micro-IC 1103 can be made smaller than a circuit using analog data.
  • LEDs light emitting devices
  • the data driver 1101 can transfer digital data to a plurality of light emitting devices (LEDs) 1104 as it is, so that a circuit using the analog data of the integrated circuit size of the data driver 1101 is provided. It can be made smaller.
  • LEDs light emitting devices
  • the driving device of the LED display using a driving unit for example, micro-IC
  • a driving unit for example, micro-IC
  • PWM pulse width modulation
  • TFT thin film transistor
  • Low power consumption due to low power supply voltage to the pixel, and high degree of freedom of metal process makes parasitic resistance (R) and capacitance (C) small (good for data transmission speed and power consumption Can be reduced).
  • FIG. 11 a driving device of an LED display using a driver (for example, micro-IC) for digital pulse width modulation (PWM) driving.
  • a driver for example, micro-IC
  • PWM digital pulse width modulation
  • FIG. 12 is a block diagram illustrating a driving device of an LED display using a driving unit (for example, micro-IC) for driving digital pulse width modulation (PWM) according to another embodiment of the present invention.
  • a driving unit for example, micro-IC
  • PWM digital pulse width modulation
  • a driving apparatus of an LED display using a driving unit for example, micro-IC
  • a driving unit for example, micro-IC
  • PWM digital pulse width modulation
  • the driver 1103 is a micro-IC and includes a pulse width modulation (PWM) generator.
  • PWM pulse width modulation
  • One driver 1103 may drive subpixels (plural light emitting elements) applied to one pixel, or may drive subpixels (plural light emitting elements) applied to a plurality of pixels.
  • FIG. 13 is an exemplary view schematically illustrating a manufacturing method for a driving device of a light emitting diode (LED) display of FIG. 11.
  • LED light emitting diode
  • a driver 1103 for driving a plurality of light emitting devices (LEDs) 1104 is electrically connected to a pad (LED pad) 1104a, and is provided to the pad (LED pad) 1104a.
  • a plurality of light emitting elements (LEDs) 1104 are electrically connected.
  • the driving unit 1103 may be connected to the pad (LED pad) 1104a through metal wires (Metal 2) such as gold and silver, and may include a driving voltage (for example, driving the plurality of light emitting devices (LEDs) 1104).
  • a driving voltage for example, driving the plurality of light emitting devices (LEDs) 1104.
  • VDD, V G , V S , etc. may be connected to the driving unit 1103 through metal wires Metal 1, such as copper and aluminum.
  • the driver 1103 may include a red subpixel SPr, a green subpixel SPg, a blue subpixel SPb and a white subpixel SPw corresponding to one pixel, or a red subpixel SPr corresponding to one pixel. ) May be connected to a semiconductor light emitting device applied to each of the green subpixel SPg and the blue subpixel SPb.
  • FIG. 14 is an exemplary view schematically illustrating a manufacturing method for a driving device of a light emitting diode (LED) display of FIG. 12.
  • LED light emitting diode
  • one driving unit 1103 for driving a plurality of light emitting elements (LEDs) 1104 may include a plurality of pixels applied to a plurality of pixels (eg, four pixels) included in a display panel. It is electrically connected to pads (LED pads) 1201a to 1204a that are electrically connected to light emitting devices (LEDs) 1201 to 1204.
  • One driver 1103 may be connected to the pads (LED pads) 1201a through 1204a through metal wires such as gold and silver, and a driving voltage for driving the plurality of light emitting devices (LEDs) 1201 through 1204. (Eg, VDD, V G , V S , etc.) may be connected to one driving unit 1103 through metal wires such as copper and aluminum.
  • the driver 1103 may include a red subpixel SPr, a green subpixel SPg, a blue subpixel SPb and a white subpixel SPw corresponding to one pixel, or a red subpixel SPr corresponding to one pixel. ) May be connected to a semiconductor light emitting device applied to each of the green subpixel SPg and the blue subpixel SPb.
  • 15 and 16 are diagrams illustrating a driving device of an LED display compensating for current flowing in a plurality of light emitting devices (LEDs) applied to subpixels included in a display panel according to another exemplary embodiment of the present invention.
  • LEDs light emitting devices
  • the driving unit 1103 may be configured to detect a current deviation between the plurality of semiconductor light emitting devices based on a current sensing unit 1503 for sensing a current value flowing through at least one of the plurality of semiconductor light emitting devices, and a current value sensed by the current sensing unit. Compensating current compensation unit 1501 may be included.
  • the current sensing unit 1503 may sense a current value flowing in the entire subpixel as shown in FIG. 15, or sense a current value flowing in any one of the semiconductor light emitting devices of the subpixel as shown in FIG. 16.
  • the current sensing unit 1503 detects a current flowing in at least one or more of the semiconductor light emitting devices (LEDs) 1104 (eg, an LED applied to a red subpixel) in real time
  • the current compensator 1501 is configured such that when the sensed current value is different from the preset reference current, the preset reference current is adjusted so that the current flowing through the semiconductor light emitting devices (LEDs) 1104 is always a preset reference current.
  • the set voltage V ASET applied to the operational amplifier 1502 is adjusted to flow in any one of the semiconductor light emitting devices.
  • the operational amplifier 1502 receives a voltage applied to a plurality of light emitting elements (LEDs) 1104 and the set voltage V ASET , and a voltage applied to the plurality of light emitting elements (LEDs) 1104 and the setting.
  • the difference between the voltage V ASET is applied to the driver 1103.
  • the value of the current flowing through the semiconductor light emitting device varies according to the voltage value of the set voltage V ASET .
  • the set voltage V ASET may be input to the non-inverting input terminal (+) of the operational amplifier 1502, and a plurality of light emitting devices (LEDs) 1104 may be input to the inverting input terminal (-) of the operational amplifier 1502. The voltage across) may be input.
  • LEDs light emitting devices
  • the data driver 1101 applies luminance information of the plurality of light emitting devices (LEDs) 1104 to the plurality of light emitting devices (LEDs) 1104 through the driving unit 1103.
  • the gate driver 1102 controls a current magnitude of a micro-IC, selects an input order of data, and counts emission times of the plurality of light emitting devices (LEDs) 1104.
  • the micro-IC 1103 transmits serial digital data to the plurality of light emitting devices (LEDs) 1104 in a digital manner, and the digital data ( Since a digital comparator using digital data is used as it is, the size of the micro-IC 1103 can be made smaller than a circuit using analog data.
  • the data driver 1101 can transfer digital data to a plurality of light emitting devices (LEDs) 1104 as they are, thereby using analog data as the integrated circuit size of the data driver 1101. It can be made smaller than the circuit.
  • LEDs light emitting devices
  • the driving device of the LED display includes compensation of a driving thin film transistor (TFT), which is required in a backplane process of a semiconductor (Oxide and Low Temperature Poly Silicon (LTPS)) substrate. It is not necessary to reduce the power supply voltage ELVDD for driving the pixel Pixel.
  • TFT driving thin film transistor
  • LTPS Low Temperature Poly Silicon
  • data input is possible at a low voltage.
  • a silicon-based transistor having high mobility can be used, and power consumption when writing data can be reduced.
  • the driving apparatus of the LED display according to embodiments of the present invention does not require a digital to analog converter (DAC) for converting digital data into analog data in a data driver.
  • DAC digital to analog converter
  • the driving apparatus of the LED display according to the exemplary embodiments of the present invention does not require a digital to analog converter (DAC) in the data driver, thereby reducing the size of the data driver.
  • DAC digital to analog converter
  • the driving apparatus of the LED display according to the embodiments of the present invention can compensate for the current deviation between the current flowing through the semiconductor light emitting element applied to the subpixel in the display panel and the reference current.
  • the driving apparatus of the LED display according to the embodiments of the present invention can secure a wide current range and can be applied to a tiling display.
  • FIG. 17 is a block diagram illustrating a driving device of an LED display compensating for a current deviation between a plurality of light emitting devices (LEDs) applied to subpixels included in a display panel according to another exemplary embodiment of the present invention.
  • LEDs light emitting devices
  • the driving device of the LED display according to another embodiment of the present invention is
  • the driving unit 1103 is a PWM generation unit 1601 for generating a digital PWM signal and a switching unit connected to each of the plurality of semiconductor light emitting devices 1104 and for switching a plurality of semiconductor light emitting devices according to the digital PWM signal ( 1602, a current sensing unit 1503 sensing a current value flowing through at least one of the plurality of semiconductor light emitting devices.
  • the current compensator 1501 included in the driver 1103 is connected between the switching unit 1602 and the ground, and compensates the current deviation between the plurality of semiconductor light emitting devices 1104.
  • a variable reference generator 1604 for changing the set voltage according to the current value sensed by the current sensing unit 1503.
  • the compensator 1603 not only compensates the current deviation between the plurality of light emitting devices (LEDs), but also determines the magnitude (current value) of the current flowing through the plurality of light emitting devices (LEDs).
  • the compensator 1603 may include a first resistor R connected in series to a switching unit 1602 connected in series to each of a plurality of light emitting devices (a plurality of LEDs applied to subpixels included in one pixel).
  • SET1 a plurality of light emitting devices
  • R F1 a second resistor electrically connected between the switching unit 1602 and the first resistor R SET1 and the inverting input terminal ( ⁇ ) of the operational amplifier 1502.
  • the switching unit 1602 is connected in series to each of a plurality of light emitting elements (a plurality of LEDs applied to subpixels included in one pixel), and switches the plurality of light emitting elements (LEDs) according to a digital PWM signal.
  • a first switch; And a second switch (eg, transistor M 1 ) connected in series between the first switch and the compensator 1603, and the gate of the second switch (eg, transistor M 1 ) is an operational amplifier 1502. Is connected to the output terminal.
  • a first switch S1 for switching the first LED according to a digital PWM signal is connected in series to the first LED (for example, an LED applied to a red subpixel), and the first switch S1 is connected in series.
  • the second switch (for example, transistor M 1 ) is electrically connected between the compensation unit 1603.
  • a third switch S2 for switching the second LED according to the digital PWM signal is connected in series to the second LED (for example, the LED applied to the green subpixel), and the third switch S2 and the compensator (
  • a fourth switch (eg, transistor M 2 ) is electrically connected between the 1603.
  • a fifth switch S3 for switching the third LED according to the digital PWM signal is connected in series to the third LED (for example, the LED applied to the blue subpixel), and the fifth switch S3 and the compensator (
  • a sixth switch (eg, transistor M 3 ) is electrically connected between the 1603.
  • Compensation unit 1603, a second switch and a resistor (R SET1) connected in series (for example, transistors M 1), a second switch point between (e. G., Transistors M 1) and a resistor (R SET1) A resistor (R F1 ) electrically connected between the inverting input terminal ( ⁇ ) of the operational amplifier 1502;
  • a resistor (R F2 ) electrically connected between the inverting input terminal ( ⁇ );
  • a sixth switch e.
  • Transistors M 3 the series resistor (R SET3) connected to the sixth switch (e.g., transistor M 3) and a resistor (R SET3) between the point and the operational amplifier 1502 And a resistor (R F3 ) electrically connected between the inverting input terminals ( ⁇ ).
  • the current sensing unit 1503 is connected to the subpixel and the variable reference generator 1604 and receives the same current I SENSE as the current I LEDx flowing to at least one of the semiconductor light emitting devices applied to the subpixel. To the variable reference generator 1604.
  • Variable reference generator 1604 adjusts V ASET so that I SENSE is V REF / R SENSE .
  • V ASET is adjusted as in Equation 1 below.
  • I SENSE is V REF / R SENSE when the following condition is satisfied. Becomes smaller. In this case, the variable reference generator increases the VASET, and accordingly, the current flowing through the subpixels increases.
  • V ASET is adjusted according to an average value of R SET
  • FIGS. 18A to 18C are diagrams illustrating a driving device of an LED display having an average value of different R SET
  • FIG. 19 is a diagram illustrating V ASET according to a current flowing in a subpixel. A graph showing a change in value. 18A to 18C, V ASET is set to 216 mV.
  • the current I LED1 flowing in the sub pixel was 10.12 mA.
  • the variable reference unit 1604 becomes V ASET1.
  • the value is reduced from 216mV to 203mV to satisfy Equation 1. As a result, the current I LED1 flowing in the subpixel is reduced.
  • Equation 18B is a circuit in which R SET satisfies Equation (1).
  • the current I LED2 flowing in the sub pixel was 9.98 mA.
  • Variable reference 1604 is V ASET2 Since the value already satisfies Equation 1, the set voltage is maintained at 216 mV so that the current I LED2 flowing in the subpixel does not change.
  • Equation 18C is a circuit in which R SET satisfies Equation (3).
  • the current I LED1 flowing in the sub pixel was 9.84 mA.
  • the variable reference unit 1604 determines V ASET3. The value is increased from 216mV to 228mV to satisfy Equation 1. As a result, the current I LED3 flowing in the subpixel increases.
  • 20 is a timing chart illustrating an embodiment of performing current compensation for each line.
  • the operational amplifier 1502, the current sensing unit 1503, the compensator 1603, and the variable reference generator 1604 may be arranged for each row line of the display device. In this case, the display device corrects the current value for each row line.
  • the correction of the current value is not performed simultaneously on all lines, but may be sequentially performed line by line according to the V scan signal. For example, referring to FIG. 20, when the V SCAN1 signal is 1, the V ASET signal of the first row is generated, and when the V SCAN2 signal is 1, the V ASET signal of the second row is generated.
  • the compensator for compensating for the current deviation between the plurality of light emitting devices (LEDs) applied to the subpixels included in the display panel will be described with reference to FIG. 21.
  • FIG. 21 is an exemplary view illustrating an operation of a compensator for compensating a current deviation between a plurality of light emitting devices (LEDs) applied to subpixels included in a display panel according to another exemplary embodiment of the present invention.
  • LEDs light emitting devices
  • the offset occurs in the input voltage of the operational amplifier 1502, or a plurality of light emitting elements (LEDs) according to the resistance variation of the plurality of light emitting elements (LEDs) itself Compensates for current deviations between the operational amplifier 1502 and a plurality of light emitting elements (LEDs) according to the resistance variation of the plurality of light emitting elements (LEDs) itself Compensates for current deviations between the operational amplifier 1502 and a plurality of light emitting elements (LEDs) according to the resistance variation of the plurality of light emitting elements (LEDs) itself Compensates for current deviations between
  • a first resistor R SET1 connected in series to a first switching unit M 1 for switching a first semiconductor light emitting element among a plurality of semiconductor light emitting elements, and the first switching unit (
  • a second resistor R F1 electrically connected between a point between M 1 ) and the first resistor R SET1 and an input terminal of the operational amplifier 1502, and a second semiconductor light emitting device among the plurality of semiconductor light emitting devices.
  • a third resistor R SET2 connected in series to a second switching unit M 2 for switching an element, a point between the second switching unit M 2 and the third resistor R SET2 , and the operational amplifier Assuming there is a fourth resistor R F2 electrically connected between the input terminals of 1502,
  • the compensator increases the current I LED1 flowing through the first semiconductor light emitting device and reduces the current flowing through the current I LED2 flowing through the second semiconductor light emitting device. compensates for the deviation of the current flowing through the semiconductor light emitting device (LED1 I) and a second current (I LED2) flowing through the semiconductor light-emitting device.
  • a compensator may include a first resistor R SET1 and a fourth resistor R F2 having the same resistance value; The second resistor R F1 and the third resistor R SET2 having different resistance values to compensate for the deviation between the current I LED1 flowing in the first semiconductor light emitting device and the current I LED2 flowing in the second semiconductor light emitting device. ) May be included.
  • the driving apparatus of the LED display according to the embodiments of the present invention may improve the image quality of the display by compensating for the current deviation between the plurality of semiconductor light emitting elements applied to the subpixels in the display panel.
  • the driving apparatus of the LED display according to the embodiments of the present invention may improve the image quality of the display by compensating for the current deviation between the current flowing through the semiconductor light emitting element applied to the subpixel in the display panel and the reference current.
  • the driving apparatus of the LED display by driving the digital panel in a digital PWM method, using the serial digital data as it is, backplane (Oxide and LTPS (Low temperature poly Silicon, etc.) substrate) There is no need to compensate for the driving thin film transistor (TFT) which was necessary in the process, and the power supply voltage ELVDD for driving the pixel may be lowered.
  • backplane Oxide and LTPS (Low temperature poly Silicon, etc.) substrate
  • the driving device of the LED display by driving the digital panel in a digital PWM method, using the serial digital data as it is, it is possible to input data at a low voltage.
  • a silicon-based transistor having high mobility can be used, and power consumption when writing data can be reduced.
  • the driving apparatus of the LED display according to embodiments of the present invention does not require a digital to analog converter (DAC) for converting digital data into analog data in a data driver.
  • DAC digital to analog converter
  • the driving apparatus of the LED display according to the exemplary embodiments of the present invention does not require a digital to analog converter (DAC) in the data driver, thereby reducing the size of the data driver.
  • DAC digital to analog converter
  • the driving apparatus of the LED display according to the embodiments of the present invention can compensate for the current deviation between the current flowing through the semiconductor light emitting element applied to the subpixel in the display panel and the reference current.
  • the driving apparatus of the LED display according to the embodiments of the present invention can secure a wide current range and can be applied to a tiling display.
  • the driving apparatus of the LED display may reduce the size of the PWM generator that generates the digital PWM signal.
  • the size of the PWM generator may be reduced by removing the shift register from the existing digital PWM signal generator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은, 디스플레이 패널의 픽셀 내에 포함된 서브 픽셀들에 적용된 복수의 반도체 발광소자와, 디지털 PWM(pulse width modulation) 신호를 근거로 상기 복수의 반도체 발광소자를 구동하는 구동부를 포함하며, 상기 구동부는 상기 복수의 반도체 발광소자 중 적어도 하나에 흐르는 전류값을 센싱하는 전류 센싱부 및 상기 센싱부에서 센싱된 전류값에 근거하여 상기 복수의 반도체 발광 소자 간의 전류 편차를 보상하는 전류 보상부를 더 포함하는 것을 특징으로 하는 디스플레이 장치를 제공한다.

Description

디스플레이 장치 및 그 구동 방법
본 발명은 디스플레이 장치 및 그 구동 방법에 관한 것이다.
최근에는 디스플레이 기술분야에서 박막형, 플렉서블 등의 우수한 특성을 가지는 디스플레이 장치가 개발되고 있다. 이에 반해, 현재 상용화된 주요 디스플레이는 LCD(Liguid Crystal Display)와 AMOLED(Active Matrix Organic Light Emitting Diodes)로 대표되고 있다. 그러나, LCD의 경우에 빠르지 않은 반응 시간과, 플렉서블의 구현이 어렵다는 문제점이 존재하고, AMOLED의 경우에 수명이 짧고, 양산 수율이 좋지 않을 뿐 아니라 플렉서블의 정도가 약하다는 취약점이 존재한다.
한편, 발광 다이오드(Light Emitting Diode: LED)는 전류를 빛으로 변환시키는 잘 알려진 반도체 발광 소자로서, 1962년 GaAsP 화합물 반도체를 이용한 적색 LED가 상품화된 것을 시작으로 GaP:N 계열의 녹색 LED와 함께 정보 통신기기를 비롯한 전자장치의 표시 화상용 광원으로 이용되어 왔다. 따라서, 상기 반도체 발광 소자를 이용하여 플렉서블 디스플레이를 구현하여, 상기의 문제점을 해결하는 방안이 제시될 수 있다.
또한, 이러한 디스플레이 장치에는, 슬림화(slim化)가 가속되면서 박막 디스플레이 기술 개발이 중요한 부분이 되었다. 더불어 디스플레이 화면에서 손가락 또는 펜 등을 이용해 제어가 가능한 터치스크린 개발 또한 현대 산업에 중요한 부분이다. 한편, 보편적인 터치 스크린 구동은, 디스플레이 구동시간과 터치 구동시간을 나누어 구동하는데, 디스플레이 구동시간 중에는 디스플레이 패널 노이즈가 터치센서로 유기되어 터치 인식 시 실패할 확률이 높기 때문에 터치회로는 구동하지 않는다. 그리고 터치구동 시간에는 터치인식을 하기 위해 디스플레이 구동을 하지 않는다. 그러나 이러한 시분할의 경우 터치구동시간에 디스플레이가 발광하지 못하기 때문에 단위 프레임내 발광시간이 감소하게 되며 디스플레이 최대 휘도가 감소한다.
또한, 종래 기술에 따른 디스플레이 장치는, 아날로그 방식의 PWM(pulse width modulation)을 근거로 디지털 패널을 구동함으로써 톱니파(Saw tooth wave) 신호가 필요하며 픽셀(pixel)을 구동하는 마이크로 집적화로에 아날로그 비교기가 포함되어야 하므로 마이크로 집적회로의 사이즈가 증가하였다.
종래 기술에 따른 디스플레이 장치는, 아날로그 방식의 PWM(pulse width modulation)을 근거로 디지털 패널을 구동함으로써 디지털 데이터를 아날로그 데이터로 변환하는 디지털 아날로그 변환기(Digital to Analog Converter; DAC)가 데이터 구동부에 필요하였다.
본 발명의 목적은, 디지털 PWM(pulse width modulation) 방식으로 구동하는 디스플레이 패널 내의 서브 픽셀에 적용된 복수의 반도체 발광 소자(LED, light emitting diode) 간의 전류 편차를 보상하는 디스플레이 장치 및 그 구동 방법을 제공하는 데 있다.
본 발명의 다른 목적은, 디지털 PWM 방식으로 구동하는 디스플레이 패널 내의 서브 픽셀에 적용된 반도체 발광 소자에 흐르는 전류와 기준 전류 간의 전류 편차를 보상하는 디스플레이 장치 및 그 구동 방법을 제공하는 데 있다.
본 발명의 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 달성하기 위하여, 본 명세서의 실시예들에 따른 디스플레이 장치는, 디스플레이 패널의 픽셀 내에 포함된 서브 픽셀들에 적용된 복수의 반도체 발광소자와, 디지털 PWM(pulse width modulation) 신호를 근거로 상기 복수의 반도체 발광소자를 구동하는 구동부를 포함하며, 상기 구동부는 상기 복수의 반도체 발광소자 중 적어도 하나에 흐르는 전류값을 센싱하는 전류 센싱부 및 상기 센싱부에서 센싱된 전류값에 근거하여 상기 복수의 반도체 발광 소자 간의 전류 편차를 보상하는 전류 보상부를 더 포함하는 것을 특징으로 하는 디스플레이 장치를 제공한다.
일실시 예에 있어서, 상기 구동부는 상기 복수의 반도체 발광소자 각각에 연결되고, 상기 디지털 PWM 신호에 따라 복수의 반도체 발광소자를 스위칭하는 스위칭부를 포함하고, 상기 전류 보상부는 상기 스위칭부와 접지 사이에 연결되고, 상기 복수의 반도체 발광소자 간의 전류 편차를 보상하는 보상부를 포함할 수 있다.
일실시 예에 있어서, 본 발명은 상기 복수의 반도체 발광 소자에 걸리는 전압과 설정 전압 간의 차를 상기 구동부에 인가하는 연산 증폭기를 더 포함하고, 상기 전류 보상부는 상기 전류 센싱부에서 센싱된 전류값에 따라 상기 설정 전압을 변경시키는 가변 기준 발생기를 더 포함할 수 있다.
일실시 예에 있어서, 상기 전류 센싱부는 상기 서브 픽셀 및 가변 기준 발생기와 연결되고, 상기 서브 픽셀에 적용된 반도체 발광소자 중 적어도 하나에 흐르는 전류와 동일한 전류를 상기 가변 기준 발생기로 전달할 수 있다.
일실시 예에 있어서, 상기 가변 기준 발생기는 상기 서브 픽셀에 적용된 반도체 발광소자 중 적어도 하나에 흐르는 전류와 기준 전류간의 편차에 따라 상기 설정 전압을 변경시킬 수 있다.
일실시 예에 있어서, 상기 가변 기준 발생기는 상기 서브 픽셀에 적용된 반도체 발광소자 중 적어도 하나에 흐르는 전류가 기준 전류보다 작은 경우, 상기 설정 전압을 증가시키고, 상기 서브 픽셀에 적용된 반도체 발광소자 중 적어도 하나에 흐르는 전류가 기준 전류보다 큰 경우, 상기 설정 전압을 감소시킬 수 있다.
일실시 예에 있어서, 상기 보상부는 상기 복수의 반도체 발광소자 중에서 제1 반도체 발광 소자를 스위칭하는 제1 스위칭부에 직렬로 연결되는 제1 저항기, 상기 제1 스위칭부와 상기 제1 저항기 사이 지점과 상기 연산 증폭기의 입력단자 사이에 전기적으로 연결되는 제2 저항기, 상기 복수의 반도체 발광소자 중에서 제2 반도체 발광 소자를 스위칭하는 제2 스위칭부에 직렬로 연결되는 제3 저항기, 상기 제2 스위칭부와 상기 제3 저항기 사이 지점과 상기 연산 증폭기의 입력단자 사이에 전기적으로 연결되는 제4 저항기를 포함할 수 있다.
일실시 예에 있어서, 상기 구동부는 상기 디지털 PWM 신호를 발생하는 PWM 발생부를 포함할 수 있다.
일실시 예에 있어서, 상기 전류 보상부는 상기 전류 편차를 보상함과 동시에 상기 복수의 반도체 발광 소자에 흐르는 전류의 값을 결정할 수 있다.
일실시 예에 있어서, 상기 구동부는 하나의 마이크로 집적회로이며, 상기 하나의 마이크로 집적회로는 복수의 픽셀을 구동시키고, 상기 복수의 픽셀 각각은 복수의 서브 픽셀을 포함할 수 있다.
본 발명의 실시예들에 따른 LED 디스플레이의 구동 장치는 디스플레이 패널 내의 서브 픽셀에 적용된 복수의 반도체 발광 소자 간의 전류 편차를 보상함으로써 디스플레이의 화질을 향상시킬 수 있다.
본 발명의 실시예들에 따른 LED 디스플레이의 구동 장치는 디스플레이 패널 내의 서브 픽셀에 적용된 반도체 발광 소자에 흐르는 전류와 기준 전류 간의 전류 편차를 보상함으로써 디스플레이의 화질을 더욱 향상시킬 수도 있다.
본 발명의 실시예들에 따른 LED 디스플레이의 구동 장치는, 디지털 PWM 방식으로 디지털 패널을 구동하고, 시리얼 디지털 데이터를 그대로 사용함으로써, 반도체(Oxide 및 LTPS(Low temperature poly Silicon 등) 기판 후면(backplane) 공정에서 필요했던 구동 TFT(thin film transistor) 보상을 할 필요가 없으며, 픽셀(Pixel)을 구동하기 위한 전원 전압(ELVDD)을 낮출 수 있다.
본 발명의 실시예들에 따른 LED 디스플레이의 구동 장치는, 디지털 PWM 방식으로 디지털 패널을 구동하고, 시리얼 디지털 데이터를 그대로 사용함으로써, 낮은 전압으로 데이터 입력이 가능하다. 예를 들면, 이동도(Mobility)가 높은 실리콘(Silicon) 기반의 트랜지스터(transistor)를 사용 할 수 있으며, 데이터를 인가할 때의 전력 소모를 줄일 수 있다.
본 발명의 실시예들에 따른 LED 디스플레이의 구동 장치는, 데이터 구동부에서 디지털 데이터를 아날로그 데이터로 변환하는 디지털 아날로그 변환기(Digital to Analog Converter; DAC)가 불필요하다. 예를 들면, 본 발명의 실시예들에 따른 LED 디스플레이의 구동 장치는 디지털 방식으로 데이터를 인가하기 때문에 데이터 구동부 내에서 디지털 아날로그 변환기(Digital to Analog Converter; DAC)가 불필요하다.
본 발명의 실시예들에 따른 LED 디스플레이의 구동 장치는 데이터 구동부 내에서 디지털 아날로그 변환기(Digital to Analog Converter; DAC)가 불필요하므로, 데이터 구동부의 크기를 줄일 수 있다.
본 발명의 실시예들에 따른 LED 디스플레이의 구동 장치는 넓은 전류 범위를 확보할 수 있으며, 타일링 디스플레이(Tiling display)에도 적용 가능하다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 일 실시예를 나타내는 개념도이다.
도 2는 도 1의 A부분의 부분 확대도이고, 도 3a 및 도 3b는 도 2의 라인 B-B 및 C-C를 따라 취한 단면도들이다.
도 4는 도 3a의 플립 칩 타입 반도체 발광 소자를 나타내는 개념도이다.
도 5a 내지 도 5c는 플립 칩 타입 반도체 발광 소자와 관련하여 컬러를 구현하는 여러가지 형태를 나타내는 개념도들이다.
도 6은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 제조방법을 나타낸 단면도들이다.
도 7은 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 다른 일 실시예를 나타내는 사시도이다.
도 8은 도 7의 라인 C-C를 따라 취한 단면도이다.
도 9은 도 8의 수직형 반도체 발광소자를 나타내는 개념도이다.
도 10은 본 발명의 실시예에 따른 반도체 발광 소자(Light Emitting Diode, LED)를 이용한 디스플레이 장치를 나타낸 구성도이다.
도 11은 본 발명의 실시예에 따른 디지털 PWM(pulse width modulation) 구동을 위한 구동부(예를 들면, micro-IC)를 사용하는 LED 디스플레이의 구동 장치를 나타낸 구성도이다.
도 12는 본 발명의 다른 실시예에 따른 디지털 PWM(pulse width modulation) 구동을 위한 구동부(예를 들면, micro-IC)를 사용하는 LED 디스플레이의 구동 장치를 나타낸 구성도이다.
도 13은 도 11의 LED(Light Emitting Diode) 디스플레이의 구동 장치에 대한 제조 방법을 개략적으로 나타낸 예시도이다.
도 14는 도 12의 LED(Light Emitting Diode) 디스플레이의 구동 장치에 대한 제조 방법을 개략적으로 나타낸 예시도이다.
도 15 및 16은 본 발명의 또 다른 실시예에 따른 디스플레이 패널에 포함된 서브 픽셀들에 적용된 복수의 발광 소자(LED들)에 흐르는 전류를 보상하는 LED 디스플레이의 구동 장치를 나타낸 구성도이다.
도 17은 본 발명의 다른 실시예에 따른 디스플레이 패널에 포함된 서브 픽셀들에 적용된 복수의 발광 소자(LED들) 간의 전류 편차를 보상하는 LED 디스플레이의 구동 장치를 나타낸 구성도이다.
도 18a 내지 18c는 서로 다른 RSET의 평균 값을 가지는 LED 디스플레이의 구동 장치를 나타낸 구성도이다.
도 19는 서브 픽셀에 흐르는 전류에 따른 VASET 값의 변화를 나타내는 그래프이다.
도 20은 라인 별로 전류 보상을 수행하는 일 실시 예를 나타내는 타이밍 차트이다.
도 21은 본 발명의 또 다른 실시예에 따른 디스플레이 패널에 포함된 서브 픽셀들에 적용된 복수의 발광 소자(LED들) 간의 전류 편차를 보상하는 보상부의 동작을 나타낸 예시도이다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되는 것으로 해석되어서는 아니 됨을 유의해야 한다.
또한, 층, 영역 또는 기판과 같은 요소가 다른 구성요소 "상(on)"에 존재하는 것으로 언급될 때, 이것은 직접적으로 다른 요소 상에 존재하거나 또는 그 사이에 중간 요소가 존재할 수도 있다는 것을 이해할 수 있을 것이다.
본 명세서에서 설명되는 디스플레이 장치에는 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 피씨(Slate PC), Tablet PC, Ultra Book, 디지털 TV, 데스크탑 컴퓨터 등이 포함될 수 있다. 그러나, 본 명세서에 기재된 실시 예에 따른 구성은 추후 개발되는 새로운 제품형태이라도, 디스플레이가 가능한 장치에는 적용될 수도 있음을 본 기술분야의 당업자라면 쉽게 알 수 있을 것이다.
도 1은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 일 실시예를 나타내는 개념도이다.
도시에 의하면, 디스플레이 장치(100)의 제어부에서 처리되는 정보는 플렉서블 디스플레이(flexible display)를 이용하여 표시될 수 있다.
플렉서블 디스플레이는 외력에 의하여 휘어질 수 있는, 구부러질 수 있는, 비틀어질 수 있는, 접힐 수 있는, 말려질 수 있는 디스플레이를 포함한다. 예를 들어, 플렉서블 디스플레이는 기존의 평판 디스플레이의 디스플레이 특성을 유지하면서, 종이와 같이 휘어지거나, 구부리거나, 접을 수 있거나 말 수 있는 얇고 유연한 기판 위에 제작되는 디스플레이가 될 수 있다.
상기 플렉서블 디스플레이가 휘어지지 않는 상태(예를 들어, 무한대의 곡률반경을 가지는 상태, 이하 제1상태라 한다)에서는 상기 플렉서블 디스플레이의 디스플레이 영역이 평면이 된다. 상기 제1상태에서 외력에 의하여 휘어진 상태(예를 들어, 유한의 곡률반경을 가지는 상태, 이하, 제2상태라 한다)에서는 상기 디스플레이 영역이 곡면이 될 수 있다. 도시와 같이, 상기 제2상태에서 표시되는 정보는 곡면상에 출력되는 시각 정보가 될 수 있다. 이러한 시각 정보는 매트릭스 형태로 배치되는 단위 화소(sub-pixel)의 발광이 독자적으로 제어됨에 의하여 구현된다. 상기 단위 화소는 R(Red), G(Green), B(Blue)의 조합에 의해 형성되는 하나의 색을 구현하기 위한 최소 단위를 의미한다.
상기 플렉서블 디스플레이의 단위 화소는 반도체 발광 소자에 의하여 구현될 수 있다. 본 발명에서는 전류를 빛으로 변환시키는 반도체 발광 소자의 일 종류로서 발광 다이오드(Light Emitting Diode: LED)를 예시한다. 상기 발광 다이오드는 작은 크기로 형성되며, 이를 통하여 상기 제2상태에서도 단위 화소의 역할을 할 수 있게 된다.
이하, 상기 발광 다이오드를 이용하여 구현된 플렉서블 디스플레이에 대하여 도면을 참조하여 보다 상세히 설명한다.
도 2는 도 1의 A부분의 부분 확대도이고, 도 3a 내지 도 3b는 도 2의 라인 B-B를 따라 취한 단면도이며, 도 4는 도 3의 플립 칩 타입 반도체 발광 소자를 나타내는 개념도이고, 도 5a 내지 도 5c는 플립 칩 타입 반도체 발광 소자와 관련하여 컬러를 구현하는 여러가지 형태를 나타내는 개념도들이다.
도 2, 도 3a 및 도 3b의 도시에 의하면, 반도체 발광 소자를 이용한 디스플레이 장치(100)로서 패시브 매트릭스(Passive Matrix, PM) 방식의 반도체 발광 소자를 이용한 디스플레이 장치(100)를 예시한다. 다만, 이하 설명되는 예시는 액티브 매트릭스(Active Matrix, AM) 방식의 반도체 발광 소자에도 적용 가능하다.
상기 디스플레이 장치(100)는 기판(110), 제1전극(120), 전도성 접착층(130), 제2전극(140) 및 복수의 반도체 발광 소자(150)를 포함한다.
기판(110)은 플렉서블 기판일 수 있다. 예를 들어, 플렉서블(flexible) 디스플레이 장치를 구현하기 위하여 기판(110)은 유리나 폴리이미드(PI, Polyimide)를 포함할 수 있다. 이외에도 절연성이 있고, 유연성 있는 재질이면, 예를 들어 PEN(Polyethylene Naphthalate), PET(Polyethylene Terephthalate) 등 어느 것이라도 사용될 수 있다. 또한, 상기 기판(110)은 투명한 재질 또는 불투명한 재질 어느 것이나 될 수 있다.
상기 기판(110)은 제1전극(120)이 배치되는 배선기판이 될 수 있으며, 따라서 상기 제1전극(120)은 기판(110) 상에 위치할 수 있다.
도시에 의하면, 절연층(160)은 제1전극(120)이 위치한 기판(110) 상에 배치될 수 있으며, 상기 절연층(160)에는 보조전극(170)이 위치할 수 있다. 이 경우에, 상기 기판(110)에 절연층(160)이 적층된 상태가 하나의 배선기판이 될 수 있다. 보다 구체적으로, 절연층(160)은 폴리이미드(PI, Polyimide), PET, PEN 등과 같이 절연성이 있고, 유연성 있는 재질로, 상기 기판(110)과 일체로 이루어져 하나의 기판을 형성할 수 있다.
보조전극(170)은 제1전극(120)과 반도체 발광 소자(150)를 전기적으로 연결하는 전극으로서, 절연층(160) 상에 위치하고, 제1전극(120)의 위치에 대응하여 배치된다. 예를 들어, 보조전극(170)은 닷(dot) 형태이며, 절연층(160)을 관통하는 전극홀(171)에 의하여 제1전극(120)과 전기적으로 연결될 수 있다. 상기 전극홀(171)은 비아 홀에 도전물질이 채워짐에 의하여 형성될 수 있다.
본 도면들을 참조하면, 절연층(160)의 일면에는 전도성 접착층(130)이 형성되나, 본 발명은 반드시 이에 한정되는 것은 아니다. 예를 들어, 절연층(160)과 전도성 접착층(130)의 사이에 특정 기능을 수행하는 레이어가 형성되거나, 절연층(160)이 없이 전도성 접착층(130)이 기판(110)상에 배치되는 구조도 가능하다. 전도성 접착층(130)이 기판(110)상에 배치되는 구조에서는 전도성 접착층(130)이 절연층의 역할을 할 수 있다.
상기 전도성 접착층(130)은 접착성과 전도성을 가지는 층이 될 수 있으며, 이를 위하여 상기 전도성 접착층(130)에서는 전도성을 가지는 물질과 접착성을 가지는 물질이 혼합될 수 있다. 또한 전도성 접착층(130)은 연성을 가지며, 이를 통하여 디스플레이 장치에서 플렉서블 기능을 가능하게 한다.
이러한 예로서, 전도성 접착층(130)은 이방성 전도성 필름(anistropy conductive film, ACF), 이방성 전도 페이스트(paste), 전도성 입자를 함유한 솔루션(solution) 등이 될 수 있다. 상기 전도성 접착층(130)은 두께를 관통하는 Z 방향으로는 전기적 상호 연결을 허용하나, 수평적인 X-Y 방향으로는 전기절연성을 가지는 레이어로서 구성될 수 있다. 따라서 상기 전도성 접착층(130)은 Z축 전도층으로 명명될 수 있다(다만, 이하 '전도성 접착층'이라 한다).
상기 이방성 전도성 필름은 이방성 전도매질(anisotropic conductive medium)이 절연성 베이스부재에 혼합된 형태의 필름으로서, 열 및 압력이 가해지면 특정 부분만 이방성 전도매질에 의하여 전도성을 가지게 된다. 이하, 상기 이방성 전도성 필름에는 열 및 압력이 가해지는 것으로 설명하나, 상기 이방성 전도성 필름이 부분적으로 전도성을 가지기 위하여 다른 방법도 가능하다. 이러한 방법은, 예를 들어 상기 열 및 압력 중 어느 하나만이 가해지거나 UV 경화 등이 될 수 있다.
또한, 상기 이방성 전도매질은 예를 들어, 도전볼이나 전도성 입자가 될 수 있다. 도시에 의하면, 본 예시에서 상기 이방성 전도성 필름은 도전볼이 절연성 베이스 부재에 혼합된 형태의 필름으로서, 열 및 압력이 가해지면 특정부분만 도전볼에 의하여 전도성을 가지게 된다. 이방성 전도성 필름은 전도성 물질의 코어가 폴리머 재질의 절연막에 의하여 피복된 복수의 입자가 함유된 상태가 될 수 있으며, 이 경우에 열 및 압력이 가해진 부분이 절연막이 파괴되면서 코어에 의하여 도전성을 가지게 된다. 이때, 코어의 형태는 변형되어 필름의 두께방향으로 서로 접촉하는 층을 이룰 수 있다. 보다 구체적인 예로서, 열 및 압력은 이방성 전도성 필름에 전체적으로 가해지며, 이방성 전도성 필름에 의하여 접착되는 상대물의 높이차에 의하여 Z축 방향의 전기적 연결이 부분적으로 형성된다.
다른 예로서, 이방성 전도성 필름은 절연 코어에 전도성 물질이 피복된 복수의 입자가 함유된 상태가 될 수 있다. 이 경우에는 열 및 압력이 가해진 부분이 전도성 물질이 변형되어(눌러 붙어서) 필름의 두께방향으로 전도성을 가지게 된다. 또 다른 예로서, 전도성 물질이 Z축 방향으로 절연성 베이스 부재를 관통하여 필름의 두께방향으로 전도성을 가지는 형태도 가능하다. 이 경우에, 전도성 물질은 뽀족한 단부를 가질 수 있다.
도시에 의하면, 상기 이방성 전도성 필름은 도전볼이 절연성 베이스 부재의 일면에 삽입된 형태로 구성되는 고정배열 이방성 전도성 필름(fixed array ACF)가 될 수 있다. 보다 구체적으로, 절연성 베이스부재는 접착성을 가지는 물질로 형성되며, 도전볼은 상기 절연성 베이스부재의 바닥부분에 집중적으로 배치되며, 상기 베이스부재에서 열 및 압력이 가해지면 상기 도전볼과 함께 변형됨에 따라 수직방향으로 전도성을 가지게 된다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 상기 이방성 전도성 필름은 절연성 베이스부재에 도전볼이 랜덤하게 혼입된 형태나, 복수의 층으로 구성되며 어느 한 층에 도전볼이 배치되는 형태(double-ACF) 등이 모두 가능하다.
이방성 전도 페이스트는 페이스트와 도전볼의 결합형태로서, 절연성 및 접착성의 베이스 물질에 도전볼이 혼합된 페이스트가 될 수 있다. 또한, 전도성 입자를 함유한 솔루션은 전도성 파티클(particle) 혹은 나노(nano) 입자를 함유한 형태의 솔루션이 될 수 있다.
다시 도면을 참조하면, 제2전극(140)은 보조전극(170)과 이격하여 절연층(160)에 위치한다. 즉, 상기 전도성 접착층(130)은 보조전극(170) 및 제2전극(140)이 위치하는 절연층(160) 상에 배치된다.
절연층(160)에 보조전극(170)과 제2전극(140)이 위치된 상태에서 전도성 접착층(130)을 형성한 후에, 반도체 발광 소자(150)를 열 및 압력을 가하여 플립 칩 형태로 접속시키면, 상기 반도체 발광 소자(150)는 제1전극(120) 및 제2전극(140)과 전기적으로 연결된다.
도 4를 참조하면, 상기 반도체 발광 소자는 플립 칩 타입(flip chip type)의 발광 소자가 될 수 있다.
예를 들어, 상기 반도체 발광 소자는 p형 전극(156), p형 전극(156)이 형성되는 p형 반도체층(155), p형 반도체층(155) 상에 형성된 활성층(154), 활성층(154) 상에 형성된 n형 반도체층(153) 및 n형 반도체층(153) 상에서 p형 전극(156)과 수평방향으로 이격 배치되는 n형 전극(152)을 포함한다. 이 경우, p형 전극(156)은 보조전극(170)과 전도성 접착층(130)에 의하여 전기적으로 연결될 수 있고, n형 전극(152)은 제2전극(140)과 전기적으로 연결될 수 있다.
다시 도 2, 도 3a 및 도 3b를 참조하면, 보조전극(170)은 일방향으로 길게 형성되어, 하나의 보조전극이 복수의 반도체 발광 소자(150)에 전기적으로 연결될 수 있다. 예를 들어, 보조전극을 중심으로 좌우의 반도체 발광 소자들의 p형 전극들이 하나의 보조전극에 전기적으로 연결될 수 있다.
보다 구체적으로, 열 및 압력에 의하여 전도성 접착층(130)의 내부로 반도체 발광 소자(150)가 압입되며, 이를 통하여 반도체 발광 소자(150)의 p형 전극(156)과 보조전극(170) 사이의 부분과, 반도체 발광 소자(150)의 n형 전극(152)과 제2전극(140) 사이의 부분에서만 전도성을 가지게 되고, 나머지 부분에서는 반도체 발광 소자의 압입이 없어 전도성을 가지지 않게 된다. 이와 같이, 전도성 접착층(130)은 반도체 발광 소자(150)와 보조전극(170) 사이 및 반도체 발광 소자(150)와 제2전극(140) 사이를 상호 결합시켜줄 뿐만 아니라 전기적 연결까지 형성시킨다.
또한, 복수의 반도체 발광 소자(150)는 발광 소자 어레이(array)를 구성하며, 발광 소자 어레이에는 형광체층(180)이 형성된다.
발광 소자 어레이는 자체 휘도값이 상이한 복수의 반도체 발광 소자들을 포함할 수 있다. 각각의 반도체 발광 소자(150)는 조합(또는 그룹화)되어 단위 화소를 구성하며, 제1전극(120)에 전기적으로 연결된다. 예를 들어, 제1전극(120)은 복수 개일 수 있고, 반도체 발광 소자들은 예컨대 수 열로 배치되며, 각 열의 반도체 발광 소자들은 상기 복수 개의 제1전극 중 어느 하나에 전기적으로 연결될 수 있다.
또한, 반도체 발광 소자들이 플립 칩 형태로 접속되므로, 투명 유전체 기판에 성장시킨 반도체 발광 소자들을 이용할 수 있다. 또한, 상기 반도체 발광 소자들은 예컨대 질화물 반도체 발광 소자일 수 있다. 반도체 발광 소자(150)는 휘도가 우수하므로, 작은 크기로도 개별 단위 픽셀을 구성할 수 있다.
도시에 의하면, 반도체 발광 소자(150)의 사이에 격벽(190)이 형성될 수 있다. 이 경우, 격벽(190)은 반도체 발광 소자들을 서로 분리하는 역할을 할 수 있으며, 전도성 접착층(130)과 일체로 형성될 수 있다. 예를 들어, 이방성 전도성 필름에 반도체 발광 소자(150)가 삽입됨에 의하여 이방성 전도성 필름의 베이스부재가 상기 격벽을 형성할 수 있다.
또한, 상기 이방성 전도성 필름의 베이스부재가 블랙이면, 별도의 블랙 절연체가 없어도 상기 격벽(190)이 반사 특성을 가지는 동시에 대비비(contrast)가 증가될 수 있다.
다른 예로서, 상기 격벽(190)으로 반사성 격벽이 별도로 구비될 수 있다. 이 경우에, 상기 격벽(190)은 디스플레이 장치의 목적에 따라 블랙(Black) 또는 화이트(White) 절연체를 포함할 수 있다. 화이트 절연체의 격벽을 이용할 경우 반사성을 높이는 효과가 있을 수 있고, 블랙 절연체의 격벽을 이용할 경우, 반사 특성을 가지는 동시에 대비비(contrast)를 증가시킬 수 있다.
형광체층(180)은 반도체 발광 소자(150)의 외면에 위치할 수 있다. 예를 들어, 반도체 발광 소자(150)는 청색(B) 광을 발생하는 청색 반도체 발광 소자이고, 형광체층(180)은 상기 청색(B) 광을 단위 화소의 색상으로 변환시키는 기능을 수행한다. 상기 형광체층(180)은 개별 화소를 구성하는 적색 형광체(181) 또는 녹색 형광체(182)가 될 수 있다.
즉, 적색의 단위 화소를 이루는 위치에서, 청색 반도체 발광 소자(151) 상에는 청색 광을 적색(R) 광으로 변환시킬 수 있는 적색 형광체(181)가 적층될 수 있고, 녹색의 단위 화소를 이루는 위치에서는, 청색 반도체 발광 소자(151) 상에 청색 광을 녹색(G) 광으로 변환시킬 수 있는 녹색 형광체(182)가 적층될 수 있다. 또한, 청색의 단위 화소를 이루는 부분에는 청색 반도체 발광 소자(151)만 단독으로 이용될 수 있다. 이 경우, 적색(R), 녹색(G) 및 청색(B)의 단위 화소들이 하나의 화소를 이룰 수 있다. 보다 구체적으로, 제1전극(120)의 각 라인을 따라 하나의 색상의 형광체가 적층될 수 있다. 따라서, 제1전극(120)에서 하나의 라인은 하나의 색상을 제어하는 전극이 될 수 있다. 즉, 제2전극(140)을 따라서, 적색(R), 녹색(G) 및 청색(B)이 차례로 배치될 수 있으며, 이를 통하여 단위 화소가 구현될 수 있다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 형광체 대신에 반도체 발광 소자(150)와 퀀텀닷(QD)이 조합되어 적색(R), 녹색(G) 및 청색(B)을 발광하는 단위 화소를 구현할 수 있다.
또한, 대비비(contrast) 향상을 위하여 각각의 형광체층들의 사이에는 블랙 매트릭스(191)가 배치될 수 있다. 즉, 이러한 블랙 매트릭스(191)는 명암의 대조를 향상시킬 수 있다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 청색, 적색, 녹색을 구현하기 위한 다른 구조가 적용될 수 있다.
도 5a를 참조하면, 각각의 반도체 발광 소자(150)는 질화 갈륨(GaN)을 주로 하여, 인듐(In) 및/또는 알루미늄(Al)이 함께 첨가되어 청색을 비롯한 다양한 빛을 발광하는 고출력의 발광 소자로 구현될 수 있다.
이 경우, 반도체 발광 소자(150)는 각각 단위 화소(sub-pixel)를 이루기 위하여 적색, 녹색 및 청색 반도체 발광 소자일 수 있다. 예컨대, 적색, 녹색 및 청색 반도체 발광 소자(R, G, B)가 교대로 배치되고, 적색, 녹색 및 청색 반도체 발광 소자에 의하여 적색(Red), 녹색(Green) 및 청색(Blue)의 단위 화소들이 하나의 화소(pixel)를 이루며, 이를 통하여 풀 칼라 디스플레이가 구현될 수 있다.
도 5b를 참조하면, 반도체 발광 소자는 황색 형광체층이 개별 소자마다 구비된 백색 발광 소자(W)를 구비할 수 있다. 이 경우에는, 단위 화소를 이루기 위하여, 백색 발광 소자(W) 상에 적색 형광체층(181), 녹색 형광체층(182), 및 청색 형광체층(183)이 구비될 수 있다. 또한, 이러한 백색 발광 소자(W) 상에 적색, 녹색, 및 청색이 반복되는 컬러 필터를 이용하여 단위 화소를 이룰 수 있다.
도 5c를 참조하면, 자외선 발광 소자(UV) 상에 적색 형광체층(181), 녹색 형광체층(182), 및 청색 형광체층(183)이 구비되는 구조도 가능하다. 이와 같이, 반도체 발광 소자는 가시광선뿐만 아니라 자외선(UV)까지 전영역에 사용가능하며, 자외선(UV)이 상부 형광체의 여기원(excitation source)으로 사용가능한 반도체 발광 소자의 형태로 확장될 수 있다.
본 예시를 다시 살펴보면, 반도체 발광 소자(150)는 전도성 접착층(130) 상에 위치되어, 디스플레이 장치에서 단위 화소를 구성한다. 반도체 발광 소자(150)는 휘도가 우수하므로, 작은 크기로도 개별 단위 화소를 구성할 수 있다. 이와 같은 개별 반도체 발광 소자(150)의 크기는 한 변의 길이가 80㎛ 이하일 수 있고, 직사각형 또는 정사각형 소자일 수 있다. 직사각형인 경우에는 20X80㎛ 이하의 크기가 될 수 있다.
또한, 한 변의 길이가 10㎛인 정사각형의 반도체 발광 소자(150)를 단위 화소로 이용하여도 디스플레이 장치를 이루기 위한 충분한 밝기가 나타난다. 따라서, 단위 화소의 크기가 한 변이 600㎛, 나머지 한변이 300㎛인 직사각형 화소인 경우를 예로 들면, 반도체 발광 소자의 거리가 상대적으로 충분히 크게 된다. 따라서, 이러한 경우, HD화질을 가지는 플렉서블 디스플레이 장치를 구현할 수 있게 된다.
상기에서 설명된 반도체 발광 소자를 이용한 디스플레이 장치는 새로운 형태의 제조방법에 의하여 제조될 수 있다. 이하, 도 6을 참조하여 상기 제조방법에 대하여 설명한다.
도 6은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 제조방법을 나타낸 단면도들이다.
본 도면을 참조하면, 먼저, 보조전극(170) 및 제2전극(140)이 위치된 절연층(160) 상에 전도성 접착층(130)을 형성한다. 제1기판(110)에 절연층(160)이 적층되어 하나의 기판(또는 배선기판)을 형성하며, 상기 배선기판에는 제1전극(120), 보조전극(170) 및 제2전극(140)이 배치된다. 이 경우에, 제1전극(120)과 제2전극(140)은 상호 직교 방향으로 배치될 수 있다. 또한, 플렉서블(flexible) 디스플레이 장치를 구현하기 위하여 제1기판(110) 및 절연층(160)은 각각 유리 또는 폴리이미드(PI)를 포함할 수 있다.
상기 전도성 접착층(130)은 예를 들어, 이방성 전도성 필름에 의하여 구현될 수 있으며, 이를 위하여 절연층(160)이 위치된 기판에 이방성 전도성 필름이 도포될 수 있다.
다음에, 보조전극(170) 및 제2전극(140)들의 위치에 대응하고, 개별 화소를 구성하는 복수의 반도체 발광 소자(150)가 위치된 제2기판(112)을 상기 반도체 발광 소자(150)가 보조전극(170) 및 제2전극(140)와 대향하도록 배치한다.
이 경우에, 제2기판(112)은 반도체 발광 소자(150)를 성장시키는 성장 기판으로서, 사파이어(spire) 기판 또는 실리콘(silicon) 기판이 될 수 있다.
상기 반도체 발광 소자는 웨이퍼(wafer) 단위로 형성될 때, 디스플레이 장치를 이룰 수 있는 간격 및 크기를 가지도록 함으로써, 디스플레이 장치에 효과적으로 이용될 수 있다.
그 다음에, 배선기판과 제2기판(112)을 열압착한다. 예를 들어, 배선기판과 제2기판(112)은 ACF press head 를 적용하여 열압착될 수 있다. 상기 열압착에 의하여 배선기판과 제2기판(112)은 본딩(bonding)된다. 열압착에 의하여 전도성을 갖는 이방성 전도성 필름의 특성에 의해 반도체 발광 소자(150)와 보조전극(170) 및 제2전극(140)의 사이의 부분만 전도성을 가지게 되며, 이를 통하여 전극들과 반도체 발광소자(150)는 전기적으로 연결될 수 있다. 이 때에, 반도체 발광 소자(150)가 상기 이방성 전도성 필름의 내부로 삽입되며, 이를 통하여 반도체 발광 소자(150) 사이에 격벽이 형성될 수 있다.
그 다음에, 상기 제2기판(112)을 제거한다. 예를 들어, 제2기판(112)은 레이저 리프트 오프법(Laser Lift-off, LLO) 또는 화학적 리프트 오프법(Chemical Lift-off, CLO)을 이용하여 제거할 수 있다.
마지막으로, 상기 제2기판(112)을 제거하여 반도체 발광 소자들(150)을 외부로 노출시킨다. 필요에 따라, 반도체 발광 소자(150)가 결합된 배선기판 상을 실리콘 옥사이드(SiOx) 등을 코팅하여 투명 절연층(도시하지 않음)을 형성할 수 있다.
또한, 상기 반도체 발광 소자(150)의 일면에 형광체층을 형성하는 단계를 더 포함할 수 있다. 예를 들어, 반도체 발광 소자(150)는 청색(B) 광을 발생하는 청색 반도체 발광 소자이고, 이러한 청색(B) 광을 단위 화소의 색상으로 변환시키기 위한 적색 형광체 또는 녹색 형광체가 상기 청색 반도체 발광 소자의 일면에 레이어를 형성할 수 있다.
이상에서 설명된 반도체 발광 소자를 이용한 디스플레이 장치의 제조방법이나 구조는 여러가지 형태로 변형될 수 있다. 그 예로서, 상기에서 설명된 디스플레이 장치에는 수직형 반도체 발광 소자도 적용될 수 있다. 이하, 도 5 및 도 6을 참조하여 수직형 구조에 대하여 설명한다.
또한, 이하 설명되는 변형예 또는 실시예에서는 앞선 예와 동일 또는 유사한 구성에 대해서는 동일, 유사한 참조번호가 부여되고, 그 설명은 처음 설명으로 갈음된다.
도 7은 본 발명의 반도체 발광 소자를 이용한 디스플레이 장치의 다른 일 실시예를 나타내는 사시도이고, 도 8은 도 7의 라인 C-C를 따라 취한 단면도이며, 도 9은 도 8의 수직형 반도체 발광소자를 나타내는 개념도이다.
본 도면들을 참조하면, 디스플레이 장치는 패시브 매트릭스(Passive Matrix, PM) 방식의 수직형 반도체 발광 소자를 이용한 디스플레이 장치가 될 수 있다.
상기 디스플레이 장치는 기판(210), 제1전극(220), 전도성 접착층(230), 제2전극(240) 및 복수의 반도체 발광 소자(250)를 포함한다.
기판(210)은 제1전극(220)이 배치되는 배선기판으로서, 플렉서블(flexible) 디스플레이 장치를 구현하기 위하여 폴리이미드(PI)를 포함할 수 있다. 이외에도 절연성이 있고, 유연성 있는 재질이면 어느 것이라도 사용 가능할 것이다.
제1전극(220)은 기판(210) 상에 위치하며, 일 방향으로 긴 바(bar) 형태의 전극으로 형성될 수 있다. 상기 제1전극(220)은 데이터 전극의 역할을 하도록 이루어질 수 있다.
전도성 접착층(230)은 제1전극(220)이 위치하는 기판(210)상에 형성된다. 플립 칩 타입(flip chip type)의 발광 소자가 적용된 디스플레이 장치와 같이, 전도성 접착층(230)은 이방성 전도성 필름(anistropy conductive film, ACF), 이방성 전도 페이스트(paste), 전도성 입자를 함유한 솔루션(solution) 등이 될 수 있다. 다만, 본 실시예에서도 이방성 전도성 필름에 의하여 전도성 접착층(230)이 구현되는 경우를 예시한다.
기판(210) 상에 제1전극(220)이 위치하는 상태에서 이방성 전도성 필름을 위치시킨 후에, 반도체 발광 소자(250)를 열 및 압력을 가하여 접속시키면, 상기 반도체 발광 소자(250)가 제1전극(220)과 전기적으로 연결된다. 이 때, 상기 반도체 발광 소자(250)는 제1전극(220) 상에 위치되도록 배치될 수 있다.
상기 전기적 연결은 전술한 바와 같이, 이방성 전도성 필름에서 열 및 압력이 가해지면 부분적으로 두께방향으로 전도성을 가지기 때문에 생성된다. 따라서, 이방성 전도성 필름에서는 두께방향으로 전도성을 가지는 부분(231)과 전도성을 가지지 않는 부분(232)으로 구획된다.
또한, 이방성 전도성 필름은 접착 성분을 함유하기 때문에, 전도성 접착층(230)은 반도체 발광 소자(250)와 제1전극(220) 사이에서 전기적 연결뿐만 아니라 기계적 결합까지 구현한다.
이와 같이, 반도체 발광 소자(250)는 전도성 접착층(230) 상에 위치되며, 이를 통하여 디스플레이 장치에서 개별 화소를 구성한다. 반도체 발광 소자(250)는 휘도가 우수하므로, 작은 크기로도 개별 단위 픽셀을 구성할 수 있다. 이와 같은 개별 반도체 발광 소자(250)의 크기는 한 변의 길이가 80㎛ 이하일 수 있고, 직사각형 또는 정사각형 소자일 수 있다. 직사각형인 경우에는 20X80㎛ 이하의 크기가 될 수 있다.
상기 반도체 발광 소자(250)는 수직형 구조가 될 수 있다.
수직형 반도체 발광 소자들의 사이에는, 제1전극(220)의 길이 방향과 교차하는 방향으로 배치되고, 수직형 반도체 발광 소자(250)와 전기적으로 연결된 복수의 제2전극(240)이 위치한다.
도 9를 참조하면, 이러한 수직형 반도체 발광 소자는 p형 전극(256), p형 전극(256) 상에 형성된 p형 반도체층(255), p형 반도체층(255) 상에 형성된 활성층(254), 활성층(254)상에 형성된 n형 반도체층(253) 및 n형 반도체층(253) 상에 형성된 n형 전극(252)을 포함한다. 이 경우, 하부에 위치한 p형 전극(256)은 제1전극(220)과 전도성 접착층(230)에 의하여 전기적으로 연결될 수 있고, 상부에 위치한 n형 전극(252)은 후술하는 제2전극(240)과 전기적으로 연결될 수 있다. 이러한 수직형 반도체 발광 소자(250)는 전극을 상/하로 배치할 수 있으므로, 칩 사이즈를 줄일 수 있다는 큰 강점을 가지고 있다.
다시 도 8을 참조하면, 상기 반도체 발광 소자(250)의 일면에는 형광체층(280)이 형성될 수 있다. 예를 들어, 반도체 발광 소자(250)는 청색(B) 광을 발생하는 청색 반도체 발광 소자(251)이고, 이러한 청색(B) 광을 단위 화소의 색상으로 변환시키기 위한 형광체층(280)이 구비될 수 있다. 이 경우에, 형광체층(280)은 개별 화소를 구성하는 적색 형광체(281) 및 녹색 형광체(282) 일 수 있다.
즉, 적색의 단위 화소를 이루는 위치에서, 청색 반도체 발광 소자(251) 상에는 청색 광을 적색(R) 광으로 변환시킬 수 있는 적색 형광체(281)가 적층될 수 있고, 녹색의 단위 화소를 이루는 위치에서는, 청색 반도체 발광 소자(251) 상에 청색 광을 녹색(G) 광으로 변환시킬 수 있는 녹색 형광체(282)가 적층될 수 있다. 또한, 청색의 단위 화소를 이루는 부분에는 청색 반도체 발광 소자(251)만 단독으로 이용될 수 있다. 이 경우, 적색(R), 녹색(G) 및 청색(B)의 단위 화소들이 하나의 화소를 이룰 수 있다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 플립 칩 타입(flip chip type)의 발광 소자가 적용된 디스플레이 장치에서 전술한 바와 같이, 청색, 적색, 녹색을 구현하기 위한 다른 구조가 적용될 수 있다.
다시 본 실시예를 살펴보면, 제2전극(240)은 반도체 발광 소자들(250) 사이에 위치하고, 반도체 발광 소자들(250)과 전기적으로 연결된다. 예를 들어, 반도체 발광 소자들(250)은 복수의 열로 배치되고, 제2전극(240)은 반도체 발광 소자들(250)의 열들 사이에 위치할 수 있다.
개별 화소를 이루는 반도체 발광 소자(250) 사이의 거리가 충분히 크기 때문에 제2전극(240)은 반도체 발광 소자들(250) 사이에 위치될 수 있다.
제2전극(240)은 일 방향으로 긴 바(bar) 형태의 전극으로 형성될 수 있으며, 제1전극과 상호 수직한 방향으로 배치될 수 있다.
또한, 제2전극(240)과 반도체 발광 소자(250)는 제2전극(240)에서 돌출된 연결 전극에 의해 전기적으로 연결될 수 있다. 보다 구체적으로, 상기 연결 전극이 반도체 발광 소자(250)의 n형 전극이 될 수 있다. 예를 들어, n형 전극은 오믹(ohmic) 접촉을 위한 오믹 전극으로 형성되며, 상기 제2 전극은 인쇄 또는 증착에 의하여 오믹 전극의 적어도 일부를 덮게 된다. 이를 통하여 제2 전극(240)과 반도체 발광 소자(250)의 n형 전극이 전기적으로 연결될 수 있다.
도시에 의하면, 상기 제2전극(240)은 전도성 접착층(230) 상에 위치될 수 있다. 경우에 따라, 반도체 발광 소자(250)가 형성된 기판(210) 상에 실리콘 옥사이드(SiOx) 등을 포함하는 투명 절연층(미도시)이 형성될 수 있다. 투명 절연층이 형성된 후에 제2전극(240)을 위치시킬 경우, 상기 제2전극(240)은 투명 절연층 상에 위치하게 된다. 또한, 제2전극(240)은 전도성 접착층(230) 또는 투명 절연층에 이격되어 형성될 수도 있다.
만약 반도체 발광 소자(250) 상에 제2전극(240)을 위치시키기 위하여는 ITO(Indium Tin Oxide)와 같은 투명 전극을 사용한다면, ITO 물질은 n형 반도체층과는 접착성이 좋지 않은 문제가 있다. 따라서, 본 발명은 반도체 발광 소자(250) 사이에 제2전극(240)을 위치시킴으로써, ITO와 같은 투명 전극을 사용하지 않아도 되는 이점이 있다. 따라서, 투명한 재료 선택에 구속되지 않고, n형 반도체층과 접착성이 좋은 전도성 물질을 수평 전극으로 사용하여 광추출 효율을 향상시킬 수 있다.
도시에 의하면, 반도체 발광 소자(250) 사이에는 격벽(290)이 위치할 수 있다. 즉, 개별 화소를 이루는 반도체 발광 소자(250)를 격리시키기 위하여 수직형 반도체 발광 소자(250) 사이에는 격벽(290)이 배치될 수 있다. 이 경우, 격벽(290)은 개별 단위 화소를 서로 분리하는 역할을 할 수 있으며, 상기 전도성 접착층(230)과 일체로 형성될 수 있다. 예를 들어, 이방성 전도성 필름에 반도체 발광 소자(250)가 삽입됨에 의하여 이방성 전도성 필름의 베이스부재가 상기 격벽을 형성할 수 있다.
또한, 상기 이방성 전도성 필름의 베이스 부재가 블랙이면, 별도의 블랙 절연체가 없어도 상기 격벽(290)이 반사 특성을 가지는 동시에 대비비(contrast)가 증가될 수 있다.
다른 예로서, 상기 격벽(190)으로서, 반사성 격벽이 별도로 구비될 수 있다. 격벽(290)은 디스플레이 장치의 목적에 따라 블랙(Black) 또는 화이트(White) 절연체를 포함할 수 있다.
만일 제2전극(240)이 반도체 발광 소자(250) 사이의 전도성 접착층(230) 상에 바로 위치된 경우, 격벽(290)은 수직형 반도체 발광 소자(250) 및 제2전극(240)의 사이사이에 위치될 수 있다. 따라서, 반도체 발광 소자(250)를 이용하여 작은 크기로도 개별 단위 픽셀을 구성할 수 있고, 반도체 발광 소자(250)의 거리가 상대적으로 충분히 크게 되어 제2전극(240)을 반도체 발광 소자(250) 사이에 위치시킬 수 있고, HD 화질을 가지는 플렉서블 디스플레이 장치를 구현할 수 있는 효과가 있게 된다.
또한, 도시에 의하면, 대비비(contrast) 향상을 위하여 각각의 형광체 사이에는 블랙 매트릭스(291)가 배치될 수 있다. 즉, 이러한 블랙 매트릭스(291)는 명암의 대조를 향상시킬 수 있다.
상기 설명과 같이, 반도체 발광 소자(250)는 전도성 접착층(230) 상에 위치되며, 이를 통하여 디스플레이 장치에서 개별 화소를 구성한다. 반도체 발광 소자(250)는 휘도가 우수하므로, 작은 크기로도 개별 단위 픽셀을 구성할 수 있다. 따라서, 반도체 발광 소자에 의하여 적색(R), 녹색(G) 및 청색(B)의 반도체 발광소자들이 단위 화소(또는 픽셀)를 이루는 풀 칼라 디스플레이가 구현될 수 있다.
이하에서는, 상기 반도체 발광 소자(Light Emitting Diode) 또는 OLED)를 이용한 디스플레이 장치에 대해 도 10을 참조하여 설명한다.
도 10은 본 발명의 실시예에 따른 디스플레이 패널 구동장치가 적용된 반도체 발광 소자(Light Emitting Diode, LED)를 이용한 디스플레이 장치를 나타낸 구성도이다.
도 10에 도시된 바와 같이, 본 발명의 실시예에 따른 반도체 발광 소자(Light Emitting Diode, LED)를 이용한 디스플레이 장치는 영상처리부(201), 타이밍제어부(202), 데이터구동부(203), 스캔구동부(204) 및 복수의 발광다이오드(LED)를 포함하는 디스플레이 패널(205)을 포함한다.
상기 영상 처리부(201)는 외부로부터 수직 동기신호, 수평 동기신호, 데이터 인에이블 신호, 클럭신호 및 적색, 녹색 및 청색 신호(RGB)(이하 RGB로 표기)를 수신한다. 상기 영상처리부(201)는 RGB 신호(RGB)를 적색, 녹색, 청색 및 백색 신호(RGBW)(이하 RGBW로 표기)로 변환하여 타이밍 제어부(202)에 출력한다. 상기 영상 처리부(201)는 외부로부터 공급된 하나의 프레임 데이터에 포함된 RGB 신호(RGB)를 이용하여 평균화상레벨에 따라 피크휘도를 구현하도록 감마 전압을 가변한다. 상기 영상 처리부(201)는 이 밖에 외부로부터 수신되는 프레임 데이터를 다양하게 처리하는데, 이에 대한 구체적인 설명은 이미 공지된 기술이므로 생략한다.
상기 타이밍 제어부(202)는 영상 처리부(201)로부터 수직 동기신호, 수평 동기신호, 데이터 인에이블 신호, 클럭신호 및 RGBW 신호(RGBW)를 수신한다.
상기 타이밍 제어부(202)는 수직 동기신호, 수평 동기신호, 데이터 인에이블 신호, 클럭신호 등의 타이밍신호를 이용하여 데이터 구동부(203)와 스캔구동부(204)의 동작 타이밍을 제어한다. 상기 타이밍 제어부(202)는 1 수평기간의 데이터 인에이블 신호를 카운트하여 프레임기간을 판단할 수 있으므로 외부로부터 공급되는 수직 동기신호와 수평 동기신호는 생략될 수 있다. 타이밍 제어부(202)에서 생성되는 제어신호들에는 스캔 구동부(204)의 동작 타이밍을 제어하기 위한 게이트 타이밍제어신호(GDC)와 데이터 구동부(203)의 동작 타이밍을 제어하기 위한 데이터 타이밍 제어신호(DDC)가 포함된다. 게이트 타이밍 제어신호(GDC)에는 게이트 스타트 펄스, 게이트 시프트 클럭, 게이트 출력 인에이블 신호 등이 포함된다. 데이터 타이밍 제어신호(DDC)에는 소스 스타트 펄스, 소스 샘플링 클럭, 소스 출력 인에이블신호 등이 포함된다.
데이터 구동부(203)는 타이밍 제어부(202)로부터 수신된 데이터 타이밍 제어신호(DDC)에 응답하여 타이밍 제어부(202)로부터 공급되는 RGBW 신호(RGBW)를 샘플링하고 래치하여 병렬 데이터 체계의 데이터로 변환한다. 데이터 구동부(203)는 병렬 데이터 체계의 데이터로 변환할 때, RGBW 신호(RGBW)를 감마 전압에 따라 디지털 데이터를 아날로그 데이터로 변환한다. 이때, 디지털 데이터를 아날로그 데이터로 변환하는 것은 데이터 구동부(203)에 포함된 디지털 아날로그 변환기(Digital to Anlog Converter; DAC)에 의해 이루어진다. 데이터 구동부(203)는 데이터 라인들(DL1~DLn)을 통해 변환된 영상 신호(DATA)를 디스플레이 패널(205)에 포함된 서브 픽셀들(SPr, SPg, SPb,SPw)에 공급한다.
상기 스캔 구동부(204)는 타이밍 제어부(202)로부터 공급된 게이트 타이밍 제어신호(GDC)에 응답하여 디스플레이 패널(205)에 포함된 서브 픽셀들(SPr, SPg, SPb, SPw)의 트랜지스터들이 동작 가능한 게이트 구동전압의 스윙폭으로 신호의 레벨을 시프트시키면서 스캔신호를 순차적으로 생성한다. 스캔 구동부(204)는 스캔라인들(SL1~SLm)을 통해 생성된 스캔신호를 디스플레이 패널(205)에 포함된 서브 픽셀들(SPr, SPg, SPb, SPw)에 공급한다.
디스플레이 패널(205)은 매트릭스형태로 배치된 서브 픽셀들(SPr, SPg, SPb, SPw)을 포함하는 유기전계발광디스플레이 패널로 형성된다. 서브 픽셀들(SPr, SPg, SPb, SPw)에는 적색 서브 픽셀(SPr), 녹색 서브 픽셀(SPg), 청색 서브 픽셀(SPb) 및 백색 서브 픽셀(SPw)이 포함되며 이들은 하나의 픽셀(P)이 된다.
일반적으로, LED 어레이(array)를 디스플레이로 구동하기 위해서는 PM(Passive Matrix) 방식과 AM(Active Matrix) 방식을 사용한다. AM 방식은 한 프레임이 끝날 때까지 각 픽셀들의 값을 기억해 광이 유지되지만 PM 방식은 라인(Line) 단위로 순차적으로 빠르게 점등하여 시각적 잔상효과(약 1/10초 동안 지속)를 이용해 하나의 영상처럼 보이게 한다.
이하에서는, 디지털 PWM(pulse width modulation) 구동을 위한 구동부(예를 들면, micro-IC)를 사용하는 LED 디스플레이의 구동 장치를 도 11을 참조하여 설명한다.
도 11은 본 발명의 실시예에 따른 디지털 PWM(pulse width modulation) 구동을 위한 구동부(예를 들면, micro-IC)를 사용하는 LED 디스플레이의 구동 장치를 나타낸 구성도이다.
도 11에 도시한 바와 같이, 본 발명의 실시예에 따른 디지털 PWM(pulse width modulation) 구동을 위한 구동부(예를 들면, micro-IC)를 사용하는 LED 디스플레이의 구동 장치는,
디스플레이 패널에 포함된 서브 픽셀들에 적용된 복수의 발광 소자(LED들)(1104)와;
복수의 발광 소자(LED들)(1104)를 구동하기 위한 시리얼 디지털 데이터(Serial digital data)를 발생하는 데이터 구동부(1101)와;
스캔 신호(Vscan)에 응답하여 복수의 발광 소자(LED들)(1104)를 구동하기 위한 구동 신호를 발생하는 게이트 구동부(1102)와;
디지털 PWM(pulse width modulation) 방식으로 구동하고, 상기 시리얼 디지털 데이터(Serial digital data) 및 상기 구동 신호를 근거로 복수의 발광 소자(LED들)(1104)를 구동하는 구동부(1103)를 포함한다.
구동부(1103)는 마이크로 집적회로(micro-IC)로서, PWM(pulse width modulation) 발생부를 포함한다.
데이터 구동부(1101)는 복수의 발광 소자(LED들)(1104)의 휘도 정보(시리얼 디지털 데이터)를 구동부(1103)를 통해 복수의 발광 소자(LED들)(1104)에 인가한다.
게이트 구동부(1102)는, 마이크로 집적회로(micro-IC)의 전류 크기를 제어하고, 데이터의 입력순서를 선택하고, 복수의 발광 소자(LED들)(1104)의 발광 시간을 카운팅한다.
데이터 구동부(1101)는 시리얼 디지털 데이터를 그대로 구동부(1103)를 통해 복수의 발광 소자(LED들)(1104)에 인가함으로써, 디지털 데이터를 아날로그 데이터로 변환하는 디지털 아날로그 변환기(Digital to Analog Converter; DAC)가 불필요하다.
본 발명의 실시예에 따른 마이크로 집적회로(micro-IC)(1103)는, 디지털 방식으로 데이터(Serial digital data)를 복수의 발광 소자(LED들)(1104)에 전송하고, 그 디지털 데이터(digital data)를 그대로 이용하는 디지털 비교기를 사용하기 때문에 그 마이크로 집적회로(micro-IC)(1103)의 사이즈(size)를 아날로그 데이터를 사용하는 회로보다 작게 제작할 수 있다.
또한, 본 발명의 실시예에 따른 데이터 구동부(1101)는 디지털 데이터를 그대로 복수의 발광 소자(LED들)(1104)에 전달 가능하여 데이터 구동부(1101)의 집적회로 사이즈를 아날로그 데이터를 사용하는 회로보다 작게 제작할 수 있다.
본 발명의 실시예에 따른 디지털 PWM(pulse width modulation) 구동을 위한 구동부(예를 들면, micro-IC)를 사용하는 LED 디스플레이의 구동 장치는, 박막 트랜지스터(TFT, thin film transistor)를 사용하지 않으므로 픽셀(pixel)에 대한 전원전압이 낮아 전력 소모가 작으며, 메탈(Metal) 공정의 자유도가 높아서 기생 저항(R), 커패시턴스(C)를 작게 만들 수 있다(데이터 전송 속도 확보에 유리하며 전력 소모를 감소 시킬 수 있음).
이하에서는, 본 발명은, 디지털 PWM(pulse width modulation) 구동을 위한 구동부(예를 들면, micro-IC)를 사용하는 LED 디스플레이의 구동 장치를 도 11을 참조하여 설명한다.
도 12는 본 발명의 다른 실시예에 따른 디지털 PWM(pulse width modulation) 구동을 위한 구동부(예를 들면, micro-IC)를 사용하는 LED 디스플레이의 구동 장치를 나타낸 구성도로서, 하나의 구동부(예를 들면, micro-IC)를 사용하여 다수의 픽셀(하나의 픽셀은 다수의 서브 픽셀을 포함)을 구동하는 LED 디스플레이의 구동 장치를 나타낸 구성도이다.
도 12에 도시한 바와 같이, 본 발명의 다른 실시예에 따른 디지털 PWM(pulse width modulation) 구동을 위한 구동부(예를 들면, micro-IC)를 사용하는 LED 디스플레이의 구동 장치는,
디스플레이 패널에 포함된 다수의 픽셀(예를 들면, 2 내지 4개의 픽셀)에 적용된 복수의 발광 소자(LED들)(1201 내지 1204)와;
복수의 발광 소자(LED들)(1201 내지 1204)를 구동하기 위한 시리얼 디지털 데이터(Serial digital data)를 발생하는 데이터 구동부(1101)와;
스캔 신호(Vscan)에 응답하여 복수의 발광 소자(LED들)(1201 내지 1204)를 구동하기 위한 구동 신호를 발생하는 게이트 구동부(1102)와;
디지털 PWM(pulse width modulation) 방식으로 구동하고, 상기 시리얼 디지털 데이터(Serial digital data) 및 상기 구동 신호를 근거로 다수의 픽셀에 적용된 복수의 발광 소자(LED들)(1201 내지 1204)를 구동하는 하나의 구동부(1103)를 포함한다.
구동부(1103)는 마이크로 집적회로(micro-IC)로서, PWM(pulse width modulation) 발생부를 포함한다.
하나의 구동부(1103)는 하나의 픽셀에 적용된 서브 픽셀들(복수의 발광 소자)을 구동하거나, 복수의 픽셀에 적용된 서브 픽셀들(복수의 발광 소자)을 구동할 수 있다.
도 13은 도 11의 LED(Light Emitting Diode) 디스플레이의 구동 장치에 대한 제조 방법을 개략적으로 나타낸 예시도이다.
도 13에 도시한 바와 같이, 복수의 발광 소자(LED들)(1104)를 구동하는 구동부(1103)는 패드(LED 패드)(1104a)에 전기적으로 연결되고, 패드(LED 패드)(1104a)에는 복수의 발광 소자(LED들)(1104)가 전기적으로 연결된다.
구동부(1103)는 금, 은 등의 금속 배선(Metal 2)을 통해 패드(LED 패드)(1104a)에 연결될 수 있으며, 복수의 발광 소자(LED들)(1104)를 구동하기 위한 구동 전압(예를 들면, VDD, VG, VS, 등)은 구리, 알루미늄 등의 금속 배선(Metal 1)을 통해 구동부(1103)에 연결될 수 있다.
구동부(1103)는 하나의 픽셀에 대응하는 적색 서브 픽셀(SPr), 녹색 서브 픽셀(SPg), 청색 서브 픽셀(SPb) 및 백색 서브 픽셀(SPw) 또는 하나의 픽셀에 대응하는 적색 서브 픽셀(SPr), 녹색 서브 픽셀(SPg), 청색 서브 픽셀(SPb)에 각각 적용된 반도체 발광 소자에 연결될 수도 있다.
도 14는 도 12의 LED(Light Emitting Diode) 디스플레이의 구동 장치에 대한 제조 방법을 개략적으로 나타낸 예시도이다.
도 14에 도시한 바와 같이, 복수의 발광 소자(LED들)(1104)를 구동하는 하나의 구동부(1103)는 디스플레이 패널에 포함된 다수의 픽셀(예를 들면, 4개의 픽셀)에 적용된 복수의 발광 소자(LED들)(1201 내지 1204)에 전기적으로 연결되는 패드(LED 패드)(1201a 내지 1204a)에 전기적으로 연결된다. 하나의 구동부(1103)는 금, 은 등의 금속 배선을 통해 패드(LED 패드)(1201a 내지 1204a)에 연결될 수 있으며, 복수의 발광 소자(LED들)(1201 내지 1204)를 구동하기 위한 구동 전압(예를 들면, VDD, VG, VS, 등)은 구리, 알루미늄 등의 금속 배선을 통해 하나의 구동부(1103)에 연결될 수 있다. 구동부(1103)는 하나의 픽셀에 대응하는 적색 서브 픽셀(SPr), 녹색 서브 픽셀(SPg), 청색 서브 픽셀(SPb) 및 백색 서브 픽셀(SPw) 또는 하나의 픽셀에 대응하는 적색 서브 픽셀(SPr), 녹색 서브 픽셀(SPg), 청색 서브 픽셀(SPb)에 각각 적용된 반도체 발광 소자에 연결될 수도 있다.
이하에서는, 디스플레이 패널에 포함된 서브 픽셀들에 적용된 복수의 발광 소자(LED들)에 흐르는 전류를 보상하는 LED 디스플레이의 구동 장치를 도 15 및 16을 참조하여 설명한다.
도 15 및 16은 본 발명의 또 다른 실시예에 따른 디스플레이 패널에 포함된 서브 픽셀들에 적용된 복수의 발광 소자(LED들)에 흐르는 전류를 보상하는 LED 디스플레이의 구동 장치를 나타낸 구성도이다.
도 15 및 16에 도시한 바와 같이, 본 발명의 또 다른 실시예에 따른 LED 디스플레이의 구동 장치는,
디스플레이 패널에 포함된 서브 픽셀들에 적용된 복수의 발광 소자(LED들)(1104)와, 복수의 발광 소자(LED들)(1104)를 구동하기 위한 시리얼 디지털 데이터(Serial digital data)를 발생하는 데이터 구동부(1101)와, 스캔 신호(Vscan)에 응답하여 복수의 발광 소자(LED들)(1104)를 구동하기 위한 구동 신호를 발생하는 게이트 구동부(1102)와, 디지털 PWM(pulse width modulation) 방식으로 구동하고, 상기 시리얼 디지털 데이터(Serial digital data) 및 상기 구동 신호를 근거로 상기 복수의 반도체 발광 소자를 구동하는 구동부(1103)를 포함하고,
상기 구동부(1103)은 복수의 반도체 발광소자 중 적어도 하나에 흐르는 전류값을 센싱하는 전류 센싱부(1503), 상기 전류 센싱부에서 센싱된 전류값에 근거하여 상기 복수의 반도체 발광 소자 간의 전류 편차를 보상하는 전류 보상부(1501)를 포함할 수 있다.
여기서, 상기 전류 센싱부(1503)는 도 15과 같이 서브 픽셀 전체에 흐르는 전류값을 센싱하거나, 도 16과 같이 서브 픽셀 중 어느 하나의 반도체 발광소자에 흐르는 전류값을 센싱할 수 있다.
예를 들면, 상기 전류 센싱부(1503)는 (상기 반도체 발광 소자들(LED들)(1104) 중에서 적어도 어느 하나 이상(예를 들면, 적색 서브 픽셀에 적용된 LED)에 흐르는 전류를 실시간 검출하고, 전류 보상부(1501)는 상기 반도체 발광 소자들(LED들)(1104)에 흐르는 전류가 항상 미리 설정된 기준 전류가 되도록, 상기 센싱된 전류값이 미리 설정된 기준 전류와 다를 때 그 미리 설정된 기준 전류가 그 어느 하나의 반도체 발광 소자에 흐르도록 연산 증폭기(1502)에 인가되는 설정 전압(VASET))을 조절한다.
연산 증폭기(1502)는 복수의 발광 소자(LED들)(1104)에 걸리는 전압과 상기 설정 전압(VASET)을 입력받고, 그 복수의 발광 소자(LED들)(1104)에 걸리는 전압과 상기 설정 전압(VASET) 간의 차를 구동부(1103)에 인가한다. 상기 설정 전압(VASET)의 전압 값에 따라 반도체 발광 소자에 흐르는 전류의 값이 달라진다.
연산 증폭기(1502)의 비반전 입력 단자(+)에는 상기 설정 전압(VASET)이 입력될 수 있으며, 연산 증폭기(1502)의 반전 입력 단자(-)에는 복수의 발광 소자(LED들)(1104)에 걸리는 전압이 입력될 수 있다.
데이터 구동부(1101)는 복수의 발광 소자(LED들)(1104)의 휘도 정보를 구동부(1103)를 통해 복수의 발광 소자(LED들)(1104)에 인가한다.
게이트 구동부(1102)는, 마이크로 집적회로(micro-IC)의 전류 크기를 제어하고, 데이터의 입력순서를 선택하고, 복수의 발광 소자(LED들)(1104)의 발광 시간을 카운팅한다
본 발명의 다른 실시예에 따른 마이크로 집적회로(micro-IC)(1103)는, 디지털 방식으로 데이터(Serial digital data)를 복수의 발광 소자(LED들)(1104)에 전송하고, 그 디지털 데이터(digital data)를 그대로 이용하는 디지털 비교기를 사용하기 때문에 그 마이크로 집적회로(micro-IC)(1103)의 사이즈(size)를 아날로그 데이터를 사용하는 회로보다 작게 제작할 수 있다.
또한, 본 발명의 다른 실시예에 따른 데이터 구동부(1101)는 디지털 데이터를 그대로 복수의 발광 소자(LED들)(1104)에 전달 가능하여 데이터 구동부(1101)의 집적회로 사이즈를 아날로그 데이터를 사용하는 회로보다 작게 제작할 수 있다.
이상에서 설명한 바와 같이, 본 발명의 실시예들에 따른 LED 디스플레이의 구동 장치는, 반도체(Oxide 및 LTPS(Low temperature poly Silicon 등) 기판 후면(backplane) 공정에서 필요했던 구동 TFT(thin film transistor) 보상을 할 필요가 없으며, 픽셀(Pixel)을 구동하기 위한 전원 전압(ELVDD)을 낮출 수 있다.
본 발명의 실시예들에 따른 LED 디스플레이의 구동 장치는, 낮은 전압으로 데이터 입력이 가능하다. 예를 들면, 이동도(Mobility)가 높은 실리콘(Silicon) 기반의 트렌지스터(transistor)를 사용 할 수 있으며, 데이터를 기입할 때의 전력 소모를 줄일 수 있다.
본 발명의 실시예들에 따른 LED 디스플레이의 구동 장치는, 데이터 구동부에서 디지털 데이터를 아날로그 데이터로 변환하는 디지털 아날로그 변환기(Digital to Analog Converter; DAC)가 불필요하다. 예를 들면, 본 발명의 실시예들에 따른 LED 디스플레이의 구동 장치는 디지털 방식으로 데이터를 인가하기 때문에 데이터 구동부 내에서 디지털 아날로그 변환기(Digital to Analog Converter; DAC)가 불필요하다.
본 발명의 실시예들에 따른 LED 디스플레이의 구동 장치는 데이터 구동부 내에서 디지털 아날로그 변환기(Digital to Analog Converter; DAC)가 불필요하므로, 데이터 구동부의 크기를 줄일 수 있다.
본 발명의 실시예들에 따른 LED 디스플레이의 구동 장치는 디스플레이 패널 내의 서브 픽셀에 적용된 반도체 발광 소자에 흐르는 전류와 기준 전류 간의 전류 편차를 보상할 수 있다.
본 발명의 실시예들에 따른 LED 디스플레이의 구동 장치는 넓은 전류 범위를 확보할 수 있으며, 타일링 디스플레이(Tiling display)에도 적용 가능하다.
한편, 연산 증폭기(1502)의 입력 전압에 옵셋(offset)이 발생하거나, 저항에 편차가 발생하면 서브 픽셀들에 적용된 복수의 발광 소자(LED들) 간의 전류 편차가 발생할 수 있다. 따라서, 이하에서는 디스플레이 패널에 포함된 서브 픽셀들에 적용된 복수의 발광 소자(LED들) 간의 전류 편차를 보상하는 LED 디스플레이의 구동 장치를 도 17을 참조하여 설명한다.
도 17은 본 발명의 다른 실시예에 따른 디스플레이 패널에 포함된 서브 픽셀들에 적용된 복수의 발광 소자(LED들) 간의 전류 편차를 보상하는 LED 디스플레이의 구동 장치를 나타낸 구성도이다.
도 17에 도시한 바와 같이, 본 발명의 다른 실시예에 따른 LED 디스플레이의 구동 장치는,
디스플레이 패널에 포함된 서브 픽셀들에 적용된 복수의 발광 소자(LED들)(1104)와, 복수의 발광 소자(LED들)(1104)를 구동하기 위한 시리얼 디지털 데이터(Serial digital data)를 발생하는 데이터 구동부(1101)와, 스캔 신호(Vscan)에 응답하여 복수의 발광 소자(LED들)(1104)를 구동하기 위한 구동 신호를 발생하는 게이트 구동부(1102)와, 디지털 PWM(pulse width modulation) 방식으로 구동하고, 상기 시리얼 디지털 데이터(Serial digital data) 및 상기 구동 신호를 근거로 복수의 발광 소자(LED들)(1104)를 구동하는 구동부(1103)를 포함하며,
구동부(1103)는 디지털 PWM 신호를 발생하는 PWM 발생부(1601)와, 상기 복수의 반도체 발광소자(1104) 각각에 연결되고, 상기 디지털 PWM 신호에 따라 복수의 반도체 발광소자를 스위칭하는 스위칭부(1602), 복수의 반도체 발광소자 중 적어도 하나에 흐르는 전류값을 센싱하는 전류 센싱부(1503)를 포함한다.
또한, 상기 구동부(1103)에 포함된 전류 보상부(1501)은 상기 스위칭부(1602)와 접지 사이에 연결되고, 상기 복수의 반도체 발광소자(1104) 간의 전류 편차를 보상하는 보상부(1603)와, 상기 전류 센싱부(1503)에서 센싱된 전류값에 따라 상기 설정 전압을 변경시키는 가변 기준 발생기(1604)를 포함한다.
보상부(1603)는 복수의 발광 소자(LED들) 간의 전류 편차를 보상할 뿐만 아니라, 복수의 발광 소자(LED들)에 흐르는 전류의 크기(전류 값)를 결정한다.
예를 들면, 보상부(1603)는 복수의 발광 소자(하나의 픽셀에 포함된 서브 픽셀들에 적용된 복수의 LED들) 각각에 직렬로 연결된 스위칭부(1602)에 직렬로 연결된 제1 저항기(RSET1)와, 스위칭부(1602)와 제1 저항기(RSET1) 사이 지점과 연산 증폭기(1502)의 반전 입력 단자(-) 사이에 전기적으로 연결되는 제2 저항기(RF1)를 포함한다.
스위칭부(1602)는 복수의 발광 소자(하나의 픽셀에 포함된 서브 픽셀들에 적용된 복수의 LED들) 각각에 직렬로 연결되고, 디지털 PWM 신호에 따라 복수의 발광 소자(LED들)를 스위칭하는 제1 스위치와; 제1 스위치와 보상부(1603) 사이에 직렬로 연결되는 제2 스위치(예를 들면, 트렌지스터 M1)를 포함하며, 제2 스위치(예를 들면, 트렌지스터 M1)의 게이트는 연산 증폭기(1502)의 출력 단자에 연결된다. 예를 들면, 제1 LED(예를 들면, 적색 서브 픽셀에 적용된 LED)에는 디지털 PWM 신호에 따라 제1 LED를 스위칭하는 제1 스위치(S1)가 직렬로 연결되고, 그 제1 스위치(S1)와 보상부(1603) 사이에는 제2 스위치(예를 들면, 트렌지스터 M1)가 전기적으로 연결된다. 제2 LED(예를 들면, 녹색 서브 픽셀에 적용된 LED)에는 디지털 PWM 신호에 따라 제2 LED를 스위칭하는 제3 스위치(S2)가 직렬로 연결되고, 그 제3 스위치(S2)와 보상부(1603) 사이에는 제4 스위치(예를 들면, 트렌지스터 M2)가 전기적으로 연결된다. 제3 LED(예를 들면, 청색 서브 픽셀에 적용된 LED)에는 디지털 PWM 신호에 따라 제3 LED를 스위칭하는 제5 스위치(S3)가 직렬로 연결되고, 그 제5 스위치(S3)와 보상부(1603) 사이에는 제6 스위치(예를 들면, 트렌지스터 M3)가 전기적으로 연결된다.
보상부(1603)는, 제2 스위치(예를 들면, 트렌지스터 M1)에 직렬로 연결된 저항기(RSET1)와, 제2 스위치(예를 들면, 트렌지스터 M1)와 저항기(RSET1) 사이 지점과 연산 증폭기(1502)의 반전 입력 단자(-) 사이에 전기적으로 연결되는 저항기(RF1)와; 제4 스위치(예를 들면, 트렌지스터 M2)에 직렬로 연결된 저항기(RSET2)와, 제4 스위치(예를 들면, 트렌지스터 M2)와 저항기(RSET2) 사이 지점과 연산 증폭기(1502)의 반전 입력 단자(-) 사이에 전기적으로 연결되는 저항기(RF2)와; 제6 스위치(예를 들면, 트렌지스터 M3)에 직렬로 연결된 저항기(RSET3)와, 제6 스위치(예를 들면, 트렌지스터 M3)와 저항기(RSET3) 사이 지점과 연산 증폭기(1502)의 반전 입력 단자(-) 사이에 전기적으로 연결되는 저항기(RF3)를 포함한다.
한편, 전류 센싱부(1503)는 상기 서브 픽셀 및 가변 기준 발생기(1604)와 연결되고, 상기 서브 픽셀에 적용된 반도체 발광소자 중 적어도 하나에 흐르는 전류(ILEDx)와 동일한 전류(ISENSE)를 상기 가변 기준 발생기(1604)로 전달한다.
가변 기준 발생기(1604)는 ISENSE가 VREF/RSENSE가 되도록 VASET을 조절한다. 구체적으로, VASET은 아래 수학식 1과 같이 조절된다.
Figure PCTKR2018012317-appb-M000001
구체적으로, 하기 수학식 2와 같은 조건을 만족하는 경우, ISENSE가 VREF/RSENSE 보다 작게 된다. 이러한 경우, 가변 기준 발생기는 VASET을 증가 시키고, 이에 따라, 서브 픽셀에 흐르는 전류가 증가한다.
Figure PCTKR2018012317-appb-M000002
이와 달리, 하기 수학식 3과 같은 조건을 만족하는 경우, ISENSE가 VREF/RSENSE 보다 크게 된다. 이러한 경우, 가변 기준 발생기는 VASET을 감소 시키고, 이에 따라, 서브 픽셀에 흐르는 전류가 감소한다.
Figure PCTKR2018012317-appb-M000003
이하, RSET의 평균 값에 따라 VASET을 조절하는 실시 예에 대하여 구체적으로 설명한다.
도 18a 내지 18c는 서로 다른 RSET의 평균 값을 가지는 LED 디스플레이의 구동 장치를 나타낸 구성도이고, 도 19는 서브 픽셀에 흐르는 전류에 따른 VASET 값의 변화를 나타내는 그래프이다. 도 18a 내지 18c에서 VASET은 216mV로 설정된 상태이다.
도 18a은 RSET이 수학식 2를 만족하는 회로이다. 도 19를 참조하면, 이때 서브 픽셀에 흐르는 전류(ILED1)은 10.12㎂이었다. 가변 기준기(1604)에 10.12㎂의 전류가 흐르면, 가변 기준기(1604)는 VASET1 값이 수학식 1을 만족하도록 216mV에서 203mV로 감소 시킨다. 이에 따라, 서브 픽셀에 흐르는 전류(ILED1)이 감소한다.
도 18b는 RSET이 수학식 1을 만족하는 회로이다. 도 19를 참조하면, 이때 서브 픽셀에 흐르는 전류(ILED2)은 9.98㎂이었다. 가변 기준기(1604)는 VASET2 값이 이미 수학식 1을 만족하기 때문에 서브 픽셀에 흐르는 전류(ILED2)가 변하지 않도록 설정 전압을 216mV로 유지한다.
도 18c는 RSET이 수학식 3을 만족하는 회로이다. 도 19를 참조하면, 이때 서브 픽셀에 흐르는 전류(ILED1)은 9.84㎂이었다. 가변 기준기(1604)에 9.84㎂의 전류가 흐르면, 가변 기준기(1604)는 VASET3 값이 수학식 1을 만족하도록 216mV에서 228mV로 증가 시킨다. 이에 따라, 서브 픽셀에 흐르는 전류(ILED3)가 증가한다.
이하에서는, 본 발명에 따른 전류 보상을 라인 별로 적용하는 실시 예에 대하여 설명한다.
도 20은 라인 별로 전류 보상을 수행하는 일 실시 예를 나타내는 타이밍 차트이다.
도 15 및 16과 같이, 연산 증폭기(1502), 전류 센싱부(1503), 보상부(1603), 가변 기준 발생기(1604)는 디스플레이 장치의 로(Row) 라인 별로 배치될 수 있다. 이러한 경우, 디스플레이 장치는 로 라인 별로 전류 값을 보정한다.
전류 값의 보정은 모든 라인에서 동시에 이루어지는 것이 아니라, Vscan 신호에 따라 라인별로 순차적으로 이루어질 수 있다. 예를 들어, 도 20을 참조하면, VSCAN1 신호가 1일 때, 첫 번째 로 라인의 VASET 신호가 생성되며, VSCAN2 신호가 1일 때, 두 번째 로 라인의 VASET 신호가 생성된다.
이하에서는, 디스플레이 패널에 포함된 서브 픽셀들에 적용된 복수의 발광 소자(LED들) 간의 전류 편차를 보상하는 보상부를 도 21을 참조하여 설명한다.
도 21은 본 발명의 또 다른 실시예에 따른 디스플레이 패널에 포함된 서브 픽셀들에 적용된 복수의 발광 소자(LED들) 간의 전류 편차를 보상하는 보상부의 동작을 나타낸 예시도이다.
본 발명의 다른 실시예에 따른 보상부는, 연산 증폭기(1502)의 입력 전압에 옵셋(offset)이 발생하거나, 복수의 발광 소자(LED들) 자체의 저항 편차에 따라 복수의 발광 소자(LED들) 간의 전류 편차를 보상한다.
도 17에 도시한 바와 같이, 복수의 반도체 발광소자 중에서 제1 반도체 발광 소자를 스위칭하는 제1 스위칭부(M1)에 직렬로 연결되는 제1 저항기(RSET1)와, 상기 제1 스위칭부(M1)와 상기 제1 저항기(RSET1) 사이 지점과 상기 연산 증폭기(1502)의 입력단자 사이에 전기적으로 연결되는 제2 저항기(RF1)와, 상기 복수의 반도체 발광소자 중에서 제2 반도체 발광 소자를 스위칭하는 제2 스위칭부(M2)에 직렬로 연결되는 제3 저항기(RSET2)와, 상기 제2 스위칭부(M2)와 상기 제3 저항기(RSET2) 사이 지점과 상기 연산 증폭기(1502)의 입력단자 사이에 전기적으로 연결되는 제4 저항기(RF2)가 있다고 가정할 때,
제1 저항기(RSET1)의 저항값이 제3 저항기(RSET2)이 높으면 제1 반도체 발광 소자에 흐르는 전류(ILED1)는 감소함과 동시에 제1 반도체 발광 소자에 걸리는 전압(VS1)이 증가하여 전류 편차(ΔI)가 발생한다. 따라서, 본 발명의 다른 실시예에 따른 보상부는, 제1 반도체 발광 소자에 흐르는 전류(ILED1)를 증가시키고, 제2 반도체 발광 소자에 흐르는 전류(ILED2)에 흐르는 전류를 감소시킴으로써, 제1 반도체 발광 소자에 흐르는 전류(ILED1)와 제2 반도체 발광 소자에 흐르는 전류(ILED2) 간의 편차를 보상한다.
예를 들면, 본 발명의 다른 실시예에 따른 보상부는, 서로 동일한 저항값을 갖는 제1 저항기(RSET1)과 제4 저항기(RF2)와; 제1 반도체 발광 소자에 흐르는 전류(ILED1)와 제2 반도체 발광 소자에 흐르는 전류(ILED2) 간의 편차가 보상되도록 서로 다른 저항값을 갖는 제2 저항기(RF1) 및 제3 저항기(RSET2)를 포함할 수 있다.
이상에서 설명한 바와 같이, 본 발명의 실시예들에 따른 LED 디스플레이의 구동 장치는 디스플레이 패널 내의 서브 픽셀에 적용된 복수의 반도체 발광 소자 간의 전류 편차를 보상함으로써 디스플레이의 화질을 향상시킬 수 있다.
본 발명의 실시예들에 따른 LED 디스플레이의 구동 장치는 디스플레이 패널 내의 서브 픽셀에 적용된 반도체 발광 소자에 흐르는 전류와 기준 전류 간의 전류 편차를 보상함으로써 디스플레이의 화질을 향상시킬 수도 있다.
본 발명의 실시예들에 따른 LED 디스플레이의 구동 장치는, 디지털 PWM 방식으로 디지털 패널을 구동하고, 시리얼 디지털 데이터를 그대로 사용함으로써, 반도체(Oxide 및 LTPS(Low temperature poly Silicon 등) 기판 후면(backplane) 공정에서 필요했던 구동 TFT(thin film transistor) 보상을 할 필요가 없으며, 픽셀(Pixel)을 구동하기 위한 전원 전압(ELVDD)을 낮출 수 있다.
본 발명의 실시예들에 따른 LED 디스플레이의 구동 장치는, 디지털 PWM 방식으로 디지털 패널을 구동하고, 시리얼 디지털 데이터를 그대로 사용함으로써, 낮은 전압으로 데이터 입력이 가능하다. 예를 들면, 이동도(Mobility)가 높은 실리콘(Silicon) 기반의 트렌지스터(transistor)를 사용할 수 있으며, 데이터를 기입할 때의 전력 소모를 줄일 수 있다.
본 발명의 실시예들에 따른 LED 디스플레이의 구동 장치는, 데이터 구동부에서 디지털 데이터를 아날로그 데이터로 변환하는 디지털 아날로그 변환기(Digital to Analog Converter; DAC)가 불필요하다. 예를 들면, 본 발명의 실시예들에 따른 LED 디스플레이의 구동 장치는 디지털 방식으로 데이터를 인가하기 때문에 데이터 구동부 내에서 디지털 아날로그 변환기(Digital to Analog Converter; DAC)가 불필요하다.
본 발명의 실시예들에 따른 LED 디스플레이의 구동 장치는 데이터 구동부 내에서 디지털 아날로그 변환기(Digital to Analog Converter; DAC)가 불필요하므로, 데이터 구동부의 크기를 줄일 수 있다.
본 발명의 실시예들에 따른 LED 디스플레이의 구동 장치는 디스플레이 패널 내의 서브 픽셀에 적용된 반도체 발광 소자에 흐르는 전류와 기준 전류 간의 전류 편차를 보상할 수 있다.
본 발명의 실시예들에 따른 LED 디스플레이의 구동 장치는 넓은 전류 범위를 확보할 수 있으며, 타일링 디스플레이(Tiling display)에도 적용 가능하다.
본 발명의 실시예들에 따른 LED 디스플레이의 구동 장치는, 디지털 PWM 신호를 발생하는 PWM 발생부의 크기를 줄일 수도 있다. 예를 들면, 기존의 디지털 PWM 신호 발생기에서 시프트 레지스터(shift register)를 제거하여 PWM 발생부의 크기를 줄일 수도 있다.
본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (10)

  1. 디스플레이 패널의 픽셀 내에 포함된 복수의 서브 픽셀에 디지털 PWM(pulse width modulation) 신호를 인가하는 디스플레이 장치에 있어서,
    디스플레이 패널의 픽셀 내에 포함된 서브 픽셀들에 적용된 복수의 반도체 발광소자와;
    디지털 PWM(pulse width modulation) 신호를 근거로 상기 복수의 반도체 발광소자를 구동하는 구동부를 포함하며,
    상기 구동부는,
    상기 복수의 반도체 발광소자 중 적어도 하나에 흐르는 전류값을 센싱하는 전류 센싱부; 및
    상기 센싱부에서 센싱된 전류값에 근거하여 상기 복수의 반도체 발광 소자 간의 전류 편차를 보상하는 전류 보상부를 더 포함하는 것을 특징으로 하는 디스플레이 장치.
  2. 제1항에 있어서,
    상기 구동부는 상기 복수의 반도체 발광소자 각각에 연결되고, 상기 디지털 PWM 신호에 따라 복수의 반도체 발광소자를 스위칭하는 스위칭부를 포함하고,
    상기 전류 보상부는 상기 스위칭부와 접지 사이에 연결되고, 상기 복수의 반도체 발광소자 간의 전류 편차를 보상하는 보상부를 포함하는 것을 특징으로 하는 디스플레이 장치.
  3. 제2항에 있어서,
    상기 복수의 반도체 발광 소자에 걸리는 전압과 설정 전압 간의 차를 상기 구동부에 인가하는 연산 증폭기를 더 포함하고,
    상기 전류 보상부는 상기 전류 센싱부에서 센싱된 전류값에 따라 상기 설정 전압을 변경시키는 가변 기준 발생기를 더 포함하는 것을 특징으로 하는 디스플레이 장치.
  4. 제3항에 있어서,
    상기 전류 센싱부는,
    상기 서브 픽셀 및 가변 기준 발생기와 연결되고, 상기 서브 픽셀에 적용된 반도체 발광소자 중 적어도 하나에 흐르는 전류와 동일한 전류를 상기 가변 기준 발생기로 전달하는 것을 특징으로 하는 디스플레이 장치.
  5. 제4항에 있어서,
    상기 가변 기준 발생기는,
    상기 서브 픽셀에 적용된 반도체 발광소자 중 적어도 하나에 흐르는 전류와 기준 전류간의 편차에 따라 상기 설정 전압을 변경시키는 것을 특징으로 하는 디스플레이 장치.
  6. 제5항에 있어서,
    상기 가변 기준 발생기는,
    상기 서브 픽셀에 적용된 반도체 발광소자 중 적어도 하나에 흐르는 전류가 기준 전류보다 작은 경우, 상기 설정 전압을 증가시키고,
    상기 서브 픽셀에 적용된 반도체 발광소자 중 적어도 하나에 흐르는 전류가 기준 전류보다 큰 경우, 상기 설정 전압을 감소시키는 것을 특징으로 하는 디스플레이 장치.
  7. 제5항에 있어서,
    상기 보상부는,
    상기 복수의 반도체 발광소자 중에서 제1 반도체 발광 소자를 스위칭하는 제1 스위칭부에 직렬로 연결되는 제1 저항기;
    상기 제1 스위칭부와 상기 제1 저항기 사이 지점과 상기 연산 증폭기의 입력단자 사이에 전기적으로 연결되는 제2 저항기;
    상기 복수의 반도체 발광소자 중에서 제2 반도체 발광 소자를 스위칭하는 제2 스위칭부에 직렬로 연결되는 제3 저항기;
    상기 제2 스위칭부와 상기 제3 저항기 사이 지점과 상기 연산 증폭기의 입력단자 사이에 전기적으로 연결되는 제4 저항기를 포함하는 것을 특징으로 하는 디스플레이 장치.
  8. 제1항에 있어서,
    상기 구동부는 상기 디지털 PWM 신호를 발생하는 PWM 발생부를 포함하는 것을 특징으로 하는 디스플레이 장치.
  9. 제1항에 있어서, 상기 전류 보상부는,
    상기 전류 편차를 보상함과 동시에 상기 복수의 반도체 발광 소자에 흐르는 전류의 값을 결정하는 것을 특징으로 하는 디스플레이 장치.
  10. 제1항에 있어서, 상기 구동부는 하나의 마이크로 집적회로이며, 상기 하나의 마이크로 집적회로는 복수의 픽셀을 구동시키고, 상기 복수의 픽셀 각각은 복수의 서브 픽셀을 포함하는 것을 특징으로 하는 디스플레이 장치.
PCT/KR2018/012317 2018-07-06 2018-10-18 디스플레이 장치 및 그 구동 방법 WO2020009279A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/258,069 US11289016B2 (en) 2018-07-06 2018-10-18 Display device and driving method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0078922 2018-07-06
KR1020180078922A KR102033108B1 (ko) 2018-07-06 2018-07-06 디스플레이 장치 및 그 구동 방법

Publications (1)

Publication Number Publication Date
WO2020009279A1 true WO2020009279A1 (ko) 2020-01-09

Family

ID=68421364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/012317 WO2020009279A1 (ko) 2018-07-06 2018-10-18 디스플레이 장치 및 그 구동 방법

Country Status (3)

Country Link
US (1) US11289016B2 (ko)
KR (1) KR102033108B1 (ko)
WO (1) WO2020009279A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115380324A (zh) 2019-12-20 2022-11-22 亮锐有限责任公司 针对led阵列的故障检测和校正
CN112669761B (zh) * 2020-12-01 2023-05-05 厦门天马微电子有限公司 一种显示面板及其制备方法、显示装置
KR20220103551A (ko) 2021-01-15 2022-07-22 삼성전자주식회사 디스플레이 모듈 및 이를 포함하는 디스플레이 장치
KR20220103550A (ko) 2021-01-15 2022-07-22 삼성전자주식회사 디스플레이 모듈 및 이를 포함하는 디스플레이 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060238943A1 (en) * 2005-04-20 2006-10-26 Hiroki Awakura Display device and method for driving a display device
KR20080075843A (ko) * 2005-10-21 2008-08-19 디지털 디스플레이 이노베이션, 엘엘씨 디지털 디스플레이 시스템을 위한 이미지 및 광원 변조
KR20150049682A (ko) * 2013-10-30 2015-05-08 삼성디스플레이 주식회사 라이트 유닛 및 이를 포함하는 표시 장치
KR20180009116A (ko) * 2016-07-18 2018-01-26 주식회사 루멘스 마이크로 led 어레이 디스플레이 장치
US20180182279A1 (en) * 2015-06-05 2018-06-28 Apple Inc. Emission control apparatuses and methods for a display panel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180075798A1 (en) * 2016-09-14 2018-03-15 Apple Inc. External Compensation for Display on Mobile Device
KR102542856B1 (ko) * 2017-01-10 2023-06-14 삼성전자주식회사 디스플레이 장치 및 그 제어 방법
EP3389039A1 (en) * 2017-04-13 2018-10-17 Samsung Electronics Co., Ltd. Display panel and driving method of display panel
US10847083B1 (en) * 2019-10-14 2020-11-24 Shaoher Pan Integrated active-matrix light emitting pixel arrays based devices by laser-assisted bonding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060238943A1 (en) * 2005-04-20 2006-10-26 Hiroki Awakura Display device and method for driving a display device
KR20080075843A (ko) * 2005-10-21 2008-08-19 디지털 디스플레이 이노베이션, 엘엘씨 디지털 디스플레이 시스템을 위한 이미지 및 광원 변조
KR20150049682A (ko) * 2013-10-30 2015-05-08 삼성디스플레이 주식회사 라이트 유닛 및 이를 포함하는 표시 장치
US20180182279A1 (en) * 2015-06-05 2018-06-28 Apple Inc. Emission control apparatuses and methods for a display panel
KR20180009116A (ko) * 2016-07-18 2018-01-26 주식회사 루멘스 마이크로 led 어레이 디스플레이 장치

Also Published As

Publication number Publication date
KR102033108B1 (ko) 2019-10-16
US20210166620A1 (en) 2021-06-03
US11289016B2 (en) 2022-03-29

Similar Documents

Publication Publication Date Title
WO2021025202A1 (ko) 디스플레이 장치의 제조 방법 및 디스플레이 장치 제조를 위한 기판
WO2020009279A1 (ko) 디스플레이 장치 및 그 구동 방법
WO2019151550A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치 및 이의 제조방법
WO2014163325A1 (en) Display device using semiconductor light emitting device
WO2015060506A1 (en) Display device using semiconductor light emitting device
WO2015133709A1 (en) Display device using semiconductor light emitting device
WO2015072685A1 (en) Display apparatus using semiconductor light emitting device
WO2021125421A1 (ko) 발광 소자를 이용한 디스플레이 장치 및 그 제조 방법
WO2021172781A1 (ko) 디스플레이 모듈 및 디스플레이 장치
WO2021210893A1 (ko) 디스플레이 모듈 및 디스플레이 모듈의 구동 방법
WO2021025243A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치
WO2022154592A1 (ko) 디스플레이 모듈 및 이를 포함하는 디스플레이 장치
WO2022050454A1 (ko) 디스플레이 장치
WO2021215817A1 (ko) 디스플레이 패널
WO2022154593A1 (ko) 디스플레이 모듈 및 이를 포함하는 디스플레이 장치
WO2022108308A1 (ko) 디스플레이 모듈, 디스플레이 장치 및 그 제조방법
WO2022035052A1 (ko) 디스플레이 장치 및 이의 제어 방법
WO2022004926A1 (ko) 마이크로 led를 이용한 디스플레이 장치
WO2022045379A1 (ko) 디스플레이 장치
WO2024106671A1 (ko) 표시 장치
WO2023153532A1 (ko) 디스플레이 장치
WO2022097767A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 그 제어 방법
WO2022102794A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치
WO2023163406A1 (ko) 디스플레이 모듈 및 그 제조 방법
WO2023096053A1 (ko) 반도체 발광소자를 포함하는 디스플레이 장치 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925190

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18925190

Country of ref document: EP

Kind code of ref document: A1