WO2023153372A1 - 強化充填材及びその製造方法 - Google Patents

強化充填材及びその製造方法 Download PDF

Info

Publication number
WO2023153372A1
WO2023153372A1 PCT/JP2023/003850 JP2023003850W WO2023153372A1 WO 2023153372 A1 WO2023153372 A1 WO 2023153372A1 JP 2023003850 W JP2023003850 W JP 2023003850W WO 2023153372 A1 WO2023153372 A1 WO 2023153372A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
reinforcing
fiber
reinforcing filler
phosphorus
Prior art date
Application number
PCT/JP2023/003850
Other languages
English (en)
French (fr)
Inventor
和也 江藤
朋宏 中西
祐二 大塚
琢 香川
信二 石川
Original Assignee
日鉄ケミカル&マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ケミカル&マテリアル株式会社 filed Critical 日鉄ケミカル&マテリアル株式会社
Publication of WO2023153372A1 publication Critical patent/WO2023153372A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a reinforcing filler that can not only improve mechanical properties but also impart flame retardancy by being blended into a resin, and a method for producing the same.
  • the pulverized product obtained in Patent Document 1 is an injection-molded product from long fiber pellets, the pulverized product has coarse particles and a small amount of carbon fiber, and is effective as a reinforcing filler even when blended with a resin. is less.
  • an object of the present invention is to provide a reinforcing filler that can impart flame retardancy at a relatively low cost using reinforcing fibers, and a method for obtaining the same.
  • the gist of the present invention is as follows.
  • a reinforcing filler capable of imparting UL standard V-0, V-1 or V-2 class flame retardancy by kneading with a resin to be filled,
  • the reinforcing filler includes reinforcing fibers having a fiber length of 20 ⁇ m or more and 10 mm or less, and an epoxy resin composition containing phosphorus is attached to at least a part of the surface of the reinforcing fibers. filler.
  • the affinity between the reinforcing filler and the resin is high, so that the resin to be filled (filling target resin) can be highly filled, and contains phosphorus. Since the resin composition is adhered, it is possible to reduce or eliminate the need for adding a new flame retardant at the time of blending with the resin to be filled. In addition, in obtaining the reinforcing filler of the present invention, it is possible to use a used fiber-reinforced resin material as a raw material, so it is inexpensive. kind.
  • the reinforcing filler of the present invention includes reinforcing fibers having a fiber length of 20 ⁇ m or more and 10 mm or less, and an epoxy resin composition containing phosphorus is attached to at least a part of the surface thereof. It is a reinforcing filler capable of imparting UL standard V-0, V-1 or V-2 class flame retardancy by kneading it with a resin to be filled.
  • the reinforcing fibers in the reinforcing filler of the present invention are suitably carbon fibers, glass fibers, and ceramic fibers such as alumina fibers, Tyrano fibers, and basalt fibers, preferably carbon fibers.
  • the type of carbon fiber it may be either PAN-based carbon fiber or pitch-based carbon fiber, or both may be mixed, but it is most preferable to use only pitch-based carbon fiber, which has high thermal conductivity. .
  • the fiber length of the reinforcing fibers is 20 ⁇ m or more and 10 mm or less. If the fiber length is less than 20 ⁇ m, it will be about the same as the filament diameter of the carbon fiber, so the specific surface area will increase and the amount of the resin composition adhering to the fiber surface will decrease, resulting in kneadability with the resin (filling target resin). It becomes difficult to lower the heat resistance and to impart flame retardancy. On the other hand, if the fiber length exceeds 10 mm, the fiber length and density will vary greatly due to poor disentanglement of the fibers, resulting in poor appearance and uneven physical properties of the molded product, which is not suitable.
  • the fiber length is preferably 20 ⁇ m or more and 500 ⁇ m or less, more preferably 20 ⁇ m or more and 300 ⁇ m or less.
  • the reinforcing filler of the present invention is characterized in that a phosphorus-containing epoxy resin composition (hereinafter sometimes simply referred to as a resin composition) adheres to at least part of the surface of reinforcing fibers.
  • a resin composition adheres to at least part of the surface of reinforcing fibers.
  • SEM scanning electron microscope
  • the entire surface of the reinforcing fiber may be completely covered with resin.
  • the reinforcing filler in the present invention is assumed to be blended with the resin to be filled for the purpose of imparting flame retardancy, an aggregate of reinforcing fibers to which the resin composition is attached exists as Therefore, it does not matter if the reinforcing fiber surface has no resin composition attached to it, but the amount is 30 or less as a result of SEM observation of 100 particles of randomly extracted reinforcing fiber. is desirable, and 20 or less is more desirable.
  • a reinforcing filler is placed in a ceramic crucible and heated at 400° C. or higher and 500° C. or lower in an air atmosphere for several hours using a muffle furnace. It can be calculated by a method of measuring the weight of ash remaining in the crucible.
  • the epoxy resin composition (epoxy resin composition containing phosphorus) adhering to the reinforcing fibers may be either a thermosetting epoxy resin or a thermoplastic phenoxy resin.
  • a thermoplastic resin it can be deformed by the heat during processing, and the surface quality of the molded product can be improved and the internal voids can be reduced. It is preferably used because it is possible.
  • phenoxy resins which are both epoxy resins and thermoplastic resins: conventional phenoxy resins that are provided in a pre-polymerized state and on-site polymerization type phenoxy resins.
  • any of them may be used, and other resins mainly composed of these phenoxy resins (polyamide, polycarbonate, aromatic polyester resins such as polyethylene terephthalate and polybutylene terephthalate, aromatic polyester resins such as polyether ether ketone)
  • Polyether resins, polyphenylene sulfide, polyolefin resins such as polypropylene and polyethylene, acid-modified products thereof, styrene-acrylonitrile copolymers, ABS resins, etc. may also be used.
  • it when it is a polymer alloy, it means the case where the phenoxy resin is 40 wt % or more.
  • the epoxy resin composition adhered to at least part of the surface of the reinforcing fiber must contain phosphorus.
  • containing phosphorus means that the resin composition containing phosphorus contains phosphorus as a phosphorus compound, and the resin synthesized using a phosphorus compound contains phosphorus atoms in a state where phosphorus atoms are incorporated. and the case of containing. Of these, the former is the case where phosphorus is blended in the resin composition in the form of a phosphorus compound such as red phosphorus or a phosphate ester flame retardant. Phosphorus atoms exist as a compound separately from the epoxy resin in the epoxy resin composition, and are not incorporated into the epoxy resin skeleton.
  • phosphorus-containing epoxy resin for example, Nippon Steel Chemical & Material FX-289
  • phosphorus-containing phenoxy resin for example, Nippon Steel Chemical & Material ERF-001
  • Suitable examples include commercially available products into which atoms are introduced.
  • the phosphorus content contained in the resin composition adhering to the surface of the reinforcing fiber is preferably 1 wt% or more and 10 wt% or less. If the phosphorus content is less than 1 wt%, the effect of imparting flame retardancy to the resin to be filled may not be sufficient.
  • the phosphorus content is more preferably 2 wt % or more and 5 wt % or less.
  • the reinforcing filler of the present invention contains phosphorus, such as flame retardants such as magnesium hydroxide and antimony, nanocarbons such as carbon black, carbon nanotubes, graphene, and nanoclays such as montmorillonite, as long as the effects of the invention are not impaired. It may contain additives that are not
  • Methods for obtaining the reinforcing filler of the present invention include the following two methods.
  • Method (1) A method in which virgin reinforcing fibers are pulverized and then coated with a phosphorus-containing epoxy resin composition or its precursor.
  • Method (2) Fiber reinforcement using a phosphorus-containing epoxy resin composition as a matrix resin.
  • Method (1) The reinforcing fibers used in method (1) are desirably surface-treated in advance with a sizing agent. Also, commercially available chopped fibers and milled fibers may be used.
  • the fiber length of the reinforcing fibers is set to 20 ⁇ m or more and 10 mm or less, but the reinforcing fibers may first be coarsely pulverized and then finely pulverized to a predetermined fiber length.
  • the coarse pulverization at this time if the reinforcing fibers are in the state of continuous fibers or long fibers, it is desirable that the fiber length is cut to 50 mm or less, preferably 30 mm or less.
  • the method of pulverizing these materials is not particularly limited, and dry pulverization is performed using a device such as a hammer mill, pin mill, ball mill, or jet mill so as to obtain a predetermined fiber length.
  • the pulverized reinforcing fibers are coated with a resin on the fiber surface using a blender or mixer, and the phosphorus-containing resin is dissolved in a solvent or in a precursor solution, and is shaken by stirring or the like. It is supplied while being sprinkled over pulverized reinforcing fibers.
  • the reinforcing fibers While the reinforcing fibers are in a coarsely pulverized state, they may be agitated using a blender, a mixer, or the like to adhere the resin to the reinforcing fibers so as to have a predetermined fiber length.
  • Method (2) The fiber-reinforced plastic used in method (2) may be a new product, but it may be defective products or remnants discarded when manufactured as parts for OA equipment such as laptop computers or home appliances, or From the viewpoint of cost and environmental friendliness, it is preferable that the material is recovered after being used as a product.
  • the form of the reinforcing fiber base material used for the recovered fiber-reinforced plastic which is the raw material, is not particularly limited. Widely used for molded products using wood, prepreg and its offcuts, molded products molded by injection molding using fiber reinforced pellets, and spool runners generated during injection molding can be done. Recovered fiber-reinforced plastics composed of these reinforcing fiber base materials may be pulverized so that the reinforcing fibers have a predetermined fiber length.
  • the recovered fiber-reinforced plastic may contain various foreign substances such as paint chips, printed chips, and inserted metal chips on the surface. Plastic moldings can also be used.
  • the ratio of reinforcing fibers in general fiber-reinforced plastics is in the range of about 5 to 75 wt%, but in the present invention, fiber-reinforced plastics with a fiber content of 50 wt% or more can be used as raw materials for reinforcing fillers. preferable.
  • the amount of reinforcing fiber in the raw material is small, the resin ratio is large, so when used as a reinforcing filler, the effect of improving the mechanical strength of the compound that is the target resin for filling becomes small, which is preferable. do not have.
  • the recovered fiber-reinforced plastic as a raw material is coarsely pulverized.
  • the method of coarse pulverization is not particularly limited, but pulverized pieces of fiber-reinforced plastic are produced using a device such as a cutter mill, crusher mill, or hammer mill.
  • the prepreg, etc. in order to make it easier to crush, it may be previously hardened or subjected to a separate pretreatment such as freezing to make it easier to crush.
  • the pulverized pieces of the fiber-reinforced plastic are finely pulverized using a pulverizer capable of finely pulverizing until the fiber length of the reinforcing fibers becomes 10 mm or less, thereby forming a reinforcing filler.
  • the method of fine pulverization is not particularly limited, and the same equipment as for coarse pulverization may be used, but use of a ball mill or jet mill is preferred.
  • the fiber length of the reinforcing fibers is set to 20 ⁇ m or more.
  • the reinforcing filler may retain the structure of the reinforcing fiber base material of the recovered fiber-reinforced plastic as a raw material.
  • the reinforcing filler obtained in this way may be subjected to magnetic separation or a method using a density difference to remove resin powder and metal components, or may be classified to adjust the distribution of the fiber length. You may
  • the reinforcing filler of the present invention is used by being blended with the resin to be filled as it is, but the compound may be directly processed into a molded body using a heating press, or once pelletized, injection molding addition, etc. It may be processed into a molded body by
  • Pelletization is performed using a normal extruder. At that time, it is preferable to use pulverized pieces having a size of 3 mm or more, more preferably pulverized pieces having a size of 5 to 10 mm. If the size of the pulverized pieces is smaller than 3 mm, the pelletization by the extruder will be poor, and if the size of the pulverized pieces is larger than 10 mm, the fiber length and density will vary due to poor fibrillation of the fibers. sometimes becomes larger.
  • thermoplastic resin to be mixed with the reinforcing filler of the present invention may be used.
  • Thermoplastic resins include, for example, olefinic resins, polyamide (PA), polycarbonate (PC), polyester, polyarylene sulfide, polyamideimide, polyetherimide, polyethersulfone, polyphenylene ether and modified products thereof, polyphenylene sulfide, polyoxy Methylene, polyarylate, polyetherketone (PEK), polyetheretherketone (PEEK), polyetherketoneketone, vinyl chloride can be used.
  • Polyethylene (PE) and polypropylene (PP) can be used as the olefin resin. Modified polyolefins can also be used.
  • the modified polyolefin is not particularly limited as long as it is modified polyolefin to impart polarity.
  • polyolefin modified with (anhydrous) carboxylic acid, epoxide, oxazoline, isocyanate, carbodiimide, etc. can be used.
  • the polyolefin may be hydrogenated.
  • One or more types of the thermoplastic resin can be used, and it is preferable if it has affinity with the matrix resin of the fiber-reinforced plastic, which is the raw material of the reinforcing filler, and preferably has a similar chemical structure. It is preferable that they are of the same type, more preferably of the same kind.
  • the pellets can be used alone as they are, it is preferable to mix them with virgin resin or fiber thermoplastic resin pellets and mold them into desired moldings using an injection molding machine.
  • the total amount of pellets (A) using the reinforcing filler of the present invention and pellets (B) not containing the reinforcing filler of the present invention is 100 weight. It is preferable to adjust the mixing ratio of the pellets (A) to a range of 30 wt% or more and less than 80 wt%, and the mixing ratio of the pellets (A) to 40 wt% or more and 70 wt% or less. .
  • the type of virgin resin mixed with the pellets or the matrix resin of the fiber-reinforced thermoplastic resin pellets is not particularly limited as long as it has affinity with the matrix resin of the fiber-reinforced plastic that is the raw material of the reinforcing filler. However, it is preferable that they have similar chemical structures, and more preferably that they are resins of the same kind.
  • a plasticizer for the binder resin in addition to the reinforcing filler and the virgin resin of the present invention, a plasticizer for the binder resin, an adhesion improving agent, a compatibilizing agent, a dispersing agent for the regenerated filling fine particles, a heat stabilizer, a foaming agent, etc. agents, coloring agents, lubricants, antistatic agents, other inorganic or organic fillers, flame retardants/flame retardants, surfactants, release agents, thickeners, and the like. Each of these may be used alone or in combination of two or more.
  • the molded article obtained using the reinforcing filler of the present invention is used for information equipment-related housings, mainly notebook computer housings, and housings that require high rigidity and high EMI shielding properties such as mobile phones. It can also be applied to a wide range of fields such as building materials, structural materials for aircraft, railroad vehicles, and automobiles.
  • Carbon fiber reinforced plastic (carbon fiber weight content 59.5 wt%, phosphorus flame retardant The weight content rate of 1.2 wt% and the molded product density of 1.64 g/cm 3 ) is roughly pulverized using a cutter mill. Reinforcing fillers with (size) between 5 mm and 10 mm were obtained.
  • test piece having a length of 125 mm, a width of 13 mm, and a thickness of 3.0 mm was produced under the same molding conditions, and subjected to a UL94V test according to the UL94V combustion test standard. Table 1 shows the results.
  • Example 2 A test piece was prepared in the same manner as in Example 1, except that the mixing ratio of the reinforcing filler and the phenoxy resin was changed to the conditions shown in Table 1, and the same evaluation was performed. Table 1 shows the results.
  • Example 4 30 parts by mass of the reinforcing filler obtained in the same manner as in Example 1 was kneaded with 70 parts by mass of a polyphenylene sulfide resin (PPS, TORELINA A900 manufactured by Toray Industries, Inc.), which is a resin to be filled, with a twin-screw extruder, and then pelletized.
  • a polyphenylene sulfide resin PPS, TORELINA A900 manufactured by Toray Industries, Inc.
  • TORELINA A900 manufactured by Toray Industries, Inc.
  • test piece having a length of 125 mm, a width of 13 mm, and a thickness of 3.0 mm was produced under the same molding conditions, and subjected to a UL94V test according to the UL94V combustion test standard. Table 1 shows the results.
  • Example 5 30 parts by mass of the reinforcing filler obtained in the same manner as in Example 1 was kneaded with 70 parts by mass of polypropylene resin (PP, SunAllomer PM600A manufactured by SunAllomer), which is the resin to be filled, with a twin-screw extruder, and then pelletized to 100 tons.
  • PP polypropylene resin
  • PP SunAllomer PM600A manufactured by SunAllomer
  • a twin-screw extruder Using an injection molding machine, a multi-purpose test piece type A1 conforming to JIS K7139 was produced at a cylinder temperature of 210°C, an injection pressure of 35 MPa, and a mold temperature of 45°C, and bending physical properties were evaluated.
  • test piece having a length of 125 mm, a width of 13 mm, and a thickness of 3.0 mm was produced under the same molding conditions, and subjected to a UL94V test according to the UL94V combustion test standard. Table 1 shows the results.
  • Example 1 A molded body (multi-purpose test piece type A1 and test piece) was produced in the same manner as in Example 1 except that chopped fiber (pitch-based carbon fiber XN-80, fiber length 12 mm, manufactured by Nippon Graphite Fiber Co., Ltd.) was used instead of the reinforcing filler. Then, various evaluations were performed. Table 1 shows the results. In addition, flame-retardant evaluation x in Table 1 means that there is no self-extinguishing property.
  • the reinforcing filler of the present invention can impart flame retardancy by blending with the resin to be filled, and a molded article having excellent mechanical properties can be obtained. Moreover, according to the present invention, the fiber-reinforced plastic can be recycled as a molded product again.

Abstract

強化繊維を用いて比較的安価に難燃性を付与することができる強化充填材、及びそれを得る方法を提供する。 充填対象樹脂に混錬することによりUL規格のV-0若しくはV-1又はV-2クラスの難燃性を付与することが可能な強化充填材であって、前記強化充填材は、繊維長が20μm以上、10mm以下の強化繊維を含み、該強化繊維の表面の少なくとも一部にリンを含有するエポキシ系樹脂組成物が付着した強化充填材であり、また、リンを含有する樹脂組成物をマトリックス樹脂とした繊維強化樹脂材料を粉砕することにより、上記強化充填材を得る強化充填材の製造方法である。

Description

強化充填材及びその製造方法
 本発明は、樹脂に配合することによって機械物性の向上だけでなく、難燃性を付与することのできる強化充填材及びその製造方法に関するものである。
 難燃性の付与を目的に樹脂に配合される強化充填材としては、水酸化アルミニウムや水酸化マグネシウムなどの無機水酸化物のほか、赤燐などのリン化合物が挙げられる。
 一方、熱伝導性を向上させることによって、難燃性を図る手法もあり、例えば炭素繊維強化樹脂材料は、炭素繊維の高い熱伝導性によって火炎などの熱を速やかに拡散させることで燃えにくくすることができる。
 炭素繊維にはチョップドタイプやミルドタイプと呼ばれる強化充填材が存在するが、これらは連続繊維に比べると繊維長が短いため、配合量を多くしなければならない。しかしながら、熱伝導性の高い炭素繊維は黒鉛化が進んでいるため、樹脂との配合性に劣る。加えて、これらは炭素繊維を原料とするために高価である。
 そこで、使用済みの炭素繊維強化プラスチック(CFRP)を粉砕して強化充填材として利用する検討が行われている(例えば特許文献1や特許文献2参照)。また、樹脂への配合の改善については、使用済み繊維強化ポリマー材料を粉砕し、その粉砕粒子をベース樹脂に分散させて、エポキシ官能基で終端されたCFRP破砕粒子を得る方法が開示されている(特許文献3参照)。
 なお、熱可塑性樹脂からなる成形品を得るにあたり、その弾性率を向上させるために炭素繊維等の繊維をフィラーとして含有させると共に、難燃性を高めるために赤燐系難燃剤を添加した樹脂組成物を用いることが知られている(特許文献4参照)。
特開2006-218793号公報 特許6726055号公報 特開2021-133685号公報 特開2001-131427号公報
 しかしながら、特許文献1にて得られる粉砕物は、長繊維ペレットからの射出成型品であることから、粉砕物は粗粒かつ炭素繊維量が少なく、樹脂に配合しても強化充填材としての効果は少ない。
 また、特許文献2にて得られる強化充填材は難燃性付与部材に用いられると開示されているが、その強化充填材に難燃剤を含有させることができるとしていることによるものであり、強化充填材自体が難燃性を持つとはされていない。
 更に、特許文献3の方法では、エポキシ樹脂を適用してCFRP粉砕粒子を官能化させることで、それを硬化樹脂内に分散させた際に、化学的に結合したCFRP破砕粒子のネットワークを有した硬化物が得られるが、硬化物に難燃性を付与することはできない。
 一方、特許文献4には、熱可塑性樹脂と炭素繊維による繊維状フィラーと難燃剤を含み、V-0の難燃性を達成する樹脂組成物が開示されているが、各材料は全て別個であり、かつバージンな状態で配合されて成形用樹脂組成物と使用されるものであり、繊維状フィラーへ事前に難燃剤を含む樹脂を付着させて強化充填材として使用することやCFRP廃材をリサイクル使用することは記載されていない。
 そこで、本発明は、強化繊維を用いて比較的安価に難燃性を付与することができる強化充填材、及びそれを得る方法を提供することを目的とするものである。
 すなわち、本発明の要旨は次のとおりである。
(1)充填対象樹脂に混錬することによりUL規格のV-0若しくはV-1又はV-2クラスの難燃性を付与することが可能な強化充填材であって、
 前記強化充填材は、繊維長が20μm以上、10mm以下の強化繊維を含み、該強化繊維の表面の少なくとも一部にリンを含有するエポキシ系樹脂組成物が付着していることを特徴とする強化充填材。
(2)リンを含有するエポキシ系樹脂組成物が、リン化合物としてリンを含有するか、又は、リン化合物を用いて合成された樹脂にリン原子が組み込まれた状態でリンを含有する(1)に記載の強化充填材。
(3)前記強化繊維が炭素繊維である(1)又は(2)に記載の強化充填材。
(4)エポキシ系樹脂組成物が従来型のフェノキシ樹脂または現場重合型フェノキシ樹脂のいずれかを含有する(1)~(3)のいずれかに記載の強化充填材。
(5)(1)~(4)のいずれかに記載の強化充填材を製造する方法であって、
 リンを含有するエポキシ系樹脂組成物をマトリックス樹脂とした繊維強化樹脂材料を、該繊維強化樹脂材料における強化繊維の繊維長が20μm以上、10mm以下となるように粉砕することを特徴とする強化充填材の製造方法。
(6)リンを含有するエポキシ系樹脂組成物をマトリックス樹脂とした繊維強化樹脂材料が、廃棄・回収された繊維強化樹脂材料である(5)に記載の強化充填材の製造方法。
(7)(1)~(4)のいずれかに記載の強化充填材を充填対象樹脂に配合して得られて、UL規格のV-0若しくはV-1又はV-2クラスの難燃性を示す成形体。
(8)(1)~(4)のいずれかに記載の強化充填材を充填対象樹脂であるバージンの熱可塑性樹脂に混錬して得られたペレット材。
(9)(8)に記載のペレット材を単独で使用し、もしくは、バージンの熱可塑性樹脂からなる熱可塑性樹脂ペレットを併用して成形された成形体。
 本発明の強化充填材によれば、該強化充填材と樹脂との親和性が高いために、充填対象となる樹脂(充填対象樹脂)への高充填が可能であり、尚且つ、リンを含有する樹脂組成物が付着しているために充填対象樹脂への配合時に新たな難燃剤の添加が少なくできたり、不要とすることができる。
 また、本発明の強化充填材を得るにあたり、使用済みの繊維強化樹脂材料を原料とすることもできることから安価であり、しかも、高温や有機溶剤を必要とするプロセスが不要であるために環境にやさしい。
 以下、本発明について詳しく説明する。
 本発明の強化充填材は、繊維長が20μm以上、10mm以下の強化繊維を含み、その表面の少なくとも一部にリンを含有するエポキシ系樹脂組成物が付着していることを特徴として、充填対象の樹脂である充填対象樹脂に混錬することによりUL規格のV-0若しくはV-1又はV-2クラスの難燃性を付与することが可能な強化充填材である。
 ここで、UL規格(UL94規格)とは、装置や機器等のプラスチック材料について、燃え難さの度合いを示すもの(装置及び機器のプラスチック材料の燃焼試験規格)であり、所定の試験方法における燃焼の挙動が各判定基準で表される。一般に、難燃性に優れる方から順に5VA>5VB>V-0>V-1>V-2>HBの等級で分けられて、V-2以上は自己消化性がある(火元が離れれば消える)とされる。試験方法等の詳細は後述の実施例で示したとおりであり、本発明では、強化充填材と各種バージン樹脂を所定の混合比で混錬してペレット化した後、射出成型機を用いて所定の条件で試験片を得て、評価した。
 本発明の強化充填材における強化繊維は、炭素繊維やガラス繊維のほか、アルミナ繊維やチラノ繊維、バサルト繊維などのセラミック繊維が適しているが、好ましくは炭素繊維である。炭素繊維の種類については、PAN系炭素繊維、ピッチ系炭素繊維のいずれであっても、両者が混ざっていてもよいが、最も好ましくは熱伝導性が高いピッチ系炭素繊維のみであることが好ましい。
 強化繊維の繊維長は20μm以上、10mm以下である。繊維長が20μm未満であると、炭素繊維のフィラメント径と同じ程度となるため、比表面積の増大や繊維表面に付着する樹脂組成物が少なくなることによる樹脂(充填対象樹脂)への混錬性の低下や難燃性の付与が困難となる。一方、繊維長が10mmを超えると繊維の解繊不良による繊維長や密度のバラつきが大きくなることで成形体の外観不良や物性の不均一性が生じるために適さない。
 繊維長は好ましくは20μm以上、500μm以下であり、より好ましくは20μm以上、300μm以下である。
 本発明の強化充填材は、強化繊維の表面の少なくとも一部にリンを含有するエポキシ樹脂組成物(以下、単に樹脂組成物という場合がある)が付着していることが特徴である。樹脂組成物の付着状態については、走査型電子顕微鏡(SEM)を用いた本発明の強化充填材の表面観察にて、強化繊維の表面の10%以上を樹脂組成物が覆っていることが望ましく、50%以上が被覆されていることがより好ましい。また、強化繊維の全面が完全に樹脂に覆われていても構わない。
 なお、本発明における強化充填材は、難燃性の付与を目的とする充填対象の充填対象樹脂に配合することが想定されたものであることから、樹脂組成物が付着した強化繊維の集合体として存在する。そのため、強化繊維の表面に樹脂組成物が全く付着していないものが混入していても構わないが、その量は無作為に抽出した強化繊維の100粒子についてSEM観察を行った結果30個以下であることが望ましく、20個以下であることがより望ましい。
 一方、樹脂組成物の付着量については、強化充填材100gあたりとして20g以上、50g以下であることが望ましく、好ましくは30g以上、40g以下である。
 このように強化繊維に付着する樹脂組成物の付着率や付着量が上記範囲内にあることによって、本発明の強化充填材は充填対象樹脂へのなじみが良好であり、良好な混錬性と難燃性を付与が可能となるほか、過剰な樹脂付着が無いので熱伝導性の付与も可能となる。
 なお、樹脂付着量の測定は燃焼法、例えば、強化充填材を陶製るつぼに入れてマッフル炉を用いて400℃以上500℃以下で大気雰囲気下で数時間加熱することで樹脂分を焼却し、るつぼ内に残った灰分の重量を測定する方法によって算出することができる。
 強化繊維に付着しているエポキシ系樹脂組成物(リンを含有するエポキシ系樹脂組成物)は熱硬化型エポキシ樹脂であっても、熱可塑性樹脂のフェノキシ樹脂のいずれであってもよい。但し、充填対象樹脂に配合して成形加工を行った際に、熱可塑性樹脂であれば加工時の熱によって変形が可能であり、成形体の表面品位が向上したり、内部空隙を減らすことができるため、好ましく用いられる。
 なお、エポキシ系樹脂であり、かつ熱可塑性樹脂であるフェノキシ樹脂には予め重合された状態で提供される従来型のフェノキシ樹脂と現場重合型フェノキシ樹脂の2種類がある。本発明では、そのいずれであっても構わないし、これらフェノキシ樹脂を主成分としたその他の樹脂(ポリアミド、ポリカーボネート、ポリエチレンテレフタレートやポリブチレンテレフタレートなどの芳香族ポリエステル樹脂、ポリエーテルエーテルケトンなどの芳香族ポリエーテル樹脂、ポリフェニレンサルフェイド、ポリプリピレンやポリエチレンなどのポリオレフィン樹脂及びその酸変性物、スチレン-アクリロニトリル共重合体、およびABS樹脂等)とのポリマーアロイであっても構わない。なお、ポリマーアロイであるときは、フェノキシ樹脂が40wt%以上である場合を意味する。
 また、強化繊維の表面の少なくとも一部に付着しているエポキシ系樹脂組成物はリンを含有することを必須とする。
 ここで「リンを含有する」ということは、リンを含有する樹脂組成物が、リン化合物としてリンを含有する場合と、リン化合物を用いて合成された樹脂にリン原子が組み込まれた状態でリンを含有する場合とが挙げられる。このうち、前者については、リンが例えば赤燐、リン酸エステル系難燃剤のようなリン化合物の状態で樹脂組成物に配合されている場合である。リン原子はエポキシ系樹脂組成物中でエポキシ系樹脂とは別個に化合物として存在しており、前記エポキシ樹脂骨格には組み込まれていない状態である。一方、後者について、例えば、リン含有エポキシ樹脂(例えば、日鉄ケミカル&マテリアル製 FX-289)、リン含有フェノキシ樹脂(例えば、日鉄ケミカル&マテリアル製 ERF-001)等のように樹脂骨格にリン原子が導入された市販品を好適な例として挙げることができる。
 強化繊維の表面に付着している樹脂組成物に含まれるリン含有量は1wt%以上、10wt%以下であることが好ましい。リン含有量が1wt%未満であると充填対象樹脂への難燃性付与の効果が十分とならないおそれがあり、反対に10wt%を超えると成形体の機械強度等の物性低下のおそれがある。なお、リン含有量はより好ましくは2wt%以上、5wt%以下である。
 本発明の強化充填材は、発明の効果を損ねない範囲で、水酸化マグネシウムやアンチモンなどの難燃剤や、カーボンブラックやカーボンナノチューブ、グラフェンなどのナノカーボン、モンモリロナイトのようなナノクレイといった、リンを含有しない添加物を含んでいてもよい。
 次に、本発明の強化充填材を得るための方法について説明する。
 本発明の強化充填材を得る方法としては、以下の2つの方法が挙げられる。
 方法(1)バージンの強化繊維を粉砕したのち、リンを含むエポキシ系樹脂組成物またはその前駆体でコーティングする方法
 方法(2)リンを含有するエポキシ系樹脂組成物をマトリックス樹脂として用いた繊維強化プラスチック(繊維強化樹脂材料)における強化繊維を所定の繊維長となるように粉砕する方法
[方法(1)]
 方法(1)で使用する強化繊維は予めサイジング剤で表面処理がされていることが望ましい。また、市販されているチョップドファイバーやミルドファイバーを使用してもよい。
 強化繊維の繊維長は20μm以上、10mm以下となるようにするが、まず初めに、強化繊維を粗粉砕した上で、所定の繊維長となるように微粉砕してもよい。このときの粗粉砕について、強化繊維が連続繊維もしくは長繊維の状態であれば50mm以下、好ましくは30mm以下の繊維長に裁断されていることが望ましい。これらの粉砕方法については特に限定されず、例えばハンマーミルやピンミル、ボールミル、ジェットミル等の装置を用いて所定の繊維長となるように乾式粉砕される。
 次いで、粉砕された強化繊維は、ブレンダーやミキサーを用いて繊維表面に樹脂を付着させるが、リンを含む樹脂は溶剤で溶解された状態もしくは前駆体溶液の状態で、攪拌などにより揺動された強化繊維の粉砕物に散布しながら供給される。なお、強化繊維が粗粉砕の状態のまま、ブレンダーやミキサー等を用いて攪拌して樹脂を付着させながら、所定の繊維長となるようにしてもよい。
 上記のようにしてリンを含有したエポキシ系樹脂組成物の散布後、必要に応じて加熱処理を行って溶剤の揮散もしくは樹脂の重合反応を行い、本発明の強化充填材とするが、再粉砕することで凝集粒子の解砕を行ったり、風力分級などにより繊維長の分布を調整してもよい。
[方法(2)]
 方法(2)で使用する繊維強化プラスチックは、新品であっても構わないが、ノートパソコンなどのOA機器や家電製品等の部品などとして製造された際に廃棄される不良品や端材、または製品として使用された後、回収されたものであることがコスト面や環境への配慮の観点から好ましい。
 原料となる回収繊維強化プラスチックに使用される強化繊維基材の形態は特に限定されるものではなく、一方向基材やクロス材といった連続繊維系の強化繊維基材やカーボンフェルトなどの短繊維基材を用いた成形加工品やプリプレグ及びその端材であったり、繊維強化ペレットを用いて射出成形方法等により成形加工された成形品およびそれらの射出成形時に発生するスプールランナー等、広く使用することができる。これらの強化繊維基材からなる回収繊維強化プラスチックを強化繊維が所定の繊維長となるように粉砕すればよい。
 なお、回収繊維強化プラスチックには、表面に塗料片、印刷片やインサートされた金属片等各種の異物を混入していることもあるが、本発明においては、これらの異物が混入した炭素繊維強化プラスチック成形品も用いることが出来る。
 一般的な繊維強化プラスチックにおける強化繊維の割合は、およそ5~75wt%の範囲であるが、本発明においては50wt%以上の繊維含有量の繊維強化プラスチックを強化充填材の原料として使用することが好ましい。原料中の強化繊維量が少ないということは樹脂割合の方が多いこととなるために、強化充填材として使用した際に充填対象樹脂である配合物に対する機械強度の向上効果が小さくなるために好ましくない。
 方法(2)における強化充填材の製造においては、まず、原料となる回収繊維強化プラスチックの粗粉砕を行う。粗粉砕の方法については特に限定されないが、例えばカッターミルやクラッシャーミル、ハンマーミル等の装置を用いて繊維強化プラスチックの粉砕片を作製する。
 なお、プリプレグなどについては、破砕をしやすくするために予め硬化を進めておいたり、冷凍するなどして破砕しやすくする事前処理を別途行っても良い。
 続いて、繊維強化プラスチックの粉砕片を微粉砕が可能な粉砕機を用いて、強化繊維の繊維長が10mm以下となるまで微粉砕することにより強化充填材とする。微粉砕の方法も特に限定されるものではなく、粗粉砕と同じ装置を用いて行ってもよいが、ボールミルやジェットミルの使用が好ましい。但し、この微粉砕では、強化繊維の繊維長は20μm以上となるようにする。
 なお、強化充填材は、原料となる回収繊維強化プラスチックの強化繊維基材の構造が残っていてもよい。
 こうして得られた強化充填材は、必要に応じて磁力選別や密度差を利用した方法などを用いて樹脂粉や金属成分を除去してもよいし、分級などを行って繊維長の分布を調整してもよい。
 本発明の強化充填材は、そのまま充填対象樹脂に配合して使用されるが、コンパウンドをそのまま加熱プレス機を用いて成形体に加工してもよいし、一旦ペレット化したのち、射出成型加法などにより成形体に加工してもよい。
 ペレット化は、通常の押し出し機を用いて行われる。その際、大きさが3mm以上の粉砕片を使用することが好ましく、さらに好ましくは大きさが5~10mmの粉砕片を使用する。粉砕片の大きさが3mmより小さいと、押し出し機でペレット化する際に噛込が悪くなり、また、粉砕片の大きさが10mmより大きいと、繊維の解繊不良による繊維長や密度のバラつきが大きくなるということがある。
 ペレット化に際して、本発明の強化充填材に混合される充填対象である熱可塑性樹脂を用いても良い。熱可塑性樹脂は、例えば、オレフィン系樹脂、ポリアミド(PA)、ポリカーボネート(PC)、ポリエステル、ポリアリーレンスルフィド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルスルホン、ポリフェニレンエーテルおよびその変性物、ポリフェニレンサルファイド、ポリオキシメチレン、ポリアリレート、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン、塩化ビニルを用いることができる。オレフィン系樹脂には、ポリエチレン(PE)、ポリプロピレン(PP)を用いることができる。また変性ポリオレフィンを用いることもできる。変性ポリオレフィンとしては、極性を付与するようポリオレフィンを変性したものであれば特に限定されないが、例えば(無水)カルボン酸、エポキシド、オキサゾリン、イソシアネート、カルボジイミド等で変性されたポリオレフィンを用いることができる。なお、ポリオレフィンは水素添加されていてもよい。前記熱可塑性樹脂は、1種以上使用することができ、強化充填材の原料である繊維強化プラスチックのマトリックス樹脂と親和性のあるものであれば好適であり、好ましくは化学構造が類似しているものがよく、より好ましくは同一の種類の樹脂であることがよい。
 ペレットはそのまま単独で使用することもできるが、バージンの樹脂や繊維熱可塑性樹脂ペレットと混合して、射出成形機を用いて、所望の成形体として成形することが好ましい。なお、バージンの樹脂や繊維熱可塑性樹脂ペレットと混合する際は、本発明の強化充填材を用いたペレット(A)と本発明の強化充填材を含まないペレット(B)の合計量を100重量部としたときのペレット(A)の混合率を30wt%以上、80wt%未満の範囲内にすることが好ましく、ペレット(A)の混合率を40wt%以上、70wt%以下に調節することが好ましい。ペレット(A)の混合率が30wt%未満であると、成形体にV-2以上の難燃性を付与することができなくなり、混合率が80wt%以上であると樹脂流動性不足により射出成形が困難になる。
 なお、ペレットと混合されるバージンの樹脂または繊維強化熱可塑性樹脂ペレットのマトリックス樹脂の種類は、強化充填材の原料である繊維強化プラスチックのマトリックス樹脂と親和性のあるものであれば特に限定はないが、好ましくは化学構造が類似しているものがよく、より好ましくは同一の種類の樹脂であることがよい。
 成形体の製造に際しては、本発明の強化充填材とバージン樹脂の他に、バインダー樹脂の可塑剤や密着性向上材、相溶化材であったり、再生充填微粒子の分散剤、熱安定剤、発泡剤、着色剤、滑材、帯電防止剤、他の無機若しくは有機のフィラー、難燃剤・防炎剤、界面活性剤、離型剤、増粘安定剤等を含有させることができる。これらは、それぞれ1種の使用でもよく2種以上の併用使用でもよい
 本発明の強化充填材を用いて得られた成形体は、ノートパソコン用筐体を主体とした情報機器関連筐体や携帯電話等の高剛性、高EMIシールド性が必要な筐体等の用途や、建材、航空機や鉄道車両、自動車の構造材料など幅広い分野に適用が可能である。
 以下に、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明は、その要旨を超えない限りこれらの実施例に限定されるものではない。また、以下の実施例等で用いた評価は、次の方法により行った。
[樹脂付着量]
 強化充填材5gを予め秤量した陶製ルツボに入れて、電子天秤を用いて重量を測定したのち、マッフル炉にて450℃で12hr強熱し、デシケータ中で常温まで放冷したのちに電子天秤で重量を測定して、強熱前後の重量減少分を樹脂量として算出した。
[機械強度]
 JIS K 7074 炭素繊維強化プラスチックの曲げ試験方法 に基づいて成形体の曲げ強度と弾性率を測定した。
[難燃性]
 米国UL規格のUL94に規定されている垂直燃焼性試験(94V-0)に準拠し、長さ125mm、幅13mm、厚み3.0mmの試験片で評価した。
(実施例1)
 リン系難燃剤を含有する現場重合型フェノキシ樹脂プリプレグ(日鉄ケミカル&マテリアル製 NS-TEPreg 難燃タイプ)により成形された炭素繊維強化プラスチック(炭素繊維重量含有率59.5wt%、リン系難燃剤重量含有率1.2wt%、成形品密度1.64g/cm)を、カッターミルを用いて粗粉砕し、次いで、得られた粗破砕品をボールミルを用いて粉砕し、スクリーンを用いて形状(大きさ)が5mm~10mmの強化充填材を得た。
 得られた強化充填材30質量部を充填対象樹脂であるフェノキシ樹脂(日鉄ケミカル&マテリアル製 YP-50S)70質量部と二軸押し出し機により混錬した後ペレット化し、100トン射出成型機を用いてシリンダ温度180℃、射出圧力15MPa、金型温度30℃にてJIS K7139に準拠する多目的試験片タイプA1を作製して曲げ物性評価を行った。また、同成形条件により長さ125mm、幅13mm、厚み3.0mmの試験片を作製し、UL94V燃焼試験規格に則りUL94V試験を行った。結果を表1に示す。
(実施例2および3)
 強化充填材とフェノキシ樹脂の混合比率を表1に示す条件に変更した以外は、実施例1と同様の方法で試験片を作製し、同様の評価を実施した。結果を表1に示す。
(実施例4)
 実施例1と同様にして得られた強化充填材30質量部を充填対象樹脂であるポリフェニレンサルファイド樹脂(PPS、東レ製 トレリナ A900)70質量部と二軸押し出し機により混錬した後ペレット化し、100トン射出成型機を用いてシリンダ温度300℃、射出圧力15MPa、金型温度150℃にてJIS K7139に準拠する多目的試験片タイプA1を作製して曲げ物性評価を行った。また、同成形条件により長さ125mm、幅13mm、厚み3.0mmの試験片を作製し、UL94V燃焼試験規格に則りUL94V試験を行った。結果を表1に示す。
(実施例5)
 実施例1と同様にして得られた強化充填材30質量部を充填対象樹脂であるポリプロピレン樹脂(PP、サンアロマー製 サンアロマー PM600A)70質量部と二軸押し出し機により混錬した後ペレット化し、100トン射出成型機を用いてシリンダ温度210℃、射出圧力35MPa、金型温度45℃にてJIS K7139に準拠する多目的試験片タイプA1を作製して曲げ物性評価を行った。また、同成形条件により長さ125mm、幅13mm、厚み3.0mmの試験片を作製し、UL94V燃焼試験規格に則りUL94V試験を行った。結果を表1に示す。
[比較例1]
 強化充填材の代わりにチョップドファイバー(日本グラファイトファイバー製 ピッチ系炭素繊維 XN-80 繊維長12mm)を使用した以外は実施例1と同様にして成形体(多目的試験片タイプA1および試験片)を作製して各種評価を行った。結果を表1に示す。なお、表1中における難燃性の評価×は自己消化性が無いことを表す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すとおり、本発明の強化充填材は、充填対象樹脂に配合することによって難燃性を付与することが可能であり、機械特性に優れた成形体を得ることができる。また、本発明によれば、繊維強化プラスチックを再度成形体としてリサイクルすることができる。
 

Claims (9)

  1.  充填対象樹脂に混錬することによりUL規格のV-0若しくはV-1又はV-2クラスの難燃性を付与することが可能な強化充填材であって、
     前記強化充填材は、繊維長が20μm以上、10mm以下の強化繊維を含み、該強化繊維の表面の少なくとも一部にリンを含有するエポキシ系樹脂組成物が付着していることを特徴とする強化充填材。
  2.  リンを含有するエポキシ系樹脂組成物が、リン化合物としてリンを含有するか、又は、リン化合物を用いて合成された樹脂にリン原子が組み込まれた状態でリンを含有する請求項1に記載の強化充填材。
  3.  前記強化繊維が炭素繊維である請求項1又は2に記載の強化充填材。
  4.  エポキシ系樹脂組成物が従来型のフェノキシ樹脂または現場重合型フェノキシ樹脂のいずれかを含む請求項1又は2に記載の強化充填材。
  5.  請求項1~4のいずれかに記載の強化充填材を製造する方法であって、
     リンを含有するエポキシ系樹脂組成物をマトリックス樹脂とした繊維強化樹脂材料を、該繊維強化樹脂材料における強化繊維の繊維長が20μm以上、10mm以下となるように粉砕することを特徴とする強化充填材の製造方法。
  6.  リンを含有するエポキシ系樹脂組成物をマトリックス樹脂とした繊維強化樹脂材料が、廃棄・回収された繊維強化樹脂材料である請求項5に記載の強化充填材の製造方法。
  7.  請求項1~4のいずれかに記載の強化充填材を充填対象樹脂に配合して得られて、UL規格のV-0若しくはV-1又はV-2クラスの難燃性を示す成形体。
  8.  請求項1~4のいずれかに記載の強化充填材を充填対象樹脂であるバージンの熱可塑性樹脂に混錬して得られたペレット材。
  9.  請求項8に記載のペレット材を単独で使用し、もしくは、バージンの熱可塑性樹脂からなる熱可塑性樹脂ペレットを併用して成形された成形体。
     
PCT/JP2023/003850 2022-02-09 2023-02-06 強化充填材及びその製造方法 WO2023153372A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022018884 2022-02-09
JP2022-018884 2022-02-09

Publications (1)

Publication Number Publication Date
WO2023153372A1 true WO2023153372A1 (ja) 2023-08-17

Family

ID=87564321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003850 WO2023153372A1 (ja) 2022-02-09 2023-02-06 強化充填材及びその製造方法

Country Status (2)

Country Link
TW (1) TW202344660A (ja)
WO (1) WO2023153372A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02160646A (ja) * 1988-06-14 1990-06-20 Asahi Fiber Glass Co Ltd ポリフェニレンサルファイド補強用ガラス繊維束並びに樹脂体の製造方法
JP2007045957A (ja) * 2005-08-11 2007-02-22 Nbl Kk 接着剤用樹脂、それらを含有するfrp樹脂。
JP2007231073A (ja) * 2006-02-28 2007-09-13 Toray Ind Inc 難燃性炭素繊維強化複合材料およびその製造方法
JP2013011050A (ja) * 2011-05-30 2013-01-17 Toray Ind Inc 複合強化繊維束、その製造方法、および成形材料
JP2015007300A (ja) * 2013-06-26 2015-01-15 東レ株式会社 サイジング剤塗布炭素繊維およびその製造方法、炭素繊維強化複合材料
JP2019065205A (ja) * 2017-10-02 2019-04-25 トヨタ自動車株式会社 炭素繊維回収方法
JP2019136932A (ja) * 2018-02-09 2019-08-22 アイカーボン株式会社 炭素繊維及び炭素繊維強化樹脂組成物の製造方法
JP2021138077A (ja) * 2020-03-06 2021-09-16 東レ株式会社 リサイクル炭素繊維束

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02160646A (ja) * 1988-06-14 1990-06-20 Asahi Fiber Glass Co Ltd ポリフェニレンサルファイド補強用ガラス繊維束並びに樹脂体の製造方法
JP2007045957A (ja) * 2005-08-11 2007-02-22 Nbl Kk 接着剤用樹脂、それらを含有するfrp樹脂。
JP2007231073A (ja) * 2006-02-28 2007-09-13 Toray Ind Inc 難燃性炭素繊維強化複合材料およびその製造方法
JP2013011050A (ja) * 2011-05-30 2013-01-17 Toray Ind Inc 複合強化繊維束、その製造方法、および成形材料
JP2015007300A (ja) * 2013-06-26 2015-01-15 東レ株式会社 サイジング剤塗布炭素繊維およびその製造方法、炭素繊維強化複合材料
JP2019065205A (ja) * 2017-10-02 2019-04-25 トヨタ自動車株式会社 炭素繊維回収方法
JP2019136932A (ja) * 2018-02-09 2019-08-22 アイカーボン株式会社 炭素繊維及び炭素繊維強化樹脂組成物の製造方法
JP2021138077A (ja) * 2020-03-06 2021-09-16 東レ株式会社 リサイクル炭素繊維束

Also Published As

Publication number Publication date
TW202344660A (zh) 2023-11-16

Similar Documents

Publication Publication Date Title
Kuang et al. Creating poly (lactic acid)/carbon nanotubes/carbon black nanocomposites with high electrical conductivity and good mechanical properties by constructing a segregated double network with a low content of hybrid nanofiller
CN110591283B (zh) 导电石墨烯复合材料及其制备方法和应用
CN101709126B (zh) 一种阻燃抗静电abs改性树脂
KR102322498B1 (ko) 스크랩 또는 미사용 에폭시 수지 프리프레그를 재생하는 방법
CN112226057A (zh) 天然矿物改性可降解高分子阻燃复合材料及其制备方法
JP5310296B2 (ja) ポリアミド樹脂組成物からなるペレットおよび難燃性樹脂成形品
Zhang et al. Design and fabrication of long‐carbon‐fiber‐reinforced polyamide‐6/nickel powder composites for electromagnetic interference shielding and high mechanical performance
US20080075953A1 (en) Electrically Conductive Composites with Resin and Vgcf, Production Process, and Use Thereof
JP2001081318A (ja) 難燃性ポリアミド樹脂組成物およびその成形品
JP2008150485A (ja) 成形用繊維強化樹脂組成物および繊維強化樹脂成形品
JP2001040229A (ja) 難燃性樹脂組成物、およびその成形品
CN107418197A (zh) 一种导热尼龙工程塑料及其制备方法
JP2006218793A (ja) 炭素繊維強化熱可塑性樹脂成形品のリサイクル方法
CN111499973B (zh) 一种导电碳纤维树脂组合物及其制备方法
WO2023153372A1 (ja) 強化充填材及びその製造方法
JP2006181776A (ja) 成形用繊維強化難燃樹脂混合物および成形品
CN1792632A (zh) 一种抗静电复合板及其制备方法
JP2000230117A (ja) 難燃性樹脂組成物、その長繊維ペレットおよびその成形品
JP2002234950A (ja) 電磁波シールド成形品および電磁波シールド成形品用熱可塑性樹脂組成物
CN114350133A (zh) 具有阻燃性能的抗静电热塑性材料、制备方法以及应用
Akram et al. Potential of carbon particle reinforced polypropylene formed in-situ through the pyrolysis of carboxymethylcellulose
Santhosh et al. Mechanical and fire performance of aluminium hydroxide filled E-Glass/phenolic hybrid composites
JP2006097005A (ja) 導電性樹脂組成物及びその製造方法
Gao et al. Terminal group effects of DOPO-conjugated flame retardant on polyamide 6: Thermal stability, flame retardancy and mechanical performances
CN104672843A (zh) 无卤阻燃抗静电改性pc及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752836

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023580243

Country of ref document: JP