WO2023152823A1 - 水中油型乳化組成物、および該水中油型乳化組成物が用いられた食品 - Google Patents

水中油型乳化組成物、および該水中油型乳化組成物が用いられた食品 Download PDF

Info

Publication number
WO2023152823A1
WO2023152823A1 PCT/JP2022/005105 JP2022005105W WO2023152823A1 WO 2023152823 A1 WO2023152823 A1 WO 2023152823A1 JP 2022005105 W JP2022005105 W JP 2022005105W WO 2023152823 A1 WO2023152823 A1 WO 2023152823A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
water emulsion
emulsion composition
mass
starch
Prior art date
Application number
PCT/JP2022/005105
Other languages
English (en)
French (fr)
Inventor
祐貴 武藤
Original Assignee
昭和産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和産業株式会社 filed Critical 昭和産業株式会社
Priority to JP2023579916A priority Critical patent/JPWO2023152823A1/ja
Priority to PCT/JP2022/005105 priority patent/WO2023152823A1/ja
Priority to JP2023580242A priority patent/JPWO2023153370A1/ja
Priority to PCT/JP2023/003838 priority patent/WO2023153370A1/ja
Priority to CN202380015118.9A priority patent/CN118401233A/zh
Publication of WO2023152823A1 publication Critical patent/WO2023152823A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/30Foods or foodstuffs containing additives; Preparation or treatment thereof containing carbohydrate syrups; containing sugars; containing sugar alcohols, e.g. xylitol; containing starch hydrolysates, e.g. dextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/60Sugars; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C13/00Cream; Cream preparations; Making thereof
    • A23C13/12Cream preparations
    • A23C13/14Cream preparations containing milk products or non-fat milk components
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/152Milk preparations; Milk powder or milk powder preparations containing additives
    • A23C9/154Milk preparations; Milk powder or milk powder preparations containing additives containing thickening substances, eggs or cereal preparations; Milk gels
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof

Definitions

  • the present technology relates to an oil-in-water emulsion composition and a food using the oil-in-water emulsion composition.
  • Patent Document 1 discloses that the inclusion of water, fat and cyclodextrin, as well as trehalose and dextrin inhibits the increase and growth of ice crystals during freezing and storage periods, even if the protein is substantially free. , an ice cream-like emulsified composition having a smooth texture is disclosed.
  • Patent Document 2 water in an amount of more than 52% by mass, oil and fat in an amount of less than 23% by mass, cyclodextrin, and a water-soluble gelling agent are included, so that the protein is substantially free of protein. also discloses an ice cream-like air-containing emulsified composition having a soft and smooth texture peculiar to ice cream.
  • Patent Document 3 an emulsifier is added to a mixture obtained by mixing water, fats and oils, cyclodextrin, and a water-soluble gelling agent, and the mixture is further mixed to obtain a mixture that does not contain proteins such as eggs.
  • a mayonnaise-like dressing having physical properties comparable to mayonnaise.
  • mayonnaise mayonnaise-type seasoning
  • a gelling agent such as polysaccharide thickener
  • the main purpose of this technology is to provide a technology that can improve the physical properties of the oil-in-water emulsion composition without using proteins or gelling agents.
  • the content of glucose degree of polymerization (DP) 8 to 19 is 32% or more, A starch hydrolyzate having a glucose degree of polymerization (DP) of 20 or more and a content of 30% or less, water and, containing oils and fats, An oil-in-water emulsified composition is provided in which the starch hydrolyzate/water ratio is 0.3 or more and less than 0.7.
  • the starch hydrolyzate having an iodine coloration value of 0.35 or more can be used for the oil-in-water emulsion composition according to the present technology.
  • the oil-in-water emulsion composition according to the present technology can contain 10 to 30% by mass of the starch hydrolyzate.
  • the oil-in-water emulsified composition according to the present technology can contain 15 to 60% by mass of the oil.
  • the viscosity of the oil-in-water emulsion composition according to the present technology can be 30 dPa ⁇ s to 200 dPa ⁇ s after standing at 5° C. for 24 hours.
  • the oil-in-water emulsion composition according to the present technology can contain a cyclic oligosaccharide.
  • the oil-in-water emulsified composition according to the present technology can contain 0.5 to 3% by mass of the cyclic oligosaccharide.
  • ⁇ -cyclodextrin can be used as the cyclic oligosaccharide.
  • the oil-in-water emulsion composition according to the present technology can be used for foods.
  • this technology it is possible to provide a technology that can improve the physical properties of the oil-in-water emulsion composition without using proteins or gelling agents.
  • this technology does not intend to exclude products containing proteins and gelling agents, and physical properties can be further improved by reducing the amount of proteins and gelling agents used, and by using them in combination with proteins and gelling agents. It also includes technology that allows
  • Oil-in-water emulsified composition contains a specific starch hydrolyzate, water, and oils and fats, and is characterized by being The effect of the present technology can be exhibited as long as the starch hydrolyzate/water is in the range of 0.3 or more and less than 0.7, but the lower limit of the starch hydrolyzate/water is is preferably 0.35 or more, more preferably 0.4 or more. Further, the upper limit of starch decomposition product/water is preferably 0.65 or less, more preferably 0.6 or less.
  • the starch hydrolyzate/water ratio is less than 0.3, the richness of the food using the oil-in-water emulsion composition will be insufficient. Moreover, when the starch hydrolyzate/water ratio is 0.7 or more, the fluidity of the food using the oil-in-water emulsion composition is lowered.
  • the viscosity of the water-emulsified composition according to the present technology is not limited as long as the effect of the present technology is not impaired. be. Also, the upper limit of the viscosity is preferably 200 dPa ⁇ s or less, more preferably 150 dPa ⁇ s or less.
  • the oil-in-water emulsion composition according to the present technology can contain, if necessary, cyclic oligosaccharides and other components in addition to specific starch hydrolysates, water, and fats and oils. Each component will be described in detail below.
  • the starch hydrolyzate used in the present technology is a starch raw material such as cornstarch, waxy cornstarch, high amylose cornstarch, rice starch, wheat starch (ground starch), potato starch, tapioca starch, and sweet potato. Obtained by decomposing (saccharifying) starch derived from rhizomes or roots such as starch (subterranean starch), or processed starch obtained by subjecting these starches to physical or chemical processing singly or in combination. It is.
  • the starch raw material to be used is not particularly limited, and any starch raw material can be used.
  • the content of glucose degree of polymerization (hereinafter referred to as "DP") 8 to 19 is 32% or more, and the content of DP 20 or more is 30% or less.
  • the starch hydrolyzate used in this technology contains a large amount of oligosaccharide high-molecular components and dextrin low-molecular components (DP8-19), so it has lower sweetness, lower osmotic pressure, and hygroscopic resistance compared to general oligosaccharides. indicates
  • the content of DP20 or more is small, the flavor peculiar to dextrin, which may impair the flavor of foods and drinks, is reduced.
  • the dextrin has a strong flavor peculiar to dextrin, it can be used in food and drink in which dextrin was difficult to use without impairing the flavor of the food and drink.
  • the content of the starch hydrolyzate used in the present technology is not particularly limited as long as the content of DP8 to 19 is 32% or more, but is preferably 40% or more, more preferably 45% or more, and still more preferably 50%. That's it. This is because the higher the DP8-19 content, the lower the viscosity, the lower the sweetness, the lower the osmotic pressure, and the lower the hygroscopicity.
  • the content of the starch decomposition product used in the present technology is not particularly limited as long as the content of DP20 or higher is 30% or less, but is preferably 28% or less, more preferably 26% or less, and still more preferably 25% or less. % or less. This is because the lower the content of DP20 or more, the more the flavor peculiar to dextrin is reduced.
  • the lower limit of the content of DP20 or more of the starch hydrolyzate according to the present technology is not particularly limited as long as the effect of the present technology is not impaired, but is preferably 15% or more, more preferably 18% or more.
  • the starch decomposition product used in the present technology preferably has an iodine coloration value of 0.35 or more, more preferably 0.40 or more.
  • an iodine coloration value of 0.35 or more By using a starch decomposition product having an iodine coloration value of 0.35 or more, it is possible to impart good hardness and plasticity to the oil-in-water emulsion composition. That is, by using a starch decomposition product having an iodine coloration value of 0.35 or more, the shape retention of the oil-in-water emulsified composition can be maintained, and the desired physical properties can be exhibited more reliably.
  • the iodine coloration value of the starch hydrolyzate is a value measured by the following iodine coloration value measuring method.
  • Method for measuring iodine coloration value 25 mg of a sample (starch decomposition product) as a solid content was added to a test tube into which 5 ml of water was dispensed, and mixed. and 2 mass / volume% potassium iodide) was added, and after stirring, after standing at 30 ° C.
  • the absorbance at 660 nm was measured with a spectrophotometer using a glass cell with an optical path length of 10 mm, and the sample
  • the iodine coloration value was defined as the difference from the absorbance measurement value when iodine was not added.
  • the color reaction with iodine indicates the presence of linear sugar chains with a DP of 16 or higher.
  • a starch decomposition product with a low content of DP20 or higher usually does not exhibit a color reaction, or even if it does, the iodine coloration value is very low.
  • the starch hydrolyzate used in the present technology has a low content of DP20 or more, but the main component is DP8 to 19, which is near the lower limit of iodine coloration, and there are many linear components. Shows color reaction. That is, in a starch hydrolyzate with a low content of DP20 or more, the iodine coloration value is an index showing the degree of content of linear components.
  • the content of the starch hydrolyzate according to the present technology with a DP of 8 or higher is not particularly limited as long as it does not impair the effect of the present technology, but is preferably 50% or higher, more preferably 60% or higher, and still more preferably 70% or higher.
  • a starch hydrolyzate with a high content of DP8 or more it exhibits lower sweetness, lower osmotic pressure, and lower hygroscopicity.
  • the residual rate of the starch hydrolyzate according to the present technology in the ⁇ -amylase digestion test is not particularly limited as long as it does not impair the effect of the present technology, but is preferably 20% or less, more preferably 15% or less.
  • the shape retention of the oil-in-water emulsion composition is maintained by using a starch hydrolyzate with a low residual rate in the ⁇ -amylase digestion test, which will be described in detail later, that is, a starch hydrolyzate containing a large amount of linear sugar molecules. , the desired physical properties can be exhibited more reliably
  • the residual rate in the ⁇ -amylase digestion test is the value measured by the method described in Examples below.
  • ⁇ -amylase is an enzyme that decomposes glucose polymers from non-reducing ends into maltose units, and it is known that the presence of branched bonds such as ⁇ -1,6 bonds will stop the decomposition. Therefore, the evaluation by the ⁇ -amylase digestion test of the starch hydrolyzate serves as an index showing the extent to which the ⁇ -1,4-bonds are continuous in a linear portion from the structural point of view.
  • the color reaction with iodine serves as an index for straight-chain sugar molecules with a DP of 16 or higher
  • the evaluation by the ⁇ -amylase digestion test serves as an index for straight-chain sugar molecules in the entire starch hydrolyzate.
  • the DE (dextrose equivalent) of the starch hydrolyzate according to the present technology is not particularly limited as long as it does not impair the effect of the present technology.
  • a starch hydrolyzate with a DE within this range, it exhibits a lower sweetness, a lower osmotic pressure, and a lower hygroscopicity, and can impart good physical properties to the oil-in-water emulsified composition.
  • DE dextrose equivalent
  • the content of the starch hydrolyzate in the oil-in-water emulsion composition according to the present technology is not particularly limited as long as it does not impair the effect of the present technology, but in the present technology, the lower limit is preferably 10% by mass or more, more preferably is 12% by mass or more, more preferably 14% by mass or more.
  • the upper limit is preferably 30% by mass or less, more preferably 25% by mass or less, and even more preferably 20% by mass or less.
  • the fluidity of the oil-in-water emulsion composition can be enhanced by setting the content of the starch hydrolyzate in the oil-in-water emulsion composition to 30% by mass or less.
  • the method for obtaining the starch hydrolyzate used in the present technology is not particularly limited as long as the effect of the present technology is not impaired.
  • a starch hydrolyzate can be obtained by subjecting a starch raw material to an appropriate combination of predetermined operations such as treatment with a common acid or enzyme, various types of chromatography, membrane separation, ethanol precipitation, and the like.
  • debranching enzyme is a general term for enzymes that catalyze reactions that hydrolyze ⁇ -1,6-glucoside bonds, which are branching points of starch.
  • Branching enzyme is a general term for enzymes that act on linear glucans linked by ⁇ -1,4-glucosidic bonds to form ⁇ -1,6-glucosidic bonds.
  • debranching enzymes are enzymes involved in the decomposition of branched chains of starch
  • branching enzymes are enzymes used in the synthesis of branched chains of starch. Therefore, the two are usually not used together.
  • the starch hydrolyzate used in the present technique can be reliably produced.
  • the debranching enzyme is not particularly limited. Examples thereof include pullulanase, pullulan 6-glucan hydrolase, amylo-1,6-glucosidase/4- ⁇ glucanotransferase, and more preferred As an example, isoamylase (glycogen 6-glucanohydrolase) can be used.
  • branching enzyme is not particularly limited. For example, those purified from animals, bacteria, or the like, those purified from plants such as potatoes, rice seeds, and corn seeds, commercially available enzyme preparations, and the like can be used.
  • the method for producing a starch hydrolyzate used in the present technology it is possible to perform a step of removing impurities after the enzymatic reaction.
  • the method for removing impurities is not particularly limited, and one or two or more known methods can be freely combined for use. For example, methods such as filtration, activated carbon decolorization, and ion purification can be used.
  • starch hydrolyzate used in the present technology can be used as a liquid product containing the starch hydrolyzate after enzymatic reaction, but it can also be dehydrated and dried by vacuum drying, spray drying, freeze drying, etc. It is possible. It is also possible to fractionate and use a partial component by chromatography or membrane separation.
  • Fats and oils The type of fats and oils used in the oil-in-water emulsified composition according to the present technology is, as long as the effect of the present technology is not impaired, one or more fats that can be used in general oil-in-water emulsified compositions. Two or more kinds can be freely combined and used.
  • soybean oil, rapeseed oil (including canola oil), corn oil, sunflower oil, safflower oil, cottonseed oil, sesame oil, perilla oil, linseed oil, peanut oil, olive oil, grape seed oil, macadamia nut oil, hazelnut oil, oat oil , pumpkin seed oil, walnut oil, camellia oil, brown seed oil, perilla oil, borage oil, rice bran oil, wheat germ oil, palm oil, palm olein, palm kernel oil, palm kernel olein, coconut oil, cocoa butter, beef tallow, pork Fat, chicken fat, milk fat, fish oil, seal fat, algae oil and the like can be used alone or in combination. Furthermore, it may be extracted from plants that have been breed-improved using genetic recombination technology. Fats obtained from the cultivar can be used. Hydrogenated oils, transesterified oils, fractionated oils and the like can also be used as appropriate.
  • oils and fats used in this technology preferably contain 50% by mass or more of oils and fats that are liquid at room temperature, such as soybean oil and rapeseed oil. Fluidity can be further improved by setting the liquid fat to 50% by mass or more. Moreover, you may contain 5 mass % or less of extremely hardened oil. By containing 5% by mass or less of the extremely hydrogenated oil in the oil, the emulsified structure becomes strong, and the stability of the oil-in-water emulsion composition can be further improved.
  • the type of extremely hardened oil that can be used in this technology is not particularly limited as long as it does not impair the effect of this technology.
  • one or a combination of two or more of rice oil, rapeseed oil, high erucine rapeseed oil, soybean oil, corn oil, safflower oil, sunflower oil, cottonseed oil, palm oil, beef tallow, lard, etc. is hydrogenated, Hydrogenated oil having a solid fat content of 50% by mass or more at 20° C. can be used.
  • the content of fats and oils in the oil-in-water emulsion composition according to the present technology is not particularly limited as long as the effect of the present technology is not impaired. It is at least 25% by mass, more preferably at least 25% by mass. By setting the content of fats and oils in the oil-in-water emulsion composition to 15% by mass or more, the texture of the oil-in-water emulsion composition can be made smooth.
  • the upper limit is preferably 60% by mass or less, more preferably 55% by mass or less, and even more preferably 50% by mass or less.
  • the oil-in-water emulsion composition according to the present technology can further contain a cyclic oligosaccharide.
  • the cyclic oligosaccharide is not an essential component, but by including the cyclic oligosaccharide in the oil-in-water emulsion composition according to the present technology, the emulsified structure is strengthened, and the stability of the oil-in-water emulsion composition is improved. can be improved.
  • As cyclic oligosaccharides three types of cyclodextrins ( ⁇ , ⁇ , ⁇ ) are sold on the market, but ⁇ -cyclodextrin is preferable considering the interaction with fats and oils.
  • the content of the cyclic oligosaccharide in the oil-in-water emulsion composition according to the present technology is not particularly limited as long as it does not impair the effect of the present technology, but in the present technology, the lower limit is preferably 0.5 % by mass or more, more preferably 0.7% by mass or more, and still more preferably 1.0% by mass or more.
  • the upper limit is preferably 3% by mass or less, more preferably 2.5% by mass or less, and even more preferably 2.0% by mass or less.
  • the type of cyclic oligosaccharide that can be used in this technology is not particularly limited as long as it does not impair the effect of this technology, but ⁇ -cyclodextrin is most preferably used in this technology.
  • the oil-in-water emulsion composition according to the present invention contains one or two other components that can be used in general oil-in-water emulsion compositions as long as the effects of the present technology are not impaired. As mentioned above, it can also be freely selected and contained. Other ingredients that can be used include, for example, excipients, pH adjusters, colorants, fragrances, flavoring agents, corrigents, disintegrants, lubricants, stabilizers, and the like.
  • the oil-in-water emulsion composition according to the present technology can be an emulsion composition without using an emulsifier, but an emulsifier that can be used in a general oil-in-water emulsion composition can also be added.
  • the starch hydrolyzate described above is classified as food, depending on the selection of components other than the starch hydrolyzate, the oil-in-water emulsified composition according to the present invention can be handled as a food.
  • Foods in which the oil-in-water emulsion composition according to the present technology can be used are not particularly limited. Examples include various dairy products such as yoghurt, frozen desserts such as ice cream, preserved foods, frozen foods, breads, confectionery, cooked rice, noodles, water paste products, and processed foods such as livestock meat products.
  • Foods with health claims including foods with specified health claims, foods with function claims, and foods with nutrient function claims
  • so-called health foods including beverages
  • liquid diets, infant and toddler foods, diet foods, foods for diabetes, etc. can also use this technology.
  • Branching enzyme a potato-derived enzyme (hereinafter referred to as “potato-derived branching enzyme") purified according to the method of Eur. J. Biochem. 59, p615-625 (1975). and Branchzyme (manufactured by Novozymes, hereinafter referred to as "bacterial branching enzyme”).
  • the activity measurement of the branching enzyme was performed by the following method.
  • a substrate solution an amylose solution prepared by dissolving 0.1% by mass of amylose (manufactured by Sigma-Aldrich, A0512) in 0.1 M acetate buffer (pH 5.2) was used.
  • 50 ⁇ L of the enzyme solution was added to 50 ⁇ L of the substrate solution, reacted at 30° C. for 30 minutes, and then 2 mL of iodine-potassium iodide solution (0.39 mM iodine-6 mM potassium iodide-3.8 mM hydrochloric acid mixed solution). was added to stop the reaction.
  • a blank solution was prepared by adding water instead of the enzyme solution. Absorbance at 660 nm was measured 15 minutes after stopping the reaction.
  • One unit of enzyme activity of the branching enzyme was defined as the amount of enzyme activity that reduces the absorbance at 660 nm by 1% per minute when tested under the above conditions.
  • iodine coloration value 25 mg of a sample (starch hydrolyzate) as a solid content was added to a test tube into which 5 ml of water was dispensed and mixed. To this, 100 ⁇ l of an iodine coloring solution (0.2% by mass/volume iodine and 2% by mass/volume potassium iodide) was added, stirred, left at 30° C. for 20 minutes, and then measured with a spectrophotometer. Absorbance at 660 nm was measured using a glass cell with a length of 10 mm, and the difference from the absorbance measured value when no sample was added was taken as the iodine coloration value.
  • debranching enzyme (GODO-FIA, manufactured by Godo Shusei Co., Ltd.) was added at 0.5% by mass per solid content (g), and reacted at 50°C for 48 hours.
  • This starch hydrolyzate solution was decolorized with activated carbon, ion-purified, and concentrated to a solid concentration of 40% by mass.
  • the concentrate was pulverized with a spray dryer to obtain a starch decomposition product 2.
  • Starch degradation product 8 0.05% by mass of ⁇ -amylase (Kleistase T10S, manufactured by Amano Enzyme Co., Ltd.) was added to 15% by mass of potato starch slurry adjusted to pH 5.8 with 10% by mass of calcium hydroxide, and the mixture was heated at 80°C. The temperature was maintained and the DE was continuously measured. When the DE reached 6, the pH was adjusted to 4 with 10% by mass hydrochloric acid and heated to 90° C. to terminate the reaction. This starch hydrolyzate solution was decolorized with activated charcoal and powdered by spray drying to obtain a starch hydrolyzate 8 .
  • Example 1 In Experimental Example 1, it was examined how various components and formulations of the oil-in-water emulsion composition affect the physical properties of the oil-in-water emulsion composition.
  • a mayonnaise-like food was produced as an example of the oil-in-water emulsified composition.
  • a mayonnaise-like food was manufactured according to the composition shown in Table 4 below. Specifically, a cyclic oligosaccharide, salt, sugar, a bacteriostatic agent, and brewed vinegar were mixed with water, stirred, and heated to 60° C. to dissolve uniformly. Thereafter, the starch hydrolyzate and the powdered mayonnaise seasoning were slowly added while stirring, and mixed and stirred for 5 minutes. After the starch hydrolyzate and the powdered mayonnaise seasoning are evenly dissolved, slowly add the liquid oil (soybean oil) or the solid oil that has been heated to become liquid, mix and emulsify, and then add the fragrance. The temperature was raised to 60 ° C.
  • oil-in-water emulsion compositions of samples 1 to 13.
  • the produced oil-in-water emulsion composition was mixed and stirred for 10 minutes while cooling the container with ice water, then filled into a storage container and stored at 5° C. for 24 hours.
  • Visco Tester VT-06 (Rion Co., Ltd.) was used as a viscosity measuring instrument. A 300 mL tall beaker is filled with 300 g of the oil-in-water emulsion composition, and the viscosity is adjusted using the No. 1 rotor for the low-viscosity oil-in-water emulsion composition and the No. 2 rotor for the high-viscosity oil-in-water emulsion composition. It was measured. After the start of the measurement, the numerical value was read when the measured value was stabilized, and the obtained value was taken as the viscosity.
  • sample 1 when using a starch hydrolyzate 2 having a glucose polymerization degree (DP) of 8 to 19 content of 32% or more and a glucose polymerization degree (DP) of 20 or more content of 30% or less, also, sample 1 with a starch hydrolyzate/water ratio of less than 0.3 was poor in fluidity, body, and freezing resistance. In addition, sample 5 with a starch hydrolyzate/water ratio of 0.7 or more was poor in evaluation of fluidity and freeze resistance.
  • DP glucose polymerization degree
  • DP glucose polymerization degree
  • Example 2 a yogurt-like food was produced as an example of the oil-in-water emulsified composition.
  • yogurt-like food was manufactured according to the formulation in Table 5 below. Specifically, a cyclic oligosaccharide, salt, sugar, a bacteriostatic agent, and fermented milk were mixed with water, stirred, and heated to 60° C. to dissolve uniformly. After that, starch hydrolyzate 2 and skim milk powder were slowly added while stirring, and mixed and stirred for 5 minutes. After the starch hydrolyzate and skimmed milk powder are uniformly dissolved, slowly add liquid fat (canola oil) or solid fat that has been heated to become liquid, mix and emulsify, and then add lactic acid and fragrance.
  • liquid fat canola oil
  • the temperature was raised to 60 ° C., mixed and sterilized for 30 minutes to produce oil-in-water emulsion compositions of samples 14 to 19.
  • the produced oil-in-water emulsion composition was mixed and stirred for 10 minutes while cooling the container with ice water, then filled into a storage container and stored at 5° C. for 24 hours.
  • sample 14 with a starch hydrolyzate/water ratio of less than 0.3 was poor in evaluation of richness and freeze resistance.
  • sample 18 with a starch hydrolyzate/water ratio of 0.7 or more was poor in fluidity evaluation.
  • a custard-like food was produced according to the formulation in Table 6 below. Specifically, cyclic oligosaccharides and sugar were mixed with milk, stirred, heated to 60° C., and uniformly dissolved. After that, the starch hydrolyzate 2 and the dried whole egg were slowly added while stirring, and mixed and stirred for 5 minutes. After the starch hydrolyzate and the dried whole egg are uniformly dissolved, the liquid oil (canola oil) is slowly added to mix and emulsify, the perfume is added, the temperature is raised to 60 ° C., and the mixture is mixed and sterilized for 30 minutes. was performed to produce oil-in-water emulsion compositions of samples 20 to 23. The produced oil-in-water emulsion composition was mixed and stirred for 10 minutes while cooling the container with ice water, then filled into a storage container and stored at 5° C. for 24 hours.
  • Table 6 Table 6

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Nutrition Science (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Cosmetics (AREA)
  • Seasonings (AREA)

Abstract

タンパク質やゲル化剤を使用しなくても、水中油型乳化組成物の物性を向上し得る技術を提供すること。 本技術では、グルコース重合度(DP)8~19の含有率が32%以上、 グルコース重合度(DP)20以上の含有率が30%以下、である澱粉分解物と、 水と、 油脂と、を含有し、 前記澱粉分解物/水=0.3以上0.7未満である、水中油型乳化組成物を提供する。 本技術に用いる水中油型乳化組成物は、食品に好適に用いることができる。

Description

水中油型乳化組成物、および該水中油型乳化組成物が用いられた食品
 本技術は、水中油型乳化組成物、および該水中油型乳化組成物が用いられた食品に関する。
 近年、アレルギー対策のために、乳や卵を用いずに水中油型乳化組成物を調製する技術が開発されつつある。例えば、特許文献1には、水、油脂及びサイクロデキストリン、ならびに、トレハロース及びデキストリンを含むことにより、タンパク質を実質的に含まなくても、冷凍・保存期間における氷結晶の増大や成長が抑制された、滑らかな食感を有するアイスクリーム様乳化組成物が開示されている。
 また、特許文献2には、52質量%超の量の水、及び23質量%未満の量の油脂、ならびにサイクロデキストリン、及び水溶性ゲル化剤を含むことで、タンパク質を実質的に含まなくても、アイスクリーム特有の柔らかで滑らかな食感を有するアイスクリーム様含気乳化組成物が開示されている。
 更に、特許文献3には、水、油脂、サイクロデキストリン、及び水溶性ゲル化剤を混合して得られた混合物に乳化剤を加えてさらに混合することによって、卵等のタンパク質を含んでいなくても、マヨネーズに匹敵する物性を有するマヨネーズ風ドレッシングが開示されている。
特開2021-52739号公報 特開2021-122269号公報 特開2021-19525号公報
 前述の通り、乳や卵を用いずに水中油型乳化組成物を調製する技術が開発されつつあるが、アレルギー疾患を抱える人々へのニーズは高いものの、様々な物性の低下が課題である。例えば、卵黄不使用タイプの水中油型乳化物であるマヨネーズ(マヨネーズタイプ調味料)は、増粘多糖類等のゲル化剤を添加することで、乳化を安定させているが、卵黄を用いたマヨネーズに比べて、コクや美味しさが不足するといった課題があった。また、マヨネーズは冷凍すると、解凍後に水相と油相が分離してしまい、食感や風味が低下する場合もあった。
 そこで、本技術では、タンパク質やゲル化剤を使用しなくても、水中油型乳化組成物の物性を向上し得る技術を提供することを主目的とする。
 本技術では、まず、グルコース重合度(DP)8~19の含有率が32%以上、
 グルコース重合度(DP)20以上の含有率が30%以下、である澱粉分解物と、
 水と、
 油脂と、を含有し、
 前記澱粉分解物/水=0.3以上0.7未満である、水中油型乳化組成物を提供する。
 本技術に係る水中油型乳化組成物には、ヨウ素呈色値が0.35以上の前記澱粉分解物を用いることができる。
 本技術に係る水中油型乳化組成物には、前記澱粉分解物を10~30質量%含有させることができる。
 また、本技術に係る水中油型乳化組成物には、前記油脂を15~60質量%含有させることができる。
 本技術に係る水中油型乳化組成物の粘度としては、5℃にて24時間静置後の粘度を、30dPa・s~200dPa・sとすることができる。
 本技術に係る水中油型乳化組成物には、環状オリゴ糖を含有させることができる。この場合、本技術に係る水中油型乳化組成物には、前記環状オリゴ糖を0.5~3質量%含有させることができる。また、前記環状オリゴ糖としては、α-シクロデキストリンを用いることができる。
 本技術に係る水中油型乳化組成物は、食品に用いることができる。
 本技術によれば、タンパク質やゲル化剤を使用しなくても、水中油型乳化組成物の物性を向上し得る技術を提供することができる。なお、本技術では、タンパク質やゲル化剤を含有するものを排除する意図はなく、タンパク質やゲル化剤の使用量が低減できたり、タンパク質やゲル化剤と併用することで、物性を更に向上させる技術も包含する。
 以下、本技術を実施するための好適な形態について説明する。なお、以下に説明する実施形態は、本技術の代表的な実施形態の一例を示したものであり、これにより本技術の範囲が狭く解釈されることはない。
 1.水中油型乳化組成物
 本技術に係る水中油型乳化組成物は、特定の澱粉分解物と、水と、油脂と、を含有し、澱粉分解物/水=0.3以上0.7未満であることを特徴とする。澱粉分解物と水の配合は、澱粉分解物/水=0.3以上0.7未満の範囲であれば、本技術の効果を発揮することができるが、澱粉分解物/水の下限値としては、好ましくは0.35以上、より好ましくは0.4以上である。また、澱粉分解物/水の上限値としては、好ましくは0.65以下、より好ましくは0.6以下である。
 澱粉分解物/水が0.3未満であると、水中油型乳化組成物を用いた食品のコクが不足する。また、澱粉分解物/水が0.7以上であると、水中油型乳化組成物を用いた食品の流動性が低下する。
 本技術に係る水中乳化組成物の粘度は、本技術の効果を損なわない限り限定されないが、本技術では、粘度の下限値は、好ましくは30dPa・s以上、より好ましくは、40dPa・s以上である。また、粘度の上限値は、好ましくは200dPa・s以下、より好ましくは、150dPa・s以下である。
 本技術に係る水中油型乳化組成物には、特定の澱粉分解物、水、および油脂に加えて、必要に応じて、環状オリゴ糖やその他の成分を含有させることもできる。以下、各成分について、詳細に説明する。
 (1)澱粉分解物
 本技術に用いる澱粉分解物は、澱粉原料、例えば、コーンスターチ、ワキシーコーンスターチ、ハイアミロースコーンスターチ、米澱粉、小麦澱粉等の澱粉(地上系澱粉)、馬鈴薯澱粉、タピオカ澱粉、甘藷澱粉等のような地下茎または根由来の澱粉(地下系澱粉)、あるいはこれらの澱粉に物理的、化学的な加工を単独または複数組み合わせて施した加工澱粉等を分解(糖化)することによって得られるものである。使用する澱粉原料は、特に限定されず、あらゆる澱粉原料を用いることができる。
 本技術に用いる澱粉分解物の組成特性としては、グルコース重合度(以下「DP」と称する)8~19の含有率が32%以上、かつ、DP20以上の含有率が30%以下である。本技術に用いる澱粉分解物は、オリゴ糖の高分子成分とデキストリンの低分子成分(DP8~19)を多く含有するため、一般的なオリゴ糖に比べ、低甘味、低浸透圧、耐吸湿性を示す。また、DP20以上の含有率が少ないため、飲食物等の風味を損なう恐れのあるデキストリン特有の風味が低減される。そのため、甘味を必要としない用途へ、好適に適用することができる。例えば、甘味度の高いオリゴ糖の使用が望ましくない食品添加物や飲食物、及び薬剤にも用いることができる。また、デキストリン特有の風味が強いために、デキストリンの使用が難しかった飲食物等にも、飲食物等の風味を損なうことなく用いることができる。
 本技術に用いる澱粉分解物は、DP8~19の含有率が32%以上であれば、その含有量は特に限定されないが、好ましくは40%以上、より好ましくは45%以上、さらに好ましくは50%以上である。DP8~19の含有率が増加するほど、より低粘度、低甘味、低浸透圧、低吸湿性を示すようになるからである。
 また、本技術に用いる澱粉分解物は、DP20以上の含有率が30%以下であれば、その含有量は特に限定されないが、好ましくは28%以下、より好ましくは26%以下、さらに好ましくは25%以下である。DP20以上の含有率が少なくなるほど、デキストリン特有の風味がより低減されるからである。
 また、本技術に係る澱粉分解物のDP20以上の含有率の下限値は、本技術の効果を損なわない限り特に限定されないが、好ましくは15%以上、より好ましくは18%以上である。
 本技術に用いる澱粉分解物は、そのヨウ素呈色値が0.35以上であることが好ましく、0.40以上がより好ましい。そのヨウ素呈色値が0.35以上の澱粉分解物を用いることで、水中油型乳化組成物に良好な硬さと可塑性を付与することができる。即ち、ヨウ素呈色値が0.35以上の澱粉分解物を用いることで、水中油型乳化組成物の保形性が維持され、目的の物性をより確実に発揮することができる。
 本技術において、澱粉分解物のヨウ素呈色値は、以下のヨウ素呈色値測定方法によって測定された値である。
(ヨウ素呈色値測定方法)5mlの水を分注した試験管に、試料(澱粉分解物)を固形分として25mg添加して混合し、ヨウ素呈色液(0.2質量/体積%ヨウ素、及び2質量/体積%ヨウ化カリウム)を100μl添加し、撹拌後、30℃で20分間放置後、分光光度計にて、光路長10mmのガラスセルを用いて、660nmの吸光度を測定し、試料を添加しない場合の吸光度測定値との差をヨウ素呈色値とした。
 ヨウ素による呈色反応は、DP16以上の直鎖状の糖鎖の存在を示すものであり、DP20以上の含有率が多い澱粉分解物においてはDP16以上の直鎖状の糖鎖が多く存在するため呈色反応を示すが、DP20以上の含有率が少ない澱粉分解物では通常呈色反応を示さないか、示したとしてもヨウ素呈色値は非常に低い値となる。しかしながら、本技術に用いる澱粉分解物は、DP20以上の含有率が少ないにも関わらず、ヨウ素呈色の下限付近であるDP8~19が主成分で、また直鎖状成分が多いためにヨウ素による呈色反応を示す。即ち、DP20以上の含有率が少ない澱粉分解物において、ヨウ素呈色値は、直鎖状成分の含有率の程度を示す指標となる。
 本技術に係る澱粉分解物のDP8以上の含有率は、本技術の効果を損なわない限り特に限定されないが、好ましくは50%以上、より好ましくは60%以上、さらに好ましくは70%以上である。DP8以上の含有率が高い澱粉分解物を用いることで、より低甘味、低浸透圧、低吸湿性を示す。
 本技術に係る澱粉分解物のβ-アミラーゼ消化試験における残存率は、本技術の効果を損なわない限り特に限定されないが、好ましくは20%以下、より好ましくは15%以下である。β-アミラーゼ消化試験における残存率が低い澱粉分解物、詳細は後述するがすなわち直鎖状糖分子が多く含まれる澱粉分解物を用いることで、水中油型乳化組成物の保形性が維持され、目的の物性をより確実に発揮することができる
 本技術において、β-アミラーゼ消化試験における残存率は、後述する実施例に記載の方法によって測定された値である。なお、β-アミラーゼは、グルコースポリマーを非還元末端からマルトース単位で分解する酵素で、α-1,6結合などの分岐結合があると、分解が止まることが知られている。そのため、澱粉分解物のβ-アミラーゼ消化試験による評価は、構造的な視点でα-1,4結合が連続する直鎖状部分を有する程度を示す指標となる。すなわち、ヨウ素による呈色反応ではDP16以上の直鎖状糖分子、β-アミラーゼ消化試験による評価では澱粉分解物全体の直鎖状糖分子についての指標となる。
 本技術に係る澱粉分解物のDE(dextrose equivalent)は、本技術の効果を損なわない限り特に限定されないが、好ましくはDE30以下、より好ましくはDE10~25、さらに好ましくはDE13~20である。DEがこの範囲の澱粉分解物を用いることで、より低甘味、低浸透圧、低吸湿性を示し、水中油型乳化組成物に良好な物性を付与することができる。
 なお、「DE(dextrose equivalent)」とは、デキストロース当量とも称され、還元糖をグルコースとして測定し、その全固形分に対する割合(下記数式(1)参照)を示す値である。このDE値は、澱粉の加水分解の程度(分解度)、すなわち糖化の進行の程度を示す指標である。
 [数1]
 DE=[(直接還元糖(グルコースとして表示))/全固形分]×100 ・・・(1)
 本技術に係る水中油型乳化組成物における澱粉分解物の含有量は、本技術の効果を損なわない限り特に限定されないが、本技術では、その下限値は、好ましくは10質量%以上、より好ましくは12質量%以上、さらに好ましくは14質量%以上である。水中油型乳化組成物における澱粉分解物の含有量を10質量%以上とすることで、水中油型乳化組成物の乳化状態をより安定化し、適度な流動性を付与することができる。その上限値は、好ましくは30質量%以下、より好ましくは25質量%以下、さらに好ましくは20質量%以下である。水中油型乳化組成物における澱粉分解物の含有量を30質量%以下とすることで、水中油型乳化組成物の流動性を高めることができる。
 (2)澱粉分解物の製造方法
 本技術に用いる澱粉分解物の収得の方法については、本技術の効果を損なわない限り、特に限定されることはない。例えば、澱粉原料を、一般的な酸や酵素を用いた処理や、各種クロマトグラフィー、膜分離、エタノール沈殿等の所定操作を、適宜組み合わせて行うことによって澱粉分解物を得ることができる。
 本技術に用いる澱粉分解物を効率的に得る方法として、澱粉または澱粉分解中間物に、少なくとも枝切り酵素と枝作り酵素を作用させる方法がある。枝切り酵素(debranching enzyme)は、澱粉の分岐点であるα-1,6-グルコシド結合を加水分解する反応を触媒する酵素の総称である。枝作り酵素(branching enzyme)とは、α-1,4-グルコシド結合でつながった直鎖グルカンに作用して、α-1,6-グルコシド結合を作る働きを持った酵素の総称である。
 即ち、枝切り酵素は、澱粉の分岐鎖の分解に関与する酵素であり、枝作り酵素は、澱粉の分岐鎖の合成に用いる酵素である。従って、両者は通常、一緒に用いられることはない。しかし、全く逆の作用を示す両酵素を組み合わせて用いることにより、本技術に用いる澱粉分解物を確実に製造することができる。この場合、両酵素の作用順序としては、同時または枝作り酵素作用後に枝切り酵素を作用させることが好ましい。
 前記枝切り酵素は、特に限定されない。例えば、プルラナーゼ(Pullulanase, pullulan 6-glucan hydrolase)、アミロ-1,6-グルコシダーゼ/4-αグルカノトランスフェラーゼ(amylo-1,6-glucosidase/4-α glucanotransferase)を挙げることができ、より好適な一例としては、イソアミラーゼ(Isoamylase, glycogen 6-glucanohydrolase)を用いることができる。
 また、前記枝作り酵素も特に限定されない。例えば、動物や細菌等から精製したもの、または、馬鈴薯、イネ種実、トウモロコシ種実等の植物から精製したもの、市販された酵素製剤等を用いることができる。
 本技術に用いる澱粉分解物の製造方法では、前記酵素反応の後に、不純物を除去する工程を行うことも可能である。不純物の除去方法としては、特に限定されず、公知の方法を1種または2種以上自由に組み合わせて用いることができる。例えば、ろ過、活性炭脱色、イオン精製等の方法を挙げることができる。
 更に、本技術に用いる澱粉分解物は、酵素反応後の澱粉分解物を含む液状品として用いることも可能であるが、真空乾燥、噴霧乾燥、凍結乾燥等により脱水乾燥し、粉末化することも可能である。また、クロマトグラフィーや膜分離によって一部成分を分画して用いることも可能である。
 (3)油脂
 本技術に係る水中油型乳化組成物に用いる油脂の種類は、本技術の効果を損なわない限り、一般的な水中油型乳化組成物に用いることができる油脂を、1種または2種以上、自由に組み合わせて用いることができる。例えば、大豆油、菜種油(キャノーラ油を含む)、コーン油、ひまわり油、紅花油、綿実油、ゴマ油、シソ油、亜麻仁油、落花生油、オリーブ油、ブドウ種子油、マカデミアナッツ油、ヘーゼルナッツ油、オーツ麦油、カボチャ種子油、クルミ油、椿油、茶実油、エゴマ油、ボラージ油、米糠油、小麦胚芽油、パーム油、パームオレイン、パーム核油、パーム核オレイン、ヤシ油、カカオ脂、牛脂、豚脂、鶏脂、乳脂、魚油、アザラシ脂、藻類油などを単独または組み合わせて使用することができる。さらに、遺伝子組換えの技術を用いて品種改良した植物から抽出したものであってもよく、例えば、菜種油、ひまわり油、紅花油、大豆油などでは、オレイン酸含量を高めた高オレイン酸タイプの品種から得られた油脂を使用することができる。また、水素添加油脂、エステル交換油、分別油脂なども適宜使用することができる。
 本技術で用いる油脂は、大豆油や菜種油などの常温で液状の油脂を50質量%以上含むことが好ましい。液状油脂を50質量%以上とすることで、より流動性を向上させることができる。また、極度硬化油を5質量%以下含有させてもよい。油脂中に、極度硬化油を5質量%以下含有させることで、乳化構造が強固になり、水中油型乳化組成物の安定性をより向上さることができる。
 本技術で用いることができる極度硬化油の種類は、本技術の効果を損なわない限り特に限定されない。例えば、米油、菜種油、ハイエルシン菜種油、大豆油、コーン油、サフラワー油、ひまわり油、綿実油、パーム油、牛脂、豚脂等の1種または2種以上を組み合わせた油脂に水素添加して、固体脂含有量が20℃において50質量%以上にした硬化油を用いることができる。
 本技術に係る水中油型乳化組成物における油脂の含有量は、本技術の効果を損なわない限り特に限定されないが、本技術では、その下限値は、好ましくは15質量%以上、より好ましくは20質量%以上、さらに好ましくは25質量%以上である。水中油型乳化組成物における油脂の含有量を15質量%以上とすることで、水中油型乳化組成物の食感をなめらかにすることができる。その上限値は、好ましくは60質量%以下、より好ましくは55質量%以下、さらに好ましくは50質量%以下である。水中油型乳化組成物における油脂の含有量を60質量%以下とすることで、水中油型乳化組成物の脂肪感を低減し、分離を抑制することができる。
 (4)環状オリゴ糖
 本技術に係る水中油型乳化組成物には、環状オリゴ糖をさらに含有させることができる。本技術において、環状オリゴ糖は必須成分ではないが、本技術に係る水中油型乳化組成物に環状オリゴ糖を含有させることで、乳化構造が強固になり、水中油型乳化組成物の安定性をより向上さることができる。環状オリゴ糖として、市場では3種類のシクロデキストリン(α、β、γ)が販売されているが、油脂との相互作用を考慮するとα-シクロデキストリンが望ましい。
 本技術に係る水中油型乳化組成物における環状オリゴ糖の含有量は、本技術の効果を損なわない限り特に限定されないが、本技術では、本技術では、その下限値は、好ましくは0.5質量%以上、より好ましくは0.7質量%以上、さらに好ましくは1.0質量%以上である。水中油型乳化組成物における環状オリゴ糖の含有量を0.5質量%以上とすることで、水中油型乳化組成物の保形性を向上することができる。その上限値は、好ましくは3質量%以下、より好ましくは2.5質量%以下、さらに好ましくは2.0質量%以下である。水中油型乳化組成物における環状オリゴ糖の含有量を3質量%以下とすることで、水中油型乳化組成物の流動性を高めることができる。
 本技術で用いることができる環状オリゴ糖の種類は、本技術の効果を損なわない限り特に限定されないが、本技術では、α-シクロデキストリンを用いることが最も好ましい。
 (5)その他の成分
 本発明に係る水中油型乳化組成物は、本技術の効果を損なわない限り、一般的な水中油型乳化組成物に用いることができるその他の成分を1種または2種以上、自由に選択して含有させることもできる。その他の成分としては、例えば、賦形剤、pH調整剤、着色剤、香料、呈味剤、矯味剤、崩壊剤、滑沢剤、安定剤等の成分を用いることができる。本技術に係る水中油型乳化組成物は、乳化剤を用いなくても乳化組成物とすることができるが、一般的な水中油型乳化組成物に用いることができる乳化剤をさらに加えることもできる。
 また、公知のまたは将来的に見出される機能を有する成分を、適宜目的に応じて併用することも可能である。前述した澱粉分解物は、食品に分類されるため、当該澱粉分解物以外の成分の選択次第では、本発明に係る水中油型乳化組成物を食品として取り扱うことも可能である。
 2.食品
 前述した本技術に係る水中油型乳化組成物は、食品に好適に用いることができる。本技術に係る水中油型乳化組成物を用いることができる食品としては、特に限定されず、例えば、マヨネーズ、ケチャップ、ソース等の調味料、カスタードクリーム等のクリーム類、フラワーペースト類、スープ類、ヨーグルト等の各種乳製品類、アイスクリーム等の冷菓、保存用食品、冷凍食品、パン類、菓子類、米飯、麺類、水練り製品、畜肉製品等の加工食品等を挙げることができる。また、保健機能飲食品(特定保健機能食品、機能性表示食品、栄養機能食品を含む)や、いわゆる健康食品(飲料を含む)、流動食、乳児・幼児食、ダイエット食品、糖尿病用食品等にも本技術を用いることができる。
 以下、実施例に基づいて本技術を更に詳細に説明する。なお、以下に説明する実施例は、本技術の代表的な実施例の一例を示したものであり、これにより本技術の範囲が狭く解釈されることはない。
 (1)試験方法
 [枝作り酵素]
 本実験例では、枝作り酵素の一例として、Eur. J. Biochem. 59, p615-625 (1975)の方法に則って、精製した馬鈴薯由来の酵素(以下「馬鈴薯由来枝作り酵素」とする)と、Branchzyme(ノボザイムズ株式会社製、以下「細菌由来枝作り酵素」とする)を用いた。
 なお、枝作り酵素の活性測定は、以下の方法で行った。
 基質溶液として、0.1M酢酸緩衝液(pH5.2)にアミロース(シグマ アルドリッチ社製、A0512)を0.1質量%溶解したアミロース溶液を用いた。50μLの基質液に50μLの酵素液を添加し、30℃で30分間反応させた後、ヨウ素-ヨウ化カリウム溶液(0.39mMヨウ素-6mMヨウ化カリウム-3.8mM塩酸混合用液)を2mL加え反応を停止させた。ブランク溶液として、酵素液の代わりに水を添加したものを調製した。反応停止から15分後に660nmの吸光度を測定した。枝作り酵素の酵素活性量1単位は、上記の条件で試験する時、660nmの吸光度を1分間に1%低下させる酵素活性量とした。
 [DP8~19、DP20以上、DP8以上の含有率]
 下記の表1に示す条件で高速液体クロマトグラフィー(HPLC)にて分析を行い、検出されたピーク面積比率に基づいて、DP8~19、DP20以上、DP8以上の含有率を測定した。
 
 [ヨウ素呈色値測定]
 5mlの水を分注した試験管に、試料(澱粉分解物)を固形分として25mg添加して混合した。これに、ヨウ素呈色液(0.2質量/体積%ヨウ素、及び2質量/体積%ヨウ化カリウム)を100μl添加し、撹拌後、30℃で20分間放置後、分光光度計にて、光路長10mmのガラスセルを用いて、660nmの吸光度を測定し、試料を添加しない場合の吸光度測定値との差をヨウ素呈色値とした。
 [β-アミラーゼ消化試験における残存率]
 澱粉分解物を10mM酢酸緩衝液(pH5.5)に煮沸で溶解し調製した固形分濃度10質量%溶液10mLに、β-アミラーゼ(ナガセケムテックス株式会社製)10μLを添加し、55℃で72時間反応させた後、100℃で10分加熱処理をすることで反応を停止した。反応液をイオン交換樹脂にて脱塩し、下記の方法によりDP4以上の含有率を測定し、その値を残存率とした。
 
 [DE]
 DEの測定は、「澱粉糖関連工業分析法」(澱粉糖技術部会編)の5~6ページに記載のレインエイノン法に従って算出した。
 (2)澱粉分解物の製造
 [澱粉分解物1]
 10質量%水酸化カルシウムにてpH5.8に調整した30質量%のコーンスターチスラリーに、αアミラーゼ(リコザイムスープラ、ノボザイムズ ジャパン株式会社製)を、固形分(g)当たり0.2質量%添加し、ジェットクッカー(温度110℃)で液化した。この液化液を95℃で保温し、継時的にDEを測定し、DE8になった時点で、10質量%塩酸でpH4に調整し、煮沸により反応を停止した。反応を停止した糖液のpHを5.8に調整した後、馬鈴薯由来枝作り酵素を固形分(g)当たり2000ユニット添加し、35℃で24時間反応させた。その後枝切り酵素(GODO-FIA、合同酒精株式会社製)を固形分(g)当たり1.5質量%添加し、50℃で24時間反応させた。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度40質量%に濃縮した。該濃縮液をスプレードライヤーで粉末化し澱粉分解物1を得た。
 [澱粉分解物2]
 10質量%水酸化カルシウムにてpH5.8に調整した30質量%のコーンスターチスラリーに、αアミラーゼ(リコザイムスープラ、ノボザイムズ ジャパン株式会社製)を、固形分(g)当たり0.2質量%添加し、ジェットクッカー(温度110℃)で液化した。この液化液を95℃で保温し、継時的にDEを測定し、DE8になった時点で、10質量%塩酸でpH4に調整し、煮沸により反応を停止した。反応を停止した糖液のpHを5.8に調整した後、細菌由来枝作り酵素を固形分(g)当たり500ユニット添加し、65℃で40時間反応させた。その後枝切り酵素(GODO-FIA、合同酒精株式会社製)を固形分(g)当たり0.5質量%添加し、50℃で48時間反応させた。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度40質量%に濃縮した。該濃縮液をスプレードライヤーで粉末化し澱粉分解物2を得た。
 [澱粉分解物3]
 10質量%水酸化カルシウムにてpH5.8に調整した30質量%のコーンスターチスラリーに、αアミラーゼ(クライスターゼT10S、天野エンザイム株式会社製)を、固形分(g)当たり0.2質量%添加し、ジェットクッカー(温度110℃)で液化した。この液化液を95℃で保温し、継時的にDEを測定し、DE9になった時点で、10質量%塩酸でpH4に調整し、煮沸により反応を停止した。反応を停止した糖液のpHを5.8に調整した後、細菌由来枝作り酵素を固形分(g)当たり800ユニット添加し、65℃で30時間反応させた。その後、枝切り酵素(GODO-FIA、合同酒精株式会社製)を固形分(g)当たり1.0質量%添加し、50℃で30時間反応させた。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度50質量%に濃縮した。該濃縮液をスプレードライヤーで粉末化し澱粉分解物3を得た。
 [澱粉分解物4]
 10質量%水酸化カルシウムにてpH5.8に調整した30質量%のコーンスターチスラリーに、αアミラーゼ(クライスターゼT10S、天野エンザイム株式会社製)を、固形分(g)当たり0.2質量%添加し、ジェットクッカー(温度110℃)で液化した。この液化液を95℃で保温し、継時的にDEを測定し、DE8になった時点で、10質量%塩酸でpH4に調整し、煮沸により反応を停止した。反応を停止した糖液のpHを5.8に調整した後、細菌由来枝作り酵素を固形分(g)当たり600ユニット添加し、65℃で15時間反応させた。その後枝切り酵素(GODO-FIA、合同酒精株式会社製)を固形分(g)当たり0.5質量%添加し、50℃で40時間反応させた。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度45質量%に濃縮した。該濃縮液を、スプレードライヤーで粉末化し澱粉分解物4を得た。
 [澱粉分解物5]
 10質量%塩酸にてpH2に調整した30質量%のコーンスターチスラリーを、130℃の温度条件でDE13まで分解した。常圧に戻した後、10質量%水酸化ナトリウムを用いて中和することにより反応を停止した糖液のpHを5.8に調整した後、細菌由来枝作り酵素を固形分(g)当たり400ユニット添加し、65℃で48時間反応させた。その後枝切り酵素(GODO-FIA、合同酒精株式会社製)を固形分(g)当たり1.0質量%添加し、50℃で60時間反応させた。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、スプレードライヤーで粉末化し澱粉分解物5を得た。
 [澱粉分解物6]
 10質量%塩酸にてpH2に調整した30質量%のワキシーコーンスターチスラリーを、130℃の温度条件でDE6まで分解した。常圧に戻した後、10質量%水酸化ナトリウムを用いて中和することにより反応を停止した糖液のpHを5.8に調整した後、細菌由来枝作り酵素を固形分(g)当たり500ユニット、枝切り酵素(GODO-FIA、合同酒精株式会社製)を固形分(g)当たり0.5質量%添加し、50℃で72時間反応させた。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度40質量%に濃縮した。該濃縮液を、スプレードライヤーで粉末化し澱粉分解物6を得た。
 [澱粉分解物7]
 10質量%水酸化カルシウムにてpH5.8に調整した30質量%のコーンスターチスラリーに、αアミラーゼ(リコザイムスープラ、ノボザイムズ ジャパン株式会社製)を、固形分(g)当たり0.2質量%添加し、ジェットクッカー(温度110℃)で液化した。この液化液を95℃で保温し、継時的にDEを測定し、DE17になった時点で、10質量%塩酸でpH4に調整し、煮沸により反応を停止した。この澱粉分解物の溶液を、活性炭脱色、イオン精製し、固形分濃度40質量%に濃縮した。該濃縮液をスプレードライヤーで粉末化し澱粉分解物7を得た。
 [澱粉分解物8]
 10質量%水酸化カルシウムにてpH5.8に調整した15質量%の馬鈴薯澱粉スラリーにαアミラーゼ(クライスターゼT10S、天野エンザイム株式会社製)を固形分当たり0.05質量%添加し、80℃で保温し、継続的にDEを測定し、DE6になった時点で、10質量%塩酸でpH4に調整し90℃まで加熱して反応を停止した。この澱粉分解物の溶液を、活性炭脱色し、スプレードライで粉末化し澱粉分解物8を得た。
 (3)測定
 前記で得られた澱粉分解物1~8について、DP8~19、DP20以上、DP8以上の含有率、ヨウ素呈色値、β-アミラーゼ消化試験における残存率、DEについて、前述した方法で測定した。結果を下記の表3に示す。
 
 (4)材料
 液状油脂:大豆油(昭和産業株式会社)またはキャノーラ油(昭和産業株式会社)
 固形油脂:パーム油(太陽油脂株式会社)
 環状オリゴ糖:αシクロデキストリン(シクロケム株式会社)
 乳酸:発酵乳酸50%(コービオンジャパン株式会社)
 醸造酢:穀物酢(ミツカン株式会社)
 脱脂粉乳:脱脂粉乳(株式会社明治)
 発酵乳:ハネピスJP-J(大洋香料株式会社)
 乾燥全卵:乾燥全卵D-1(キユーピータマゴ株式会社)
 粉末マヨネーズ調味料:粉末マヨネーズ調味料TN(三菱ライフサイエンス株式会社)
 静菌剤:デイプラスOK(株式会社ウエノフードテクノ)
 <実験例1>
 実験例1では、水中油型乳化組成物の各種成分および配合が、水中油型乳化組成物の物性にどのように影響するかを検討した。なお、実験例1では、水中油型乳化組成物の一例として、マヨネーズ様食品を製造した。
 (1)マヨネーズ様食品の製造
 下記の表4の配合に従って、マヨネーズ様食品を製造した。具体的には、水に環状オリゴ糖、食塩、砂糖、静菌剤、醸造酢を混合・撹拌し、60℃まで昇温して均一溶解させた。その後、撹拌しながら澱粉分解物及び粉末マヨネーズ調味料をゆっくり添加し、5分間、混合・撹拌させた。澱粉分解物及び粉末マヨネーズ調味料が均一に溶解した後、液状油脂(大豆油)または加温して液状になるように溶解した固形油脂をゆっくり添加して混合・乳化させ、そこに香料を添加して60℃まで昇温し、30分間、混合・殺菌を行い、サンプル1~13の水中油型乳化組成物を製造した。製造した水中油型乳化組成物を、氷水を使用して容器を冷却しながら、10分間、混合・撹拌した後、保管用容器に充填し、5℃にて24時間保存した。
 (2)評価
 サンプル1~13の水中油型乳化組成物の粘度を、下記の方法を用いて測定した。また、サンプル1~13の水中油型乳化組成物の乳化状態、市販のマヨネーズ(ピュアセレクト(味の素株式会社))と比較した流動性、コク、冷凍耐性について、5名の専門パネルが下記の評価基準に基づいて協議し、評価した。
 [粘度]
 粘度測定器として、ビスコテスタVT-06(リオン株式会社)を用いた。300mLトールビーカーに水中油型乳化組成物を300g充填し、低粘度の水中油型乳化組成物については1号ローター、高粘度の水中油型乳化組成物については2号ローターを使用して粘度を測定した。測定開始後、測定値が安定したところで数値を読み取り、その値を粘度とした。
 [乳化状態]
 3点 非常に良好
 2点 良好
 1点 不良
 [流動性]
 3点 コントロールと同等のとろみがあり、非常に良好
 2点 コントロールと比較してややとろみがない、またはややとろみが強いが、良好
 1点 コントロールと比較してとろみがなく、または過剰であり、不良
 [コク]
 3点 コクがあり、非常に良好
 2点 コクがやや感じられ、良好
 1点 コクがほとんど感じられず、不良
 [冷凍耐性]
 -20℃で14日間保管したあと、室温で4時間解凍したあとの状態で判定した。
 3点 油浮きがなく、分離しておらず、非常に良好
 2点 やや油浮きが見られるものの、おおむね分離しておらず、良好
 1点 油相と水相が分離してしまい、不良
 (3)結果
 結果を下記の表4に示す。
 
 (4)考察
 表4に示す通り、グルコース重合度(DP)8~19の含有率が32%以上、かつ、グルコース重合度(DP)20以上の含有率が30%以下、である澱粉分解物1~6を用いて、澱粉分解物/水=0.3以上0.7未満の範囲であるサンプル2~4、6~11は、全ての評価において良好な結果であった。
 一方、グルコース重合度(DP)8~19の含有率が32%以上、かつ、グルコース重合度(DP)20以上の含有率が30%以下、である澱粉分解物2を用いた場合であっても、澱粉分解物/水=0.3未満のサンプル1は、流動性、コク、冷凍耐性の評価が不良であった。また、澱粉分解物/水=0.7以上のサンプル5は、流動性および冷凍耐性の評価が不良であった。
 澱粉分解物/水=0.3~0.6の範囲であっても、グルコース重合度(DP)8~19の含有率が32%未満、グルコース重合度(DP)20以上の含有率が30%を超える澱粉分解物7を用いたサンプル12は、流動性、コク、冷凍耐性の評価が不良であった。また、グルコース重合度(DP)8~19の含有率が32%未満、グルコース重合度(DP)20以上の含有率が30%を超える澱粉分解物8を用いたサンプル13は、流動性の評価が不良であった。
 <実験例2>
 実験例2では、水中油型乳化組成物の一例として、ヨーグルト様食品を製造した。
 (1)ヨーグルト様食品の製造
 下記の表5の配合に従って、ヨーグルト様食品を製造した。具体的には、水に環状オリゴ糖、食塩、砂糖、静菌剤、発酵乳を混合・撹拌し、60℃まで昇温して均一溶解させた。その後、撹拌しながら澱粉分解物2及び脱脂粉乳をゆっくり添加し、5分間、混合・撹拌させた。澱粉分解物及び脱脂粉乳が均一に溶解した後、液状油脂(キャノーラ油)または加温して液状になるように溶解した固形油脂をゆっくり添加して混合・乳化させ、そこに乳酸及び香料を添加して60℃まで昇温し、30分間、混合・殺菌を行い、サンプル14~19の水中油型乳化組成物を製造した。製造した水中油型乳化組成物を、氷水を使用して容器を冷却しながら、10分間、混合・撹拌した後、保管用容器に充填し、5℃にて24時間保存した。
 (2)評価
 サンプル14~19の水中油型乳化組成物の乳化状態、市販のヨーグルト(明治ブルガリアヨーグルト(株式会社明治))と比較した流動性、コク、冷凍耐性について、実施例1と同様に評価を行った。
 (3)結果
 結果を表5に示す。
 
 (4)考察
 表5に示す通り、グルコース重合度(DP)8~19の含有率が32%以上、かつ、グルコース重合度(DP)20以上の含有率が30%以下、である澱粉分解物2を用いて、澱粉分解物/水=0.3以上0.7未満の範囲であるサンプル15~17、19は、全ての評価において良好な結果であった。
 一方、グルコース重合度(DP)8~19の含有率が32%以上、かつ、グルコース重合度(DP)20以上の含有率が30%以下、である澱粉分解物2を用いた場合であっても、澱粉分解物/水=0.3未満のサンプル14は、コクおよび冷凍耐性の評価が不良であった。また、澱粉分解物/水=0.7以上のサンプル18は、流動性の評価が不良であった。
 <実験例3>
 実験例3では、水中油型乳化組成物の一例として、カスタード様食品を製造した。
 (1)カスタード様食品の製造
 下記の表6の配合に従って、カスタード様食品を製造した。具体的には、牛乳に環状オリゴ糖、砂糖を混合・撹拌し、60℃まで昇温して均一溶解させた。その後、撹拌しながら澱粉分解物2及び乾燥全卵をゆっくり添加し、5分間、混合・撹拌させた。澱粉分解物及び乾燥全卵が均一に溶解した後、液状油脂(キャノーラ油)をゆっくり添加して混合・乳化させ、そこに香料を添加して60℃まで昇温し、30分間、混合・殺菌を行い、サンプル20~23の水中油型乳化組成物を製造した。製造した水中油型乳化組成物を、氷水を使用して容器を冷却しながら、10分間、混合・撹拌した後、保管用容器に充填し、5℃にて24時間保存した。
 (2)評価
 サンプル20~23の水中油型乳化組成物の乳化状態、市販のカスタード(プチール純生クリームカスター(株式会社田中食品興業所))と比較した流動性、コク、冷凍耐性について、実験例1と同様に評価を行った。
 (3)結果
 結果を表6に示す。
 
 (4)考察
 表6に示す通り、グルコース重合度(DP)8~19の含有率が32%以上、かつ、グルコース重合度(DP)20以上の含有率が30%以下、である澱粉分解物2を用いて、澱粉分解物/水=0.3以上0.7未満の範囲であるサンプル21、22は、全ての評価において良好な結果であった。
 一方、グルコース重合度(DP)8~19の含有率が32%以上、かつ、グルコース重合度(DP)20以上の含有率が30%以下、である澱粉分解物2を用いた場合であっても、澱粉分解物/水=0.3未満のサンプル20は、コク及び冷凍耐性の評価が不良であった。また、澱粉分解物/水=0.7以上のサンプル23は、流動性の評価が不良であった。
 

Claims (9)

  1.  グルコース重合度(DP)8~19の含有率が32%以上、
     グルコース重合度(DP)20以上の含有率が30%以下、である澱粉分解物と、
     水と、
     油脂と、を含有し、
     前記澱粉分解物/水=0.3以上0.7未満である、水中油型乳化組成物。
  2.  前記澱粉分解物のヨウ素呈色値が、0.35以上である、請求項1に記載の水中油型乳化組成物。
  3.  前記澱粉分解物を10~30質量%含有する、請求項1または2に記載の水中油型乳化組成物。
  4.  前記油脂を15~60質量%含有する、請求項1から3のいずれか一項に記載の水中油型乳化組成物。
  5.  5℃にて24時間静置後の粘度が30dPa・s~200dPa・sである、請求項1から4のいずれかに記載の水中油型乳化組成物。
  6.  環状オリゴ糖を含有する、請求項1から5のいずれか一項に記載の水中油型乳化組成物。
  7.  前記環状オリゴ糖を0.5~3質量%含有する請求項6に記載の水中油型乳化組成物。
  8.  前記環状オリゴ糖は、α-シクロデキストリンである、請求項6または7に記載の水中油型乳化組成物。
  9.  請求項1から8のいずれか一項に記載の水中油型乳化組成物が用いられた食品。
     
PCT/JP2022/005105 2022-02-09 2022-02-09 水中油型乳化組成物、および該水中油型乳化組成物が用いられた食品 WO2023152823A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2023579916A JPWO2023152823A1 (ja) 2022-02-09 2022-02-09
PCT/JP2022/005105 WO2023152823A1 (ja) 2022-02-09 2022-02-09 水中油型乳化組成物、および該水中油型乳化組成物が用いられた食品
JP2023580242A JPWO2023153370A1 (ja) 2022-02-09 2023-02-06
PCT/JP2023/003838 WO2023153370A1 (ja) 2022-02-09 2023-02-06 水中油型乳化組成物、及び該水中油型乳化組成物が用いられた化粧料
CN202380015118.9A CN118401233A (zh) 2022-02-09 2023-02-06 水包油型乳化组合物、及使用了该水包油型乳化组合物的化妆品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/005105 WO2023152823A1 (ja) 2022-02-09 2022-02-09 水中油型乳化組成物、および該水中油型乳化組成物が用いられた食品

Publications (1)

Publication Number Publication Date
WO2023152823A1 true WO2023152823A1 (ja) 2023-08-17

Family

ID=87563841

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2022/005105 WO2023152823A1 (ja) 2022-02-09 2022-02-09 水中油型乳化組成物、および該水中油型乳化組成物が用いられた食品
PCT/JP2023/003838 WO2023153370A1 (ja) 2022-02-09 2023-02-06 水中油型乳化組成物、及び該水中油型乳化組成物が用いられた化粧料

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003838 WO2023153370A1 (ja) 2022-02-09 2023-02-06 水中油型乳化組成物、及び該水中油型乳化組成物が用いられた化粧料

Country Status (3)

Country Link
JP (2) JPWO2023152823A1 (ja)
CN (1) CN118401233A (ja)
WO (2) WO2023152823A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009124994A (ja) * 2007-11-22 2009-06-11 Akita Prefectural Univ 分岐糖類の製造方法および飲食品
JP2010226988A (ja) * 2009-03-26 2010-10-14 Showa Sangyo Co Ltd 澱粉分解物、該澱粉分解物を含有する食品添加剤、飲食物、薬剤、及び澱粉分解物製造方法
JP2012135254A (ja) * 2010-12-27 2012-07-19 Miyoshi Oil & Fat Co Ltd ケーキ呈味用水中油型乳化物及びケーキ
JP2014233273A (ja) * 2013-06-04 2014-12-15 キユーピー株式会社 水中油型乳化調味料
JP2014233272A (ja) * 2013-06-04 2014-12-15 キユーピー株式会社 水中油型乳化調味料
WO2019235142A1 (ja) * 2018-06-08 2019-12-12 昭和産業株式会社 結晶澱粉分解物、及び該結晶澱粉分解物を用いた飲食品用組成物、飲食品、医薬品、化粧料、工業製品、飼料、培地、肥料、及びこれらの改質剤、並びに、前記結晶澱粉分解物、飲食品用組成物、飲食品、医薬品、化粧料、工業製品、飼料、培地、及び肥料の製造方法
WO2020230238A1 (ja) * 2019-05-13 2020-11-19 昭和産業株式会社 改質剤、該改質剤を含有する改質用組成物、及びこれらを用いた飲食品、医薬品、化粧品、工業製品、飼料、培地、又は肥料、並びに、これらの製品の改質方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004315481A (ja) 2003-04-21 2004-11-11 Sanwa Kosan Kk 化粧品用組成物
JP2005213176A (ja) 2004-01-29 2005-08-11 Taiki:Kk シート状パック化粧料
JP5270087B2 (ja) * 2006-12-14 2013-08-21 花王株式会社 水中油型乳化物
JP6010418B2 (ja) * 2012-10-05 2016-10-19 株式会社ファンケル 乳化組成物
JP7441011B2 (ja) 2019-07-26 2024-02-29 ハウスウェルネスフーズ株式会社 マヨネーズ風ドレッシング
JP6871466B2 (ja) 2019-10-01 2021-05-12 ハウスウェルネスフーズ株式会社 アイスクリーム様乳化組成物
JP6871465B1 (ja) 2020-02-05 2021-05-12 ハウスウェルネスフーズ株式会社 アイスクリーム様含気乳化組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009124994A (ja) * 2007-11-22 2009-06-11 Akita Prefectural Univ 分岐糖類の製造方法および飲食品
JP2010226988A (ja) * 2009-03-26 2010-10-14 Showa Sangyo Co Ltd 澱粉分解物、該澱粉分解物を含有する食品添加剤、飲食物、薬剤、及び澱粉分解物製造方法
JP2012135254A (ja) * 2010-12-27 2012-07-19 Miyoshi Oil & Fat Co Ltd ケーキ呈味用水中油型乳化物及びケーキ
JP2014233273A (ja) * 2013-06-04 2014-12-15 キユーピー株式会社 水中油型乳化調味料
JP2014233272A (ja) * 2013-06-04 2014-12-15 キユーピー株式会社 水中油型乳化調味料
WO2019235142A1 (ja) * 2018-06-08 2019-12-12 昭和産業株式会社 結晶澱粉分解物、及び該結晶澱粉分解物を用いた飲食品用組成物、飲食品、医薬品、化粧料、工業製品、飼料、培地、肥料、及びこれらの改質剤、並びに、前記結晶澱粉分解物、飲食品用組成物、飲食品、医薬品、化粧料、工業製品、飼料、培地、及び肥料の製造方法
WO2020230238A1 (ja) * 2019-05-13 2020-11-19 昭和産業株式会社 改質剤、該改質剤を含有する改質用組成物、及びこれらを用いた飲食品、医薬品、化粧品、工業製品、飼料、培地、又は肥料、並びに、これらの製品の改質方法

Also Published As

Publication number Publication date
WO2023153370A1 (ja) 2023-08-17
JPWO2023152823A1 (ja) 2023-08-17
CN118401233A (zh) 2024-07-26
JPWO2023153370A1 (ja) 2023-08-17

Similar Documents

Publication Publication Date Title
US5219842A (en) Method of improving intestinal floras
US5436019A (en) Method of preparing reduced fat foods
AU2010285965A1 (en) Food product containing starch gel
JP2006101887A (ja) トレハロース含有シラップ
JP6962674B2 (ja) 分岐α−グルカン混合物シラップとその用途
JP2021514197A (ja) 生成方法
KR20190099003A (ko) 억제 찰전분 및 그의 사용 방법
JP6514110B2 (ja) 酸性水中油型乳化調味料
JP2009124994A (ja) 分岐糖類の製造方法および飲食品
WO1993003629A1 (en) Debranched amylopectin starch as a fat replacer
CN114761574A (zh) 含环状四糖的糖组合物及其用途以及制造方法
JP2823640B2 (ja) 腸内フローラ改善物質
JP6894317B2 (ja) 油脂組成物
JP2010004809A (ja) 低粘性酸性豆乳飲料
JP7285052B2 (ja) 澱粉分解物、並びに該澱粉分解物を用いた飲食品用組成物、及び飲食品
JP2009131246A (ja) 氷結晶化阻害剤及びその利用
EP0529893A1 (en) Debranched amylopectin-starch as fat replacer
JP5005880B2 (ja) 糖質及び糖組成物とこれらを配合した食品
WO2023152823A1 (ja) 水中油型乳化組成物、および該水中油型乳化組成物が用いられた食品
JP3768449B2 (ja) 穀類加熱調理済み食品の物性改良方法およびこれを用いた穀類加熱調理済み食品
JP3461792B2 (ja) マヨネーズ様食品
JP6283247B2 (ja) 菓子
US20220213231A1 (en) Modifier, composition for modification containing the modifier, food or beverage, pharmaceutical product, cosmetic product, industrial product, feed, medium, or fertilizer using the same, and method for modifying these products
WO2022102057A1 (ja) 水中油型乳化組成物、および該水中油型乳化組成物が用いられた食品
WO2018181125A1 (ja) パンの品質改良剤及び/又は品質改良組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925844

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023579916

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE