WO2023139735A1 - Component mounting device - Google Patents

Component mounting device Download PDF

Info

Publication number
WO2023139735A1
WO2023139735A1 PCT/JP2022/002070 JP2022002070W WO2023139735A1 WO 2023139735 A1 WO2023139735 A1 WO 2023139735A1 JP 2022002070 W JP2022002070 W JP 2022002070W WO 2023139735 A1 WO2023139735 A1 WO 2023139735A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
thermal expansion
component
push
unit
Prior art date
Application number
PCT/JP2022/002070
Other languages
French (fr)
Japanese (ja)
Inventor
大介 春日
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to PCT/JP2022/002070 priority Critical patent/WO2023139735A1/en
Publication of WO2023139735A1 publication Critical patent/WO2023139735A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/02Feeding of components

Definitions

  • the present invention relates to a component mounting apparatus, and more particularly to a component mounting apparatus that picks up components from a diced wafer and mounts them on a board.
  • the above Japanese Patent Application Laid-Open No. 2005-277273 discloses an electronic component mounting apparatus (component mounting apparatus) that picks up semiconductor chips from a diced wafer and mounts them on a substrate.
  • This electronic component mounting apparatus includes a supply section imaging camera that captures an image of a semiconductor chip on a wafer from above, a supply section imaging camera moving mechanism that moves the supply section imaging camera, an ejector that pushes up the semiconductor chip on the wafer from below, and an ejector XY table that moves the ejector.
  • the movement of the supply section imaging camera increases the temperature of the supply section imaging camera moving mechanism, and thermal expansion occurs in the supply section imaging camera movement mechanism.
  • this electronic component mounting apparatus is provided with a recognition mark that is used for correcting the thermal expansion of the feeding section imaging camera moving mechanism.
  • the thermal expansion of the supply section imaging camera moving mechanism is corrected by imaging the recognition mark with the supply section imaging camera.
  • the present invention was made to solve the above-mentioned problems, and one object of the present invention is to provide a component mounting apparatus capable of ensuring stable component push-up accuracy.
  • a component mounting apparatus is a component mounting apparatus that picks up components from a diced wafer and mounts them on a substrate, comprising: a first imaging unit that captures an image of the components on the wafer from above; a push-up unit that pushes up the components on the wafer from below; a first movement mechanism that moves the first imaging unit; a second movement mechanism that moves the push-up unit; , a control unit that acquires a first thermal expansion correction amount including the thermal expansion of the second moving mechanism, and performs thermal expansion correction based on the acquired first thermal expansion correction amount.
  • the first imaging unit images the pushing-up portion, based on the imaging result of the pushing-up portion by the first imaging unit, the first thermal expansion correction amount including the thermal elongation of the first moving mechanism that moves the first imaging unit and the thermal elongation of the second moving mechanism that moves the pushing-up portion is acquired, and a control unit is provided that performs thermal expansion correction based on the acquired first thermal expansion correction amount.
  • the pushing-up portion can be moved to an appropriate pushing-up position by the second moving mechanism, so that the component can be properly pushed up by the pushing-up portion.
  • the second moving mechanism so that the component can be properly pushed up by the pushing-up portion.
  • the component mounting apparatus in order to correct the thermal elongation of the first moving mechanism and the thermal elongation of the second moving mechanism, it is conceivable to configure the component mounting apparatus as follows. That is, it is conceivable to provide a component mounting apparatus with a recognition mark used for thermal expansion correction, to correct the thermal expansion of the first moving mechanism by imaging the recognition mark with the first imaging unit, and to correct the thermal expansion of the second moving mechanism by imaging the push-up portion with the first imaging unit in a state in which the thermal expansion of the first moving mechanism is corrected.
  • the thrust-up portion is imaged by the first imaging unit, based on the imaging result of the thrust-up portion by the first imaging unit, the first thermal expansion correction amount including the thermal expansion of the first moving mechanism and the thermal expansion of the second moving mechanism is acquired, and thermal expansion correction is performed based on the acquired first thermal expansion correction amount.
  • the thermal expansion of the first moving mechanism and the thermal expansion of the second moving mechanism can be corrected at the same time only by imaging the push-up portion, so that an increase in the time required for correcting the thermal expansion can be suppressed.
  • the control unit acquires the image pickup position of the component by the first image pickup unit based on the first thermal expansion correction amount, picks up an image of the component while the component is moved to the acquired image pickup position by the first image pickup unit, acquires the amount of deviation from the position of the push-up unit including the thermal expansion of the second moving mechanism to the position of the component based on the image pickup result of the component by the first image pickup unit, and acquires the push-up position of the component by the push-up unit based on the amount of deviation.
  • the component mounting apparatus preferably further includes a head unit that takes out components on the wafer from above, a second imaging section provided in the head unit, and a third moving mechanism that moves the head unit. 2, thermal expansion correction is performed based on the amount of thermal expansion correction.
  • thermal expansion correction is performed based on the amount of thermal expansion correction.
  • the control unit acquires the imaging position of the component by the first imaging unit based on the first thermal expansion correction amount, images the component in a state of being moved to the acquired imaging position by the first imaging unit, acquires the deviation amount from the position of the push-up unit including the thermal expansion of the second moving mechanism to the position of the component based on the imaging result of the component by the first imaging unit, acquires the push-up position of the component by the push-up unit based on the deviation amount, and corrects the deviation amount and the second thermal expansion. and the position of picking up the part by the head.
  • this configuration it is possible to accurately correct the position where the part is pushed up by the pushing part and the position where the part is picked up by the head based on the first correction amount of thermal expansion and the second correction amount of thermal expansion.
  • the first moving mechanism is configured to move the first imaging section in a first direction and a second direction that are substantially orthogonal to each other in a horizontal plane
  • the second moving mechanism is configured to move the push-up section in the first direction and the second direction
  • the third moving mechanism is configured to move the head unit in the first direction and the second direction.
  • the thermal elongation of the first moving mechanism, the second moving mechanism, and the third moving mechanism can be corrected.
  • the control section is preferably configured so that the first imaging section images the push-up section with the first imaging section and the thrust-up section moved to the same first target position, and the second imaging section images the thrust-up section with the second imaging section and the thrust-up section moved to the same second target position as the first target position.
  • the control unit is configured to update the thermal expansion correction at predetermined time intervals, and the control unit is configured to acquire an area for picking up the component from the wafer within the predetermined time interval, capture an image of the push-up section with the first imaging unit at a position corresponding to the acquired area, and update the thermal expansion correction.
  • the control unit is configured to acquire an area for picking up the component from the wafer within the predetermined time interval, capture an image of the push-up section with the first imaging unit at a position corresponding to the acquired area, and update the thermal expansion correction.
  • thermal elongation is not linear in many cases, it is preferable from the viewpoint of improving the accuracy of thermal elongation correction to perform thermal elongation correction by imaging the push-up portion with the first imaging unit at a plurality of positions.
  • the time required for thermal expansion correction increases.
  • the accuracy of thermal expansion correction can be effectively improved, so even if the number of positions where the thrust-up portion is imaged by the first imaging unit is reduced, thermal expansion can be corrected with high accuracy. As a result, it is possible to accurately perform the thermal elongation correction while suppressing an increase in the time required for the thermal elongation correction.
  • control unit is configured to obtain the number of components to be taken out from the wafer within a predetermined time interval based on the substrate cycle time, and to obtain the area based on the obtained number of components. According to this configuration, it is possible to easily acquire the area from which the components are to be removed from the wafer within the predetermined time interval based on the number of components to be removed from the wafer within the predetermined time interval.
  • the push-up section is configured not to have an imaging section.
  • the push-up section does not have an imaging section, so an increase in the number of parts and complication of the structure can be suppressed compared to the case where the push-up section has an imaging section.
  • FIG. 1 is a schematic plan view showing a component mounting apparatus according to a first embodiment
  • FIG. FIG. 2 is a schematic perspective view showing a wafer imaging section, a push-up section, and a head according to the first embodiment
  • It is a figure for demonstrating the pushing-up of components by the pushing-up part by 1st Embodiment.
  • FIG. 12 is a flowchart continued from FIG. 11; FIG.
  • the component mounting apparatus 100 is a device that takes out components C as semiconductor chips from a diced wafer W and mounts them on a substrate B.
  • the component mounting apparatus 100 includes a base 1, a conveyor 2, a head unit 3, a head unit moving mechanism 4, a component supply section 5, a wafer imaging section 6, a wafer imaging section moving mechanism 7, a push-up section 8, a push-up section movement mechanism 9, and a control section 10.
  • the head unit moving mechanism 4 is an example of the "third moving mechanism” in the claims.
  • the wafer imaging section 6 is an example of the "first imaging section” in the claims.
  • the wafer imaging unit moving mechanism 7 is an example of the "first moving mechanism” in the claims.
  • the push-up portion moving mechanism 9 is an example of the "second moving mechanism” in the claims.
  • the conveyor 2 is configured to carry in the board B to the mounting work position and carry out the board B from the mounting work position.
  • the conveyor 2 also includes a pair of conveyor rails extending in the X direction and a positioning mechanism (not shown) that positions the board B at the mounting position. As a result, the conveyor 2 conveys the board B in the X direction and positions and fixes the board B at the mounting work position.
  • the head unit 3 is a head unit for component mounting.
  • the head unit 3 is supported by a head unit moving mechanism 4 so as to be movable in horizontal directions (XY directions) above the wafer W and the conveyor 2 (substrate B).
  • the head unit 3 includes a plurality of heads 31 arranged along the X direction.
  • the head 31 is a mounting head that picks up the component C from the wafer W from above and mounts the picked component C on the substrate B.
  • the head 31 has a suction nozzle 31a for sucking the component C at its tip.
  • the head 31 is configured to pick up the component C from the wafer W by suction with a suction nozzle 31a.
  • the head 31 is configured to mount the component C on the board B, which is picked up by the suction nozzle 31a.
  • the head unit moving mechanism 4 is configured to move the head unit 3. Specifically, the head unit moving mechanism 4 is configured to move the head unit 3 in the X direction and the Y direction, which are substantially perpendicular to each other in the horizontal plane.
  • the head unit moving mechanism 4 includes an X-axis head unit moving mechanism 41 for moving the head unit 3 in the X direction and a Y-axis head unit moving mechanism 42 for moving the X-axis head unit moving mechanism 41 in the Y direction.
  • the X direction and the Y direction are examples of the "first direction" and the "second direction” in the claims, respectively.
  • the X-axis head unit moving mechanism 41 is a linear motion mechanism having a ball screw shaft 41a and a drive motor 41b that drives the ball screw shaft 41a.
  • the X-axis head unit moving mechanism 41 rotates the ball screw shaft 41a by the drive motor 41b, thereby moving the head unit 3 attached to the ball screw shaft 41a via the ball nut in the X direction.
  • the Y-axis head unit moving mechanism 42 is a linear motion mechanism having a ball screw shaft 42a and a drive motor 42b that drives the ball screw shaft 42a.
  • the Y-axis head unit moving mechanism 42 rotates the ball screw shaft 42a by the drive motor 42b, thereby moving the X-axis head unit moving mechanism 41 attached to the ball screw shaft 42a via the ball nut in the Y direction.
  • the X-axis head unit moving mechanism 41 and the Y-axis head unit moving mechanism 42 move the head unit 3 horizontally (XY directions) above the wafer W and the conveyor 2 (substrate B).
  • the head unit 3 is provided with a board imaging section 32 and a component imaging section 33 .
  • the board imaging unit 32 is a board camera that takes an image of a position recognition mark (fiducial mark) provided on the board B from above before the component C is mounted on the board B by the head 31 .
  • the control unit 10 is configured to correct the mounting position of the component C by the head 31 based on the imaging result of the position recognition mark by the board imaging unit 32 .
  • substrate imaging part 32 is an example of the "2nd imaging part" of a claim.
  • the component imaging unit 33 is a component camera that takes an image of the component C sucked by the suction nozzle 31a of the head 31 from the side before the component C is mounted on the board B by the head 31.
  • the control unit 10 is configured to recognize the state of the component C sucked by the suction nozzle 31 a of the head 31 based on the imaging result of the component C by the component imaging unit 33 .
  • illustration of the component imaging part 33 is abbreviate
  • the board imaging section 32 and the component imaging section 33 are provided in a common frame with the head unit 3 . Therefore, the board imaging section 32 and the component imaging section 33 can be moved horizontally (XY directions) above the wafer W and the conveyor 2 (board B) by the head unit moving mechanism 4 together with the head unit 3 .
  • the component supply unit 5 is configured to move the wafer W stored in the wafer storage unit 11 to the supply position PF and supply the components C of the wafer W.
  • a plurality of diced wafers W are stored in the wafer storage unit 11 .
  • a plurality of diced wafers W are stored while being adhered to an adhesive wafer sheet WS (see FIG. 3) attached to a ring frame.
  • the component supply unit 5 includes a wafer holding table 51 movable in the Y direction between the wafer storage unit 11 and the supply position PF.
  • the wafer holding table 51 is movable in the Y direction between the wafer housing portion 11 and the supply position PF while holding the wafer W via the ring frame.
  • the wafer image capturing unit 6 is a wafer camera that captures an image of the component C on the wafer W held by the wafer holding table 51 at the supply position PF from above before the component C is taken out from the wafer W by the head 31 .
  • the control unit 10 is configured to correct the pick-up position (suction position) of the component C by the head 31 based on the imaging result of the component C by the wafer imaging unit 6 .
  • the wafer imaging section 6 is supported by a wafer imaging section moving mechanism 7 so as to be movable above the wafer W in horizontal directions (XY directions).
  • the wafer imaging section moving mechanism 7 is configured to move the wafer imaging section 6 . Specifically, the wafer imaging section moving mechanism 7 is configured to move the wafer imaging section 6 in the X direction and the Y direction, which are substantially perpendicular to each other in the horizontal plane.
  • the wafer imaging section moving mechanism 7 includes an X-axis wafer imaging section moving mechanism 71 for moving the wafer imaging section 6 in the X direction, and a Y-axis wafer imaging section moving mechanism 72 for moving the X-axis wafer imaging section moving mechanism 71 in the Y direction.
  • the X-axis wafer imaging unit moving mechanism 71 is a linear motion mechanism having a ball screw shaft 71a and a drive motor 71b that drives the ball screw shaft 71a.
  • the X-axis wafer imaging section moving mechanism 71 rotates the ball screw shaft 71a by the drive motor 71b, thereby moving the wafer imaging section 6 attached to the ball screw shaft 71a via the ball nut in the X direction.
  • the Y-axis wafer imaging unit moving mechanism 72 is a linear motion mechanism having a ball screw shaft 72a and a drive motor 72b that drives the ball screw shaft 72a.
  • the Y-axis wafer imaging section moving mechanism 72 rotates the ball screw shaft 72a by the drive motor 72b, thereby moving the X-axis wafer imaging section moving mechanism 71 attached to the ball screw shaft 72a via the ball nut in the Y direction.
  • the wafer imaging section 6 is moved above the wafer W in the horizontal direction (XY directions) by the X-axis wafer imaging section moving mechanism 71 and the Y-axis wafer imaging section moving mechanism 72 .
  • the push-up unit 8 is a push-up head that pushes up the component C of the wafer W held on the wafer holding table 51 at the supply position PF from below when the component C is taken out from the wafer W.
  • the head 31 is held by the wafer holding table 51 at the supply position PF, and is configured to pick up the component C from the wafer W while it is pushed up by the push-up portion 8 .
  • the push-up portion 8 includes a push-up pin 81 that is raised and lowered by a lifting mechanism (not shown).
  • the push-up pins 81 are configured to push up the component C from below and separate the component C from the wafer sheet WS by being lifted by an elevating mechanism. It should be noted that the push-up section 8 does not have an imaging section.
  • the push-up portion moving mechanism 9 is configured to move the push-up portion 8 .
  • the push-up portion moving mechanism 9 is configured to move the push-up portion 8 in the X direction and the Y direction, which are substantially perpendicular to each other in the horizontal plane.
  • the pushing-up portion moving mechanism 9 includes an X-axis pushing-up portion moving mechanism 91 for moving the head unit 3 in the X direction, and a Y-axis pushing-up portion moving mechanism 92 for moving the X-axis pushing-up portion moving mechanism 91 in the Y direction.
  • the X-axis push-up portion moving mechanism 91 is a linear motion mechanism having a ball screw shaft 91a and a drive motor 91b that drives the ball screw shaft 91a.
  • the X-axis push-up portion moving mechanism 91 rotates the ball screw shaft 91a with a drive motor 91b, thereby moving the push-up portion 8 attached to the ball screw shaft 91a via a ball nut in the X direction.
  • the Y-axis push-up portion moving mechanism 92 is a linear motion mechanism having a ball screw shaft 92a and a drive motor 92b that drives the ball screw shaft 92a.
  • the Y-axis push-up portion moving mechanism 92 rotates the ball screw shaft 92a by the drive motor 92b, thereby moving the X-axis push-up portion moving mechanism 91 attached to the ball screw shaft 92a via the ball nut in the Y direction.
  • the push-up portion 8 is moved below the wafer W in the horizontal direction (XY direction) by the X-axis push-up portion movement mechanism 91 and the Y-axis push-up portion movement mechanism 92 .
  • control section 10 is configured to control the operation of each section of the component mounting apparatus 100 .
  • the control unit 10 is configured to control the operations of the conveyor 2, the head unit 3, the head unit moving mechanism 4, the board imaging unit 32, the component imaging unit 33, the component supply unit 5, the wafer imaging unit 6, the wafer imaging unit moving mechanism 7, the pushing unit 8, and the pushing unit moving mechanism 9.
  • the control unit 10 controls the operation of each unit based on output signals from position detection means such as encoders built in the drive motors of the above units.
  • the control unit 10 has a function of performing imaging control and image recognition of various imaging units (the substrate imaging unit 32, the component imaging unit 33, and the wafer imaging unit 6).
  • the control unit 10 includes a processor such as a CPU (Central Processing Unit) and a memory.
  • CPU Central Processing Unit
  • thermo elongation correction thermo elongation correction
  • the temperature rise occurs with the movement of each movement target of the head unit 3 (head 31), the wafer imaging section 6, and the push-up section 8.
  • thermal elongation thermal expansion
  • a shift occurs between the theoretical moving position and the actual moving position, so the positioning accuracy of each moving object is lowered. Therefore, the component mounting apparatus 100 performs thermal expansion correction.
  • the control unit 10 is an imaging portion 8 by the wafer imaging section 6, and based on the image result of the thrust part 8 by the wafer imaging section 6, the thermal growth of the Waeha imaging unit movement mechanism 7 and the thermal growth of the push -up part of the tracking part 9.
  • the first thermal growth correction amount D1 (see FIG. 4) is obtained, and it is configured to perform a thermal growth correction based on the obtained first thermal growth amount D1.
  • the head 31, the substrate imaging section 32, the wafer imaging section 6, and the push-up section 8 are schematically illustrated as marks representing each configuration.
  • control unit 10 captures an image of the push-up portion 8 by the substrate imaging unit 32, acquires the second thermal expansion correction amount D2 (see FIG. 5) including the thermal expansion of the head unit moving mechanism 4 and the thermal expansion of the push-up portion moving mechanism 9 based on the imaging result of the push-up portion 8 by the substrate imaging unit 32, and performs thermal expansion correction based on the first thermal expansion correction amount D1 and the second thermal expansion correction amount D2.
  • the control unit 10 acquires the imaging position of the component C by the wafer imaging unit 6 based on the first thermal expansion correction amount D1, images the component C with the wafer imaging unit 6 while being moved to the acquired imaging position, acquires the deviation amount D3 (see FIG. 6) from the position of the thrusting unit 8 including the thermal elongation of the thrusting unit moving mechanism 9 to the position of the component C based on the imaging result of the component C by the wafer imaging unit 6, and based on the deviation amount D3, determines the thrusting unit. 8 is configured to acquire the position of the component C pushed up. Further, the control unit 10 is configured to acquire the pickup position of the component C by the head 31 based on the deviation amount D3 and the second thermal expansion correction amount D2.
  • control unit 10 is configured such that the wafer imaging unit 6 images the push-up unit 8 while the wafer imaging unit 6 and the thrust-up unit 8 are moved to the same first target position (theoretical position P1), and the substrate imaging unit 32 images the push-up unit 8 while the substrate imaging unit 32 and the thrust-up unit 8 are moved to the same second target position (theoretical position P1) as the first target position.
  • the wafer imaging section 6 and the substrate imaging section 32 pick up an image of the push-up section 8
  • the wafer W is moved by the wafer holding table 51 so as to retreat from the supply position PF. Therefore, the push-up portion 8 is exposed upward at the supply position PF, and the wafer imaging portion 6 and the board imaging portion 32 can image the push-up portion 8 from above at the supply position PF.
  • the wafer imaging section moving mechanism 7 moves the wafer imaging section 6 with the theoretical position P1 as the target position
  • the thrusting section moving mechanism 9 moves the thrusting section 8 with the theoretical position P1 as the target position.
  • the wafer imaging section 6 is located at a position displaced from the theoretical position P1 by the amount of thermal expansion deviation D11.
  • the push-up portion moving mechanism 9 is positioned at a position displaced from the theoretical position P1 by a thermal expansion displacement amount D12.
  • the wafer imaging section 6 images the thrusting-up section 8 from above in a state where the wafer imaging section 6 and the pushing-up section 8 are positioned at a position displaced from the theoretical position P1 by the thermal expansion deviation amount.
  • This imaging result includes information on the amount of thermal expansion deviation D11 of the wafer imaging unit 6 and the amount of thermal expansion deviation D12 of the push-up unit 8 .
  • a first thermal expansion correction amount D1 including the thermal expansion displacement amount D11 of the wafer imaging unit 6 and the thermal expansion displacement amount D12 of the pushing-up unit 8 is obtained based on the imaging result of the pushing-up unit 8 by the wafer imaging unit 6.
  • the first thermal expansion correction amount D1 represents the displacement amount of the pushing-up portion 8 with respect to the wafer imaging portion 6 in a state of thermal expansion. That is, the first thermal expansion correction amount D1 represents the relative amount of thermal expansion deviation of the wafer imaging section 6 including the thermal expansion deviation amount D12 of the push-up section 8 .
  • the wafer imaging unit 6 by correcting the target position of the wafer imaging unit 6 so as to add the first thermal expansion correction amount D1 to the target position of the wafer imaging unit 6, it is possible to move the wafer imaging unit 6 so that the center of the wafer imaging unit 6 and the center of the push-up unit 8 substantially coincide. That is, it is possible to move the wafer imaging section 6 to the position of the pushing-up section 8 including the thermal expansion of the pushing-up section moving mechanism 9 .
  • the head unit moving mechanism 4 moves the substrate imaging section 32 with the theoretical position P1 as the target position
  • the thrusting section moving mechanism 9 moves the thrusting section 8 with the theoretical position P1 as the target position. Note that if the wafer imaging unit 6 has already imaged the push-up unit 8, the push-up unit 8 has already been moved.
  • the board imaging section 32 is positioned at a position shifted from the theoretical position P1 by the amount of thermal expansion deviation D21.
  • the push-up portion 8 is positioned at a position displaced from the theoretical position P1 by a thermal expansion displacement amount D12.
  • the board imaging section 32 captures an image of the thrusting section 8 from above in a state where the board imaging section 32 and the thrusting section 8 are positioned at positions displaced from the theoretical position P1 by the amount of thermal expansion deviation.
  • This imaging result includes information on the amount of thermal expansion deviation D21 of the board imaging portion 32 and the amount of thermal expansion deviation D12 of the push-up portion 8 .
  • a second thermal expansion correction amount D2 including the thermal expansion displacement amount D21 of the substrate imaging unit 32 and the thermal expansion displacement amount D12 of the pushing-up portion 8 is acquired based on the imaging result of the thrust-up portion 8 by the substrate imaging unit 32.
  • the second thermal expansion correction amount D2 includes the thermal expansion deviation amount D21 of the head 31 and the thermal expansion deviation amount D12 of the push-up portion 8 .
  • the second thermal expansion correction amount D2 represents the displacement amount of the push-up portion 8 with respect to the head 31 (board imaging portion 32) in a thermally expanded state. That is, the second thermal expansion correction amount D2 represents a relative amount of thermal expansion deviation of the head 31 (board imaging section 32) including the thermal expansion deviation amount D12 of the push-up portion 8.
  • the imaging position of the component C by the wafer imaging unit 6 is acquired as the target position after correction. Since the imaging position is acquired including the thermal elongation of the push-up part moving mechanism 9, when the wafer imaging part moving mechanism 7 moves the wafer imaging part 6 to the imaging position, the wafer imaging part 6 is moved to the position of the push-up part 8 including the thermal elongation of the push-up part moving mechanism 9. That is, the wafer imaging unit 6 is moved to a position shifted from the theoretical position P2 by the amount of thermal expansion deviation D12.
  • the component C is imaged from above by the wafer imaging unit 6 in a state of being shifted from the theoretical position P2 by the amount of thermal expansion deviation D12.
  • This imaging result includes information on the amount of deviation D3 from the position of the push-up portion 8 including the thermal elongation of the push-up portion moving mechanism 9 to the center position of the component C.
  • FIG. based on the imaging result of the component C by the wafer imaging unit 6, the shift amount D3 from the position of the push-up portion 8 including the thermal expansion of the push-up portion moving mechanism 9 to the center position of the component C is obtained.
  • the position of the part C pushed up by the push-up part 8 is obtained as the corrected target position. Then, by moving the push-up part 8 to the acquired push-up position by the push-up part moving mechanism 9, the push-up part 8 can be moved so that the center of the part C and the center of the push-up part 8 substantially coincide.
  • the pickup position of the component C by the head 31 is obtained as the corrected target position.
  • the head unit moving mechanism 4 moves the head 31 to the acquired take-out position, thereby moving the head 31 so that the center of the component C and the center of the head 31 substantially coincide.
  • the imaging of the push-up portion 8 by each of the wafer imaging portion 6 and the substrate imaging portion 32 may be performed at only one point, or may be performed at a plurality of points such as two points and four points.
  • each imaging section captures an image of the push-up portion 8 at a point P11 at the center position of the wafer adsorption area WA. Then, the first thermal expansion correction amount D1 and the second thermal expansion correction amount D2 at the point P11 are acquired based on the imaging result at the point P11 of the push-up portion 8 .
  • the acquired first thermal expansion correction amount D1 and second thermal expansion correction amount D2 are used as they are when correcting the push-up position and the take-out position, as described with reference to FIGS. That is, the same first thermal expansion correction amount D1 and second thermal expansion correction amount D2 are used when picking up the component C at any position on the wafer W.
  • each imaging section image the push-up section 8 at a plurality of points, such as arbitrary two points and arbitrary four points within the wafer adsorption area WA.
  • the pushing-up portion 8 is imaged at two arbitrary points
  • the pushing-up portion 8 is imaged by each imaging portion at predetermined points P21 and P22 in the wafer adsorption area WA.
  • the first thermal expansion correction amount D1 and the second thermal expansion correction amount D2 for each position of the component C on the wafer W are obtained using a coordinate transformation method such as affine transformation.
  • the obtained first thermal expansion correction amount D1 and second thermal expansion correction amount D2 for each position of the component C on the wafer W are used when correcting the push-up position and the pick-up position. That is, depending on the position of the component C on the wafer W, different first thermal expansion correction amount D1 and second thermal expansion correction amount D2 are used.
  • the push-up portion 8 when the push-up portion 8 is imaged at four arbitrary points, the push-up portion 8 is imaged by each imaging portion at predetermined points P31 to P34 within the wafer adsorption area WA. Then, based on the imaging results of the push-up portion 8 at each of the points P31 to P34, the first thermal expansion correction amount D1 and the second thermal expansion correction amount D2 for each position of the component C on the wafer W are obtained using a coordinate transformation method such as projective transformation. Then, the obtained first thermal expansion correction amount D1 and second thermal expansion correction amount D2 for each position of the component C on the wafer W are used when correcting the push-up position and the pick-up position. That is, depending on the position of the component C on the wafer W, different first thermal expansion correction amount D1 and second thermal expansion correction amount D2 are used.
  • Control processing related to thermal elongation correction 8 and 9 control processing for thermal expansion correction by the component mounting apparatus 100 of the first embodiment will be described based on a flowchart. Note that each process in the flowchart is executed by the control unit 10 .
  • step S101 it is determined whether or not the wafer W is present at the supply position PF. If it is determined that the wafer W does not exist at the supply position PF, the process proceeds to step S103. Further, when it is determined that the wafer W is present at the supply position PF, the process proceeds to step S102.
  • step S102 the wafer W is returned to the wafer storage unit 11 by the wafer holding table 51.
  • step S103 the wafer imaging section moving mechanism 7 moves to the imaging position (theoretical position P1), and the thrusting section moving mechanism 9 moves the thrusting section 8 to the imaging position (theoretical position P1).
  • step S104 the thrust-up portion 8 is imaged by the wafer imaging portion 6.
  • step S105 it is determined whether or not imaging of the push-up portion 8 by the wafer imaging unit 6 at all imaging points has been completed. If it is determined that the wafer imaging unit 6 has not completed imaging the thrust-up portion 8 at all imaging points, the process proceeds to step S103, and the wafer imaging unit 6 images the thrust-up portion 8 at the next imaging point. If it is determined that the imaging of the push-up portion 8 by the wafer imaging section 6 at all imaging points has been completed, the process proceeds to step S106. Note that when there is only one imaging point, the process of step S105 is not performed.
  • step S106 the first thermal expansion correction amount D1 is obtained based on the imaging result of the pushing-up portion 8 by the wafer imaging portion 6.
  • step S107 the board imaging section 32 is moved to the imaging position (theoretical position P1) by the head unit moving mechanism 4, and the thrusting section 8 is moved to the imaging position (theoretical position P1) by the thrusting section moving mechanism 9. It should be noted that the push-up portion 8 maintains the position moved in the process of step S103.
  • step S108 the board imaging section 32 captures an image of the push-up section 8.
  • step S109 it is determined whether or not imaging of the push-up portion 8 by the substrate imaging section 32 at all imaging points has been completed. If it is determined that the substrate imaging unit 32 has not completed imaging the push-up portion 8 at all imaging points, the process proceeds to step S107, and the substrate imaging unit 32 images the push-up portion 8 at the next imaging point. If it is determined that imaging of the push-up portion 8 by the substrate imaging section 32 at all imaging points has been completed, the process proceeds to step S110. Note that when there is only one imaging point, the process of step S109 is not performed.
  • step S ⁇ b>110 the second thermal expansion correction amount D ⁇ b>2 is acquired based on the imaging result of the push-up portion 8 by the substrate imaging section 32 .
  • the control process is then terminated. Note that the amount of thermal expansion of each moving mechanism changes with time, so the control process shown in FIG. 8 is performed at predetermined time intervals (such as 3-minute intervals). Therefore, the first thermal expansion correction amount D1 and the second thermal expansion correction amount D2 are updated at predetermined time intervals, and the latest thermal expansion state is reflected in the thermal expansion correction.
  • step S111 the imaging position of the component C by the wafer imaging unit 6 is obtained based on the first thermal expansion correction amount D1.
  • step S112 the wafer imaging section moving mechanism 7 moves the wafer imaging section 6 to the imaging position.
  • step S113 the image of the component C is captured by the wafer imaging unit 6.
  • step S114 the amount of deviation D3 is acquired based on the imaging result of the component C by the wafer imaging unit 6.
  • step S115 the push-up position of the part C by the push-up unit 8 is acquired based on the deviation amount D3.
  • step S116 the push-up portion moving mechanism 9 moves the push-up portion 8 to the push-up position.
  • step S117 the pickup position of the component C by the head 31 is acquired based on the deviation amount D3 and the second thermal expansion correction amount D2.
  • step S118 the head unit moving mechanism 4 moves the head 31 to the removal position.
  • step S119 the pushing-up portion 8 pushes up the component C and the head 31 picks up the component C.
  • the control process is then terminated. Further, the control processing shown in FIG. 9 is repeatedly performed until the production of the substrate B is completed.
  • the wafer imaging unit 6 captures an image of the push-up unit 8, acquires the first thermal expansion correction amount D1 including the thermal elongation of the wafer imaging unit moving mechanism 7 that moves the wafer imaging unit 6 and the thermal elongation of the push-up unit moving mechanism 9 that moves the push-up unit 8, based on the imaging result of the push-up unit 8 by the wafer imaging unit 6, and provides the control unit 10 that performs thermal elongation correction based on the acquired first thermal expansion correction amount D1.
  • the pushing-up portion moving mechanism 9 can move the pushing-up portion 8 to an appropriate pushing-up position, so that the pushing-up portion 8 can push up the component C appropriately.
  • the pushing-up portion moving mechanism 9 can move the pushing-up portion 8 to an appropriate pushing-up position, so that the pushing-up portion 8 can push up the component C appropriately.
  • the component mounting apparatus 100 In order to correct the thermal expansion of the wafer imaging section moving mechanism 7 and the thermal expansion of the push-up section moving mechanism 9, it is possible to configure the component mounting apparatus 100 as follows. That is, it is conceivable to provide the component mounting apparatus 100 with a recognition mark used for thermal expansion correction, to correct the thermal expansion of the wafer imaging section moving mechanism 7 by imaging the recognition mark with the wafer imaging section 6, and to correct the thermal expansion of the thrusting section moving mechanism 9 by imaging the push-up section 8 with the wafer imaging section 6 in a state in which the thermal expansion of the wafer imaging section movement mechanism 7 has been corrected.
  • the wafer imaging unit 6 captures an image of the push-up unit 8, and based on the imaging result of the push-up unit 8 by the wafer imaging unit 6, the first thermal expansion correction amount D1 including the thermal expansion of the wafer imaging unit moving mechanism 7 and the thermal expansion of the push-up unit moving mechanism 9 is acquired, and thermal expansion correction is performed based on the acquired first thermal expansion correction amount D1.
  • the thermal expansion of the wafer imaging part moving mechanism 7 and the thermal expansion of the pushing part moving mechanism 9 can be corrected simultaneously only by imaging the push-up part 8, so that it is possible to suppress an increase in the time required for correcting the thermal expansion.
  • the control unit 10 acquires the imaging position of the component C by the wafer imaging unit 6 based on the first thermal expansion correction amount D1, images the component C with the wafer imaging unit 6 while being moved to the acquired imaging position, acquires the deviation amount D3 from the position of the thrusting unit 8 including the thermal expansion of the thrusting unit moving mechanism 9 to the position of the component C based on the imaging result of the component C by the wafer imaging unit 6, and acquires the deviation amount D3 based on the deviation amount D3. , to obtain the position of the component C pushed up by the pushing-up portion 8 .
  • the component mounting apparatus 100 includes the head unit 3 that picks up the component C on the wafer from above, the board imaging section 32 provided in the head unit 3, and the head unit moving mechanism 4 that moves the head unit 3.
  • the control unit 10 is configured to capture an image of the push-up portion 8 by the substrate imaging unit 32, acquire a second thermal expansion correction amount D2 including the thermal expansion of the head unit moving mechanism 4 and the thermal expansion of the push-up portion moving mechanism 9 based on the imaging result of the push-up portion 8 by the substrate imaging unit 32, and perform thermal expansion correction based on the first thermal expansion correction amount D1 and the second thermal expansion correction amount D2.
  • the thermal expansion of the head unit moving mechanism 4 can be corrected so as to correspond to the correction of the thermal expansion of the wafer imaging unit moving mechanism 7 and the push-up portion moving mechanism 9, so that the head unit moving mechanism 4 can move the head 31 to an appropriate take-out position.
  • the component C can be properly picked up by the head 31, so that a more stable picking accuracy of the component C can be ensured.
  • the control unit 10 acquires the imaging position of the component C by the wafer imaging unit 6 based on the first thermal expansion correction amount D1, images the component C with the wafer imaging unit 6 while being moved to the acquired imaging position, acquires the deviation amount D3 from the position of the thrusting unit 8 including the thermal expansion of the thrusting unit moving mechanism 9 to the position of the component C based on the imaging result of the component C by the wafer imaging unit 6, and acquires the deviation amount D3 based on the deviation amount D3. , the position of the component C pushed up by the pushing-up portion 8 is obtained, and the pickup position of the component C by the head 31 is obtained based on the deviation amount D3 and the second thermal expansion correction amount D2.
  • the pushing-up position of the component C by the pushing-up part 8 and the picking-up position of the component C by the head 31 can be corrected with high accuracy, so that it is possible to easily secure more stable pushing-up accuracy of the component C and more stable picking-up accuracy of the component C.
  • the wafer imaging section moving mechanism 7 is configured to move the wafer imaging section 6 in the X direction and the Y direction, which are substantially perpendicular to each other in the horizontal plane.
  • the push-up portion moving mechanism 9 is configured to move the push-up portion 8 in the X direction and the Y direction.
  • the head unit moving mechanism 4 is configured to move the head unit 3 in the X direction and the Y direction.
  • the thermal expansion of the wafer imaging section moving mechanism 7, the pushing section moving mechanism 9, and the head unit moving mechanism 4 can be corrected.
  • control unit 10 is configured such that the wafer imaging unit 6 images the push-up unit 8 while the wafer imaging unit 6 and the push-up unit 8 are moved to the same first target position, and the substrate imaging unit 32 images the push-up unit 8 while the substrate imaging unit 32 and the push-up unit 8 are moved to the same second target position as the first target position.
  • the thermal elongation of the push-up portion moving mechanism 9 included in the first thermal elongation correction amount D1 and the thermal elongation of the push-up portion moving mechanism 9 included in the second thermal elongation correction amount D2 can be matched, so the thermal elongation correction based on the first thermal elongation correction amount D1 and the second thermal elongation correction amount D2 can be accurately performed.
  • the push-up section 8 is configured so as not to have an imaging section. Accordingly, since the push-up section 8 does not have an imaging section, it is possible to suppress an increase in the number of parts and complication of the structure as compared with the case where the push-up section 8 has an imaging section. Further, even if the push-up unit 8 does not have an imaging unit, the wafer imaging unit 6 can be effectively used to correct thermal expansion of the push-up unit moving mechanism 9 . As a result, it is possible to correct the thermal elongation of the push-up portion moving mechanism 9 while suppressing an increase in the number of parts and complication of the structure.
  • FIG. 10 to 12 a second embodiment will be described with reference to FIGS. 10 to 12.
  • FIG. 10 to 12 an example will be described in which an area for picking up a component from a wafer is acquired within a predetermined time interval, and the thrust-up portion is imaged by the wafer imaging unit at a position corresponding to the acquired area.
  • the same components as in the first embodiment are indicated by the same reference numerals, and descriptions thereof are omitted.
  • a component mounting apparatus 200 according to the second embodiment of the present invention differs from the component mounting apparatus 100 according to the first embodiment in that it includes a control unit 110 as shown in FIG.
  • the control unit 110 is configured to update the first thermal expansion correction amount D1 and the second thermal expansion correction amount D2 for thermal expansion correction at predetermined time intervals (such as 3-minute intervals).
  • the control unit 110 acquires the area 111 from which the component C is to be taken out from the wafer W within a predetermined time interval, and at the position P101 corresponding to the acquired area 111, the wafer imaging unit 6 images the push-up unit 8, and updates the first thermal expansion correction amount D1 and the second thermal expansion correction amount D2.
  • the control unit 110 is configured to obtain the number of components C to be taken out from the wafer W within a predetermined time interval based on the cycle time of the substrate B, and to obtain the area 111 based on the obtained number of components C.
  • FIG. 10 shows an example in which there are two imaging points, but the number of imaging points may be one, or a plurality of points other than two.
  • step S201 the cycle time is initialized.
  • step S201 the previous cycle time is set from the previous production history.
  • step S202 the substrate B is replaced by the conveyor 2.
  • the conveyor 2 unloads the board B on which the component C has been mounted, and carries in the board B on which the component C is to be mounted.
  • step S203 it is determined whether or not the timing is the update timing of the thermal expansion correction. If it is determined that the timing is not the update timing of the thermal expansion correction, the process proceeds to step S207. Moreover, when it is determined that the timing is the update timing of the thermal expansion correction, the process proceeds to step S204.
  • step S204 based on the cycle time of the substrate B, the number of components C to be removed from the wafer W is obtained by the next thermal expansion correction update timing, and based on the obtained number of components C, the area 111 for removing the components C from the wafer W by the next thermal expansion correction update timing is obtained.
  • step S205 the pushing-up portion 8 is imaged by the wafer imaging portion 6 and the board imaging portion 32.
  • step S206 the first thermal expansion correction amount D1 and the second thermal expansion correction amount D2 are obtained based on the imaging result of the push-up portion 8. Note that in steps S205 and S206, in detail, the processes of steps S103 to S110 shown in FIG. 8 are performed.
  • step S207 the image of the component C is captured by the wafer imaging unit 6.
  • step S208 the pushing-up portion 8 pushes up the component C and the head 31 picks up the component C. Note that in steps S207 and S208, in detail, the processes of steps S111 to S119 shown in FIG. 8 are performed.
  • step S ⁇ b>209 an image of the component C sucked by the suction nozzle 31 a of the head 31 is captured by the component imaging unit 33 .
  • step S ⁇ b>210 the component C is mounted on the board B by the head 31 based on the imaging result of the component C by the component imaging unit 33 .
  • the cycle time is updated in step S211.
  • the cycle time may be updated for each suction group of the head 31 or may be updated for each production of one substrate B.
  • step S212 it is determined whether or not the component C has been mounted at all mounting positions on the board B. If it is determined that component C is not mounted on all mounting positions on board B, the process proceeds to step S203, and component C is mounted on the remaining mounting positions. If it is determined that component C has been mounted at all mounting positions on board B, the process proceeds to step S213.
  • step S213 it is determined whether or not the production of the board B is finished. If it is determined that the production of the board B will not be finished, the process proceeds to step S202, and the component C is mounted on the next board B. On the other hand, if it is determined that the production of the board B is finished, the process proceeds to step S214.
  • step S214 the substrate B is carried out by the conveyor 2.
  • step S215 the cycle time is saved. After that, the control process is terminated.
  • the control unit 110 is configured to update the thermal expansion correction at predetermined time intervals.
  • the control unit 110 acquires the area 111 from which the component C is to be removed from the wafer W within a predetermined time interval, captures an image of the push-up unit 8 with the wafer imaging unit 6 at a position P101 corresponding to the acquired area 111, and updates the thermal expansion correction. Accordingly, by updating the thermal elongation correction at predetermined time intervals, the thermal elongation that changes with time can be properly reflected in the thermal elongation correction.
  • the area 111 from which the component C is to be taken out from the wafer W is acquired within a predetermined time interval, and the thrust-up portion 8 is imaged by the wafer imaging section 6 at the position P101 corresponding to the acquired area 111 to update the thermal expansion correction.
  • the thrust-up portion 8 can be imaged by the wafer imaging portion 6 at an effective position near the component C and the thermal expansion correction can be updated, so that the accuracy of the thermal expansion correction can be effectively improved.
  • thermal elongation is not linear in many cases, it is preferable from the viewpoint of improving the accuracy of thermal elongation correction to perform thermal elongation correction by imaging the push-up portion 8 with the wafer imaging unit 6 at a plurality of positions.
  • the wafer imaging unit 6 images the push-up portion 8 at a plurality of positions, the time required for thermal expansion correction increases.
  • the accuracy of thermal expansion correction can be effectively improved, so even if the number of positions where the thrust-up portion 8 is imaged by the wafer imaging unit 6 is reduced, the thermal expansion can be corrected with high accuracy. As a result, it is possible to accurately perform the thermal elongation correction while suppressing an increase in the time required for the thermal elongation correction.
  • control unit 110 is configured to acquire the number of components C to be taken out from the wafer W within a predetermined time interval based on the cycle time of the substrate B, and to acquire the area 111 based on the acquired number of components C. Accordingly, based on the number of components C to be removed from the wafer W within a predetermined time interval, it is possible to easily obtain the area 111 from which the components C are to be removed from the wafer W within the predetermined time interval.
  • the head is a mounting head, but the present invention is not limited to this.
  • the head may be a take-out head that picks up components from a wafer and transfers the picked-up components to a mounting head.
  • the board imaging section is provided as the second imaging section
  • the present invention is not limited to this.
  • an imaging section other than the substrate imaging section may be provided as the second imaging section.
  • the push-up portion moving mechanism (second moving mechanism) moves the push-up portion in the X direction (first direction) and the Y direction (second direction) is shown, but the present invention is not limited to this.
  • the second moving mechanism may move the push-up portion in only one of the first direction and the second direction.
  • control unit acquires the first thermal expansion correction amount and the second thermal expansion correction amount is shown, but the present invention is not limited to this. In the present invention, the control unit may acquire only the first thermal expansion correction amount.
  • control processing may be performed by event-driven processing in which processing is executed on an event-by-event basis. In this case, it may be completely event-driven, or a combination of event-driven and flow-driven.
  • head unit moving mechanism third moving mechanism
  • head unit moving mechanism third moving mechanism
  • Wafer imaging unit first imaging unit
  • Wafer imaging unit moving mechanism first moving mechanism
  • push-up portion push-up portion moving mechanism
  • control section 31 head 32 board imaging section (second imaging section)
  • Component mounting apparatus 111 Area B Board C
  • Component D1 First thermal expansion correction amount D2
  • Second thermal expansion correction amount D3 Deviation amount P101 Position corresponding to area X direction (first direction) Y direction (second direction) W Wafer

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

This component mounting device (100) comprises a first imaging unit (6), a raising unit (8), a first movement mechanism (7), a second movement mechanism (9), and a control unit (10). The control unit uses the first imaging unit to perform imaging of the raising unit, acquires a first thermal elongation correction amount (D1) that incorporates the thermal elongation of the first movement mechanism and the thermal elongation of the second movement mechanism on the basis of the results of the imaging of the raising unit by the first imaging unit, and performs thermal elongation correction on the basis of the acquired first thermal elongation correction amount.

Description

部品実装装置Component mounter
 この発明は、部品実装装置に関し、特に、ダイシングされた状態のウエハから部品を取り出して基板に実装する部品実装装置に関する。 The present invention relates to a component mounting apparatus, and more particularly to a component mounting apparatus that picks up components from a diced wafer and mounts them on a board.
 従来、ダイシングされた状態のウエハから部品を取り出して基板に実装する部品実装装置が知られている。このような装置は、たとえば、特開2005-277273号公報に開示されている。 Conventionally, there has been known a component mounting apparatus that picks up components from a diced wafer and mounts them on a board. Such a device is disclosed, for example, in Japanese Unexamined Patent Publication No. 2005-277273.
 上記特開2005-277273号公報には、ダイシングされた状態のウエハから半導体チップを取り出して基板に実装する電子部品搭載装置(部品実装装置)が開示されている。この電子部品搭載装置は、ウエハの半導体チップを上方から撮像する供給部撮像カメラと、供給部撮像カメラを移動させる供給部撮像カメラ移動機構と、ウエハの半導体チップを下方から突き上げるエジェクタと、エジェクタを移動させるエジェクタXYテーブルと、を備える。この電子部品搭載装置では、供給部撮像カメラの移動により、供給部撮像カメラ移動機構の温度が上昇し、供給部撮像カメラ移動機構に熱伸びが発生する。このため、この電子部品搭載装置には、供給部撮像カメラ移動機構の熱伸びの補正に使用される認識マークが設けられている。この電子部品搭載装置では、供給部撮像カメラにより認識マークが撮像されることにより、供給部撮像カメラ移動機構の熱伸びの補正が行われる。 The above Japanese Patent Application Laid-Open No. 2005-277273 discloses an electronic component mounting apparatus (component mounting apparatus) that picks up semiconductor chips from a diced wafer and mounts them on a substrate. This electronic component mounting apparatus includes a supply section imaging camera that captures an image of a semiconductor chip on a wafer from above, a supply section imaging camera moving mechanism that moves the supply section imaging camera, an ejector that pushes up the semiconductor chip on the wafer from below, and an ejector XY table that moves the ejector. In this electronic component mounting apparatus, the movement of the supply section imaging camera increases the temperature of the supply section imaging camera moving mechanism, and thermal expansion occurs in the supply section imaging camera movement mechanism. For this reason, this electronic component mounting apparatus is provided with a recognition mark that is used for correcting the thermal expansion of the feeding section imaging camera moving mechanism. In this electronic component mounting apparatus, the thermal expansion of the supply section imaging camera moving mechanism is corrected by imaging the recognition mark with the supply section imaging camera.
特開2005-277273号公報Japanese Patent Application Laid-Open No. 2005-277273
 しかしながら、上記特開2005-277273号公報に記載された電子部品搭載装置では、供給部撮像カメラ移動機構の熱伸びの補正を行う一方、エジェクタXYテーブルの熱伸びの補正を行っていない。エジェクタXYテーブルにおいても熱伸びが発生するため、エジェクタXYテーブルの熱伸びの補正を行わなければ、エジェクタXYテーブルの熱伸びに起因してエジェクタが適切な突き上げ位置に移動できない。このため、安定した半導体チップ(部品)の突き上げの精度を確保することができないという問題点がある。 However, in the electronic component mounting apparatus described in Japanese Patent Application Laid-Open No. 2005-277273, the thermal expansion of the feeding section imaging camera moving mechanism is corrected, but the thermal expansion of the ejector XY table is not corrected. Since thermal expansion also occurs in the ejector XY table, unless the thermal expansion of the ejector XY table is corrected, the ejector cannot move to an appropriate thrust-up position due to the thermal expansion of the ejector XY table. For this reason, there is a problem that it is impossible to ensure the accuracy of stably pushing up the semiconductor chip (component).
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、安定した部品の突き上げの精度を確保することが可能な部品実装装置を提供することである。 The present invention was made to solve the above-mentioned problems, and one object of the present invention is to provide a component mounting apparatus capable of ensuring stable component push-up accuracy.
 この発明の一の局面による部品実装装置は、ダイシングされた状態のウエハから部品を取り出して基板に実装する部品実装装置であって、ウエハの部品を上方から撮像する第1撮像部と、ウエハの部品を下方から突き上げる突き上げ部と、第1撮像部を移動させる第1移動機構と、突き上げ部を移動させる第2移動機構と、第1撮像部により突き上げ部を撮像し、第1撮像部による突き上げ部の撮像結果に基づいて、第1移動機構の熱伸びと、第2移動機構の熱伸びとを含めた第1熱伸び補正量を取得し、取得した第1熱伸び補正量に基づいて、熱伸び補正を行う制御部と、を備える。 A component mounting apparatus according to one aspect of the present invention is a component mounting apparatus that picks up components from a diced wafer and mounts them on a substrate, comprising: a first imaging unit that captures an image of the components on the wafer from above; a push-up unit that pushes up the components on the wafer from below; a first movement mechanism that moves the first imaging unit; a second movement mechanism that moves the push-up unit; , a control unit that acquires a first thermal expansion correction amount including the thermal expansion of the second moving mechanism, and performs thermal expansion correction based on the acquired first thermal expansion correction amount.
 この発明の一の局面による部品実装装置では、上記のように、第1撮像部により突き上げ部を撮像し、第1撮像部による突き上げ部の撮像結果に基づいて、第1撮像部を移動させる第1移動機構の熱伸びと、突き上げ部を移動させる第2移動機構の熱伸びとを含めた第1熱伸び補正量を取得し、取得した第1熱伸び補正量に基づいて、熱伸び補正を行う制御部を設ける。これにより、突き上げ部を移動させる第2移動機構の熱伸びの補正を行うことができるので、第2移動機構の熱伸びに起因して突き上げ部が適切な突き上げ位置に移動できないことを抑制することができる。換言すれば、第2移動機構により突き上げ部を適切な突き上げ位置に移動させることができるので、突き上げ部による部品の突き上げを適切に行うことができる。これにより、安定した部品の突き上げの精度を確保することができる。また、安定した部品の突き上げの精度を確保することができるので、安定した部品の取り出しの精度を確保することができる。 In the component mounting apparatus according to one aspect of the present invention, as described above, the first imaging unit images the pushing-up portion, based on the imaging result of the pushing-up portion by the first imaging unit, the first thermal expansion correction amount including the thermal elongation of the first moving mechanism that moves the first imaging unit and the thermal elongation of the second moving mechanism that moves the pushing-up portion is acquired, and a control unit is provided that performs thermal expansion correction based on the acquired first thermal expansion correction amount. As a result, it is possible to correct the thermal expansion of the second moving mechanism that moves the push-up part, so that it is possible to suppress the failure of the push-up part to move to an appropriate push-up position due to the thermal expansion of the second moving mechanism. In other words, the pushing-up portion can be moved to an appropriate pushing-up position by the second moving mechanism, so that the component can be properly pushed up by the pushing-up portion. As a result, it is possible to ensure the accuracy of stable pushing-up of the component. In addition, since it is possible to ensure the accuracy of stably pushing up the component, it is possible to ensure the accuracy of stable extraction of the component.
 なお、第1移動機構の熱伸びと第2移動機構の熱伸びとを補正するために、以下のように部品実装装置を構成することも考えられる。すなわち、部品実装装置に、熱伸び補正に使用する認識マークを設け、第1撮像部により認識マークを撮像することにより、第1移動機構の熱伸びの補正を行い、第1移動機構の熱伸びの補正を行った状態で、第1撮像部により突き上げ部を撮像することにより、第2移動機構の熱伸びの補正を行うことが考えられる。しかしながら、この場合、認識マークの撮像と突き上げ部の撮像とを個別に行う必要があるため、熱伸び補正に必要な時間が増加する。これに対して、上記のように、第1撮像部により突き上げ部を撮像し、第1撮像部による突き上げ部の撮像結果に基づいて、第1移動機構の熱伸びと、第2移動機構の熱伸びとを含めた第1熱伸び補正量を取得し、取得した第1熱伸び補正量に基づいて、熱伸び補正を行う。これにより、突き上げ部の撮像を行うだけで、第1移動機構の熱伸びと第2移動機構の熱伸びとを同時に補正することができるので、熱伸び補正に必要な時間が増加することを抑制することができる。 In addition, in order to correct the thermal elongation of the first moving mechanism and the thermal elongation of the second moving mechanism, it is conceivable to configure the component mounting apparatus as follows. That is, it is conceivable to provide a component mounting apparatus with a recognition mark used for thermal expansion correction, to correct the thermal expansion of the first moving mechanism by imaging the recognition mark with the first imaging unit, and to correct the thermal expansion of the second moving mechanism by imaging the push-up portion with the first imaging unit in a state in which the thermal expansion of the first moving mechanism is corrected. However, in this case, it is necessary to separately perform the imaging of the recognition mark and the imaging of the push-up portion, which increases the time required for correcting the thermal expansion. On the other hand, as described above, the thrust-up portion is imaged by the first imaging unit, based on the imaging result of the thrust-up portion by the first imaging unit, the first thermal expansion correction amount including the thermal expansion of the first moving mechanism and the thermal expansion of the second moving mechanism is acquired, and thermal expansion correction is performed based on the acquired first thermal expansion correction amount. As a result, the thermal expansion of the first moving mechanism and the thermal expansion of the second moving mechanism can be corrected at the same time only by imaging the push-up portion, so that an increase in the time required for correcting the thermal expansion can be suppressed.
 上記一の局面による部品実装装置において、好ましくは、制御部は、第1熱伸び補正量に基づいて、第1撮像部による部品の撮像位置を取得し、取得した撮像位置に移動させた状態で第1撮像部により部品を撮像し、第1撮像部による部品の撮像結果に基づいて、第2移動機構の熱伸びを含む突き上げ部の位置から、部品の位置までのずれ量を取得し、ずれ量に基づいて、突き上げ部による部品の突き上げ位置を取得するように構成されている。このように構成すれば、第1熱伸び補正量に基づいて、突き上げ部による部品の突き上げ位置を精度良く補正することができるので、安定した部品の突き上げの精度を容易に確保することができる。 In the component mounting apparatus according to the above aspect, preferably, the control unit acquires the image pickup position of the component by the first image pickup unit based on the first thermal expansion correction amount, picks up an image of the component while the component is moved to the acquired image pickup position by the first image pickup unit, acquires the amount of deviation from the position of the push-up unit including the thermal expansion of the second moving mechanism to the position of the component based on the image pickup result of the component by the first image pickup unit, and acquires the push-up position of the component by the push-up unit based on the amount of deviation. Configured. With this configuration, the position of the part pushed up by the pushing part can be accurately corrected based on the first thermal expansion correction amount, so that stable accuracy of pushing up the part can be easily ensured.
 上記一の局面による部品実装装置において、好ましくは、ウエハの部品を上方から取り出すヘッドユニットと、ヘッドユニットに設けられた第2撮像部と、ヘッドユニットを移動させる第3移動機構と、をさらに備え、制御部は、第2撮像部により突き上げ部を撮像し、第2撮像部による突き上げ部の撮像結果に基づいて、第3移動機構の熱伸びと、第2移動機構の熱伸びとを含めた第2熱伸び補正量を取得し、第1熱伸び補正量と第2熱伸び補正量とに基づいて、熱伸び補正を行うように構成されている。このように構成すれば、第1移動機構と第2移動機構との熱伸びの補正に対応するように、第3移動機構の熱伸びの補正を行うことができるので、第3移動機構によりヘッドを適切な取り出し位置に移動させることができる。その結果、ヘッドによる部品の取り出しを適切に行うことができるので、より安定した部品の取り出しの精度を確保することができる。 The component mounting apparatus according to the above one aspect preferably further includes a head unit that takes out components on the wafer from above, a second imaging section provided in the head unit, and a third moving mechanism that moves the head unit. 2, thermal expansion correction is performed based on the amount of thermal expansion correction. With this configuration, the thermal extension of the third moving mechanism can be corrected so as to correspond to the thermal extension of the first moving mechanism and the second moving mechanism, so that the third moving mechanism can move the head to an appropriate take-out position. As a result, it is possible to properly pick up the component by the head, so that it is possible to secure more stable component picking accuracy.
 この場合、好ましくは、制御部は、第1熱伸び補正量に基づいて、第1撮像部による部品の撮像位置を取得し、取得した撮像位置に移動させた状態で第1撮像部により部品を撮像し、第1撮像部による部品の撮像結果に基づいて、第2移動機構の熱伸びを含む突き上げ部の位置から、部品の位置までのずれ量を取得し、ずれ量に基づいて、突き上げ部による部品の突き上げ位置を取得し、ずれ量と第2熱伸び補正量とに基づいて、ヘッドによる部品の取り出し位置を取得するように構成されている。このように構成すれば、第1熱伸び補正量と第2熱伸び補正量とに基づいて、突き上げ部による部品の突き上げ位置とヘッドによる部品の取り出し位置を精度良く補正することができるので、より安定した部品の突き上げの精度の確保と、より安定した部品の取り出しつ精度の確保とを容易に実現することができる。 In this case, preferably, the control unit acquires the imaging position of the component by the first imaging unit based on the first thermal expansion correction amount, images the component in a state of being moved to the acquired imaging position by the first imaging unit, acquires the deviation amount from the position of the push-up unit including the thermal expansion of the second moving mechanism to the position of the component based on the imaging result of the component by the first imaging unit, acquires the push-up position of the component by the push-up unit based on the deviation amount, and corrects the deviation amount and the second thermal expansion. and the position of picking up the part by the head. According to this configuration, it is possible to accurately correct the position where the part is pushed up by the pushing part and the position where the part is picked up by the head based on the first correction amount of thermal expansion and the second correction amount of thermal expansion.
 上記部品実装装置が第3移動機構を備える構成において、好ましくは、第1移動機構は、水平面内で互いに略直交する第1方向と第2方向とに、第1撮像部を移動させるように構成されており、第2移動機構は、第1方向と第2方向とに、突き上げ部を移動させるように構成されており、第3移動機構は、第1方向と第2方向とに、ヘッドユニットを移動させるように構成されている。このように構成すれば、第1移動機構と第2移動機構と第3移動機構とにより、それぞれ、第1撮像部と突き上げ部とヘッドユニットとを第1方向と第2方向とに容易に移動させることができる。また、第1撮像部と突き上げ部とヘッドユニットとを第1方向と第2方向と移動させる熱伸びの影響が複雑な場合において、第1移動機構と第2移動機構と第3移動機構との熱伸びの補正を行うことができる。 In the configuration in which the component mounting apparatus includes the third moving mechanism, preferably the first moving mechanism is configured to move the first imaging section in a first direction and a second direction that are substantially orthogonal to each other in a horizontal plane, the second moving mechanism is configured to move the push-up section in the first direction and the second direction, and the third moving mechanism is configured to move the head unit in the first direction and the second direction. With this configuration, the first imaging section, the push-up section, and the head unit can be easily moved in the first direction and the second direction by the first moving mechanism, the second moving mechanism, and the third moving mechanism, respectively. In addition, in the case where the effects of thermal elongation for moving the first imaging section, thrust-up section, and head unit in the first direction and the second direction are complicated, the thermal elongation of the first moving mechanism, the second moving mechanism, and the third moving mechanism can be corrected.
 上記部品実装装置が第2撮像部を備える構成において、好ましくは、制御部は、第1撮像部と突き上げ部とを同一の第1目標位置に移動させた状態で、第1撮像部により突き上げ部を撮像するとともに、第2撮像部と突き上げ部とを第1目標位置と同一の第2目標位置に移動させた状態で、第2撮像部により突き上げ部を撮像するように構成されている。このように構成すれば、第1熱伸び補正量に含まれる第2移動機構の熱伸びと、第2熱伸び補正量に含まれる第2移動機構の熱伸びとを対応させることができるので、第1熱伸び補正量と第2熱伸び補正量とに基づく熱伸び補正を精度良く行うことができる。 In the configuration in which the component mounting apparatus includes the second imaging section, the control section is preferably configured so that the first imaging section images the push-up section with the first imaging section and the thrust-up section moved to the same first target position, and the second imaging section images the thrust-up section with the second imaging section and the thrust-up section moved to the same second target position as the first target position. With this configuration, the thermal elongation of the second moving mechanism included in the first thermal elongation correction amount can be matched with the thermal elongation of the second moving mechanism included in the second thermal elongation correction amount, so that the thermal elongation correction based on the first thermal elongation correction amount and the second thermal elongation correction amount can be accurately performed.
 上記一の局面による部品実装装置において、好ましくは、制御部は、熱伸び補正を所定の時間間隔で更新するように構成されており、制御部は、所定の時間間隔内にウエハから部品を取り出す領域を取得し、取得した領域に対応する位置で、第1撮像部により突き上げ部を撮像し、熱伸び補正を更新するように構成されている。このように構成すれば、熱伸び補正を所定の時間間隔で更新することにより、経時的に変化する熱伸びを熱伸び補正に適切に反映させることができる。また、所定の時間間隔内にウエハから部品を取り出す領域を取得し、取得した領域に対応する位置で、第1撮像部により突き上げ部を撮像し、熱伸び補正を更新する。これにより、部品に近い効果的な位置で第1撮像部により突き上げ部を撮像し、熱伸び補正を更新することができるので、熱伸び補正の精度を効果的に高めることができる。 In the component mounting apparatus according to the above one aspect, preferably, the control unit is configured to update the thermal expansion correction at predetermined time intervals, and the control unit is configured to acquire an area for picking up the component from the wafer within the predetermined time interval, capture an image of the push-up section with the first imaging unit at a position corresponding to the acquired area, and update the thermal expansion correction. According to this configuration, by updating the thermal elongation correction at predetermined time intervals, the thermal elongation that changes with time can be properly reflected in the thermal elongation correction. In addition, an area for extracting the component from the wafer is acquired within a predetermined time interval, and the thrust-up portion is imaged by the first imaging unit at a position corresponding to the acquired area to update the thermal expansion correction. As a result, the thrust-up portion can be imaged by the first imaging unit at an effective position close to the component, and the thermal expansion correction can be updated, so the accuracy of the thermal expansion correction can be effectively improved.
 また、熱伸びは線形的ではない場合が多いため、複数の位置で第1撮像部により突き上げ部を撮像し、熱伸び補正を行うことが、熱伸び補正の精度を高める観点で好ましい。しかしながら、複数の位置で第1撮像部により突き上げ部を撮像する場合、熱伸び補正に必要な時間が増加する。これに対して、上記構成では、熱伸び補正の精度を効果的に高めることができるので、第1撮像部により突き上げ部を撮像する位置の数を少なくしたとしても、熱伸び補正を精度良く行うことができる。これにより、熱伸び補正に必要な時間が増加することを抑制しながら、熱伸び補正を精度良く行うことができる。 In addition, since thermal elongation is not linear in many cases, it is preferable from the viewpoint of improving the accuracy of thermal elongation correction to perform thermal elongation correction by imaging the push-up portion with the first imaging unit at a plurality of positions. However, when the thrust-up portion is imaged by the first imaging unit at a plurality of positions, the time required for thermal expansion correction increases. On the other hand, in the above configuration, the accuracy of thermal expansion correction can be effectively improved, so even if the number of positions where the thrust-up portion is imaged by the first imaging unit is reduced, thermal expansion can be corrected with high accuracy. As a result, it is possible to accurately perform the thermal elongation correction while suppressing an increase in the time required for the thermal elongation correction.
 この場合、好ましくは、制御部は、基板のサイクルタイムに基づいて、所定の時間間隔内にウエハから取り出す部品の数を取得し、取得した部品の数に基づいて、領域を取得するように構成されている。このように構成すれば、所定の時間間隔内にウエハから取り出す部品の数に基づいて、所定の時間間隔内にウエハから部品を取り出す領域を容易に取得することができる。 In this case, preferably, the control unit is configured to obtain the number of components to be taken out from the wafer within a predetermined time interval based on the substrate cycle time, and to obtain the area based on the obtained number of components. According to this configuration, it is possible to easily acquire the area from which the components are to be removed from the wafer within the predetermined time interval based on the number of components to be removed from the wafer within the predetermined time interval.
 上記一の局面による部品実装装置において、好ましくは、突き上げ部は、撮像部を有しないように構成されている。このように構成すれば、突き上げ部が撮像部を有しないので、突き上げ部が撮像部を有する場合に比べて、部品点数の増加および構造の複雑化を抑制することができる。また、突き上げ部が撮像部を有しなくても、第1撮像部を有効に利用して、第2移動機構の熱伸びの補正を行うことができる。これらの結果、部品点数の増加および構造の複雑化を抑制しながら、第2移動機構の熱伸びの補正を行うことができる。 In the component mounting apparatus according to the above one aspect, preferably, the push-up section is configured not to have an imaging section. With this configuration, the push-up section does not have an imaging section, so an increase in the number of parts and complication of the structure can be suppressed compared to the case where the push-up section has an imaging section. Further, even if the push-up section does not have an imaging section, it is possible to effectively use the first imaging section to correct the thermal expansion of the second moving mechanism. As a result, the thermal expansion of the second moving mechanism can be corrected while suppressing an increase in the number of parts and complication of the structure.
 本発明によれば、上記のように、安定した部品の突き上げの精度を確保することが可能な部品実装装置を提供することができる。 According to the present invention, as described above, it is possible to provide a component mounting apparatus capable of ensuring stable component push-up accuracy.
第1実施形態による部品実装装置を示す模式的な平面図である。1 is a schematic plan view showing a component mounting apparatus according to a first embodiment; FIG. 第1実施形態によるウエハ撮像部と、突き上げ部と、ヘッドとを示す模式的な斜視図である。FIG. 2 is a schematic perspective view showing a wafer imaging section, a push-up section, and a head according to the first embodiment; 第1実施形態による突き上げ部による部品の突き上げを説明するための図である。It is a figure for demonstrating the pushing-up of components by the pushing-up part by 1st Embodiment. 第1実施形態による熱伸び補正を説明するための図(1)である。It is a figure (1) for demonstrating thermal elongation correction|amendment by 1st Embodiment. 第1実施形態による熱伸び補正を説明するための図(2)である。It is a figure (2) for demonstrating thermal expansion correction|amendment by 1st Embodiment. 第1実施形態による熱伸び補正を説明するための図(3)である。It is a figure (3) for demonstrating thermal expansion correction|amendment by 1st Embodiment. 第1実施形態による熱伸び補正の撮像位置を説明するための図である。It is a figure for demonstrating the imaging position of thermal expansion correction|amendment by 1st Embodiment. 第1実施形態による熱伸び補正に関する制御処理を説明するためのフローチャート(1)である。It is a flowchart (1) for demonstrating the control process regarding thermal expansion correction|amendment by 1st Embodiment. 第1実施形態による熱伸び補正に関する制御処理を説明するためのフローチャート(2)である。It is a flowchart (2) for demonstrating the control process regarding thermal expansion correction|amendment by 1st Embodiment. 第2実施形態による熱伸び補正の撮像位置を説明するための図である。It is a figure for demonstrating the imaging position of thermal expansion correction|amendment by 2nd Embodiment. 第2実施形態による熱伸び補正に関する制御処理を説明するためのフローチャートである。It is a flow chart for explaining control processing about heat expansion amendment by a 2nd embodiment. 図11の続きのフローチャートである。FIG. 12 is a flowchart continued from FIG. 11; FIG.
 以下、本発明を具体化した実施形態を図面に基づいて説明する。 An embodiment embodying the present invention will be described below based on the drawings.
[第1実施形態]
(部品実装装置の構成)
 図1を参照して、本発明の実施形態による部品実装装置100の構成について説明する。
[First embodiment]
(Configuration of component mounting device)
A configuration of a component mounting apparatus 100 according to an embodiment of the present invention will be described with reference to FIG.
 部品実装装置100は、ダイシングされた状態のウエハWから半導体チップとしての部品Cを取り出して基板Bに実装する装置である。 The component mounting apparatus 100 is a device that takes out components C as semiconductor chips from a diced wafer W and mounts them on a substrate B.
 図1および図2に示すように、部品実装装置100は、基台1と、コンベア2と、ヘッドユニット3と、ヘッドユニット移動機構4と、部品供給部5と、ウエハ撮像部6と、ウエハ撮像部移動機構7と、突き上げ部8と、突き上げ部移動機構9と、制御部10とを備える。なお、ヘッドユニット移動機構4は、請求の範囲の「第3移動機構」の一例である。また、ウエハ撮像部6は、請求の範囲の「第1撮像部」の一例である。また、ウエハ撮像部移動機構7は、請求の範囲の「第1移動機構」の一例である。また、突き上げ部移動機構9は、請求の範囲の「第2移動機構」の一例である。 As shown in FIGS. 1 and 2, the component mounting apparatus 100 includes a base 1, a conveyor 2, a head unit 3, a head unit moving mechanism 4, a component supply section 5, a wafer imaging section 6, a wafer imaging section moving mechanism 7, a push-up section 8, a push-up section movement mechanism 9, and a control section 10. The head unit moving mechanism 4 is an example of the "third moving mechanism" in the claims. Also, the wafer imaging section 6 is an example of the "first imaging section" in the claims. Also, the wafer imaging unit moving mechanism 7 is an example of the "first moving mechanism" in the claims. Also, the push-up portion moving mechanism 9 is an example of the "second moving mechanism" in the claims.
 コンベア2は、実装作業位置に基板Bを搬入し、実装作業位置から基板Bを搬出するように構成されている。また、コンベア2は、X方向に延びる一対のコンベアレールと、基板Bを実装作業位置で位置決めする位置決め機構(図示せず)とを含む。これにより、コンベア2は、基板BをX方向に搬送し、実装作業位置に基板Bを位置決め固定する。 The conveyor 2 is configured to carry in the board B to the mounting work position and carry out the board B from the mounting work position. The conveyor 2 also includes a pair of conveyor rails extending in the X direction and a positioning mechanism (not shown) that positions the board B at the mounting position. As a result, the conveyor 2 conveys the board B in the X direction and positions and fixes the board B at the mounting work position.
 ヘッドユニット3は、部品実装用のヘッドユニットである。ヘッドユニット3は、ヘッドユニット移動機構4により、ウエハWおよびコンベア2(基板B)の上方を水平方向(XY方向)に移動可能に支持されている。ヘッドユニット3は、X方向に沿って配置された複数のヘッド31を含む。ヘッド31は、ウエハWの部品Cを上方から取り出し、取り出した部品Cを基板Bに実装する実装ヘッドである。ヘッド31は、先端に部品Cを吸着するための吸着ノズル31aを有している。ヘッド31は、ウエハWから部品Cを吸着ノズル31aにより吸着して取り出すように構成されている。ヘッド31は、吸着ノズル31aにより吸着した部品Cを基板Bに実装するように構成されている。 The head unit 3 is a head unit for component mounting. The head unit 3 is supported by a head unit moving mechanism 4 so as to be movable in horizontal directions (XY directions) above the wafer W and the conveyor 2 (substrate B). The head unit 3 includes a plurality of heads 31 arranged along the X direction. The head 31 is a mounting head that picks up the component C from the wafer W from above and mounts the picked component C on the substrate B. As shown in FIG. The head 31 has a suction nozzle 31a for sucking the component C at its tip. The head 31 is configured to pick up the component C from the wafer W by suction with a suction nozzle 31a. The head 31 is configured to mount the component C on the board B, which is picked up by the suction nozzle 31a.
 ヘッドユニット移動機構4は、ヘッドユニット3を移動させるように構成されている。具体的には、ヘッドユニット移動機構4は、水平面内で互いに略直交するX方向とY方向とに、ヘッドユニット3を移動させるように構成されている。ヘッドユニット移動機構4は、ヘッドユニット3をX方向に移動させるためのX軸ヘッドユニット移動機構41と、X軸ヘッドユニット移動機構41をY方向に移動させるためのY軸ヘッドユニット移動機構42とを含む。なお、X方向およびY方向は、それぞれ、請求の範囲の「第1方向」および「第2方向」の一例である。 The head unit moving mechanism 4 is configured to move the head unit 3. Specifically, the head unit moving mechanism 4 is configured to move the head unit 3 in the X direction and the Y direction, which are substantially perpendicular to each other in the horizontal plane. The head unit moving mechanism 4 includes an X-axis head unit moving mechanism 41 for moving the head unit 3 in the X direction and a Y-axis head unit moving mechanism 42 for moving the X-axis head unit moving mechanism 41 in the Y direction. The X direction and the Y direction are examples of the "first direction" and the "second direction" in the claims, respectively.
 X軸ヘッドユニット移動機構41は、ボールねじ軸41aと、ボールねじ軸41aを駆動する駆動モータ41bとを有する直動機構である。X軸ヘッドユニット移動機構41は、駆動モータ41bによりボールねじ軸41aを回転させることにより、ボールナットを介してボールねじ軸41aに取り付けられたヘッドユニット3をX方向に移動させる。 The X-axis head unit moving mechanism 41 is a linear motion mechanism having a ball screw shaft 41a and a drive motor 41b that drives the ball screw shaft 41a. The X-axis head unit moving mechanism 41 rotates the ball screw shaft 41a by the drive motor 41b, thereby moving the head unit 3 attached to the ball screw shaft 41a via the ball nut in the X direction.
 Y軸ヘッドユニット移動機構42は、ボールねじ軸42aと、ボールねじ軸42aを駆動する駆動モータ42bとを有する直動機構である。Y軸ヘッドユニット移動機構42は、駆動モータ42bによりボールねじ軸42aを回転させることにより、ボールナットを介してボールねじ軸42aに取り付けられたX軸ヘッドユニット移動機構41をY方向に移動させる。X軸ヘッドユニット移動機構41とY軸ヘッドユニット移動機構42とにより、ヘッドユニット3がウエハWとコンベア2(基板B)との上方を水平方向(XY方向)に移動される。 The Y-axis head unit moving mechanism 42 is a linear motion mechanism having a ball screw shaft 42a and a drive motor 42b that drives the ball screw shaft 42a. The Y-axis head unit moving mechanism 42 rotates the ball screw shaft 42a by the drive motor 42b, thereby moving the X-axis head unit moving mechanism 41 attached to the ball screw shaft 42a via the ball nut in the Y direction. The X-axis head unit moving mechanism 41 and the Y-axis head unit moving mechanism 42 move the head unit 3 horizontally (XY directions) above the wafer W and the conveyor 2 (substrate B).
 また、ヘッドユニット3には、基板撮像部32と部品撮像部33とが設けられている。基板撮像部32は、ヘッド31による部品Cの基板Bへの実装に先立って、基板Bに設けられた位置認識マーク(フィデューシャルマーク)を上方から撮像する基板カメラである。基板撮像部32による位置認識マークの撮像結果に基づいて、制御部10は、ヘッド31による部品Cの実装位置の補正を行うように構成されている。なお、基板撮像部32は、請求の範囲の「第2撮像部」の一例である。 Also, the head unit 3 is provided with a board imaging section 32 and a component imaging section 33 . The board imaging unit 32 is a board camera that takes an image of a position recognition mark (fiducial mark) provided on the board B from above before the component C is mounted on the board B by the head 31 . The control unit 10 is configured to correct the mounting position of the component C by the head 31 based on the imaging result of the position recognition mark by the board imaging unit 32 . In addition, the board|substrate imaging part 32 is an example of the "2nd imaging part" of a claim.
 部品撮像部33は、ヘッド31による部品Cの基板Bへの実装に先立って、ヘッド31の吸着ノズル31aに吸着された部品Cを側方から撮像する部品カメラである。部品撮像部33による部品Cの撮像結果に基づいて、制御部10は、ヘッド31の吸着ノズル31aに吸着された部品Cの状態を認識するように構成されている。なお、図2では、部品撮像部33の図示を省略している。 The component imaging unit 33 is a component camera that takes an image of the component C sucked by the suction nozzle 31a of the head 31 from the side before the component C is mounted on the board B by the head 31. The control unit 10 is configured to recognize the state of the component C sucked by the suction nozzle 31 a of the head 31 based on the imaging result of the component C by the component imaging unit 33 . In addition, in FIG. 2, illustration of the component imaging part 33 is abbreviate|omitted.
 また、基板撮像部32と部品撮像部33とは、ヘッドユニット3と共通のフレームに設けられている。このため、基板撮像部32と部品撮像部33とは、ヘッドユニット3と共に、ヘッドユニット移動機構4により、ウエハWとコンベア2(基板B)との上方を水平方向(XY方向)に移動可能である。 Also, the board imaging section 32 and the component imaging section 33 are provided in a common frame with the head unit 3 . Therefore, the board imaging section 32 and the component imaging section 33 can be moved horizontally (XY directions) above the wafer W and the conveyor 2 (board B) by the head unit moving mechanism 4 together with the head unit 3 .
 部品供給部5は、ウエハ収納部11に収納されたウエハWを供給位置PFに移動させて、ウエハWの部品Cを供給するように構成されている。ウエハ収納部11には、ダイシングされた状態のウエハWが複数枚収納されている。具体的には、ウエハ収納部11には、リングフレームに取り付けられた粘着性のウエハシートWS(図3参照)に貼着された状態で、ダイシングされた状態のウエハWが複数枚収納されている。部品供給部5は、ウエハ収納部11と供給位置PFとの間で、Y方向に移動可能なウエハ保持テーブル51を含む。ウエハ保持テーブル51は、リングフレームを介してウエハWを保持した状態で、ウエハ収納部11と供給位置PFとの間で、Y方向に移動可能である。 The component supply unit 5 is configured to move the wafer W stored in the wafer storage unit 11 to the supply position PF and supply the components C of the wafer W. A plurality of diced wafers W are stored in the wafer storage unit 11 . Specifically, in the wafer storage unit 11, a plurality of diced wafers W are stored while being adhered to an adhesive wafer sheet WS (see FIG. 3) attached to a ring frame. The component supply unit 5 includes a wafer holding table 51 movable in the Y direction between the wafer storage unit 11 and the supply position PF. The wafer holding table 51 is movable in the Y direction between the wafer housing portion 11 and the supply position PF while holding the wafer W via the ring frame.
 ウエハ撮像部6は、ヘッド31による部品CのウエハWからの取り出しに先立って、供給位置PFでウエハ保持テーブル51に保持されたウエハWの部品Cを上方から撮像するウエハカメラである。ウエハ撮像部6による部品Cの撮像結果に基づいて、制御部10は、ヘッド31による部品Cの取り出し位置(吸着位置)の補正を行うように構成されている。ウエハ撮像部6は、ウエハ撮像部移動機構7により、ウエハWの上方を水平方向(XY方向)に移動可能に支持されている。 The wafer image capturing unit 6 is a wafer camera that captures an image of the component C on the wafer W held by the wafer holding table 51 at the supply position PF from above before the component C is taken out from the wafer W by the head 31 . The control unit 10 is configured to correct the pick-up position (suction position) of the component C by the head 31 based on the imaging result of the component C by the wafer imaging unit 6 . The wafer imaging section 6 is supported by a wafer imaging section moving mechanism 7 so as to be movable above the wafer W in horizontal directions (XY directions).
 ウエハ撮像部移動機構7は、ウエハ撮像部6を移動させるように構成されている。具体的には、ウエハ撮像部移動機構7は、水平面内で互いに略直交するX方向とY方向とに、ウエハ撮像部6を移動させるように構成されている。ウエハ撮像部移動機構7は、ウエハ撮像部6をX方向に移動させるためのX軸ウエハ撮像部移動機構71と、X軸ウエハ撮像部移動機構71をY方向に移動させるためのY軸ウエハ撮像部移動機構72とを含む。 The wafer imaging section moving mechanism 7 is configured to move the wafer imaging section 6 . Specifically, the wafer imaging section moving mechanism 7 is configured to move the wafer imaging section 6 in the X direction and the Y direction, which are substantially perpendicular to each other in the horizontal plane. The wafer imaging section moving mechanism 7 includes an X-axis wafer imaging section moving mechanism 71 for moving the wafer imaging section 6 in the X direction, and a Y-axis wafer imaging section moving mechanism 72 for moving the X-axis wafer imaging section moving mechanism 71 in the Y direction.
 X軸ウエハ撮像部移動機構71は、ボールねじ軸71aと、ボールねじ軸71aを駆動する駆動モータ71bとを有する直動機構である。X軸ウエハ撮像部移動機構71は、駆動モータ71bによりボールねじ軸71aを回転させることにより、ボールナットを介してボールねじ軸71aに取り付けられたウエハ撮像部6をX方向に移動させる。 The X-axis wafer imaging unit moving mechanism 71 is a linear motion mechanism having a ball screw shaft 71a and a drive motor 71b that drives the ball screw shaft 71a. The X-axis wafer imaging section moving mechanism 71 rotates the ball screw shaft 71a by the drive motor 71b, thereby moving the wafer imaging section 6 attached to the ball screw shaft 71a via the ball nut in the X direction.
 Y軸ウエハ撮像部移動機構72は、ボールねじ軸72aと、ボールねじ軸72aを駆動する駆動モータ72bとを有する直動機構である。Y軸ウエハ撮像部移動機構72は、駆動モータ72bによりボールねじ軸72aを回転させることにより、ボールナットを介してボールねじ軸72aに取り付けられたX軸ウエハ撮像部移動機構71をY方向に移動させる。X軸ウエハ撮像部移動機構71とY軸ウエハ撮像部移動機構72とにより、ウエハ撮像部6がウエハWの上方を水平方向(XY方向)に移動される。 The Y-axis wafer imaging unit moving mechanism 72 is a linear motion mechanism having a ball screw shaft 72a and a drive motor 72b that drives the ball screw shaft 72a. The Y-axis wafer imaging section moving mechanism 72 rotates the ball screw shaft 72a by the drive motor 72b, thereby moving the X-axis wafer imaging section moving mechanism 71 attached to the ball screw shaft 72a via the ball nut in the Y direction. The wafer imaging section 6 is moved above the wafer W in the horizontal direction (XY directions) by the X-axis wafer imaging section moving mechanism 71 and the Y-axis wafer imaging section moving mechanism 72 .
 図2および図3に示すように、突き上げ部8は、部品CのウエハWからの取り出しの際、供給位置PFでウエハ保持テーブル51に保持されたウエハWの部品Cを下方から突き上げる突き上げヘッドである。ヘッド31は、供給位置PFでウエハ保持テーブル51に保持され、突き上げ部8により突き上げられた状態の部品Cを、ウエハWから取り出すように構成されている。突き上げ部8は、昇降機構(図示せず)により昇降される突き上げピン81を含む。突き上げピン81は、昇降機構により上昇されることにより、部品Cを下方から突き上げて、部品CをウエハシートWSから剥離させるように構成されている。なお、突き上げ部8は、撮像部を有していない。 As shown in FIGS. 2 and 3, the push-up unit 8 is a push-up head that pushes up the component C of the wafer W held on the wafer holding table 51 at the supply position PF from below when the component C is taken out from the wafer W. The head 31 is held by the wafer holding table 51 at the supply position PF, and is configured to pick up the component C from the wafer W while it is pushed up by the push-up portion 8 . The push-up portion 8 includes a push-up pin 81 that is raised and lowered by a lifting mechanism (not shown). The push-up pins 81 are configured to push up the component C from below and separate the component C from the wafer sheet WS by being lifted by an elevating mechanism. It should be noted that the push-up section 8 does not have an imaging section.
 突き上げ部移動機構9は、突き上げ部8を移動させるように構成されている。具体的には、突き上げ部移動機構9は、水平面内で互いに略直交するX方向とY方向とに、突き上げ部8を移動させるように構成されている。突き上げ部移動機構9は、ヘッドユニット3をX方向に移動させるためのX軸突き上げ部移動機構91と、X軸突き上げ部移動機構91をY方向に移動させるためのY軸突き上げ部移動機構92とを含む。 The push-up portion moving mechanism 9 is configured to move the push-up portion 8 . Specifically, the push-up portion moving mechanism 9 is configured to move the push-up portion 8 in the X direction and the Y direction, which are substantially perpendicular to each other in the horizontal plane. The pushing-up portion moving mechanism 9 includes an X-axis pushing-up portion moving mechanism 91 for moving the head unit 3 in the X direction, and a Y-axis pushing-up portion moving mechanism 92 for moving the X-axis pushing-up portion moving mechanism 91 in the Y direction.
 X軸突き上げ部移動機構91は、ボールねじ軸91aと、ボールねじ軸91aを駆動する駆動モータ91bとを有する直動機構である。X軸突き上げ部移動機構91は、駆動モータ91bによりボールねじ軸91aを回転させることにより、ボールナットを介してボールねじ軸91aに取り付けられた突き上げ部8をX方向に移動させる。 The X-axis push-up portion moving mechanism 91 is a linear motion mechanism having a ball screw shaft 91a and a drive motor 91b that drives the ball screw shaft 91a. The X-axis push-up portion moving mechanism 91 rotates the ball screw shaft 91a with a drive motor 91b, thereby moving the push-up portion 8 attached to the ball screw shaft 91a via a ball nut in the X direction.
 Y軸突き上げ部移動機構92は、ボールねじ軸92aと、ボールねじ軸92aを駆動する駆動モータ92bとを有する直動機構である。Y軸突き上げ部移動機構92は、駆動モータ92bによりボールねじ軸92aを回転させることにより、ボールナットを介してボールねじ軸92aに取り付けられたX軸突き上げ部移動機構91をY方向に移動させる。X軸突き上げ部移動機構91とY軸突き上げ部移動機構92とにより、突き上げ部8がウエハWの下方を水平方向(XY方向)に移動される。 The Y-axis push-up portion moving mechanism 92 is a linear motion mechanism having a ball screw shaft 92a and a drive motor 92b that drives the ball screw shaft 92a. The Y-axis push-up portion moving mechanism 92 rotates the ball screw shaft 92a by the drive motor 92b, thereby moving the X-axis push-up portion moving mechanism 91 attached to the ball screw shaft 92a via the ball nut in the Y direction. The push-up portion 8 is moved below the wafer W in the horizontal direction (XY direction) by the X-axis push-up portion movement mechanism 91 and the Y-axis push-up portion movement mechanism 92 .
 図1に示すように、制御部10は、部品実装装置100の各部の動作を制御するように構成されている。具体的には、制御部10は、コンベア2、ヘッドユニット3、ヘッドユニット移動機構4、基板撮像部32、部品撮像部33、部品供給部5、ウエハ撮像部6、ウエハ撮像部移動機構7、突き上げ部8、および、突き上げ部移動機構9などの動作制御を行うように構成されている。制御部10は、上記の各部の駆動モータに内蔵されるエンコーダ等の位置検出手段からの出力信号に基づいて、各部の動作制御を行う。また、制御部10は、各種撮像部(基板撮像部32、部品撮像部33、および、ウエハ撮像部6)の撮像制御および画像認識を行う機能を有する。制御部10は、CPU(中央処理ユニット)などのプロセッサと、メモリとを含む。 As shown in FIG. 1, the control section 10 is configured to control the operation of each section of the component mounting apparatus 100 . Specifically, the control unit 10 is configured to control the operations of the conveyor 2, the head unit 3, the head unit moving mechanism 4, the board imaging unit 32, the component imaging unit 33, the component supply unit 5, the wafer imaging unit 6, the wafer imaging unit moving mechanism 7, the pushing unit 8, and the pushing unit moving mechanism 9. The control unit 10 controls the operation of each unit based on output signals from position detection means such as encoders built in the drive motors of the above units. Further, the control unit 10 has a function of performing imaging control and image recognition of various imaging units (the substrate imaging unit 32, the component imaging unit 33, and the wafer imaging unit 6). The control unit 10 includes a processor such as a CPU (Central Processing Unit) and a memory.
(熱伸び補正)
 ここで、ヘッドユニット移動機構4、ウエハ撮像部移動機構7、および、突き上げ部移動機構9の各移動機構では、ヘッドユニット3(ヘッド31)、ウエハ撮像部6、および、突き上げ部8の各移動対象の移動に伴って、温度上昇が発生する。そして、各移動機構では、温度上昇に起因して、熱伸び(熱膨張)が発生する。この場合、各移動機構の熱伸びに起因して、理論上の移動位置と実際の移動位置との間にずれが発生するため、各移動対象の位置決め精度が低下する。そこで、部品実装装置100では、熱伸び補正を行う。
(thermal elongation correction)
Here, in each movement mechanism of the head unit movement mechanism 4, the wafer imaging section movement mechanism 7, and the push-up section movement mechanism 9, the temperature rise occurs with the movement of each movement target of the head unit 3 (head 31), the wafer imaging section 6, and the push-up section 8. In each moving mechanism, thermal elongation (thermal expansion) occurs due to temperature rise. In this case, due to the thermal expansion of each moving mechanism, a shift occurs between the theoretical moving position and the actual moving position, so the positioning accuracy of each moving object is lowered. Therefore, the component mounting apparatus 100 performs thermal expansion correction.
 ここで、第1実施形態では、図4~図6に示すように、制御部10は、ウエハ撮像部6により突き上げ部8を撮像し、ウエハ撮像部6による突き上げ部8の撮像結果に基づいて、ウエハ撮像部移動機構7の熱伸びと、突き上げ部移動機構9の熱伸びとを含めた第1熱伸び補正量D1(図4参照)を取得し、取得した第1熱伸び補正量D1に基づいて、熱伸び補正を行うように構成されている。なお、図4~図6では、便宜上、ヘッド31、基板撮像部32、ウエハ撮像部6、および、突き上げ部8を、各構成を表すマークとして模式的に図示している。 Here, in the first embodiment, as shown in FIG. 4 to 6, the control unit 10 is an imaging portion 8 by the wafer imaging section 6, and based on the image result of the thrust part 8 by the wafer imaging section 6, the thermal growth of the Waeha imaging unit movement mechanism 7 and the thermal growth of the push -up part of the tracking part 9. The first thermal growth correction amount D1 (see FIG. 4) is obtained, and it is configured to perform a thermal growth correction based on the obtained first thermal growth amount D1. 4 to 6, for convenience, the head 31, the substrate imaging section 32, the wafer imaging section 6, and the push-up section 8 are schematically illustrated as marks representing each configuration.
 また、第1実施形態では、制御部10は、基板撮像部32により突き上げ部8を撮像し、基板撮像部32による突き上げ部8の撮像結果に基づいて、ヘッドユニット移動機構4の熱伸びと、突き上げ部移動機構9の熱伸びとを含めた第2熱伸び補正量D2(図5参照)を取得し、第1熱伸び補正量D1と第2熱伸び補正量D2とに基づいて、熱伸び補正を行うように構成されている。 In addition, in the first embodiment, the control unit 10 captures an image of the push-up portion 8 by the substrate imaging unit 32, acquires the second thermal expansion correction amount D2 (see FIG. 5) including the thermal expansion of the head unit moving mechanism 4 and the thermal expansion of the push-up portion moving mechanism 9 based on the imaging result of the push-up portion 8 by the substrate imaging unit 32, and performs thermal expansion correction based on the first thermal expansion correction amount D1 and the second thermal expansion correction amount D2.
 具体的には、制御部10は、第1熱伸び補正量D1に基づいて、ウエハ撮像部6による部品Cの撮像位置を取得し、取得した撮像位置に移動させた状態でウエハ撮像部6により部品Cを撮像し、ウエハ撮像部6による部品Cの撮像結果に基づいて、突き上げ部移動機構9の熱伸びを含む突き上げ部8の位置から、部品Cの位置までのずれ量D3(図6参照)を取得し、ずれ量D3に基づいて、突き上げ部8による部品Cの突き上げ位置を取得するように構成されている。また、制御部10は、ずれ量D3と第2熱伸び補正量D2とに基づいて、ヘッド31による部品Cの取り出し位置を取得するように構成されている。 Specifically, the control unit 10 acquires the imaging position of the component C by the wafer imaging unit 6 based on the first thermal expansion correction amount D1, images the component C with the wafer imaging unit 6 while being moved to the acquired imaging position, acquires the deviation amount D3 (see FIG. 6) from the position of the thrusting unit 8 including the thermal elongation of the thrusting unit moving mechanism 9 to the position of the component C based on the imaging result of the component C by the wafer imaging unit 6, and based on the deviation amount D3, determines the thrusting unit. 8 is configured to acquire the position of the component C pushed up. Further, the control unit 10 is configured to acquire the pickup position of the component C by the head 31 based on the deviation amount D3 and the second thermal expansion correction amount D2.
 また、第1実施形態では、制御部10は、ウエハ撮像部6と突き上げ部8とを同一の第1目標位置(理論位置P1)に移動させた状態で、ウエハ撮像部6により突き上げ部8を撮像するとともに、基板撮像部32と突き上げ部8とを第1目標位置と同一の第2目標位置(理論位置P1)に移動させた状態で、基板撮像部32により突き上げ部8を撮像するように構成されている。なお、ウエハ撮像部6および基板撮像部32により突き上げ部8を撮像する際には、ウエハWは、ウエハ保持テーブル51により供給位置PFから退避するように移動されている。このため、突き上げ部8は、供給位置PFにおいて、上方に露出されており、ウエハ撮像部6および基板撮像部32は、供給位置PFにおいて、突き上げ部8を上方から撮像可能である。 In the first embodiment, the control unit 10 is configured such that the wafer imaging unit 6 images the push-up unit 8 while the wafer imaging unit 6 and the thrust-up unit 8 are moved to the same first target position (theoretical position P1), and the substrate imaging unit 32 images the push-up unit 8 while the substrate imaging unit 32 and the thrust-up unit 8 are moved to the same second target position (theoretical position P1) as the first target position. When the wafer imaging section 6 and the substrate imaging section 32 pick up an image of the push-up section 8, the wafer W is moved by the wafer holding table 51 so as to retreat from the supply position PF. Therefore, the push-up portion 8 is exposed upward at the supply position PF, and the wafer imaging portion 6 and the board imaging portion 32 can image the push-up portion 8 from above at the supply position PF.
 図4~図6を参照して、熱伸び補正の一例について説明する。 An example of thermal elongation correction will be described with reference to FIGS.
 図4を参照して、第1熱伸び補正量D1の取得について説明する。図4に示すように、ウエハWが供給位置PFに配置されていない状態で、ウエハ撮像部移動機構7によりウエハ撮像部6が理論位置P1を目標位置として移動されるとともに、突き上げ部移動機構9により突き上げ部8が理論位置P1を目標位置として移動される。移動済みの状態では、ウエハ撮像部移動機構7の熱伸びに起因して、ウエハ撮像部6が、理論位置P1から熱伸びずれ量D11分だけずれた位置に位置する。また、突き上げ部移動機構9の熱伸びに起因して、突き上げ部8が、理論位置P1から熱伸びずれ量D12分だけずれた位置に位置する。 Acquisition of the first thermal expansion correction amount D1 will be described with reference to FIG. As shown in FIG. 4, in a state in which the wafer W is not placed at the supply position PF, the wafer imaging section moving mechanism 7 moves the wafer imaging section 6 with the theoretical position P1 as the target position, and the thrusting section moving mechanism 9 moves the thrusting section 8 with the theoretical position P1 as the target position. In the moved state, due to the thermal expansion of the wafer imaging section moving mechanism 7, the wafer imaging section 6 is located at a position displaced from the theoretical position P1 by the amount of thermal expansion deviation D11. Also, due to the thermal expansion of the push-up portion moving mechanism 9, the push-up portion 8 is positioned at a position displaced from the theoretical position P1 by a thermal expansion displacement amount D12.
 そして、ウエハ撮像部6と突き上げ部8とが理論位置P1から熱伸びずれ量分だけずれた位置に位置した状態で、ウエハ撮像部6により突き上げ部8が上方から撮像される。この撮像結果には、ウエハ撮像部6の熱伸びずれ量D11と、突き上げ部8の熱伸びずれ量D12との情報が含まれている。そして、ウエハ撮像部6による突き上げ部8の撮像結果に基づいて、ウエハ撮像部6の熱伸びずれ量D11と、突き上げ部8の熱伸びずれ量D12とを含めた第1熱伸び補正量D1が取得される。第1熱伸び補正量D1は、熱伸びした状態でのウエハ撮像部6に対する突き上げ部8のずれ量を表している。すなわち、第1熱伸び補正量D1は、突き上げ部8の熱伸びずれ量D12を含めたウエハ撮像部6の相対的な熱伸びずれ量を表している。 Then, the wafer imaging section 6 images the thrusting-up section 8 from above in a state where the wafer imaging section 6 and the pushing-up section 8 are positioned at a position displaced from the theoretical position P1 by the thermal expansion deviation amount. This imaging result includes information on the amount of thermal expansion deviation D11 of the wafer imaging unit 6 and the amount of thermal expansion deviation D12 of the push-up unit 8 . Then, a first thermal expansion correction amount D1 including the thermal expansion displacement amount D11 of the wafer imaging unit 6 and the thermal expansion displacement amount D12 of the pushing-up unit 8 is obtained based on the imaging result of the pushing-up unit 8 by the wafer imaging unit 6. The first thermal expansion correction amount D1 represents the displacement amount of the pushing-up portion 8 with respect to the wafer imaging portion 6 in a state of thermal expansion. That is, the first thermal expansion correction amount D1 represents the relative amount of thermal expansion deviation of the wafer imaging section 6 including the thermal expansion deviation amount D12 of the push-up section 8 .
 そして、ウエハ撮像部6の目標位置に、第1熱伸び補正量D1を加えるように、ウエハ撮像部6の目標位置を補正することにより、ウエハ撮像部6の中心と突き上げ部8の中心とが略一致するように、ウエハ撮像部6を移動させることが可能である。すなわち、突き上げ部移動機構9の熱伸びを含む突き上げ部8の位置に、ウエハ撮像部6を移動させることが可能である。 Then, by correcting the target position of the wafer imaging unit 6 so as to add the first thermal expansion correction amount D1 to the target position of the wafer imaging unit 6, it is possible to move the wafer imaging unit 6 so that the center of the wafer imaging unit 6 and the center of the push-up unit 8 substantially coincide. That is, it is possible to move the wafer imaging section 6 to the position of the pushing-up section 8 including the thermal expansion of the pushing-up section moving mechanism 9 .
 図5を参照して、第2熱伸び補正量D2の取得について説明する。図5に示すように、ウエハWが供給位置PFに配置されていない状態で、ヘッドユニット移動機構4により基板撮像部32が理論位置P1を目標位置として移動されるとともに、突き上げ部移動機構9により突き上げ部8が理論位置P1を目標位置として移動される。なお、ウエハ撮像部6による突き上げ部8の撮像が先に行われている場合には、突き上げ部8は移動済みであるため、突き上げ部8は移動済みの位置を維持し、移動されない。移動済みの状態では、ヘッドユニット移動機構4の熱伸びに起因して、基板撮像部32が、理論位置P1から熱伸びずれ量D21分だけずれた位置に位置する。また、突き上げ部移動機構9の熱伸びに起因して、突き上げ部8が、理論位置P1から熱伸びずれ量D12分だけずれた位置に位置する。 Acquisition of the second thermal expansion correction amount D2 will be described with reference to FIG. As shown in FIG. 5, while the wafer W is not placed at the supply position PF, the head unit moving mechanism 4 moves the substrate imaging section 32 with the theoretical position P1 as the target position, and the thrusting section moving mechanism 9 moves the thrusting section 8 with the theoretical position P1 as the target position. Note that if the wafer imaging unit 6 has already imaged the push-up unit 8, the push-up unit 8 has already been moved. In the moved state, due to the thermal expansion of the head unit moving mechanism 4, the board imaging section 32 is positioned at a position shifted from the theoretical position P1 by the amount of thermal expansion deviation D21. Also, due to the thermal expansion of the push-up portion moving mechanism 9, the push-up portion 8 is positioned at a position displaced from the theoretical position P1 by a thermal expansion displacement amount D12.
 そして、基板撮像部32と突き上げ部8とが理論位置P1から熱伸びずれ量分だけずれ位置に位置した状態で、基板撮像部32により突き上げ部8が上方から撮像される。この撮像結果には、基板撮像部32の熱伸びずれ量D21と、突き上げ部8の熱伸びずれ量D12との情報が含まれている。そして、基板撮像部32による突き上げ部8の撮像結果に基づいて、基板撮像部32の熱伸びずれ量D21と、突き上げ部8の熱伸びずれ量D12とを含めた第2熱伸び補正量D2が取得される。また、基板撮像部32の熱伸びずれ量と、ヘッド31の熱伸びずれ量とは略同一とみなせるため、熱伸びずれ量D21は、ヘッド31の熱伸びずれ量ともいえる。このため、第2熱伸び補正量D2は、ヘッド31の熱伸びずれ量D21と、突き上げ部8の熱伸びずれ量D12とを含めたものともいえる。そして、第2熱伸び補正量D2は、熱伸びした状態でのヘッド31(基板撮像部32)に対する突き上げ部8のずれ量を表している。すなわち、第2熱伸び補正量D2は、突き上げ部8の熱伸びずれ量D12を含めたヘッド31(基板撮像部32)の相対的な熱伸びずれ量を表している。 Then, the board imaging section 32 captures an image of the thrusting section 8 from above in a state where the board imaging section 32 and the thrusting section 8 are positioned at positions displaced from the theoretical position P1 by the amount of thermal expansion deviation. This imaging result includes information on the amount of thermal expansion deviation D21 of the board imaging portion 32 and the amount of thermal expansion deviation D12 of the push-up portion 8 . Then, a second thermal expansion correction amount D2 including the thermal expansion displacement amount D21 of the substrate imaging unit 32 and the thermal expansion displacement amount D12 of the pushing-up portion 8 is acquired based on the imaging result of the thrust-up portion 8 by the substrate imaging unit 32. Further, since the amount of thermal expansion deviation of the board imaging section 32 and the amount of thermal expansion deviation of the head 31 can be regarded as substantially the same, the amount of thermal expansion deviation D21 can also be said to be the amount of thermal expansion deviation of the head 31 . Therefore, it can be said that the second thermal expansion correction amount D2 includes the thermal expansion deviation amount D21 of the head 31 and the thermal expansion deviation amount D12 of the push-up portion 8 . The second thermal expansion correction amount D2 represents the displacement amount of the push-up portion 8 with respect to the head 31 (board imaging portion 32) in a thermally expanded state. That is, the second thermal expansion correction amount D2 represents a relative amount of thermal expansion deviation of the head 31 (board imaging section 32) including the thermal expansion deviation amount D12 of the push-up portion 8. FIG.
 そして、ヘッド31の目標位置に、第2熱伸び補正量D2を加えるように、ヘッド31の目標位置を補正することにより、ヘッド31の中心と突き上げ部8の中心とが略一致するように、ヘッド31を移動させることが可能である。すなわち、突き上げ部移動機構9の熱伸びを含む突き上げ部8の位置に、ヘッド31を移動させることが可能である。 By correcting the target position of the head 31 so as to add the second thermal expansion correction amount D2 to the target position of the head 31, it is possible to move the head 31 so that the center of the head 31 and the center of the push-up portion 8 substantially coincide. That is, it is possible to move the head 31 to the position of the push-up portion 8 including the thermal expansion of the push-up portion moving mechanism 9 .
 図6を参照して、第1熱伸び補正量D1と第2熱伸び補正量D2とに基づく、突き上げ位置の取得と取り出し位置の取得とについて説明する。図6に示すように、ウエハWが供給位置PFに配置されている状態で、ウエハ保持テーブル51の位置決め誤差などに起因して、ウエハWの部品Cは、本来配置されるべき理論位置P2からずれた位置に位置する。図6では、部品Cの中心が、理論位置P2から、X方向にずれ量Dx分だけずれ、Y方向にずれ量Dy分だけずれている。このため、ウエハ撮像部6により部品Cを撮像し、突き上げ部8による部品Cの突き上げ位置と、ヘッド31による部品Cの取り出し位置(吸着位置)とを、部品Cの理論位置P2からの位置ずれの分だけ補正する必要がある。また、部品Cの理論位置P2からの位置ずれの補正と共に、各移動機構の熱伸びに起因する位置ずれも補正する必要がある。 Acquisition of the push-up position and acquisition of the take-out position based on the first thermal expansion correction amount D1 and the second thermal expansion correction amount D2 will be described with reference to FIG. As shown in FIG. 6, while the wafer W is placed at the supply position PF, the component C of the wafer W is shifted from the theoretical position P2 where it should be originally placed due to the positioning error of the wafer holding table 51 or the like. In FIG. 6, the center of the part C is displaced from the theoretical position P2 by the displacement amount Dx in the X direction and by the displacement amount Dy in the Y direction. Therefore, it is necessary to image the component C by the wafer imaging unit 6 and correct the position where the component C is pushed up by the push-up unit 8 and the pickup position (suction position) of the component C by the head 31 by the positional deviation of the component C from the theoretical position P2. In addition to correcting the positional deviation of the component C from the theoretical position P2, it is also necessary to correct the positional deviation caused by the thermal expansion of each moving mechanism.
 まず、ウエハ撮像部6の目標位置(理論位置P2)に、第1熱伸び補正量D1を加えるように、ウエハ撮像部6の目標位置(理論位置P2)を補正することにより、補正後の目標位置として、ウエハ撮像部6による部品Cの撮像位置が取得される。撮像位置は、突き上げ部移動機構9の熱伸びを含めて取得されているため、ウエハ撮像部移動機構7によりウエハ撮像部6を撮像位置に移動させると、ウエハ撮像部6は、突き上げ部移動機構9の熱伸びを含む突き上げ部8の位置に移動される。すなわち、ウエハ撮像部6は、理論位置P2から熱伸びずれ量D12分だけずれた位置に移動される。 First, by correcting the target position (theoretical position P2) of the wafer imaging unit 6 so as to add the first thermal expansion correction amount D1 to the target position (theoretical position P2) of the wafer imaging unit 6, the imaging position of the component C by the wafer imaging unit 6 is acquired as the target position after correction. Since the imaging position is acquired including the thermal elongation of the push-up part moving mechanism 9, when the wafer imaging part moving mechanism 7 moves the wafer imaging part 6 to the imaging position, the wafer imaging part 6 is moved to the position of the push-up part 8 including the thermal elongation of the push-up part moving mechanism 9. That is, the wafer imaging unit 6 is moved to a position shifted from the theoretical position P2 by the amount of thermal expansion deviation D12.
 そして、理論位置P2から熱伸びずれ量D12分だけずれた位置に移動された状態で、ウエハ撮像部6により部品Cが上方から撮像される。この撮像結果には、突き上げ部移動機構9の熱伸びを含む突き上げ部8の位置から、部品Cの中心位置までのずれ量D3の情報が含まれている。そして、ウエハ撮像部6による部品Cの撮像結果に基づいて、突き上げ部移動機構9の熱伸びを含む突き上げ部8の位置から、部品Cの中心位置までのずれ量D3が取得される。 Then, the component C is imaged from above by the wafer imaging unit 6 in a state of being shifted from the theoretical position P2 by the amount of thermal expansion deviation D12. This imaging result includes information on the amount of deviation D3 from the position of the push-up portion 8 including the thermal elongation of the push-up portion moving mechanism 9 to the center position of the component C. FIG. Then, based on the imaging result of the component C by the wafer imaging unit 6, the shift amount D3 from the position of the push-up portion 8 including the thermal expansion of the push-up portion moving mechanism 9 to the center position of the component C is obtained.
 そして、突き上げ部8の目標位置(理論位置P2)に、ずれ量D3を加えるように、突き上げ部8の目標位置(理論位置P2)を補正することにより、補正後の目標位置として、突き上げ部8による部品Cの突き上げ位置が取得される。そして、取得された突き上げ位置に、突き上げ部移動機構9により突き上げ部8を移動させることにより、部品Cの中心と突き上げ部8の中心とが略一致するように、突き上げ部8を移動させることが可能である。 Then, by correcting the target position (theoretical position P2) of the push-up part 8 so as to add the deviation amount D3 to the target position (theoretical position P2) of the push-up part 8, the position of the part C pushed up by the push-up part 8 is obtained as the corrected target position. Then, by moving the push-up part 8 to the acquired push-up position by the push-up part moving mechanism 9, the push-up part 8 can be moved so that the center of the part C and the center of the push-up part 8 substantially coincide.
 また、ヘッド31の目標位置(理論位置P2)に、ずれ量D3と第2熱伸び補正量D2とを加えるように、ヘッド31の目標位置(理論位置P2)を補正することにより、補正後の目標位置として、ヘッド31による部品Cの取り出し位置が取得される。そして、取得された取り出し位置に、ヘッドユニット移動機構4によりヘッド31を移動させることにより、部品Cの中心とヘッド31の中心とが略一致するように、ヘッド31を移動させることが可能である。 Further, by correcting the target position (theoretical position P2) of the head 31 so as to add the deviation amount D3 and the second thermal expansion correction amount D2 to the target position (theoretical position P2) of the head 31, the pickup position of the component C by the head 31 is obtained as the corrected target position. The head unit moving mechanism 4 moves the head 31 to the acquired take-out position, thereby moving the head 31 so that the center of the component C and the center of the head 31 substantially coincide.
 なお、図7に示すように、ウエハ撮像部6と基板撮像部32との各撮像部による突き上げ部8の撮像は、1点のみで行われてもよいし、2点および4点などの複数点で行われてもよい。 Incidentally, as shown in FIG. 7, the imaging of the push-up portion 8 by each of the wafer imaging portion 6 and the substrate imaging portion 32 may be performed at only one point, or may be performed at a plurality of points such as two points and four points.
 たとえば、供給位置PFの領域であって、ウエハWが配置されて部品Cが吸着されるウエハ吸着領域WA内で、各移動機構の各移動対象の熱伸び量が部品Cの位置によらず略一定とみなせるような場合には、ウエハ吸着領域WA内の1点のみで、各撮像部による突き上げ部8の撮像を行うことが可能である。この場合、ウエハ吸着領域WAの中心位置の点P11で、各撮像部により突き上げ部8が撮像される。そして、突き上げ部8の点P11での撮像結果に基づいて、点P11での第1熱伸び補正量D1と第2熱伸び補正量D2とが取得される。そして、取得された第1熱伸び補正量D1と第2熱伸び補正量D2とが、図4~図6で説明したように、突き上げ位置と取り出し位置との補正時にそのまま使用される。すなわち、ウエハWのどの位置の部品Cを取り出す際にも、同一の第1熱伸び補正量D1と第2熱伸び補正量D2とが使用される。 For example, in the area of the supply position PF, in the wafer suction area WA where the wafer W is arranged and the component C is suctioned, if the amount of thermal expansion of each movement target of each moving mechanism can be considered to be substantially constant regardless of the position of the component C, it is possible for each imaging section to image the push-up section 8 at only one point within the wafer suction area WA. In this case, each imaging unit captures an image of the push-up portion 8 at a point P11 at the center position of the wafer adsorption area WA. Then, the first thermal expansion correction amount D1 and the second thermal expansion correction amount D2 at the point P11 are acquired based on the imaging result at the point P11 of the push-up portion 8 . Then, the acquired first thermal expansion correction amount D1 and second thermal expansion correction amount D2 are used as they are when correcting the push-up position and the take-out position, as described with reference to FIGS. That is, the same first thermal expansion correction amount D1 and second thermal expansion correction amount D2 are used when picking up the component C at any position on the wafer W. FIG.
 また、たとえば、ウエハ吸着領域WA内で、各移動機構の各移動対象の熱伸び量が部品Cの位置によって異なる場合には、ウエハ吸着領域WA内の任意の2点および任意の4点などの複数点で、各撮像部による突き上げ部8の撮像を行うことが可能である。 Further, for example, if the amount of thermal expansion of each movement target of each moving mechanism differs depending on the position of the component C within the wafer adsorption area WA, it is possible for each imaging section to image the push-up section 8 at a plurality of points, such as arbitrary two points and arbitrary four points within the wafer adsorption area WA.
 たとえば、任意の2点で突き上げ部8の撮像が行われる場合、ウエハ吸着領域WA内の予め決められた点P21、P22で、各撮像部により突き上げ部8が撮像される。そして、点P21、P22の各々における突き上げ部8の撮像結果に基づいて、アフィン変換などの座標変換法を用いて、ウエハWの部品Cの位置ごとの第1熱伸び補正量D1と第2熱伸び補正量D2とが取得される。そして、取得されたウエハWの部品Cの位置ごとの第1熱伸び補正量D1と第2熱伸び補正量D2とが、突き上げ位置と取り出し位置との補正時に使用される。すなわち、ウエハWの部品Cの位置に応じて、異なる第1熱伸び補正量D1と第2熱伸び補正量D2とが使用される。 For example, when the pushing-up portion 8 is imaged at two arbitrary points, the pushing-up portion 8 is imaged by each imaging portion at predetermined points P21 and P22 in the wafer adsorption area WA. Then, based on the imaging results of the push-up portion 8 at each of the points P21 and P22, the first thermal expansion correction amount D1 and the second thermal expansion correction amount D2 for each position of the component C on the wafer W are obtained using a coordinate transformation method such as affine transformation. Then, the obtained first thermal expansion correction amount D1 and second thermal expansion correction amount D2 for each position of the component C on the wafer W are used when correcting the push-up position and the pick-up position. That is, depending on the position of the component C on the wafer W, different first thermal expansion correction amount D1 and second thermal expansion correction amount D2 are used.
 また、たとえば、任意の4点で突き上げ部8の撮像が行われる場合、ウエハ吸着領域WA内の予め決められた点P31~P34で、各撮像部により突き上げ部8が撮像される。そして、点P31~P34の各々における突き上げ部8の撮像結果に基づいて、射影変換などの座標変換法を用いて、ウエハWの部品Cの位置ごとの第1熱伸び補正量D1と第2熱伸び補正量D2とが取得される。そして、取得されたウエハWの部品Cの位置ごとの第1熱伸び補正量D1と第2熱伸び補正量D2とが、突き上げ位置と取り出し位置との補正時に使用される。すなわち、ウエハWの部品Cの位置に応じて、異なる第1熱伸び補正量D1と第2熱伸び補正量D2とが使用される。 Further, for example, when the push-up portion 8 is imaged at four arbitrary points, the push-up portion 8 is imaged by each imaging portion at predetermined points P31 to P34 within the wafer adsorption area WA. Then, based on the imaging results of the push-up portion 8 at each of the points P31 to P34, the first thermal expansion correction amount D1 and the second thermal expansion correction amount D2 for each position of the component C on the wafer W are obtained using a coordinate transformation method such as projective transformation. Then, the obtained first thermal expansion correction amount D1 and second thermal expansion correction amount D2 for each position of the component C on the wafer W are used when correcting the push-up position and the pick-up position. That is, depending on the position of the component C on the wafer W, different first thermal expansion correction amount D1 and second thermal expansion correction amount D2 are used.
(熱伸び補正に関する制御処理)
 図8および図9を参照して、第1実施形態の部品実装装置100による熱伸び補正に関する制御処理をフローチャートに基づいて説明する。なお、フローチャートの各処理は、制御部10により実行される。
(Control processing related to thermal elongation correction)
8 and 9, control processing for thermal expansion correction by the component mounting apparatus 100 of the first embodiment will be described based on a flowchart. Note that each process in the flowchart is executed by the control unit 10 .
 図8を参照して、第1熱伸び補正量D1と第2熱伸び補正量D2との取得に関する制御処理を説明する。図8に示すように、まず、ステップS101において、ウエハWが供給位置PFに存在するか否かが判断される。ウエハWが供給位置PFに存在しないと判断された場合、ステップS103に進む。また、ウエハWが供給位置PFに存在すると判断された場合、ステップS102に進む。 With reference to FIG. 8, control processing regarding acquisition of the first thermal expansion correction amount D1 and the second thermal expansion correction amount D2 will be described. As shown in FIG. 8, first, in step S101, it is determined whether or not the wafer W is present at the supply position PF. If it is determined that the wafer W does not exist at the supply position PF, the process proceeds to step S103. Further, when it is determined that the wafer W is present at the supply position PF, the process proceeds to step S102.
 そして、ステップS102において、ウエハ保持テーブル51によりウエハWがウエハ収納部11に返却される。 Then, in step S102, the wafer W is returned to the wafer storage unit 11 by the wafer holding table 51.
 そして、ステップS103において、ウエハ撮像部移動機構7により撮像位置(理論位置P1)に移動され、突き上げ部移動機構9により突き上げ部8が撮像位置(理論位置P1)に移動される。 Then, in step S103, the wafer imaging section moving mechanism 7 moves to the imaging position (theoretical position P1), and the thrusting section moving mechanism 9 moves the thrusting section 8 to the imaging position (theoretical position P1).
 そして、ステップS104において、ウエハ撮像部6により突き上げ部8が撮像される。 Then, in step S104, the thrust-up portion 8 is imaged by the wafer imaging portion 6.
 そして、ステップS105において、全ての撮像点でのウエハ撮像部6による突き上げ部8の撮像が完了したか否かが判断される。全ての撮像点でのウエハ撮像部6による突き上げ部8の撮像が完了していないと判断された場合、ステップS103に進み、次の撮像点でのウエハ撮像部6による突き上げ部8の撮像が行われる。全ての撮像点でのウエハ撮像部6による突き上げ部8の撮像が完了したと判断された場合、ステップS106に進む。なお、撮像点が1点のみの場合には、ステップS105の処理は行われない。 Then, in step S105, it is determined whether or not imaging of the push-up portion 8 by the wafer imaging unit 6 at all imaging points has been completed. If it is determined that the wafer imaging unit 6 has not completed imaging the thrust-up portion 8 at all imaging points, the process proceeds to step S103, and the wafer imaging unit 6 images the thrust-up portion 8 at the next imaging point. If it is determined that the imaging of the push-up portion 8 by the wafer imaging section 6 at all imaging points has been completed, the process proceeds to step S106. Note that when there is only one imaging point, the process of step S105 is not performed.
 そして、ステップS106において、ウエハ撮像部6による突き上げ部8の撮像結果に基づいて、第1熱伸び補正量D1が取得される。 Then, in step S106, the first thermal expansion correction amount D1 is obtained based on the imaging result of the pushing-up portion 8 by the wafer imaging portion 6.
 そして、ステップS107において、ヘッドユニット移動機構4により基板撮像部32が撮像位置(理論位置P1)に移動され、突き上げ部移動機構9により突き上げ部8が撮像位置(理論位置P1)に移動される。なお、突き上げ部8は、ステップS103の処理で移動した位置を維持する。 Then, in step S107, the board imaging section 32 is moved to the imaging position (theoretical position P1) by the head unit moving mechanism 4, and the thrusting section 8 is moved to the imaging position (theoretical position P1) by the thrusting section moving mechanism 9. It should be noted that the push-up portion 8 maintains the position moved in the process of step S103.
 そして、ステップS108において、基板撮像部32により突き上げ部8が撮像される。 Then, in step S108, the board imaging section 32 captures an image of the push-up section 8.
 そして、ステップS109において、全ての撮像点での基板撮像部32による突き上げ部8の撮像が完了したか否かが判断される。全ての撮像点での基板撮像部32による突き上げ部8の撮像が完了していないと判断された場合、ステップS107に進み、次の撮像点での基板撮像部32による突き上げ部8の撮像が行われる。全ての撮像点での基板撮像部32による突き上げ部8の撮像が完了したと判断された場合、ステップS110に進む。なお、撮像点が1点のみの場合には、ステップS109の処理は行われない。 Then, in step S109, it is determined whether or not imaging of the push-up portion 8 by the substrate imaging section 32 at all imaging points has been completed. If it is determined that the substrate imaging unit 32 has not completed imaging the push-up portion 8 at all imaging points, the process proceeds to step S107, and the substrate imaging unit 32 images the push-up portion 8 at the next imaging point. If it is determined that imaging of the push-up portion 8 by the substrate imaging section 32 at all imaging points has been completed, the process proceeds to step S110. Note that when there is only one imaging point, the process of step S109 is not performed.
 そして、ステップS110において、基板撮像部32による突き上げ部8の撮像結果に基づいて、第2熱伸び補正量D2が取得される。そして、制御処理が終了される。なお、各移動機構の熱伸び量は経時的に変化するため、図8に示す制御処理は、所定の時間間隔(3分間隔など)で行われている。このため、所定の時間間隔で、第1熱伸び補正量D1と、第2熱伸び補正量D2とが更新され、最新の熱伸び状態が熱伸び補正に反映される。 Then, in step S<b>110 , the second thermal expansion correction amount D<b>2 is acquired based on the imaging result of the push-up portion 8 by the substrate imaging section 32 . The control process is then terminated. Note that the amount of thermal expansion of each moving mechanism changes with time, so the control process shown in FIG. 8 is performed at predetermined time intervals (such as 3-minute intervals). Therefore, the first thermal expansion correction amount D1 and the second thermal expansion correction amount D2 are updated at predetermined time intervals, and the latest thermal expansion state is reflected in the thermal expansion correction.
 図9を参照して、第1熱伸び補正量D1と第2熱伸び補正量D2とに基づく突き上げ位置と取り出し位置との取得に関する制御処理を説明する。なお、ウエハWは供給位置PFに配置された状態である。図9に示すように、まず、ステップS111において、第1熱伸び補正量D1に基づいて、ウエハ撮像部6による部品Cの撮像位置が取得される。 With reference to FIG. 9, control processing regarding acquisition of the push-up position and the take-out position based on the first thermal expansion correction amount D1 and the second thermal expansion correction amount D2 will be described. Note that the wafer W is placed at the supply position PF. As shown in FIG. 9, first, in step S111, the imaging position of the component C by the wafer imaging unit 6 is obtained based on the first thermal expansion correction amount D1.
 そして、ステップS112において、ウエハ撮像部移動機構7によりウエハ撮像部6が撮像位置に移動される。 Then, in step S112, the wafer imaging section moving mechanism 7 moves the wafer imaging section 6 to the imaging position.
 そして、ステップS113において、ウエハ撮像部6により部品Cが撮像される。 Then, in step S113, the image of the component C is captured by the wafer imaging unit 6.
 そして、ステップS114において、ウエハ撮像部6による部品Cの撮像結果に基づいて、ずれ量D3が取得される。 Then, in step S114, the amount of deviation D3 is acquired based on the imaging result of the component C by the wafer imaging unit 6.
 そして、ステップS115において、ずれ量D3に基づいて、突き上げ部8による部品Cの突き上げ位置が取得される。 Then, in step S115, the push-up position of the part C by the push-up unit 8 is acquired based on the deviation amount D3.
 そして、ステップS116において、突き上げ部移動機構9により突き上げ部8が突き上げ位置に移動される。 Then, in step S116, the push-up portion moving mechanism 9 moves the push-up portion 8 to the push-up position.
 また、ステップS117において、ずれ量D3と第2熱伸び補正量D2とに基づいて、ヘッド31による部品Cの取り出し位置が取得される。 Also, in step S117, the pickup position of the component C by the head 31 is acquired based on the deviation amount D3 and the second thermal expansion correction amount D2.
 そして、ステップS118において、ヘッドユニット移動機構4によりヘッド31が取り出し位置に移動される。 Then, in step S118, the head unit moving mechanism 4 moves the head 31 to the removal position.
 そして、ステップS119において、突き上げ部8による部品Cの突き上げと、ヘッド31による部品Cの取り出しとが行われる。そして、制御処理が終了される。また、図9に示す制御処理は、基板Bの生産が終了されるまで、繰り返し行われる。 Then, in step S119, the pushing-up portion 8 pushes up the component C and the head 31 picks up the component C. The control process is then terminated. Further, the control processing shown in FIG. 9 is repeatedly performed until the production of the substrate B is completed.
(第1実施形態の効果)
 第1実施形態では、以下のような効果を得ることができる。
(Effect of the first embodiment)
The following effects can be obtained in the first embodiment.
 第1実施形態では、上記のように、ウエハ撮像部6により突き上げ部8を撮像し、ウエハ撮像部6による突き上げ部8の撮像結果に基づいて、ウエハ撮像部6を移動させるウエハ撮像部移動機構7の熱伸びと、突き上げ部8を移動させる突き上げ部移動機構9の熱伸びとを含めた第1熱伸び補正量D1を取得し、取得した第1熱伸び補正量D1に基づいて、熱伸び補正を行う制御部10を設ける。これにより、突き上げ部8を移動させる突き上げ部移動機構9の熱伸びの補正を行うことができるので、突き上げ部移動機構9の熱伸びに起因して突き上げ部8が適切な突き上げ位置に移動できないことを抑制することができる。換言すれば、突き上げ部移動機構9により突き上げ部8を適切な突き上げ位置に移動させることができるので、突き上げ部8による部品Cの突き上げを適切に行うことができる。これにより、安定した部品Cの突き上げの精度を確保することができる。また、安定した部品Cの突き上げの精度を確保することができるので、安定した部品Cの取り出しの精度を確保することができる。 In the first embodiment, as described above, the wafer imaging unit 6 captures an image of the push-up unit 8, acquires the first thermal expansion correction amount D1 including the thermal elongation of the wafer imaging unit moving mechanism 7 that moves the wafer imaging unit 6 and the thermal elongation of the push-up unit moving mechanism 9 that moves the push-up unit 8, based on the imaging result of the push-up unit 8 by the wafer imaging unit 6, and provides the control unit 10 that performs thermal elongation correction based on the acquired first thermal expansion correction amount D1. As a result, it is possible to correct the thermal elongation of the push-up part moving mechanism 9 for moving the push-up part 8, so that the failure of the push-up part 8 to move to an appropriate push-up position due to the thermal expansion of the push-up part moving mechanism 9 can be suppressed. In other words, the pushing-up portion moving mechanism 9 can move the pushing-up portion 8 to an appropriate pushing-up position, so that the pushing-up portion 8 can push up the component C appropriately. As a result, it is possible to ensure the accuracy of stable push-up of the component C. In addition, since it is possible to ensure the accuracy of stable push-up of the component C, it is possible to ensure the accuracy of stable removal of the component C.
 なお、ウエハ撮像部移動機構7の熱伸びと突き上げ部移動機構9の熱伸びとを補正するために、以下のように部品実装装置100を構成することも考えられる。すなわち、部品実装装置100に、熱伸び補正に使用する認識マークを設け、ウエハ撮像部6により認識マークを撮像することにより、ウエハ撮像部移動機構7の熱伸びの補正を行い、ウエハ撮像部移動機構7の熱伸びの補正を行った状態で、ウエハ撮像部6により突き上げ部8を撮像することにより、突き上げ部移動機構9の熱伸びの補正を行うことが考えられる。しかしながら、この場合、認識マークの撮像と突き上げ部8の撮像とを個別に行う必要があるため、熱伸び補正に必要な時間が増加する。これに対して、上記のように、ウエハ撮像部6により突き上げ部8を撮像し、ウエハ撮像部6による突き上げ部8の撮像結果に基づいて、ウエハ撮像部移動機構7の熱伸びと、突き上げ部移動機構9の熱伸びとを含めた第1熱伸び補正量D1を取得し、取得した第1熱伸び補正量D1に基づいて、熱伸び補正を行う。これにより、突き上げ部8の撮像を行うだけで、ウエハ撮像部移動機構7の熱伸びと突き上げ部移動機構9の熱伸びとを同時に補正することができるので、熱伸び補正に必要な時間が増加することを抑制することができる。 In order to correct the thermal expansion of the wafer imaging section moving mechanism 7 and the thermal expansion of the push-up section moving mechanism 9, it is possible to configure the component mounting apparatus 100 as follows. That is, it is conceivable to provide the component mounting apparatus 100 with a recognition mark used for thermal expansion correction, to correct the thermal expansion of the wafer imaging section moving mechanism 7 by imaging the recognition mark with the wafer imaging section 6, and to correct the thermal expansion of the thrusting section moving mechanism 9 by imaging the push-up section 8 with the wafer imaging section 6 in a state in which the thermal expansion of the wafer imaging section movement mechanism 7 has been corrected. However, in this case, it is necessary to separately perform imaging of the recognition mark and imaging of the push-up portion 8, so the time required for thermal expansion correction increases. On the other hand, as described above, the wafer imaging unit 6 captures an image of the push-up unit 8, and based on the imaging result of the push-up unit 8 by the wafer imaging unit 6, the first thermal expansion correction amount D1 including the thermal expansion of the wafer imaging unit moving mechanism 7 and the thermal expansion of the push-up unit moving mechanism 9 is acquired, and thermal expansion correction is performed based on the acquired first thermal expansion correction amount D1. As a result, the thermal expansion of the wafer imaging part moving mechanism 7 and the thermal expansion of the pushing part moving mechanism 9 can be corrected simultaneously only by imaging the push-up part 8, so that it is possible to suppress an increase in the time required for correcting the thermal expansion.
 また、第1実施形態では、上記のように、制御部10は、第1熱伸び補正量D1に基づいて、ウエハ撮像部6による部品Cの撮像位置を取得し、取得した撮像位置に移動させた状態でウエハ撮像部6により部品Cを撮像し、ウエハ撮像部6による部品Cの撮像結果に基づいて、突き上げ部移動機構9の熱伸びを含む突き上げ部8の位置から、部品Cの位置までのずれ量D3を取得し、ずれ量D3に基づいて、突き上げ部8による部品Cの突き上げ位置を取得するように構成されている。これにより、第1熱伸び補正量D1に基づいて、突き上げ部8による部品Cの突き上げ位置を精度良く補正することができるので、安定した部品Cの突き上げの精度を容易に確保することができる。 In addition, in the first embodiment, as described above, the control unit 10 acquires the imaging position of the component C by the wafer imaging unit 6 based on the first thermal expansion correction amount D1, images the component C with the wafer imaging unit 6 while being moved to the acquired imaging position, acquires the deviation amount D3 from the position of the thrusting unit 8 including the thermal expansion of the thrusting unit moving mechanism 9 to the position of the component C based on the imaging result of the component C by the wafer imaging unit 6, and acquires the deviation amount D3 based on the deviation amount D3. , to obtain the position of the component C pushed up by the pushing-up portion 8 . As a result, it is possible to accurately correct the thrust-up position of the component C by the thrust-up part 8 based on the first thermal expansion correction amount D1, so that stable precision of thrust-up of the component C can be easily ensured.
 また、第1実施形態では、上記のように、部品実装装置100は、ウエハの部品Cを上方から取り出すヘッドユニット3と、ヘッドユニット3に設けられた基板撮像部32と、ヘッドユニット3を移動させるヘッドユニット移動機構4と、を備える。制御部10は、基板撮像部32により突き上げ部8を撮像し、基板撮像部32による突き上げ部8の撮像結果に基づいて、ヘッドユニット移動機構4の熱伸びと、突き上げ部移動機構9の熱伸びとを含めた第2熱伸び補正量D2を取得し、第1熱伸び補正量D1と第2熱伸び補正量D2とに基づいて、熱伸び補正を行うように構成されている。これにより、ウエハ撮像部移動機構7と突き上げ部移動機構9との熱伸びの補正に対応するように、ヘッドユニット移動機構4の熱伸びの補正を行うことができるので、ヘッドユニット移動機構4によりヘッド31を適切な取り出し位置に移動させることができる。その結果、ヘッド31による部品Cの取り出しを適切に行うことができるので、より安定した部品Cの取り出しの精度を確保することができる。 Further, in the first embodiment, as described above, the component mounting apparatus 100 includes the head unit 3 that picks up the component C on the wafer from above, the board imaging section 32 provided in the head unit 3, and the head unit moving mechanism 4 that moves the head unit 3. The control unit 10 is configured to capture an image of the push-up portion 8 by the substrate imaging unit 32, acquire a second thermal expansion correction amount D2 including the thermal expansion of the head unit moving mechanism 4 and the thermal expansion of the push-up portion moving mechanism 9 based on the imaging result of the push-up portion 8 by the substrate imaging unit 32, and perform thermal expansion correction based on the first thermal expansion correction amount D1 and the second thermal expansion correction amount D2. As a result, the thermal expansion of the head unit moving mechanism 4 can be corrected so as to correspond to the correction of the thermal expansion of the wafer imaging unit moving mechanism 7 and the push-up portion moving mechanism 9, so that the head unit moving mechanism 4 can move the head 31 to an appropriate take-out position. As a result, the component C can be properly picked up by the head 31, so that a more stable picking accuracy of the component C can be ensured.
 また、第1実施形態では、上記のように、制御部10は、第1熱伸び補正量D1に基づいて、ウエハ撮像部6による部品Cの撮像位置を取得し、取得した撮像位置に移動させた状態でウエハ撮像部6により部品Cを撮像し、ウエハ撮像部6による部品Cの撮像結果に基づいて、突き上げ部移動機構9の熱伸びを含む突き上げ部8の位置から、部品Cの位置までのずれ量D3を取得し、ずれ量D3に基づいて、突き上げ部8による部品Cの突き上げ位置を取得し、ずれ量D3と第2熱伸び補正量D2とに基づいて、ヘッド31による部品Cの取り出し位置を取得するように構成されている。これにより、第1熱伸び補正量D1と第2熱伸び補正量D2とに基づいて、突き上げ部8による部品Cの突き上げ位置とヘッド31による部品Cの取り出し位置を精度良く補正することができるので、より安定した部品Cの突き上げの精度の確保と、より安定した部品Cの取り出しつ精度の確保とを容易に実現することができる。 In addition, in the first embodiment, as described above, the control unit 10 acquires the imaging position of the component C by the wafer imaging unit 6 based on the first thermal expansion correction amount D1, images the component C with the wafer imaging unit 6 while being moved to the acquired imaging position, acquires the deviation amount D3 from the position of the thrusting unit 8 including the thermal expansion of the thrusting unit moving mechanism 9 to the position of the component C based on the imaging result of the component C by the wafer imaging unit 6, and acquires the deviation amount D3 based on the deviation amount D3. , the position of the component C pushed up by the pushing-up portion 8 is obtained, and the pickup position of the component C by the head 31 is obtained based on the deviation amount D3 and the second thermal expansion correction amount D2. As a result, based on the first thermal expansion correction amount D1 and the second thermal expansion correction amount D2, the pushing-up position of the component C by the pushing-up part 8 and the picking-up position of the component C by the head 31 can be corrected with high accuracy, so that it is possible to easily secure more stable pushing-up accuracy of the component C and more stable picking-up accuracy of the component C.
 また、第1実施形態では、上記のように、ウエハ撮像部移動機構7は、水平面内で互いに略直交するX方向とY方向とに、ウエハ撮像部6を移動させるように構成されている。突き上げ部移動機構9は、X方向とY方向とに、突き上げ部8を移動させるように構成されている。ヘッドユニット移動機構4は、X方向とY方向とに、ヘッドユニット3を移動させるように構成されている。これにより、ウエハ撮像部移動機構7と突き上げ部移動機構9とヘッドユニット移動機構4とにより、それぞれ、ウエハ撮像部6と突き上げ部8とヘッドユニット3とをX方向とY方向とに容易に移動させることができる。また、ウエハ撮像部6と突き上げ部8とヘッドユニット3とをX方向とY方向と移動させる熱伸びの影響が複雑な場合において、ウエハ撮像部移動機構7と突き上げ部移動機構9とヘッドユニット移動機構4との熱伸びの補正を行うことができる。 Further, in the first embodiment, as described above, the wafer imaging section moving mechanism 7 is configured to move the wafer imaging section 6 in the X direction and the Y direction, which are substantially perpendicular to each other in the horizontal plane. The push-up portion moving mechanism 9 is configured to move the push-up portion 8 in the X direction and the Y direction. The head unit moving mechanism 4 is configured to move the head unit 3 in the X direction and the Y direction. As a result, the wafer imaging section moving mechanism 7, the thrusting section moving mechanism 9, and the head unit moving mechanism 4 can easily move the wafer imaging section 6, the thrusting section 8, and the head unit 3 in the X direction and the Y direction, respectively. Further, in the case where the effects of thermal expansion caused by moving the wafer imaging section 6, the pushing section 8, and the head unit 3 in the X and Y directions are complicated, the thermal expansion of the wafer imaging section moving mechanism 7, the pushing section moving mechanism 9, and the head unit moving mechanism 4 can be corrected.
 また、第1実施形態では、上記のように、制御部10は、ウエハ撮像部6と突き上げ部8とを同一の第1目標位置に移動させた状態で、ウエハ撮像部6により突き上げ部8を撮像するとともに、基板撮像部32と突き上げ部8とを第1目標位置と同一の第2目標位置に移動させた状態で、基板撮像部32により突き上げ部8を撮像するように構成されている。これにより、第1熱伸び補正量D1に含まれる突き上げ部移動機構9の熱伸びと、第2熱伸び補正量D2に含まれる突き上げ部移動機構9の熱伸びとを対応させることができるので、第1熱伸び補正量D1と第2熱伸び補正量D2とに基づく熱伸び補正を精度良く行うことができる。 Further, in the first embodiment, as described above, the control unit 10 is configured such that the wafer imaging unit 6 images the push-up unit 8 while the wafer imaging unit 6 and the push-up unit 8 are moved to the same first target position, and the substrate imaging unit 32 images the push-up unit 8 while the substrate imaging unit 32 and the push-up unit 8 are moved to the same second target position as the first target position. As a result, the thermal elongation of the push-up portion moving mechanism 9 included in the first thermal elongation correction amount D1 and the thermal elongation of the push-up portion moving mechanism 9 included in the second thermal elongation correction amount D2 can be matched, so the thermal elongation correction based on the first thermal elongation correction amount D1 and the second thermal elongation correction amount D2 can be accurately performed.
 また、第1実施形態では、上記のように、突き上げ部8は、撮像部を有しないように構成されている。これにより、突き上げ部8が撮像部を有しないので、突き上げ部8が撮像部を有する場合に比べて、部品点数の増加および構造の複雑化を抑制することができる。また、突き上げ部8が撮像部を有しなくても、ウエハ撮像部6を有効に利用して、突き上げ部移動機構9の熱伸びの補正を行うことができる。これらの結果、部品点数の増加および構造の複雑化を抑制しながら、突き上げ部移動機構9の熱伸びの補正を行うことができる。 In addition, in the first embodiment, as described above, the push-up section 8 is configured so as not to have an imaging section. Accordingly, since the push-up section 8 does not have an imaging section, it is possible to suppress an increase in the number of parts and complication of the structure as compared with the case where the push-up section 8 has an imaging section. Further, even if the push-up unit 8 does not have an imaging unit, the wafer imaging unit 6 can be effectively used to correct thermal expansion of the push-up unit moving mechanism 9 . As a result, it is possible to correct the thermal elongation of the push-up portion moving mechanism 9 while suppressing an increase in the number of parts and complication of the structure.
[第2実施形態]
 次に、図10~図12を参照して、第2実施形態について説明する。この第2実施形態では、上記第1実施形態とは異なり、所定の時間間隔内にウエハから部品を取り出す領域を取得し、取得した領域に対応する位置で、ウエハ撮像部により突き上げ部を撮像する例について説明する。なお、上記第1実施形態と同一の構成については、図中において同じ符号を付して図示し、その説明を省略する。
[Second embodiment]
Next, a second embodiment will be described with reference to FIGS. 10 to 12. FIG. In this second embodiment, unlike the above-described first embodiment, an example will be described in which an area for picking up a component from a wafer is acquired within a predetermined time interval, and the thrust-up portion is imaged by the wafer imaging unit at a position corresponding to the acquired area. In the drawings, the same components as in the first embodiment are indicated by the same reference numerals, and descriptions thereof are omitted.
(部品実装装置の構成)
 本発明の第2実施形態による部品実装装置200は、図10に示すように、制御部110を備える点で、上記第1実施形態による部品実装装置100と相違する。制御部110は、熱伸び補正の第1熱伸び補正量D1と第2熱伸び補正量D2とを所定の時間間隔(3分間隔など)で更新するように構成されている。
(Configuration of component mounting device)
A component mounting apparatus 200 according to the second embodiment of the present invention differs from the component mounting apparatus 100 according to the first embodiment in that it includes a control unit 110 as shown in FIG. The control unit 110 is configured to update the first thermal expansion correction amount D1 and the second thermal expansion correction amount D2 for thermal expansion correction at predetermined time intervals (such as 3-minute intervals).
 ここで、第2実施形態では、制御部110は、所定の時間間隔内にウエハWから部品Cを取り出す領域111を取得し、取得した領域111に対応する位置P101で、ウエハ撮像部6により突き上げ部8を撮像し、熱伸び補正の第1熱伸び補正量D1と第2熱伸び補正量D2とを更新するように構成されている。また、第2実施形態では、制御部110は、基板Bのサイクルタイムに基づいて、所定の時間間隔内にウエハWから取り出す部品Cの数を取得し、取得した部品Cの数に基づいて、領域111を取得するように構成されている。なお、図10では、撮像点が2点の例を図示しているが、撮像点は1点でもよいし、2点以外の複数点でもよい。 Here, in the second embodiment, the control unit 110 acquires the area 111 from which the component C is to be taken out from the wafer W within a predetermined time interval, and at the position P101 corresponding to the acquired area 111, the wafer imaging unit 6 images the push-up unit 8, and updates the first thermal expansion correction amount D1 and the second thermal expansion correction amount D2. In the second embodiment, the control unit 110 is configured to obtain the number of components C to be taken out from the wafer W within a predetermined time interval based on the cycle time of the substrate B, and to obtain the area 111 based on the obtained number of components C. Note that FIG. 10 shows an example in which there are two imaging points, but the number of imaging points may be one, or a plurality of points other than two.
(熱伸び補正に関する制御処理)
 図11および図12を参照して、第2実施形態の部品実装装置200による熱伸び補正に関する制御処理をフローチャートに基づいて説明する。なお、フローチャートの各処理は、制御部110により実行される。
(Control processing related to thermal elongation correction)
11 and 12, control processing for thermal expansion correction by the component mounting apparatus 200 of the second embodiment will be described based on a flowchart. Note that each process in the flowchart is executed by the control unit 110 .
 図11に示すように、まず、ステップS201において、サイクルタイムが初期化される。ステップS201では、前回の生産履歴から、前回のサイクルタイムが設定される。 As shown in FIG. 11, first, in step S201, the cycle time is initialized. In step S201, the previous cycle time is set from the previous production history.
 そして、ステップS202において、コンベア2により基板Bの入れ替えが行われる。ステップS202では、コンベア2により、部品Cの実装が完了した基板Bが搬出され、部品Cの実装予定の基板Bが搬入される。 Then, in step S202, the substrate B is replaced by the conveyor 2. In step S202, the conveyor 2 unloads the board B on which the component C has been mounted, and carries in the board B on which the component C is to be mounted.
 そして、ステップS203において、タイミングが熱伸び補正の更新タイミングであるか否かが判断される。タイミングが熱伸び補正の更新タイミングではないと判断された場合、ステップS207に進む。また、タイミングが熱伸び補正の更新タイミングであると判断された場合、ステップS204に進む。 Then, in step S203, it is determined whether or not the timing is the update timing of the thermal expansion correction. If it is determined that the timing is not the update timing of the thermal expansion correction, the process proceeds to step S207. Moreover, when it is determined that the timing is the update timing of the thermal expansion correction, the process proceeds to step S204.
 そして、ステップS204において、基板Bのサイクルタイムに基づいて、次の熱伸び補正更新タイミングまでにウエハWから取り出す部品Cの数が取得され、取得された部品Cの数に基づいて、次の熱伸び補正更新タイミングまでにウエハWから部品Cを取り出す領域111が取得される。 Then, in step S204, based on the cycle time of the substrate B, the number of components C to be removed from the wafer W is obtained by the next thermal expansion correction update timing, and based on the obtained number of components C, the area 111 for removing the components C from the wafer W by the next thermal expansion correction update timing is obtained.
 そして、ステップS205において、ウエハ撮像部6と基板撮像部32とにより突き上げ部8が撮像される。 Then, in step S205, the pushing-up portion 8 is imaged by the wafer imaging portion 6 and the board imaging portion 32.
 そして、ステップS206において、突き上げ部8の撮像結果に基づいて、第1熱伸び補正量D1と第2熱伸び補正量D2とが取得される。なお、ステップS205およびS206では、詳細には、図8に示すステップS103~S110の処理が行われる。 Then, in step S206, the first thermal expansion correction amount D1 and the second thermal expansion correction amount D2 are obtained based on the imaging result of the push-up portion 8. Note that in steps S205 and S206, in detail, the processes of steps S103 to S110 shown in FIG. 8 are performed.
 そして、ステップS207において、ウエハ撮像部6により部品Cが撮像される。 Then, in step S207, the image of the component C is captured by the wafer imaging unit 6.
 そして、ステップS208において、突き上げ部8による部品Cの突き上げと、ヘッド31による部品Cの取り出しとが行われる。なお、ステップS207およびS208では、詳細には、図8に示すステップS111~S119の処理が行われる。 Then, in step S208, the pushing-up portion 8 pushes up the component C and the head 31 picks up the component C. Note that in steps S207 and S208, in detail, the processes of steps S111 to S119 shown in FIG. 8 are performed.
 そして、ステップS209において、部品撮像部33によりヘッド31の吸着ノズル31aに吸着された部品Cが撮像される。 Then, in step S<b>209 , an image of the component C sucked by the suction nozzle 31 a of the head 31 is captured by the component imaging unit 33 .
 そして、ステップS210において、部品撮像部33による部品Cの撮像結果に基づいて、ヘッド31により部品Cが基板Bに実装される。 Then, in step S<b>210 , the component C is mounted on the board B by the head 31 based on the imaging result of the component C by the component imaging unit 33 .
 そして、図12に示すように、ステップS211において、サイクルタイムが更新される。なお、サイクルタイムは、ヘッド31の吸着グループごとに更新されてもよいし、1枚の基板Bの生産ごとに更新されてもよい。 Then, as shown in FIG. 12, the cycle time is updated in step S211. Note that the cycle time may be updated for each suction group of the head 31 or may be updated for each production of one substrate B. FIG.
 そして、ステップS212において、基板B内の全ての実装位置に部品Cが実装されたか否かが判断される。基板B内の全ての実装位置に部品Cが実装されていないと判断された場合、ステップS203に進み、残りの実装位置への部品Cの実装が行われる。また、基板B内の全ての実装位置に部品Cが実装されたと判断された場合、ステップS213に進む。 Then, in step S212, it is determined whether or not the component C has been mounted at all mounting positions on the board B. If it is determined that component C is not mounted on all mounting positions on board B, the process proceeds to step S203, and component C is mounted on the remaining mounting positions. If it is determined that component C has been mounted at all mounting positions on board B, the process proceeds to step S213.
 そして、ステップS213において、基板Bの生産を終了するか否かが判断される。基板Bの生産を終了しないと判断された場合、ステップS202に進み、次の基板Bへの部品Cの実装が行われる。また、基板Bの生産を終了すると判断された場合、ステップS214に進む。 Then, in step S213, it is determined whether or not the production of the board B is finished. If it is determined that the production of the board B will not be finished, the process proceeds to step S202, and the component C is mounted on the next board B. On the other hand, if it is determined that the production of the board B is finished, the process proceeds to step S214.
 そして、ステップS214において、コンベア2により基板Bが搬出される。 Then, in step S214, the substrate B is carried out by the conveyor 2.
 そして、ステップS215において、サイクルタイムが保存される。その後、制御処理が終了される。 Then, in step S215, the cycle time is saved. After that, the control process is terminated.
 なお、第2実施形態のその他の構成は、上記第1実施形態と同様である。 Other configurations of the second embodiment are the same as those of the first embodiment.
(第2実施形態の効果)
 第2実施形態では、以下のような効果を得ることができる。
(Effect of Second Embodiment)
The following effects can be obtained in the second embodiment.
 第2実施形態では、上記のように、制御部110は、熱伸び補正を所定の時間間隔で更新するように構成されている。制御部110は、所定の時間間隔内にウエハWから部品Cを取り出す領域111を取得し、取得した領域111に対応する位置P101で、ウエハ撮像部6により突き上げ部8を撮像し、熱伸び補正を更新するように構成されている。これにより、熱伸び補正を所定の時間間隔で更新することにより、経時的に変化する熱伸びを熱伸び補正に適切に反映させることができる。また、所定の時間間隔内にウエハWから部品Cを取り出す領域111を取得し、取得した領域111に対応する位置P101で、ウエハ撮像部6により突き上げ部8を撮像し、熱伸び補正を更新する。これにより、部品Cに近い効果的な位置でウエハ撮像部6により突き上げ部8を撮像し、熱伸び補正を更新することができるので、熱伸び補正の精度を効果的に高めることができる。 In the second embodiment, as described above, the control unit 110 is configured to update the thermal expansion correction at predetermined time intervals. The control unit 110 acquires the area 111 from which the component C is to be removed from the wafer W within a predetermined time interval, captures an image of the push-up unit 8 with the wafer imaging unit 6 at a position P101 corresponding to the acquired area 111, and updates the thermal expansion correction. Accordingly, by updating the thermal elongation correction at predetermined time intervals, the thermal elongation that changes with time can be properly reflected in the thermal elongation correction. In addition, the area 111 from which the component C is to be taken out from the wafer W is acquired within a predetermined time interval, and the thrust-up portion 8 is imaged by the wafer imaging section 6 at the position P101 corresponding to the acquired area 111 to update the thermal expansion correction. As a result, the thrust-up portion 8 can be imaged by the wafer imaging portion 6 at an effective position near the component C and the thermal expansion correction can be updated, so that the accuracy of the thermal expansion correction can be effectively improved.
 また、熱伸びは線形的ではない場合が多いため、複数の位置でウエハ撮像部6により突き上げ部8を撮像し、熱伸び補正を行うことが、熱伸び補正の精度を高める観点で好ましい。しかしながら、複数の位置でウエハ撮像部6により突き上げ部8を撮像する場合、熱伸び補正に必要な時間が増加する。これに対して、上記構成では、熱伸び補正の精度を効果的に高めることができるので、ウエハ撮像部6により突き上げ部8を撮像する位置の数を少なくしたとしても、熱伸び補正を精度良く行うことができる。これにより、熱伸び補正に必要な時間が増加することを抑制しながら、熱伸び補正を精度良く行うことができる。 In addition, since thermal elongation is not linear in many cases, it is preferable from the viewpoint of improving the accuracy of thermal elongation correction to perform thermal elongation correction by imaging the push-up portion 8 with the wafer imaging unit 6 at a plurality of positions. However, when the wafer imaging unit 6 images the push-up portion 8 at a plurality of positions, the time required for thermal expansion correction increases. On the other hand, in the above configuration, the accuracy of thermal expansion correction can be effectively improved, so even if the number of positions where the thrust-up portion 8 is imaged by the wafer imaging unit 6 is reduced, the thermal expansion can be corrected with high accuracy. As a result, it is possible to accurately perform the thermal elongation correction while suppressing an increase in the time required for the thermal elongation correction.
 また、第2実施形態では、上記のように、制御部110は、基板Bのサイクルタイムに基づいて、所定の時間間隔内にウエハWから取り出す部品Cの数を取得し、取得した部品Cの数に基づいて、領域111を取得するように構成されている。これにより、所定の時間間隔内にウエハWから取り出す部品Cの数に基づいて、所定の時間間隔内にウエハWから部品Cを取り出す領域111を容易に取得することができる。 Also, in the second embodiment, as described above, the control unit 110 is configured to acquire the number of components C to be taken out from the wafer W within a predetermined time interval based on the cycle time of the substrate B, and to acquire the area 111 based on the acquired number of components C. Accordingly, based on the number of components C to be removed from the wafer W within a predetermined time interval, it is possible to easily obtain the area 111 from which the components C are to be removed from the wafer W within the predetermined time interval.
 なお、第2実施形態のその他の効果は、上記第1実施形態と同様である。 Other effects of the second embodiment are the same as those of the first embodiment.
(変形例)
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく請求の範囲によって示され、さらに請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
(Modification)
It should be noted that the embodiments disclosed this time should be considered as examples and not restrictive in all respects. The scope of the present invention is indicated by the scope of the claims rather than the above description of the embodiments, and includes all modifications (modifications) within the scope and meaning equivalent to the scope of the claims.
 たとえば、上記第1および第2実施形態では、ヘッドが、実装ヘッドである例を示したが、本発明はこれに限られない。本発明は、ヘッドが、ウエハの部品を取り出して、取り出した部品を実装ヘッドに受け渡す取り出しヘッドであってもよい。 For example, in the above-described first and second embodiments, the head is a mounting head, but the present invention is not limited to this. In the present invention, the head may be a take-out head that picks up components from a wafer and transfers the picked-up components to a mounting head.
 また、上記第1および第2実施形態では、基板撮像部が第2撮像部として設けられている例を示したが、本発明はこれに限られない。本発明では、基板撮像部以外の撮像部が第2撮像部として設けられていてもよい。 Also, in the above-described first and second embodiments, an example in which the board imaging section is provided as the second imaging section has been shown, but the present invention is not limited to this. In the present invention, an imaging section other than the substrate imaging section may be provided as the second imaging section.
 また、上記第1および第2実施形態では、突き上げ部移動機構(第2移動機構)が、突き上げ部をX方向(第1方向)およびY方向(第2方向)に移動させる例を示したが、本発明はこれに限られない。本発明では、第2移動機構が、突き上げ部を第1方向および第2方向のうちの一方のみに移動させてもよい。 Also, in the first and second embodiments, an example in which the push-up portion moving mechanism (second moving mechanism) moves the push-up portion in the X direction (first direction) and the Y direction (second direction) is shown, but the present invention is not limited to this. In the present invention, the second moving mechanism may move the push-up portion in only one of the first direction and the second direction.
 また、上記第1および第2実施形態では、制御部が、第1熱伸び補正量と、第2熱伸び補正量とを取得する例を示したが、本発明はこれに限られない。本発明では、制御部が、第1熱伸び補正量のみを取得してもよい。 Also, in the first and second embodiments, an example in which the control unit acquires the first thermal expansion correction amount and the second thermal expansion correction amount is shown, but the present invention is not limited to this. In the present invention, the control unit may acquire only the first thermal expansion correction amount.
 また、上記実施形態では、説明の便宜上、制御処理を処理フローに沿って順番に処理を行うフロー駆動型のフローを用いて説明したが、本発明はこれに限られない。本発明では、制御処理を、イベント単位で処理を実行するイベント駆動型(イベントドリブン型)の処理により行ってもよい。この場合、完全なイベント駆動型で行ってもよいし、イベント駆動およびフロー駆動を組み合わせて行ってもよい。 Also, in the above embodiment, for convenience of explanation, a flow-driven flow in which the control processing is performed in order along the processing flow has been described, but the present invention is not limited to this. In the present invention, control processing may be performed by event-driven processing in which processing is executed on an event-by-event basis. In this case, it may be completely event-driven, or a combination of event-driven and flow-driven.
 3 ヘッドユニット
 4 ヘッドユニット移動機構(第3移動機構)
 6 ウエハ撮像部(第1撮像部)
 7 ウエハ撮像部移動機構(第1移動機構)
 8 突き上げ部
 9 突き上げ部移動機構(第2移動機構)
 10、110 制御部
 31 ヘッド
 32 基板撮像部(第2撮像部)
 100、200 部品実装装置
 111 領域
 B 基板
 C 部品
 D1 第1熱伸び補正量
 D2 第2熱伸び補正量
 D3 ずれ量
 P101 領域に対応する位置
 X 方向(第1方向)
 Y 方向(第2方向)
 W ウエハ
3 head unit 4 head unit moving mechanism (third moving mechanism)
6 Wafer imaging unit (first imaging unit)
7 Wafer imaging unit moving mechanism (first moving mechanism)
8 push-up portion 9 push-up portion moving mechanism (second moving mechanism)
10, 110 control section 31 head 32 board imaging section (second imaging section)
100, 200 Component mounting apparatus 111 Area B Board C Component D1 First thermal expansion correction amount D2 Second thermal expansion correction amount D3 Deviation amount P101 Position corresponding to area X direction (first direction)
Y direction (second direction)
W Wafer

Claims (9)

  1.  ダイシングされた状態のウエハから部品を取り出して基板に実装する部品実装装置であって、
     前記ウエハの前記部品を上方から撮像する第1撮像部と、
     前記ウエハの前記部品を下方から突き上げる突き上げ部と、
     前記第1撮像部を移動させる第1移動機構と、
     前記突き上げ部を移動させる第2移動機構と、
     前記第1撮像部により前記突き上げ部を撮像し、前記第1撮像部による前記突き上げ部の撮像結果に基づいて、前記第1移動機構の熱伸びと、前記第2移動機構の熱伸びとを含めた第1熱伸び補正量を取得し、取得した前記第1熱伸び補正量に基づいて、熱伸び補正を行う制御部と、を備える、部品実装装置。
    A component mounting apparatus for taking out components from a diced wafer and mounting them on a substrate,
    a first imaging unit that images the component of the wafer from above;
    a push-up portion pushing up the component of the wafer from below;
    a first moving mechanism for moving the first imaging unit;
    a second moving mechanism for moving the push-up portion;
    a control unit that captures an image of the pushing-up portion by the first imaging unit, acquires a first thermal expansion correction amount including the thermal expansion of the first moving mechanism and the thermal expansion of the second moving mechanism based on the imaging result of the pushing-up portion by the first imaging unit, and performs thermal expansion correction based on the acquired first thermal expansion correction amount.
  2.  前記制御部は、前記第1熱伸び補正量に基づいて、前記第1撮像部による前記部品の撮像位置を取得し、取得した前記撮像位置に移動させた状態で前記第1撮像部により前記部品を撮像し、前記第1撮像部による前記部品の撮像結果に基づいて、前記第2移動機構の熱伸びを含む前記突き上げ部の位置から、前記部品の位置までのずれ量を取得し、前記ずれ量に基づいて、前記突き上げ部による前記部品の突き上げ位置を取得するように構成されている、請求項1に記載の部品実装装置。 The control unit acquires the imaging position of the component by the first imaging unit based on the first thermal expansion correction amount, captures the component by the first imaging unit while the component is moved to the acquired imaging position, acquires the displacement amount from the position of the push-up unit including the thermal expansion of the second moving mechanism to the position of the component based on the imaging result of the component by the first imaging unit, and obtains the push-up position of the component by the push-up unit based on the displacement amount. 2. The component mounting apparatus according to claim 1, configured as follows.
  3.  前記ウエハの前記部品を上方から取り出すヘッドを含むヘッドユニットと、
     前記ヘッドユニットに設けられた第2撮像部と、
     前記ヘッドユニットを移動させる第3移動機構と、をさらに備え、
     前記制御部は、前記第2撮像部により前記突き上げ部を撮像し、前記第2撮像部による前記突き上げ部の撮像結果に基づいて、前記第3移動機構の熱伸びと、前記第2移動機構の熱伸びとを含めた第2熱伸び補正量を取得し、前記第1熱伸び補正量と前記第2熱伸び補正量とに基づいて、熱伸び補正を行うように構成されている、請求項1または2に記載の部品実装装置。
    a head unit including a head for taking out the components of the wafer from above;
    a second imaging section provided in the head unit;
    a third moving mechanism for moving the head unit,
    3. The component mounting apparatus according to claim 1 or 2, wherein the control unit is configured to capture an image of the push-up portion by the second imaging unit, acquire a second thermal expansion correction amount including the thermal expansion of the third moving mechanism and the thermal expansion of the second moving mechanism based on the imaging result of the push-up portion by the second imaging unit, and perform thermal expansion correction based on the first thermal expansion correction amount and the second thermal expansion correction amount.
  4.  前記制御部は、前記第1熱伸び補正量に基づいて、前記第1撮像部による前記部品の撮像位置を取得し、取得した前記撮像位置に移動させた状態で前記第1撮像部により前記部品を撮像し、前記第1撮像部による前記部品の撮像結果に基づいて、前記第2移動機構の熱伸びを含む前記突き上げ部の位置から、前記部品の位置までのずれ量を取得し、前記ずれ量に基づいて、前記突き上げ部による前記部品の突き上げ位置を取得し、前記ずれ量と前記第2熱伸び補正量とに基づいて、前記ヘッドによる前記部品の取り出し位置を取得するように構成されている、請求項3に記載の部品実装装置。 The control unit acquires the imaging position of the component by the first imaging unit based on the first correction amount of thermal expansion, captures the component by the first imaging unit while being moved to the acquired imaging position, acquires the amount of deviation from the position of the push-up unit including the thermal elongation of the second moving mechanism to the position of the component based on the imaging result of the component by the first imaging unit, and acquires the position of the component pushed up by the thrust-up unit based on the amount of deviation. 4. The component mounting apparatus according to claim 3, wherein the picking position of the component by the head is obtained based on the deviation amount and the second thermal expansion correction amount.
  5.  前記第1移動機構は、水平面内で互いに略直交する第1方向と第2方向とに、前記第1撮像部を移動させるように構成されており、
     前記第2移動機構は、前記第1方向と前記第2方向とに、前記突き上げ部を移動させるように構成されており、
     前記第3移動機構は、前記第1方向と前記第2方向とに、前記ヘッドユニットを移動させるように構成されている、請求項3または4に記載の部品実装装置。
    The first moving mechanism is configured to move the first imaging unit in a first direction and a second direction that are substantially perpendicular to each other in a horizontal plane,
    The second moving mechanism is configured to move the push-up portion in the first direction and the second direction,
    5. The component mounting apparatus according to claim 3, wherein said third moving mechanism is configured to move said head unit in said first direction and said second direction.
  6.  前記制御部は、前記第1撮像部と前記突き上げ部とを同一の第1目標位置に移動させた状態で、前記第1撮像部により前記突き上げ部を撮像するとともに、前記第2撮像部と前記突き上げ部とを前記第1目標位置と同一の第2目標位置に移動させた状態で、前記第2撮像部により前記突き上げ部を撮像するように構成されている、請求項3~5のいずれか1項に記載の部品実装装置。 The component mounting apparatus according to any one of claims 3 to 5, wherein the control section is configured to image the push-up section with the first imaging section in a state in which the first imaging section and the push-up section are moved to the same first target position, and to image the push-up section with the second imaging section in a state in which the second imaging section and the thrust-up section are moved to the same second target position as the first target position.
  7.  前記制御部は、熱伸び補正を所定の時間間隔で更新するように構成されており、
     前記制御部は、前記所定の時間間隔内に前記ウエハから前記部品を取り出す領域を取得し、取得した前記領域に対応する位置で、前記第1撮像部により前記突き上げ部を撮像し、熱伸び補正を更新するように構成されている、請求項1~6のいずれか1項に記載の部品実装装置。
    The control unit is configured to update the thermal elongation correction at predetermined time intervals,
    The component mounting apparatus according to any one of claims 1 to 6, wherein the control unit acquires an area from which the component is to be removed from the wafer within the predetermined time interval, captures an image of the push-up unit with the first imaging unit at a position corresponding to the acquired area, and updates thermal expansion correction.
  8.  前記制御部は、前記基板のサイクルタイムに基づいて、前記所定の時間間隔内に前記ウエハから取り出す前記部品の数を取得し、取得した前記部品の数に基づいて、前記領域を取得するように構成されている、請求項7に記載の部品実装装置。 The component mounting apparatus according to claim 7, wherein the control unit acquires the number of the components to be taken out from the wafer within the predetermined time interval based on the cycle time of the substrate, and acquires the area based on the acquired number of the components.
  9.  前記突き上げ部は、撮像部を有しないように構成されている、請求項1~8のいずれか1項に記載の部品実装装置。 The component mounting apparatus according to any one of claims 1 to 8, wherein the push-up section is configured so as not to have an imaging section.
PCT/JP2022/002070 2022-01-20 2022-01-20 Component mounting device WO2023139735A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/002070 WO2023139735A1 (en) 2022-01-20 2022-01-20 Component mounting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/002070 WO2023139735A1 (en) 2022-01-20 2022-01-20 Component mounting device

Publications (1)

Publication Number Publication Date
WO2023139735A1 true WO2023139735A1 (en) 2023-07-27

Family

ID=87348367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002070 WO2023139735A1 (en) 2022-01-20 2022-01-20 Component mounting device

Country Status (1)

Country Link
WO (1) WO2023139735A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001627A1 (en) * 2007-06-28 2008-12-31 Yamaha Motor Co., Ltd. Component placing apparatus
JP2017017350A (en) * 2016-10-11 2017-01-19 ヤマハ発動機株式会社 Component mounting apparatus
JP2020174136A (en) * 2019-04-11 2020-10-22 ヤマハ発動機株式会社 Substrate work device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001627A1 (en) * 2007-06-28 2008-12-31 Yamaha Motor Co., Ltd. Component placing apparatus
JP2017017350A (en) * 2016-10-11 2017-01-19 ヤマハ発動機株式会社 Component mounting apparatus
JP2020174136A (en) * 2019-04-11 2020-10-22 ヤマハ発動機株式会社 Substrate work device

Similar Documents

Publication Publication Date Title
JP5059518B2 (en) Electronic component mounting method and apparatus
KR20190013670A (en) Electronic component mounting device and mounting method, and method for manufacturing package component
JP2007305775A (en) Component mounting method, component mounting device and component mounting system
JP2016219474A (en) Component extracting device, component extracting method and component mounting device
JP3744251B2 (en) Electronic component mounting method
JP4824641B2 (en) Parts transfer device
JP4855347B2 (en) Parts transfer device
EP2059112B1 (en) Electronic component taking out apparatus, surface mounting apparatus and method for taking out electronic component
KR101960693B1 (en) Component loading method and component mounting apparatus
JP2016219472A (en) Component extracting device, component extracting method and component mounting device
JP2009016673A5 (en)
JP5892735B2 (en) Push pin position correction method
WO2023139735A1 (en) Component mounting device
JP2018041802A (en) Mounting method and mounting apparatus for electronic component
JP3709800B2 (en) Mounting machine and component mounting method
JP2017183378A (en) Electronic component implementation apparatus
JP2009212251A (en) Component transfer equipment
JP4810586B2 (en) Mounting machine
JP5254875B2 (en) Mounting machine
JP2003318599A (en) Method and system for mounting component
JP2007287838A (en) Parts transfer device, mounting machine, and parts transfer device for parts inspection machine
JP2016219473A (en) Component extracting device, component extracting method and component mounting device
JP3531588B2 (en) Electronic component mounting apparatus and mounting method
JP6086671B2 (en) Die component supply device
JP5181383B2 (en) Bonding equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921002

Country of ref document: EP

Kind code of ref document: A1