WO2023138069A1 - 一种壳寡糖螯合亚铁制备方法及装置 - Google Patents

一种壳寡糖螯合亚铁制备方法及装置 Download PDF

Info

Publication number
WO2023138069A1
WO2023138069A1 PCT/CN2022/117954 CN2022117954W WO2023138069A1 WO 2023138069 A1 WO2023138069 A1 WO 2023138069A1 CN 2022117954 W CN2022117954 W CN 2022117954W WO 2023138069 A1 WO2023138069 A1 WO 2023138069A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixing tube
mixing
overflow
stage
level
Prior art date
Application number
PCT/CN2022/117954
Other languages
English (en)
French (fr)
Inventor
邓志刚
蔡春林
冯一凡
王佳亮
Original Assignee
湖南德邦生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南德邦生物科技有限公司 filed Critical 湖南德邦生物科技有限公司
Publication of WO2023138069A1 publication Critical patent/WO2023138069A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • B01J4/007Feed or outlet devices as such, e.g. feeding tubes provided with moving parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/008Feed or outlet control devices
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H3/00Compounds containing only hydrogen atoms and saccharide radicals having only carbon, hydrogen, and oxygen atoms
    • C07H3/06Oligosaccharides, i.e. having three to five saccharide radicals attached to each other by glycosidic linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2204/00Aspects relating to feed or outlet devices; Regulating devices for feed or outlet devices
    • B01J2204/002Aspects relating to feed or outlet devices; Regulating devices for feed or outlet devices the feeding side being of particular interest
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00004Scale aspects
    • B01J2219/00006Large-scale industrial plants

Definitions

  • the invention relates to the field of chitosan oligosaccharide chelation, in particular to a method and device for preparing chitosan oligosaccharide chelated ferrous iron.
  • the existing mixing equipment cannot continuously provide a mixed solution that is uniformly mixed and has a good pH value.
  • the object of the present invention is to provide a preparation device for oligochitosan chelated ferrous iron, comprising a primary mixing tube, a secondary mixing tube and a mixing tank arranged successively from top to bottom, and the mixing tank is also connected with a suction filter;
  • the first-stage mixing tube is connected to a water inlet pipe through a flow switch, and the upper part of the first-stage mixing tube is also provided with a drop-in box for quantitative delivery.
  • the first-stage mixing tube is provided with a plurality of stirring structures for mixing the feed with water, and the other end of the first-stage mixing tube is connected to the side wall of the second-stage mixing tube;
  • the secondary mixing tube is provided with a plurality of primary mixing tubes, the primary mixing tube is symmetrically arranged on both sides of the secondary mixing tube, the side wall of the secondary mixing tube is provided with a plurality of first mixing plates inclined upwards, between the first mixing plates is a second mixing plate arranged parallel to the first mixing plate, there is a gap between the first mixing plate, the second mixing plate and the side wall, and a plurality of one-way valves for air intake are provided at the bottom of the secondary mixing tube;
  • the upper part of the mixing tank is provided with a plurality of secondary mixing pipes and a pH adjustment box.
  • a first piston block capable of reciprocating movement is slidably connected in the mixing tank.
  • a pH sensor is provided in the mixing tank. Both ends of the mixing tank are connected to the liquid inlet of the suction filtration device through a liquid outlet pipe.
  • the mixing tank is divided into a first end and a second end by the centerline, the first end is provided with a first-level mixing pipe and a first pH adjustment box, the second end is provided with a second-level mixing tube and a second pH adjustment box, the first end of the mixing tank is provided with a first pH value sensor, the second end of the mixing tank is provided with a second pH value sensor, the two ends of the mixing tank are fixed with a first sealing cover and a second sealing cover, a first proximity switch is provided on the first sealing cover, and a second proximity switch is provided at the second sealing cover.
  • a first-stage mixing pipe and a second-stage mixing pipe are respectively connected to both sides of the first-stage and two-stage mixing pipes, and a third-stage mixing pipe and a fourth-stage mixing pipe are respectively connected to both sides of the second-stage mixing pipe.
  • the stirring structure includes a symmetrically arranged fixed rod
  • the fixed rod includes a vertical section located in the middle, an inclined section connected to both ends of the vertical section, the inclined direction of the inclined section faces the secondary mixing tube
  • the fixed rod is connected to the first gear, the second gear, the third gear and the fourth gear which are meshed in turn through the bearing rotation from top to bottom
  • the first gear, the second gear, the third gear and the fourth gear are respectively fixed with the first stirring paddle, the second stirring paddle, the third stirring paddle and the fourth stirring paddle, the structure height of the first overflow port and the second overflow port It is located between the central axis of the first stirring paddle and the upper edge of the second stirring paddle.
  • the structure of the first overflow port and the second overflow port structure are the same, and both include a first limit bar and a second limit bar fixed on the side wall of the primary mixing tube.
  • An overflow plate is provided between the first limit bar and the second limit bar.
  • a third proximity switch is provided directly above the overflow plate.
  • a rectangular cavity is provided inside the overflow plate.
  • a second piston block is arranged in the cavity. The wall is fixedly connected, the suction pipe of the first overflow structure is connected to the suction port on the top of the second end through a hose, the suction pipe of the second overflow structure is connected to the suction port on the top of the first end through a hose, and a one-way valve is connected to the suction port.
  • the first sealing cover plate is connected with a first negative pressure port
  • the second sealing cover plate is connected with a second negative pressure port
  • the first negative pressure port and the second negative pressure port are connected with a one-way valve
  • the first negative pressure port communicates with the top of the first-stage mixing tube through a pipeline
  • the second negative-pressure port communicates with the top of the second-stage mixing tube.
  • the secondary mixing tubes are arranged symmetrically on both sides of the center line of the mixing pool, and there is a distance between the secondary mixing tubes and the center line; the length of the first piston block is longer than the distance from the first sealing cover plate to the first secondary mixing tube, and shorter than the distance from the first sealing cover plate to the second secondary mixing tube, and the length of the first piston block is longer than the distance between the first secondary mixing tube and the second secondary mixing tube.
  • the first sealing cover plate and the second sealing cover plate are rotatably connected to a screw through a bearing, the end of the screw is fixedly connected to the output shaft of the motor, and the first piston block is provided with a threaded hole adapted to the screw, and the threaded hole is threaded to the screw.
  • the suction filtration device includes a support, the upper part of the support is fixed to the organism, the side wall of the body is provided with a water bath heating layer, the upper part of the body is fixed with a frame body, the frame body is provided with a telescopic rod, the end of the telescopic rod extends into the inner cavity of the body and is fixedly connected with the filter plate, the filter plate is adapted to the inner cavity, a suction filter port is provided at the bottom of the body, and a suction filter pump is connected to the suction filter port.
  • the method for preparing chitooligosaccharide chelated ferrous iron is:
  • the motor rotates in reverse, the first piston block moves to the second sealing cover plate, the first negative pressure port extracts the gas at the top of the first and second mixing tubes through the pipeline, and the air passes through the one-way valve into the first and second mixing tubes.
  • the air suction port at the first end pumps air into the rectangular cavity of the second overflow port structure, so that the overflow plate of the second overflow port structure rises, thereby touching the third proximity switch, and the second pH value sensor performs a delay measurement.
  • the remaining solution that has been mixed in the third level mixing tube and the fourth level mixing tube flows into the second end through the second level mixing tube.
  • the first piston block continues to move until the lower part of the first and second mixing tubes communicates with the first end, the mixed solution in the first and second mixing tubes continues to flow into the first end, the negative pressure state at the first end is released, and the overflow plate of the second overflow port structure falls under its own gravity.
  • the first piston block moves to the second sealing cover plate, triggers the second proximity switch, the second flow switch is opened, the first flow switch is closed, the third stage mixing tube is passed into water and chitosan oligosaccharide, the fourth stage mixing pipe is passed into water and ferrous sulfate, through the stirring effect of the stirring structure, the third stage mixing pipe forms an equal volume aqueous solution with a mass concentration ratio of 2:1, and the fourth stage mixing pipe forms an equal volume ferrous sulfate solution with a mass concentration ratio of 2:1,
  • the air extraction port at the second end pumps air into the rectangular cavity of the first overflow port structure, so that the overflow plate of the first overflow port structure rises, thereby touching the third proximity switch, and the first pH value sensor performs a delay measurement.
  • the remaining solution that has been mixed in the first level mixing tube and the second level mixing tube flows into the first end through the first and second level mixing tubes.
  • the pH value is adjusted through the first pH adjustment box.
  • the first piston block continues to move until the lower part of the second-stage mixing tube communicates with the second end, the mixed solution in the second-stage mixing tube continues to flow into the second end, the negative pressure state of the second end is released, and the overflow plate of the first overflow port structure falls under its own gravity.
  • Steps S1-S11 are repeated, so as to continuously provide the mixed solution for the suction filtration device.
  • the present invention has the following beneficial effects:
  • the third-level mixing tube and the fourth-level mixing tube are relatively arranged, so that the chitosan oligosaccharide aqueous solution and the ferrous sulfate solution are mixed more fully, and the liquid level in the first-level mixing tube, the second-level mixing tube, the third-level mixing tube, and the fourth-level mixing tube can be controlled by setting the overflow port;
  • the overflow port By setting the overflow port to control the liquid level in the first mixing tube, the second mixing tube, the third mixing tube and the fourth mixing tube, so that the liquid level is between the central axis of the first stirring paddle and the upper edge of the second stirring paddle.
  • the material is pressed into the water body, the fourth stirring paddle can stir up the material falling on the bottom of the liquid surface, and the first stirring paddle and the second stirring paddle tilt downward to guide the water flow to the middle, and the third stirring paddle and the fourth stirring paddle tilt upward to guide the water flow to the middle, so that the middle will generate a torrent, thereby further improving the mixing effect;
  • the negative pressure state at the second end is released, and the overflow plate of the first overflow port structure falls under its own gravity, so that the automatic control of the overflow structure can be completed, and the overflow can be formed while avoiding the residual mixed liquid in the primary mixing tube;
  • the first piston block moves to the second sealing cover plate, the first negative pressure port extracts the gas at the top of the first and second stage mixing tube through the pipeline, and the air passes into the first and second stage mixing tube through the one-way valve.
  • Fig. 1 is the overall structure diagram of the present invention.
  • FIG. 1 is an overall structural diagram of the stirring structure.
  • Fig. 3 is an analysis diagram of the water flow movement of the stirring structure.
  • Fig. 4 is an internal structural diagram of the overflow structure.
  • Figure 5 is a cross-sectional view of the internal structure of the secondary mixing tube.
  • Fig. 6 is an analysis diagram of water flow movement inside the secondary mixing tube.
  • connection and “connected” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary.
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary.
  • a kind of chitosan oligosaccharide chelated ferrous preparation device comprises the primary mixing tube, secondary mixing tube and mixing pool that are arranged successively from top to bottom, and described mixing pool is also connected with suction filtration device;
  • the first-stage mixing tube is connected to a water inlet pipe through a flow switch 7, and the top of the first-stage mixing tube is also provided with a drop box for quantitative delivery.
  • the first-stage mixing tube is provided with a plurality of stirring structures for mixing the feed with water, and the other end of the first-stage mixing tube is connected to the side wall of the second-stage mixing tube;
  • the secondary mixing tube is provided with a plurality of primary mixing tubes, the primary mixing tube is symmetrically arranged on both sides of the secondary mixing tube, and the side wall of the secondary mixing tube is provided with a plurality of first mixing plates 36 inclined upwards, between the first mixing plates 36 is provided with a second mixing plate 37 parallel to the first mixing plate 36, there is a gap between the first mixing plate 36, the second mixing plate 37 and the side wall, and the bottom of the secondary mixing tube is provided with a plurality of one-way valves for air intake;
  • the upper part of the mixing tank is provided with a plurality of secondary mixing tubes and a pH adjustment box.
  • the first piston block 6 capable of reciprocating movement is slidably connected in the mixing tank.
  • a pH sensor is provided in the mixing tank.
  • the mixed solution adjusted by the pH value is pressed into the suction filtration device for chelation and suction filtration, thereby preparing chitosan oligosaccharide chelated ferrous iron, which is fully mixed through multi-stage mixing, and can automatically mix the solution in proportion, can automatically adjust the pH value, and can continuously provide the suction filtration device with a mixed solution that completes the mixing and pH value adjustment;
  • the mixing pool is divided into a first end 5 and a second end 38 by the midline, the first end 5 is provided with a first secondary mixing tube 21, a first pH adjustment box 23, and the second end 38 is provided with a second secondary mixing tube 18, a second pH adjustment box 14, the first end 5 in the mixing pool is provided with a first pH sensor, the second end 38 in the mixing pool is provided with a second pH sensor, the first sealing cover 4 and the second sealing cover 13 are fixed at both ends of the mixing pool, the first sealing cover 4 is provided with a first proximity switch, and the second sealing cover The 13th place is provided with the second proximity switch.
  • the two sides of the first and second mixing tubes 21 are respectively connected with the first level mixing tube 22 and the second level mixing tube 20.
  • the two sides of the second level mixing tube 18 are respectively connected with the third level mixing tube 15 and the fourth level mixing tube 19.
  • the ends of the first level mixing tube 22 and the second level mixing tube 20 are provided with a first overflow port structure.
  • the mixing tube 19 is relatively arranged, so that the chitosan oligosaccharide aqueous solution and the ferrous sulfate solution are mixed more fully, and the liquid level height in the first-level mixing tube 22, the second-level mixing tube 20, the third-level mixing tube 15, and the fourth-level mixing tube 19 can be controlled by setting the overflow port.
  • Described stirring structure comprises the fixed rod 27 that symmetrically arranges, and described fixed rod 27 comprises the vertical section that is positioned at the middle, has been connected with the inclined section of vertical section two ends, and the inclination direction of described inclined section is toward secondary mixing pipe, and described fixed rod 27 is connected with the first gear 28, the second gear 29, the third gear 30 and the fourth gear 31 that mesh successively through bearing rotation from top to bottom, and described first gear 28, second gear 29, third gear 30 and the fourth gear 31 are respectively fixed with first stirring paddle 32, the second stirring paddle 33 , the third stirring paddle 34 and the fourth stirring paddle 35, the structure height of the first overflow port and the second overflow port are located between the central axis of the first stirring paddle 32 and the upper edge of the second stirring paddle 33, by setting the overflow port to control the liquid level height in the first primary mixing tube 22, the second primary mixing tube 20, the third primary mixing tube 15, and the fourth primary mixing tube 19, so that the liquid level height is between the central axis of the first stirring paddle 32 and the upper edge of the second stirring paddle 33.
  • the stirring paddle 33 rotates clockwise, because the first gear 28, the second gear 29, the third gear 30 and the fourth gear 31 mesh successively, the third stirring paddle 34 rotates counterclockwise, and the fourth stirring paddle 35 rotates clockwise.
  • the first stirring paddle 32 rotates counterclockwise, the material floating on the liquid surface can be pressed into the water body.
  • the paddle 35 is inclined upward to guide the water flow to the middle, so that the middle produces a torrent, thereby further improving the mixing effect.
  • the structure of the first overflow port and the second overflow port structure are the same, and both include a first limiting bar 25 and a second limiting bar 26 fixed on the side wall of the primary mixing tube.
  • An overflow plate is provided between the first limiting bar 25 and the second limiting bar 26.
  • a third proximity switch is provided directly above the overflow plate.
  • a rectangular cavity is provided inside the overflow plate.
  • a second piston block 24 is arranged in the cavity.
  • An air extraction pipe 17 is fixed on the second piston block 24. At the top of the mixing tube, the suction pipe 17 is fixedly connected to the primary mixing pipe wall 16.
  • the suction pipe 17 of the first overflow structure is connected to the suction port 2 on the top of the second end 38 through a hose
  • the suction pipe 17 of the second overflow structure is connected to the suction port 2 on the top of the first end 5 through a hose.
  • the suction ports 2 are connected with check valves.
  • the motor 1 drives the first piston block 6 to move to the second end 38, so that the first end 5 forms a negative pressure, and the suction port 2 of the first end 5 is connected to the second overflow port.
  • the rectangular cavity of the structure is pumped, so that the overflow plate of the second overflow port structure rises, and the remaining solution that has been mixed in the third primary mixing tube 15 and the fourth primary mixing tube 19 flows into the second end 38 through the second secondary mixing tube 18.
  • the mixed solution in the first secondary mixing tube 21 continues to flow into the first end 5, and the negative pressure state of the first end 5 is released.
  • the overflow plate of the second overflow port structure falls under its own gravity; the first piston block 6 moves to the second sealing cover After the plate 13, the motor 1 drives the first piston block 6 to move to the first end 5, so that the second end 38 forms a negative pressure, and the air suction port 2 of the second end 38 pumps air to the rectangular cavity of the first overflow structure, so that the overflow plate of the first overflow structure rises, and the remaining solution that has been mixed in the first and second mixing tubes 20 flows into the first end 5 through the first and second mixing tubes 21.
  • the mixed solution inside continues to flow into the second end 38, the negative pressure state of the second end 38 is released, and the overflow plate of the first overflow structure falls under its own gravity, so that the automatic control of the overflow structure can be completed, and the overflow can be formed while avoiding residual mixed liquid in the primary mixing tube.
  • the first sealing cover plate 4 is connected with a first negative pressure port 3, the second sealing cover plate 13 is connected with a second negative pressure port, the first negative pressure port 3 and the second negative pressure port are connected with a check valve, the first negative pressure port 3 communicates with the top of the first secondary mixing tube 21 through a pipeline, the second negative pressure port communicates with the top of the second secondary mixing tube 18, the first piston block 6 moves to the second sealing cover plate 13, the first negative pressure port 3 extracts the gas at the top of the first secondary mixing tube 21 through the pipeline, and the air enters the first secondary mixing tube 21 through the pipeline.
  • the air enters the first secondary mixing tube 21 and forms bubbles to move upwards, thereby further improving the mixing effect
  • the first piston block 6 moves to the first sealing cover plate 4
  • the second negative pressure port extracts the gas at the top of the second secondary mixing tube 18 through the pipeline, and the air passes into the second secondary mixing tube 18 from the check valve, and now there are mixed chitosan oligosaccharides and ferrous sulfate solution in the second secondary mixing tube 18, after the air enters the second secondary mixing tube 18
  • the formation of air bubbles moves upwards, further enhancing the mixing effect.
  • the two-stage mixing tube is arranged symmetrically on both sides of the center line of the mixing tank, and the two-stage mixing tube and the center line leave a distance; the length of the first piston block 6 is longer than the distance between the first sealing cover plate 4 and the first two-stage mixing tube 21, and shorter than the distance between the first sealing cover plate 4 and the second two-stage mixing tube 18, and the length of the first piston block 6 is longer than the distance between the first two-stage mixing tube 21 and the second two-stage mixing tube 18.
  • the first sealing cover plate 4 and the second sealing cover plate 13 are connected to screw rods through bearing rotation, the end of the screw rods is fixedly connected to the output shaft of the motor 1, the first piston block 6 is provided with a threaded hole adapted to the screw rod, and the threaded hole is threadedly connected to the screw rod.
  • Described suction filtration device comprises support 8, and described support 8 top is fixed organic body, and described body side wall is provided with water bath heating layer, and described body top is fixed with frame body 12, and described frame body 12 is provided with telescopic rod 11, and the end of described telescopic rod 11 stretches into body cavity and is fixedly connected with filter plate 10, and described filter plate 10 is adapted with inner cavity, and described body bottom is provided with suction filter port, and described suction filter port is connected with suction filter pump 9.
  • the method for preparing chitosan oligosaccharide chelated ferrous iron is:
  • S1 the first-level mixing tube 22, the second-level mixing tube 20, and the throwing boxes of the third-level mixing tube 15 and the fourth-level mixing tube 19 are respectively filled with chitosan oligosaccharide and ferrous sulfate;
  • the motor 1 rotates in the opposite direction, the first piston block 6 moves to the second sealing cover plate 13, the first negative pressure port 3 extracts the gas at the top of the first and second stage mixing pipe 21 through the pipeline, and the air passes into the first and second stage mixing pipe 21 through the one-way valve.
  • the suction port 2 of the first end 5 pumps air to the rectangular cavity of the second overflow structure, so that the overflow plate of the second overflow structure rises, thereby touching the third proximity switch, and the second pH value sensor performs a delay measurement.
  • the remaining solution that has been mixed in the third level mixing tube 15 and the fourth level mixing tube 19 flows into the second end 38 through the second level mixing tube 18.
  • the pH value is adjusted through the second pH adjustment box 14.
  • the first piston block 6 continues to move until the lower part of the first and second mixing tubes 21 communicates with the first end 5, the mixed solution in the first and second mixing tubes 21 continues to flow into the first end 5, the negative pressure state of the first end 5 is released, and the overflow plate of the second overflow port structure falls under the action of its own gravity.
  • the first piston block 6 moves to the second sealing cover plate 13, triggering the second proximity switch, the second flow switch 7 is opened, the first flow switch 7 is closed, the third stage mixing tube 15 is passed into water and chitosan oligosaccharide, the fourth stage mixing pipe 19 is passed into water and ferrous sulfate, through the stirring action of the stirring structure, the third stage mixing pipe 15 forms an equal volume aqueous solution with a mass concentration ratio of 2: 1, and the fourth stage mixing pipe 19 forms an equal volume ferrous sulfate solution with a mass concentration ratio of 2: 1,
  • the suction port 2 of the second end 38 pumps air to the rectangular cavity of the first overflow structure, so that the overflow plate of the first overflow structure rises, thereby touching the third proximity switch, and the first pH value sensor performs a delay measurement.
  • the remaining solution that has been mixed in the first-level mixing tube 22 and the second-level mixing tube 20 flows into the first end 5 through the first and second-level mixing tube 21.
  • the pH value is adjusted through the first pH adjustment box 23.
  • the first piston block 6 continues to move until the lower part of the second-stage mixing tube 18 communicates with the second end 38, the mixed solution in the second-stage mixing tube 18 continues to flow into the second end 38, the negative pressure state of the second end 38 is released, and the overflow plate of the first overflow port structure falls under its own gravity.
  • Steps S1-S11 are repeated, so as to continuously provide the mixed solution for the suction filtration device.
  • oligochitosan and ferrous sulfate are respectively loaded into the throwing boxes of the first-stage mixing tube 22, the second-stage mixing tube 20, the third-stage mixing tube 15, and the fourth-stage mixing tube 19, and quantitative delivery of the chitosan oligosaccharide and ferrous sulfate can be carried out through the quantitative delivery box, and the ends of the first-stage mixing tube 22, the second-stage mixing tube 20, the third-stage mixing tube 15, and the fourth-stage mixing tube 19 are connected with flow switches 7, so that the first-stage mixing tube 22 and the second-stage mixing tube 2 can be controlled. 0.
  • the first-level mixing tube 22 will be fed with water and chitosan oligosaccharides, and the second-level mixing tube 20 will be filled with water and ferrous sulfate.
  • the mass concentration ratio is 2: 1 equal-volume ferrous sulfate solution, the solution higher than the overflow in the first-level mixing tube 22 and the second-level mixing tube 20 enters the first-level mixing tube 21, because the first-level mixing tube 21 is provided with a first mixing plate 36 and a second mixing plate 37, so that the solutions on both sides are sputtered and mixed with each other;
  • the motor 1 When the first proximity switch is triggered, the motor 1 will be driven to rotate in reverse, the first piston block 6 will move towards the second sealing cover plate 13, the first negative pressure port 3 will extract the gas from the top of the first and second stage mixing tube 21 through the pipeline, and the air will pass into the first and second stage mixing tube 21 through the check valve, thereby forming floating air bubbles in the first and second stage mixing tube 21, thereby further mixing.
  • the suction port 2 of the first end 5 pumps air into the rectangular cavity of the second overflow port structure, so that the overflow plate of the second overflow port structure rises, thereby touching the third proximity switch.
  • the second pH sensor is controlled to perform a delay measurement. The time is set to be sufficient.
  • the first piston block 6 continues to move until the lower part of the first and second mixing tubes 21 communicates with the first end 5, the mixed solution in the first and second mixing tubes 21 continues to flow into the first end 5, the negative pressure state of the first end 5 is released, and the overflow plate of the second overflow port structure falls under its own gravity.
  • the first piston block 6 moves to the second sealing cover plate 13 to trigger the second proximity switch.
  • the second flow switch 7 will be opened, and the first flow switch 7 will be closed.
  • the third level mixing tube 15 is passed into water and chitosan oligosaccharide
  • the fourth level mixing tube 19 is passed into water and ferrous sulfate.
  • the third level mixing tube 15 forms an equal-volume aqueous solution with a mass concentration ratio of 2: 1.
  • the fourth level mixing tube 19 forms an equal-volume ferrous sulfate solution with a mass concentration ratio of 2: 1.
  • the motor 1 When the second proximity switch is triggered, the motor 1 will be driven to rotate in the opposite direction again, the first piston block 6 will move towards the first sealing cover plate 4, the second negative pressure port will extract the gas at the top of the second and second stage mixing pipe 18 through the pipeline, and the air will pass through the check valve into the first and second stage mixing pipe 21.
  • the suction port 2 of the second end 38 pumps air into the rectangular cavity of the first overflow port structure, so that the overflow plate of the first overflow port structure rises, thereby touching the third proximity switch. After touching the third proximity switch, the first pH value sensor will be delayed. The remaining solution that has been mixed in the first-stage mixing tube 22 and the second-stage mixing tube 20 flows into the first end 5 through the first and second-stage mixing tube 21.
  • the first piston block 6 continues to move until the lower part of the second-stage mixing tube 18 communicates with the second end 38, the mixed solution in the second-stage mixing tube 18 continues to flow into the second end 38, the negative pressure state of the second end 38 is released, and the overflow plate of the first overflow port structure falls under its own gravity.
  • the mixed and pH-adjusted solution in the first end 5 is pressed into the suction filter device through the pipeline.
  • the solution that has completed the mixing and pH adjustment in the mixing tank is continuously pumped into the suction filtration device, and the suction filtration device is used to heat the mixed solution, so that the mixed solution produces a chelation reaction.
  • the solution that has completed the chelation is suction filtered, and the precipitate obtained by the suction filtration is vacuum-dried, and the obtained powder is chitosan oligosaccharide chelated ferrous iron.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Accessories For Mixers (AREA)

Abstract

本发明提供一种壳寡糖螯合亚铁制备装置,包括从上向下依次设置的一级混合管、二级混合管以及混合池,所述混合池还连接有抽滤装置;所述一级混合管一端通过流量开关连接有进水管,所述一级混合管上部还设有用于定量投放的投放箱,所述一级混合管内设有多个用于将投放物与水混合的搅拌结构,所述一级混合管另一端与二级混合管侧壁连接;所述二级混合管上布设有多个一级混合管,所述一级混合管对称设于二级混合管两侧,所述二级混合管靠一级混合管的侧壁上设有多个倾斜向上设置的第一混合板,通过一级混合管、二级混合管、搅拌结构以及混合池结构能够显著提高混合效果,自动连续的为抽滤装置提供混合好以及调节了PH值的混合溶液。

Description

一种壳寡糖螯合亚铁制备方法及装置 技术领域
本发明涉及壳寡糖螯合领域,尤其涉及一种壳寡糖螯合亚铁制备方法及装置。
背景技术
壳寡糖螯合亚铁制备过程中需要分别获得壳寡糖水溶液以及硫酸亚铁溶液,粉末物料与水混合时,由于水的张力作用容易使得粉末物料漂浮于水面上,传统的制备方式是通过人工搅拌混合,或者搅拌设备进行混合,通过人工搅拌混合时,因为人力差别会存在差别,且制备时间长,通过搅拌设备进行混合时,搅拌轴转动过程中会推动水面,从而使得漂浮于水面上的粉末物体推远,想要完全混合同样需要长时间的搅拌,混合效率低下,且混合效果差;
现有的混合设备不能进行连续不断的提供混合均匀已经调配好PH值的混合溶液。
发明内容
鉴于所述,本发明的目的在于提供一种壳寡糖螯合亚铁制备装置,包括从上向下依次设置的一级混合管、二级混合管以及混合池,所述混合池还连接有抽滤装置;
所述一级混合管一端通过流量开关连接有进水管,所述一级混合管上部还设有用于定量投放的投放箱,所述一级混合管内设有多个用于将投放物与水混合的搅拌结构,所述一级混合管另一端与二级混合管侧壁连接;
所述二级混合管上布设有多个一级混合管,所述一级混合管对称设于二级混合管两侧,所述二级混合管靠一级混合管的侧壁上设有多个倾斜向上设置的第一混合板,所述第一混合板之间设有与第一混合板平行设置的第二混合板,所述第一混合板、所述第二混合板与侧壁留有间隙,所述二级混合管底部设有多个用于进气的单向阀;
所述混合池上部设有多个二级混合管、PH调节箱,所述混合池内滑动连接有能够往复移动的第一活塞块,所述混合池内设有PH值感应器,所述混合池两端通过出液管与抽滤装置的进液口连接。
作为上述方案的进一步改进:
优选地,所述混合池由中线分为第一端和第二端,所述第一端设有第一二级混合管、第一PH调节箱,所述第二端设有第二二级混合管、第二PH调节箱,所述混合池内第一端设有第一PH值感应器,所述混合池内第二端设有第二PH值感应器,所述混合池两端固定有第一密封盖板和第二密封盖板,所述第一密封盖板上设有第一接近开关,所述第二密封盖板处设有第二接近开关。
优选地,所述第一二级混合管两侧分别连接有第一一级混合管、第二一级混合管,所述第二二级混合管两侧分别连接有第三一级混合管、第四一级混合管,所述第一一级混合管、第二一级混合管末端设有第一溢流口结构,所述第三一级混合管、第四一级混合管末端设有第二溢流口结构。
优选地,所述搅拌结构包括对称设置的固定杆,所述固定杆包括位于中部的竖直 段,已经连接与竖直段两端的倾斜段,所述倾斜段的倾斜方向朝向二级混合管,所述固定杆从上至下通过轴承转动连接有依次啮合的第一齿轮、第二齿轮、第三齿轮以及第四齿轮,所述第一齿轮、第二齿轮、第三齿轮以及第四齿轮上分别固定有第一搅拌桨、第二搅拌桨、第三搅拌桨以及第四搅拌桨,所述第一溢流口结构以及第二溢流口结构高度位于第一搅拌桨中轴线与第二搅拌桨上沿之间。
优选地,所述第一溢流口结构以及第二溢流口结构的结构相同均包括固定于一级混合管侧壁上的第一限位条和第二限位条,所述第一限位条与第二限位条之间设有溢流板,所述溢流板正上方设有第三接近开关,所述溢流板内部设有矩形空腔,所述空腔内设有第二活塞块,所述第二活塞块上固定有抽气管,所述抽气管穿设出溢流板以及一级混合管顶部,所述抽气管与一级混合管管壁固定连接,所述第一溢流口结构的抽气管通过软管与第二端顶部的抽气口连接,第二溢流口结构的抽气管通过软管与第一端顶部的抽气口连接,所述抽气口上均连接有单向阀。
优选地,所述第一密封盖板连接有第一负压口,所述第二密封盖板上连接有第二负压口,所述第一负压口以及第二负压口上均连接有单向阀,所述第一负压口通过管道与第一二级混合管顶部连通,所述第二负压口与第二二级混合管顶部连通。
优选地,所述二级混合管对称设于混合池中线两侧,所述二级混合管与中线留有间距;所述第一活塞块的长度长于第一密封盖板到第一二级混合管的距离,短于第一密封盖板到第二二级混合管的距离,且第一活塞块的长度长于第一二级混合管与第二二级混合管之间的间距。
优选地,所述第一密封盖板和第二密封盖板通过轴承转动连接有螺杆,所述螺杆端部与电机的输出轴固定连接,所述第一活塞块上开设有与所述螺杆适配的螺纹孔,所述螺纹孔与所述螺杆通过螺纹连接。
优选地,所述抽滤装置包括支座,所述支座上部固定有机体,所述机体侧壁设有水浴加热层,所述机体上部固定有架体,所述架体上设有伸缩杆,所述伸缩杆端部伸入机体内腔与滤板固定连接,所述滤板与内腔适配,所述机体底部设有抽滤口,所述抽滤口连接有抽滤泵。
优选地,制备壳寡糖螯合亚铁的方法为:
S1、所述第一一级混合管、第二一级混合管上以及所述第三一级混合管、第四一级混合管的投放箱内分别装入壳寡糖以及硫酸亚铁;
S2、启动电机,第一活塞块进行往复移动,当第一活塞块移动到一密封盖板处时,所述第一流量开关打开,第二流量开关关闭,所述第一一级混合管通入水、壳寡糖,所述第二一级混合管内通入水以及硫酸亚铁,通过搅拌结构的搅拌作用,第一一级混合管内形成质量浓度比为2∶1的等体积水溶液,所述第二一级混合管形成质量浓度比为2∶1的等体积硫酸亚铁溶液;
S3、电机反向转动,第一活塞块向第二密封盖板移动,第一负压口通过管道抽取第一二级混合管顶部的气体,空气从单向阀通入第一二级混合管内。
S4、第一端的抽气口对第二溢流口结构的矩形空腔进行抽气,使得第二溢流口结构的溢流板上升,从而触动第三接近开关,第二PH值感应器进行延时测定,第三一级混合管、第四一级混合管内已经完成混合的剩余溶液通过第二二级混合管内全部流入第二端, 第二PH值感应器延时测定完成后通过第二PH调节箱进行PH值调节。
S5、第一活塞块持续移动,直到第一二级混合管下部与第一端连通,第一二级混合管内的混合溶液持续流入第一端,第一端的负压状态解除,第二溢流口结构的溢流板在自身重力作用下下落。
S6、第一活塞块向第二密封盖板移动的过程中将第二端内混合且完成了PH调节的溶液通过管道压入抽滤装置。
S7、第一活塞块移动到第二密封盖板处,触发第二接近开关,第二流量开关打开,第一流量开关关闭,所述第三一级混合管通入水、壳寡糖,所述第四一级混合管内通入水以及硫酸亚铁,通过搅拌结构的搅拌作用,第三一级混合管内形成质量浓度比为2∶1的等体积水溶液,所述第四一级混合管形成质量浓度比为2∶1的等体积硫酸亚铁溶液,
S8、电机反向转动,第一活塞块向第一密封盖板移动,第二负压口通过管道抽取第二二级混合管顶部的气体,空气从单向阀通入第一二级混合管内。
S9、第二端的抽气口对第一溢流口结构的矩形空腔进行抽气,使得第一溢流口结构的溢流板上升,从而触动第三接近开关,第一PH值感应器进行延时测定,第一一级混合管、第二一级混合管内已经完成混合的剩余溶液通过第一二级混合管内全部流入第一端,第一PH值感应器延时测定完成后通过第一PH调节箱进行PH值调节。
S10、第一活塞块持续移动,直到第二二级混合管下部与第二端连通,第二二级混合管内的混合溶液持续流入第二端,第二端的负压状态解除,第一溢流口结构的溢流板在自身重力作用下下落。
S11、第一活塞块向第一密封盖板移动的过程中将第一端内混合且完成了PH调节的溶液通过管道压入抽滤装置。
S12、重复步骤S1-S11,从而连续不断的为抽滤装置提供混合溶液。
S13、通过抽滤装置对混合溶液进行加热,使得混合溶液产生螯合反应。
S14、对完成螯合的溶液进行抽滤,将抽滤得到的沉淀物真空干燥,所得粉末即为壳寡糖螯合亚铁。
与现有技术相比,本发明具有如下有益效果:
1.通过一级混合管完成壳寡糖水溶液的初步混合,通过以及混合管完成硫酸亚铁溶液的初步混合,通过二级混合管完成壳寡糖水溶液以及硫酸亚铁溶液的初步混合,通过混合池完成硫酸亚铁的再次混合以及HP调节,将完成混合以及PH值调节的混合溶液压入抽滤装置进行螯合以及抽滤,从而制备得到壳寡糖螯合亚铁,通过多级混合使得混合充分,且能够自动按比例混合溶液,能够自动调节PH值,能够连续对抽滤装置提供完成混合以及PH值调节的混合溶液;
当第一二级混合管内的混合溶液流入第一端,以及第二二级混合管内的混合溶液流入第二端时,第一二级混合管、第二二级混合管内形成有旋流,从而提高混合效果;
2.通过将第一一级混合管与第二一级混合管相对设置,第三一级混合管与第四一级混合管相对设置,使得壳寡糖水溶液与硫酸亚铁溶液混合更加充分,通过设置溢流口从而能够控制第一一级混合管、第二一级混合管、第三一级混合管、第四一级混合管内的液面高度;
3.通过设置溢流口从而控制第一一级混合管、第二一级混合管、第三一级混合管、 第四一级混合管内的液面高度,使得液面高度位于第一搅拌桨中轴线与第二搅拌桨上沿之间,水流经过时能够带动第一搅拌桨逆时针转动、第二搅拌桨顺时针转动,由于第一齿轮、第二齿轮、第三齿轮以及第四齿轮依次啮合,第三搅拌桨逆时针转动,第四搅拌桨顺时针转动,第一搅拌桨逆时针转动时能够将浮在液面上的物料压入水体内,第四搅拌桨能够将落与液面底部的物料向上搅动,且第一搅拌桨、第二搅拌桨倾斜向下将水流导向中部,第三搅拌桨、第四搅拌桨倾斜向上将水流导向中部,使得中部产生激流,从而进一步提高混合效果;
4.通过电机驱动第一活塞块向第二端移动,从而使得第一端形成负压,第一端的抽气口对第二溢流口结构的矩形空腔进行抽气,使得第二溢流口结构的溢流板上升,第三一级混合管、第四一级混合管内已经完成混合的剩余溶液通过第二二级混合管内全部流入第二端,当第一二级混合管下部与第一端连通,第一二级混合管内的混合溶液持续流入第一端,第一端的负压状态解除,第二溢流口结构的溢流板在自身重力作用下下落;第一活塞块移动到第二密封盖板处后,通过电机驱动第一活塞块向第一端移动,从而使得第二端形成负压,第二端的抽气口对第一溢流口结构的矩形空腔进行抽气,使得第一溢流口结构的溢流板上升,第一一级混合管、第二一级混合管内已经完成混合的剩余溶液通过第一二级混合管内全部流入第一端,当第二二级混合管下部与第二端连通,第二二级混合管内的混合溶液持续流入第二端,第二端的负压状态解除,第一溢流口结构的溢流板在自身重力作用下下落,从而能够完成溢流结构的自动控制,能够形成溢流的同时避免一级混合管内残留混合液;
5.第一活塞块向第二密封盖板移动,第一负压口通过管道抽取第一二级混合管顶部的气体,空气从单向阀通入第一二级混合管内,且此时第一二级混合管内有混合的壳寡糖以及硫酸亚铁溶液,空气进入第一二级混合管后形成气泡向上移动,从而进一步提高混合效果,第一活塞块向第一密封盖板移动,第二负压口通过管道抽取第二二级混合管顶部的气体,空气从单向阀通入第二二级混合管内,且此时第二二级混合管内有混合的壳寡糖以及硫酸亚铁溶液,空气进入第二二级混合管后形成气泡向上移动,从而进一步提高混合效果。
附图说明
图1为本发明的整体结构图。
图2为搅拌结构的整体结构图。
图3为搅拌结构的水流运动分析图。
图4为溢流结构的内部结构图。
图5为二级混合管内部截面结构图。
图6为二级混合管内部水流运动分析图。
附图标记:1、电机;2、抽气口;3、第一负压口;4、第一密封盖板;5、第一端;6、第一活塞块;7、流量开关;8、支座;9、抽滤泵;10、滤板;11、伸缩杆;12、架体;13、第二密封盖板;14、第二PH调节箱;15、第三一级混合管;16、一级混合管管壁;17、抽气管;18、第二二级混合管;19、第四一级混合管;20、第二一级混合管;21、第一二级混合管;22、第一一级混合管;23、第一PH调节箱;24、第二活塞块;25、第一限位条;26、第二限位条;27、固定杆;28、第一齿 轮;29、第二齿轮;30、第三齿轮;31、第四齿轮;32、第一搅拌桨;33、第二搅拌桨;34、第三搅拌桨;35、第四搅拌桨;36、第一混合板;37、第二混合板;38、第二端。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”、“前端”、“后端”、“头部”、“尾部”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
实施例:
如图1-6所示,一种壳寡糖螯合亚铁制备装置,包括从上向下依次设置的一级混合管、二级混合管以及混合池,所述混合池还连接有抽滤装置;
所述一级混合管一端通过流量开关7连接有进水管,所述一级混合管上部还设有用于定量投放的投放箱,所述一级混合管内设有多个用于将投放物与水混合的搅拌结构,所述一级混合管另一端与二级混合管侧壁连接;
所述二级混合管上布设有多个一级混合管,所述一级混合管对称设于二级混合管两侧,所述二级混合管靠一级混合管的侧壁上设有多个倾斜向上设置的第一混合板36,所述第一混合板36之间设有与第一混合板36平行设置的第二混合板37,所述第一混合板36、所述第二混合板37与侧壁留有间隙,所述二级混合管底部设有多个用于进气的单向阀;
所述混合池上部设有多个二级混合管、PH调节箱,所述混合池内滑动连接有能够往复移动的第一活塞块6,所述混合池内设有PH值感应器,所述混合池两端通过出液管与抽滤装置的进液口连接,通过一级混合管完成壳寡糖水溶液的初步混合,通过以及混合管完成硫酸亚铁溶液的初步混合,通过二级混合管完成壳寡糖水溶液以及硫酸亚铁溶液的初步混合,通过混合池完成硫酸亚铁的再次混合以及HP调节,将完成混合以及PH值调节的混合溶液压入抽滤装置进行螯合以及抽滤,从而制备得到壳寡糖螯合亚铁,通过多级混合使得混合充分,且能够自动按比例混合溶液,能够自动调节PH值,能够连续对抽滤装置提供完成混合以及PH值调节的混合溶液;
当第一二级混合管21内的混合溶液流入第一端5,以及第二二级混合管18内的混合溶液流入第二端38时,第一二级混合管21、第二二级混合管18内形成有旋流,从而提高混合效果。
所述混合池由中线分为第一端5和第二端38,所述第一端5设有第一二级混合管21、第一PH调节箱23,所述第二端38设有第二二级混合管18、第二PH调节箱14,所述混合池 内第一端5设有第一PH值感应器,所述混合池内第二端38设有第二PH值感应器,所述混合池两端固定有第一密封盖板4和第二密封盖板13,所述第一密封盖板4上设有第一接近开关,所述第二密封盖板13处设有第二接近开关。
所述第一二级混合管21两侧分别连接有第一一级混合管22、第二一级混合管20,所述第二二级混合管18两侧分别连接有第三一级混合管15、第四一级混合管19,所述第一一级混合管22、第二一级混合管20末端设有第一溢流口结构,所述第三一级混合管15、第四一级混合管19末端设有第二溢流口结构,通过将第一一级混合管22与第二一级混合管20相对设置,第三一级混合管15与第四一级混合管19相对设置,使得壳寡糖水溶液与硫酸亚铁溶液混合更加充分,通过设置溢流口从而能够控制第一一级混合管22、第二一级混合管20、第三一级混合管15、第四一级混合管19内的液面高度。
所述搅拌结构包括对称设置的固定杆27,所述固定杆27包括位于中部的竖直段,已经连接与竖直段两端的倾斜段,所述倾斜段的倾斜方向朝向二级混合管,所述固定杆27从上至下通过轴承转动连接有依次啮合的第一齿轮28、第二齿轮29、第三齿轮30以及第四齿轮31,所述第一齿轮28、第二齿轮29、第三齿轮30以及第四齿轮31上分别固定有第一搅拌桨32、第二搅拌桨33、第三搅拌桨34以及第四搅拌桨35,所述第一溢流口结构以及第二溢流口结构高度位于第一搅拌桨32中轴线与第二搅拌桨33上沿之间,通过设置溢流口从而控制第一一级混合管22、第二一级混合管20、第三一级混合管15、第四一级混合管19内的液面高度,使得液面高度位于第一搅拌桨32中轴线与第二搅拌桨33上沿之间,水流经过时能够带动第一搅拌桨32逆时针转动、第二搅拌桨33顺时针转动,由于第一齿轮28、第二齿轮29、第三齿轮30以及第四齿轮31依次啮合,第三搅拌桨34逆时针转动,第四搅拌桨35顺时针转动,第一搅拌桨32逆时针转动时能够将浮在液面上的物料压入水体内,第四搅拌桨35能够将落与液面底部的物料向上搅动,且第一搅拌桨32、第二搅拌桨33倾斜向下将水流导向中部,第三搅拌桨34、第四搅拌桨35倾斜向上将水流导向中部,使得中部产生激流,从而进一步提高混合效果。
所述第一溢流口结构以及第二溢流口结构的结构相同均包括固定于一级混合管侧壁上的第一限位条25和第二限位条26,所述第一限位条25与第二限位条26之间设有溢流板,所述溢流板正上方设有第三接近开关,所述溢流板内部设有矩形空腔,所述空腔内设有第二活塞块24,所述第二活塞块24上固定有抽气管17,所述抽气管17穿设出溢流板以及一级混合管顶部,所述抽气管17与一级混合管管壁16固定连接,所述第一溢流口结构的抽气管17通过软管与第二端38顶部的抽气口2连接,第二溢流口结构的抽气管17通过软管与第一端5顶部的抽气口2连接,所述抽气口2上均连接有单向阀,通过电机1驱动第一活塞块6向第二端38移动,从而使得第一端5形成负压,第一端5的抽气口2对第二溢流口结构的矩形空腔进行抽气,使得第二溢流口结构的溢流板上升,第三一级混合管15、第四一级混合管19内已经完成混合的剩余溶液通过第二二级混合管18内全部流入第二端38,当第一二级混合管21下部与第一端5连通,第一二级混合管21内的混合溶液持续流入第一端5,第一端5的负压状态解除,第二溢流口结构的溢流板在自身重力作用下下落;第一活塞块6移动到第二密封盖板13处后,通过电机1驱动第一活塞块6向第一端5移动,从而使得第二端38形成负压,第二端38的抽气口2对第一溢流口结构的矩形空腔进行抽气,使得第一溢流口结构的溢流板上升,第一一级混合管22、第二一级混合管20内已经完成混合的剩余溶液通过第一二级混 合管21内全部流入第一端5,当第二二级混合管18下部与第二端38连通,第二二级混合管18内的混合溶液持续流入第二端38,第二端38的负压状态解除,第一溢流口结构的溢流板在自身重力作用下下落,从而能够完成溢流结构的自动控制,能够形成溢流的同时避免一级混合管内残留混合液。
所述第一密封盖板4连接有第一负压口3,所述第二密封盖板13上连接有第二负压口,所述第一负压口3以及第二负压口上均连接有单向阀,所述第一负压口3通过管道与第一二级混合管21顶部连通,所述第二负压口与第二二级混合管18顶部连通,第一活塞块6向第二密封盖板13移动,第一负压口3通过管道抽取第一二级混合管21顶部的气体,空气从单向阀通入第一二级混合管21内,且此时第一二级混合管21内有混合的壳寡糖以及硫酸亚铁溶液,空气进入第一二级混合管21后形成气泡向上移动,从而进一步提高混合效果,第一活塞块6向第一密封盖板4移动,第二负压口通过管道抽取第二二级混合管18顶部的气体,空气从单向阀通入第二二级混合管18内,且此时第二二级混合管18内有混合的壳寡糖以及硫酸亚铁溶液,空气进入第二二级混合管18后形成气泡向上移动,从而进一步提高混合效果。
所述二级混合管对称设于混合池中线两侧,所述二级混合管与中线留有间距;所述第一活塞块6的长度长于第一密封盖板4到第一二级混合管21的距离,短于第一密封盖板4到第二二级混合管18的距离,且第一活塞块6的长度长于第一二级混合管21与第二二级混合管18之间的间距。
所述第一密封盖板4和第二密封盖板13通过轴承转动连接有螺杆,所述螺杆端部与电机1的输出轴固定连接,所述第一活塞块6上开设有与所述螺杆适配的螺纹孔,所述螺纹孔与所述螺杆通过螺纹连接。
所述抽滤装置包括支座8,所述支座8上部固定有机体,所述机体侧壁设有水浴加热层,所述机体上部固定有架体12,所述架体12上设有伸缩杆11,所述伸缩杆11端部伸入机体内腔与滤板10固定连接,所述滤板10与内腔适配,所述机体底部设有抽滤口,所述抽滤口连接有抽滤泵9。
制备壳寡糖螯合亚铁的方法为:
S1、所述第一一级混合管22、第二一级混合管20上以及所述第三一级混合管15、第四一级混合管19的投放箱内分别装入壳寡糖以及硫酸亚铁;
S2、启动电机1,第一活塞块6进行往复移动,当第一活塞块6移动到一密封盖板处时,所述第一流量开关7打开,第二流量开关7关闭,所述第一一级混合管22通入水、壳寡糖,所述第二一级混合管20内通入水以及硫酸亚铁,通过搅拌结构的搅拌作用,第一一级混合管22内形成质量浓度比为2∶1的等体积水溶液,所述第二一级混合管20形成质量浓度比为2∶1的等体积硫酸亚铁溶液;
S3、电机1反向转动,第一活塞块6向第二密封盖板13移动,第一负压口3通过管道抽取第一二级混合管21顶部的气体,空气从单向阀通入第一二级混合管21内。
S4、第一端5的抽气口2对第二溢流口结构的矩形空腔进行抽气,使得第二溢流口结构的溢流板上升,从而触动第三接近开关,第二PH值感应器进行延时测定,第三一级混合管15、第四一级混合管19内已经完成混合的剩余溶液通过第二二级混合管18内全部流入第二端38,第二PH值感应器延时测定完成后通过第二PH调节箱14进行PH值调节。
S5、第一活塞块6持续移动,直到第一二级混合管21下部与第一端5连通,第一二级 混合管21内的混合溶液持续流入第一端5,第一端5的负压状态解除,第二溢流口结构的溢流板在自身重力作用下下落。
S6、第一活塞块6向第二密封盖板13移动的过程中将第二端38内混合且完成了PH调节的溶液通过管道压入抽滤装置。
S7、第一活塞块6移动到第二密封盖板13处,触发第二接近开关,第二流量开关7打开,第一流量开关7关闭,所述第三一级混合管15通入水、壳寡糖,所述第四一级混合管19内通入水以及硫酸亚铁,通过搅拌结构的搅拌作用,第三一级混合管15内形成质量浓度比为2∶1的等体积水溶液,所述第四一级混合管19形成质量浓度比为2∶1的等体积硫酸亚铁溶液,
S8、电机1反向转动,第一活塞块6向第一密封盖板4移动,第二负压口通过管道抽取第二二级混合管18顶部的气体,空气从单向阀通入第一二级混合管21内。
S9、第二端38的抽气口2对第一溢流口结构的矩形空腔进行抽气,使得第一溢流口结构的溢流板上升,从而触动第三接近开关,第一PH值感应器进行延时测定,第一一级混合管22、第二一级混合管20内已经完成混合的剩余溶液通过第一二级混合管21内全部流入第一端5,第一PH值感应器延时测定完成后通过第一PH调节箱23进行PH值调节。
S10、第一活塞块6持续移动,直到第二二级混合管18下部与第二端38连通,第二二级混合管18内的混合溶液持续流入第二端38,第二端38的负压状态解除,第一溢流口结构的溢流板在自身重力作用下下落。
S11、第一活塞块6向第一密封盖板4移动的过程中将第一端5内混合且完成了PH调节的溶液通过管道压入抽滤装置。
S12、重复步骤S1-S11,从而连续不断的为抽滤装置提供混合溶液。
S13、通过抽滤装置对混合溶液进行加热,使得混合溶液产生螯合反应。
S14、对完成螯合的溶液进行抽滤,将抽滤得到的沉淀物真空干燥,所得粉末即为壳寡糖螯合亚铁。
本发明的工作原理为:所述第一一级混合管22、第二一级混合管20上以及所述第三一级混合管15、第四一级混合管19的投放箱内分别装入壳寡糖以及硫酸亚铁,通过定量投放箱能够对壳寡糖以及硫酸亚铁进行定量投放,且第一一级混合管22、第二一级混合管20、第三一级混合管15、第四一级混合管19的端部连接有流量开关7,从而能够控制通入第一一级混合管22、第二一级混合管20、第三一级混合管15、第四一级混合管19内的水含量;
启动电机1,第一活塞块6进行往复移动,当第一活塞块6移动到一密封盖板处时会触动第一接近开关,触发第一接近开关后会将所述第一流量开关7打开,第二流量开关7关闭,所述第一一级混合管22通入水、壳寡糖,所述第二一级混合管20内通入水以及硫酸亚铁,通过搅拌结构的搅拌作用完成混合,第一一级混合管22内形成质量浓度比为2∶1的等体积水溶液,所述第二一级混合管20形成质量浓度比为2∶1的等体积硫酸亚铁溶液,所述第一一级混合管22以及所述第二一级混合管20内高于溢流口的溶液进入第一二级混合管21内,由于第一二级混合管21内设置有第一混合板36以及第二混合板37,从而使得两侧的溶液互相溅射混合;
触发第一接近开关的同时会驱动电机1反向转动,第一活塞块6向第二密封盖板13移动,第一负压口3通过管道抽取第一二级混合管21顶部的气体,空气从单向阀通入第一二级混合管21内,从而在第一二级混合管21内形成上浮的气泡,从而进一步进行混合作用。
第一端5的抽气口2对第二溢流口结构的矩形空腔进行抽气,使得第二溢流口结构的溢流板上升,从而触动第三接近开关,触动第三接近开关后会控制第二PH值感应器进行延时测定,时间设置为足够第三一级混合管15、第四一级混合管19内已经完成混合的剩余溶液通过第二二级混合管18内全部流入第二端38,第二PH值感应器延时测定完成后通过第二PH调节箱14进行PH值调节。
第一活塞块6持续移动,直到第一二级混合管21下部与第一端5连通,第一二级混合管21内的混合溶液持续流入第一端5,第一端5的负压状态解除,第二溢流口结构的溢流板在自身重力作用下下落。
第一活塞块6向第二密封盖板13移动的过程中将第二端38内混合且完成了PH调节的溶液通过管道压入抽滤装置。
第一活塞块6移动到第二密封盖板13处,触发第二接近开关,触发第二接近开关后会将第二流量开关7打开,第一流量开关7关闭,所述第三一级混合管15通入水、壳寡糖,所述第四一级混合管19内通入水以及硫酸亚铁,通过搅拌结构的搅拌作用,第三一级混合管15内形成质量浓度比为2∶1的等体积水溶液,所述第四一级混合管19形成质量浓度比为2∶1的等体积硫酸亚铁溶液,所述第三一级混合管15以及所述第四一级混合管19内高于溢流口的溶液进入第二二级混合管18内,由于第二二级混合管18内设置有第一混合板36以及第二混合板37,从而使得两侧的溶液互相溅射混合。
触发第二接近开关的同时会驱动再次电机1反向转动,第一活塞块6向第一密封盖板4移动,第二负压口通过管道抽取第二二级混合管18顶部的气体,空气从单向阀通入第一二级混合管21内。
第二端38的抽气口2对第一溢流口结构的矩形空腔进行抽气,使得第一溢流口结构的溢流板上升,从而触动第三接近开关,触动第三接近开关后会使得第一PH值感应器进行延时测定,第一一级混合管22、第二一级混合管20内已经完成混合的剩余溶液通过第一二级混合管21内全部流入第一端5,第一PH值感应器延时测定完成后通过第一PH调节箱23进行PH值调节。
第一活塞块6持续移动,直到第二二级混合管18下部与第二端38连通,第二二级混合管18内的混合溶液持续流入第二端38,第二端38的负压状态解除,第一溢流口结构的溢流板在自身重力作用下下落。
第一活塞块6向第一密封盖板4移动的过程中将第一端5内混合且完成了PH调节的溶液通过管道压入抽滤装置。
通过第一活塞块6不断的往复移动,从而将混合池内完成混合以及PH调节的溶液连续不断的泵入抽滤装置通过抽滤装置对混合溶液进行加热,使得混合溶液产生螯合反应,对完成螯合的溶液进行抽滤,将抽滤得到的沉淀物真空干燥,所得粉末即为壳寡糖螯合亚铁。
上述的实施例仅为本发明的优选实施例,不能以所述来限定本发明的权利范围,因所述,依本发明申请专利范围所作的修改、等同变化、改进等,仍属本发明所涵盖的范围。

Claims (10)

  1. 一种壳寡糖螯合亚铁制备装置,其特征在于:包括从上向下依次设置的一级混合管、二级混合管以及混合池,所述混合池还连接有抽滤装置;
    所述一级混合管一端通过流量开关连接有进水管,所述一级混合管上部还设有用于定量投放的投放箱,所述一级混合管内设有多个用于将投放物与水混合的搅拌结构,所述一级混合管另一端与二级混合管侧壁连接;
    所述二级混合管上布设有多个一级混合管,所述一级混合管对称设于二级混合管两侧,所述二级混合管靠一级混合管的侧壁上设有多个倾斜向上设置的第一混合板,所述第一混合板之间设有与第一混合板平行设置的第二混合板,所述第一混合板、所述第二混合板与侧壁留有间隙,所述二级混合管底部设有多个用于进气的单向阀;
    所述混合池上部设有多个二级混合管、PH调节箱,所述混合池内滑动连接有能够往复移动的第一活塞块,所述混合池内设有PH值感应器,所述混合池两端通过出液管与抽滤装置的进液口连接。
  2. 根据权利要求1所述的壳寡糖螯合亚铁制备装置,其特征在于:所述混合池由中线分为第一端和第二端,所述第一端设有第一二级混合管、第一PH调节箱,所述第二端设有第二二级混合管、第二PH调节箱,所述混合池内第一端设有第一PH值感应器,所述混合池内第二端设有第二PH值感应器,所述混合池两端固定有第一密封盖板和第二密封盖板,所述第一密封盖板上设有第一接近开关,所述第二密封盖板处设有第二接近开关。
  3. 根据权利要求1所述的壳寡糖螯合亚铁制备装置,其特征在于:所述第一二级混合管两侧分别连接有第一一级混合管、第二一级混合管,所述第二二级混合管两侧分别连接有第三一级混合管、第四一级混合管,所述第一一级混合管、第二一级混合管末端设有第一溢流口结构,所述第三一级混合管、第四一级混合管末端设有第二溢流口结构。
  4. 根据权利要求1所述的壳寡糖螯合亚铁制备装置,其特征在于:所述搅拌结构包括对称设置的固定杆,所述固定杆包括位于中部的竖直段,已经连接与竖直段两端的倾斜段,所述倾斜段的倾斜方向朝向二级混合管,所述固定杆从上至下通过轴承转动连接有依次啮合的第一齿轮、第二齿轮、第三齿轮以及第四齿轮,所述第一齿轮、第二齿轮、第三齿轮以及第四齿轮上分别固定有第一搅拌桨、第二搅拌桨、第三搅拌桨以及第四搅拌桨,所述第一溢流口结构以及第二溢流口结构高度位于第一搅拌桨中轴线与第二搅拌桨上沿之间。
  5. 根据权利要求1所述的壳寡糖螯合亚铁制备装置,其特征在于:所述第一溢流口结构以及第二溢流口结构的结构相同均包括固定于一级混合管侧壁上的第一限位条和第二限位条,所述第一限位条与第二限位条之间设有溢流板,所述溢流板正上方设有第三接近开关,所述溢流板内部设有矩形空腔,所述空腔内设有第二活塞块,所述第二活塞块上固定有抽气管,所述抽气管穿设出溢流板以及一级混合管顶部,所述抽气管与一级混合管管壁固定连接,所述第一溢流口结构的抽气管通过软管与第二端顶部的抽气口连接,第二溢流口结构的抽气管通过软管与第一端顶部的抽气口连接,所述抽气口上均连接有单向阀。
  6. 根据权利要求1所述的壳寡糖螯合亚铁制备装置,其特征在于:所述第一密封盖板连接有第一负压口,所述第二密封盖板上连接有第二负压口,所述第一负压口以及第二负压口上均连接有单向阀,所述第一负压口通过管道与第一二级混合管顶部连通,所述第二负压口与第二二级混合管顶部连通。
  7. 根据权利要求1所述的壳寡糖螯合亚铁制备装置,其特征在于:所述二级混合管对称 设于混合池中线两侧,所述二级混合管与中线留有间距;所述第一活塞块的长度长于第一密封盖板到第一二级混合管的距离,短于第一密封盖板到第二二级混合管的距离,且第一活塞块的长度长于第一二级混合管与第二二级混合管之间的间距。
  8. 根据权利要求1所述的壳寡糖螯合亚铁制备装置,其特征在于:所述第一密封盖板和第二密封盖板通过轴承转动连接有螺杆,所述螺杆端部与电机的输出轴固定连接,所述第一活塞块上开设有与所述螺杆适配的螺纹孔,所述螺纹孔与所述螺杆通过螺纹连接。
  9. 根据权利要求1所述的壳寡糖螯合亚铁制备装置,其特征在于:所述抽滤装置包括支座,所述支座上部固定有机体,所述机体侧壁设有水浴加热层,所述机体上部固定有架体,所述架体上设有伸缩杆,所述伸缩杆端部伸入机体内腔与滤板固定连接,所述滤板与内腔适配,所述机体底部设有抽滤口,所述抽滤口连接有抽滤泵。
  10. 基于权利要求1-9任一所述的制备装置制备壳寡糖螯合亚铁的方法,其特征在于:
    S1、所述第一一级混合管、第二一级混合管上以及所述第三一级混合管、第四一级混合管的投放箱内分别装入壳寡糖以及硫酸亚铁;
    S2、启动电机,第一活塞块进行往复移动,当第一活塞块移动到一密封盖板处时,所述第一流量开关打开,第二流量开关关闭,所述第一一级混合管通入水、壳寡糖,所述第二一级混合管内通入水以及硫酸亚铁,通过搅拌结构的搅拌作用,第一一级混合管内形成质量浓度比为2∶1的等体积水溶液,所述第二一级混合管形成质量浓度比为2∶1的等体积硫酸亚铁溶液;
    S3、电机反向转动,第一活塞块向第二密封盖板移动,第一负压口通过管道抽取第一二级混合管顶部的气体,空气从单向阀通入第一二级混合管内。
    S4、第一端的抽气口对第二溢流口结构的矩形空腔进行抽气,使得第二溢流口结构的溢流板上升,从而触动第三接近开关,第二PH值感应器进行延时测定,第三一级混合管、第四一级混合管内已经完成混合的剩余溶液通过第二二级混合管内全部流入第二端,第二PH值感应器延时测定完成后通过第二PH调节箱进行PH值调节。
    S5、第一活塞块持续移动,直到第一二级混合管下部与第一端连通,第一二级混合管内的混合溶液持续流入第一端,第一端的负压状态解除,第二溢流口结构的溢流板在自身重力作用下下落。
    S6、第一活塞块向第二密封盖板移动的过程中将第二端内混合且完成了PH调节的溶液通过管道压入抽滤装置。
    S7、第一活塞块移动到第二密封盖板处,触发第二接近开关,第二流量开关打开,第一流量开关关闭,所述第三一级混合管通入水、壳寡糖,所述第四一级混合管内通入水以及硫酸亚铁,通过搅拌结构的搅拌作用,第三一级混合管内形成质量浓度比为2∶1的等体积水溶液,所述第四一级混合管形成质量浓度比为2∶1的等体积硫酸亚铁溶液,
    S8、电机反向转动,第一活塞块向第一密封盖板移动,第二负压口通过管道抽取第二二级混合管顶部的气体,空气从单向阀通入第一二级混合管内。
    S9、第二端的抽气口对第一溢流口结构的矩形空腔进行抽气,使得第一溢流口结构的溢流板上升,从而触动第三接近开关,第一PH值感应器进行延时测定,第一一级混合管、第二一级混合管内已经完成混合的剩余溶液通过第一二级混合管内全部流入第一端,第一PH值感应器延时测定完成后通过第一PH调节箱进行PH值调节。
    S10、第一活塞块持续移动,直到第二二级混合管下部与第二端连通,第二二级混合管内的混合溶液持续流入第二端,第二端的负压状态解除,第一溢流口结构的溢流板在自身重力作用下下落。
    S11、第一活塞块向第一密封盖板移动的过程中将第一端内混合且完成了PH调节的溶液通过管道压入抽滤装置。
    S12、重复步骤S1-S11,从而连续不断的为抽滤装置提供混合溶液。
    S13、通过抽滤装置对混合溶液进行加热,使得混合溶液产生螯合反应。
    S14、对完成螯合的溶液进行抽滤,将抽滤得到的沉淀物真空干燥,所得粉末即为壳寡糖螯合亚铁。
PCT/CN2022/117954 2022-01-19 2022-09-08 一种壳寡糖螯合亚铁制备方法及装置 WO2023138069A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210057134.1A CN114405428B (zh) 2022-01-19 2022-01-19 一种壳寡糖螯合亚铁制备方法及装置
CN202210057134.1 2022-01-19

Publications (1)

Publication Number Publication Date
WO2023138069A1 true WO2023138069A1 (zh) 2023-07-27

Family

ID=81273514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117954 WO2023138069A1 (zh) 2022-01-19 2022-09-08 一种壳寡糖螯合亚铁制备方法及装置

Country Status (2)

Country Link
CN (1) CN114405428B (zh)
WO (1) WO2023138069A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114405428B (zh) * 2022-01-19 2022-09-30 湖南德邦生物科技有限公司 一种壳寡糖螯合亚铁制备方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101849677A (zh) * 2009-04-02 2010-10-06 辽宁师范大学 壳寡糖螯合亚铁及其制备方法
JP2013248565A (ja) * 2012-05-31 2013-12-12 Swing Corp 汚泥凝集装置及び汚泥調質方法
CN208799980U (zh) * 2018-09-05 2019-04-30 深圳市捷控科技有限公司 一种具有双混合装置的工业反应釜
CN110215875A (zh) * 2019-07-04 2019-09-10 安徽森普新型材料发展有限公司 一种电磁控制减水剂原料输送装置
CN210729209U (zh) * 2019-08-01 2020-06-12 上海九裕纺织科技有限公司 一种混合均匀的纺织用染料混合装置
CN215196708U (zh) * 2021-06-30 2021-12-17 南京可莱威生物科技有限公司 一种仔猪饲料加工用分级式混料装置
CN114405428A (zh) * 2022-01-19 2022-04-29 湖南德邦生物科技有限公司 一种壳寡糖螯合亚铁制备方法及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2564333A1 (fr) * 1984-05-15 1985-11-22 Ripolin Sa Dispositif pour la distribution d'ingredients liquides ou pateux
WO2018076150A1 (zh) * 2016-10-25 2018-05-03 吴云萍 一种高效管箱混凝器
CN107434334A (zh) * 2017-08-17 2017-12-05 姚建松 一种溢流式污水快速混合的处理设备
CN107754746A (zh) * 2017-11-29 2018-03-06 浙江大东吴集团建设新材料有限公司 一种精制型减水剂生产装置
CN208824308U (zh) * 2018-08-17 2019-05-07 安徽思嘉瑞机械设备有限公司 一种饲料搅拌装置
CN209287135U (zh) * 2018-12-10 2019-08-23 浙江闰土股份有限公司 一种染料搅拌设备
CN211311155U (zh) * 2019-12-11 2020-08-21 吉林省圣泽科技有限公司 一种废水处理沉淀装置
CN112340834B (zh) * 2021-01-07 2021-03-26 山东龙安泰环保科技有限公司 一种基于臭氧催化氧化的多级净化污水处理装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101849677A (zh) * 2009-04-02 2010-10-06 辽宁师范大学 壳寡糖螯合亚铁及其制备方法
JP2013248565A (ja) * 2012-05-31 2013-12-12 Swing Corp 汚泥凝集装置及び汚泥調質方法
CN208799980U (zh) * 2018-09-05 2019-04-30 深圳市捷控科技有限公司 一种具有双混合装置的工业反应釜
CN110215875A (zh) * 2019-07-04 2019-09-10 安徽森普新型材料发展有限公司 一种电磁控制减水剂原料输送装置
CN210729209U (zh) * 2019-08-01 2020-06-12 上海九裕纺织科技有限公司 一种混合均匀的纺织用染料混合装置
CN215196708U (zh) * 2021-06-30 2021-12-17 南京可莱威生物科技有限公司 一种仔猪饲料加工用分级式混料装置
CN114405428A (zh) * 2022-01-19 2022-04-29 湖南德邦生物科技有限公司 一种壳寡糖螯合亚铁制备方法及装置

Also Published As

Publication number Publication date
CN114405428A (zh) 2022-04-29
CN114405428B (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
WO2023138069A1 (zh) 一种壳寡糖螯合亚铁制备方法及装置
CN207941296U (zh) 一种农业用泥浆水分循环分离装置
CN112551665A (zh) 一种循环式环保型污水处理设备
CN215539931U (zh) 一种搅拌效果好的涂料生产加工用循环式搅拌装置
CN206823569U (zh) 一种化学剂溶液速配装置
CN214447442U (zh) 一种混凝土浇筑件搅拌出料装置
CN204973743U (zh) 一种用于水处理剂生产的颗粒原料搅拌装置
CN215939673U (zh) 一种高效率搅拌配液罐
CN206344308U (zh) 一种可自动控制进水量的搅拌器
CN203598702U (zh) 一种粉状物质溶解罐
CN209181896U (zh) 一种精确称量装置
CN220019622U (zh) 一种自动化的流动池换液装置
CN204619834U (zh) 一种堵水调剖用熟化罐
CN208975583U (zh) 一种标准溶液生产用自动上料装置
CN204996347U (zh) 一种用于碳氢油生产的混合器
CN219445588U (zh) 一种砂浆加工投料装置
CN108970481A (zh) 一种用于化妆品生产的真空乳化装置
CN212904821U (zh) 一种用于模拟海洋溢油风化的实验装置
CN214106600U (zh) 一种撬装式调剖配液系统
CN211541796U (zh) 一种建筑材料快速搅拌装置
CN214528213U (zh) 一种金属拔丝生产用冷却水处理装置
CN116751997B (zh) 一种可调式稀土萃取装置
CN219815312U (zh) 一种浓缩釜进料机构
CN220589672U (zh) 一种高效混料设备
CN113244803B (zh) 一种提高石油采收率用调剖剂混合装置及混合方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921497

Country of ref document: EP

Kind code of ref document: A1