WO2023134781A1 - 一种一步调控碳化硅膜孔结构和表面性质的方法 - Google Patents

一种一步调控碳化硅膜孔结构和表面性质的方法 Download PDF

Info

Publication number
WO2023134781A1
WO2023134781A1 PCT/CN2023/075425 CN2023075425W WO2023134781A1 WO 2023134781 A1 WO2023134781 A1 WO 2023134781A1 CN 2023075425 W CN2023075425 W CN 2023075425W WO 2023134781 A1 WO2023134781 A1 WO 2023134781A1
Authority
WO
WIPO (PCT)
Prior art keywords
sic
pore structure
surface properties
mixed powder
sintering
Prior art date
Application number
PCT/CN2023/075425
Other languages
English (en)
French (fr)
Inventor
邢卫红
仲兆祥
江倩
王雅欣
谢雨伶
徐南平
Original Assignee
南京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京工业大学 filed Critical 南京工业大学
Publication of WO2023134781A1 publication Critical patent/WO2023134781A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus

Definitions

  • the invention belongs to the preparation of functional membrane materials in new materials, can be applied to the fields of oil-water separation and emulsion preparation, and specifically relates to a method for regulating the pore structure and surface properties of silicon carbide membranes in one step.
  • SiC membranes have the advantages of high mechanical strength, low thermal expansion coefficient, and high permeation flux, and have great application prospects in the fields of oil-water separation and oil-water emulsion preparation.
  • most of the existing research focuses on the in-situ reaction sintering method, and the type of sintering aids has a great influence on the sintering performance of SiC films.
  • Membrane pore structure and surface properties have a significant impact on the separation performance.
  • Existing research mainly focuses on post-treatment of existing membrane materials such as graft modification to improve the hydrophilic and hydrophobic properties of the membrane surface, and prepare membranes with different pores through multi-step methods. Structure and surface properties of ceramic membranes.
  • Patent CN201410105442.2 discloses a method for regulating the pore structure of porous ceramics. Water, solvents, etc. are used as pore-forming agents to form pores in the ceramic body by freeze-drying to realize the regulation of the pore structure.
  • the addition of pore-forming agents reduces the mechanical strength of ceramic samples, and the freeze-drying process limits its industrialization.
  • Patent ZL201810995675.2 discloses a method of preparing foamed ceramic materials through injection grinding, heat preservation and curing, sintering and other processes. The ceramic porosity (96-78%) and pore size (7-95 nm) can be effectively controlled by adjusting the content of additives.
  • Patent ZL201710316023.7 discloses a method for preparing a porous ceramic support based on molecular sieve membrane synthesis raffinate, using molecular sieve waste as a sintering aid to increase the material strength while reducing the sintering temperature.
  • ZL201710001802.8 discloses a modification of the ceramic membrane by grafting silane compounds onto the surface of the ceramic membrane and heat treatment. This modification method requires secondary heat treatment to obtain a membrane with changed hydrophilicity and hydrophobicity.
  • the present invention proposes a method of controlling the pore structure and surface properties of the SiC film by synergistically regulating the molding pressure and sintering temperature.
  • the purpose of the present invention is to adjust the pore size, porosity and surface properties of the SiC film in one step only by changing the preparation conditions of the SiC film.
  • the invention does not need to add a pore-forming agent, and without changing the formula of the mixed powder, only needs to adjust the molding pressure and sintering temperature to effectively control the pore structure of the SiC membrane.
  • the surface properties of the membrane are affected by the pore structure. Therefore, no post-treatment modification is required, the preparation cost of the SiC film can be further reduced, and SiC films suitable for different application fields can be obtained.
  • the prepared SiC membrane can be applied to the efficient separation of oily wastewater and the rapid preparation of water-in-oil emulsion.
  • a method for regulating porosity and pore size of a SiC ceramic membrane comprising the steps of:
  • the mixed powder C is made into a green embryo of a certain shape under a certain molding pressure.
  • SiC membranes for the treatment of oily wastewater or the preparation of water-in-oil emulsions, and establish an application-oriented SiC membrane design and preparation method.
  • the sintering aid in step (1) is NaA molecular sieve waste powder (NaA(r)) recovered from the NaA molecular sieve membrane production line, industrial grade water glass and zirconia; the sintering aid accounts for 12%-22% of the quality of the mixed powder A %.
  • the rotating speed of the ball mill or the three-dimensional mixer used for mixing the powder in step (1) is 100-500 rpm, and the ball milling time is 2 hours.
  • the mesh number of the metal mesh screen in step (1) is 50-100 mesh.
  • the binder described in step (1) is a high molecular polymer (polyvinyl alcohol) solution, and its mass concentration is 2 to 15 wt.%.
  • the molding pressure of regulating the green embryo described in step (2) is 8-24 MPa.
  • step (3) The sintering procedure described in step (3) is as follows: the temperature rises from room temperature to 100°C at a heating rate of 0.5-2°C/minute, and then rises to 600-1400°C at a heating rate of 2-4°C/minute, and is kept for 1 ⁇ 4h, and finally the furnace temperature dropped to room temperature naturally.
  • a method of one-step regulation and control of silicon carbide membrane pore structure and surface properties of the present invention is characterized in that the described SiC ceramic membrane is applied to the field of oil-water separation, under the conditions of operating pressure ⁇ 0.1MPa, membrane surface velocity ⁇ 1m/s , has good oil-water separation ability, and the rejection rate of oil is >90%.
  • uniform emulsion with particle size of micron can be prepared.
  • the pore size, porosity and surface properties of the SiC film can be effectively regulated by changing the molding pressure and sintering temperature.
  • the method is simple, fast and effective.
  • the prepared SiC membrane has high bending strength and pure water permeability, and the regulation of the surface properties of the membrane can expand its application field.
  • the prepared SiC membrane can effectively trap oil droplets in oily wastewater, and has broad application prospects in the field of wastewater treatment.
  • the prepared SiC film can realize rapid preparation of water-in-oil emulsion, and has broad application prospects in the fields of emulsified diesel oil and emulsified heavy oil.
  • FIG. 1 is an SEM image of the SiC film prepared as described in Example 1.
  • FIG. 2 is a diagram of the pore size distribution of SiC membranes prepared as described in Examples 1 and 7.
  • FIG. 2 is a diagram of the pore size distribution of SiC membranes prepared as described in Examples 1 and 7.
  • FIG. 3 is a graph showing the shapes of oil droplets at different stages of the adhesion test on the surface of SiC films prepared as described in Examples 3, 4 and 7.
  • FIG. 3 is a graph showing the shapes of oil droplets at different stages of the adhesion test on the surface of SiC films prepared as described in Examples 3, 4 and 7.
  • Figure 4 is a graph showing the strength and corrosion resistance results of different sintering aids.
  • Fig. 5 is the metallographic microscope image and the emulsion particle size distribution graph of the prepared emulsion.
  • the preparation method for regulating the pore structure and surface properties of the SiC film in this embodiment the preparation steps are as follows:
  • Figure 1 is the SEM image of the SiC film prepared as described in Example 1. It can be seen from the figure that at the sintering temperature of 1000 ° C, more neck connections have been formed between the particles, and the prepared SiC film has a porosity of 48%, an average pore diameter of is 0.53 ⁇ m, and the pore size distribution is shown in Fig. 2.
  • the flexural strength is 45MPa, and the pure water permeability is 4000Lm -2 h -1 bar -1 .
  • the dynamic water initial contact angle is 12.7°
  • the underwater oil contact angle is 150.1°
  • the underwater oil adhesion is 0.057 mN. Under the transmembrane pressure of 0.5 bar, the oil rejection rate of 500 ppm oily wastewater can reach 95%, and the stable flux exceeds 160 Lm -2 h -1 .
  • the prepared SiC membrane has a porosity of 44%, an average pore diameter of 0.56 ⁇ m, a flexural strength of 71MPa, and a pure water permeability of 4580Lm -2 h -1 bar -1 .
  • the dynamic water initial contact angle is 33.1°
  • the underwater oil contact angle is 153.1°
  • the underwater oil adhesion is 0.037 mN.
  • the prepared SiC membrane has a porosity of 36%, an average pore diameter of 1 ⁇ m, a flexural strength of 85 MPa, and a pure water permeability of 5200Lm -2 h -1 bar -1 .
  • the initial dynamic water contact angle is only 12.6°
  • the underwater oil contact angle is 155.1°
  • the underwater oil adhesion is as low as 0.041 mN.
  • the shape of the oil droplet on the surface has no obvious effect.
  • Fig. 4 is a graph showing the change in strength of SiC films with different formulations (Example 1 and Example 3) sintered at 1000°C after a long time of hot acid-base corrosion. As shown in Figure 4, the SiC film strength did not change significantly under immersion in 1% NaOH solution and 20% H2SO4 solution at 80 °C, proving its good chemical corrosion resistance.
  • the prepared SiC membrane has a porosity of 40%, an average pore diameter of 0.67 ⁇ m, a flexural strength of 81MPa, and a pure water permeability of 3800Lm -2 h -1 bar -1 .
  • the initial dynamic water contact angle is only 12.01°
  • the underwater oil contact angle is 150.2°
  • the underwater oil adhesion is 0.056mN.
  • the prepared SiC membrane has a porosity of 26%, an average pore diameter of 0.58 ⁇ m, a flexural strength of 76MPa, and a pure water permeability of 2300Lm -2 h -1 bar -1 .
  • the initial dynamic water contact angle is 50.21°
  • the underwater oil contact angle is 146.1°
  • the underwater oil adhesion is 0.118 mN.
  • the SiC membrane was used as the emulsification medium, and the surface velocity of the membrane was controlled to be 0.68 m/s.
  • the water phase was controlled to pass through the membrane into the oil phase at a flow rate of 10 mL/min.
  • Fig. 5 is a metallographic microscope picture and a particle size distribution picture of the water-in-oil emulsion.
  • the particle size of the emulsion droplet is about 2 ⁇ m, and it is in a monodisperse state, the distribution is concentrated, and the dispersion degree is only 0.405.
  • the prepared SiC membrane has a porosity of 13%, an average pore diameter of 0.175 ⁇ m, and a flexural strength of 21 MPa. Due to the low pore diameter and porosity of the membrane material, the pure water permeability is 150 Lm -2 h -1 bar -1 . The retention rate of oil in oily wastewater can reach 99%.
  • the initial dynamic water contact angle is 66.8°
  • the underwater oil contact angle is 120.3°
  • the underwater oil adhesion force is 0.080mN.
  • Fig. 2 is the pore size distribution diagram of the SiC membrane prepared as described in Examples 1 and 7. It can be seen from the figure that with the increase of the molding pressure, the pore size of the SiC membrane is effectively regulated and the most probable pore size is reduced.
  • the prepared SiC membrane has a porosity of 40%, an average pore diameter of 0.48 ⁇ m, a flexural strength of 48MPa, and a pure water permeability of 1700 Lm -2 h -1 bar -1 .
  • the initial dynamic water contact angle is 15.45°
  • the underwater oil contact angle is 150.3°
  • the underwater oil adhesion is 0.132 mN.
  • the adhesion force is high, and the adhesion force on the membrane surface deforms the oil droplet leaving the membrane surface ( Figure 3). The oil droplet cannot be completely peeled off from the membrane surface, and part of the oil phase remains on the membrane surface.
  • Example 1 and Comparative Example 1 and Comparative Example 2 are compared in Table 2.
  • Example 1 1000 0.53 48 12.7 0.057
  • Example 4 8 1200 0.67 40 12.01
  • Example 5 20 1300 0.58 26 50.21 0.118
  • Example 6 twenty four 1400 0.175 13 66.8 0.08
  • Example 7 twenty four 1000 0.48 40 15.45 0.132
  • the SiC film prepared in Example 5 can prepare a water-in-oil uniform emulsion with a particle size equivalent, and its emulsification flux is increased by more than 10 times, which is beneficial to its Applications in the preparation of water-in-emulsions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Products (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

本发明涉及一种一步调控碳化硅膜孔结构和表面性质的方法,该方法首先将SiC粉体与烧结助剂充分混合,然后通过控制成型压力和烧结条件协同调控SiC膜的孔结构和表面润湿性质。通过控制SiC氧化生成SiO 2量,促进其与烧结助剂原位反应生成颈部连接,既可降低SiC膜烧结温度又可提高碳化硅膜强度和耐腐蚀性能。成型压力和烧结温度的调控有效控制了SiC膜的烧结程度,是一种一步调控SiC膜孔结构和表面性质的简易方法。所制备的SiC膜孔隙率在13%~48%可调、孔径在0.17 μm~1μm可调,SiC膜的动态水初始接触角在12.01°-66.8°、水下油接触角在120.3°-155.1°可调;所制备的SiC膜具有高抗弯曲强度和纯水渗透性能,在油水分离和乳液制备领域具有广泛的应用前景。

Description

一种一步调控碳化硅膜孔结构和表面性质的方法 技术领域
本发明属于新材料中功能膜材料的制备,可应用于油水分离和乳液制备领域,具体涉及一种一步调控碳化硅膜孔结构和表面性质的方法。
背景技术
SiC膜具有高机械强度、热膨胀系数低、高渗透通量等优点,在油水分离和油水乳液制备领域具有很大的应用前景。为降低SiC膜的生产成本,现有的研究多集中在原位反应烧结法,烧结助剂种类对SiC膜烧成性能影响极大。膜孔结构和表面性质对分离性能影响显著,现有的研究主要集中在对已有膜材料进行后处理如接枝改性等,来提高膜表面亲疏水性能,通过多步方法制备具有不同孔结构和表面性质的陶瓷膜。
陶瓷材料的孔隙率和孔径取决于配方和成型加工方法。专利CN201410105442.2公开了一种多孔陶瓷孔结构的调控方法,使用水、溶剂等作为造孔剂,通过冷冻干燥法进行陶瓷胚体内的造孔,实现孔结构的调控。然而造孔剂的加入降低了陶瓷样品的机械强度,且冷冻干燥的工艺使其工业化受到限制。文献报道[Eomet al, Journal of Asian Ceramic Societies, 2013,1(3): 220-242]调节造孔剂的含量是调整孔隙率最简单的方法,但是造孔剂过量添加还会造成骨料颗粒分布不均,从而导致膜孔径分布变宽,不利于分离性能的提升,且绝大多数的造孔剂排除过程对环境不友好。专利ZL201810995675.2公开了一种泡沫陶瓷材料通过注磨、保温固化、烧结等工序制备的方法。通过调控添加剂含量有效调控陶瓷孔隙率(96~78%)及孔径(7-95 nm)。但该法所制备陶瓷样品的弯曲强度均在5MPa以下,难以应对实际工况中的操作压力。专利ZL201710316023.7公开了一种基于分子筛膜合成残液的多孔陶瓷支撑体制备方法,使用分子筛废料作烧结助剂,在降低烧结温度的同时增加材料强度。为改变膜表面性质,需要对膜表面进行改性处理。ZL201710001802.8公开了一种通过将硅烷类化合物接枝到陶瓷膜的表面并通过热处理完成陶瓷膜的改性,此种改性方法需要通过二次热处理才能得到亲疏水性改变的膜。文献报道[Zhuet al, Nature Publishing GroupAsian Materials, 2014, 6: e101]大部分改性工作均需要对膜表面进行化学反应或物理沉积的第二道工序来改变膜的表面性质。油水分离、乳液制备等过程膜孔结构和表面性质极大影响其效率,对膜表面改性增加了制备工序与制备周期。鉴于此,本发明提出一种通过协同调控成型压力和烧结温度的方法来控制SiC膜的孔结构与表面性质的方法。
发明内容
本发明的目的在于仅改变SiC膜的制备条件,一步调控SiC膜的孔径、孔隙率以及表面性质。本发明无需添加造孔剂,在不改变混合粉料配方的情况下,只需调节成型压力和烧结温度,即可有效调控SiC膜孔结构的简便方法,膜表面性质受孔结构影响而变化,因此无需进行后处理改性,可进一步降低SiC膜的制备成本,得到适合不同应用领域的SiC膜。所制备的SiC膜可应用于含油废水的高效分离、油包水乳液的快速制备。
为了实现上述目的,本发明采用的技术方案为:
一种调控SiC陶瓷膜孔隙率和孔径的方法,包括如下步骤:
(1)  称取一定质量比的平均粒径为5μm的SiC骨料和烧结助剂,采用球磨或三维混料机混合一定时间,确保混合均匀,得到混合粉料A;采用筛网对混合粉料A进行筛分,得到粒径均匀的混合粉体B;将混合粉体B与粘结剂充分混合得到混合粉体C。
(2)     将混合粉体C在一定成型压力下制成一定形状的生胚。
(3)     将生胚放入高温炉中,按照一定的烧结程序进行原位烧结反应,得到不同孔结构和表面性质的SiC膜。
(4)     将SiC膜用于含油废水的处理或油包水乳液的制备,建立面向应用过程的SiC膜设计与制备方法。
其中:
步骤(1)所述烧结助剂为NaA分子筛膜生产线回收的NaA分子筛废料粉末(NaA(r))、工业级水玻璃和氧化锆;烧结助剂占混合粉体A的质量的12%-22%。
步骤(1)所述用于混合粉料的球磨或三维混料机转速为100~500转/分钟,球磨时间为2h。
步骤(1)所述金属网筛目数为50~100目。
步骤(1)所述粘结剂为高分子聚合物(聚乙烯醇)溶液,其质量浓度为2~15 wt.%;
步骤(2)所述调控生胚的成型压力为8~24 MPa。
步骤(3)所述的烧结程序为:以0.5~2℃/分钟的升温速度由室温升至100℃,再以2~4℃/分钟升温速度升至600~1400℃,并保温1~4h,最后待炉温自然降至室温。
本发明的一种一步调控碳化硅膜孔结构和表面性质的方法,其特征在于所述的SiC陶瓷膜应用于油水分离领域,在操作压力< 0.1MPa、膜面流速< 1m/s的条件下,具有较好的油水分离能力,对油的截留率>90%。同时,应用于油包水乳液制备过程时,在高膜乳化水通量的条件下,可制备出粒径为微米级的均匀乳液。
本发明的有益效果:
1.利用烧结助剂在高温下与SiC颗粒表面氧化生成的SiO 2发生原位反应,在SiC颗粒之间形成紧固的颈部连接,有效降低SiC膜的烧成温度和制备成本。
2. 在配方不变的情况下,通过改变成型压力和烧结温度有效调控SiC膜的孔径、孔隙率和表面性质,方法简单、快捷且有效。
3.所制备SiC膜具有较高的抗弯曲强度和纯水渗透性,膜表面性质的调控可拓展其应用领域。
4. 所制备的SiC膜能有效截留含油废水中的油滴,在废水处理领域具有广泛的应用前景。
5.所制备的SiC膜能实现油包水乳液的快速制备,在乳化柴油、乳化重油等领域具有广泛的应用前景。
附图说明
图1为实施例1所述制备的SiC膜的SEM图。
图2为实施例1和7所述制备的SiC膜的孔径分布图。
图3为油滴在实施例3、4和7所述制备的SiC膜表面进行粘附力测试时不同阶段的形状图。
图4为不同烧结助剂的强度和耐腐蚀性结果图。
图5为所制乳液的金相显微镜图和乳滴粒径分布图。
实施方式
在下面结合实施例对本发明作进一步详细的解释,下列实施例仅限于说明本发明,但本发明的实施方式不限于此。
实施例1
本实施例的调控SiC膜孔结构和表面性质的制备方法,制备步骤如下:
按质量比称取88%平均粒径为5μm的SiC颗粒和12%平均粒径为2 μm的NaA(r),经初步混合后置于球磨罐中,在200转/分钟的转速下球磨2h得到混合粉料A;使用60目金属网筛对球磨后的混合粉料A进行筛分,得到均匀的混合粉体B;使用研钵将质量浓度为8%的PVA溶液以0.05:1的质量比与混合粉体B充分混合得到混合粉体C,再通过干压成型法在8 MPa的成型压力下压制成片状生胚;将生胚放入精密高温炉中,以1 ℃/分钟的升温速度由室温升至100℃,再以2 ℃/分钟升温速度升至1000 ℃,并保温2h,最后待炉温自然降至室温,得到SiC膜。
图1为实施例1所述制备的SiC膜SEM图,由图中可知在1000℃的烧结温度下颗粒间已形成较多的颈部连接,制得的SiC膜孔隙率为48%,平均孔径为0.53 μm,孔径分布如图2所示。抗弯强度为45MPa,纯水渗透性达4000Lm -2h -1bar -1。动态水初始接触角12.7°,水下油接触角为150.1°,水下油粘附力为0.057 mN。在跨膜压力为0.5 bar下,对500 ppm含油废水的油截留率达95%,稳定通量超160 Lm -2h -1
实施例2
按质量比称取78%SiC(平均粒径为5μm)、12%工业级水玻璃和10%氧化锆(平均粒径为1 μm)经初步混合后置于球磨罐中,在350转/分钟的转速下球磨2h得到混合粉料A;使用100目金属网筛对球磨后的混合粉料A进行筛分,得到均匀的混合粉体B;使用研钵将质量浓度为15%的PVA溶液以0.03:1的质量比与混合粉体B充分混合得到混合粉体C,通过干压成型法在8 MPa的成型压力下压制成片状生胚;将生胚放入精密高温炉中,以0.5 ℃/分钟的升温速度由室温升至100℃,再以2 ℃/分钟升温速度升至600 ℃,并保温2h,最后待炉温自然降至室温,得到多孔SiC陶瓷片式膜。
制得的SiC膜孔隙率为44%,平均孔径为0.56 μm,抗弯强度为71MPa,纯水渗透性为4580Lm -2h -1bar -1。动态水初始接触角为33.1°,水下油接触角为153.1°,水下油粘附力为0.037 mN。
实施例3
按质量比称取78%SiC(平均粒径为5 μm)、12%工业级水玻璃和10%氧化锆(平均粒径为1 μm)经初步混合后置于球磨罐中,在250转/分钟的转速下球磨2h得到混合粉料A;使用60目金属网筛对球磨后的混合粉料A进行筛分,得到均匀的混合粉体B;使用研钵将质量浓度为10%的PVA溶液以0.01:1的质量比与混合粉体B充分混合得到混合粉体C,通过干压成型法在16MPa的成型压力下压制成片状生胚;将生胚放入精密高温炉中,以2 ℃/分钟的升温速度由室温升至100℃,再以4 ℃/分钟升温速度升至1000 ℃,并保温 4h,最后待炉温自然降至室温,得到多孔SiC陶瓷片式膜。
制得的SiC膜孔隙率为36%,平均孔径为1 μm,抗弯强度为85 MPa,纯水渗透性为5200Lm -2h -1bar -1。动态水初始接触角仅12.6°,水下油接触角为155.1°,水下油粘附力低至0.041 mN,在粘附力测试进程中(图3),膜表面的粘附力对离开膜面的油滴形状无明显影响。图4为在1000℃下烧结的不同配方SiC膜(实施例1和实施例3)经过长时间的热酸碱腐蚀的强度变化图。如图4所示,在80℃的1%NaOH溶液和20%H 2SO 4溶液浸泡下,SiC膜强度无明显变化,证明其良好的耐化学腐蚀性。
实施例4
按质量比称取88%SiC(平均粒径为5 μm)和12%NaA(r)(平均粒径为2 μm)经初步混合后置于球磨罐中,在500转/分钟的转速下球磨2h得到混合粉料A;使用人100目金属网筛对球磨后的混合粉料A进行筛分,得到均匀的混合粉体B;使用研钵将质量浓度为10%的PVA溶液以0.05:1的质量比与混合粉体B充分混合得到混合粉体C,通过干压成型法在8 MPa的成型压力下压制成片状生胚;将生胚放入精密高温炉中,以2 ℃/分钟的升温速度由室温升至100℃,再以2 ℃/分钟升温速度升至1200 ℃,并保温3h,最后待炉温自然降至室温,得到多孔SiC陶瓷片式膜。
制得的SiC膜孔隙率为40%,平均孔径为0.67μm,抗弯强度为81MPa,纯水渗透性为3800Lm -2h -1bar -1。动态水初始接触角仅12.01°,水下油接触角为150.2°,水下油粘附力为0.056mN。在粘附力测试进程中(图3),膜表面的粘附力使离开膜面的油滴发生轻微形变,但油滴能从膜面完全剥离。
实施例5
按质量比称取88%SiC(平均粒径为5μm)和12%NaA(r)(平均粒径为2 μm)经初步混合后置于球磨罐中,在100转/分钟的转速下球磨2h得到混合粉料A;使用人60目金属网筛对球磨后的混合粉料A进行筛分,得到均匀的混合粉体B;使用研钵将质量浓度为2%的PVA溶液以0.05:1的质量比与混合粉体B充分混合得到混合粉体C,通过干压成型法在20 MPa的成型压力下压制成片状生胚;将生胚放入精密高温炉中,以1 ℃/分钟的升温速度由室温升至100℃,再以2 ℃/分钟升温速度升至1300 ℃,并保温2h,最后待炉温自然降至室温,得到多孔SiC陶瓷片式膜。
制得的SiC膜孔隙率为26%,平均孔径为0.58 μm,抗弯强度为76MPa,纯水渗透性达2300Lm -2h -1bar -1。动态水初始接触角为50.21°,水下油接触角为146.1°,水下油粘附力为0.118 mN。将该SiC膜作为乳化介质,控制膜面流速为0.68 m/s。控制水相相以10 mL/min的流量透过膜进入油相,制备的润滑油乳液含水量为10%,乳化通量为1910 Lm -2h -1。图5为油包水乳液金相显微镜图和粒径分布图。乳滴粒径约2 μm,呈单分散状态,分布集中,离散度仅为0.405。
实施例6
按质量比称取88%SiC(平均粒径为5μm)和12%NaA(r)(平均粒径为2 μm)经初步混合后置于球磨罐中,在400转/分钟的转速下球磨2h得到混合粉料A;使用人60目金属网筛对球磨后的混合粉料A进行筛分,得到均匀的混合粉体B;使用研钵将质量浓度为10%的PVA溶液以0.04:1的质量比与混合粉体B充分混合得到混合粉体C,通过干压成型法在24 MPa的成型压力下压制成片状生胚;将生胚放入精密高温炉中,以1 ℃/分钟的升温速度由室温升至100℃,再以3 ℃/分钟升温速度升至1400 ℃,并保温1h,最后待炉温自然降至室温,得到多孔SiC陶瓷片式膜。
制得的SiC膜孔隙率为13%,平均孔径为0.175μm,抗弯强度为21MPa,因膜材料孔径及孔隙率较低,纯水渗透性为150 Lm -2h -1bar -1,对含油废水中油的截留率可达99%。动态水初始接触角为66.8°,水下油接触角为120.3°,水下油粘附力为0.080mN。
实施例7
按质量比称取88%SiC(平均粒径为5μm)和12%NaA(r)(平均粒径为2 μm)经初步混合后置于球磨罐中,在350转/分钟的转速下球磨2h得到混合粉料A;使用人60目金属网筛对球磨后的混合粉料A进行筛分,得到均匀的混合粉体B;使用研钵将质量浓度为8%的PVA溶液以0.05:1的质量比与混合粉体B充分混合得到混合粉体C,通过干压成型法在24 MPa的成型压力下压制成片状生胚;将生胚放入精密高温炉中,以1 ℃/分钟的升温速度由室温升至100℃,再以4 ℃/分钟升温速度升至1000 ℃,并保温2h,最后待炉温自然降至室温,得到多孔SiC陶瓷片式膜。
图2为实施例1和7所述制备的SiC膜孔径分布图,由图中可知随成型压力的增加,有效规整SiC膜的孔径尺寸,降低其最可几孔径。制得的SiC膜孔隙率为40%,平均孔径为0.48 μm,抗弯强度为48MPa,纯水渗透性为1700 Lm -2h -1bar -1。动态水初始接触角为15.45°,水下油接触角为150.3°,水下油粘附力为0.132 mN。粘附力较高,膜表面的粘附力使离开膜面的油滴发生形变(图3),油滴无法从膜面完全剥离,在膜表面有部分油相残留。
对比例1
文献(Eometal, Clays and Clay Minerals, 2015, 63(3): 222-234)报道在跨膜压力超3 bar下,对600 ppm含油废水的油截留率仅84.1%,稳定通量为90 Lm -2h -1
对比例2
文献(Zhu etal, JournalofMembraneScience,2014, 466: 36-44)报道在跨膜压力为3.4 bar下,对500 ppm含油废水的油截留率为98%,稳定通量低至13.55 Lm -2h -1
实施例1与对比例1和对比例2的过滤数据对比如表2。
对比例3
文献(Jing etal, Desalination, 2006, 191: 219-222)报道使用亲水陶瓷膜进行膜乳化制备油包水乳液。实施例5与对比例3的膜乳化性能数据对比如表3。
表1实施例1、4、5、6、7样品表征结果对比
样品 制样压力 (MPa) 烧结温度 (°C) 平均孔径 (μm) 孔隙率 (%) 初始水接触角(°) 水下油粘附力(mN)
实施例1 8 1000 0.53 48 12.7 0.057
实施例4 8 1200 0.67 40 12.01 0.056
实施例5 20 1300 0.58 26 50.21 0.118
实施例6 24 1400 0.175 13 66.8 0.08
实施例7 24 1000 0.48 40 15.45 0.132
表1结果表明在相同配方下,制样压力和烧结温度的变化能一步调控SiC膜的孔结构和表面性质。
表2 实施例1与对比例1和2的过滤数据对比
样品 含油废水浓度 (ppm) 跨膜压差 (bar) 截留率 (%) 稳定通量 (Lm -2h -1)
实施例1 500 0.5 95 162
对比例1 600 3.03 84.1 90
对比例2 500 3.4 98 13.55
表2结果表明,当处理油浓度相似的含油废水时,实施例1的SiC膜在低跨膜压差下对油的截留率高的同时,其稳定通量远高于对比例1和对比例2中的油水分离性能。证明所制备的膜在油水分离应用上的优势。
表3 实施例5与对比例3的膜乳化性能数据对比
样品 膜孔径 (μm) 乳液粒径 (μm) 乳化通量 (Lm -2h -1)
实施例5 0.58 2 1910
对比例3 0.16 1-2 140.6
如表3所示,实施例5所制备的SiC膜与对比例相比,在能制备出粒径相当的油包水均匀乳液的同时,其乳化通量提升超10倍,有利于其在油包水乳液制备过程中的应用。

Claims (7)

  1. 一种一步调控碳化硅膜孔结构和表面性质的方法,其特征在于,包括以下制备步骤:
    (1)称取一定质量比的平均粒径为5 μm的SiC骨料和烧结助剂,采用球磨或三维混料机混合一定时间,确保混合均匀,得到混合粉料A;采用筛网对混合粉料A进行筛分,得到粒径均匀的混合粉体B;将混合粉体B与粘结剂充分混合得到混合粉体C;
    (2)将混合粉体C在一定成型压力下制成一定形状的生胚;
    (3)将生胚放入高温炉中,按照一定的烧结程序进行原位烧结反应,得到不同孔结构和表面性质的SiC膜。
  2. 根据权利要求1所述的一种一步调控碳化硅膜孔结构和表面性质的方法,其特征在于,步骤(1)所述的烧结助剂为NaA分子筛膜合成废料、工业级水玻璃和氧化锆;烧结助剂占混合粉体A的质量的12%-22%;用于混合粉料的球磨或三维混料机转速为100-500转/分钟,球磨时间为2h。
  3. 根据权利要求1所述的一种一步调控碳化硅膜孔结构和表面性质的方法,其特征在于,步骤(1)所述的筛网目数为50~100目。
  4. 根据权利要求1所述的一种一步调控碳化硅膜孔结构和表面性质的方法,其特征在于,步骤(1)所述的粘结剂为聚乙烯醇溶液,其质量浓度为2~15 wt.%。
  5. 根据权利要求1所述的一种一步调控碳化硅膜孔结构和表面性质的方法,其特征在于,步骤(2)所述的调控生胚的成型压力为8~24 MPa,形状为片状、管状、多通道、平板等构型。
  6. 根据权利要求1所述的一种一步调控碳化硅膜孔结构和表面性质的方法,其特征在于,步骤(3)所述的烧结程序为:以0.5~2℃/分钟的升温速度由室温升至100℃,再以2~4℃/分钟升温速度升至600~1400℃,并保温1~4h,自然降至室温。
  7. 根据权利要求1~6任一项所述的一种一步调控碳化硅膜孔结构和表面性质的方法,其特征在于,所述的SiC膜应用于油水分离和油包水乳液制备过程。
PCT/CN2023/075425 2022-01-11 2023-02-10 一种一步调控碳化硅膜孔结构和表面性质的方法 WO2023134781A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210025969.9A CN114315363B (zh) 2022-01-11 2022-01-11 一种一步调控碳化硅膜孔结构和表面性质的方法
CN202210025969.9 2022-01-11

Publications (1)

Publication Number Publication Date
WO2023134781A1 true WO2023134781A1 (zh) 2023-07-20

Family

ID=81025982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075425 WO2023134781A1 (zh) 2022-01-11 2023-02-10 一种一步调控碳化硅膜孔结构和表面性质的方法

Country Status (2)

Country Link
CN (1) CN114315363B (zh)
WO (1) WO2023134781A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115028846B (zh) * 2022-05-13 2023-09-26 山东理工大学 二维Zn2(bim)4金属有机骨架材料的合成方法
CN115745618A (zh) * 2022-11-21 2023-03-07 南京工业大学 一种提高多孔碳化硅膜机械强度的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103819194A (zh) * 2014-01-04 2014-05-28 河南晟道科技有限公司 用于烧结碳化硅陶瓷膜的专用陶瓷材料
CN107082628A (zh) * 2017-05-08 2017-08-22 南京工业大学 一种基于分子筛膜合成残液的多孔陶瓷支撑体制备方法
CN109503172A (zh) * 2018-11-30 2019-03-22 西安交通大学 一种具有蠕虫状晶粒的多孔碳化硅陶瓷的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104211422B (zh) * 2014-09-09 2016-08-24 南京工业大学 一种晶须增强SiC多孔陶瓷材料及其制备方法
CN105884394B (zh) * 2016-06-20 2018-04-13 南京工业大学 一种低温制备多孔碳化硅支撑体的方法
CN106083060B (zh) * 2016-06-20 2018-08-17 南京工业大学 一种碳化硅分离膜的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103819194A (zh) * 2014-01-04 2014-05-28 河南晟道科技有限公司 用于烧结碳化硅陶瓷膜的专用陶瓷材料
CN107082628A (zh) * 2017-05-08 2017-08-22 南京工业大学 一种基于分子筛膜合成残液的多孔陶瓷支撑体制备方法
CN109503172A (zh) * 2018-11-30 2019-03-22 西安交通大学 一种具有蠕虫状晶粒的多孔碳化硅陶瓷的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QIAN, JIANG ET AL.: "Lower-temperature preparation of SiC ceramic membrane using zeolite residue as sintering aid for oil-in-water separation", JOURNAL OF MEMBRANE SCIENCE, vol. 610, 15 May 2020 (2020-05-15), XP086234326, ISSN: 0376-7388, DOI: 10.1016/j.memsci.2020.118238 *
QIAN, JIANG ET AL.: "Low-temperature sintering of a porous SiC ceramic filter using water glass and zirconia as sintering aids", CERAMICS INTERNATIONAL, vol. 47, no. 18, 10 June 2021 (2021-06-10), XP086712892, ISSN: 0272-8842, DOI: 10.1016/j.ceramint.2021.06.020 *

Also Published As

Publication number Publication date
CN114315363B (zh) 2023-02-03
CN114315363A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
WO2023134781A1 (zh) 一种一步调控碳化硅膜孔结构和表面性质的方法
US11040313B2 (en) Super-hydrophilic/underwater super-oleophobic separation membrane and preparation method thereof
Lindqvist et al. Preparation of alumina membranes by tape casting and dip coating
EP1641548B1 (de) Poröser keramikkörper und zugehöriges herstellungsverfahren
CN109650935B (zh) 一种孔形可调的氧化铝多孔陶瓷膜的制备方法
CN113105223B (zh) 一种低成本高渗透性的晶须状陶瓷膜制备及其应用
KR19980042612A (ko) 개방 기공 다공성 소결 생성물 및 그의 생성 방법
KR102542923B1 (ko) 복합 나노 기공성 금속 멤브레인
WO2015014190A1 (zh) 抗高温氧化的烧结Fe-Al基合金多孔材料及过滤元件
CN115090122A (zh) 一种氧化铝晶须膜层结构的陶瓷膜及其制备方法与应用
JP4427545B2 (ja) 水/アルコール分離用チタニア複合膜とこれの製造方法
CN112705053B (zh) 一种耐酸性沸石分子筛膜的制备方法及应用
KR20040081735A (ko) 신규한 무기나노 여과막
EP0515491B1 (en) Inorganic membranes and a process for making inorganic membranes
US5004544A (en) Reaction bonded silicon nitride filtration membranes
JPH03284329A (ja) セラミック膜フイルタおよびその製造方法
CN111153684B (zh) 陶瓷膜及其制备方法和应用
CN111410542A (zh) 一种利用无机共融盐制备亚微孔均匀分布的多孔陶瓷及其制备方法
KR100358078B1 (ko) 실리카층으로 안정화시킨 팔라듐 무기복합막 및 이의 제조방법
Apriyanti et al. Development of fly ash coal/TiO2 pored composite materials in the making of ceramic membrane for water treatment process
CN114703602A (zh) 一种微纳多级多孔柔性纤维膜及制备方法
US10005674B2 (en) Silica support structure for a zeolite membrane
Benito et al. Preparation of multilayer ceramic systems for deposition of mesoporous membranes
JP3589559B2 (ja) セラミックス多孔質膜、これを用いたセラミックス多孔質体及びこれらの製造方法
El Qacemi et al. Development of ceramic microfiltration support from Moroccan sahara clay

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23740121

Country of ref document: EP

Kind code of ref document: A1