WO2023134017A1 - 一种锡精炼硫渣中分离提纯锡和铜的方法 - Google Patents

一种锡精炼硫渣中分离提纯锡和铜的方法 Download PDF

Info

Publication number
WO2023134017A1
WO2023134017A1 PCT/CN2022/082640 CN2022082640W WO2023134017A1 WO 2023134017 A1 WO2023134017 A1 WO 2023134017A1 CN 2022082640 W CN2022082640 W CN 2022082640W WO 2023134017 A1 WO2023134017 A1 WO 2023134017A1
Authority
WO
WIPO (PCT)
Prior art keywords
tin
copper
vulcanizing agent
sulfur
sulfide
Prior art date
Application number
PCT/CN2022/082640
Other languages
English (en)
French (fr)
Inventor
徐宝强
杨斌
王骥
李一夫
田阳
蒋文龙
王飞
熊恒
孔令鑫
曲涛
杨佳
Original Assignee
昆明理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆明理工大学 filed Critical 昆明理工大学
Publication of WO2023134017A1 publication Critical patent/WO2023134017A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/04Working-up slag
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/0054Slag, slime, speiss, or dross treating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B25/00Obtaining tin
    • C22B25/02Obtaining tin by dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B25/00Obtaining tin
    • C22B25/06Obtaining tin from scrap, especially tin scrap
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • C22B7/002Dry processes by treating with halogens, sulfur or compounds thereof; by carburising, by treating with hydrogen (hydriding)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to the technical field of separation and purification, in particular to a method for separating and purifying tin and copper.
  • tin has been an indispensable and important supporting material for scientific and technological progress. Its products have been widely used in industries such as electronics, information, metallurgy, atomic energy and aerospace industries, and the demand has risen rapidly. With the massive mining of primary tin ore, its mineral resources are increasingly depleted, and the grade of primary tin ore continues to decrease, resulting in high impurity content and decreased purity of the crude tin produced. At present, most domestic and foreign enterprises adopt pyro-refining process to further purify crude tin, and the waste slag to be treated during this process is also increasing. Crude tin pyro-refining generally removes impurity copper by adding sulfur. The slag produced and salvaged during the copper removal process is called sulfur slag, in which the content of tin is more than 50%, and the content of copper is 15%. The above has considerable economic value.
  • patent CN200910094633.2 discloses "a method for producing tin tetrachloride".
  • sulfur residue The conversion rate of tin into tin tetrachloride is greater than 90%, but the whole leaching process is carried out in the acidic environment of chlorine and hydrochloric acid, and the equipment needs to be treated with anticorrosion.
  • the cost of purifying the leachate is relatively high, and polluting gases such as waste gas are easily generated.
  • the oxygen pressure leaching method needs to be carried out in a high-acid, high-pressure environment, the reaction environment conditions are high, and the process parameters are not easy to control;
  • the vacuum distillation method needs to mix the sulfur residue and sulfur evenly and use it under low temperature and normal pressure Tin vulcanization, and then volatilize tin in the form of stannous sulfide and copper in the form of cuprous sulfide under high temperature and vacuum conditions, so that the tin and copper in the sulfur slag can be effectively separated, but the vulcanization steps are cumbersome, and the two-step process flow Longer, the consumption of vulcanizing agent is large, and the post-treatment of stannous sulfide and cuprous sulfide is also more complicated.
  • the purpose of the present invention is to provide a method for separating and purifying tin and copper from refining sulfur slag.
  • the method provided by the present invention can achieve high-efficiency separation of tin and copper, and the process is safer, controllable, clean and environmentally friendly.
  • the invention provides a method for separating and purifying tin and copper from tin refining sulfur slag, comprising the following steps:
  • step (2) Sulfurizing the prefabricated block obtained in step (1) to obtain stannous sulfide and copper; the atmosphere of the sulphurization reaction is vacuum.
  • the particle size of the sulfur slag from tin refining in the step (1) is 50-200 mesh.
  • the tin refining sulfur slag in the step (1) includes the following components in mass percentage: Sn 50-75%, Cu 10-35% and S 10-22%.
  • the vulcanizing agent in the step (1) includes one or both of iron sulfide and copper sulfide.
  • the ratio of the amount of S in the iron sulfide to the amount of S in copper sulfide is (0.8-1.2): (0.8-1.2)
  • the particle size of the vulcanizing agent in the step (1) is 100-200 mesh.
  • the ratio of the amount of Sn in the tin refining sulfur slag to the S in the vulcanizing agent in the step (1) is 1:(1-2.5).
  • the temperature of the vulcanization reaction in the step (2) is 900-1100° C., and the time of the vulcanization reaction is 30-90 minutes.
  • the heating rate to the temperature of the vulcanization reaction is 8-12K/min.
  • the degree of vacuum in the step (2) is 1-10 Pa.
  • the cooling method after the vulcanization reaction is completed in the step (2) is to cool to room temperature with the furnace.
  • the invention provides a method for separating and purifying tin and copper from tin refining sulfur slag. 10MPa, the holding time of the pressing is 10-60s; (2) The prefabricated block obtained in step (1) is vulcanized to obtain stannous sulfide and copper; the atmosphere of the vulcanization reaction is vacuum.
  • the present invention mixes the sulfur slag from tin refining with the vulcanizing agent and then briquettes it. On the one hand, it can control the speed at which the vulcanizing agent decomposes to generate sulfur vapor, and prevents most of the sulfur vapor from quickly volatilizing to the furnace wall before it can react with tin, causing vulcanization.
  • the contact between particles can be made more fully through briquetting, and the sulfur released by the vulcanizing agent is also in contact with tin more completely. , so that the tin vulcanization is more sufficient; in addition, the briquetting can also avoid the material spewing caused by the rapid decomposition of the vulcanizing agent during the reaction, thereby avoiding that some unreacted materials will be directly mixed with the condensed product and affect the separation effect of tin and copper, so that the reaction process More controllable and higher separation efficiency.
  • the results of the examples show that the method for separating and purifying tin and copper provided by the present invention has a direct yield of tin greater than 99.5%, and a direct yield of copper greater than 99%.
  • the method for separating and purifying tin and copper provided by the invention has simple process, safe and controllable parameters, and is clean and environment-friendly.
  • Fig. 1 is the process flow chart of the method for separating and purifying tin and copper in the tin refining sulfur slag provided by the present invention
  • Fig. 2 is the crucible in the vacuum furnace of embodiment 1 of the present invention carries out the material splashing state diagram after the vulcanization reaction finishes;
  • Fig. 3 is a state diagram of unreacted materials attached to the bottom of the condensate pan where stannous sulfide is condensed and collected in Example 1 of the present invention.
  • the invention provides a method for separating and purifying tin and copper from tin refining sulfur slag, comprising the following steps:
  • step (2) Sulfurizing the prefabricated block obtained in step (1) to obtain stannous sulfide and copper; the atmosphere of the sulphurization reaction is vacuum.
  • the invention mixes the tin refining sulfur slag with a vulcanizing agent and then presses it to obtain a prefabricated block.
  • a vulcanizing agent by mixing the sulfur slag from tin refining with the vulcanizing agent and then briquetting, it can not only control the speed at which the vulcanizing agent decomposes to generate sulfur vapor, but also prevent most of the sulfur vapor from volatilizing quickly to the furnace wall before it can react with tin, resulting in vulcanization efficiency.
  • the contact between particles can be made more fully through briquetting, and at the same time, the contact between the sulfur released by the decomposition of the vulcanizing agent and tin is more complete, so that The vulcanization of tin is more sufficient; in addition, the briquetting can also avoid the material gushing caused by the rapid decomposition of the vulcanizing agent during the reaction, so as to avoid part of the unreacted material from being directly mixed with the condensed product and affect the separation effect of tin and copper, making the reaction process more controllable , the separation efficiency is higher.
  • the pressing pressure is 1-10 MPa, preferably 2-9 MPa, more preferably 3-8 MPa, most preferably 4-6 MPa;
  • the holding time of pressing is 10-60s, preferably 15 ⁇ 55s, more preferably 20 ⁇ 50s, most preferably 25 ⁇ 45s.
  • by controlling the pressing pressure and holding time within the above range it is more beneficial to obtain a prefabricated block with suitable density, and ensures more sufficient contact between particles and more sufficient vulcanization reaction.
  • the present invention has no special requirements on the pressing equipment, and the pressing equipment well known to those skilled in the art can be used.
  • the pressing equipment is preferably a hydraulic press.
  • the present invention has no special requirements on the mixing operation, and it is enough to use the mixing operation well known to those skilled in the art to make the materials evenly mixed.
  • the particle size of the tin refining sulfur slag is preferably 50-200 mesh, more preferably 80-180 mesh, and most preferably 100-150 mesh.
  • the sulfur slag from tin refining preferably includes the following components in mass percentage: Sn 50-75%, Cu 10-35% and S 10-22%.
  • Sn 50-75% Sn 50-75%
  • Cu 10-35% S 10-22%.
  • the present invention can effectively and fully separate Sn and Cu in the tin refining sulfur slag by selecting the above components.
  • the vulcanizing agent preferably includes one or both of iron sulfide and copper sulfide.
  • one or both of iron sulfide and copper sulfide are selected as the vulcanizing agent, which is not only more conducive to the full progress of the vulcanization reaction, but also can avoid the pollution caused by the direct introduction of sulfur and reduce the corrosion of reaction equipment.
  • the ratio of the amount of S in the iron sulfide to the amount of S in copper sulfide is preferably (0.8 ⁇ 1.2): (0.8 ⁇ 1.2 ), more preferably 1:1.
  • the tin in the sulfur slag of tin refining can undergo a sulfide interaction reaction with the sulfide agent, that is, the gas-liquid reaction with sulfur vapor and the liquid-solid reaction with sulfide ore. Reaction, increase the volatilization rate of tin while reducing the volatilization loss of copper, thereby effectively improving the direct yield of tin and copper.
  • the iron sulfide is preferably from pyrite; the pyrite preferably includes the following components in mass percentage: Fe 40-50% and S 50-60%.
  • the copper sulfide is preferably selected from copper sulfide ore; the copper sulfide ore preferably includes the following components in mass fraction: Cu 20-35%, Fe 20-35% and S 30-50%.
  • the particle size of the vulcanizing agent is preferably 100-200 mesh, more preferably 120-180 mesh, and most preferably 150-160 mesh. In the present invention, by controlling the particle size of the vulcanizing agent within the above range, it is more conducive to the full progress of the vulcanization reaction.
  • the ratio of the amount of Sn in the sulfur slag from tin refining to the amount of S in the vulcanizing agent is preferably 1:(1-2.5), more preferably 1:(1.2-2), and most preferably 1: (1.4 ⁇ 1.8).
  • the present invention can make the sulfurizing agent fully react with the Sn in the tin refining sulfur slag by controlling the ratio of the amount of Sn in the tin refining sulfur slag to the amount of S in the vulcanizing agent within the above range, thereby obtaining a higher Sn direct rate. yield.
  • the present invention performs vulcanization reaction on the prefabricated block to obtain stannous sulfide and copper.
  • the atmosphere of the vulcanization reaction is vacuum.
  • the vacuum degree of the vacuum is preferably 1-10Pa, more preferably 2-9Pa, most preferably 3-8Pa.
  • the invention can avoid the oxidation of tin refining sulfur slag and vulcanizing agent by carrying out vulcanization reaction under vacuum and controlling the degree of vacuum within the above range, and is more conducive to improving the direct yield of tin and copper.
  • the temperature of the vulcanization reaction is preferably 900-1100°C, more preferably 950-1050°C, most preferably 1000°C; the time of the vulcanization reaction is preferably 30-90min, more preferably 40-80min , most preferably 50-60 min.
  • the present invention can ensure that the vulcanizing agent is decomposed with suitable decomposition efficiency by controlling the temperature and time of the vulcanization reaction within the above-mentioned range, avoiding the sulfur loss caused by the volatilization and condensation of sulfur vapor caused by too fast decomposition of the vulcanizing agent on the wall of the vacuum furnace. Under the reaction temperature and time, the vulcanization reaction can be fully carried out.
  • the heating rate to the temperature of the vulcanization reaction is preferably 8-12K/min, more preferably 9-11K/min, most preferably 10K/min.
  • the present invention can ensure that the reaction raw materials are heated more evenly, and avoid the fugitive loss caused by the thermal decomposition of the outer raw materials for a long time.
  • the cooling method after the vulcanization reaction is completed is preferably furnace cooling to room temperature.
  • the process flow chart of the method for separating and purifying tin and copper in the tin refining sulfur slag provided by the present invention is shown in Figure 1.
  • the present invention uses the tin refining sulfur slag and vulcanizing agent as the reaction raw materials, and the reaction raw materials are first passed through the briquetting and then vacuum Distillation (that is, the sulfidation reaction process) to obtain stannous sulfide and copper, wherein copper does not volatilize and forms a blocky matte shape, stannous sulfide volatilizes and collects stannous sulfide powder by condensation, thereby realizing the separation of copper and tin Efficient separation.
  • the method for separating and purifying tin and copper from tin refining sulfur slag provided by the invention can obtain a high direct yield of tin and copper, and the reaction process is more controllable, the separation efficiency is higher, and the method is clean and environment-friendly.
  • tin refining sulfur slag by mass percent, composition is: Sn 69.38%, Cu 15.60% and S 10.13%
  • vulcanizing agent iron sulfide, selected from pyrite, composition by mass percent is: Fe 43.75%) % and S 52.11%) according to the ratio of the amount of Sn in tin refining sulfur slag to the amount of S in the vulcanizing agent 1:2 to obtain the mixed material, press the mixed material into a prefabricated block with a hydraulic press at 5MPa, and the holding time Then put the prefabricated block into the crucible in the vacuum furnace, and keep the vulcanization reaction for 90 minutes under the conditions of vacuum degree in the furnace of 10Pa, heating rate of 10K/min, and reaction temperature of 900°C.
  • the tin in the mixed material reacts with the vulcanizing agent to obtain stannous sulfide and matte, wherein the matte does not volatilize, and the stannous sulfide volatilizes and is condensed and collected. Finally, the quality of the volatile matter is 20.95g.
  • the phase analysis of the volatile matter shows that the main component is stannous sulfide.
  • the tin content in the volatile matter is 13.85g, and the copper content is 0.03g.
  • the direct yield of tin It is 99.81%, and the direct recovery rate of copper is 99.04%.
  • Fig. 2 is a diagram of the material splashing after the sulfidation reaction of the crucible in the vacuum furnace of the embodiment 1.
  • Fig. 3 is the status diagram of the unreacted material attached to the bottom of the condensate pan that condenses and collects stannous sulfide in embodiment 1.
  • tin refining sulfur slag (by mass percentage, composition is: Sn 65.22%, Cu 20.88% and S 11.54%) and vulcanizing agent (iron sulfide, selected from pyrite, composition by mass percentage is: Fe 43.75%) % and S 52.11%) according to the ratio of the amount of Sn in the tin refining sulfur slag to the amount of S in the vulcanizing agent is 1:1.5 and mixed uniformly to obtain the mixed material, the mixed material is pressed into a prefabricated block with a hydraulic press at 5MPa, and the pressure is maintained The time is 30s, and then the prefabricated block is put into the crucible in the vacuum furnace, and the vulcanization reaction is carried out under the conditions of the vacuum degree in the furnace of 5Pa, the heating rate of 10K/min, and the reaction temperature of 1000°C for 60min.
  • vulcanizing agent iron sulfide, selected from pyrite, composition by mass percentage is: Fe 43.75%) % and S
  • the tin in the mixed material reacts with the vulcanizing agent to obtain stannous sulfide and matte, wherein the matte does not volatilize, and the stannous sulfide volatilizes and is condensed and collected. Finally, the quality of the volatile matter is 18.99g.
  • the phase analysis of the volatile matter shows that the main component is stannous sulfide. Through chemical analysis and calculation, the tin content in the volatile matter is 12.99g, and the copper content is 0.05g.
  • the direct yield of tin It is 99.59%, and the direct copper recovery rate is 98.80%.
  • tin refining sulfur slag by mass percentage, composition is: Sn 59.33%, Cu 23.10% and S 12.95%) and vulcanizing agent (iron sulfide, selected from pyrite, by mass percentage, composition is: Fe 43.75%) % and S 52.11%) according to the ratio of the amount of Sn in the tin refining sulfur slag to the amount of S in the vulcanizing agent is 1:1 and mixed evenly to obtain the mixed material, and the mixed material is pressed into a prefabricated block with a hydraulic press at 5MPa, and the pressure is maintained The time is 30s, and then the prefabricated block is put into the crucible in the vacuum furnace, and the vulcanization reaction is carried out under the conditions of a vacuum degree of 1Pa, a heating rate of 10K/min, and a reaction temperature of 1100°C for 30min.
  • vulcanizing agent iron sulfide, selected from pyrite, by mass percentage, composition is: Fe 43.75%) %
  • the tin in the mixed material reacts with the vulcanizing agent to obtain stannous sulfide and matte, wherein the matte does not volatilize, and the stannous sulfide volatilizes and is condensed and collected. Finally, the quality of the volatile matter is 17.41g.
  • the phase analysis of the volatile matter shows that the main component is stannous sulfide. Through chemical analysis and calculation, the tin content in the volatile matter is 11.84g, and the copper content is 0.07g.
  • the direct yield of tin It is 99.78%, and the direct copper recovery rate is 98.48%.
  • tin refining sulfur slag (according to mass percentage, composition is: Sn 61.15%, Cu 22.43% and S 12.25%) and vulcanizing agent (copper sulfide, selected from copper sulfide ore, according to mass percentage, composition is: Cu 29.55 %, Fe 24.47% and S 33.91%) according to the ratio of the amount of Sn in the tin refining sulfur slag to the amount of S in the vulcanizing agent is 1:1.5 and mixed evenly to obtain the mixed material, and the mixed material is pressed into a prefabricated
  • the prefabricated block was put into the crucible in the vacuum furnace for 30s, and the vulcanization reaction was carried out at the vacuum degree of 5Pa, the heating rate of 10K/min, and the reaction temperature of 1000°C for 60min.
  • the tin in the mixed material reacts with the vulcanizing agent to obtain stannous sulfide and matte, wherein the matte does not volatilize, and the stannous sulfide volatilizes and is condensed and collected. Finally, the quality of the volatile matter is 16.96g.
  • the phase analysis of the volatile matter shows that the main component is stannous sulfide. Through chemical analysis and calculation, the tin content in the volatile matter is 12.16g, and the copper content is 0.11g.
  • the direct yield of tin It is 99.50%, and the direct copper recovery rate is 98.04%.
  • the amount of 20g tin refining sulfur slag (according to mass percentage, composition: Sn 65.22%, Cu 20.88% and S 11.54%) and sulfide (iron sulfide and copper sulfide, and the amount of S in iron sulfide and copper sulfide
  • the ratio is 1:1; Wherein, iron sulfide is selected from pyrite, and composition by mass percentage is: Fe 43.75% and S 52.11%; Copper sulfide is selected from copper sulfide ore, and composition by mass percentage is: Cu 29.55% , Fe 24.47% and S 33.91%) according to the ratio of the amount of Sn in the tin refining sulfur slag to the amount of S in the vulcanizing agent is 1:1.5 and mixed evenly to obtain a mixed material, and the mixed material is pressed into a prefabricated block with a hydraulic press at 5MPa , the pressure holding time is 30s, and then the prefabricated block is put into the crucible
  • the tin in the mixed material reacts with the vulcanizing agent to obtain stannous sulfide and matte, wherein the matte does not volatilize, and the stannous sulfide volatilizes and is condensed and collected. Finally, the quality of the volatile matter is 18.57g.
  • the phase analysis of the volatile matter shows that the main component is stannous sulfide. Through chemical analysis and calculation, the tin content in the volatile matter is 13.01g, and the copper content is 0.07g.
  • the direct yield of tin It is 99.74%, and the copper direct recovery rate is 99.04%.
  • the vulcanizing agent of embodiment 5 is the vulcanizing agent configured as 1:1 according to the ratio of pyrite and copper sulfide ore according to the amount of S material, compared with single pyrite or sulfide
  • copper ore has a better effect on the separation of tin and copper in the sulfur slag of tin refining.
  • tin can undergo sulfidation interaction with the vulcanizing agent (gas-liquid reaction with sulfur vapor and liquid-solid reaction with sulfide ore), increasing the amount of tin At the same time, the volatilization loss of copper is reduced, and the direct yield of tin and copper is effectively improved.
  • the method for separating and purifying tin and copper in the tin refining sulfur slag provided by this comparative example is specifically the following steps:
  • tin refining sulfur slag composition by mass percent: Sn 69.38%, Cu 15.60% and S 10.13%
  • vulcanizing agent iron sulfide, selected from pyrite ore and composition by mass percent: Fe 43.75% and S 52.11%) according to the ratio of the amount of Sn in the tin refining sulfur slag to the amount of S in the vulcanizing agent 1:2 and mix evenly to obtain the mixed material, then put the mixed material into the crucible in the vacuum furnace, and the vacuum degree in the furnace
  • the vulcanization reaction is carried out under the conditions of 10 Pa, heating rate of 10K/min, and reaction temperature of 900°C for 90 minutes.
  • the tin in the mixed material reacts with the vulcanizing agent to obtain stannous sulfide and matte, wherein the matte does not volatilize, and the stannous sulfide volatilizes and is condensed and collected. Finally, the quality of the volatile matter is 21.79g.
  • the phase analysis of the volatile matter shows that the main component is stannous sulfide.
  • the tin content in the volatile matter is 13.83g
  • the copper content is 0.12g.
  • the direct yield of tin It is 99.67%, and the copper direct recovery rate is 96.15%.
  • the method for separating and purifying tin and copper in the tin refining sulfur slag provided by this comparative example is specifically the following steps:
  • tin refining sulfur slag composition by mass percentage is: Sn 65.22%, Cu 20.88% and S 11.54%) and vulcanizing agent (iron sulfide, selected from pyrite, composition by mass percentage is: Fe 43.75% and S 52.11%) according to the ratio of the amount of Sn in the tin refining sulfur slag to the amount of S in the vulcanizing agent 1:1.5 and mix evenly to obtain the mixed material, then put the mixed material into the crucible in the vacuum furnace, vacuum in the furnace The temperature is 5 Pa, the heating rate is 10K/min, and the reaction temperature is 1000 ° C for 60 min to carry out the vulcanization reaction.
  • the tin in the mixed material reacts with the vulcanizing agent to obtain stannous sulfide and matte, wherein the matte does not volatilize, and the stannous sulfide volatilizes and is condensed and collected.
  • the quality of volatile matter is 18.85g, carries out phase analysis to this volatile matter, and main component is stannous sulfide, and through chemical analysis and calculation tin content in volatile matter is 12.96g, and copper content is 0.07g, tin direct yield It is 99.36%, and the direct copper recovery rate is 98.32%.
  • the method for separating and purifying tin and copper in the tin refining sulfur slag provided by this comparative example is specifically the following steps:
  • tin refining sulfur slag composition by mass percentage: Sn 59.33%, Cu 23.10% and S 12.95%) and pyrite (composition by mass percentage: Fe 43.75% and S 52.11%) are used according to the tin refining sulfur
  • the ratio of the amount of Sn in the slag to the amount of S in the vulcanizing agent is 1:1 and the mixed material is uniformly obtained, and then the mixed material is put into a crucible in a vacuum furnace, and the vacuum degree in the furnace is 1Pa, and the heating rate is 10K/ min, and the reaction temperature is 1100 ° C for 30 min to carry out the vulcanization reaction.
  • the tin in the mixed material reacts with the vulcanizing agent to obtain stannous sulfide and matte, wherein the matte does not volatilize, and the stannous sulfide volatilizes and is condensed and collected. Finally, the quality of the volatile matter is 18.39g.
  • the phase analysis of the volatile matter shows that the main component is stannous sulfide. Through chemical analysis and calculation, the tin content in the volatile matter is 11.82g, and the copper content is 0.13g.
  • the direct yield of tin It is 99.61%, and the direct copper recovery rate is 97.19%.
  • the step of mixing and briquetting can effectively control the rate of decomposition of the vulcanizing agent, which can avoid sulfur loss caused by volatilization and condensation of sulfur vapor on the wall of the vacuum furnace caused by too fast decomposition of the vulcanizing agent, and at the same time make the contact between the mixed material particles more efficient. Close, strengthen the vulcanization reaction between tin and iron sulfide (copper sulfide) and sulfur vapor, improve the utilization rate of vulcanizing agent, so as to ensure that the vulcanization of tin is fully complete.
  • Example 1 The parameters in Example 1 are replaced by Examples 7-16 and the direct yields of tin and copper thereof
  • the method for separating and purifying tin and copper provided by the present invention has a direct yield of tin greater than 99.5%, and a direct yield of copper greater than 99%.

Abstract

本发明提供的一种锡精炼硫渣中分离提纯锡和铜的方法,属于分离提纯技术领域。本发明通过将锡精炼硫渣与硫化剂混合后压块,不仅可以控制硫化剂分解产生硫蒸气的速度,避免大部分硫蒸气未及时与锡反应就快速挥发到炉壁,造成硫化效率的降低和硫的浪费以及硫蒸汽挥发导致的环境污染和炉壁的腐蚀;而且通过压块可以使颗粒之间接触更充分,同时硫化剂分解放出的硫与锡的接触也更加完全,从而使锡的硫化更加充分;通过压块还可以避免反应时硫化剂迅速分解导致的物料喷涌,从而避免部分未反应物料直接与冷凝产物混杂而影响锡铜分离效果,反应进程更可控,分离效率更高。本发明提供的方法锡直收率大于99.5%,铜直收率大于99%。

Description

一种锡精炼硫渣中分离提纯锡和铜的方法
本申请要求于2022年01月17日提交中国专利局、申请号为202210047670.3、发明名称为“一种锡精炼硫渣中分离提纯锡和铜的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及分离提纯技术领域,尤其涉及一种分离提纯锡和铜的方法。
背景技术
近年来,锡作为科技进步不可或缺的重要支撑材料,其产品被广泛应用于电子、信息、冶金、原子能及航天工业等行业,需求量迅速上升。而随着人们对原生锡矿的大量采掘,其矿产资源日益枯竭,原生锡矿的品位不断降低,导致产出的粗锡杂质含量高、纯度下降。目前国内外企业大多采用火法精炼工艺进一步提纯粗锡,在此过程的产生的待处理废渣也不断增加。粗锡火法精炼一般采用加硫的方式除去其中的杂质铜,在此除铜过程中产生并打捞上来的渣被称为硫渣,其中锡的含量在50%以上,铜的含量在15%以上,具有相当可观的经济价值。
目前,针对硫渣的处理难题,各锡冶金企业和科研院所开发出了许多不同的处理工艺,包括隔膜电解法、氧化焙烧-酸浸法、直接氯化法、氧压浸出法和真空蒸馏法等。其中,隔膜电解法电解过程锡的直收率偏低,一般只有40%~55%;氧化焙烧-酸浸法虽然分离直收率高,但是工艺流程长,生产成本和能源消耗高;直接氯化法:锡能与氯气直接发生反应生成四氯化锡,因此可以采用氯气浸出的方法处理硫渣,例如专利CN200910094633.2公布了“一种生产四氯化锡的方法”,该方法硫渣中的锡转化为四氯化锡的转化率大于90%,但整个浸出过程在氯盐酸性环境下进行,需对设备进行防腐处理,同时浸出液的净化处理成本较高,易产生废气等污染气体,不利于环保;氧压浸出法需在高酸、高压环境下进行,反应环境条件要求高,工艺参数不易控;真空蒸馏法需将硫渣与硫磺均匀混合后先在低温常压条件下使锡硫化,然后在高温真空条件下使锡以硫化亚锡的形式挥发,铜以硫化亚铜的形式不挥发,从而使得硫渣中的锡铜有效分离,但是硫化步骤繁琐,两步法工艺流程较长,硫化剂消耗量大,而 且硫化亚锡和硫化亚铜的后处理也较为复杂。
因此,亟须提供一种精炼硫渣中分离提纯锡和铜的方法,能够实现锡和铜的高效分离的同时,过程更安全可控,清洁环保。
发明内容
本发明的目的在于提供一种精炼硫渣中分离提纯锡和铜的方法,本发明提供的方法够实现锡和铜的高效分离的同时,过程更安全可控,清洁环保。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种锡精炼硫渣中分离提纯锡和铜的方法,包括如下步骤:
(1)将锡精炼硫渣与硫化剂混合后压制,得到预制块;所述压制的压力为1~10MPa,所述压制的保压时间为10~60s;
(2)将步骤(1)得到的预制块进行硫化反应,得到硫化亚锡和铜;所述硫化反应的氛围为真空。
优选地,所述步骤(1)中锡精炼硫渣的粒径为50~200目。
优选地,所述步骤(1)中的锡精炼硫渣包括以下质量百分比的组分:Sn 50~75%、Cu 10~35%和S 10~22%。
优选地,所述步骤(1)中的硫化剂包括硫化铁和硫化铜中的一种或两种。
优选地,当所述硫化剂为硫化铁和硫化铜时,所述硫化铁中的S和硫化铜中的S的物质的量之比为(0.8~1.2):(0.8~1.2)
优选地,所述步骤(1)中硫化剂的粒径为100~200目。
优选地,所述步骤(1)中锡精炼硫渣中的Sn与硫化剂中的S的物质的量之比为1:(1~2.5)。
优选地,所述步骤(2)中硫化反应的温度为900~1100℃,硫化反应的时间为30~90min。
优选地,升温至所述硫化反应的温度的升温速率为8~12K/min。
优选地,所述步骤(2)中真空的真空度为1~10Pa。
优选地,所述步骤(2)中硫化反应完成后的冷却方式为随炉冷却至 室温。
本发明提供了一种锡精炼硫渣中分离提纯锡和铜的方法,包括以下步骤:(1)将锡精炼硫渣与硫化剂混合后压制,得到预制块;所述压制的压力为1~10MPa,所述压制的保压时间为10~60s;(2)将步骤(1)得到的预制块进行硫化反应,得到硫化亚锡和铜;所述硫化反应的氛围为真空。本发明通过将锡精炼硫渣与硫化剂混合后进行压块,一方面可以控制硫化剂分解产生硫蒸气的速度,避免大部分硫蒸气还没来得及与锡反应就快速挥发到炉壁,造成硫化效率的降低和硫的浪费以及硫蒸汽挥发导致的环境污染和炉壁的腐蚀;另一方面通过压块可以使颗粒之间接触更充分,同时硫化剂分解放出的硫与锡的接触也更加完全,从而使锡的硫化更加充分;此外,通过压块还可以避免反应时硫化剂迅速分解导致的物料喷涌,从而避免部分未反应物料将直接与冷凝产物混杂而影响锡铜分离效果,使反应进程更加可控,分离效率更高。实施例的结果表明,本发明提供的分离提纯锡和铜的方法,锡直收率大于99.5%,铜直收率大于99%。
本发明提供的分离提纯锡和铜的方法工艺简单,参数安全可控,清洁环保。
说明书附图
图1为本发明提供的锡精炼硫渣中分离提纯锡和铜的方法的工艺流程图;
图2为本发明实施例1真空炉内的坩埚进行硫化反应结束后的物料喷溅状况图;
图3为本发明实施例1冷凝收集硫化亚锡的冷凝盘底附着的未反应物料的状况图。
具体实施方式
下面结合实施例和附图对本发明进一步说明。
本发明提供了一种锡精炼硫渣中分离提纯锡和铜的方法,包括如下步骤:
(1)将锡精炼硫渣与硫化剂混合后压制,得到预制块;所述压制的压力为1~10MPa,所述压制的保压时间为10~60s;
(2)将步骤(1)得到的预制块进行硫化反应,得到硫化亚锡和铜;所述硫化反应的氛围为真空。
本发明将锡精炼硫渣与硫化剂混合后压制,得到预制块。本发明通过将锡精炼硫渣与硫化剂混合后进行压块,不仅可以控制硫化剂分解产生硫蒸气的速度,避免大部分硫蒸气还没来得及与锡反应就快速挥发到炉壁,造成硫化效率的降低和硫的浪费以及硫蒸汽挥发导致的环境污染和炉壁的腐蚀;而且通过压块可以使颗粒之间接触更充分,同时硫化剂分解放出的硫与锡的接触也更加完全,从而使锡的硫化更加充分;此外,通过压块还可以避免反应时硫化剂迅速分解导致的物料喷涌,从而避免部分未反应物料将直接与冷凝产物混杂而影响锡铜分离效果,使反应进程更加可控,分离效率更高。
在本发明中,所述压制的压力为1~10MPa,优选为2~9MPa,更优选为3~8MPa,最优选为4~6MPa;所述压制的保压时间为10~60s,优选为15~55s,更优选为20~50s,最优选为25~45s。本发明通过控制压制压力和保压时间在上述范围内,更有利于获得具有适宜致密度的预制块,保证颗粒之间接触更充分的同时硫化反应更加充分。
本发明对所述压制的设备没有特殊要求,采用本领域技术人员熟知的压制设备即可。在本发明中,所述压制的设备优选为液压机。
本发明对所述混合的操作没有特殊要求,采用本领域技术人员熟知的混合操作能够使各物料混合均匀即可。
在本发明中,所述锡精炼硫渣的粒径优选为50~200目,更优选为80~180目,最优选为100~150目。本发明通过控制锡精炼硫渣的粒径在上述范围内,能够保证反应原料具有较大的比表面积,更有利于硫化反应的充分进行。
在本发明中,所述锡精炼硫渣优选包括以下质量百分比的组分:Sn 50~75%、Cu 10~35%和S 10~22%。本发明通过选择上述组分的锡精炼硫渣,能够有效对其中的Sn和Cu进行充分分离。
在本发明中,所述硫化剂优选包括硫化铁和硫化铜中的一种或两种。本发明通过选择硫化铁和硫化铜中的一种或两种作为硫化剂,不仅更有利于硫化反应的充分进行,而且能够避免直接引入硫磺导致的污染,减少对 反应设备的腐蚀。
在本发明中,当所述硫化剂优选为硫化铁和硫化铜时,所述硫化铁中的S和硫化铜中的S的物质的量之比优选为(0.8~1.2):(0.8~1.2),更优选为1:1。本发明通过控制硫化剂中的S的物质的量之比,能够使锡精炼硫渣中的锡与硫化剂发生硫化交互反应,即与硫蒸气的气-液反应以及与硫化矿的液-固反应,增大锡的硫化速率的同时减少铜的挥发损失,从而有效提高锡、铜的直收率。
在本发明中,所述硫化铁优选自硫铁矿;所述硫铁矿优选包括以下质量百分比的组分:Fe 40~50%和S 50~60%。
在本发明中,所述硫化铜优选自硫化铜矿;所述硫化铜矿优选包括以下质量分数的组分:Cu 20~35%,Fe 20~35%和S 30~50%。
在本发明中,所述硫化剂的粒径优选为100~200目,更优选为120~180目,最优选为150~160目。本发明通过控制硫化剂的粒径在上述范围内,更有利于硫化反应充分进行。
在本发明中,所述锡精炼硫渣中的Sn与硫化剂中的S的物质的量之比优选为1:(1~2.5),更优选为1:(1.2~2),最优选为1:(1.4~1.8)。本发明通过控制锡精炼硫渣中的Sn与硫化剂中的S的物质的量之比在上述范围内,能够使硫化剂与锡精炼硫渣中的Sn充分反应,从而获得更高的Sn直收率。
得到预制块后,本发明将所述预制块进行硫化反应,得到硫化亚锡和铜。
在本发明中,所述硫化反应的氛围为真空。在本发明中,所述真空的真空度优选为1~10Pa,更优选为2~9Pa,最优选为3~8Pa。本发明通过在真空下进行硫化反应并控制真空度在上述范围内,能够避免锡精炼硫渣和硫化剂发生氧化,更有利于提高锡和铜具有高直收率。
在本发明中,所述硫化反应的温度优选为900~1100℃,更优选为950~1050℃,最优选为1000℃;所述硫化反应的时间优选为30~90min,更优选为40~80min,最优选为50~60min。本发明通过控制硫化反应的温度和时间在上述范围内,能够保证硫化剂分解具有适宜的分解效率,避免硫化剂分解过快导致硫蒸气大量挥发冷凝在真空炉壁造成的硫损失,同时 在上述反应温度和时间下能够保证硫化反应的充分进行。
在本发明中,升温至所述硫化反应的温度的升温速率优选为8~12K/min,更优选为9~11K/min,最优选为10K/min。本发明通过控制升温速率在上述范围内,能够保证反应原料受热更加均匀,避免外侧原料长时间受热分解而导致逸散损失。
在本发明中,所述硫化反应完成后的冷却方式优选为随炉冷却至室温。
本发明提供的锡精炼硫渣中分离提纯锡和铜的方法的工艺流程图如图1所示,本发明以锡精炼硫渣和硫化剂为反应原料,将反应原料先通过压块再进行真空蒸馏(即硫化反应过程),得到硫化亚锡和铜,其中铜不挥发并结为块状冰铜形貌,硫化亚锡挥发并通过冷凝收集得到硫化亚锡粉体,从而实现铜和锡的高效分离。
本发明提供的锡精炼硫渣中分离提纯锡和铜的方法,能够获得高的锡和铜的直收率,且反应进程更加可控,分离效率更高,清洁环保。
下面结合实施例对本发明提供的锡精炼硫渣中分离提纯锡和铜的方法进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
实施例1
本实施例提供的锡精炼硫渣中分离提纯锡和铜的方法,具体为以下步骤:
将20g锡精炼硫渣(按质量百分比计,成分为:Sn 69.38%、Cu 15.60%和S 10.13%)与硫化剂(硫化铁,选自硫铁矿,按质量百分比计的成分为:Fe 43.75%和S 52.11%)按照锡精炼硫渣中的Sn与硫化剂中的S的物质的量之比1:2混合均匀得到混合物料,用液压机5MPa下将混合物料压制成预制块,保压时间为30s,然后将预制块放入真空炉内的坩埚中,在炉内真空度为10Pa、升温速率10K/min、反应温度900℃条件下保温90min进行硫化反应。
混合物料中的锡与硫化剂发生反应,得到硫化亚锡和冰铜,其中冰铜不挥发,硫化亚锡挥发、冷凝收集。最终,挥发物的质量为20.95g,对该挥发物进行物相分析,主要成分是硫化亚锡,经化学分析与计算挥发物中锡含量为13.85g,铜含量为0.03g,锡直收率为99.81%,铜直收率为 99.04%。
图2为实施例1真空炉内的坩埚进行硫化反应结束后的物料喷溅状况图。
图3为实施例1冷凝收集硫化亚锡的冷凝盘底附着的未反应物料的状况图。
由图2~3可知,坩埚附着的物料喷溅量极少,而且冷凝盘底附着的未反应物料极少,可以看出本发明提供的分离提纯锡和铜的方法通过压块可以避免反应时硫化剂迅速分解导致的物料喷涌,从而避免部分未反应物料将直接与冷凝产物混杂而影响锡铜分离效果,使反应进程更加可控,分离效率更高。
实施例2
本实施例提供的锡精炼硫渣中分离提纯锡和铜的方法,具体为以下步骤:
将20g锡精炼硫渣(按质量百分比计,成分为:Sn 65.22%、Cu 20.88%和S 11.54%)与硫化剂(硫化铁,选自硫铁矿,按质量百分比计的成分为:Fe 43.75%和S 52.11%)按照锡精炼硫渣中的Sn与硫化剂中的S的物质的量之比为1:1.5混合均匀得到混合物料,用液压机5MPa下将混合物料压制成预制块,保压时间为30s,然后将预制块放入真空炉内的坩埚中,在炉内真空度为5Pa、升温速率10K/min、反应温度1000℃条件下保温60min进行硫化反应。
混合物料中的锡与硫化剂发生反应,得到硫化亚锡和冰铜,其中冰铜不挥发,硫化亚锡挥发、冷凝收集。最终,挥发物的质量为18.99g,对该挥发物进行物相分析,主要成分是硫化亚锡,经化学分析与计算挥发物中锡含量为12.99g,铜含量为0.05g,锡直收率为99.59%,铜直收率为98.80%。
实施例3
本实施例提供的锡精炼硫渣中分离提纯锡和铜的方法,具体为以下步骤:
将20g锡精炼硫渣(按质量百分比计,成分为:Sn 59.33%、Cu 23.10%和S 12.95%)与硫化剂(硫化铁,选自硫铁矿,按质量百分比计,成分 为:Fe 43.75%和S 52.11%)按照锡精炼硫渣中的Sn与硫化剂中的S的物质的量之比为1:1混合均匀得到混合物料,用液压机5MPa下将混合物料压制成预制块,保压时间为30s,然后将预制块放入真空炉内的坩埚中,在炉内真空度为1Pa、升温速率10K/min、反应温度1100℃条件下保温30min进行硫化反应。
混合物料中的锡与硫化剂发生反应,得到硫化亚锡和冰铜,其中冰铜不挥发,硫化亚锡挥发、冷凝收集。最终,挥发物的质量为17.41g,对该挥发物进行物相分析,主要成分是硫化亚锡,经化学分析与计算挥发物中锡含量为11.84g,铜含量为0.07g,锡直收率为99.78%,铜直收率为98.48%。
实施例4
本实施例提供的锡精炼硫渣中分离提纯锡和铜的方法,具体为以下步骤:
将20g锡精炼硫渣(按照质量百分比计,成分为:Sn 61.15%、Cu 22.43%和S 12.25%)与硫化剂(硫化铜,选自硫化铜矿,按照质量百分比计,成分为:Cu 29.55%、Fe 24.47%和S 33.91%)按照锡精炼硫渣中的Sn与硫化剂中的S的物质的量之比为1:1.5混合均匀得到混合物料,用液压机5MPa下将混合物料压制成预制块,保压时间为30s,然后将预制块放入真空炉内的坩埚中,在炉内真空度为5Pa、升温速率10K/min、反应温度1000℃条件下保温60min进行硫化反应。
混合物料中的锡与硫化剂发生反应,得到硫化亚锡和冰铜,其中冰铜不挥发,硫化亚锡挥发、冷凝收集。最终,挥发物的质量为16.96g,对该挥发物进行物相分析,主要成分是硫化亚锡,经化学分析与计算挥发物中锡含量为12.16g,铜含量为0.11g,锡直收率为99.50%,铜直收率为98.04%。
实施例5
本实施例提供的锡精炼硫渣中分离提纯锡和铜的方法,具体为以下步骤:
将20g锡精炼硫渣(按照质量百分比计,成分为:Sn 65.22%、Cu 20.88%和S 11.54%)与硫化剂(硫化铁和硫化铜,且硫化铁和硫化铜中 的S的物质的量之比为1:1;其中,硫化铁选自硫铁矿,按质量百分比计成分为:Fe 43.75%和S 52.11%;硫化铜选自硫化铜矿,按质量百分比计成分为:Cu 29.55%、Fe 24.47%和S 33.91%)按照锡精炼硫渣中的Sn与硫化剂中的S的物质的量之比为1:1.5混合均匀得到混合物料,用液压机5MPa下将混合物料压制成预制块,保压时间为30s,然后将预制块放入真空炉内的坩埚中,在炉内真空度为1Pa、升温速率10K/min、反应温度1100℃条件下保温30min进行硫化反应。
混合物料中的锡与硫化剂发生反应,得到硫化亚锡和冰铜,其中冰铜不挥发,硫化亚锡挥发、冷凝收集。最终,挥发物的质量为18.57g,对该挥发物进行物相分析,主要成分是硫化亚锡,经化学分析与计算挥发物中锡含量为13.01g,铜含量为0.07g,锡直收率为99.74%,铜直收率为99.04%。
根据实施例5和实施例2可知,实施例5的硫化剂按照硫铁矿与硫化铜矿按照S物质的量之比为1:1配置而成的硫化剂,比起单一硫铁矿或硫化铜矿作为硫化剂,对锡精炼硫渣中锡铜的分离效果更好。这是因为在锡的硫化过程中,单一硫铁矿作为硫化剂时,硫化铁易分解产生硫蒸气,锡被硫蒸气硫化的速度远大于锡与硫铁矿的反应,锡的硫化速率受制于硫势的高低;同样的,单一硫化铜矿作为硫化剂时,硫化铜矿分解的速度比较慢,产生的硫势较低,锡更多是与硫化铜矿直接反应,锡的硫化速率受制于其与硫化铜矿的反应速率。因此,采用硫铁矿与硫化铜矿按照一定比例配置作为硫化剂,锡能够与硫化剂发生硫化交互反应(与硫蒸气的气-液反应以及与硫化矿的液-固反应),增大锡的硫化速率的同时减少了铜的挥发损失,有效提高了锡、铜的直收率。
对比例1
本对比例提供的锡精炼硫渣中分离提纯锡和铜的方法,具体为以下步骤:
将20g锡精炼硫渣(按质量百分比计成分为:Sn 69.38%、Cu 15.60%和S 10.13%)与硫化剂(硫化铁,选自硫铁矿按照质量百分比计成分为:Fe 43.75%和S 52.11%)按照锡精炼硫渣中的Sn与硫化剂中的S的物质的量之比1:2混合均匀得到混合物料,然后将混合物料放入真空炉内的坩 埚中,在炉内真空度为10Pa、升温速率10K/min、反应温度900℃条件下保温90min进行硫化反应。
混合物料中的锡与硫化剂发生反应,得到硫化亚锡和冰铜,其中冰铜不挥发,硫化亚锡挥发、冷凝收集。最终,挥发物的质量为21.79g,对该挥发物进行物相分析,主要成分是硫化亚锡,经化学分析与计算挥发物中锡含量为13.83g,铜含量为0.12g,锡直收率为99.67%,铜直收率为96.15%。
对比例2
本对比例提供的锡精炼硫渣中分离提纯锡和铜的方法,具体为以下步骤:
将20g锡精炼硫渣(按质量百分比计成分为:Sn 65.22%、Cu 20.88%和S 11.54%)与硫化剂(硫化铁,选自硫铁矿,按质量百分比计成分为:Fe 43.75%和S 52.11%)按照锡精炼硫渣中的Sn与硫化剂中的S的物质的量之比1:1.5混合均匀得到混合物料,然后将混合物料放入真空炉内的坩埚中,在炉内真空度为5Pa、升温速率10K/min、反应温度1000℃条件下保温60min进行硫化反应。
混合物料中的锡与硫化剂发生反应,得到硫化亚锡和冰铜,其中冰铜不挥发,硫化亚锡挥发、冷凝收集。最终,挥发物的质量为18.85g,对该挥发物进行物相分析,主要成分是硫化亚锡,经化学分析与计算挥发物中锡含量为12.96g,铜含量为0.07g,锡直收率为99.36%,铜直收率为98.32%。
对比例3
本对比例提供的锡精炼硫渣中分离提纯锡和铜的方法,具体为以下步骤:
将20g锡精炼硫渣(按质量百分比计成分为:Sn 59.33%、Cu 23.10%和S 12.95%)与硫铁矿(按质量百分比计成分为:Fe 43.75%和S 52.11%)按照锡精炼硫渣中的Sn与硫化剂中的S的物质的量之比1:1混合均匀得到混合物料,然后将混合物料放入真空炉内的坩埚中,在炉内真空度为1Pa、升温速率10K/min、反应温度1100℃条件下保温30min进行硫化反应。
混合物料中的锡与硫化剂发生反应,得到硫化亚锡和冰铜,其中冰铜不挥发,硫化亚锡挥发、冷凝收集。最终,挥发物的质量为18.39g,对该挥发物进行物相分析,主要成分是硫化亚锡,经化学分析与计算挥发物中锡含量为11.82g,铜含量为0.13g,锡直收率为99.61%,铜直收率为97.19%。
根据对比例1~3和实施例1~3可知,压制成块这一步骤对于锡精炼硫渣中锡铜的分离效果有很大的影响。这是由于所述硫化剂在高温低压条件下迅速分解产生大量硫蒸气,若不进行压块,硫蒸气会推动物料沿坩埚壁向上喷涌,部分未反应物料将直接进入冷凝盘中与冷凝产物混杂,进而导致冷凝产物中铜含量上升,影响锡铜的分离效果。同时,混料压块步骤可有效控制所述硫化剂分解的速率,能够避免硫化剂分解过快导致硫蒸气大量挥发冷凝在真空炉壁造成的硫损失,同时使混合物料颗粒之间的接触更加紧密,强化锡与硫化铁(硫化铜)和硫蒸气之间的硫化反应,提高了硫化剂的利用率,从而保证锡的硫化充分完全。
以实施例1所述20g锡精炼硫渣(按质量百分比计,成分为:Sn69.38%、Cu 15.60%和S 10.13%)为原料,以硫铁矿(按质量百分比计,成分为:Fe 43.75%和S 52.11%)作为硫化剂,改变锡精炼硫渣中的Sn和硫化剂中的S的物质的量之比、炉内真空度、硫化反应温度和时间以及压制压力作为实施例,具体参见表1(注:表1中实施例7~16未注明参数表示与实施例1相同)。
表1 将实施例1中的参数进行替换后的实施例7~16及其锡和铜的直收率
Figure PCTCN2022082640-appb-000001
Figure PCTCN2022082640-appb-000002
根据表1可知,可以看出改变物料中的Sn与S物质的量之比、反应温度、炉内真空度、保温时间,压块压力均对锡和铜的分离效果有影响。其中硫化剂的比例偏低会影响锡的硫化效果,降低锡的直收率,比例偏高又会增大铜随气态产物的挥出损失,降低铜的直收率;体系压力较大,反应时间较少,温度较低时会抑制硫化亚锡的挥发,导致锡直收率降低,反之会增大铜的挥发,其直收率亦随之降低;压块时压力较小会使得硫化剂分解速度过快,产生的硫蒸气快速挥发,未能充分将锡硫化,影响锡的直收率,同时硫蒸气的快速扩散还会带出少量物料,影响铜的收集,而压块时压力较大又会导致硫化剂分解速度变慢,产生的硫势减小,同样会影响锡的硫化,使锡的直收率降低。
综上所述,本发明提供的分离提纯锡和铜的方法,锡直收率大于99.5%,铜直收率大于99%。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。对这些实施例的多种修改对本领域的专业技术人员来说是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (11)

  1. 一种锡精炼硫渣中分离提纯锡和铜的方法,包括如下步骤:
    (1)将锡精炼硫渣与硫化剂混合后压制,得到预制块;所述压制的压力为1~10MPa,所述压制的保压时间为10~60s;
    (2)将步骤(1)得到的预制块进行硫化反应,得到硫化亚锡和铜;所述硫化反应的氛围为真空。
  2. 根据权利要求1所述的方法,其特征在于,所述步骤(1)中锡精炼硫渣的粒径为50~200目。
  3. 根据权利要求1或2所述的方法,其特征在于,所述步骤(1)中的锡精炼硫渣包括以下质量百分比的组分:Sn 50~75%、Cu 10~35%和S 10~22%。
  4. 根据权利要求1所述的方法,其特征在于,所述步骤(1)中的硫化剂包括硫化铁和硫化铜中的一种或两种。
  5. 根据权利要求4所述的方法,其特征在于,当所述硫化剂为硫化铁和硫化铜时,所述硫化铁中的S和硫化铜中的S的物质的量之比为(0.8~1.2):(0.8~1.2)。
  6. 根据权利要求1或4所述的方法,其特征在于,所述步骤(1)中硫化剂的粒径为100~200目。
  7. 根据权利要求1所述的方法,其特征在于,所述步骤(1)中锡精炼硫渣中的Sn与硫化剂中的S的物质的量之比为1:(1~2.5)。
  8. 根据权利要求1所述的方法,其特征在于,所述步骤(2)中硫化反应的温度为900~1100℃,硫化反应的时间为30~90min。
  9. 根据权利要求8所述的方法,其特征在于,升温至所述硫化反应的温度的升温速率为8~12K/min。
  10. 根据权利要求1所述的方法,其特征在于,所述步骤(2)中真空的真空度为1~10Pa。
  11. 根据权利要求1中所述的方法,其特征在于,所述步骤(2)中硫化反应完成后的冷却方式为随炉冷却至室温。
PCT/CN2022/082640 2022-01-17 2022-03-24 一种锡精炼硫渣中分离提纯锡和铜的方法 WO2023134017A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210047670.3A CN114959277B (zh) 2022-01-17 2022-01-17 一种锡精炼硫渣中分离提纯锡和铜的方法
CN202210047670.3 2022-01-17

Publications (1)

Publication Number Publication Date
WO2023134017A1 true WO2023134017A1 (zh) 2023-07-20

Family

ID=82975054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082640 WO2023134017A1 (zh) 2022-01-17 2022-03-24 一种锡精炼硫渣中分离提纯锡和铜的方法

Country Status (2)

Country Link
CN (1) CN114959277B (zh)
WO (1) WO2023134017A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115927876B (zh) * 2022-11-14 2023-07-25 昆明鼎邦科技股份有限公司 一种粗锡火法精炼工艺

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51126911A (en) * 1975-04-30 1976-11-05 Mitsubishi Heavy Ind Ltd Process for preparatory refining of steel scraps
US4304596A (en) * 1979-08-22 1981-12-08 Outokumpu Oy Process for a sulfidizing pretreatment of the slag of pyrometallurgical processes in order to facilitate its further treatment
CN103194621A (zh) * 2013-04-23 2013-07-10 吴鋆 一种硫渣的处理方法
CN103589870A (zh) * 2013-11-08 2014-02-19 昆明理工大学 一种锡精炼硫渣的处理方法
CN107557585A (zh) * 2017-09-07 2018-01-09 昆明鼎邦科技股份有限公司 一种金锡合金分离的方法
CN107619936A (zh) * 2017-09-07 2018-01-23 昆明鼎邦科技股份有限公司 一种锡精炼硫渣硫化的方法
CN109797288A (zh) * 2019-01-31 2019-05-24 东北大学 一种炼锡硫渣的处理工艺
CN112080646A (zh) * 2020-08-26 2020-12-15 昆明理工大学 一种除去真空蒸馏处理锡精炼硫渣产物粗硫化亚锡中砷、锑的方法
CN112375917A (zh) * 2020-11-11 2021-02-19 昆明理工大学 一种碲化铜渣回收碲铜的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107522223B (zh) * 2017-09-07 2019-12-31 昆明鼎邦科技股份有限公司 一种硫化亚锡的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51126911A (en) * 1975-04-30 1976-11-05 Mitsubishi Heavy Ind Ltd Process for preparatory refining of steel scraps
US4304596A (en) * 1979-08-22 1981-12-08 Outokumpu Oy Process for a sulfidizing pretreatment of the slag of pyrometallurgical processes in order to facilitate its further treatment
CN103194621A (zh) * 2013-04-23 2013-07-10 吴鋆 一种硫渣的处理方法
CN103589870A (zh) * 2013-11-08 2014-02-19 昆明理工大学 一种锡精炼硫渣的处理方法
CN107557585A (zh) * 2017-09-07 2018-01-09 昆明鼎邦科技股份有限公司 一种金锡合金分离的方法
CN107619936A (zh) * 2017-09-07 2018-01-23 昆明鼎邦科技股份有限公司 一种锡精炼硫渣硫化的方法
CN109797288A (zh) * 2019-01-31 2019-05-24 东北大学 一种炼锡硫渣的处理工艺
CN112080646A (zh) * 2020-08-26 2020-12-15 昆明理工大学 一种除去真空蒸馏处理锡精炼硫渣产物粗硫化亚锡中砷、锑的方法
CN112375917A (zh) * 2020-11-11 2021-02-19 昆明理工大学 一种碲化铜渣回收碲铜的方法

Also Published As

Publication number Publication date
CN114959277A (zh) 2022-08-30
CN114959277B (zh) 2024-03-26

Similar Documents

Publication Publication Date Title
WO2023030165A1 (zh) 一种铜冶炼硫化砷渣与含砷烟尘协同处理的方法
CN100404708C (zh) 两段焙烧法从含砷碳金精矿中回收Au Ag Cu As S生产工艺
CN101838743B (zh) 从提钒尾渣中回收铁、钒、铬和镓的方法
CN106893864B (zh) 一种从黑铜泥中回收砷的方法
CN109554550B (zh) 一种炼钢粉尘综合利用回收锌的方法
CN101307385A (zh) 一种铟锡烟尘原料的处理方法
CN109110826B (zh) 一种电池级硫酸镍的生产方法
CN107338454B (zh) 一种从白冰铜中回收铜和砷的方法
CN104818388A (zh) 一种铟锡氧化物真空还原分离铟和锡的方法
CN101328539A (zh) 氧化炉烟灰湿法浸出工艺
CN111926187A (zh) 一种从酸泥中综合回收硒、汞、铅和银的方法
WO2023134017A1 (zh) 一种锡精炼硫渣中分离提纯锡和铜的方法
CN112695205A (zh) 一种铜冶炼渣环保资源化利用的方法
CN110295286A (zh) 一种含砷危废料无害化处置、资源化综合利用的工艺方法
CN111304441A (zh) 一种废旧电池浸出液除杂的方法
CN101660056A (zh) 铟锡合金真空蒸馏分离铟和锡的方法
CN110295285B (zh) 一种从富氧固硫还原熔炼炉渣中回收锌的方法
CN106834711B (zh) 一种从含砷碲烟尘中回收并制备高纯碲的方法
CN106756038A (zh) 一种从铜铅锌冶炼硫酸系统酸泥中分离硒汞的方法
CN102382992A (zh) 一种处理高锑低银锡阳极泥的方法
CN104818384B (zh) 一种锌锡合金粉真空还原分离锌和锡的方法
CN111705223B (zh) 一种铅玻璃与废催化剂协同处置的方法
WO2023061389A1 (zh) 一种铜阳极泥中有价金属的回收方法
CN108588424B (zh) 一种分离电解锰阳极渣中锰和铅的方法
CN104233372B (zh) 从铅冰铜中回收铜的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919660

Country of ref document: EP

Kind code of ref document: A1