WO2023130500A1 - 半导体结构的制作方法及半导体结构 - Google Patents

半导体结构的制作方法及半导体结构 Download PDF

Info

Publication number
WO2023130500A1
WO2023130500A1 PCT/CN2022/072329 CN2022072329W WO2023130500A1 WO 2023130500 A1 WO2023130500 A1 WO 2023130500A1 CN 2022072329 W CN2022072329 W CN 2022072329W WO 2023130500 A1 WO2023130500 A1 WO 2023130500A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal
pattern
metal wire
mask layer
Prior art date
Application number
PCT/CN2022/072329
Other languages
English (en)
French (fr)
Inventor
宫光彩
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Publication of WO2023130500A1 publication Critical patent/WO2023130500A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32139Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices

Definitions

  • the present disclosure relates to but not limited to a method for fabricating a semiconductor structure and the semiconductor structure.
  • DRAM Dynamic Random Access Memory, dynamic random access memory
  • the size of the bit line is also continuously shrinking, resulting in the structure of the end of the bit line.
  • Dimensions are also getting smaller, so the process of increasing the contact area at the end of the bitline becomes more and more important.
  • the disclosure provides a method for fabricating a semiconductor structure and the semiconductor structure.
  • a first aspect of the present disclosure provides a method of fabricating a semiconductor structure, the fabricating method comprising:
  • the first mask layer being located above the metal layer, the first mask layer comprising a first raised pattern of a first density; according to the first mask layer etching the metal layer in a defined pattern to form a metal line terminal structure with a first width dimension;
  • the second mask layer is located above the metal layer, the second mask layer includes a second bar pattern of a second density; a pattern defined according to the second mask layer Etching the metal layer to form a metal line body structure with a second width;
  • the second density is twice the first density
  • the second width dimension is smaller than the first width dimension
  • one end of any one of the metal wire body structures is connected to one of the metal wire ends The structure is connected.
  • etching the metal layer according to the pattern defined by the first mask layer to form the metal line end structure with the first width dimension includes:
  • One end of the first mask layer has the first protruding pattern, the first protruding pattern is arranged at intervals in the end area of the metal layer, and the width of the first protruding pattern is the first width dimension ;
  • the pattern defined according to the first protruding pattern is a mask, and the end region of the metal layer is etched to form the end structure of the metal line.
  • the method further includes:
  • a filling structure is formed, and the filling structure is filled between two adjacent metal wire end structures.
  • forming the second mask layer includes:
  • the spacing group comprising a plurality of first spacing units arranged at intervals;
  • dielectric layer covering the top and side surfaces of the first spacer units, and the area between two adjacent first spacer units;
  • the retained dielectric layer forms a second striped pattern with a second density to form the second mask layer, and the width of the second striped pattern is a second width dimension.
  • etching the metal layer according to the pattern defined by the second mask layer to form a metal line body structure with a second width dimension includes:
  • the second striped pattern is arranged at intervals in the main body area of the metal layer, and the pattern defined by the second striped pattern is used as a mask to etch the main body area of the metal layer to form the metal line body structure .
  • the manufacturing method further includes: forming an isolation structure
  • the formation of the isolation structure includes:
  • the reticle layer includes a third protruding pattern with a second density, the third protruding pattern covers part of one end of the second strip pattern, and the third protruding pattern is at the a projection in a direction perpendicular to the metal layer covers the metal wire end structure;
  • part of the filling structure is removed, and the remaining filling structure forms an isolation structure, and the isolation structure is located at Between two adjacent metal wire end structures.
  • the manufacturing method further includes:
  • a substrate is provided, the metal layer covering a surface of the substrate.
  • the manufacturing method further includes:
  • a metal protection layer is formed, the metal protection layer covers the surface of the metal layer, and the first mask layer covers the surface of the metal protection layer.
  • forming a filling structure includes:
  • a chemical mechanical polishing process is used to planarize the initial filling structure until the surface of the initial filling structure is flush with the surface of the metal protection layer, thereby forming the filling structure.
  • the second mask layer before forming the second mask layer, further comprising:
  • a transition layer is formed, and the transition layer covers the surface of the metal protection layer and the filling structure.
  • a second aspect of the present disclosure provides a semiconductor structure comprising:
  • Metal wire end structures of a first density are disposed on the substrate, and the width of the metal wire end structures is a first width dimension;
  • Metal wire body structures of a second density are disposed on the substrate, and the width of the metal wire body structures is a second width dimension;
  • the second density is twice the first density
  • the second width dimension is smaller than the first width dimension
  • one end of any one of the metal wire body structures is connected to one of the metal wire ends The structure is connected.
  • the semiconductor structure further includes: an isolation structure,
  • the isolation structure is disposed between two adjacent metal wire end structures.
  • the length of the isolation structure is greater than the length of the metal wire end structure.
  • the semiconductor structure further includes a metal protection layer covering the metal wire end structure and the metal wire body structure.
  • the metal layer is etched using the first mask layer as a mask to form a metal wire end structure with a first width dimension, and the metal line end structure is formed through the second mask layer As a mask, other regions of the metal layer are etched to form a metal line body structure with a second width dimension, wherein the second width dimension is smaller than the first width dimension, and the mask layer can be defined twice through a simple process, respectively.
  • Fig. 1 is a flowchart showing a method for fabricating a semiconductor structure according to an exemplary embodiment.
  • Fig. 2 is a flowchart showing a method for fabricating a semiconductor structure according to another exemplary embodiment.
  • Fig. 3 is a top view of a substrate of a semiconductor structure according to an exemplary embodiment.
  • FIG. 4 is a cross-sectional view along line AA' of a substrate schematically showing the semiconductor structure shown in FIG. 3 .
  • FIG. 5 is a top view schematically showing the metal layer formed on the structure shown in FIG. 3 .
  • Fig. 6 is a cross-sectional view exemplarily showing the structure shown in Fig. 5 along line AA'.
  • FIG. 7 is a top view schematically showing the metal protection layer formed on the structure shown in FIG. 5 .
  • Fig. 8 is a cross-sectional view exemplarily showing the structure shown in Fig. 7 along line AA'.
  • FIG. 9 is a top view schematically showing the structure shown in FIG. 7 after forming a first mask layer.
  • Fig. 10 is a cross-sectional view exemplarily showing the structure shown in Fig. 9 along line AA'.
  • FIG. 11 is a top view schematically showing the structure of the end of the metal line formed on the structure shown in FIG. 9 .
  • Fig. 12 is a cross-sectional view exemplarily showing the structure shown in Fig. 11 along line AA'.
  • FIG. 13 is a top view schematically showing the filling structure formed on the structure shown in FIG. 11 .
  • Fig. 14 is a cross-sectional view exemplarily showing the structure shown in Fig. 13 along line AA'.
  • FIG. 15 is a top view schematically showing the transition layer formed on the structure shown in FIG. 13 .
  • Fig. 16 is a cross-sectional view exemplarily showing the structure shown in Fig. 15 along line AA'.
  • FIG. 17 is a top view schematically showing the structure shown in FIG. 15 after the spacers are formed.
  • Fig. 18 is a cross-sectional view exemplarily showing the structure shown in Fig. 17 along line AA'.
  • FIG. 19 is a top view schematically showing a dielectric layer formed on the structure shown in FIG. 17 .
  • Fig. 20 is a cross-sectional view exemplarily showing the structure shown in Fig. 19 along line AA'.
  • FIG. 21 is a top view schematically showing the structure shown in FIG. 19 after forming a second strip pattern.
  • Fig. 22 is a cross-sectional view exemplarily showing the structure shown in Fig. 21 along line AA'.
  • FIG. 23 is a top view schematically showing the structure shown in FIG. 21 after a reticle is formed.
  • Fig. 24 is a cross-sectional view exemplarily showing the structure shown in Fig. 23 along line AA'.
  • FIG. 25 is a top view schematically showing the isolation structure formed on the structure shown in FIG. 23 .
  • Fig. 26 is a cross-sectional view exemplarily showing the structure shown in Fig. 25 along line AA'.
  • FIG. 27 is a top view schematically showing the structure shown in FIG. 25 after removing the transition layer.
  • Fig. 28 is a cross-sectional view exemplarily showing the structure shown in Fig. 27 along line AA'.
  • Fig. 29 is a schematic structural diagram of a semiconductor structure according to an exemplary embodiment.
  • Fig. 30 is a schematic structural diagram of a semiconductor structure according to another exemplary embodiment.
  • Fig. 31 is a cross-sectional view exemplarily showing the structure shown in Fig. 30 along line AA'.
  • Substrate 100. First mask layer; 101. First protrusion pattern; 20. Metal layer; 21. Metal wire; 211. Metal wire end structure; 212. Metal wire body structure; 200. Spacer group; 201, spacer unit; 30, metal protection layer; 31, metal wire end protection layer; 32, metal wire body protection layer; 300, medium layer; 301: top surface medium layer; 302: second strip graphic; 303, side Dielectric layer; 304, second mask layer; 305, bottom dielectric layer; 40, filling structure; 41, isolation structure; 400, intermediate mask layer; 401, third protruding pattern; 402, intermediate mask layer main body; 50. Transition layer; 501. Anti-reflection layer; 502. Pattern transfer layer; D1, first width dimension; D2, second width dimension; H1, end region; H2, main body region H2.
  • This embodiment does not limit the semiconductor structure.
  • the semiconductor structure will be described below as an example of a dynamic random access memory (DRAM), but this embodiment is not limited thereto.
  • the semiconductor structure in this embodiment can also be other structures. .
  • a method for fabricating a semiconductor structure includes the following steps:
  • Step S100 forming a metal layer and a first mask layer, the first mask layer is located above the metal layer, the first mask layer includes a first protruding pattern with a first density; etching according to the pattern defined by the first mask layer a metal layer forming a metal line termination structure of a first width dimension;
  • Step S200 forming a second mask layer, the second mask layer is located above the metal layer, the second mask layer includes a second stripe pattern of a second density; etching the metal layer according to the pattern defined by the second mask layer, forming a metal wire body structure with a second width; wherein, the second density is twice the first density, the second width is smaller than the first width, and one end of any metal wire body structure is connected to one of the metal wire end structures connected.
  • a metal layer 20 can be formed on the support member as a material layer of the bit line, and a first mask layer 100 is formed above the metal layer 20.
  • the first mask layer 100 can be The single-layer structure can also be a multi-layer structure.
  • the pattern defined by the first mask layer 100 has a first protruding pattern 101 of a first density.
  • the first protruding patterns 101 extend in the first direction x, and are distributed at uniform intervals in the second direction y.
  • one end of the metal layer 20 is etched according to the defined pattern of the first mask layer 100, and a structure with a first width dimension D1 is formed in the region of one end of the metal layer 20, that is, a The metal line end structure 211 with the first width dimension D1 is defined.
  • a second mask layer 304 is formed on the metal layer 20 , and the pattern defined by the second mask layer 304 has a second bar pattern 302 with a second density.
  • the second bar graphs 302 extend in the first direction x, and are evenly spaced in the second direction y.
  • FIG. 21 and FIG. 29 according to the defined pattern of the second mask layer 304, other regions of the metal layer 20 except the metal line end structure 211 are etched to form a second width in other regions of the metal layer 20.
  • the structure with the size D2, that is, the metal wire body structure 212 with the second width dimension D2 is formed, and one end of any metal wire body structure 212 is connected to one of the metal wire end structures 211 to form the bit line structure 21, wherein,
  • the second width dimension D2 is smaller than the first width dimension D1.
  • the first density may be the number of first protruding patterns 101 distributed above the metal layer 20, and the second density may be the number of second striped patterns 302 distributed above the metal layer 20.
  • the semiconductor manufacturing method provided by the present disclosure realizes defining two mask layers by using a simple process to respectively etch different regions of the metal layer to form a bit line with a larger-sized metal line end structure structure, so that the bit line can obtain a sufficiently large terminal contact area, thereby avoiding the need to increase the contact area of the bit line terminal structure through complicated processes.
  • a method for manufacturing a semiconductor structure includes the following steps:
  • Step 102 Provide a substrate, and a metal layer covers the surface of the substrate.
  • the semiconductor material can be used as a supporting part of the bit line in the semiconductor structure.
  • the substrate 10 may also include transistor wordlines (Wordline) and bitlines (Bitline) (not shown in the figure).
  • a metal layer 20 is formed on the surface of the substrate 10 , and the material of the metal layer 20 includes but not limited to metal tungsten, which is not specifically limited here.
  • Substrate 10 may also be used to support other components disposed thereon.
  • Step S104 forming a metal protection layer, the metal protection layer covers the surface of the metal layer.
  • the material of the metal protection layer 30 may be oxide, such as silicon oxide or silicon oxynitride, etc., which is not specifically limited here.
  • the metal layer and the metal protection layer can be sequentially formed on the substrate by chemical vapor deposition (CVD, Chemical Vapor Deposition) or atomic layer deposition (ALD, Atomic layer deposition) and other processes.
  • CVD chemical vapor deposition
  • ALD Atomic layer deposition
  • Step S106 forming a first mask layer.
  • a first mask layer 100 is formed on the surface of the metal protection layer 30 such that the first mask layer 100 completely covers the surface of the metal protection layer 30 .
  • the metal layer 20 can be divided into an end region H1 and a main body region H2 of the metal layer, and one end of the first mask layer 100 has a first protruding pattern 101, and the first protruding patterns 101 are arranged at intervals on the metal layer.
  • the width of the first protruding pattern 101 may be a first width dimension D1.
  • the first mask layer 100 may be an anti-corrosion coating material, such as a spin-on photoresist.
  • the direction perpendicular to the section of the line AA' is defined as the first direction x
  • the direction parallel to the section of the line AA' is defined as the second direction y.
  • the first protruding pattern 101 can be formed above the end region H1 of the metal layer 20 (refer to FIG.
  • a mask layer 100 is a plurality of strip-shaped structures extending along the first direction x, and the first protruding pattern 101 can be a rectangular structure, that is, one end of the first mask layer 100 forms a plurality of rectangular structures with a first width dimension D1
  • a plurality of first protruding patterns 101 are distributed at intervals in the second direction y, and cover the end region H1 of the metal layer 20 with a first density distribution.
  • the main part of the first mask layer 100 covers other parts except the end region of the metal layer, so as to ensure that other parts except the end region of the metal layer are not etched.
  • Step S108 using the pattern defined by the first protruding pattern as a mask, etching the end region of the metal layer to form a metal line end structure.
  • the metal protection layer 30 and the metal layer 20 above the end region H1 of the metal line are sequentially etched until the substrate 10 is exposed, so as to A plurality of metal wire end structures 211 are formed in the end region H1 of the metal layer, and the shape and size of the pattern of the first protruding pattern 101 can determine the shape and size of the metal wire end structures 211 .
  • the width of the metal wire end structure 211 is consistent with the width dimension of the first protruding pattern 101, which is the first width dimension D1.
  • the shape of the metal wire end structure may be the same as that of the first protrusion pattern.
  • Step S110 forming a filling structure, the filling structure is filled between two adjacent metal line end structures.
  • the end region of the metal layer 20 exposes part of the surface of the substrate 10 and the side surfaces of the metal wire end structure 211. Since the top surface of the metal wire end structure 211 is covered by the metal protective layer 30, it will not be oxidized, but The side surfaces of the metal wire end structures 211 are easily oxidized when exposed to the air. Therefore, in order to protect the side surfaces of the metal line end structures 211 , after the metal line end structures 211 are formed, a filling structure is formed.
  • the filling material is filled on the surface of the substrate 10 until the filling material fills the area between the metal wire end structures, so that the filling material is level with the height of the metal protective layer 30 to form a filling material.
  • the structure 40 since the filling structure 40 covers the side portion of the metal line end structure 211 , therefore, protects the side surface of the metal line end structure 211 to prevent the metal line end structure from being oxidized.
  • the filling material may be oxide, such as silicon oxide or silicon oxynitride, etc., which is not specifically limited herein.
  • forming the filling structure may include the following steps: between two adjacent metal line end structures The oxide material is filled in between to form an initial filling structure; the initial filling structure is planarized by using a chemical mechanical polishing process until the surface of the initial filling structure is flush with the surface of the metal protective layer to form a filling structure.
  • Step S112 forming a transition layer, the transition layer covers the surface of the metal protection layer and the filling structure.
  • the transition layer may be formed while the filling structure is formed, or the transition layer may be formed after the filling structure is formed.
  • a transition layer 50 is formed on the surface of the metal protection layer, and the transition layer 50 can be a single film layer or a multi-film layer structure.
  • the transition layer 50 is a multi-film structure Layer structure, the transition layer 50 may include an anti-reflection layer 501 and a pattern transfer layer 502 .
  • forming the transition layer may include: sequentially depositing a pattern transfer layer 502 and an anti-reflection layer 501 on the surface of the metal protection layer 30 and the filling structure 40, so as to form the second mask layer by first depositing A layer of organic or inorganic anti-reflection material is used as an anti-reflection layer to achieve the purpose of increasing the window of the lithography process and improving the control of the line width of the lithography. Then use the pattern transfer layer 502 to transfer the pattern of the second mask layer to the metal protection layer 30, so as to obtain a bit line pattern with a more precise size.
  • Step S114 forming a second mask layer.
  • forming the second mask layer may include the following steps:
  • Step S20 forming an interval group, the interval group includes a plurality of first interval units arranged at intervals;
  • Step S22 forming a dielectric layer, the dielectric layer covers the top and side surfaces of the first spacing unit, and the area between two adjacent first spacing units;
  • Step S24 removing part of the dielectric layer covering between two adjacent first spacing units and the dielectric layer covering the top surface of the first spacing unit;
  • Step S26 forming a second striped pattern with a second density on the retained dielectric layer to form a second mask layer, and the width of the second striped pattern is a second width dimension.
  • a spacer group 200 is formed on the antireflection layer 501 , and the spacer group 200 has a plurality of first spacer units 201 .
  • Each first spacer unit 201 extends in the first direction x to form a strip structure, and the length of the first spacer unit 201 in the first direction x may be greater than the length of the main body region H2 of the metal layer 20 (refer to FIG. 9 ), Or it is equal to the length of the metal layer 20 to form a bit line of sufficient length.
  • the plurality of first spacing units 201 are distributed at intervals of a second density in the second direction y, and the widths between two adjacent first spacing units 201 are consistent. In a direction perpendicular to the surface of the substrate 10 , the projection of each first spacing unit 201 on the substrate 10 partially covers the projection of the metal wire end structure 211 on the substrate 10 .
  • a dielectric layer 300 is deposited on the surface of the spacer group 200, and the dielectric layer 300 covers the surface of each first spacer unit 201.
  • a top surface dielectric layer 301 is formed on the top of a spacer unit 201; a side dielectric layer 303 is formed on the side of the first spacer unit 201; the surface of the antireflection layer 501 is exposed between two adjacent first spacer units 201
  • a bottom dielectric layer 305 is formed on the region.
  • the width of the side dielectric layer 303 can determine the main body width of the bit line.
  • the material of the dielectric layer 300 includes but not limited to silicon oxide, which is not specifically limited here.
  • a wet etching process can be selected to remove part of the bottom dielectric layer 305 and the top dielectric layer 301 covering between two adjacent first spacer units 201, leaving the first spacer unit 201
  • the side dielectric layer 303 on the side because the first spacing unit 201 is a strip structure, therefore, the side dielectric layer 303 with a certain width is formed, and the plurality of side dielectric layers 303 are evenly spaced in the second direction y, that is, The side dielectric layer 303 remaining on the side of the first spacing unit 201 forms a second strip pattern 302 with a second density.
  • the width of the second strip pattern 302 is a second width dimension D2, and the second width dimension D2 can be Consistent with the width dimension of the side dielectric layer 303 , a plurality of second stripe patterns 302 distributed at intervals constitute the second mask layer 304 .
  • the second striped graphics 302 are arranged at intervals above the main area H2 of the metal layer.
  • the length of the second striped graphics 302 in the first direction x runs through the length of the main body area H2.
  • the second striped graphics 302 The end surface of the metal wire end structure 211 may be flush with the end surface of the metal layer or the end surface of the metal layer.
  • the dielectric layer located on the end face of the first spacer unit can also be retained, which can be removed together in a subsequent process to save time.
  • Step S116 the second strip pattern is arranged at intervals in the main body area of the metal layer, and the pattern defined by the second strip pattern is used as a mask to etch the main body area of the metal layer to form a metal line body structure.
  • the second striped pattern 302 is evenly distributed over the main region H2 of the metal layer 20 with a second density.
  • FIG. 22, FIG. 26 and FIG. 29 using the pattern defined by the second strip pattern 302 as a mask, the anti-reflection layer 501, the pattern transfer layer 502 and the metal protection layer 30 are sequentially etched downward, so that the second The pattern of the strip pattern 302 is transferred to the metal layer 20, and the metal layer 20 is continuously etched to expose the surface of the substrate 10 through the thickness of the metal layer 20.
  • FIG. A metal wire body structure 212 As shown in FIG. A metal wire body structure 212.
  • the manufacturing method of the semiconductor structure can also include: step S118: forming an isolation structure structure.
  • forming the isolation structure may include the following steps:
  • Step S30 Forming an intermediate mask layer, the intermediate mask layer includes a second density of third protruding patterns, the third protruding patterns cover part of one end of the second strip pattern, and the third protruding patterns are perpendicular to the metal layer The projection in the direction covers the metal wire end structure;
  • Step S32 According to the pattern defined by the uncovered second bar pattern and the third protruding pattern as a mask, remove part of the filling structure, and the retained filling structure forms an isolation structure, and the isolation structure is located on two adjacent metal lines between terminal structures.
  • an intermediate mask layer 400 is formed on the second mask layer above the end region H1 of the metal layer, and the intermediate mask layer 400 has the same
  • the third protruding patterns 401 of the same density as the metal wire end structures 211 are distributed in the second direction y at intervals of the second density.
  • the third protruding figure 401 covers the surface at one end of the second strip figure 302 on the metal wire end structure 211 , and the third protruding figure 401 is projected in a direction perpendicular to the metal layer 20
  • Completely covering the projection of the metal wire end structure 211 can protect the metal wire end structure 211 when etching the main body region H2 of the metal layer 20, so as to prevent the reduction of the metal wire end structure during the formation of the metal wire body structure. 211 square feet.
  • the length of the part of the second strip pattern 302 not covered by the middle mask layer 400 can be consistent with the length of the main body region H2 of the metal layer.
  • the portion of the second strip pattern 302 not covered by the intermediate mask layer 400 between the metal line end structures may have a length greater than the length of the main body region H2 of the metal layer.
  • a part of the anti-reflection layer 501 and the pattern transfer layer 502 can be sequentially etched by using the pattern defined by the uncovered second striped pattern 302 and the third raised pattern 401 as a mask through a photolithography process. , the metal protection layer 30 , the metal layer 20 and a part of the filling structure 40 until the surface of the substrate 10 is exposed.
  • the intermediate mask layer main body 402 located in front of the end surface of the metal layer can be etched away together, so that the pre-reserved dielectric layer 300 (refer to FIG. Shown in Figure 19) one-time removal, thereby saves operation, saves time.
  • metal line ends with a first density distribution and a first width dimension D1 are formed on the substrate 10.
  • the remaining filling structure forms an isolation structure 41 .
  • the width of the isolation structure 41 is consistent with the width of the metal wire body structure, and any metal wire body structure 212 is connected to one of the isolation structures 41 .
  • the length of the isolation structure 41 may be greater than the length of the metal wire end structures 211 to prevent the contact between the metal wire end structures 211 from being connected together and shorted.
  • an anti-oxidation layer (not shown in the figure) may be formed between two adjacent bit line structures 21 .
  • the metal line end structure 211 is in contact with the contact hole 60, that is, the end of the bit line structure is in contact with the contact hole 60.
  • a larger structure is formed.
  • the size of the metal line end structure 211 enables the end of the bit line structure 21 to obtain a sufficiently large contact area.
  • the increased end contact area is larger than the cross-section of the contact hole 60, which can prevent the contact hole from passing through the end of the bit line and continue to etch downward during the process of etching the contact hole 60, thereby The contact hole 60 is prevented from contacting the substrate 10 through the end of the bit line.
  • an exemplary embodiment of the present disclosure provides a semiconductor structure, which includes:
  • the metal line end structures 211 of the first density are disposed on the substrate 10, and the width of the metal line end structures 211 is a first width dimension D1;
  • the metal wire body structure 212 of the second density is disposed on the substrate 10, and the width of the metal wire body structure 212 is a second width dimension D2;
  • the second density is twice the first density
  • the second width D2 is smaller than the first width D1
  • one end of any metal wire body structure 212 is connected to one of the metal wire end structures 211 .
  • metal wire terminal structures distributed with a first density and metal wire body structures distributed with a second density are formed on a substrate, and the second density is twice the first density. , so that the width dimension of the end structure of the metal line is larger than the width dimension of the body structure of the metal line, so that the formed bit line structure has a larger end contact area, so as to prevent the contact hole from passing through the bit line during the process of etching the contact hole.
  • the ends of the bitlines continue to be etched down, preventing contact holes through the ends of the bitlines from making contact with the substrate.
  • the substrate 10 can be used as a supporting part of the bit line in the semiconductor structure.
  • the metal line terminal structure 211 is located above the terminal region H1 of the metal layer, and in the first direction x
  • the first density is distributed at intervals, wherein the width of the metal line end structures 211 is the first width dimension D1.
  • the metal wire body structures 212 are located above the main body region H2 of the metal layer, and are distributed at intervals of the second density in the first direction x, wherein the width of the metal wire body structures 212 is the second width dimension D2, and any one of the metal wire body structures One end of the structure 212 is connected to one of the wire end structures 211 .
  • the metal wire body structure distributed on the substrate 10 is twice that of the metal wire end structure, the width of the metal wire body structure is smaller than the width of the metal wire end structure, and the metal wire end structure 211 and the metal wire body structure 212 are formed on the substrate 10 Bit line structure 21 above.
  • the semiconductor structure further includes: an isolation structure 41, which is connected to any metal wire body structure 212, and the isolation structure 41 is located between two adjacent metal wire end structures 211 to prevent the The phenomenon that the bit lines that have limited the contact area of the end are connected together to cause a short circuit.
  • the length of the isolation structure 41 is greater than the length of the metal line end structure 211 .
  • the semiconductor structure further includes a metal protection layer 30 which can completely cover the top surface of the bit line structure 21 .
  • the metal protection layer 30 includes a metal wire end protection layer 31 covering the metal wire end structure 211 , and a metal wire body protection layer 32 covering the metal wire body structure 212 .
  • metal wire terminal structures distributed with a first density and metal wire body structures distributed with a second density are formed on a substrate, and the second density is twice the first density. , so that the width dimension of the metal line end structure is larger than the width dimension of the metal line body structure, so that the formed bit line structure has a larger terminal contact area.
  • the metal layer is etched using the first mask layer as a mask to form a metal wire end structure with a first width dimension, and the metal line end structure is formed through the second mask layer As a mask, other regions of the metal layer are etched to form a metal line body structure with a second width dimension, wherein the second width dimension is smaller than the first width dimension, and the mask layer can be defined twice through a simple process, respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

本公开提供一种半导体结构的制作方法及半导体结构,其中,制作方法包括:形成金属层和第一掩膜层,第一掩膜层位于金属层上方,第一掩膜层包括第一密度的第一凸出图形;根据第一掩膜层定义的图案刻蚀金属层,形成第一宽度尺寸的金属线末端结构;形成第二掩膜层,第二掩膜层位于金属层上方,第二掩膜层包括第二密度的第二条状图形;根据第二掩膜层定义的图案刻蚀金属层,形成第二宽度尺寸的金属线本体结构;其中,第二密度为第一密度的两倍,第二宽度尺寸小于第一宽度尺寸,且任意一个金属线本体结构的一端与其中一个金属线末端结构相连。

Description

半导体结构的制作方法及半导体结构
本公开基于申请号为202210013298.4,申请日为2022年01月06日,申请名称为“半导体结构的制作方法及半导体结构”的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本公开作为参考。
技术领域
本公开涉及但不限于一种半导体结构的制作方法及半导体结构。
背景技术
随着DRAM(Dynamic Random Access Memory,动态随机存取存储器)结构的不断微缩,由于晶体管之间的间距也在逐渐地减少,位元线的尺寸也在不断的缩小,导致位元线末端结构的尺寸也变得越来越小,因此,增大位元线的末端接触面积的工艺变得越来越重要。
发明内容
以下是对本公开详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开提供一种半导体结构的制作方法及半导体结构。
本公开的第一方面提供一种半导体结构的制作方法,所述制作方法包括:
形成金属层和第一掩膜层,所述第一掩膜层位于所述金属层上方,所述第一掩膜层包括第一密度的第一凸出图形;根据所述第一掩膜层定义的图案刻蚀所述金属层,形成第一宽度尺寸的金属线末端结构;
形成第二掩膜层,所述第二掩膜层位于所述金属层上方,所述第二掩膜层包括第二密度的第二条状图形;根据所述第二掩膜层定义的图案刻蚀所述金属层,形成第二宽度尺寸的金属线本体结构;
其中,所述第二密度为所述第一密度的两倍,所述第二宽度尺寸小于所述第一宽度尺寸,且任意一个所述金属线本体结构的一端与其中一个所述金属线末端结构相连。
根据本公开的一些实施例,根据所述第一掩膜层定义的图案刻蚀所述金属层,形成第一宽度尺寸的金属线末端结构包括:
所述第一掩膜层的一端具有所述第一凸出图形,所述第一凸出图形间隔设置在所述金属层的末端区域,所述第一凸出图形的宽度为第一宽度尺寸;
根据所述第一凸出图形定义的图案为掩膜,刻蚀所述金属层的末端区域,形成所述金属线末端结构。
根据本公开的一些实施例,形成所述金属线末端结构之后,还包括:
形成填充结构,所述填充结构填充在相邻的两个所述金属线末端结构之间。
根据本公开的一些实施例,形成第二掩膜层,包括:
形成间隔组,所述间隔组包括间隔设置的多个第一间隔单元;
形成介质层,所述介质层覆盖所述第一间隔单元的顶面和侧面,以及相邻两个所述第一间隔单元之间的区域;
去除覆盖在相邻两个所述第一间隔单元之间的部分所述介质层、覆盖在所述第一间隔单元的顶面的所述介质层;
被保留的所述介质层形成具有第二密度的第二条状图形,形成所述第二掩膜层,所述第二条状图形的宽度为第二宽度尺寸。
根据本公开的一些实施例,根据所述第二掩膜层定义的图案刻蚀所述金属层,形成 第二宽度尺寸的金属线本体结构,包括:
所述第二条状图形间隔设置在所述金属层的主体区域,根据所述第二条状图形定义的图案为掩膜,刻蚀所述金属层的主体区域,形成所述金属线本体结构。
根据本公开的一些实施例,所述制作方法还包括:形成隔离结构;
所述形成隔离结构包括:
形成中间掩膜层,所述中间掩膜层包括第二密度的第三凸出图形,所述第三凸出图形覆盖部分所述第二条状图形的一端,所述第三凸出图形在垂直于所述金属层的方向上的投影覆盖所述金属线末端结构;
根据未被覆盖的所述第二条状图形和所述第三凸出图形定义的图案为掩膜,去除部分所述填充结构,被保留的所述填充结构形成隔离结构,所述隔离结构位于相邻的两个所述金属线末端结构之间。
根据本公开的一些实施例,所述制作方法还包括:
提供衬底,所述金属层覆盖所述衬底的表面。
根据本公开的一些实施例,所述制作方法还包括:
形成金属保护层,所述金属保护层覆盖所述金属层的表面,所述第一掩膜层覆盖金属保护层的表面。
根据本公开的一些实施例,形成填充结构,包括:
在相邻的两个所述金属线末端结构之间填充氧化物材料,形成初始填充结构;
采用化学机械研磨工艺,对所述初始填充结构进行平坦化处理,直至所述初始填充结构的表面与所述金属保护层的表面平齐,形成所述填充结构。
根据本公开的一些实施例,形成第二掩膜层之前,还包括:
形成过渡层,所述过渡层覆盖所述金属保护层和所述填充结构的表面。
本公开的第二方面提供一种半导体结构,所述半导体结构包括:
衬底;
第一密度的金属线末端结构,设置在所述衬底上,所述金属线末端结构的宽度为第一宽度尺寸;
第二密度的金属线本体结构,设置在所述衬底上,所述金属线本体结构的宽度为第二宽度尺寸;
其中,所述第二密度为所述第一密度的两倍,所述第二宽度尺寸小于所述第一宽度尺寸,且任意一个所述金属线本体结构的一端与其中一个所述金属线末端结构相连。
根据本公开的一些实施例,所述半导体结构还包括:隔离结构,
所述隔离结构设置在相邻的两个所述金属线末端结构之间。
根据本公开的一些实施例,所述隔离结构的长度大于所述金属线末端结构的长度。
根据本公开的一些实施例,所述半导体结构还包括金属保护层,所述金属保护层覆盖所述金属线末端结构和所述金属线本体结构。
本公开实施例所提供的半导体结构的制作方法及半导体结构中,通过第一掩膜层作为掩膜对金属层进行刻蚀,形成第一宽度尺寸的金属线末端结构,通过第二掩膜层作为掩膜对金属层的其他区域进行刻蚀,形成第二宽度尺寸的金属线本体结构,其中,第二宽度尺寸小于第一宽度尺寸,实现了通过简单的工艺定义两次掩膜层,分别对金属层的不同区域进行刻蚀,以形成具有较大尺寸的金属线末端结构的位元线结构,形成足够大的位元线的末端结构接触面积,避免了通过复杂的工艺来增大位元线末端结构的接触面积。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
并入到说明书中并且构成说明书的一部分的附图示出了本公开的实施例,并且与描述一起用于解释本公开实施例的原理。在这些附图中,类似的附图标记用于表示类似的要素。下面描述中的附图是本公开的一些实施例,而不是全部实施例。对于本领域技术人员来讲,在不付出创造性劳动的前提下,可以根据这些附图获得其他的附图。
图1是根据一示例性实施例示出的一种半导体结构的制作方法的流程图。
图2是根据另一示例性实施例示出的一种半导体结构的制作方法的流程图。
图3是根据一示例性实施例示出的半导体结构的衬底的俯视图。
图4是示例性示出图3所示出的半导体结构的衬底沿AA’线的剖面图。
图5是示例性示出图3所示出的结构上形成金属层后的俯视图。
图6是示例性示出图5所示出的结构沿AA’线的剖面图。
图7是示例性示出图5所示出的结构上形成金属保护层后的俯视图。
图8是示例性示出图7所示出的结构沿AA’线的剖面图。
图9是示例性示出图7所示出的结构上形成第一掩膜层后的俯视图。
图10是示例性示出图9所示出的结构沿AA’线的剖面图。
图11是示例性示出图9所示出的结构上形成金属线末端结构的俯视图。
图12是示例性示出图11所示出的结构沿AA’线的剖面图。
图13是示例性示出图11所示出的结构上形成填充结构后的俯视图。
图14是示例性示出图13所示出的结构沿AA’线的剖面图。
图15是示例性示出图13所示出的结构上形成过渡层后的俯视图。
图16是示例性示出图15所示出的结构沿AA’线的剖面图。
图17是示例性示出图15所示出的结构上形成间隔组后的俯视图。
图18是示例性示出图17所示出的结构沿AA’线的剖面图。
图19是示例性示出图17所示出的结构上形成介质层后的俯视图。
图20是示例性示出图19所示出的结构沿AA’线的剖面图。
图21是示例性示出图19所示出的结构上形成第二条状图形后的俯视图。
图22是示例性示出图21所示出的结构沿AA’线的剖面图。
图23是示例性示出图21所示出的结构上形成中间掩膜层后的俯视图。
图24是示例性示出图23所示出的结构沿AA’线的剖面图。
图25是示例性示出图23所示出的结构上形成隔离结构后的俯视图。
图26是示例性示出图25所示出的结构沿AA’线的剖面图。
图27是示例性示出图25所示出的结构上去除过渡层后的俯视图。
图28是示例性示出图27所示出的结构沿AA’线的剖面图。
图29是根据一示例性实施例示出的半导体结构的结构示意图。
图30是根据另一示例性实施例示出的半导体结构的结构示意图。
图31是示例性示出图30所示出的结构沿AA’线的剖面图。
附图标记:
10、衬底;100、第一掩膜层;101、第一凸出图形;20、金属层;21、金属线;211、金属线末端结构;212、金属线本体结构;200、间隔组;201、间隔单元;30、金属保护层;31、金属线末端保护层;32、金属线本体保护层;300、介质层;301:顶面介质层;302:第二条状图形;303、侧面介质层;304、第二掩膜层;305、底部介质层;40、填充结构;41、隔离结构;400、中间掩膜层;401、第三凸出图形;402、中间掩膜层主体;50、过渡层;501、抗反射层;502、图形转移层;D1、第一宽度尺寸;D2、第二宽度尺寸;H1、末端区域;H2、主体区域H2。
具体实施方式
下面将结合本公开实施例中的附图,对公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
本实施例对半导体结构不作限制,下面将以半导体结构为动态随机存储器(DRAM)为例进行介绍,但本实施例并不以此为限,本实施例中的半导体结构还可以为其他的结构。
如图1所示,本公开一示例性的实施例提供的一种半导体结构的制作方法,包括如下的步骤:
步骤S100:形成金属层和第一掩膜层,第一掩膜层位于金属层上方,第一掩膜层包括第一密度的第一凸出图形;根据第一掩膜层定义的图案刻蚀金属层,形成第一宽度尺寸的金属线末端结构;
步骤S200:形成第二掩膜层,第二掩膜层位于金属层上方,第二掩膜层包括第二密度的第二条状图形;根据第二掩膜层定义的图案刻蚀金属层,形成第二宽度尺寸的金属线本体结构;其中,第二密度为第一密度的两倍,第二宽度尺寸小于第一宽度尺寸,且任意一个金属线本体结构的一端与其中一个金属线末端结构相连。
参照图9-图10所示,可以在支撑部件上形成金属层20,作为位元线的材料层,在金属层20的上方形成有第一掩膜层100,第一掩膜层100可以为单层结构也可以为多层结构,在金属层20一端的边缘区域,第一掩膜层100所定义的图案具有第一密度的第一凸出图形101。第一凸出图形101在第一方向x上延伸,在第二方向y上均匀的间隔分布。参照图9、图10和图29所示,根据第一掩膜层100的定义的图案刻蚀金属层20的一端,在金属层20的一端区域中形成第一宽度尺寸D1的结构,即形成了第一宽度尺寸D1的金属线末端结构211。
参照图21-图22所示,在金属层20的上方形成第二掩膜层304,第二掩膜层304所定义的图案具有第二密度的第二条状图形302。第二条状图形302在第一方向x上延伸,在第二方向y上均匀的间隔分布。参照图21和图29所示,根据第二掩膜层304的定义的图案,刻蚀除金属线末端结构211部分的金属层20的其他区域,在金属层20的其他区域中形成第二宽度尺寸D2的结构,即形成了第二宽度尺寸D2的金属线本体结构212,任意一个金属线本体结构212的一端与其中一个金属线末端结构211相互连接,形成了位元线结构21,其中,第二宽度尺寸D2小于第一宽度尺寸D1。
结合图9和图21所示,第一密度可以为第一凸出图形101在金属层20上方分布的个数,第二密度可以为第二条状图形302在金属层20上方分布的个数,可以将第一凸出图形101分布的第一密度记为ρ1,如图10所示,例如ρ1=3,第二条状图形302分布的第二密度记为ρ2,如图21所示,例如ρ2=6,其中,ρ2=2*ρ1,即第二密度为第一密度的两倍,由于第一凸出图形101和第二条状图形302分布在同一宽度尺寸的金属层20的上方,因此,在金属层20的上方能够形成较大尺寸的第一凸出图形101,以及较小尺寸的第二条状图形302,即形成的金属线末端结构的宽度大于金属线本体结构的宽度。
本公开所提供的半导体的制作方法,实现了通过利用简单的工艺定义两次掩膜层,以分别对金属层的不同区域进行刻蚀,形成具有较大尺寸的金属线末端结构的位元线结构,使得位元线能够获得足够大的末端接触面积,从而避免了通过复杂的工艺来增大位元线末端结构的接触面积。
如图2所示,本公开一示例性的实施例提供的一种半导体结构的制作方法,包括如 下的步骤:
步骤102:提供衬底,金属层覆盖衬底的表面。
半导体材料可以作为半导体结构中位元线的支撑部件,如图3和图4所示,衬底10可以由半导体材料制成,半导体材料可以为硅、锗、硅锗化合物以及硅碳化合物中的一种或者多种。衬底10内还可以包括晶体管字符线(Wordline)及位线(Bitline)(图中未示出)等。结合图5和图6所示,在衬底10的表面形成金属层20,金属层20的材料包括但不限于金属钨,在此不做具体限定。衬底10还可以用于支撑设在其上的其他部件。
步骤S104:形成金属保护层,金属保护层覆盖金属层的表面。
为了能够防止金属层20与空气中的氧气发生反应而被氧化,结合图7和图8所示,在金属层20的表面沉积一层金属保护层30,金属保护层30可以完全覆盖金属层的表面,以对金属层20进行全面保护,金属保护层30的材料可以为氧化物,例如氧化硅或者氮氧化硅等,在此不做具体限制。
可以采用化学气相沉积法(CVD,Chemical Vapor Deposition)或原子层沉积法(ALD,Atomic layer deposition)等工艺在衬底上依次形成金属层和金属保护层。
步骤S106:形成第一掩膜层。
如图9所示,在金属层20的表面形成金属保护层30之后,在金属保护层30的表面形成第一掩膜层100,使得第一掩膜层100完全覆盖金属保护层30的表面。
继续参照图9所示,金属层20可以分为金属层的末端区域H1和主体区域H2,第一掩膜层100的一端具有第一凸出图形101,第一凸出图形101间隔设置在金属层20的末端区域H1的上方,第一凸出图形101的宽度可以为第一宽度尺寸D1。第一掩膜层100可以为抗腐蚀涂层材料,例如可以为旋涂光阻。为了便于理解本公开,将垂直于AA’线剖面的方向定义为第一方向x,将平行于AA’线剖面的方向定义为第二方向y。可以通过对第一掩膜层100进行图案的显影、曝光等工艺,以在金属层20(参照图10)的末端区域H1的上方形成第一凸出图形101,第一凸出图形101为第一掩膜层100沿第一方向x延伸的多个条形结构,第一凸出图形101可以为矩形结构,即将第一掩膜层100的一端形成多个为第一宽度尺寸D1的矩形结构,多个第一凸出图形101在第二方向y上间隔分布,以第一密度分布覆盖金属层20的末端区域H1。第一掩膜层100的主体部分覆盖除金属层末端区域的其他部分,以保证除金属层末端区域的其他部分不被刻蚀。
步骤S108:根据第一凸出图形定义的图案为掩膜,刻蚀金属层的末端区域,形成金属线末端结构。
结合图9-图12所示,根据第一凸出图形101定义的图案为掩膜,依次刻蚀位于金属线的末端区域H1上方的金属保护层30和金属层20直至暴露衬底10,以在金属层的末端区域H1中形成多个金属线末端结构211,第一凸出图形101的图案的形状以及大小,可以决定金属线末端结构211的形状以及大小。金属线末端结构211的宽度与第一凸出图形101的宽度尺寸一致,为第一宽度尺寸D1。在示例性实施例中,金属线末端结构的形状可以与第一凸出图形的形状相同。在形成金属线末端结构之后,去除第一掩膜层100。
步骤S110:形成填充结构,填充结构填充在相邻的两个金属线末端结构之间。
如图12所示,金属层20的末端区域暴露衬底10的部分表面,以及金属线末端结构211的侧面,由于金属线末端结构211顶面有金属保护层30的覆盖不会被氧化,但是金属线末端结构211的侧面暴露在空气中很容易被氧化。因此,为了对金属线末端结构211的侧面进行保护,在形成金属线末端结构211之后,形成填充结构。
如图13和图14所示,通过在衬底10的表面填满填充材料,直至填充材料填满金属线末端结构之间的区域,使得填充材料与金属保护层30的高度齐平,形成填充结构40,由于填充结构40覆盖金属线末端结构211的侧面部分,因此,对金属线末端结构211的侧面形成了保护,以防止金属线末端结构被氧化。在示例性实施例中,填充材料可以为 氧化物,例如氧化硅或者氮氧化硅等,在此不做具体限制。
在示例性实施方式中,为了使得填充结构与金属保护层齐平,使得填充结构与仅保护层保持在形成同一平面,形成填充结构可以包括如下步骤:在相邻的两个金属线末端结构之间填充氧化物材料,形成初始填充结构;采用化学机械研磨工艺,对初始填充结构进行平坦化处理,直至初始填充结构的表面与金属保护层的表面平齐,形成填充结构。
步骤S112:形成过渡层,过渡层覆盖金属保护层和填充结构的表面。
在形成填充结构的同时可以形成过渡层,也可以在形成填充结构之后,再形成过渡层。如图15所示,在金属保护层的表面形成过渡层50,过渡层50可以为单膜层或者多膜层结构,在示例性实施例中,如图16所示,过渡层50为多膜层结构,过渡层50可以包括抗反射层501和图形转移层502。
在示例性实施方式中,形成过渡层可以包括:在金属保护层30和填充结构40的表面依次先后沉积图形转移层502和抗反射层501,以通过在形成第二掩膜层之前,先沉积一层有机或无机抗反射物质作为抗反射层,以达到增大光刻工艺窗口,提高光刻线宽控制的目的。再利用图形转移层502将第二掩膜层的图案转移到金属保护层30上,从而获得更加精准尺寸的位元线图形。
步骤S114:形成第二掩膜层。
为了能够通过间距倍增技术做出符合尺寸的位元线主体图形,在示例性实施方式中,形成第二掩膜层可以包括如下步骤:
步骤S20:形成间隔组,间隔组包括间隔设置的多个第一间隔单元;
步骤S22:形成介质层,介质层覆盖第一间隔单元的顶面和侧面,以及相邻两个第一间隔单元之间的区域;
步骤S24:去除覆盖在相邻两个第一间隔单元之间的部分介质层、覆盖在第一间隔单元的顶面的介质层;
步骤S26:被保留的介质层形成具有第二密度的第二条状图形,形成第二掩膜层,第二条状图形的宽度为第二宽度尺寸。
结合图17和图18所示,在形成抗反射层501后,在抗反射层501的上方形成间隔组200,间隔组200具有多个第一间隔单元201。每一个第一间隔单元201在第一方向x上延伸形成条状结构,在第一方向x上第一间隔单元201延伸的长度可以大于金属层20的主体区域H2(参照图9)的长度,或者等于金属层20的长度,以能够形成足够长度的位元线。多个第一间隔单元201在第二方向y上以第二密度间隔分布,相邻两个第一间隔单元201之间的宽度一致。在垂直于衬底10表面的方向上,每个第一间隔单元201在衬底10上的投影部分覆盖金属线末端结构211在衬底10上的投影。
结合图18、图19和图20所示,在过渡层50上方形成间隔组200后,在间隔组200的表面沉积介质层300,介质层300覆盖每个第一间隔单元201的表面,在第一间隔单元201的顶面上形成顶面介质层301;在第一间隔单元201的侧面上形成侧面介质层303;在相邻的两个第一间隔单元201之间暴露抗反射层501表面的区域上形成底部介质层305。其中,侧面介质层303的宽度可以决定位元线的主体宽度尺寸。介质层300的材料包括但不限于氧化硅,在此不做具体限定。
结合图20-图22所示,可以选择湿法刻蚀工艺去除覆盖在相邻两个第一间隔单元201之间的部分底部介质层305以及顶面介质层301,保留第一间隔单元201的侧面上的侧面介质层303,由于第一间隔单元201为条状结构,因此,形成的具有一定宽度的侧面介质层303,多个侧面介质层303在第二方向y上均匀的间隔分布,即保留在第一间隔单元201的侧面上的侧面介质层303形成了具有第二密度的第二条状图形302,第二条状图形302的宽度为第二宽度尺寸D2,第二宽度尺寸D2可以与侧面介质层303的宽度尺寸一 致,多个间隔分布的第二条状图形302构成第二掩膜层304。
如图21所示,第二条状图形302间隔设置在金属层的主体区域H2上方,第二条状图形302在第一方向x上的长度贯穿主体区域H2的长度,第二条状图形302的端面可以与金属线末端结构211的端面齐平,或者与金属层的端面齐平。
在去除部分介质层的过程中,还可以保留位于第一间隔单元端面的介质层,可以在后续工序中一并去除,以节省时间。
步骤S116:第二条状图形间隔设置在金属层的主体区域,根据第二条状图形定义的图案为掩膜,刻蚀金属层的主体区域,形成金属线本体结构。
结合图21和图22所示,在形成第二掩膜层304之后,第二条状图形302均匀的,以第二密度分布在金属层20主体区域H2的上方。结合图22、图26和图29所示,以第二条状图形302定义的图案为掩膜,依次向下刻蚀抗反射层501、图形转移层502以及金属保护层30,以将第二条状图形302的图案转移到金属层20上,继续刻蚀金属层20并贯穿金属层20的厚度暴露衬底10的表面,参照图29所示,在金属层的主体区域H2中形成了多个金属线本体结构212。
在形成金属线本体结构的过程中,还可以将位于相邻的两个金属线末端结构之间的填充结构,形成隔离结构,因此,该半导体结构的制作方法还可以包括:步骤S118:形成隔离结构。
在示例性实施方式中,形成隔离结构可以包括如下步骤:
步骤S30:形成中间掩膜层,中间掩膜层包括第二密度的第三凸出图形,第三凸出图形覆盖部分第二条状图形的一端,第三凸出图形在垂直于金属层的方向上的投影覆盖金属线末端结构;
步骤S32:根据未被覆盖的第二条状图形和第三凸出图形定义的图案为掩膜,去除部分填充结构,被保留的填充结构形成隔离结构,隔离结构位于相邻的两个金属线末端结构之间。
如图23所示,在形成第二密度的第二条状图形302之后,在位于金属层的末端区域H1上方的第二掩膜层上形成中间掩膜层400,中间掩膜层400具有与金属线末端结构211相同密度的第三凸出图形401,第三凸出图形401在第二方向y上以第二密度间隔分布。
结合图23和图24所示,第三凸出图形401覆盖位于金属线末端结构211上第二条状图形302一端的表面,第三凸出图形401的在垂直于金属层20的方向上投影完全覆盖金属线末端结构211的投影,能够在对金属层20的主体区域H2进行刻蚀时,对金属线末端结构211形成保护,以防止在形成金属线本体结构的过程中减少金属线末端结构211的面积。
继续参考图23所示,与金属线末端结构对应的,未被中间掩膜层400覆盖的部分第二条状图形302,其长度可以与金属层的主体区域H2的长度保持一致。在金属线末端结构之间的,未被中间掩膜层400覆盖的部分第二条状图形302,其长度可以大于金属层的主体区域H2的长度。
如图24所示,可以通过光刻工艺,以未被覆盖的第二条状图形302和第三凸出图形401定义的图案为掩膜,依次刻蚀部分抗反射层501、图形转移层502、金属保护层30、金属层20以及部分填充结构40,直至暴露衬底10的表面。在刻蚀的过程中,可以将位于金属层的端面之前的中间掩膜层主体402(参考图23)一同刻蚀掉,以将预保留的位于第一间隔单元201端面的介质层300(参见图19所示)一次性去除,从而节省工序,节约时间。
如图23和图25所示,去除所有的第二条状图形302以及中间掩膜层400后,在衬底10的上方形成了以第一密度分布,具有第一宽度尺寸D1的金属线末端结构的图形结构,以及以第二密度分布,具有第二宽度尺寸D2的金属线本体结构的图形结构。
结合图26-图28所示,依次去除抗反射层501、图形转移层502后,在相邻的两个金属线末端结构211之间,被保留的填充结构形成了隔离结构41。如图29所示,隔离结构41的宽度与金属线本体结构的宽度一致,任意一个金属线本体结构212与其中一个隔离结构41相连。在第一方向x上,隔离结构41的长度可以大于金属线末端结构211的长度,以防止金属线末端结构211之间接触出现连在一起短路的问题。
继续参考图29所示,为了防止形成的位元线结构21被氧化,在相邻的两个位元线结构21之间还可以形成防氧化层(图中未示出)。
结合如图30和图31所示,金属线末端结构211与接触孔60接触,即位元线结构的末端与接触孔60接触,通过采用本公开所提供的半导体结构的制作方法,形成了较大尺寸的金属线末端结构211,使得位元线结构21的末端获得了足够大的接触面积。如图30所示,增大了的末端接触面积大于接触孔60的横截面,能够在刻蚀接触孔60的工艺过程中,阻止接触孔穿过位元线的末端继续向下刻蚀,从而防止接触孔60穿过位元线的末端与衬底10接触。
如图29所示,本公开一示例性的实施例提供的一种半导体结构,该半导体结构包括:
衬底10;
第一密度的金属线末端结构211,设置在衬底10上,金属线末端结构211的宽度为第一宽度尺寸D1;
第二密度的金属线本体结构212,设置在衬底10上,金属线本体结构212的宽度为第二宽度尺寸D2;
其中,第二密度为第一密度的两倍,第二宽度尺寸D2小于第一宽度尺寸D1,且任意一个金属线本体结构212的一端与其中一个金属线末端结构211相连。
本公开的实施例所提供的半导体结构,在衬底上形成了以第一密度分布的金属线末端结构,以及以第二密度分布的金属线本体结构,第二密度为第一密度的两倍,使得金属线末端结构宽度尺寸大于金属线本体结构的宽度尺寸,从而形成的位元线结构具有较大的末端接触面积,以能够在刻蚀接触孔的工艺过程中,阻止接触孔穿过位元线的末端继续向下刻蚀,从而防止接触孔穿过位元线的末端与衬底接触。
如图29所示,衬底10可以作为半导体结构中位元线的支撑部件,在衬底10的上方,金属线末端结构211位于金属层的末端区域H1的上方,在第一方向x上以第一密度间隔分布,其中,金属线末端结构211的宽度为第一宽度尺寸D1。金属线本体结构212位于金属层的主体区域H2的上方,在第一方向x上以第二密度间隔分布,其中,金属线本体结构212的宽度为第二宽度尺寸D2,且任意一个金属线本体结构212的一端与其中一个金属线末端结构211相连。在衬底10上所分布金属线本体结构是金属线末端结构的两倍,金属线本体结构的宽度小于金属线末端结构的宽度,金属线末端结构211与金属线本体结构212构成位于衬底10上方的位元线结构21。
如图29所示,该半导体结构还包括:隔离结构41,隔离结构41与任意一个金属线本体结构212连接,隔离结构41位于相邻的两个金属线末端结构211之间,以防止增大了末端接触面积的位元线连在一起引起短路的现象。为了能够将位元线的末端完全隔离开,在第一方向x上,隔离结构41的长度大于金属线末端结构211的长度。
为了防止形成的位元线结构被氧化,如图27和图28所示,该半导体结构还包括金属保护层30,金属保护层30可以完全覆盖位元线结构21的顶面。结合图27和图29所示,金属保护层30包括覆盖在金属线末端结构211的金属线末端保护层31,以及覆盖在金属线本体结构212的金属线本体保护层32。
本公开的实施例所提供的半导体结构,在衬底上形成了以第一密度分布的金属线末端结构,以及以第二密度分布的金属线本体结构,第二密度为第一密度的两倍,使得金 属线末端结构宽度尺寸大于金属线本体结构的宽度尺寸,从而形成的位元线结构具有较大的末端接触面积。
本说明书中各实施例或实施方式采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分相互参见即可。
在本说明书的描述中,参考术语“实施例”、“示例性的实施例”、“一些实施方式”、“示意性实施方式”、“示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施方式或示例中。
在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
在本公开的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
可以理解的是,本公开所使用的术语“第一”、“第二”等可在本公开中用于描述各种结构,但这些结构不受这些术语的限制。这些术语仅用于将第一个结构与另一个结构区分。
在一个或多个附图中,相同的元件采用类似的附图标记来表示。为了清楚起见,附图中的多个部分没有按比例绘制。此外,可能未示出某些公知的部分。为了简明起见,可以在一幅图中描述经过数个步骤后获得的结构。在下文中描述了本公开的许多特定的细节,例如器件的结构、材料、尺寸、处理工艺和技术,以便更清楚地理解本公开。但正如本领域技术人员能够理解的那样,可以不按照这些特定的细节来实现本公开。
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。
工业实用性
本公开实施例所提供的半导体结构的制作方法及半导体结构中,通过第一掩膜层作为掩膜对金属层进行刻蚀,形成第一宽度尺寸的金属线末端结构,通过第二掩膜层作为掩膜对金属层的其他区域进行刻蚀,形成第二宽度尺寸的金属线本体结构,其中,第二宽度尺寸小于第一宽度尺寸,实现了通过简单的工艺定义两次掩膜层,分别对金属层的不同区域进行刻蚀,以形成具有较大尺寸的金属线末端结构的位元线结构,形成足够大的位元线的末端结构接触面积,避免了通过复杂的工艺来增大位元线末端结构的接触面积。

Claims (14)

  1. 一种半导体结构的制作方法,所述制作方法包括:
    形成金属层和第一掩膜层,所述第一掩膜层位于所述金属层上方,所述第一掩膜层包括第一密度的第一凸出图形;根据所述第一掩膜层定义的图案刻蚀所述金属层,形成第一宽度尺寸的金属线末端结构;
    形成第二掩膜层,所述第二掩膜层位于所述金属层上方,所述第二掩膜层包括第二密度的第二条状图形;根据所述第二掩膜层定义的图案刻蚀所述金属层,形成第二宽度尺寸的金属线本体结构;
    其中,所述第二密度为所述第一密度的两倍,所述第二宽度尺寸小于所述第一宽度尺寸,且任意一个所述金属线本体结构的一端与其中一个所述金属线末端结构相连。
  2. 根据权利要求1所述的半导体结构的制作方法,其中,根据所述第一掩膜层定义的图案刻蚀所述金属层,形成第一宽度尺寸的金属线末端结构包括:
    所述第一掩膜层的一端具有所述第一凸出图形,所述第一凸出图形间隔设置在所述金属层的末端区域,所述第一凸出图形的宽度为第一宽度尺寸;
    根据所述第一凸出图形定义的图案为掩膜,刻蚀所述金属层的末端区域,形成所述金属线末端结构。
  3. 根据权利要求2所述的半导体结构的制作方法,形成所述金属线末端结构之后,还包括:
    形成填充结构,所述填充结构填充在相邻的两个所述金属线末端结构之间。
  4. 根据权利要求3所述的半导体结构的制作方法,其中,形成第二掩膜层,包括:
    形成间隔组,所述间隔组包括间隔设置的多个第一间隔单元;
    形成介质层,所述介质层覆盖所述第一间隔单元的表面和侧面,以及相邻两个所述第一间隔单元之间的区域;
    去除覆盖在相邻两个所述第一间隔单元之间的部分所述介质层、覆盖在所述第一间隔单元的表面的所述介质层;
    被保留的所述介质层形成具有第二密度的第二条状图形,形成所述第二掩膜层,所述第二条状图形的宽度为第二宽度尺寸。
  5. 根据权利要求4所述的半导体结构的制作方法,其中,根据所述第二掩膜层定义的图案刻蚀所述金属层,形成第二宽度尺寸的金属线本体结构,包括:
    所述第二条状图形间隔设置在所述金属层的主体区域,根据所述第二条状图形定义的图案为掩膜,刻蚀所述金属层的主体区域,形成所述金属线本体结构。
  6. 根据权利要求5所述的半导体结构的制作方法,所述制作方法还包括:形成隔离结构;
    所述形成隔离结构包括:
    形成中间掩膜层,所述中间掩膜层包括第二密度的第三凸出图形,所述第三凸出图形覆盖部分所述第二条状图形的一端,所述第三凸出图形在垂直于所述金属层的方向上的投影覆盖所述金属线末端结构;
    根据未被覆盖的所述第二条状图形和所述第三凸出图形定义的图案为掩膜,去除部分所述填充结构,被保留的所述填充结构形成隔离结构,所述隔离结构位于相邻的两个所述金属线末端结构之间。
  7. 根据权利要求1至6任一所述的半导体结构的制作方法,所述制作方法还包括:
    提供衬底,所述金属层覆盖所述衬底的表面。
  8. 根据权利要求7所述的半导体结构的制作方法,所述制作方法还包括:
    形成金属保护层,所述金属保护层覆盖所述金属层的表面,所述第一掩膜层覆盖金 属保护层的表面。
  9. 根据权利要求8所述的半导体结构的制作方法,其中,形成填充结构,包括:
    在相邻的两个所述金属线末端结构之间填充氧化物材料,形成初始填充结构;
    采用化学机械研磨工艺,对所述初始填充结构进行平坦化处理,直至所述初始填充结构的表面与所述金属保护层的表面平齐,形成所述填充结构。
  10. 根据权利要求9所述的半导体结构的制作方法,形成第二掩膜层之前,还包括:
    形成过渡层,所述过渡层覆盖所述金属保护层和所述填充结构的表面。
  11. 一种半导体结构,所述半导体结构包括:
    衬底;
    第一密度的金属线末端结构,设置在所述衬底上,所述金属线末端结构的宽度为第一宽度尺寸;
    第二密度的金属线本体结构,设置在所述衬底上,所述金属线本体结构的宽度为第二宽度尺寸;
    其中,所述第二密度为所述第一密度的两倍,所述第二宽度尺寸小于所述第一宽度尺寸,且任意一个所述金属线本体结构的一端与其中一个所述金属线末端结构相连。
  12. 根据权利要求11所述的半导体结构,所述半导体结构还包括:隔离结构,
    所述隔离结构设置在相邻的两个所述金属线末端结构之间。
  13. 根据权利要求12所述的半导体结构,其中,所述隔离结构的长度大于所述金属线末端结构的长度。
  14. 根据权利要求11所述的半导体结构,所述半导体结构还包括金属保护层,所述金属保护层覆盖所述金属线末端结构和所述金属线本体结构。
PCT/CN2022/072329 2022-01-06 2022-01-17 半导体结构的制作方法及半导体结构 WO2023130500A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210013298.4A CN116453947A (zh) 2022-01-06 2022-01-06 半导体结构的制作方法及半导体结构
CN202210013298.4 2022-01-06

Publications (1)

Publication Number Publication Date
WO2023130500A1 true WO2023130500A1 (zh) 2023-07-13

Family

ID=87072925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072329 WO2023130500A1 (zh) 2022-01-06 2022-01-17 半导体结构的制作方法及半导体结构

Country Status (2)

Country Link
CN (1) CN116453947A (zh)
WO (1) WO2023130500A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6165692A (en) * 1996-08-22 2000-12-26 Kabushiki Kaisha Toshiba Method for manufacturing a semiconductor device and an exposure mask used therefor
US20020070392A1 (en) * 1998-11-04 2002-06-13 Hiroaki Ohkubo Electronic device, semiconductor device, and electrode forming method
CN110534517A (zh) * 2018-05-25 2019-12-03 长鑫存储技术有限公司 集成电路存储器及其形成方法、半导体集成电路器件

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6165692A (en) * 1996-08-22 2000-12-26 Kabushiki Kaisha Toshiba Method for manufacturing a semiconductor device and an exposure mask used therefor
US20020070392A1 (en) * 1998-11-04 2002-06-13 Hiroaki Ohkubo Electronic device, semiconductor device, and electrode forming method
CN110534517A (zh) * 2018-05-25 2019-12-03 长鑫存储技术有限公司 集成电路存储器及其形成方法、半导体集成电路器件

Also Published As

Publication number Publication date
CN116453947A (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
US7867912B2 (en) Methods of manufacturing semiconductor structures
US10535610B2 (en) Semiconductor structure
US11018006B2 (en) Method for patterning a semiconductor structure
TWI477999B (zh) 使用間隔物圖案技術以製造半導體裝置之方法
JP2016033968A (ja) 半導体装置の製造方法
WO2022028122A1 (zh) 电容器的制作方法及电容器阵列结构、半导体存储器
KR100301038B1 (ko) 씨오비(cob)를구비한반도체메모리장치및그제조방법
WO2021175157A1 (zh) 有源区阵列的形成方法及半导体结构
US6352896B1 (en) Method of manufacturing DRAM capacitor
WO2023130500A1 (zh) 半导体结构的制作方法及半导体结构
US7145195B2 (en) Semiconductor memory device and method of manufacturing the same
WO2023137835A1 (zh) 半导体结构的制作方法及半导体结构
WO2023206685A1 (zh) 半导体结构及半导体结构的制作方法
WO2023077601A1 (zh) 半导体结构的形成方法及半导体结构
WO2022028175A1 (zh) 一种存储器的形成方法和存储器
WO2022179028A1 (zh) 半导体结构的形成方法及半导体结构
WO2022205730A1 (zh) 半导体结构的制造方法
WO2022183687A1 (zh) 半导体结构的制作方法和半导体结构
WO2023015642A1 (zh) 半导体结构的制作方法及半导体结构
TWI530992B (zh) 以免光罩方式定義位元線溝槽之半導體基底及其製造方法
TWI520265B (zh) 在半導體基底上形成自對準隔離溝槽的方法及半導體裝置
EP4086959B1 (en) Preparation method for semiconductor structure and semiconductor structure
WO2022142226A1 (zh) 半导体结构制作方法及半导体结构
US20230056584A1 (en) Manufacturing method of semiconductor structure
US20230361165A1 (en) Method of forming semiconductor structure and semiconductor structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22917968

Country of ref document: EP

Kind code of ref document: A1