WO2023120350A1 - 水系の微生物汚染抑制方法 - Google Patents

水系の微生物汚染抑制方法 Download PDF

Info

Publication number
WO2023120350A1
WO2023120350A1 PCT/JP2022/046153 JP2022046153W WO2023120350A1 WO 2023120350 A1 WO2023120350 A1 WO 2023120350A1 JP 2022046153 W JP2022046153 W JP 2022046153W WO 2023120350 A1 WO2023120350 A1 WO 2023120350A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxidizing agent
chlorine
based oxidizing
stabilized
bromine
Prior art date
Application number
PCT/JP2022/046153
Other languages
English (en)
French (fr)
Inventor
雄太 大塚
周子 進邦
剛 中川
淳一 高橋
邦洋 早川
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to JP2023569360A priority Critical patent/JPWO2023120350A1/ja
Publication of WO2023120350A1 publication Critical patent/WO2023120350A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to a method for suppressing microbial contamination of water systems.
  • INDUSTRIAL APPLICABILITY The method for suppressing microbial contamination of a water system of the present invention is useful, for example, as a method for suppressing slime in a reverse osmosis (RO) membrane water supply system and preventing fouling of the reverse osmosis membrane.
  • RO reverse osmosis
  • RO membrane devices that can efficiently remove electrolytes and medium- and low-molecular-weight organic components are widely used.
  • pretreatment such as pressure filtration equipment, gravity filtration equipment, coagulation sedimentation treatment equipment, pressure flotation filtration equipment, immersion membrane equipment, membrane pretreatment equipment, etc. is usually performed before the RO membrane equipment.
  • a device is provided. After being pretreated by these pretreatment devices, the water to be treated is supplied to the RO membrane device and subjected to RO membrane separation treatment.
  • microorganisms contained in the water to be treated proliferate in the pipes of the equipment and on the membrane surface to form slime. can cause
  • a disinfectant In order to prevent contamination by microorganisms, it is common to add a disinfectant to the water to be treated constantly or intermittently to sterilize the water to be treated or the inside of the device while treating.
  • a disinfectant a chlorine-based oxidizing agent such as sodium hypochlorite is used because it is inexpensive and relatively easy to handle.
  • RO membranes generally do not have chlorine resistance like polyamide polymer membranes, when a chlorine-based oxidizing agent is added, free chlorine derived from the chlorine-based oxidizing agent causes oxidative deterioration and removal. rate will decline.
  • a chlorine-based oxidizing agent is added on the upstream side of the water treatment device, and a reducing agent such as sodium bisulfite (SBS) is added on the inlet side of the RO membrane device to reduce and remove the remaining free chlorine.
  • a reducing agent such as sodium bisulfite (SBS)
  • SBS sodium bisulfite
  • stabilized chlorine-based oxidizing agents such as chloramine and sodium chlorosulfamate, and stabilized bromine are added to suppress microbial contamination of the piping from the point of addition of the reducing agent to the inlet of the RO membrane device and the surface of the RO membrane.
  • a slime control agent that suppresses the growth of microorganisms such as an oxidizing agent or an isothiazolone compound.
  • stabilized chlorine-based oxidants and stabilized bromine-based oxidants have been widely used because they can suppress microbial contamination.
  • Stabilized chlorine-based oxidizing agents and stabilized bromine-based oxidizing agents were found to exhibit the inhibitory effect more easily in some water systems and less so in some systems.
  • SBS Sodium bisulfite
  • Non-Patent Document 1 Sodium bisulfite (SBS), a reducing agent that is generally added to reduce free chlorine in the preceding stage of the RO membrane, is usually added in an excessive amount to reliably prevent membrane deterioration. SBS is known to damage films by reacting with heavy metals (Non-Patent Document 1).
  • a reducing agent such as sodium bisulfite is added and a stabilized chlorine-based oxidizing agent and/or a bromine-based oxidizing agent comprising a chlorine-based oxidizing agent and a sulfamic acid compound are used in an aqueous system containing a residual reducing agent.
  • An object of the present invention is to provide a method for suppressing microbial contamination of water systems, which can stably and effectively obtain the effect of suppressing microbial contamination by adding a stabilized brominated oxidizing agent comprising a sulfamic acid compound.
  • the present inventors have proposed a stabilized chlorine-based oxidizing agent and/or stabilized bromine having a low sulfamic acid ratio (the ratio of the sulfamic acid compound to the effective chlorine amount of the chlorine-based oxidizing agent and/or the effective chlorine equivalent amount of the bromine-based oxidizing agent).
  • a stabilized chlorine-based oxidizing agent and/or stabilized bromine having a low sulfamic acid ratio (the ratio of the sulfamic acid compound to the effective chlorine amount of the chlorine-based oxidizing agent and/or the effective chlorine equivalent amount of the bromine-based oxidizing agent).
  • the gist of the present invention is as follows.
  • a method for suppressing microbial contamination in a water system containing a reducing agent comprising a chlorine-based oxidizing agent and a sulfamic acid compound, wherein the ratio of the sulfamic acid compound to 1 mol of available chlorine of the chlorine-based oxidizing agent is 1 to 1.5 mol of a stabilized chlorine-based oxidizing agent and/or composed of a bromine-based oxidizing agent and a sulfamic acid compound, wherein the ratio of the sulfamic acid compound to 1 mol of the effective chlorine equivalent of the bromine-based oxidizing agent is 1
  • the addition concentration of the stabilized chlorine-based oxidizing agent and/or the stabilized bromine-based oxidizing agent to the concentration of the reducing agent in the aqueous system is 2.5 times in molar ratio.
  • a reducing agent such as sodium bisulfite is added to an aqueous system containing a residual reducing agent, and the addition of a stabilized chlorine-based oxidant and/or a stabilized bromine-based oxidant stably and effectively causes microbial contamination. can be suppressed.
  • a reducing agent such as sodium bisulfite and heavy metals
  • FIG. 1 is a graph showing the results of Example 1 and Comparative Example 1.
  • FIG. 2 is a graph showing the results of Test Example 2.
  • a method for suppressing microbial contamination of an aqueous system is a method for suppressing microbial contamination in an aqueous system containing a reducing agent, which comprises a chlorine-based oxidizing agent and a sulfamic acid compound, and the effective chlorine of the chlorine-based oxidizing agent is A stabilized chlorine-based oxidizing agent and/or a bromine-based oxidizing agent and sulfaamine, in which the ratio of the sulfamic acid compound to 1 mol (hereinafter sometimes referred to as "sulfamic acid ratio”) is 1 to 1.5 mol.
  • a stabilized bromine-based oxidizing agent having a ratio of 1 to 1.5 mol of the sulfamic acid compound per 1 mol of effective chlorine equivalent of the bromine-based oxidizing agent with respect to the concentration of the reducing agent in the aqueous system.
  • the stabilized chlorine-based oxidizing agent and/or the stabilized bromine-based oxidizing agent are added to the aqueous system in such a manner that the added concentration is 2.5 times or more in terms of molar ratio.
  • a reducing agent such as sodium bisulfite (SBS) in water also reduces the stabilized chlorine-based oxidant and the stabilized bromine-based oxidant added later.
  • SBS sodium bisulfite
  • the stabilized chlorine-based oxidant consisting of the chlorine-based oxidant and the sulfamic acid compound and/or the stabilized bromine-based oxidant consisting of the bromine-based oxidant and the sulfamic acid compound release sulfamic acid.
  • the higher the residual reducing agent concentration the higher the ratio of sulfamic acid to available chlorine in the system. As the ratio of sulfamic acid increases, the reactivity as a component decreases due to the equilibrium relationship.
  • the effect of suppressing microbial contamination can be maintained even after reduction with a reducing agent such as sodium bisulfite. .
  • a reducing agent such as sodium bisulfite.
  • the water system to be treated in the present invention is not particularly limited as long as it contains a reducing agent.
  • the present invention uses a reducing agent such as sodium bisulfite (SBS) in order to prevent oxidation deterioration of the RO membrane after a chlorine-based oxidant is added in the previous stage in a water treatment apparatus including an RO membrane apparatus.
  • SBS sodium bisulfite
  • sodium bisulfite As a reducing agent contained in the water system, sodium bisulfite (SBS) is typical, but sodium thiosulfate and the like may also be used.
  • the reducing agent concentration in the aqueous system containing this residual reducing agent is preferably 0.01 mg/L-Cl 2 or more in order to effectively obtain the effects of the present invention, and this concentration is more preferably 0.1 mg. /L-Cl 2 or more.
  • the concentration of the reducing agent is excessively high, the stabilized chlorine-based oxidizing agent and/or the stabilized bromine-based oxidizing agent that are added later are reduced accordingly, resulting in a higher required addition amount and an increase in treatment cost. Therefore, the reducing agent concentration in the water system to be treated is preferably 5 mg/L-Cl 2 or less, particularly 2 mg/L-Cl 2 or less.
  • the concentration of the reducing agent is expressed in terms of free chlorine, that is, the concentration of free chlorine (mg/L-Cl 2 ) that can be reduced by the reducing agent at that concentration.
  • the stabilized chlorine-based oxidant used in the present invention comprises a chlorine-based oxidant and a sulfamic acid compound.
  • the stabilized brominated oxidant used in the present invention comprises a brominated oxidant and a sulfamic acid compound.
  • chlorine-based oxidizing agent used in the stabilized chlorine-based oxidizing agent, and examples include chlorine gas, chlorine dioxide, hypochlorous acid or its salts, chlorous acid or its salts, chloric acid or its salts, and perchloric acid. or a salt thereof, chlorinated isocyanuric acid or a salt thereof.
  • salt forms include alkali metal hypochlorites such as sodium hypochlorite and potassium hypochlorite; hypochlorites such as calcium hypochlorite and barium hypochlorite; acid alkaline earth metal salts; alkali metal chlorite salts such as sodium chlorite, potassium chlorite; alkaline earth metal chlorite salts such as barium chlorite; other chlorite salts such as nickel chlorite. acid metal salts; ammonium chlorate; alkali metal chlorates such as sodium chlorate and potassium chlorate; alkaline earth metal chlorates such as calcium chlorate and barium chlorate.
  • hypochlorite can be preferably used because it is easy to handle.
  • the brominated oxidizing agent used in the present invention is not particularly limited, and examples include liquid bromine, bromine chloride, bromic acid or salts thereof, hypobromous acid or salts thereof. These brominated oxidizing agents may be used alone or in combination of two or more.
  • sulfamic acid compounds include compounds represented by the following general formula [1] or salts thereof.
  • R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms.
  • sulfamic acid compounds include sulfamic acid in which both R 1 and R 2 are hydrogen atoms, as well as N-methylsulfamic acid, N,N-dimethylsulfamic acid, and N-phenylsulfamic acid. be able to.
  • the salts of the compounds include, for example, alkali metal salts such as sodium salts and potassium salts; alkaline earth metal salts such as calcium salts, strontium salts and barium salts; manganese salts and copper salts; salts, zinc salts, iron salts, cobalt salts, nickel salts and other metal salts; ammonium salts; and guanidine salts, specifically sodium sulfamate, potassium sulfamate, calcium sulfamate, Strontium sulfamate, barium sulfamate, iron sulfamate, zinc sulfamate and the like can be mentioned. Sulfamic acid and these sulfamates can be used singly or in combination of two or more.
  • a chlorine-based oxidizing agent such as hypochlorite and/or a bromine-based oxidizing agent
  • a sulfamic acid compound such as sulfamate
  • these compounds combine to form chlorosulfamate and stabilize it. It is possible to maintain a stable concentration of free chlorine and/or free bromine in water without causing a difference in dissociation due to pH as with chloramine and resulting fluctuations in the concentration of free chlorine and/or free bromine.
  • the ratio of the chlorine-based oxidizing agent and/or the bromine-based oxidizing agent to the sulfamic acid compound is sulfamine per 1 mol of the effective chlorine amount in terms of available chlorine of the chlorine-based oxidizing agent and/or the bromine-based oxidizing agent.
  • the acid compound is preferably 1.0 to 5.0 mol, more preferably 1.0 to 2.5 mol.
  • the stabilized sulfamic acid ratio is 1 to 1.5 mol, preferably 1 to 1.4 mol.
  • a chlorine-based oxidant and/or a stabilized bromine-based oxidant is used.
  • the sulfamic acid ratio exceeds 1.5 mol, the microbial contamination inhibiting effect of the present invention cannot be sufficiently obtained. If the sulfamic acid ratio is less than 1 mol, decomposition of sulfamic acid will occur during production.
  • the chlorine-based oxidizing agent and/or the bromine-based oxidizing agent and the sulfamic acid compound may be added as a mixed aqueous solution or may be added separately.
  • the stabilized chlorine-based oxidizing agent and/or the stabilized bromine-based oxidizing agent according to the present invention can be used in addition to the chlorine-based oxidizing agent and/or the bromine-based oxidizing agent and the sulfamic acid compound within a range that does not impair the effects thereof. It may contain ingredients. Other components include alkaline agents, azoles, anionic polymers, phosphonic acids and the like.
  • the alkaline agent is used to stabilize the chlorine-based oxidizing agent and/or the bromine-based oxidizing agent in the stabilized chlorine-based oxidizing agent and/or the stabilized bromine-based oxidizing agent.
  • Sodium hydroxide, potassium hydroxide and the like are usually used as the alkaline agent.
  • the stabilized chlorine-based oxidizing agent and/or the stabilized bromine-based oxidizing agent are added.
  • the addition concentration of the stabilized chlorine-based oxidizing agent and/or the stabilized bromine-based oxidizing agent is 2.5 times or more in molar ratio.
  • the amount of the stabilized chlorine-based oxidant and/or the stabilized bromine-based oxidant to be added is at least the above lower limit, a good effect of suppressing microbial contamination can be obtained.
  • the larger the amount of the stabilized chlorine-based oxidizing agent and/or the stabilized bromine-based oxidizing agent to be added the better in terms of the effect of suppressing microbial contamination, but on the other hand, the chemical cost increases. Therefore, the amount of the stabilized chlorine-based oxidizing agent and/or the stabilized bromine-based oxidizing agent to be added should be 2.5 to 10 times, particularly 2.5 to 5 times, the molar ratio of the concentration of the reducing agent in the aqueous system. It is preferable to add to
  • Example 1 Comparative Example 1
  • An experiment was conducted to examine the difference in the effect of suppressing microbial contamination depending on the sulfamic acid ratio (H 3 NSO 3 /Cl 2 molar ratio) of the stabilized chlorine-based oxidizing agent.
  • the effect of suppressing microbial contamination was evaluated using the membrane fouling simulator described in Non-Patent Document 1, based on the degree of increase in differential pressure (pressure loss in the flow path).
  • a substrate was added to raw water (water to be treated) to promote the biofouling effect of microorganisms.
  • the raw water contains citric acid: 1.2 mg/L as C, ammonium chloride: 0.6 mg/L as N, and sodium dihydrogen phosphate: 0.2 mg/L as P as substrates.
  • the added water was used as the water to be treated.
  • the pH of raw water was 7-8.5.
  • Test Example 1 Chemical 1 mixed with various concentrations of sodium bisulfite (SBS) in sample water was exposed for 2 hours to observe changes in ATP (adenosine triphosphate) in water. ATP is also called an organism's energy currency, and is used as an indicator of the amount of microorganisms.
  • SBS sodium bisulfite
  • the chemical treatment conditions are as shown in Table 2, and all were adjusted so that the residual chlorine concentration after reaction with sodium bisulfite was 1 mg/L-Cl 2 (Condition 1 was SBS-free).
  • the sample water used was MF and UF treated water from a wastewater recovery system plant in the Kurita Development Center of Kurita Water Industries Ltd.
  • ATP ATP measurement kit EnSure manufactured by Hygiena, and Aquasnap Free and Aquasnap Total were used.
  • ATP a number obtained by subtracting the Free value from the Total value was used in order to capture the activity of microorganisms. Table 3 shows the results.
  • the ATP concentration was effectively lowered, while in conditions 3 and 4, the extent of ATP decrease was smaller.
  • the effect of suppressing microbial contamination is low with respect to the amount of SBS in condition 3, the effect of suppressing microbial contamination is sufficient under condition 2 even if SBS is added. From this, it can be seen that the addition concentration of the stabilized chlorine-based oxidizing agent to the reducing agent is preferably 2.5 times or more in molar ratio for the effect of suppressing microbial contamination.

Abstract

還元剤を含有する水系における微生物汚染を抑制する方法において、塩素系酸化剤とスルファミン酸化合物とからなり、該塩素系酸化剤の有効塩素1モルに対する該スルファミン酸化合物の割合が1~1.5モルである安定化塩素系酸化剤、及び/又は、臭素系酸化剤とスルファミン酸化合物とからなり、該臭素系酸化剤の有効塩素換算量1モルに対する該スルファミン酸化合物の割合が1~1.5モルである安定化臭素系酸化剤を、該水系の該還元剤濃度に対する該安定化塩素系酸化剤及び/又は安定化臭素系酸化剤の添加濃度がモル比で2.5倍以上となるように該水系に添加することを特徴とする水系の微生物汚染抑制方法。

Description

水系の微生物汚染抑制方法
 本発明は水系の微生物汚染抑制方法に関する。本発明の水系の微生物汚染抑制方法は、例えば、逆浸透(RO)膜給水系に適用して、系内のスライムを抑制して逆浸透膜のファウリングを防止する方法として有用である。
 海水淡水化プラントや排水回収プラントでは、電解質や中低分子の有機成分を効率的に除去することができるRO膜装置が広く用いられている。RO膜装置を含む水処理装置では、通常、RO膜装置の前段に圧力濾過装置、重力濾過装置、凝集沈澱処理装置、加圧浮上濾過装置、浸漬膜装置、膜式前処理装置などの前処理装置が設けられる。被処理水はこれらの前処理装置により前処理された後RO膜装置に供給されてRO膜分離処理される。
 このような水処理装置においては、被処理水中に含まれる微生物が、装置配管内や膜面で増殖してスライムを形成し、系内の微生物繁殖による臭気発生、RO膜の透過水量低下といった障害を引き起こすことがある。
 微生物による汚染を防止するためには、被処理水に殺菌剤を常時又は間欠的に添加し、被処理水又は装置内を殺菌しながら処理する方法が一般的である。殺菌剤としては、安価であり取り扱いも比較的容易であることから、次亜塩素酸ナトリウムなどの塩素系酸化剤が用いられている。しかし、RO膜は一般的にポリアミド系高分子膜のような耐塩素性を持たない膜であるため、塩素系酸化剤を添加すると、塩素系酸化剤由来の遊離塩素による酸化劣化をうけ、除去率が低下してしまう。
 そこで、塩素系酸化剤を水処理装置の上流側で添加し、RO膜装置の入口側で、重亜硫酸ナトリウム(SBS)等の還元剤を添加して残留する遊離塩素を還元除去し、この還元剤添加後は、還元剤の添加点からRO膜装置の入口までの配管やRO膜面での微生物汚染を抑制するために、クロラミンやクロロスルファミン酸ナトリウムといった安定化塩素系酸化剤や安定化臭素系酸化剤、又はイソチアゾロン系化合物などの微生物増殖を抑制するスライムコントロール剤を添加することが知られている(特許文献1~3)。
 その中でも安定化塩素系酸化剤や安定化臭素系酸化剤は、微生物汚染を抑制できることから幅広く用いられてきた。安定化塩素系酸化剤や安定化臭素系酸化剤では、その抑制効果が現れやすい水系と現れにくい水系があった。
 RO膜の前段で遊離塩素を還元するために一般的に添加されている還元剤の重亜硫酸ナトリウム(SBS)は、膜劣化を確実に防止するために通常過剰量添加されているが、過剰のSBSは、重金属と反応して膜にダメージを与えることが知られている(非特許文献1)。
特開平1-104310号公報 特開平1-135506号公報 特開2006-263510号公報
Water Solutions"FilmTecTM Reverse Osmosis Membranes Technical Manual"Form No.45-DO1504-en,Rev.7,February 2021[インターネット]<https://www.dupont.com/content/dam/dupont/amer/us/en/water-solutions/public/documents/en/45-D01504-en.pdf#page64>69ページ
 本発明は、重亜硫酸ナトリウム等の還元剤が添加され、残留還元剤を含む水系において、塩素系酸化剤とスルファミン酸化合物とからなる安定化塩素系酸化剤、及び/又は、臭素系酸化剤とスルファミン酸化合物からなる安定化臭素系酸化剤の添加による微生物汚染の抑制効果を安定かつ効果的に得ることができる水系の微生物汚染抑制方法を提供することを課題とする。
 本発明者は、スルファミン酸比率(塩素系酸化剤の有効塩素量及び/又は臭素系酸化剤の有効塩素換算量に対するスルファミン酸化合物の割合)の低い安定化塩素系酸化剤及び/又は安定化臭素系酸化剤を添加することにより、上記課題を解決することができることを見出した。
 本発明は、以下を要旨とする。
[1] 還元剤を含有する水系における微生物汚染を抑制する方法において、塩素系酸化剤とスルファミン酸化合物とからなり、該塩素系酸化剤の有効塩素1モルに対する該スルファミン酸化合物の割合が1~1.5モルである安定化塩素系酸化剤、及び/又は、臭素系酸化剤とスルファミン酸化合物とからなり、該臭素系酸化剤の有効塩素換算量1モルに対する該スルファミン酸化合物の割合が1~1.5モルである安定化臭素系酸化剤を、該水系の該還元剤濃度に対する該安定化塩素系酸化剤及び/又は安定化臭素系酸化剤の添加濃度がモル比で2.5倍以上となるように該水系に添加することを特徴とする水系の微生物汚染抑制方法。
[2] 前記水系が逆浸透膜給水系であることを特徴とする[1]に記載の水系の微生物汚染抑制方法。
[3] 前記水系の還元剤濃度が0.01mg/L-Cl以上であることを特徴とする[1]又は[2]に記載の水系の微生物汚染抑制方法。
[4] 前記還元剤が重亜硫酸ナトリウムであることを特徴とする[1]ないし[3]のいずれかに記載の水系の微生物汚染抑制方法。
[5] 前記水系の前記還元剤濃度に対する前記安定化塩素系酸化剤及び/又は安定化臭素系酸化剤の添加濃度がモル比で2.5~10倍となるように前記水系に添加することを特徴とする[1]ないし[4]のいずれかに記載の水系の微生物汚染抑制方法。
 本発明によれば、重亜硫酸ナトリウム等の還元剤が添加され、残留還元剤を含む水系において、安定化塩素系酸化剤及び/又は安定化臭素系酸化剤の添加により安定かつ効果的に微生物汚染を抑制することができる。
 また、重亜硫酸ナトリウム等の還元剤と重金属との反応による膜劣化も防止することができ、円滑かつ良好な水処理を行える。
図1は、実施例1及び比較例1の結果を示すグラフである。 図2は、試験例2の結果を示すグラフである。
 以下に本発明の水系の微生物汚染抑制方法の実施の形態を詳細に説明する。
 本発明の実施形態に係る水系の微生物汚染抑制方法は、還元剤を含有する水系における微生物汚染を抑制する方法において、塩素系酸化剤とスルファミン酸化合物とからなり、該塩素系酸化剤の有効塩素1モルに対する該スルファミン酸化合物の割合(以下、「スルファミン酸比率」と称す場合がある。)が1~1.5モルである安定化塩素系酸化剤、及び/又は、臭素系酸化剤とスルファミン酸化合物とからなり、該臭素系酸化剤の有効塩素換算量1モルに対する該スルファミン酸化合物の割合が1~1.5モルである安定化臭素系酸化剤を、該水系の該還元剤濃度に対する該安定化塩素系酸化剤及び/又は安定化臭素系酸化剤の添加濃度がモル比で2.5倍以上となるように該水系に添加することを特徴とする。
<メカニズム>
 本発明者は、従来技術の課題を解決すべく検討した結果、以下の通り、水系に含まれる還元剤が安定化塩素系酸化剤や安定化臭素系酸化剤の微生物汚染抑制効果に影響を与えていることを知見した。
 水中の重亜硫酸ナトリウム(SBS)等の還元剤は後段で添加される安定化塩素系酸化剤及び安定化臭素系酸化剤をも還元する。この反応により、塩素系酸化剤とスルファミン酸化合物とからなる安定化塩素系酸化剤、及び/又は、臭素系酸化剤とスルファミン酸化合物とからなる安定化臭素系酸化剤は、スルファミン酸を放出する。この反応において、残留還元剤濃度が高いほど、系内での有効塩素に対するスルファミン酸の比率は高くなる。スルファミン酸の比率が高くなると平衡関係から、成分としての反応性は下がる。
 しかし、スルファミン酸比率の低い安定化塩素系酸化剤及び/又は安定化臭素系酸化剤を用いることにより、重亜硫酸ナトリウム等の還元剤に還元されてもなお微生物汚染効抑制果を保つことができる。また、重亜硫酸ナトリウム等の還元剤と重金属の反応による膜劣化も防止することができる。
<還元剤を含む水系>
 本発明における処理対象水系は、還元剤を含む水系であればよく特に制限はない。本発明は、前述の通り、RO膜装置を含む水処理装置において、前段で塩素系酸化剤が添加された後、RO膜の酸化劣化防止のために、重亜硫酸ナトリウム(SBS)等の還元剤が塩素系酸化剤に対して過剰に添加されることで還元剤が残留する(還元剤を含む)水系であって、その後の配管とRO膜の微生物汚染の抑制のために安定化塩素系酸化剤及び/又は安定化臭素系酸化剤が添加される水系、即ち、RO膜給水系に有効に適用される。
 水系に含まれる還元剤としては、重亜硫酸ナトリウム(SBS)が代表的であるが、その他チオ硫酸ナトリウム等であってもよい。
 この残留還元剤を含む水系中の還元剤濃度は、0.01mg/L-Cl以上であることが、本発明による効果を有効に得る上で好ましく、この濃度は、より好ましくは0.1mg/L-Cl以上である。一方、還元剤濃度が過度に高いと後段で添加される安定化塩素系酸化剤及び/又は安定化臭素系酸化剤がその分還元され、必要添加量が高くなり処理コスト増をまねく。このため、処理対象水系の還元剤濃度は5mg/L-Cl以下、特に2mg/L-Cl以下であることが好ましい。なお、本発明において還元剤濃度は遊離塩素換算した濃度、すなわち、当該濃度の還元剤が還元することのできる遊離塩素の濃度(mg/L-Cl)として記載した。
 処理対象水系のpHには特に制限はなく、2~12の範囲であればよい。
<安定化塩素系酸化剤・安定化臭素系酸化剤>
 本発明で用いる安定化塩素系酸化剤は、塩素系酸化剤とスルファミン酸化合物とからなるものである。
 本発明で用いる安定化臭素系酸化剤は、臭素系酸化剤とスルファミン酸化合物とからなるものである。
 安定化塩素系酸化剤で用いる塩素系酸化剤に特に制限はなく、例えば、塩素ガス、二酸化塩素、次亜塩素酸又はその塩、亜塩素酸又はその塩、塩素酸又はその塩、過塩素酸又はその塩、塩素化イソシアヌル酸又はその塩などを挙げることができる。これらのうち、塩形のものの具体例としては、次亜塩素酸ナトリウム、次亜塩素酸カリウムなどの次亜塩素酸アルカリ金属塩;次亜塩素酸カルシウム、次亜塩素酸バリウムなどの次亜塩素酸アルカリ土類金属塩;亜塩素酸ナトリウム、亜塩素酸カリウムなどの亜塩素酸アルカリ金属塩;亜塩素酸バリウムなどの亜塩素酸アルカリ土類金属塩;亜塩素酸ニッケルなどの他の亜塩素酸金属塩;塩素酸アンモニウム;塩素酸ナトリウム、塩素酸カリウムなどの塩素酸アルカリ金属塩;塩素酸カルシウム、塩素酸バリウムなどの塩素酸アルカリ土類金属塩などを挙げることができる。これらの塩素系酸化剤は、1種を単独で用いても良く、2種以上を組み合わせて用いても良い。これらの中で、次亜塩素酸塩は取り扱いが容易なので、好適に用いることができる。
 本発明で用いる臭素系酸化剤に特に制限はなく、例えば、液体臭素、塩化臭素、臭素酸又はその塩、次亜臭素酸又はその塩などを挙げることができる。これらの臭素系酸化剤は、1種を単独で用いても良く、2種以上を組み合わせて用いても良い。
 スルファミン酸化合物としては、下記一般式[1]で表される化合物又はその塩が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 一般式[1]において、R及びRは、各々独立に、水素原子又は炭素数1~8の炭化水素基である。
 このようなスルファミン酸化合物としては、例えば、RとRがともに水素原子であるスルファミン酸のほかに、N-メチルスルファミン酸、N,N-ジメチルスルファミン酸、N-フェニルスルファミン酸などを挙げることができる。本発明に用いるスルファミン酸化合物のうち、前記化合物の塩としては、例えば、ナトリウム塩、カリウム塩などのアルカリ金属塩;カルシウム塩、ストロンチウム塩、バリウム塩などのアルカリ土類金属塩;マンガン塩、銅塩、亜鉛塩、鉄塩、コバルト塩、ニッケル塩などの他の金属塩;アンモニウム塩;及びグアニジン塩などを挙げることができ、具体的には、スルファミン酸ナトリウム、スルファミン酸カリウム、スルファミン酸カルシウム、スルファミン酸ストロンチウム、スルファミン酸バリウム、スルファミン酸鉄、スルファミン酸亜鉛などを挙げることができる。スルファミン酸及びこれらのスルファミン酸塩は、1種を単独で用いることもでき、2種以上を組み合わせて用いることもできる。
 次亜塩素酸塩等の塩素系酸化剤及び/又は臭素系酸化剤とスルファミン酸塩等のスルファミン酸化合物を混合すると、これらが結合して、クロロスルファミン酸塩を形成して安定化し、従来のクロラミンのようなpHによる解離性の差、それによる遊離塩素及び/又は遊離臭素濃度の変動を生じることなく、水中で安定した遊離塩素及び/又は遊離臭素濃度を保つことが可能となる。
 一般的に、塩素系酸化剤及び/又は臭素系酸化剤とスルファミン酸化合物との割合としては、塩素系酸化剤及び/又は臭素系酸化剤の有効塩素に換算した有効塩素量の1モルあたりスルファミン酸化合物を1.0~5.0モルとすることが好ましく、1.0~2.5モルとすることがより好ましい。
 しかし、スルファミン酸比率の低い安定化塩素系酸化剤及び/又は安定化臭素系酸化剤を用いる本発明では、スルファミン酸比率が1~1.5モル、好ましくは1~1.4モルの安定化塩素系酸化剤及び/又は安定化臭素系酸化剤を用いる。この場合、スルファミン酸比率が1.5モルを超えると本発明による微生物汚染抑制効果を十分に得ることができない。スルファミン酸比率が1モル未満であると製造時にスルファミン酸の分解を招く。
 塩素系酸化剤及び/又は臭素系酸化剤とスルファミン酸化合物とは、混合水溶液として添加されてもよく、別々に添加されてもよい。
 本発明に係る安定化塩素系酸化剤及び/又は安定化臭素系酸化剤は、その効果を損なうことのない範囲において、塩素系酸化剤及び/又は臭素系酸化剤とスルファミン酸化合物以外の他の成分を含有していても良い。他の成分としては、アルカリ剤、アゾール類、アニオン性ポリマー、ホスホン酸類等が挙げられる。
 アルカリ剤は、安定化塩素系酸化剤及び/又は安定化臭素系酸化剤中の塩素系酸化剤及び/又は臭素系酸化剤を安定化させるために用いられる。アルカリ剤としては、通常、水酸化ナトリウム、水酸化カリウム等が用いられる。
<安定化塩素系酸化剤及び/又は安定化臭素系酸化剤の添加量・添加形態>
 スルファミン酸比率の低い安定化塩素系酸化剤及び/又は安定化臭素系酸化剤を添加する本発明では、安定化塩素系酸化剤及び/又は安定化臭素系酸化剤は、水系の還元剤濃度に対する安定化塩素系酸化剤及び/又は安定化臭素系酸化剤の添加濃度がモル比で2.5倍以上となるように添加する。
 安定化塩素系酸化剤及び/又は安定化臭素系酸化剤の添加量が上記下限以上であれば良好な微生物汚染抑制効果を得ることができる。安定化塩素系酸化剤及び/又は安定化臭素系酸化剤の添加量は多い程微生物汚染抑制効果の面では好ましいが、一方で薬品コストが嵩む。このため、安定化塩素系酸化剤及び/又は安定化臭素系酸化剤の添加量は水系の還元剤濃度に対してモル比で2.5~10倍、特に2.5~5倍となるように添加することが好ましい。
 以下に実施例、比較例及び試験例を挙げて本発明の効果を示す。
 以下において用いた薬品1,2の配合組成は下記表1の通りである。
Figure JPOXMLDOC01-appb-T000002
[実施例1,比較例1]
 安定化塩素系酸化剤のスルファミン酸比率(HNSO/Clモル比)による微生物汚染の抑制効果の差異を調べる実験を行った。
 微生物汚染抑制効果は、非特許文献1にある膜ファウリングシミュレータを用い、差圧(流路における圧力損失)上昇の程度に基づいて評価した。
 原水(被処理水)には、基質を添加して、微生物によるバイオファウリング効果を促進させた。具体的には、原水に、基質として、クエン酸:1.2mg/L as C、塩化アンモニウム:0.6mg/L as N、リン酸二水素ナトリウム:0.2mg/L as Pになるように添加したものを被処理水とした。
 原水のpHは7~8.5であった。
 安定化塩素系酸化剤(薬品1又は薬品2)は常時添加量が0.6mg/L-Clとなるように原水に添加した。また、通水1.5日目からは、上記被処理水に、被処理水中の還元剤濃度が0.1mg/L-Clとなるように更に重亜硫酸ナトリウム(SBS)を添加したものを用いた(安定化塩素系酸化剤/SBSモル比=6倍)。
 安定化塩素系酸化剤としては、実施例1では薬品1を、比較例1では薬品2を用いた。
 結果を図1に示す。
 図1より次のことが分かる。
 両条件とも重亜硫酸ナトリウムが添加されるまでは差圧上昇を抑制できていたが、重亜硫酸ナトリウムを添加した後の挙動として、比較例1では差圧上昇を抑えられていないのに対して、実施例1では効果的に差圧を抑制できた。
 スルファミン酸比率が高い薬品2は、重亜硫酸ナトリウムの添加により微生物汚染の抑制効果を失いやすい。これに対して、スルファミン酸比率が低い薬品1は、重亜硫酸ナトリウムの添加があっても微生物汚染の抑制効果を維持しやすいことが示された。
[試験例1]
 サンプル水中で種々濃度の重亜硫酸ナトリウム(SBS)と混合した薬品1を2時間曝露して水中のATP(アデノシン三リン酸)の変化を観察した。ATPは生物のエネルギー通貨とも呼ばれ、微生物量を示す指標として用いられる。薬品の処理条件は表2の通りであり、いずれも重亜硫酸ナトリウムとの反応後の残留塩素濃度が1mg/L-Clになるように調整した(ただし、条件1はSBS無添加)。
 サンプル水は栗田工業社 クリタ開発センター内の排水回収系プラントのMF,UF処理水を用いた。
 ATPはHygiena社製ATP測定キットEnSure及び、Aquasnap FreeとAquasnap Totalを用いた。なお、ATPは微生物の活性をとらえるために、Totalの値からFreeの値を引いた数字を用いた。
 結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 条件1と条件2では効果的にATP濃度を下げられているのに対して、条件3と条件4ではATPの減少幅が小さくなった。条件3のSBS量に対しては微生物汚染の抑制効果が低いが、条件2であればSBSが添加されていたとしても十分な微生物汚染の抑制効果がある。これより、還元剤に対する安定化塩素系酸化剤の添加濃度がモル比で2.5倍以上であることが微生物汚染の抑制効果において好ましいことが分かる。
[試験例2]
 脱塩素野木町水水中で種々濃度の重亜硫酸ナトリウム(SBS)と混合した薬品1の酸化還元電位(ORP)を観察した。試験例1と同様にすべて重亜硫酸ナトリウムとの反応後の残留塩素濃度が1mg/L-Clになるように調整した。重亜硫酸ナトリウムに対する薬品1の塩素換算の添加量比で整理した結果を下記表4及び図2に示す。
Figure JPOXMLDOC01-appb-T000005
 試験例1の条件1のようにSBSを添加していない時のORP値は495mVであるため、SBSに対する薬品1の塩素換算添加量のモル比が2.5倍以上であれば、十分な酸化ポテンシャルを有し、有効に微生物汚染を抑えることができることが示唆された。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2021年12月20日付で出願された日本特許出願2021-205981に基づいており、その全体が引用により援用される。

 

Claims (5)

  1.  還元剤を含有する水系における微生物汚染を抑制する方法において、
     塩素系酸化剤とスルファミン酸化合物とからなり、該塩素系酸化剤の有効塩素1モルに対する該スルファミン酸化合物の割合が1~1.5モルである安定化塩素系酸化剤、及び/又は、臭素系酸化剤とスルファミン酸化合物とからなり、該臭素系酸化剤の有効塩素換算量1モルに対する該スルファミン酸化合物の割合が1~1.5モルである安定化臭素系酸化剤を、
     該水系の該還元剤濃度に対する該安定化塩素系酸化剤及び/又は安定化臭素系酸化剤の添加濃度がモル比で2.5倍以上となるように該水系に添加することを特徴とする水系の微生物汚染抑制方法。
  2.  前記水系が逆浸透膜給水系であることを特徴とする請求項1に記載の水系の微生物汚染抑制方法。
  3.  前記水系の還元剤濃度が0.01mg/L-Cl以上であることを特徴とする請求項1又は2に記載の水系の微生物汚染抑制方法。
  4.  前記還元剤が重亜硫酸ナトリウムであることを特徴とする請求項1ないし3のいずれか1項に記載の水系の微生物汚染抑制方法。
  5.  前記水系の前記還元剤濃度に対する前記安定化塩素系酸化剤及び/又は安定化臭素系酸化剤の添加濃度がモル比で2.5~10倍となるように前記水系に添加することを特徴とする請求項1ないし4のいずれか1項に記載の水系の微生物汚染抑制方法。

     
PCT/JP2022/046153 2021-12-20 2022-12-15 水系の微生物汚染抑制方法 WO2023120350A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023569360A JPWO2023120350A1 (ja) 2021-12-20 2022-12-15

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-205981 2021-12-20
JP2021205981 2021-12-20

Publications (1)

Publication Number Publication Date
WO2023120350A1 true WO2023120350A1 (ja) 2023-06-29

Family

ID=86902499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046153 WO2023120350A1 (ja) 2021-12-20 2022-12-15 水系の微生物汚染抑制方法

Country Status (3)

Country Link
JP (1) JPWO2023120350A1 (ja)
TW (1) TW202333806A (ja)
WO (1) WO2023120350A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014176799A (ja) * 2013-03-14 2014-09-25 Kurita Water Ind Ltd 逆浸透膜分離方法
JP2019122943A (ja) * 2018-01-19 2019-07-25 オルガノ株式会社 水処理方法および水処理装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014176799A (ja) * 2013-03-14 2014-09-25 Kurita Water Ind Ltd 逆浸透膜分離方法
JP2019122943A (ja) * 2018-01-19 2019-07-25 オルガノ株式会社 水処理方法および水処理装置

Also Published As

Publication number Publication date
JPWO2023120350A1 (ja) 2023-06-29
TW202333806A (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
CN105517959B (zh) 次溴酸稳定化组合物的制造方法、次溴酸稳定化组合物、以及分离膜的抑污方法
US10351444B2 (en) Filtration treatment system and filtration treatment method
CN107108277B (zh) 分离膜的黏质抑制方法
WO2019031430A1 (ja) 逆浸透膜処理方法及び水処理装置
JP2016120457A (ja) ろ過処理システムおよびろ過処理方法
KR20210005853A (ko) 역침투막 처리 방법, 수계의 바이오파울링 억제 방법 및 그를 위한 장치
TW201709968A (zh) 逆滲透膜裝置的前處理方法及水處理裝置
TWI727106B (zh) 利用逆滲透膜的水處理方法及水處理裝置
JP6837301B2 (ja) 逆浸透膜処理方法および逆浸透膜処理システム
JP2016155071A (ja) 分離膜の殺菌方法
WO2023120350A1 (ja) 水系の微生物汚染抑制方法
JP7013141B2 (ja) 逆浸透膜を用いる水処理方法
WO2023120351A1 (ja) 水系の微生物汚染抑制方法
JP2019122943A (ja) 水処理方法および水処理装置
JP6682401B2 (ja) 逆浸透膜を用いる水処理方法
JP6565966B2 (ja) 水処理方法
JP7050414B2 (ja) 逆浸透膜を用いる水処理方法
JP7141919B2 (ja) 逆浸透膜処理方法、逆浸透膜処理システム、水処理方法、および水処理システム
WO2024048154A1 (ja) 逆浸透膜用スライム抑制助剤の製造方法、逆浸透膜用スライム抑制助剤、および水処理方法
WO2016194443A1 (ja) 逆浸透膜装置の前処理方法及び水処理装置
TWI703094B (zh) 利用逆滲透膜之水處理方法
WO2018158943A1 (ja) 逆浸透膜の劣化抑制剤、および水処理方法
JP2020131134A (ja) 分離膜用スライム抑制剤、分離膜用スライム抑制剤の製造方法、および分離膜のスライム抑制方法
JP2017148779A (ja) 逆浸透膜の劣化抑制剤、および水処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911058

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023569360

Country of ref document: JP