WO2016194443A1 - 逆浸透膜装置の前処理方法及び水処理装置 - Google Patents

逆浸透膜装置の前処理方法及び水処理装置 Download PDF

Info

Publication number
WO2016194443A1
WO2016194443A1 PCT/JP2016/059147 JP2016059147W WO2016194443A1 WO 2016194443 A1 WO2016194443 A1 WO 2016194443A1 JP 2016059147 W JP2016059147 W JP 2016059147W WO 2016194443 A1 WO2016194443 A1 WO 2016194443A1
Authority
WO
WIPO (PCT)
Prior art keywords
added
water
salt
oxidizing
nitrous acid
Prior art date
Application number
PCT/JP2016/059147
Other languages
English (en)
French (fr)
Inventor
由彦 遠藤
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016012615A external-priority patent/JP6107985B2/ja
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to KR1020177034379A priority Critical patent/KR20180013931A/ko
Priority to CN201680026936.9A priority patent/CN107531516B/zh
Publication of WO2016194443A1 publication Critical patent/WO2016194443A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation

Definitions

  • the present invention relates to a pretreatment method for a reverse osmosis membrane (RO membrane) device.
  • RO membrane reverse osmosis membrane
  • the present invention when an oxidizing chemical is added to water containing an oxidizing agent to treat the RO membrane, the reducing agent is added to prevent the membrane deterioration of the RO membrane due to the residual oxidizing agent, and the added reducing agent.
  • the present invention relates to a pretreatment method for an RO membrane apparatus that effectively prevents the oxidizing chemical from being decomposed by oxidization and effectively obtains the processing effect of the oxidizing chemical.
  • the present invention also relates to a water treatment apparatus to which this pretreatment method is applied.
  • RO membrane devices are widely used as means for producing pure water by treating industrial water, city water, well water, river water, lake water, factory waste water, and the like.
  • chlorine-based oxidants such as chlorine, sodium hypochlorite and sodium chlorite
  • oxidants such as hydrogen peroxide and ozone are added.
  • chlorine is generated using an electrode.
  • Oxidizing agents may also be added as a pretreatment for RO membrane treatment to oxidize iron and manganese in the water to be treated and remove them with a filtration device.
  • the RO membrane When the RO membrane is treated with water added with an oxidizing agent, the RO membrane undergoes oxidative degradation due to the residual oxidizing agent.
  • an activated carbon tower is installed in front of the RO membrane device to remove residual oxidants such as chlorine (Patent Document 1), or a reducing agent such as sodium bisulfite or sodium sulfite is added in the front of the RO membrane device. Processing such as decomposing and removing chlorine (Patent Document 2) is performed.
  • the concentration of the residual oxidant varies depending on the water quality of the water to be treated. Therefore, in order to completely remove the residual oxidant and prevent the RO membrane from being deteriorated, Usually, the reducing agent is added more than the reaction equivalent of the residual oxidizing agent.
  • DBNPA 2,2-dibromo-3-nitrilopropionamide
  • 5N is added to the treated water in order to prevent contamination (fouling) of the RO membrane by turbidity and organic substances contained in the treated water.
  • An oxidizing agent is a chemical used to oxidize a target substance, such as sodium hypochlorite, whereas an oxidizing chemical has an oxidizing power, such as the caisson WT, but has a purpose of use. It is a chemical that is not limited to oxidation, and both are distinguished. More specifically, at pH 7.0 and 20 ° C., a substance (strong oxidizing agent) that undergoes a redox reaction when an equivalent amount is added to nitrite ions is defined as an “oxidizing agent”, and a substance that does not undergo a redox reaction under the same conditions. (Weak oxidizing agent) is defined as “oxidizing chemical”.
  • an oxidizing agent and an oxidizing chemical in combination for example, after adding an oxidizing agent to the water to be treated, pretreat it by coagulation and filtration, and then add an excessive amount of reducing agent to decompose and remove the remaining oxidizing agent Then, the RO membrane treatment is performed by adding an oxidizing chemical.
  • the excess reducing agent reacts with the oxidizing chemical to decompose and remove the oxidizing chemical. As a result, the active ingredient concentration of the oxidizing chemical decreases.
  • the reducing agent when an oxidizing chemical is added to water containing an oxidizing agent to treat the RO membrane, the reducing agent is added to prevent the RO membrane from being deteriorated by the residual oxidizing agent, and the oxidizing property by the added reducing agent is reduced. It is an object of the present invention to provide an RO membrane device pretreatment method and a water treatment device that effectively prevent water from being decomposed by preventing chemical decomposition.
  • Nitrous acid and / or its salt reduces and removes residual oxidants such as chlorine, and even if surplus remains, at a practical use concentration, a mixture of DBNPA, Cl-MIT and MIT (trade name “Caisson” )), Ammonia chloramine, chlorosulfamic acid, stabilized hypobromite-based slime control agent (trade name “Olpersion E266 series” manufactured by Organo Corp., product name “Stabilex” manufactured by Nalco), etc. This does not cause a redox reaction, and does not reduce the active ingredient concentration by reducing and removing these oxidizing chemicals.
  • the present invention has been achieved on the basis of such findings, and the gist thereof is as follows.
  • a pretreatment method for treating water containing an oxidant with a reverse osmosis membrane device using a reverse osmosis membrane device, and adding nitrous acid and / or a salt thereof to the water containing the oxidant A method for pretreatment of a reverse osmosis membrane device, characterized by reducing and removing the water.
  • a pretreatment method for a reverse osmosis membrane device comprising adding the oxidizing chemical.
  • the oxidizing chemical is one or more selected from the group consisting of chlorosulfamic acid, a salt of chlorosulfamic acid, and a stabilized hypobromite-based slime control agent.
  • a pretreatment method for a reverse osmosis membrane device characterized in that:
  • the reducing agent different from the nitrous acid and / or a salt thereof is one or more selected from bisulfite, sulfite, and thiosulfate.
  • a pretreatment method for a reverse osmosis membrane device is one or more selected from bisulfite, sulfite, and thiosulfate.
  • reducing agent addition means for adding nitrous acid and / or salt thereof to water containing the oxidizing agent, and addition of nitrous acid and / or salt thereof
  • a water treatment apparatus comprising: an oxidizing chemical addition means for adding an oxidizing chemical to the subsequent water; and a reverse osmosis membrane apparatus for treating the water to which the oxidizing chemical is added with a reverse osmosis membrane.
  • the reducing agent when an oxidizing chemical is added to water containing an oxidizing agent to treat the RO membrane, the reducing agent is added to prevent the membrane deterioration of the RO membrane due to the residual oxidizing agent, and also depending on the added reducing agent. It is possible to prevent the decomposition of the oxidizing chemical and effectively obtain the water treatment effect by the oxidizing chemical.
  • water to be treated to be treated with the RO membrane may be referred to as “water supply”.
  • nitrous acid in treating RO containing water containing an oxidizing agent such as chlorine, as a reducing agent for reducing and removing the oxidizing agent, instead of a conventional reducing agent such as sodium bisulfite or sodium sulfite, nitrous acid is used. And / or a salt thereof (hereinafter sometimes referred to as “nitrous acid (salt)”).
  • the RO membrane is an RO membrane in a broad sense including an NF membrane (Nanofiltration Membran), and the material thereof is not limited, and polymer materials such as cellulose acetate polymer, polyamide, polyester, polyimide, vinyl polymer are generally used. Used. There are no particular restrictions on the type of RO membrane module.
  • sodium nitrite is representative, but potassium nitrite, calcium nitrite, magnesium nitrite, aluminum nitrite and the like can also be used.
  • Nitrous acid (salt) may be used alone or in combination of two or more.
  • Nitrous acid is generally used in the form of an aqueous solution, but it contains other ingredients such as other solvents or dispersion media, polymer compounds for water treatment, scale inhibitors, slime control agents. You may use it. From the viewpoint of handleability, the usage form of nitrous acid (salt) is preferably a liquid such as an aqueous solution.
  • the content of nitrous acid (salt) in the nitrous acid (salt) -containing preparation is not particularly limited, but is preferably 5 to 43% by mass as nitrite ions, and 10 to 38% by mass. % Is more preferable. Addition of nitrous acid (salt) in such a range is preferable in that the volume of the nitrous acid (salt) preparation is reduced and the stability is good.
  • Nitrous acid (salt) is not particularly limited in its addition step or location as long as it is a water supply containing an oxidizing agent such as chlorine. Effect of reducing oxidant such as chlorine by adding nitrous acid (salt) to the feed water and almost no oxidizing chemical added in the latter stage due to the surplus of nitrous acid (salt) Is expressed.
  • Chlorine is a typical oxidant, but hydrogen peroxide, chlorine dioxide, chlorous acid and / or its salt, hypochlorous acid and / or its salt, ozone, chlorine generated using electrodes, etc. Can be used. Also about these oxidizing agents, only 1 type may be used and 2 or more types may be used together.
  • the amount of nitrous acid (salt) added is equal to or greater than the reaction equivalent of the amount of residual oxidant in the feed water, but 2 to 3 times the reaction equivalent, especially 3 to 5 times to prevent oxidant from remaining. It is preferable that
  • the oxidizing agent When adding nitrous acid (salt) and reacting with an oxidizing agent in the water supply, depending on the conditions, the oxidizing agent may remain in a trace amount even when added in an equivalent amount or more.
  • a conventional reducing agent having good reactivity such as sodium bisulfite is used as the second reducing agent, and the reaction equivalent is more than the reaction equivalent, preferably 2 It may be added 3 to 5 times, in particular 3 to 5 times in order to reliably prevent the oxidant from remaining.
  • the second reducing agent one or more of bisulfites such as sodium bisulfite, sulfites such as sodium sulfite, and thiosulfates such as sodium thiosulfate can be used.
  • the amount of nitrous acid (salt) added, or the amounts of nitrous acid (salt) as the first reducing agent and the second reducing agent are specifically as follows.
  • the oxidant concentration in the feed water is expressed as a chlorine mass concentration by the DPD method using JIS K 0400-33-10: 1999 N, N-diethyl-1,4-phenylenediamine.
  • sodium nitrite is used as nitrite (salt)
  • the amount of sodium nitrite that reacts equivalently to 1 g of free chlorine is 1.0 g (0.67 g as nitrite ion). It is preferable to add about 2 times.
  • 1.0 g of sodium nitrite (0.67 g as nitrite ions) is equivalent to 1 g of all chlorine by the DPD method.
  • the reaction equivalent of the second reducing agent is 1.5 g of sodium bisulfite, 1.8 g of sodium sulfite, and 2.2 g of sodium thiosulfate per 1 g of free chlorine.
  • the present invention particularly deals with RO membrane treatment in which an oxidizing chemical is added after the addition of a reducing agent. It is suitable for.
  • An oxidizing agent is a chemical used to oxidize a target substance, such as sodium hypochlorite, whereas an oxidizing chemical has an oxidizing power, such as the caisson WT, but has a purpose of use. It is a chemical that is not limited to oxidation, and both are distinguished. More specifically, at pH 7.0 and 20 ° C., a substance (strong oxidizing agent) that undergoes a redox reaction when an equivalent amount is added to nitrite ions is defined as an “oxidizing agent”, and a substance that does not undergo a redox reaction under the same conditions. (Weak oxidizing agent) is defined as “oxidizing chemical”.
  • oxidizing chemicals examples include 2,2-dibromo-3-nitrilopropionamide (DBNPA), 5-chloro-2-methyl-, which are generally used as oxidizing chemicals for preventing fouling of RO membranes.
  • DBNPA 2,2-dibromo-3-nitrilopropionamide
  • MIT 2-methyl-4-isothiazolin-3-one
  • ammonia chloramine, chlorosulfamic acid and / or its salt stabilized hypobromite-based slime control agent (manufactured by Organo Corporation, trade name “Olpersion E266 Series”) And the product name “Stabilex” manufactured by Nalco).
  • These may use only 1 type and may use 2 or more types together.
  • the amount added varies depending on the type of oxidizing chemical used, the quality of the water supply and the RO membrane treatment conditions, but usually 0.01 to 50 mg / L in terms of total chlorine equivalent. Degree. Specifically, in the case of sodium chlorosulfamate, the added amount in terms of total chlorine is usually about 0.1 to 10 mg / L, preferably about 0.5 to 3 mg / L. Stabilized hypobromite-based slime control agent (trade name “Olpersion E266 series” manufactured by Organo Corporation, product name “Stablex” manufactured by Nalco) is added in an amount of 0.01 to 3 mg / L in terms of total chlorine. It is preferably 0.02 to 0.2 mg / L.
  • the amount of Cl-MIT not detected as total chlorine is usually 0.01 to 0.5 mg / L, preferably about 0.03 to 0.15 mg / L.
  • the amount of DBNPA added is usually about 0.1 to 10 mg / L, preferably about 0.2 to 6 mg / L in terms of total chlorine.
  • the nitrous acid (salt) added for the reduction and removal of the residual oxidizing agent has little reactivity with these oxidizing chemicals, the effect of the added oxidizing chemicals is maximized. Can be demonstrated. Therefore, the chemical cost can be reduced by suppressing the amount of the oxidizing chemical added.
  • the present invention in which after adding an oxidizing agent to the water supply, nitrous acid (salt), or nitrous acid (salt) as a first reducing agent and a second reducing agent are added, and further an oxidizing chemical is added to treat the RO membrane.
  • An example of an embodiment of the water treatment apparatus is specifically shown in FIG.
  • the raw water in the raw water tank 1 is filtered by the filtration device 2, and the filtered water is filtered by the RO membrane device 5 through the filtration water tank 3 and the safety filter 4, and the treated water is taken out.
  • an oxidant is added to a pipe through which raw water is fed from the raw water tank 1 to the filtration device 2, and nitrous acid (salt) is added at the inlet of the RO membrane device 6 downstream of the safety filter 5. After that, an oxidizing chemical is added.
  • nitrous acid (salt) is added as a first reducing agent at the inlet of the RO membrane device 6 at the rear stage of the safety filter 5, and then a second reducing agent such as sodium bisulfite is added, Oxidizing chemicals are added.
  • each chemical is as described above, there is no particular restriction on the place of addition, and for example, it may be added at the inlet side or the outlet side of the filtration device 2. Each drug may be added to a different location.
  • FIG. 1a, FIG. 1b is an example of an embodiment of the water treatment apparatus of the present invention, and the present invention is not limited to the illustrated apparatus.
  • the oxidizing agent only needs to be included in the feed water to which nitrous acid (salt) is added. If the oxidizing agent already contains the oxidizing agent in the previous step, the RO membrane device pretreatment method and the water treatment device of the present invention are: The oxidant addition step or the oxidant addition means is not essential.
  • the RO membrane apparatus pretreatment method of the present invention can be implemented by a control unit including a CPU or the like in an apparatus (for example, a personal computer) for managing the quality of water to be treated.
  • the RO membrane device pre-processing method of the present invention is stored as a program in a hardware resource including a recording medium (nonvolatile memory (USB memory, etc.), HDD, CD, etc.) and the like, and is executed by the control unit.
  • a water treatment system that controls addition of nitrous acid (salt) as a reducing agent or nitrous acid (salt) as a first reducing agent and a second reducing agent to the water supply by the control unit.
  • RO membrane water supply tap water from Nogi-cho, Shimotsuga-gun, Tochigi Prefecture was dechlorinated with activated carbon (hereinafter referred to as “dechlorinated town water”). . All experiments were conducted at pH 7.0 and temperature of 20 ° C.
  • HACH2470 a pocket residual chlorine meter “HACH2470” manufactured by HACH was used.
  • Table 2 shows the following. When sodium nitrite is added 1.2 times or more with respect to free chlorine, most of the free chlorine disappears, and even if there is residual free chlorine, the second reducing agent (sodium bisulfite in Examples 1, 2 and 6). Can be reduced to a level where free chlorine concentration is not detected by adding a small amount of 0.1 to 0.15 mg / L.
  • Example 7 and 8 1 g of a Cl-MIT diluted solution whose concentration was adjusted so that the charging rate was the value shown in Table 3 was added to 99 g of dechlorinated town water. Thereafter, 1 g of a sodium nitrite aqueous solution diluted by adjusting the concentration so that the added sodium nitrite addition rate was the value shown in Table 3 was added thereto. For this solution, the Cl-MIT concentration was measured by liquid chromatography. The results are shown in Table 3.
  • Table 3 shows the following. Even when sodium nitrite was added 600 to 700 times with respect to Cl-MIT, Cl-MIT was detected at the same concentration as the charged concentration. That is, sodium nitrite does not reduce and decompose Cl-MIT. In contrast, sodium bisulfite or sodium sulfite lost Cl-MIT after about 170-fold addition.
  • Example 9 to 11 1 g of an aqueous sodium chlorosulfamate solution diluted by adjusting the concentration so that the total chlorine addition rate (addition rate in terms of total chlorine) was the value shown in Table 4 was added to 99 g of dechlorinated town water. Thereafter, 1 g of an aqueous sodium nitrite solution diluted by adjusting the concentration so that the added sodium nitrite addition rate was the value shown in Table 4 was added thereto. This solution was immediately measured for total chlorine concentration. The results are shown in Table 4.
  • Table 4 shows the following. When sodium nitrite was added to sodium chlorosulfamate, the same concentration as the charged concentration was detected. However, sodium hydrogen sulfite or sodium sulfite lost all active ingredients of sodium chlorosulfamate when added in an equivalent amount. .
  • Example 12 to 14 1 g of DBNPA aqueous solution diluted by adjusting the concentration so that the total chlorine addition rate (addition rate in terms of total chlorine) was the value shown in Table 5 was added to 99 g of dechlorinated town water. Thereafter, 1 g of an aqueous sodium nitrite solution diluted to adjust the concentration so that the charge addition rate was the value shown in Table 5 was added thereto. This solution was immediately measured for total chlorine concentration.
  • the active ingredient concentration of DBNPA can be measured as the total chlorine concentration by the DPD method. The results are shown in Table 5.
  • Table 5 shows the following. When sodium nitrite was added to DBNPA, the same concentration as the charged concentration was detected. However, sodium bisulfite or sodium sulfite lost all of DBNPA's active ingredients by adding about 1.2 times the reaction equivalent. .
  • Stabilized hypobromite-based slime control agent I was prepared by the following procedure. (1) Sodium bromide was dissolved in pure water to prepare a 45% strength by weight solution. (2) Sodium hydroxide was dissolved in pure water to prepare a 48% strength by weight solution. (3) 42.4 g of sodium hypochlorite aqueous solution and 20.5 g of 45 wt% sodium bromide aqueous solution were mixed.
  • the active ingredient concentration of the stabilized hypobromite-based slime control agent I can be measured as the total chlorine concentration by the DPD method. The results are shown in Table 7.
  • Stabilized hypobromite-based slime control agent II was prepared by the following procedure. (1) Sodium hydroxide was dissolved in pure water to prepare a 48% strength by weight solution. (2) 13.5 g of pure water and 13.8 g of 48 wt% sodium hydroxide aqueous solution were mixed and heated to 70 ° C., and 9.6 g of sulfamic acid was added and completely dissolved. (3) While maintaining the temperature of (2) at 50 ° C. or higher, 62.9 g of sodium hypobromite solution was added and mixed well.
  • Examples 18 to 20 1 g of the stabilized hypobromite-based slime control agent II diluted by adjusting the concentration so that the total chlorine addition rate (addition rate in terms of total chlorine) was the value shown in Table 8 was added to 99 g of dechlorinated town water. . Thereafter, 1 g of an aqueous sodium nitrite solution diluted to adjust the concentration so that the charge addition rate was the value shown in Table 8 was added thereto. This solution was immediately measured for total chlorine concentration.
  • the active ingredient concentration of the stabilized hypobromite-based slime control agent II can be measured as the total chlorine concentration by the DPD method. The results are shown in Table 8.

Abstract

酸化剤を含む水に酸化性薬品を添加してRO膜処理するに当たり、還元剤を添加して残留酸化剤によるRO膜の膜劣化を防止すると共に、添加した還元剤による酸化性薬品の分解を防止して酸化性薬品による水処理効果を有効に得る。還元剤として亜硝酸及び/又はその塩を用いる。亜硝酸及び/又はその塩は、塩素等の残留酸化剤を還元処理すると共に、余剰分が残留しても実用的な使用濃度では、クロロスルファミン酸等の酸化性薬品と酸化還元反応を生じることはなく、これらの酸化性薬品を還元除去して有効成分濃度を低減することはない。

Description

逆浸透膜装置の前処理方法及び水処理装置
 本発明は逆浸透膜(RO膜)装置の前処理方法に関する。詳しくは、本発明は、酸化剤を含む水に酸化性薬品を添加してRO膜処理するに当たり、還元剤を添加して残留酸化剤によるRO膜の膜劣化を防止すると共に、添加した還元剤による酸化性薬品の分解を防止して酸化性薬品による処理効果を有効に得るRO膜装置の前処理方法に関する。
 本発明はまた、この前処理方法を適用した水処理装置に関する。
 工業用水、市水、井水、河川水、湖沼水、工場廃水などを水処理して純水等を製造する手段として、RO膜装置が広く利用されている。この場合、被処理水に含まれる微生物によるバイオファウリングを抑制するために、塩素、次亜塩素酸ナトリウム、亜塩素酸ナトリウム等の塩素系酸化剤や、過酸化水素、オゾン等の酸化剤が被処理水に添加される。また、電極を使用して塩素を生成させることも行われている。
 酸化剤はまた、RO膜処理の前処理として、被処理水中の鉄やマンガンを酸化して濾過装置で除去するために添加される場合もある。
 酸化剤を添加した水をRO膜処理すると、残留酸化剤によりRO膜が酸化劣化を受ける。
 従来、RO膜装置の前段に活性炭塔を設置して塩素等の残留酸化剤を除去するか(特許文献1)、RO膜装置の前段で亜硫酸水素ナトリウムや亜硫酸ナトリウムなどの還元剤を添加して塩素を分解除去する(特許文献2)等の処理がなされている。
 活性炭塔を設置した場合、塔内でバイオファウリングが発生して後段装置を汚染することがある、イニシャルコストがかかる、などの欠点があり、一般的には還元剤の添加による残留酸化剤の分解除去が行われている。
 還元剤を添加する場合、被処理水の水質の変動に応じて残留酸化剤の濃度も異なるものとなることから、残留酸化剤を完全に除去してRO膜劣化を確実に防止するために、通常、還元剤は残留酸化剤の反応当量よりも多く添加される。
 RO膜処理では、被処理水に含まれる濁質や有機物によるRO膜の汚染(ファウリング)を防止するために、被処理水に2,2-ジブロモ-3-ニトリロプロピオンアミド(DBNPA)、5-クロロ-2-メチル-4-イソチアゾリン-3-オン(Cl-MIT)と2-メチル-4-イソチアゾリン-3-オン(MIT)の混合物(ダウ・ケミカル社製 商品名「ケーソンWT」)、アンモニアクロラミン、クロロスルファミン酸、安定化次亜臭素酸系スライムコントロール剤(オルガノ(株)製 商品名「オルパージョン E266シリーズ」、Nalco社製 商品名「スタブレックス」)などの酸化性薬品が添加される場合がある。
 酸化剤とは、次亜塩素酸ナトリウム等の、対象物質を酸化するために使用する薬品であるのに対して、酸化性薬品は、上記ケーソンWT等のように酸化力を持つが使用目的が酸化に限られない薬品であり、両者は区別される。より具体的には、pH7.0,20℃において、亜硝酸イオンに当量添加したときに酸化還元反応する物質(強酸化剤)を「酸化剤」と定義し、同条件で酸化還元反応しない物質(弱酸化剤)を「酸化性薬品」と定義する。
 酸化剤と酸化性薬品を併用する場合は、例えば、被処理水に酸化剤を添加した後、凝集、濾過する前処理を行い、その後過剰量の還元剤を添加して残留酸化剤を分解除去し、次いで酸化性薬品を添加してRO膜処理することが行われる。しかし、このように、残留酸化剤の除去のために過剰量の還元剤を添加し、その後酸化性薬品を添加すると、余剰の還元剤と酸化性薬品とが反応して酸化性薬品が分解除去され、酸化性薬品の有効成分濃度が低下する。このため、酸化性薬品の添加量に見合う効果が得られない、目的の効果を得るために、還元剤による分解除去分を加算して酸化性薬品添加量を多くする必要がある、という問題がある。
特開平10-337563号公報 特開平7-308671号公報
 本発明は、酸化剤を含む水に酸化性薬品を添加してRO膜処理するに当たり、還元剤を添加して残留酸化剤によるRO膜の膜劣化を防止すると共に、添加した還元剤による酸化性薬品の分解を防止して酸化性薬品による水処理効果を有効に得るRO膜装置の前処理方法と水処理装置を提供することを課題とする。
 本発明者は、RO膜処理に影響しない新規の還元剤を提供するべく鋭意検討を行った結果、亜硝酸及び/又はその塩が最適であることを見出した。
 亜硝酸及び/又はその塩は、塩素等の残留酸化剤を還元除去すると共に、余剰分が残留しても、実用的な使用濃度では、DBNPA、Cl-MITとMITの混合物(商品名「ケーソン」)、アンモニアクロラミン、クロロスルファミン酸、安定化次亜臭素酸系スライムコントロール剤(オルガノ(株)製 商品名「オルパージョン E266シリーズ」、Nalco社製 商品名「スタブレックス」)等の酸化性薬品と酸化還元反応を生じることはなく、これらの酸化性薬品を還元除去して有効成分濃度を低減させることはない。
 本発明はこのような知見に基づいて達成されたものであり、以下を要旨とする。
[1] 酸化剤を含む水を逆浸透膜装置で逆浸透膜処理する際の前処理方法であって、該酸化剤を含む水に、亜硝酸及び/又はその塩を添加して該酸化剤を還元除去することを特徴とする逆浸透膜装置の前処理方法。
[2] [1]において、前記亜硝酸及び/又はその塩添加後の水に酸化性薬品を添加することを特徴とする逆浸透膜装置の前処理方法。
[3] [2]において、前記亜硝酸及び/又はその塩添加後の水に、亜硝酸及び/又はその塩とは異なる還元剤を、該水中に残留する酸化剤の当量以上添加した後、前記酸化性薬品を添加することを特徴とする逆浸透膜装置の前処理方法。
[4] [2]又は[3]において、前記酸化性薬品がクロロスルファミン酸、クロロスルファミン酸の塩、及び安定化次亜臭素酸系スライムコントロール剤よりなる群から選ばれる1種又は2種以上であることを特徴とする逆浸透膜装置の前処理方法。
[5] [3]又は[4]において、前記亜硝酸及び/又はその塩とは異なる還元剤が亜硫酸水素塩、亜硫酸塩、及びチオ硫酸塩から選ばれる1種又は2種以上であることを特徴とする逆浸透膜装置の前処理方法。
[6] 酸化剤を含む水を逆浸透膜処理する水処理装置において、該酸化剤を含む水に亜硝酸及び/又はその塩を添加する還元剤添加手段と、亜硝酸及び/又はその塩添加後の水に酸化性薬品を添加する酸化性薬品添加手段と、酸化性薬品が添加された水を逆浸透膜処理する逆浸透膜装置とを備えてなることを特徴とする水処理装置。
 本発明によれば、酸化剤を含む水に酸化性薬品を添加してRO膜処理するに当たり、還元剤を添加して残留酸化剤によるRO膜の膜劣化を防止すると共に、添加した還元剤による酸化性薬品の分解を防止して酸化性薬品による水処理効果を有効に得ることが可能となる。
本発明の水処理装置の実施の形態を示す系統図である。
 以下に本発明の実施の形態を詳細に説明する。
 以下において、RO膜で処理する被処理水を「給水」と記載する場合がある。
 本発明においては、塩素等の酸化剤を含む水をRO膜処理するに当たり、酸化剤を還元除去するための還元剤として、亜硫酸水素ナトリウムや亜硫酸ナトリウムなどの従来の還元剤に代えて、亜硝酸及び/又はその塩(以下「亜硝酸(塩)」と称す場合がある。)を添加する。
 本発明において、RO膜は、NF膜(Nanofiltration Membran)を含む広義のRO膜であり、その素材は限定されず、酢酸セルロース系ポリマー、ポリアミド、ポリエステル、ポリイミド、ビニルポリマーなどの高分子素材が一般的に使用される。RO膜モジュールの形式等にも特に制限はない。
 本発明で用いる亜硝酸塩としては、亜硝酸ナトリウムが代表的であるが、亜硝酸カリウム、亜硝酸カルシウム、亜硝酸マグネシウム、亜硝酸アルミニウムなども用いることもできる。亜硝酸(塩)は、1種のみを用いてもよく、2種以上を併用してもよい。
 亜硝酸(塩)の使用形態としては、水溶液が一般的であるが、その他の溶媒又は分散媒体、水処理用高分子化合物、スケール防止剤、スライムコントロール剤など、他の成分を配合して製剤化して用いてもよい。取り扱い性の面から、亜硝酸(塩)の使用形態は水溶液等の液状とすることが好ましい。
 亜硝酸(塩)を製剤化して用いる場合、亜硝酸(塩)含有製剤の亜硝酸(塩)の含有割合は特に限定されないが、亜硝酸イオンとして5~43質量%が好ましく、10~38質量%がさらに好ましい。かかる範囲で亜硝酸(塩)を配合すれば、亜硝酸(塩)製剤の容積を小さくし、かつ安定性が良いという点で好適である。
 亜硝酸(塩)は、塩素等の酸化剤を含有する給水であれば、特にその添加工程又は添加場所は限定されない。当該給水に、亜硝酸(塩)を添加することで塩素等の酸化剤を還元し、かつ亜硝酸(塩)の剰余により後段で添加される酸化性薬品がほとんど還元されることはないという効果を発現する。
 給水に含まれる酸化剤の種類や使用形態には特に制限はない。酸化剤としては塩素が代表的であるが、過酸化水素、二酸化塩素、亜塩素酸及び/又はその塩、次亜塩素酸及び/又はその塩、オゾン、電極を使用して生成した塩素なども用いることができる。これら酸化剤についても、1種のみを用いてもよく、2種以上を併用してもよい。
 亜硝酸(塩)の添加量は、給水中の残留酸化剤量の反応当量以上であるが、反応当量の2~3倍、特には酸化剤の残留を確実に防止するために3~5倍とすることが好ましい。
 亜硝酸(塩)を添加して給水中の酸化剤と反応させる場合、条件によっては、当量以上の添加でも酸化剤が微量に残留することがある。この場合には、RO膜装置の前工程で、亜硫酸水素ナトリウムなどの反応性のよい従来の還元剤を第二還元剤として、酸化剤残留量に対して反応当量以上、好ましくは反応当量の2~3倍、特には酸化剤の残留を確実に防止するために3~5倍添加してもよい。
 第二還元剤として添加する亜硫酸水素ナトリウム等の従来の還元剤は、酸化性薬品を還元してその有効成分濃度を低減するものであるが、第一還元剤として亜硝酸(塩)を添加した後の酸化剤の残留量は微量であるため、その後に追加で添加する亜硫酸水素ナトリウムなどの第二還元剤添加率も少量となる。このため、第二還元剤が残留した場合でも、還元される酸化性薬品の量は微量であり、亜硫酸水素ナトリウムの有効成分濃度の低下を抑えることができる。
 第二還元剤としては、亜硫酸水素ナトリウム等の亜硫酸水素塩、亜硫酸ナトリウム等の亜硫酸塩、チオ硫酸ナトリウム等のチオ硫酸塩などの1種又は2種以上を用いることができる。
 亜硝酸(塩)の添加量、或いは第一還元剤としての亜硝酸(塩)と第二還元剤の添加量は、具体的には以下の通りである。
 給水中の酸化剤濃度は、JIS K 0400-33-10: 1999 N,N-ジエチル-1,4-フェニレンジアミンを用いるDPD法により塩素質量濃度として表記される。
 亜硝酸(塩)として亜硝酸ナトリウムを用いる場合、遊離塩素1gに当量反応する亜硝酸ナトリウムは1.0g(亜硝酸イオンとして0.67g)であるが、実使用時は安全を見て、この2倍程度を添加することが好ましい。酸化剤が塩素以外の場合も、上記DPD法による全塩素1gに対して亜硝酸ナトリウムとしては1.0g(亜硝酸イオンとして0.67g)が反応当量となる。
 給水のpH条件によっては、この時遊離塩素が微量残留することがあるので、反応性の良い第二還元剤を添加する。この場合、第二還元剤の反応当量は、遊離塩素1gに対し、亜硫酸水素ナトリウムは1.5g、亜硫酸ナトリウムは1.8g、チオ硫酸ナトリウムは2.2gである。
 本発明で用いる亜硝酸(塩)は、酸化剤との反応性が低く、酸化剤を殆ど消失させることがないことから、本発明は特に、還元剤添加後に酸化性薬品を添加するRO膜処理に好適である。
 酸化剤とは、次亜塩素酸ナトリウム等の、対象物質を酸化するために使用する薬品であるのに対して、酸化性薬品は、上記ケーソンWT等のように酸化力を持つが使用目的が酸化に限られない薬品であり、両者は区別される。より具体的には、pH7.0,20℃において、亜硝酸イオンに当量添加したときに酸化還元反応する物質(強酸化剤)を「酸化剤」と定義し、同条件で酸化還元反応しない物質(弱酸化剤)を「酸化性薬品」と定義する。
 酸化性薬品としては、RO膜のファウリングを防止するための酸化性薬品として一般的に用いられている2,2-ジブロモ-3-ニトリロプロピオンアミド(DBNPA)、5-クロロ-2-メチル-4-イソチアゾリン-3-オン(Cl-MIT)、5-クロロ-2-メチル-4-イソチアゾリン-3-オン(Cl-MIT)と2-メチル-4-イソチアゾリン-3-オン(MIT)の混合物(ダウ・ケミカル社製 商品名「ケーソンWT」)、アンモニアクロラミン、クロロスルファミン酸及び/又はその塩、安定化次亜臭素酸系スライムコントロール剤(オルガノ(株)製 商品名「オルパージョン E266シリーズ」、Nalco社製 商品名「スタブレックス」)などが挙げられる。これらは、1種のみを用いてもよく、2種以上を併用してもよい。
 給水に酸化性薬品を添加する場合、その添加量は、用いる酸化性薬品の種類、給水の水質やRO膜処理条件によっても異なるが、通常全塩素換算の添加量で0.01~50mg/L程度である。具体的には、クロロスルファミン酸ナトリウムであれば、全塩素換算の添加量で通常0.1~10mg/L、好ましくは0.5~3mg/L程度である。安定化次亜臭素酸系スライムコントロール剤(オルガノ(株)製 商品名「オルパージョン E266シリーズ」、Nalco社製 商品名「スタブレックス」)の添加量は全塩素換算で0.01~3mg/L、好ましくは0.02~0.2mg/Lである。全塩素として検出されないCl-MITの添加量は通常0.01~0.5mg/L、好ましくは0.03~0.15mg/L程度である。DBNPAの添加量は全塩素換算で通常0.1~10mg/L、好ましくは0.2~6mg/L程度である。
 本発明によれば、残留酸化剤の還元除去のために添加される亜硝酸(塩)が、これらの酸化性薬品との反応性が殆どないために、添加した酸化性薬品の効果を最大限に発揮させることができる。従って、酸化性薬品の添加量を抑えて薬品コストを低減することができる。
 給水に酸化剤を添加した後、亜硝酸(塩)、或いは第一還元剤としての亜硝酸(塩)と第二還元剤を添加し、更に酸化性薬品を添加してRO膜処理する本発明の水処理装置の実施形態の一例を図1に具体的に示す。
 Fig.1a,Fig.1bでは、原水槽1内の原水は、濾過装置2で濾過され、濾過処理水は濾過処理水槽3、保安フィルター4を経てRO膜装置5でRO膜処理され、処理水が取り出される。
 Fig.1aの実施形態では、原水槽1から濾過装置2に原水が送給される配管に酸化剤が添加され、保安フィルター5の後段のRO膜装置6の入口で、亜硝酸(塩)が添加された後、酸化性薬品が添加される。
 Fig.1bの実施形態では、保安フィルター5の後段のRO膜装置6の入口で、亜硝酸(塩)が第一還元剤として添加され、次いで亜硫酸水素ナトリウム等の第二還元剤が添加された後、酸化性薬品が添加される。
 各薬品の添加順序が上記の通りであれば、その添加場所には特に制限はなく、例えば、濾過装置2の入口側や出口側で添加してもよい。各薬品は異なる場所に添加されてもよい。
 Fig.1a,Fig.1bは、本発明の水処理装置の実施形態の一例であって、本発明は何ら図示の装置に限定されるものではない。
 酸化剤は、亜硝酸(塩)を添加する給水に含まれていればよく、既に前工程で酸化剤を含有するものであれば、本発明のRO膜装置の前処理方法及び水処理装置は、酸化剤添加工程或いは酸化剤添加手段を必須とするものではない。
 本発明のRO膜装置の前処理方法を、処理対象となる給水の水質を管理するための装置(例えば、パーソナルコンピュータ等)におけるCPU等を含む制御部によって実施することも可能である。また、本発明のRO膜装置の前処理方法を、記録媒体(不揮発性メモリ(USBメモリ等)、HDD、CD等)等を備えるハードウェア資源にプログラムとして格納し、前記制御部によって実施することも可能である。当該制御部によって、給水に還元剤として亜硝酸(塩)、或いは第一還元剤としての亜硝酸(塩)及び第二還元剤を添加制御する水処理システムを構築することも可能である。
 以下に、実施例を挙げて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 以下の実施例及び比較例において、RO膜の給水としては、栃木県下都賀郡野木町の水道水を活性炭で脱塩素処理したもの(以下、「脱塩素町水」と記載する。)を用いた。実験はいずれもpH7.0、温度20℃で行った。
 添加試薬としては以下のものを用いた。残留塩素の測定には、HACH社製ポケット残留塩素計「HACH2470」を用いた。
 次亜塩素酸ナトリウム水溶液(有効塩素12%、旭硝子(株)製)
 亜硝酸ナトリウム(キシダ化学(株)製)
 亜硫酸水素ナトリウム(キシダ化学(株)製)
 亜硫酸ナトリウム(キシダ化学(株)製)
 チオ硫酸ナトリウム(キシダ化学(株)製)
 クロロスルファミン酸ナトリウム(栗田工業(株)製)
 Cl-MIT(栗田工業(株)製)
 DBNPA(ダウケミカル日本(株)製)
 臭化ナトリウム(キシダ化学(株)製)
 スルファミン酸(別名アミド硫酸)(キシダ化学(株)製)
 水酸化ナトリウム(キシダ化学(株)製)
 次亜臭素酸ナトリウム溶液(有効臭素5%)(キシダ化学(株)製)
 実施例及び比較例の結果を示す表中、添加薬品は以下の略号で記載した。
Figure JPOXMLDOC01-appb-T000001
[実施例1~6]
<酸化剤の添加>
 仕込み遊離塩素添加率が表2の数値になるように濃度調整して希釈した次亜塩素酸ナトリウム希釈液1gを、脱塩素町水99gに添加した。
<第一還元剤の添加>
 その後、仕込み亜硝酸ナトリウム添加率が表2の数値になるように濃度調整して希釈した亜硝酸ナトリウム水溶液1gを、これに添加した。この溶液から試料を採取し、直ちに遊離塩素濃度を測定した。結果を表2に示す。
<第二還元剤の添加>
 実施例1、2、6では、上記第一還元剤の添加後、仕込み亜硫酸水素ナトリウム添加率が表2の数値になるように濃度調整して希釈した亜硫酸水素ナトリウム水溶液1gを更に添加した。
 この溶液から試料を採取し、直ちに遊離塩素濃度を測定した。結果を表2に示す。
 実施例3、4、5では、この工程を行わず、次の酸化性薬品の添加を行った。
<酸化性薬品の添加>
 その後、仕込み全塩素添加率(全塩素換算の添加率)が表2の数値になるように濃度調整して希釈したクロロスルファミン酸ナトリウム水溶液1gを更に添加した。この溶液から試料を採取し、直ちに全塩素濃度を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2より次のことが分かる。
 亜硝酸ナトリウムを遊離塩素に対して1.2倍以上添加すると遊離塩素は大部分が消失し、残留した遊離塩素があっても第二還元剤(実施例1、2、6では亜硫酸水素ナトリウム)を0.1~0.15mg/Lという微小量添加することで遊離塩素濃度未検出のレベルまで低減させることができる。
 これらの反応後に酸化性薬品であるクロロスルファミン酸ナトリウムを添加しても、仕込み濃度と同じ濃度が検出されたことから、残留した亜硝酸ナトリウムはクロロスルファミン酸ナトリウムと酸化還元反応を生じなかったことが確認できた。
[実施例7、8]
 仕込み添加率が表3の数値になるように濃度調整して希釈したCl-MIT希釈液1gを、脱塩素町水99gに添加した。その後、仕込み亜硝酸ナトリウム添加率が表3の数値になるように濃度調整して希釈した亜硝酸ナトリウム水溶液1gをこれに添加した。この溶液について、液体クロマトグラフィー法でCl-MIT濃度を測定した。結果を表3に示す。
[比較例1~4]
 仕込み添加率が表3の数値になるように濃度調整して希釈したCl-MIT希釈液1gを、脱塩素町水99gに添加した。その後、仕込み添加率が表3の数値になるように濃度調整して希釈した亜硫酸水素ナトリウムまたは亜硫酸ナトリウム水溶液1gをこれに添加した。この溶液について、液体クロマトグラフィー法でCl-MIT濃度を測定した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3より次のことが分かる。
 Cl-MITに対し、亜硝酸ナトリウムを600~700倍添加しても、Cl-MITは仕込み濃度と同じ濃度が検出された。つまり亜硝酸ナトリウムはCl-MITを還元分解することはない。これに対して、亜硫酸水素ナトリウムまたは亜硫酸ナトリウムは約170倍の添加でCl-MITが消失した。
[実施例9~11]
 仕込み全塩素添加率(全塩素換算の添加率)が表4の数値になるように濃度調整して希釈したクロロスルファミン酸ナトリウム水溶液1gを、脱塩素町水99gに添加した。その後、仕込み亜硝酸ナトリウム添加率が表4の数値になるように濃度調整して希釈した亜硝酸ナトリウム水溶液1gをこれに添加した。この溶液について、直ちに全塩素濃度を測定した。結果を表4に示す。
[比較例5~10]
 仕込み全塩素添加率(全塩素換算の添加率)が表4の数値になるように濃度調整して希釈したクロロスルファミン酸ナトリウム水溶液1gを、脱塩素町水99gに添加した。その後、仕込み添加率が表4の数値になるように濃度調整して希釈した亜硫酸水素ナトリウムまたは亜硫酸ナトリウム水溶液1gをこれに添加した。この溶液について、直ちに全塩素濃度を測定した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4より次のことが分かる。
 クロロスルファミン酸ナトリウムに対し、亜硝酸ナトリウムを添加した場合は、仕込み濃度と同じ濃度が検出されたが、亜硫酸水素ナトリウムまたは亜硫酸ナトリウムは当量程度の添加でクロロスルファミン酸ナトリウムの有効成分がすべて消失した。
[実施例12~14]
 仕込み全塩素添加率(全塩素換算の添加率)が表5の数値になるように濃度調整して希釈したDBNPA水溶液1gを、脱塩素町水99gに添加した。その後、仕込み添加率が表5の数値になるように濃度調整して希釈した亜硝酸ナトリウム水溶液1gをこれに添加した。この溶液について、直ちに全塩素濃度を測定した。DBNPAの有効成分濃度はDPD法による全塩素濃度として測定できる。結果を表5に示す。
[比較例11~16]
 仕込み全塩素添加率(全塩素換算の添加率)が表5の数値になるように濃度調整して希釈したDBNPA水溶液1gを、脱塩素町水99gに添加した。その後、仕込み添加率が表5の数値になるように濃度調整して希釈した亜硫酸水素ナトリウムまたは亜硫酸ナトリウム水溶液1gをこれに添加した。この溶液について、直ちに全塩素濃度を測定した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5より次のことが分かる。
 DBNPAに対し、亜硝酸ナトリウムを添加した場合は、仕込み濃度と同じ濃度が検出されたが、亜硫酸水素ナトリウムまたは亜硫酸ナトリウムは反応当量の1.2倍程度の添加でDBNPAの有効成分がすべて消失した。
[比較例17~22]
 仕込み全塩素添加率(全塩素換算の添加率)が表6の数値になるように濃度調整して希釈したクロロスルファミン酸ナトリウム水溶液1gを、脱塩素町水99gに添加した。その後、仕込み添加率が表6の数値になるように濃度調整して希釈したチオ硫酸ナトリウム水溶液1gをこれに添加した。この溶液について、直ちに全塩素濃度を測定した。結果を表6に示す。
 表6には、チオ硫酸ナトリウムの添加で消失したクロロスルファミン酸ナトリウムの全塩素換算の濃度を併記する。
Figure JPOXMLDOC01-appb-T000006
 表6よりクロロスルファミン酸ナトリウムに対しチオ硫酸ナトリウムを添加した場合は、当量の1.3倍以上の添加で、クロロスルファミン酸ナトリウムの仕込み量の50%以上が消失することが分かる。
[実施例15~17、比較例23~28]
<安定化次亜臭素酸系スライムコントロール剤Iの調製>
 以下の手順で安定化次亜臭素酸系スライムコントロール剤Iを調製した。
(1) 臭化ナトリウムを純水で溶解し45重量%濃度の溶液を調製した。
(2) 水酸化ナトリウムを純水で溶解し48重量%濃度の溶液を調製した。
(3) 42.4gの次亜塩素酸ナトリウム水溶液と20.5gの45重量%臭化ナトリウム水溶液を混合した。
(4) 13.5gの純水と13.8gの48重量%水酸化ナトリウム水溶液を混合して70℃に加温し、9.6gのスルファミン酸を添加して完全に溶解させた。
(5) (4)の温度を50℃以上に維持したまま、これに(3)を添加し充分に混合した。
<実施例15~17>
 仕込み全塩素添加率(全塩素換算の添加率)が表7の数値になるように濃度調整して希釈した安定化次亜臭素酸系スライムコントロール剤Iの1gを脱塩素町水99gに添加した。その後、仕込み添加率が表7の数値になるように濃度調整して希釈した亜硝酸ナトリウム水溶液1gをこれに添加した。この溶液について、直ちに全塩素濃度を測定した。安定化次亜臭素酸系スライムコントロール剤Iの有効成分濃度はDPD法による全塩素濃度として測定できる。結果を表7に示す。
<比較例23~28>
 仕込み全塩素添加率(全塩素換算の添加率)が表7の数値になるように濃度調整して希釈した安定化次亜臭素酸系スライムコントロール剤Iの1gを脱塩素町水99gに添加した。その後、仕込み添加率が表7の数値になるように濃度調整して希釈した亜硫酸水素ナトリウムまたは亜硫酸ナトリウム水溶液1gをこれに添加した。この溶液について、直ちに全塩素濃度を測定した。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
[実施例18~20、比較例29~34]
<安定化次亜臭素酸系スライムコントロール剤IIの調製>
 以下の手順で安定化次亜臭素酸系スライムコントロール剤IIを調製した。
(1) 水酸化ナトリウムを純水で溶解し48重量%濃度の溶液を調製した。
(2) 13.5gの純水と13.8gの48重量%水酸化ナトリウム水溶液を混合して70℃に加温し、9.6gのスルファミン酸を添加して完全に溶解させた。
(3) (2)の温度を50℃以上に維持したまま、これに62.9gの次亜臭素酸ナトリウム溶液を添加し充分に混合した。
<実施例18~20>
 仕込み全塩素添加率(全塩素換算の添加率)が表8の数値になるように濃度調整して希釈した安定化次亜臭素酸系スライムコントロール剤IIの1gを脱塩素町水99gに添加した。その後、仕込み添加率が表8の数値になるように濃度調整して希釈した亜硝酸ナトリウム水溶液1gをこれに添加した。この溶液について、直ちに全塩素濃度を測定した。安定化次亜臭素酸系スライムコントロール剤IIの有効成分濃度はDPD法による全塩素濃度として測定できる。結果を表8に示す。
<比較例29~34>
 仕込み全塩素添加率(全塩素換算の添加率)が表8の数値になるように濃度調整して希釈した安定化次亜臭素酸系スライムコントロール剤IIの1gを脱塩素町水99gに添加した。その後、仕込み添加率が表8の数値になるように濃度調整して希釈した亜硫酸水素ナトリウムまたは亜硫酸ナトリウム水溶液1gをこれに添加した。この溶液について、直ちに全塩素濃度を測定した。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
 表7,8から、酸化性薬品として安定化次亜臭素酸系スライムコントロール剤を用いた場合も、亜硝酸(塩)であれば、残留還元剤による酸化性薬品の分解を防止することができることが分かる。
 以上の実施例及び比較例の結果から、残留酸化剤の還元除去のために添加する還元剤として、亜硝酸(塩)を用いた場合には、これが残留しても、その後に添加される酸化性薬品と酸化還元反応することなく、従って、酸化性薬品の添加効果が損なわれることはないことが分かる。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2015年6月1日付で出願された日本特許出願2015-111487、2015年6月12日付で出願された日本特許出願2015-119401、及び2016年1月26日付で出願された日本特許出願2016-012615に基づいており、その全体が引用により援用される。
 1 原水槽
 2 濾過装置
 3 濾過処理水槽
 4 保安フィルター
 5 RO膜装置

Claims (6)

  1.  酸化剤を含む水を逆浸透膜装置で逆浸透膜処理する際の前処理方法であって、
     該酸化剤を含む水に、亜硝酸及び/又はその塩を添加して該酸化剤を還元除去することを特徴とする逆浸透膜装置の前処理方法。
  2.  請求項1において、前記亜硝酸及び/又はその塩添加後の水に酸化性薬品を添加することを特徴とする逆浸透膜装置の前処理方法。
  3.  請求項2において、前記亜硝酸及び/又はその塩添加後の水に、亜硝酸及び/又はその塩とは異なる還元剤を、該水中に残留する酸化剤の当量以上添加した後、前記酸化性薬品を添加することを特徴とする逆浸透膜装置の前処理方法。
  4.  請求項2又は3において、前記酸化性薬品がクロロスルファミン酸、クロロスルファミン酸の塩、及び安定化次亜臭素酸系スライムコントロール剤よりなる群から選ばれる1種又は2種以上であることを特徴とする逆浸透膜装置の前処理方法。
  5.  請求項3又は4において、前記亜硝酸及び/又はその塩とは異なる還元剤が亜硫酸水素塩、亜硫酸塩、及びチオ硫酸塩から選ばれる1種又は2種以上であることを特徴とする逆浸透膜装置の前処理方法。
  6.  酸化剤を含む水を逆浸透膜処理する水処理装置において、該酸化剤を含む水に亜硝酸及び/又はその塩を添加する還元剤添加手段と、亜硝酸及び/又はその塩添加後の水に酸化性薬品を添加する酸化性薬品添加手段と、酸化性薬品が添加された水を逆浸透膜処理する逆浸透膜装置とを備えてなることを特徴とする水処理装置。
PCT/JP2016/059147 2015-06-01 2016-03-23 逆浸透膜装置の前処理方法及び水処理装置 WO2016194443A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020177034379A KR20180013931A (ko) 2015-06-01 2016-03-23 역침투막 장치의 전처리 방법 및 수처리 장치
CN201680026936.9A CN107531516B (zh) 2015-06-01 2016-03-23 反渗透膜装置的前处理方法及水处理装置

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015111487 2015-06-01
JP2015-111487 2015-06-01
JP2015119401 2015-06-12
JP2015-119401 2015-06-12
JP2016012615A JP6107985B2 (ja) 2015-06-01 2016-01-26 逆浸透膜装置の前処理方法及び水処理装置
JP2016-012615 2016-01-26

Publications (1)

Publication Number Publication Date
WO2016194443A1 true WO2016194443A1 (ja) 2016-12-08

Family

ID=57440648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059147 WO2016194443A1 (ja) 2015-06-01 2016-03-23 逆浸透膜装置の前処理方法及び水処理装置

Country Status (1)

Country Link
WO (1) WO2016194443A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6489276B1 (ja) * 2018-08-23 2019-03-27 栗田工業株式会社 逆浸透膜装置のスライム抑制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000167584A (ja) * 1998-12-03 2000-06-20 Mitsubishi Chemicals Corp マレイン酸異性化廃水の処理方法
JP2001212597A (ja) * 2000-02-04 2001-08-07 Kurita Water Ind Ltd スルホキシド類含有排水の処理方法及び処理装置
JP2002079689A (ja) * 2000-09-07 2002-03-19 Canon Inc インクカートリッジの洗浄方法
JP2010201312A (ja) * 2009-03-02 2010-09-16 Kurita Water Ind Ltd 膜分離方法
JP2014176799A (ja) * 2013-03-14 2014-09-25 Kurita Water Ind Ltd 逆浸透膜分離方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000167584A (ja) * 1998-12-03 2000-06-20 Mitsubishi Chemicals Corp マレイン酸異性化廃水の処理方法
JP2001212597A (ja) * 2000-02-04 2001-08-07 Kurita Water Ind Ltd スルホキシド類含有排水の処理方法及び処理装置
JP2002079689A (ja) * 2000-09-07 2002-03-19 Canon Inc インクカートリッジの洗浄方法
JP2010201312A (ja) * 2009-03-02 2010-09-16 Kurita Water Ind Ltd 膜分離方法
JP2014176799A (ja) * 2013-03-14 2014-09-25 Kurita Water Ind Ltd 逆浸透膜分離方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6489276B1 (ja) * 2018-08-23 2019-03-27 栗田工業株式会社 逆浸透膜装置のスライム抑制方法
JP2020028865A (ja) * 2018-08-23 2020-02-27 栗田工業株式会社 逆浸透膜装置のスライム抑制方法
WO2020040251A1 (ja) * 2018-08-23 2020-02-27 栗田工業株式会社 逆浸透膜装置のスライム抑制方法

Similar Documents

Publication Publication Date Title
JP6107985B2 (ja) 逆浸透膜装置の前処理方法及び水処理装置
WO2015029504A1 (ja) 次亜臭素酸安定化組成物の製造方法、次亜臭素酸安定化組成物、および分離膜のスライム抑制方法
JP6533056B2 (ja) ろ過処理システムおよびろ過処理方法
WO2016104356A1 (ja) 分離膜のスライム抑制方法
JP2016120457A (ja) ろ過処理システムおよびろ過処理方法
KR102494388B1 (ko) 역침투막 처리 방법, 수계의 바이오파울링 억제 방법 및 그를 위한 장치
JP6379571B2 (ja) 造水方法および造水装置
TWI727106B (zh) 利用逆滲透膜的水處理方法及水處理裝置
WO2021192583A1 (ja) 水回収システムおよび水回収方法
WO2016194443A1 (ja) 逆浸透膜装置の前処理方法及び水処理装置
JP2017121605A (ja) 逆浸透膜装置の前処理方法及び水処理装置
JP7013141B2 (ja) 逆浸透膜を用いる水処理方法
JP6565966B2 (ja) 水処理方法
JP6970516B2 (ja) 逆浸透膜を用いる水処理方法
JP2020037059A (ja) 膜ろ過システムおよび膜ろ過方法
JP7050414B2 (ja) 逆浸透膜を用いる水処理方法
JP2018008182A (ja) 逆浸透膜を用いる水処理方法、および逆浸透膜におけるシリカの阻止率向上剤
WO2018037683A1 (ja) 低分子有機物含有水の処理方法および処理システム
WO2023120350A1 (ja) 水系の微生物汚染抑制方法
WO2024048154A1 (ja) 逆浸透膜用スライム抑制助剤の製造方法、逆浸透膜用スライム抑制助剤、および水処理方法
WO2022191333A1 (ja) 水系のバイオファウリング抑制方法および水処理装置
WO2023120351A1 (ja) 水系の微生物汚染抑制方法
JP7141919B2 (ja) 逆浸透膜処理方法、逆浸透膜処理システム、水処理方法、および水処理システム
WO2018158943A1 (ja) 逆浸透膜の劣化抑制剤、および水処理方法
WO2019181998A1 (ja) 水系のorp監視及び/又は制御方法並びに水処理方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16802882

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177034379

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16802882

Country of ref document: EP

Kind code of ref document: A1