WO2019181998A1 - 水系のorp監視及び/又は制御方法並びに水処理方法及び装置 - Google Patents
水系のorp監視及び/又は制御方法並びに水処理方法及び装置 Download PDFInfo
- Publication number
- WO2019181998A1 WO2019181998A1 PCT/JP2019/011643 JP2019011643W WO2019181998A1 WO 2019181998 A1 WO2019181998 A1 WO 2019181998A1 JP 2019011643 W JP2019011643 W JP 2019011643W WO 2019181998 A1 WO2019181998 A1 WO 2019181998A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- orp
- water
- value
- monitoring
- correction value
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D65/00—Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
- B01D65/02—Membrane cleaning or sterilisation ; Membrane regeneration
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/50—Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/70—Treatment of water, waste water, or sewage by reduction
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/76—Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
Definitions
- the present invention relates to a method for accurately monitoring and / or controlling an ORP value of a water system.
- the present invention also relates to a water treatment method and apparatus and a reverse osmosis membrane treatment method using this water-based ORP monitoring and / or control method.
- ORP is “redox potential”
- RO water supply refers to water that is introduced into a reverse osmosis (RO) membrane device and treated with RO membrane, and is usually RO membrane. Applicable to the inlet water of the device.
- monitoring and / or control may be referred to as “monitoring / control”.
- the RO supply water introduced into the RO membrane apparatus employs a measure for constantly or intermittently adding an oxidant to suppress membrane blockage.
- pretreatment facilities are sterilized with free chlorine-based oxidizing agents such as sodium hypochlorite and chlorine dioxide.
- a reducing agent such as sodium bisulfite is injected before the RO membrane to reduce and remove free chlorine, and then chloramine or chlorosufamine RO membrane contamination is suppressed by adding a slime control agent containing a compound that suppresses bacterial growth such as a combined chlorine-based oxidizing agent such as sodium acid or an isothiazolone-based compound (Patent Documents 1 and 2).
- the suppression of bacteria on the RO membrane may not be suppressed only by the suppression technology using a combined chlorine-based oxidant or isothiazolone-based compound, which may lead to membrane clogging. .
- the amount of the reducing agent added at the front stage of the RO membrane be highly controlled to leave a free chlorine-based oxidizing agent that does not cause membrane degradation.
- Patent Document 3 when raw water is subjected to a two-stage RO membrane treatment, a combined chlorinated oxidant containing a sulfamic acid compound is present in the first RO feed water, and the ORP is supplied to the second RO feed water.
- a reducing agent so as to be 200 to 600 mV, the amount of residual oxidant in the second RO water supply is optimized, and membrane deterioration in the second RO membrane device is prevented, and sterilization and growth inhibition of microorganisms are suppressed.
- a method for preventing film contamination by effect is described.
- ORP varies greatly depending on pH value.
- the RO water supply usually varies in the pH range of 4.5 to 8.0. For this reason, even if only the ORP is measured and the addition amount of the reducing agent is controlled based on the measured value, there is a case where proper chemical injection control cannot be performed.
- Patent Document 4 as a method for controlling the amount of oxidant or reducing agent added in the oxidation-reduction reaction, the pH of the oxidation-reduction reaction system is measured, and a target value of ORP is set based on the measured value of pH. A method of adding and controlling an oxidizing agent or a reducing agent so as to obtain an ORP value is described. In this method, since the suitable pH value differs depending on the type of target oxidation-reduction reaction, the pH of the reaction system is measured, and a target ORP value is set for each measured pH value. Therefore, the method of Patent Document 4 does not obtain an ORP correction value.
- the present invention provides a method and apparatus for accurately grasping and monitoring and / or controlling an ORP of a water system that varies greatly depending on the pH value, and a chemical injection control of an oxidizing agent and / or a reducing agent using this method and apparatus.
- An object of the present invention is to provide a water treatment method and apparatus that perform accurately.
- the present inventor has repeatedly studied to solve the above problems, and found that the ORP of the water system can be accurately grasped by correcting the ORP measurement value based on the pH measurement value. That is, the gist of the present invention is as follows.
- a method for monitoring and / or controlling an ORP of an aqueous system which measures the ORP and pH of the aqueous system, and sets the ORP measurement value in a standard state based on a correction formula set in advance from the ORP and pH measurement values.
- An ORP monitoring / controlling method for water system which corrects the ORP value of the water system and monitors and / or controls the ORP of the water system based on the ORP correction value.
- ORP correction value ORP measurement value (mV) ⁇ 59 ⁇ (7 ⁇ pH measurement value)
- a water treatment method comprising adding an oxidizing agent and / or a reducing agent to an aqueous system based on an ORP correction value obtained by the aqueous ORP monitoring / control method according to [1] or [2] .
- An apparatus for monitoring and / or controlling an aqueous ORP an ORP measuring means for measuring the aqueous ORP, a pH measuring means for measuring pH, and an ORP measurement value measured by the ORP measuring means
- An aqueous ORP monitoring / control device comprising: an arithmetic means for correcting an ORP measurement value to an ORP value in a standard state based on a preset correction equation from a pH measurement value measured by the pH measurement means.
- a chemical injection control means for controlling the amount of the free chlorine-based oxidant added to the feed water and a water-based ORP monitoring / control device according to [7] or [8], wherein the chemical injection control means comprises: A water treatment apparatus that performs chemical injection control of a free chlorine-based oxidant based on an ORP correction value obtained by the water-system ORP monitoring / control apparatus.
- the ORP and pH of the aqueous system are measured, and the ORP measurement value is corrected to the ORP value in the standard state based on the correction equation set in advance from the ORP and pH measurement values. Monitor and / or control the ORP of the water system based on it.
- the ORP measurement value is corrected based on the pH measurement value.
- the ORP measurement value is preferably calculated as the ORP value in the standard state of pH 7 by correcting the ORP measurement value with the following formula based on the pH measurement value.
- ORP correction value (mV) ORP measurement value (mV) ⁇ 59 ⁇ (7 ⁇ pH measurement value)
- an oxidizing agent and / or a reducing agent in the pretreatment of the RO membrane treatment in which an oxidizing agent and / or a reducing agent is added to the RO water supply based on the ORP measurement value can be accurately controlled. Therefore, the deterioration of the RO membrane due to the excessive addition of the oxidizing agent or the insufficient addition amount of the reducing agent for reducing and removing the excess oxidizing agent is prevented. Further, membrane clogging caused by slime generation / growth in the system due to insufficient addition amount of the oxidizing agent or excessive addition of the reducing agent for reducing the oxidizing agent is prevented. This makes it possible to maintain stable operation over a long period.
- the ORP correction value obtained by the present invention is 400 to 600 mV, particularly 500 to 600 mV as the ORP correction value of a predetermined range, for example, pH 7. It is preferable to control the chemical injection so that
- the ORP correction value is less than 400 mV, the amount of the oxidizing agent is insufficient, and slime generation and proliferation in the system cannot be sufficiently prevented, and there is a possibility that the membrane is blocked due to membrane contamination.
- the ORP correction value exceeds 600 mV, the amount of the oxidant is too large, which may cause corrosion of the metal material or oxidative deterioration of the film, leading to a decrease in film performance such as a decrease in desalination rate.
- RO membrane treatment free chlorine-based oxidant is added to raw water, followed by turbidity and sterilization with a pretreatment device such as a filter. Then, if necessary, a reducing agent is added to reduce or remove part or all of the remaining free chlorine-based oxidant, and water to which the combined chlorine-based oxidant or slime control agent is added is supplied to the RO membrane device as RO water supply. To do.
- a pH measuring means and an ORP measuring means for measuring the pH and ORP of the RO water supply are provided.
- the measured values of pH and ORP output from these measuring means are input to the calculating means to calculate the ORP correction value.
- the oxidizing agent and / or the reducing agent is adjusted so that the ORP correction value is within a predetermined range (as described above, the predetermined range is preferably 400 to 600 mV, particularly preferably 500 to 600 mV as the ORP correction value at pH 7).
- a control signal is output to the medicine injection means to perform medicine injection control.
- the RO membrane treatment in such an oxidizing atmosphere (400 to 600 mV, preferably 500 to 600 mV as the ORP correction value for pH 7) is intermittently performed so that the treatment time per day is 10 minutes to 360 minutes. It is preferable.
- the point where the reducing agent is added is downstream of the free chlorine-based oxidant drug injection point and the chemical injection point of the combined chlorine-based oxidant or slime control agent It may be upstream of. It is preferable that the device arranged upstream of the RO membrane device suppresses slime by passing water in a state containing a free chlorine-based oxidant. For this reason, it is preferable to add a reducing agent near the RO membrane device.
- a safety filter is provided in front of the RO membrane device, it is preferable to add a reducing agent and a combined chlorine-based oxidizing agent or slime control agent in this order between the safety filter and the RO membrane device.
- Examples of water to be treated (raw water) used for RO membrane treatment include water (tap water, industrial water, etc.), waste water (organic matter-containing waste water, etc.) and the like.
- the present invention is particularly suitable for the RO membrane treatment of wastewater containing easily biodegradable low molecular weight organic substances that are apt to generate microorganisms.
- the chemical injection control of the oxidizing agent and / or the reducing agent is appropriately performed to prevent the membrane oxidation and prevent the membrane contamination. Can be prevented.
- the free chlorine-based oxidant added to raw water includes chlorine gas, chlorine dioxide, hypochlorous acid or its salt, chlorous acid or its salt, chloric acid or its salt, perchloric acid or its salt, chlorinated isocyanuric acid Examples thereof include salts thereof, but are not limited thereto.
- Salt-type free chlorine oxidants include alkali metal hypochlorites such as sodium hypochlorite and potassium hypochlorite, alkali hypochlorites such as calcium hypochlorite and barium hypochlorite.
- alkali metal chlorites such as sodium chlorite and potassium chlorite
- alkaline earth metal chlorites such as barium chlorite
- other chlorite metals such as nickel chlorite
- Examples include salts, alkali metal chlorates such as ammonium chlorate, sodium chlorate and potassium chlorate, and alkaline earth metal chlorates such as calcium chlorate and barium chlorate.
- These chlorine-based oxidants may be used alone or in combination of two or more.
- hypochlorite is easy to handle and can be preferably used.
- These free chlorine-based oxidants may be constantly added to the raw water at a concentration of about 0.3 to 2.0 mg / LasCl 2 .
- a fixed chlorine oxidizer or slime control agent described below is added in a fixed amount, and the chemical control of the free chlorine oxidizer based on the ORP correction value of the RO water supply can be used to prevent RO membrane oxidation and membrane contamination.
- the below-mentioned reducing agent is controlled by chemical injection based on the ORP correction value of the RO water supply.
- a filter such as a general gravity filter or a pressure filter, or a turbidity removing membrane device is used.
- the turbidity-eliminating device may be a cross-flow type or a total filtration type.
- ⁇ Reducing agent> There is no restriction
- ⁇ Bonded chlorine-based oxidizing agent or slime control agent As the combined chlorine-based oxidant, those composed of a chlorine-based oxidant and a sulfamic acid compound are preferable.
- hypochlorite can be preferably used in terms of handleability.
- Examples of the sulfamic acid compound include a compound represented by the following general formula [1] or a salt thereof.
- R 1 and R 2 are each independently hydrogen or a hydrocarbon having 1 to 8 carbon atoms.
- Examples of such sulfamic acid compounds include N-methylsulfamic acid, N, N-dimethylsulfamic acid, N-phenylsulfamic acid and the like in addition to sulfamic acid in which R 1 and R 2 are both hydrogen. Can do.
- examples of the salt of the compound include alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as calcium salt, strontium salt and barium salt, manganese salt, copper Mention may be made of other metal salts such as salts, zinc salts, iron salts, cobalt salts, nickel salts, ammonium salts and guanidine salts.
- sodium sulfamate potassium sulfamate, calcium sulfamate, strontium sulfamate, barium sulfamate, iron sulfamate, and zinc sulfamate.
- Sulphamic acid and these sulfamates can be used alone or in combination of two or more.
- chlorinated oxidant such as hypochlorite and a sulfamic acid compound such as sulfamate are mixed, they are combined to form chlorosulfamate and stabilize, maintaining a stable free chlorine concentration in water. It becomes possible.
- the use ratio of the chlorine-based oxidizing agent and the sulfamic acid compound is preferably 0.5 to 5.0 moles of sulfamic acid compound per mole of effective chlorine in the chlorine-based oxidizing agent, and preferably 0.5 to 2.0 moles. More preferably.
- the combined chlorine-based oxidant is preferably adjusted to pH 12 or more by adding an alkali such as sodium hydroxide or potassium hydroxide in terms of stability, and more preferably adjusted to pH 13 or more.
- the combined chlorine-based oxidizing agent is preferably blended as follows, for example.
- A a chlorine-containing oxidizing agent having an effective chlorine concentration of 1 to 8% by weight, preferably 3 to 6% by weight, and a sulfamic acid compound of 1.5 to 9% by weight, preferably 4.5 to 8% by weight, pH ⁇ 12 aqueous solution
- B In addition to the above (A), 0.05 to 3.0 wt% azoles, 1.5 to 3.0 wt% anionic polymer, 0.5 to 4.0 wt% PH ⁇ 12 aqueous solution containing one or more phosphonic acids
- the pH is adjusted by adding an alkali agent.
- These bonded chlorine-based oxidizing agents may be used alone or in combination of two or more.
- the bound chlorine-based oxidant is preferably added in a constant amount so that the concentration is about 0.3 to 1.0 mg / LasCl 2 .
- a pH meter and an ORP meter are preferably provided immediately before the RO membrane device (feed water inlet) in order to measure the pH and ORP of the RO feed water.
- the RO membrane device includes an RO membrane module in which an RO membrane element including an RO membrane (including an NF membrane) is loaded in a vessel.
- the RO membrane used in the present invention is a liquid separation membrane that applies a pressure higher than the osmotic pressure difference between solutions through the membrane to the high concentration side to block the solute and permeate the solvent.
- Examples of the membrane structure of the RO membrane include a polymer membrane such as a composite membrane and a phase separation membrane.
- the RO membrane material applied to the present invention include polyamide-based materials such as aromatic polyamides, aliphatic polyamides, and composites thereof.
- limiting in particular about the form of RO membrane module For example, a tubular membrane module, a planar membrane module, a spiral membrane module, a hollow fiber membrane module etc. are applicable.
- RO concentrated water amount 3.6 m 3 / h or more, for example, 3.6 to 7.0 m 3 / h
- Initial pure water flux 1.0 m / d (25 ° C., 0.735 MPa) or more
- Initial desalination rate 98% or more.
- Recovery Usually 50 to 80% (Set so that the Langeria index of concentrated water is 0 or less and the silica concentration of concentrated water is below solubility)
- an electrodeionization device or an ion exchange device can be provided at the subsequent stage of the RO membrane device to further improve the quality of the treated water.
- Test water with different pH was prepared by adding sulfuric acid or sodium hydroxide to pure water, and ORP was measured for each to examine the relationship between pH and ORP.
- the water temperature was 25 ° C. The results are shown in FIG.
- Example 1 Water supplied with pure water (RO treated water quality level) with 3 mg / LasC ethanol as a BOD source, 0.2 mg / L ammonium chloride as a N source, and about 20 ⁇ g / L sodium dihydrogen phosphate as a P source A safety filter water flow test was conducted. As a safety filter, a thread wound filter having a diameter of 10 ⁇ m was used, and water was passed at a flow rate of 2 L / min.
- ORP correction value was obtained by calculating the ORP value in the standard state of pH 7 from the ORP value and pH value of the feed water measured at the safety filter inlet based on the relationship shown in FIG.
- ORP correction value (mV) ORP measurement value of feed water (mV)-59 x (7-pH measurement value of feed water)
- the pH of the water supply for the safety filter fluctuated in the neutral range of 6.0 to 7.0 by adjusting the pH.
- Example 1 the measurement value of ORP is not corrected with the measurement value of pH, the measured ORP value is used as it is, and the same is performed except that a free chlorine-based oxidant is added so that the ORP measurement value becomes 600 mV.
- Table 1 shows the results of a water flow test.
- Table 1 shows the results of a water flow test performed in the same manner as in Example 1 except that the combined chlorine-based oxidizing agent and the free chlorine-based oxidizing agent were not added.
- the correction ORP value of the safety filter water supply at this time was about 250 mV.
- Example 2 a water flow test was conducted in the same manner except that only 0.6 mg / LasCl 2 of combined chlorine-based oxidizer was always added and no free chlorine-based oxidizer was added. The results are shown in Table 1. The corrected ORP value of the safety filter water supply at this time was about 300 mV.
- Example 3 a water flow test was conducted in the same manner except that only the free chlorine-based oxidant was constantly added at 0.8 mg / LasCl 2 and the combined chlorine-based oxidant was not added. The results are shown in Table 1. The corrected ORP value of the safety filter water supply at this time was about 650 mV.
- Example 1 in which the chemical injection control of the free chlorine-based oxidant was performed based on the ORP value corrected based on the measured pH value, filter contamination due to generation of slime, differential pressure due to contamination Can be prevented from rising.
- the water quality indicates conductivity.
- the pH of the RO water supply fluctuated in the neutral region of 6.0 to 7.0.
- Example 2 the measurement value of ORP is not corrected with the measurement value of pH, the measured ORP value is used as it is, and a free chlorine oxidant is added so that this ORP value becomes 600 mV. A water flow test was conducted. The results are shown in Table 2.
- Example 4 In Example 2, the results of the water flow test were similarly performed except that only the free chlorine-based oxidant was added so that the corrected ORP value was 700 mV without adding the combined chlorine-based oxidant. It is shown in 2.
- Example 2 As apparent from Table 2, the chemical injection control of the free chlorine oxidant was performed based on the ORP value corrected based on the measured pH value. In Example 2, since there is no problem of RO membrane deterioration, there is almost no decrease in the desalting rate.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
水系のORPを監視および/又は制御する方法であって、該水系のORPおよびpHを測定し、ORPおよびpHの測定値から予め設定した補正式に基づいてORP測定値を標準状態でのORP値に補正し、該ORP補正値に基づいて、該水系のORPを監視および/又は制御する水系のORP監視・制御方法。ORP補正値は、ORPおよびpHの測定値から、下記式に基づいて算出する。 ORP補正値(mV)=ORP測定値(mV)-59×(7-pH測定値)
Description
本発明は、水系のORP値を的確に把握して監視および/又は制御する方法に関する。本発明はまた、この水系のORP監視及び/又は制御方法を利用した水処理方法および装置並びに逆浸透膜処理方法に関する。
本発明において、「ORP」とは「酸化還元電位」であり、また、「RO給水」とは、逆浸透(RO)膜装置に導入されてRO膜処理される水をさし、通常RO膜装置の入口水が該当する。「監視及び/又は制御」を、以下、「監視・制御」と記載することがある。
井戸水、工業用水、水道水などを原水とする用水処理又は有機物含有排水等を原水とする排水回収システムにおいては、原水に凝集剤を添加して、原水中の懸濁物質、コロイダル成分や有機物質等を凝結かつ粗大化させる。次いで、沈殿、浮上、濾過、膜濾過等により固液分離する前処理を行った後、或いは膜濾過単独で除濁・除菌する前処理を行った後、RO膜処理する。
このような用水処理又は排水回収システムにおいては、特に有機物含有排水を原水とした場合、前処理で除去しきれなかった有機物を栄養源として、装置配管内又はRO膜面で生菌が増殖し、膜の透過水量の低下を引き起こすことがある。そのため、RO膜装置に導入されるRO給水には酸化剤を常時又は間欠添加し、膜閉塞を抑制する対策が採用されている。
通常は、前処理設備においては、次亜塩素酸ナトリウムや二酸化塩素といった遊離塩素系の酸化力の高い酸化剤で殺菌が行われている。ポリアミド系のRO膜はこのような酸化力の高い酸化剤の耐性が低いため、RO膜の前段で重亜硫酸ナトリウムなどの還元剤を注入し、遊離塩素を還元除去した後、クロラミンやクロロスフファミン酸ナトリウムといった結合塩素系酸化剤やイソチアゾロン系化合物等の菌増殖を抑制する化合物を含有するスライムコントロール剤を添加してRO膜汚染を抑制する(特許文献1,2)。
高濃度有機物含有排水を原水として用いた排水回収においては、結合塩素系酸化剤やイソチアゾロン系化合物等による抑制技術のみでは、RO膜における菌増殖を抑制し得ず、膜閉塞に到る場合がある。そのため、RO膜の前段での還元剤の添加量を高度に制御して、膜劣化に到らない程度の遊離塩素系酸化剤を残留させることが望まれる。
従来、ORP値に基づいて酸化剤や還元剤の薬注制御を行うことは知られている。例えば、特許文献3には、原水を2段RO膜処理するに当たり、第1のRO給水にスルファミン酸化合物を含む結合塩素系酸化剤を存在させると共に、第2のROの給水に、そのORPが200~600mVとなるように還元剤を添加することで、第2のRO給水中の残留酸化剤量を適正化し、第2のRO膜装置における膜劣化を防止した上で微生物の殺菌・増殖抑制効果で膜汚染を防止する方法が記載されている。
ORPはpH値によって大きく変動する。RO給水は、通常pHも4.5~8.0の範囲で変動する。そのため、単にORPのみを測定しこの測定値に基づいて還元剤の添加量を制御しても、適正な薬注制御を行えない場合がある。
特許文献4には、酸化還元反応における酸化剤又は還元剤の添加量の制御方法として、酸化還元反応系のpHを測定し、pHの測定値に基づいてORPの目標値を設定し、この目標ORP値となるように酸化剤又は還元剤を添加制御する方法が記載されている。この方法は、対象とする酸化還元反応の種類に応じて、好適pH値が異なるから、反応系のpHを測定し、測定pH値毎に目標とするORP値を設定するというものである。従って、特許文献4の方法はORP補正値を求めない。
従来、ORPの測定値に基づいて酸化剤や還元剤を薬注制御することは行われている。しかし、ORPはpH値によって大きく変動するため、ORPの測定値にのみ基づく薬注制御では適正な薬注制御を行えない。
本発明は、pH値により大きく変動する水系のORPを的確に把握して監視および/又は制御する方法および装置と、この方法および装置を利用して酸化剤および/又は還元剤の薬注制御を的確に行う水処理方法および装置を提供することを目的とする。
本発明者は、上記課題を解決すべく検討を重ね、ORP測定値をpH測定値に基づいて補正することにより、水系のORPを的確に把握することができることを見出した。
即ち、本発明は以下を要旨とする。
即ち、本発明は以下を要旨とする。
[1] 水系のORPを監視および/又は制御する方法であって、該水系のORPおよびpHを測定し、ORPおよびpHの測定値から予め設定した補正式に基づいてORP測定値を標準状態でのORP値に補正し、該ORP補正値に基づいて、該水系のORPを監視および/又は制御する水系のORP監視・制御方法。
[2] [1]において、ORPおよびpHの測定値から、下記式に基づいて、ORP補正値を算出することを特徴とする水系のORP監視・制御方法。
ORP補正値(mV)=ORP測定値(mV)-59×(7-pH測定値)
ORP補正値(mV)=ORP測定値(mV)-59×(7-pH測定値)
[3] [1]又は[2]に記載の水系のORP監視・制御方法によって求めたORP補正値に基づいて、酸化剤および/又は還元剤を水系に添加することを特徴とする水処理方法。
[4] [3]において、前記ORP補正値が400~600mVとなるように、前記水系に酸化剤および/又は還元剤を添加することを特徴とする水処理方法。
[5] [3]又は[4]において、逆浸透膜装置の被処理水に前記酸化剤および/又は還元剤を添加することを特徴とする水処理方法。
[6] 遊離塩素系酸化剤と結合塩素系酸化剤又はスライムコントロール剤を添加した水を逆浸透膜処理する方法において、該遊離塩素系酸化剤を逆浸透膜給水のORP値に基づいて薬注制御する方法であって、[1]又は[2]に記載の水系のORP監視・制御方法により求めた給水のORP補正値に基づいて、該遊離塩素系酸化剤を薬注制御する逆浸透膜処理方法。
[7] 水系のORPを監視および/又は制御する装置であって、該水系のORPを測定するORP測定手段とpHを測定するpH測定手段と、該ORP測定手段で測定されたORP測定値と該pH測定手段で測定されたpH測定値とから予め設定した補正式に基づいて、ORP測定値を標準状態でのORP値に補正する演算手段とを備える水系のORPの監視・制御装置。
[8] [7]において、前記演算手段は、ORPおよびpH測定値から下記式に基づいてORP補正値を算出する手段であることを特徴とする水系のORPの監視・制御装置。
ORP補正値(mV)=ORP測定値(mV)-59×(7-pH測定値)
ORP補正値(mV)=ORP測定値(mV)-59×(7-pH測定値)
[9] [7]又は[8]に記載の水系のORPの監視・制御装置と、該水系のORPの監視・制御装置の演算手段で算出されたORP補正値に基づいて酸化剤および/又は還元剤を水系に添加する薬注手段とを備えることを特徴とする水処理装置。
[10] [9]において、前記薬注手段は、前記ORP補正値が400~600mVとなるように前記水系に酸化剤および/又は還元剤を添加することを特徴とする水処理装置。
[11] [9]又は[10]において、逆浸透膜装置の被処理水に前記酸化剤および/又は還元剤を添加することを特徴とする水処理装置。
[12] 遊離塩素系酸化剤と結合塩素系酸化剤又はスライムコントロール剤とが添加された水を逆浸透膜処理する逆浸透膜装置と、該逆浸透膜装置の給水のORP値に基づいて、該給水への該遊離塩素系酸化剤の添加量を制御する薬注制御手段と、[7]又は[8]に記載の水系のORPの監視・制御装置とを備え、該薬注制御手段は、該水系のORPの監視・制御装置で求められたORP補正値に基づいて遊離塩素系酸化剤の薬注制御を行うことを特徴とする水処理装置。
本発明によれば、pH値により大きく変動する水系のORPを的確に把握して監視および/又は制御することができる。
本発明によればまた、このORP監視・制御方法および装置を利用して、RO給水への酸化剤および/又は還元剤の薬注制御を的確に行うことができる。
以下に本発明の実施の形態を詳細に説明する。
本発明においては、水系のORPおよびpHを測定し、ORPおよびpHの測定値から予め設定した補正式に基づいて、ORPの測定値を標準状態でのORP値に補正し、このORP補正値に基づいて水系のORPを監視および/又は制御する。
即ち、前述の通り、水系のORPは、pHによって大きく変動するため、本発明では、ORP測定値をpH測定値を基に補正する。
後掲の実験例1に示されるように、水系のORP測定値は、pHが1増加すると-59mV変動する。そのため、ORP測定値は、pH測定値を基に、以下の式で補正して、pH7の標準状態におけるORP値として算出することが好ましい。
ORP補正値(mV)=ORP測定値(mV)-59×(7-pH測定値)
ORP補正値(mV)=ORP測定値(mV)-59×(7-pH測定値)
本発明による水系のORPの監視・制御方法及び装置によると、ORP測定値に基づいてRO給水に酸化剤および/又は還元剤を添加するRO膜処理の前処理において、酸化剤および/又は還元剤の薬注制御を的確に行うことができる。そのため、酸化剤の過剰添加又は過剰の酸化剤を還元除去するための還元剤の添加量不足によるRO膜の劣化が防止される。また、酸化剤の添加量不足又は酸化剤を還元するための還元剤の過剰添加による系内のスライム発生・増殖に起因する膜閉塞が防止される。これにより、長期に亘り安定運転を維持することが可能となる。
RO膜の前処理としての酸化剤および/又は還元剤の薬注制御においては、本発明により求められたORP補正値が所定の範囲、例えばpH7のORP補正値として400~600mV、特に500~600mVとなるように、薬注制御することが好ましい。
このORP補正値が400mV未満では酸化剤量が不足し、系内のスライム発生、増殖を十分に防止し得ず、膜汚染による膜閉塞に到る可能性がある。ORP補正値が600mVを超えると酸化剤量が多過ぎ、金属材料の腐食や、膜の酸化劣化を引き起こし、脱塩率の低下等、膜性能の低下に到る可能性がある。
以下に本発明をRO膜処理に適用する場合における好適条件および好適態様について説明する。
通常、RO膜処理は、原水に遊離塩素系酸化剤を添加した後、濾過器等の前処理装置で除濁・除菌処理する。次いで必要に応じて還元剤を添加して残留する遊離塩素系酸化剤の一部又は全部を還元除去すると共に結合塩素系酸化剤又はスライムコントロール剤を添加した水をRO給水としてRO膜装置に供給する。
このようなRO膜処理に、本発明によるORPの監視・制御を適用するには、RO給水のpHとORPを測定するpH測定手段とORP測定手段とを設ける。これらの測定手段から出力されるpHとORPの測定値を演算手段に入力してORP補正値を算出する。このORP補正値が所定の範囲内(前述の通り、この所定範囲はpH7のORP補正値として好ましくは400~600mV、特に好ましくは500~600mVである。)となるように酸化剤および/又は還元剤の薬注手段に制御信号を出力して薬注制御を行う。
常時この条件でRO膜処理した場合には、RO膜が酸化劣化する可能性がある。したがって、このような酸化雰囲気(pH7のORP補正値として400~600mV、好ましくは500~600mV)でのRO膜処理は、1日当たりの処理時間が10分~360分間となるよう間欠的に処理することが好ましい。
還元剤の添加により残留遊離塩素系酸化剤を分解する場合、還元剤の添加箇所は遊離塩素系酸化剤薬注箇所の下流側であって、結合塩素系酸化剤又はスライムコントロール剤の薬注箇所の上流側であればよい。RO膜装置より前段に配置された装置は、遊離塩素系酸化剤を含む状態で通水することでスライムを抑制することが好ましい。このため、RO膜装置の近くで還元剤を添加することが好ましい。RO膜装置の前段に保安フィルターを設ける場合には、保安フィルターとRO膜装置との間に還元剤と結合塩素系酸化剤又はスライムコントロール剤とをこの順番で添加することが好ましい。
<原水>
RO膜処理に供する被処理水(原水)には、用水(水道水、工業用水など)、排水(有機物含有排水等)などが挙げられる。本発明は特に、微生物が発生し易い易生分解性の低分子量の有機物を含有した排水のRO膜処理に好適である。本発明によると、スライムが発生、増殖し易い排水のRO膜処理において、酸化剤および/又は還元剤の薬注制御を適正に行って、RO膜の酸化劣化を防止した上で膜汚染を確実に防止することができる。
RO膜処理に供する被処理水(原水)には、用水(水道水、工業用水など)、排水(有機物含有排水等)などが挙げられる。本発明は特に、微生物が発生し易い易生分解性の低分子量の有機物を含有した排水のRO膜処理に好適である。本発明によると、スライムが発生、増殖し易い排水のRO膜処理において、酸化剤および/又は還元剤の薬注制御を適正に行って、RO膜の酸化劣化を防止した上で膜汚染を確実に防止することができる。
<遊離塩素系酸化剤>
原水に添加する遊離塩素系酸化剤としては、塩素ガス、二酸化塩素、次亜塩素酸又はその塩、亜塩素酸又はその塩、塩素酸又はその塩、過塩素酸又はその塩、塩素化イソシアヌル酸又はその塩などを挙げることができるが、これらに限定されない。塩形の遊離塩素系酸化剤としては、次亜塩素酸ナトリウム、次亜塩素酸カリウムなどの次亜塩素酸アルカリ金属塩、次亜塩素酸カルシウム、次亜塩素酸バリウムなどの次亜塩素酸アルカリ土類金属塩、亜塩素酸ナトリウム、亜塩素酸カリウムなどの亜塩素酸アルカリ金属塩、亜塩素酸バリウムなどの亜塩素酸アルカリ土類金属塩、亜塩素酸ニッケルなどの他の亜塩素酸金属塩、塩素酸アンモニウム、塩素酸ナトリウム、塩素酸カリウムなどの塩素酸アルカリ金属塩、塩素酸カルシウム、塩素酸バリウムなどの塩素酸アルカリ土類金属塩などが例示される。これらの塩素系酸化剤は、1種を単独で用いても良く、2種以上を組み合わせて用いても良い。これらの中で、次亜塩素酸塩は取り扱いが容易なので、好適に用いることができる。
原水に添加する遊離塩素系酸化剤としては、塩素ガス、二酸化塩素、次亜塩素酸又はその塩、亜塩素酸又はその塩、塩素酸又はその塩、過塩素酸又はその塩、塩素化イソシアヌル酸又はその塩などを挙げることができるが、これらに限定されない。塩形の遊離塩素系酸化剤としては、次亜塩素酸ナトリウム、次亜塩素酸カリウムなどの次亜塩素酸アルカリ金属塩、次亜塩素酸カルシウム、次亜塩素酸バリウムなどの次亜塩素酸アルカリ土類金属塩、亜塩素酸ナトリウム、亜塩素酸カリウムなどの亜塩素酸アルカリ金属塩、亜塩素酸バリウムなどの亜塩素酸アルカリ土類金属塩、亜塩素酸ニッケルなどの他の亜塩素酸金属塩、塩素酸アンモニウム、塩素酸ナトリウム、塩素酸カリウムなどの塩素酸アルカリ金属塩、塩素酸カルシウム、塩素酸バリウムなどの塩素酸アルカリ土類金属塩などが例示される。これらの塩素系酸化剤は、1種を単独で用いても良く、2種以上を組み合わせて用いても良い。これらの中で、次亜塩素酸塩は取り扱いが容易なので、好適に用いることができる。
これらの遊離塩素系酸化剤は、0.3~2.0mg/LasCl2程度の濃度で原水に対して常時定量添加してもよい。後述の結合塩素系酸化剤又はスライムコントロール剤を定量添加し、遊離塩素系酸化剤をRO給水のORP補正値に基づいて薬注制御することが、RO膜の酸化劣化と膜汚染の防止の観点から好ましい。遊離塩素系酸化剤を定量添加する場合は、後述の還元剤がRO給水のORP補正値に基づいて薬注制御される。
<前処理装置>
RO膜装置の前処理装置としては、一般的な重力濾過器、圧力濾過器等の濾過器や除濁膜装置が用いられる。除濁膜装置は、クロスフロー方式のものであっても全量濾過方式のものであってもよい。
RO膜装置の前処理装置としては、一般的な重力濾過器、圧力濾過器等の濾過器や除濁膜装置が用いられる。除濁膜装置は、クロスフロー方式のものであっても全量濾過方式のものであってもよい。
<還元剤>
還元剤としては特に制限はなく、重亜硫酸、チオ硫酸、亜硫酸、チオグリコール酸およびアスコルビン酸などのナトリウム塩や他の金属塩等の1種又は2種以上を用いることができる。還元剤として、水素ガスを吹き込んでも良い。還元剤を添加する場合、還元剤は、ORP補正値に基づいて薬注制御することが好ましい。
還元剤としては特に制限はなく、重亜硫酸、チオ硫酸、亜硫酸、チオグリコール酸およびアスコルビン酸などのナトリウム塩や他の金属塩等の1種又は2種以上を用いることができる。還元剤として、水素ガスを吹き込んでも良い。還元剤を添加する場合、還元剤は、ORP補正値に基づいて薬注制御することが好ましい。
<結合塩素系酸化剤又はスライムコントロール剤>
結合塩素系酸化剤としては、塩素系酸化剤とスルファミン酸化合物とからなるものが好ましい。
結合塩素系酸化剤としては、塩素系酸化剤とスルファミン酸化合物とからなるものが好ましい。
塩素系酸化剤としては、前述の遊離塩素系酸化剤の1種又は2種以上を用いることができ、取り扱い性の面で次亜塩素酸塩を好適に用いることができる。
スルファミン酸化合物としては、下記一般式[1]で表される化合物又はその塩が挙げられる。
このようなスルファミン酸化合物としては、例えば、R1とR2がともに水素であるスルファミン酸のほかに、N-メチルスルファミン酸、N,N-ジメチルスルファミン酸、N-フェニルスルファミン酸などを挙げることができる。本発明に用いるスルファミン酸化合物のうち、前記化合物の塩としては、例えば、ナトリウム塩、カリウム塩などのアルカリ金属塩、カルシウム塩、ストロンチウム塩、バリウム塩などのアルカリ土類金属塩、マンガン塩、銅塩、亜鉛塩、鉄塩、コバルト塩、ニッケル塩などの他の金属塩、アンモニウム塩およびグアニジン塩などを挙げることができる。具体的には、スルファミン酸ナトリウム、スルファミン酸カリウム、スルファミン酸カルシウム、スルファミン酸ストロンチウム、スルファミン酸バリウム、スルファミン酸鉄、スルファミン酸亜鉛などを挙げることができる。スルファミン酸およびこれらのスルファミン酸塩は、1種を単独で用いることもでき、2種以上を組み合わせて用いることもできる。
次亜塩素酸塩等の塩素系酸化剤とスルファミン酸塩等のスルファミン酸化合物を混合すると、これらが結合して、クロロスルファミン酸塩を形成して安定化し、水中で安定した遊離塩素濃度を保つことが可能となる。
塩素系酸化剤とスルファミン酸化合物との使用割合は、塩素系酸化剤の有効塩素1モルあたりスルファミン酸化合物を0.5~5.0モルとすることが好ましく、0.5~2.0モルとすることがより好ましい。
結合塩素系酸化剤は、水酸化ナトリウム、水酸化カリウムなどのアルカリを添加して、pH12以上に調整することが安定性の面で好ましく、pH13以上に調整することがより好ましい。
結合塩素系酸化剤は、例えば次のような配合とすることが好ましい。
(A) 有効塩素濃度1~8重量%、好ましくは3~6重量%の塩素系酸化剤と、1.5~9重量%、好ましくは4.5~8重量%のスルファミン酸化合物を含む、pH≧12水溶液
(B) 上記(A)に、更に0.05~3.0重量%のアゾール類、1.5~3.0重量%のアニオン性ポリマー、0.5~4.0重量%のホスホン酸類の1種又は2種以上を含むpH≧12の水溶液
(A) 有効塩素濃度1~8重量%、好ましくは3~6重量%の塩素系酸化剤と、1.5~9重量%、好ましくは4.5~8重量%のスルファミン酸化合物を含む、pH≧12水溶液
(B) 上記(A)に、更に0.05~3.0重量%のアゾール類、1.5~3.0重量%のアニオン性ポリマー、0.5~4.0重量%のホスホン酸類の1種又は2種以上を含むpH≧12の水溶液
上記(A),(B)において、pHはアルカリ剤の添加により調整される。
これらの結合塩素系酸化剤は、1種を単独で用いても良く、2種以上を組み合わせて用いても良い。
結合塩素系酸化剤は、0.3~1.0mg/LasCl2程度の濃度となるように常時定量添加することが好ましい。
本発明においては、上記の結合塩素系酸化剤の代りに、微生物の活動を抑制する薬剤として、例えば、MBT(メチレンビスチオシアネート)、DBNPA(2,2-ジブロモ-3-ニトリロプロピオンアミド)、DBNE(2,2-ジブロモ-2-ニトロエタノール)、BBAB(ビス-1,4-ブロモアセトキシ-2-ブテン)、MIT(5-クロロ-2-メチル-4-イソチアゾリン-3-オン)、ジチオール(4,5-ジクロロ-1,2-ジチオラン-3-オン)、CFIPN(5-クロロ-2,4,6-トリフルオロイソフタロニトリル)、HBDS(ヘキサブロモジメチルスルホン)、TCS(3,3,4,4-テトラクロロテトラヒドロチオフェン-1,1-ジオキシド)、BNP(2-ブロモ-2-ニトロプロパン-1,3-ジオール)、BIT(ベンゾイソチアゾリン-3-オン)、GA(グルタールアルデヒド)などのスライムコントロール剤の1種又は2種以上を添加してもよい。上記の結合塩素系酸化剤とスライムコントロール剤とを併用添加してもよい。
<pH測定手段・ORP測定手段>
pH測定手段、ORP測定手段としては特に制限はなく、一般的なpH計、ORP計を用いることができる。
pH測定手段、ORP測定手段としては特に制限はなく、一般的なpH計、ORP計を用いることができる。
pH計およびORP計はRO給水のpHおよびORPを測定するために、RO膜装置の直前(給水入口部)に設けることが好ましい。
<RO膜装置>
RO膜装置は、RO膜(NF膜を包含する。)を備えたRO膜エレメントをベッセルに装填したRO膜モジュールによって構成される。本発明で使用されるRO膜は、膜を介する溶液間の浸透圧差以上の圧力を高濃度側にかけて、溶質を阻止し、溶媒を透過する液体分離膜である。RO膜の膜構造としては、複合膜、相分離膜などの高分子膜などを挙げることができる。本発明に適用されるRO膜の素材としては、例えば、芳香族系ポリアミド、脂肪族系ポリアミド、これらの複合材などのポリアミド系素材などを挙げることができる。RO膜モジュールの形式については特に制限はなく、例えば、管状膜モジュール、平面膜モジュール、スパイラル膜モジュール、中空糸膜モジュールなどを適用することができる。
RO膜装置は、RO膜(NF膜を包含する。)を備えたRO膜エレメントをベッセルに装填したRO膜モジュールによって構成される。本発明で使用されるRO膜は、膜を介する溶液間の浸透圧差以上の圧力を高濃度側にかけて、溶質を阻止し、溶媒を透過する液体分離膜である。RO膜の膜構造としては、複合膜、相分離膜などの高分子膜などを挙げることができる。本発明に適用されるRO膜の素材としては、例えば、芳香族系ポリアミド、脂肪族系ポリアミド、これらの複合材などのポリアミド系素材などを挙げることができる。RO膜モジュールの形式については特に制限はなく、例えば、管状膜モジュール、平面膜モジュール、スパイラル膜モジュール、中空糸膜モジュールなどを適用することができる。
本発明におけるRO膜装置の好適運転条件は以下の通りである。
(1) RO濃縮水量:3.6m3/h以上、例えば3.6~7.0m3/h
(2) RO膜仕様:
標準圧力=0.735MPaの超低圧膜
RO膜面積=35~41m2
初期純水フラックス=1.0m/d(25℃、0.735MPa)以上
初期脱塩率=98%以上。
(3) 回収率:通常50~80%(濃縮水のランゲリア指数が0以下、濃縮水のシリカ濃度が溶解度以下となるように設定する。)
(1) RO濃縮水量:3.6m3/h以上、例えば3.6~7.0m3/h
(2) RO膜仕様:
標準圧力=0.735MPaの超低圧膜
RO膜面積=35~41m2
初期純水フラックス=1.0m/d(25℃、0.735MPa)以上
初期脱塩率=98%以上。
(3) 回収率:通常50~80%(濃縮水のランゲリア指数が0以下、濃縮水のシリカ濃度が溶解度以下となるように設定する。)
<後段装置>
上記のRO膜装置の後段には必要に応じて電気脱イオン装置やイオン交換装置を設けて処理水の水質を更に高めることができる。
上記のRO膜装置の後段には必要に応じて電気脱イオン装置やイオン交換装置を設けて処理水の水質を更に高めることができる。
以下に実験例、実施例および比較例を挙げて本発明をより具体的に説明する。
<実験例1>
純水に硫酸又は水酸化ナトリウムを添加することで、pHの異なる試験水を調製し、各々ORPを測定してpHとORPの関係を調べた。水温は25℃とした。結果を図1に示す。
純水に硫酸又は水酸化ナトリウムを添加することで、pHの異なる試験水を調製し、各々ORPを測定してpHとORPの関係を調べた。水温は25℃とした。結果を図1に示す。
図1より、pHが1変動するとORPは-59mV変動することが分かる。
[バイオファウリング抑制試験]
<実施例1>
純水(RO処理水水質レベル)にBOD源としてエタノールを3mg/LasC、N源として塩化アンモニウムを0.2mg/L、P源としてリン酸二水素ナトリウムを20μg/L程度添加した水を給水として、保安フィルター通水試験を実施した。
保安フィルターは口径10μmの糸巻きフィルターを用い、2L/minの流量で通水した。
<実施例1>
純水(RO処理水水質レベル)にBOD源としてエタノールを3mg/LasC、N源として塩化アンモニウムを0.2mg/L、P源としてリン酸二水素ナトリウムを20μg/L程度添加した水を給水として、保安フィルター通水試験を実施した。
保安フィルターは口径10μmの糸巻きフィルターを用い、2L/minの流量で通水した。
この給水には、結合塩素系酸化剤としてクロロスルファミン酸ナトリウムを常時0.6mg/LasCl2添加すると共に、遊離塩素系酸化剤として次亜塩素酸ナトリウムをORP補正値が1日1回連続して360分間、600mVとなるように添加した。
ORP補正値は、保安フィルター入口で測定した給水のORP値とpH値から、図1に示す関係に基づき、下記式によりpH7の標準状態でのORP値を算出することで求めた。
ORP補正値(mV)=給水のORP測定値(mV)-59×(7-給水のpH測定値)
ORP補正値(mV)=給水のORP測定値(mV)-59×(7-給水のpH測定値)
保安フィルターの給水のpHは、pH調整して6.0~7.0の中性領域の範囲で変動した。
通水開始初期、通水100h後、通水120h後のそれぞれの保安フィルターの差圧を調べ、結果を表1に示した。
<比較例1>
実施例1において、ORPの測定値をpHの測定値で補正せず、測定されたORP値をそのまま用い、このORP測定値が600mVとなるように遊離塩素系酸化剤を添加したこと以外は同様に通水試験を行った結果を表1に示す。
実施例1において、ORPの測定値をpHの測定値で補正せず、測定されたORP値をそのまま用い、このORP測定値が600mVとなるように遊離塩素系酸化剤を添加したこと以外は同様に通水試験を行った結果を表1に示す。
<参考例1>
実施例1において、結合塩素系酸化剤および遊離塩素系酸化剤を無添加したこと以外は、同様に通水試験を行った結果を表1に示す。このときの保安フィルター給水の補正ORP値は250mV程度であった。
実施例1において、結合塩素系酸化剤および遊離塩素系酸化剤を無添加したこと以外は、同様に通水試験を行った結果を表1に示す。このときの保安フィルター給水の補正ORP値は250mV程度であった。
<参考例2>
実施例1において、結合塩素系酸化剤0.6mg/LasCl2のみを常時添加とし、遊離塩素系酸化剤を添加しなかったこと以外は同様に通水試験を行った。結果を表1に示す。このときの保安フィルター給水の補正ORP値は300mV程度であった。
実施例1において、結合塩素系酸化剤0.6mg/LasCl2のみを常時添加とし、遊離塩素系酸化剤を添加しなかったこと以外は同様に通水試験を行った。結果を表1に示す。このときの保安フィルター給水の補正ORP値は300mV程度であった。
<参考例3>
実施例1において、遊離塩素系酸化剤のみを0.8mg/LasCl2で常時添加し、結合塩素系酸化剤を添加しなかったこと以外は同様に通水試験を行った。結果を表1に示す。このときの保安フィルター給水の補正ORP値は650mV程度であった。
実施例1において、遊離塩素系酸化剤のみを0.8mg/LasCl2で常時添加し、結合塩素系酸化剤を添加しなかったこと以外は同様に通水試験を行った。結果を表1に示す。このときの保安フィルター給水の補正ORP値は650mV程度であった。
表1より明らかなように、pH測定値に基づいて補正したORP値に基づいて遊離塩素系酸化剤の薬注制御を行った実施例1では、スライムの発生によるフィルターの汚染、汚染による差圧の上昇を防止することができる。
これに対して、ORP測定値をpH値で補正せずに薬注制御を行った比較例1では、遊離塩素系酸化剤の過不足が生じ、差圧が上昇した。
酸化剤無添加の参考例1では、早期に差圧が上昇する。酸化力の低い結合塩素系酸化剤のみ添加の参考例2でも、差圧が上昇する。
これら比較例1および参考例1,2では、給水系内のスライムの発生を防止し得ず、フィルターの汚染で差圧が上昇したと考えられる。
参考例3では差圧上昇の問題はないが、遊離塩素系酸化剤の過剰添加によるフィルターまたは実機を想定した際のRO膜劣化の懸念がある。
[RO膜劣化試験]
<実施例2>
残留塩素除去された水道水にクロロスルファミン酸塩系結合塩素系酸化剤を0.6mg/LasCl2添加した。その後、実施例1と同様に補正したORP値が1日1回連続して360分間、600mVとなるように、遊離塩素系酸化剤として次亜塩素酸ナトリウムを添加した。この水をRO給水として用いて、RO平膜試験を実施した。RO膜としては一般的な超低圧膜を使用した。回収率75%、運転フラックス0.66m/dで通水し、通水開始時と通水120h後の脱塩率(=[1-処理水水質/{(給水水質+濃縮水水質)/2}]×100 ここで水質は導電率をさす。)を調べ、結果を表2に示した。
<実施例2>
残留塩素除去された水道水にクロロスルファミン酸塩系結合塩素系酸化剤を0.6mg/LasCl2添加した。その後、実施例1と同様に補正したORP値が1日1回連続して360分間、600mVとなるように、遊離塩素系酸化剤として次亜塩素酸ナトリウムを添加した。この水をRO給水として用いて、RO平膜試験を実施した。RO膜としては一般的な超低圧膜を使用した。回収率75%、運転フラックス0.66m/dで通水し、通水開始時と通水120h後の脱塩率(=[1-処理水水質/{(給水水質+濃縮水水質)/2}]×100 ここで水質は導電率をさす。)を調べ、結果を表2に示した。
試験中、RO給水のpHは、6.0~7.0の中性領域で変動した。
<比較例2>
実施例2において、ORPの測定値をpHの測定値で補正せず、測定されたORP値をそのまま用い、このORP値が600mVとなるように遊離塩素系酸化剤を添加したこと以外は、同様に通水試験を行った。結果を表2に示す。
実施例2において、ORPの測定値をpHの測定値で補正せず、測定されたORP値をそのまま用い、このORP値が600mVとなるように遊離塩素系酸化剤を添加したこと以外は、同様に通水試験を行った。結果を表2に示す。
<参考例4>
実施例2において、結合塩素系酸化剤は添加せずに、補正ORP値が700mVとなるように、遊離塩素系酸化剤のみを添加したこと以外は、同様に通水試験を行った結果を表2に示す。
実施例2において、結合塩素系酸化剤は添加せずに、補正ORP値が700mVとなるように、遊離塩素系酸化剤のみを添加したこと以外は、同様に通水試験を行った結果を表2に示す。
表2より明らかなように、pH測定値に基づいて補正したORP値に基づいて遊離塩素系酸化剤の薬注制御を行った。実施例2では、RO膜劣化の問題がないため、脱塩率の低下は殆どない。
これに対して、ORP測定値をpH値で補正せずに薬注制御を行った比較例2では、遊離塩素系酸化剤の過不足が生じたが、脱塩率の低下はほとんどみられない。
参考例4では、遊離塩素系酸化剤の過剰添加によるRO膜劣化で脱塩率が低下した。
本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
本出願は、2018年3月22日付で出願された日本特許出願2018-054655に基づいており、その全体が引用により援用される。
本出願は、2018年3月22日付で出願された日本特許出願2018-054655に基づいており、その全体が引用により援用される。
Claims (12)
- 水系のORPを監視および/又は制御する方法であって、該水系のORPおよびpHを測定し、ORPおよびpHの測定値から予め設定した補正式に基づいてORP測定値を標準状態でのORP値に補正し、該ORP補正値に基づいて、該水系のORPを監視および/又は制御する水系のORP監視・制御方法。
- 請求項1において、ORPおよびpHの測定値から、下記式に基づいて、ORP補正値を算出することを特徴とする水系のORP監視・制御方法。
ORP補正値(mV)=ORP測定値(mV)-59×(7-pH測定値) - 請求項1又は2に記載の水系のORP監視・制御方法によって求めたORP補正値に基づいて、酸化剤および/又は還元剤を水系に添加することを特徴とする水処理方法。
- 請求項3において、前記ORP補正値が400~600mVとなるように、前記水系に酸化剤および/又は還元剤を添加することを特徴とする水処理方法。
- 請求項3又は4において、逆浸透膜装置の被処理水に前記酸化剤および/又は還元剤を添加することを特徴とする水処理方法。
- 遊離塩素系酸化剤と結合塩素系酸化剤又はスライムコントロール剤を添加した水を逆浸透膜処理する逆浸透膜処理方法において、
該遊離塩素系酸化剤を逆浸透膜給水のORP値に基づいて薬注制御する逆浸透膜処理方法であって、
請求項1又は2に記載の水系のORP監視・制御方法により求めた給水のORP補正値に基づいて、該遊離塩素系酸化剤を薬注制御する逆浸透膜処理方法。 - 水系のORPを監視および/又は制御する装置であって、該水系のORPを測定するORP測定手段とpHを測定するpH測定手段と、該ORP測定手段で測定されたORP測定値と該pH測定手段で測定されたpH測定値とから予め設定した補正式に基づいて、ORP測定値を標準状態でのORP値に補正する演算手段とを備える水系のORPの監視・制御装置。
- 請求項7において、前記演算手段は、ORPおよびpH測定値から下記式に基づいてORP補正値を算出する手段であることを特徴とする水系のORPの監視・制御装置。
ORP補正値(mV)=ORP測定値(mV)-59×(7-pH測定値) - 請求項7又は8に記載の水系のORPの監視・制御装置と、該水系のORPの監視・制御装置の演算手段で算出されたORP補正値に基づいて酸化剤および/又は還元剤を水系に添加する薬注手段とを備えることを特徴とする水処理装置。
- 請求項9において、前記薬注手段は、前記ORP補正値が400~600mVとなるように前記水系に酸化剤および/又は還元剤を添加することを特徴とする水処理装置。
- 請求項9又は10において、逆浸透膜装置の被処理水に前記酸化剤および/又は還元剤を添加することを特徴とする水処理装置。
- 遊離塩素系酸化剤と結合塩素系酸化剤又はスライムコントロール剤とが添加された水を逆浸透膜処理する逆浸透膜装置と、該逆浸透膜装置の給水のORP値に基づいて、該給水への該遊離塩素系酸化剤の添加量を制御する薬注制御手段と、請求項7又は8に記載の水系のORPの監視・制御装置とを備え、該薬注制御手段は、該水系のORPの監視・制御装置で求められたORP補正値に基づいて遊離塩素系酸化剤の薬注制御を行うことを特徴とする水処理装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018054655A JP2019166439A (ja) | 2018-03-22 | 2018-03-22 | 水系のorp監視・制御方法および装置 |
JP2018-054655 | 2018-03-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019181998A1 true WO2019181998A1 (ja) | 2019-09-26 |
Family
ID=67987747
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/011643 WO2019181998A1 (ja) | 2018-03-22 | 2019-03-20 | 水系のorp監視及び/又は制御方法並びに水処理方法及び装置 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2019166439A (ja) |
TW (1) | TW201940225A (ja) |
WO (1) | WO2019181998A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6320033A (ja) * | 1986-07-11 | 1988-01-27 | Kurita Water Ind Ltd | 酸化還元処理装置 |
JP2008212915A (ja) * | 2007-03-02 | 2008-09-18 | Yoshizaki Mekki Kakosho:Kk | 六価クロム含有排水の還元処理後の排水に含まれる還元剤の適正濃度維持方法および装置 |
US20080237143A1 (en) * | 2007-03-28 | 2008-10-02 | Hicks Peter D | Method of inhibiting corrosion in industrial hot water systems by monitoring and controlling oxidant/reductant feed through a nonlinear control algorithm |
JP2009189933A (ja) * | 2008-02-13 | 2009-08-27 | Metawater Co Ltd | 還元処理装置および還元処理方法 |
JP2010201313A (ja) * | 2009-03-02 | 2010-09-16 | Kurita Water Ind Ltd | 逆浸透膜分離方法 |
JP2011226043A (ja) * | 2010-03-31 | 2011-11-10 | Kurita Water Ind Ltd | スライムを抑制する方法 |
-
2018
- 2018-03-22 JP JP2018054655A patent/JP2019166439A/ja active Pending
-
2019
- 2019-03-20 WO PCT/JP2019/011643 patent/WO2019181998A1/ja active Application Filing
- 2019-03-22 TW TW108110115A patent/TW201940225A/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6320033A (ja) * | 1986-07-11 | 1988-01-27 | Kurita Water Ind Ltd | 酸化還元処理装置 |
JP2008212915A (ja) * | 2007-03-02 | 2008-09-18 | Yoshizaki Mekki Kakosho:Kk | 六価クロム含有排水の還元処理後の排水に含まれる還元剤の適正濃度維持方法および装置 |
US20080237143A1 (en) * | 2007-03-28 | 2008-10-02 | Hicks Peter D | Method of inhibiting corrosion in industrial hot water systems by monitoring and controlling oxidant/reductant feed through a nonlinear control algorithm |
JP2009189933A (ja) * | 2008-02-13 | 2009-08-27 | Metawater Co Ltd | 還元処理装置および還元処理方法 |
JP2010201313A (ja) * | 2009-03-02 | 2010-09-16 | Kurita Water Ind Ltd | 逆浸透膜分離方法 |
JP2011226043A (ja) * | 2010-03-31 | 2011-11-10 | Kurita Water Ind Ltd | スライムを抑制する方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2019166439A (ja) | 2019-10-03 |
TW201940225A (zh) | 2019-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3279151A1 (en) | Reverse osmosis membrane treatment system operation method and reverse osmosis membrane treatment system | |
JP5998929B2 (ja) | 膜分離方法 | |
JP6534524B2 (ja) | ろ過処理システムおよびろ過処理方法 | |
WO2011125762A1 (ja) | 結合塩素剤、その製造および使用方法 | |
WO2000004986A1 (fr) | Technique visant a inhiber le developpement bacterien au voisinage d'une membrane de separation, technique de sterilisation de celle-ci | |
JPWO2019031430A1 (ja) | 逆浸透膜処理方法及び水処理装置 | |
WO2011108478A1 (ja) | 水処理方法及び超純水製造方法 | |
JP5807634B2 (ja) | 逆浸透膜処理方法 | |
WO2016104356A1 (ja) | 分離膜のスライム抑制方法 | |
JP6447133B2 (ja) | 造水システムおよび造水方法 | |
JP2009183825A (ja) | 水処理装置 | |
JP6970516B2 (ja) | 逆浸透膜を用いる水処理方法 | |
WO2021192583A1 (ja) | 水回収システムおよび水回収方法 | |
JP7052461B2 (ja) | 電気再生式脱イオン装置の運転制御方法および水処理装置 | |
JP3641854B2 (ja) | 逆浸透膜分離方法および逆浸透膜分離装置 | |
JP7333865B2 (ja) | 水処理方法および水処理装置 | |
WO2019181998A1 (ja) | 水系のorp監視及び/又は制御方法並びに水処理方法及び装置 | |
WO2022209461A1 (ja) | 逆浸透膜装置の運転方法 | |
JP2015186773A (ja) | 造水方法および造水装置 | |
JP3547018B2 (ja) | 逆浸透処理方法および造水方法 | |
JPH0957067A (ja) | 逆浸透膜分離方法およびその装置 | |
JP3312483B2 (ja) | 逆浸透処理方法および造水方法 | |
WO2024048154A1 (ja) | 逆浸透膜用スライム抑制助剤の製造方法、逆浸透膜用スライム抑制助剤、および水処理方法 | |
JP7141919B2 (ja) | 逆浸透膜処理方法、逆浸透膜処理システム、水処理方法、および水処理システム | |
JP5604914B2 (ja) | 水処理方法及び超純水製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19772232 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19772232 Country of ref document: EP Kind code of ref document: A1 |